WO2020235028A1 - Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device - Google Patents

Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device Download PDF

Info

Publication number
WO2020235028A1
WO2020235028A1 PCT/JP2019/020197 JP2019020197W WO2020235028A1 WO 2020235028 A1 WO2020235028 A1 WO 2020235028A1 JP 2019020197 W JP2019020197 W JP 2019020197W WO 2020235028 A1 WO2020235028 A1 WO 2020235028A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
data
meal
mobile terminal
user
Prior art date
Application number
PCT/JP2019/020197
Other languages
French (fr)
Japanese (ja)
Inventor
圭二 大久保
Original Assignee
Okubo Keiji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okubo Keiji filed Critical Okubo Keiji
Priority to PCT/JP2019/020197 priority Critical patent/WO2020235028A1/en
Publication of WO2020235028A1 publication Critical patent/WO2020235028A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets

Definitions

  • the present invention is the world's first "My Health Anatomy (MHA) My Anatomy” application that makes it possible for users to understand what is the strongest KPI.
  • KPIs Key Performance Indicators
  • wearables including devices, chips, etc.
  • smartphones and KPIs are displayed on smartphones and the like. It is not a medical device, but is intended to support self-determination.
  • the obese population has already exceeded 2.1 billion, accounting for more than one in three human beings, and because it is expanding rapidly, it is called the Global Obesity War. War destroys everything. The same is true for obesity. It is widely known that obesity is associated with many diseases such as hypertension, diabetes, aspiration syndrome, kidney disease, myocardial infarction, cerebral infarction, cancer, dementia, psychiatric disorder, orthopedic disorder, dialysis, and blindness, and is accompanied by enormous sacrifice. Has been done. Obesity progresses chronically. Earth history states that there are no drugs with dramatic effects and that the efforts of obese people are often unrewarded. And it is accelerating not only individual financial collapse but also social collapse. The above diseases are the main efforts of WHO and the Japan Society for the Study of Obesity.
  • References 5 Nutter, RL, Gridley, DS, Kettering, JD, et al., “Modification of a transplantable colon tumor and immune responses in mice fed different sources of protein, fat and carbohydrate.” Cancer Letters, 18 (1) , 1983, pages 49-62.
  • Reference paper 6 Sensi, M., Pricci, F., Andreani, D., et al., “Advanced Nonenzymatic Glycation Endproducts (AGE): Their Relevance to Aging and the Pathogenesis of Late Diabetic Complications.” Diabetes Research, 16 ( 1), 1991, pages 1-9.
  • Reference Article 7 Gererts, SO, Leoffice, V., Charpentier, J., et al.
  • insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally related to an increase in intramuscular fatty acid metabolites.
  • FATP1 deletion protected KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without altering systemic hyperlipidemia.
  • Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA.
  • HbA 1c Comparing one or two people with dyslipidemia at risk of high cardiovascular disease (CVD), HbA 1c was 7.3, 7.5, and 7.9%, triglycerides 150, 210, and 381 mg / dl, and HDL 54, 40 and 37 mg 1 / dl suggest an association between poor glycemic control and dyslipidemia in type 2 diabetes, respectively.
  • Pladevall etc. (Summary 948) A managed care database of 9,642 people, with 6,751 people followed between 1997 and 2001, was used to describe trends in the management of dyslipidemia in diabetic patients. Lipid tests were performed at 37, 44, 51, 55, and 6% in 1997, 1998, 1999, 2000, and 2001, respectively.
  • NCEP National Cholesterol Education Program
  • ATP III Adult Treatment Panel III
  • a low-saturated fat diet combined with exercise and 2) Dietary supplements, namely fish oil, oats, or plant sterol supplementation and treatment of exercise dyslipidemia.
  • Combination therapy is particularly advantageous because diet and exercise elicit complementary effects on lipid profiles. More specifically, with a few exceptions, diets have low total (TC) and LDL cholesterol (LDL-C) levels, whereas exercise interventions have HDL cholesterol (HDL-C). While increasing, it decreases triglyceride (TG) levels.
  • TC total
  • LDL-C LDL cholesterol
  • TG triglyceride
  • Measurements of outcomes before and after treatment included glucose treatment with a hyperinsulin normoglycemic clamp and computed tomography scans of abdominal AT and central femoral skeletal muscle. Results-Glucose infusion rate was significantly increased in the Ae + RT group (P ⁇ 0.05). Both exercise groups reduced subcutaneous and visceral AT in the abdomen and increased muscle density. The Ae + RT training group showed a significantly greater increase in muscle density than the Ae-only group. Improved glucose treatment was independently associated with changes in subcutaneous AT, visceral AT, and muscle density. After controlling abdominal AT, muscle density remained associated with glucose processing. In conclusion, the addition of resistance training to aerobic training enhanced glucose treatment in postmenopausal women with type 2 diabetes.
  • MetS hyperglycemia
  • MetS and its main components can be powerful predictors of long-term ischemic stroke. Therefore, it is necessary to focus on the identification and proper management of MetS components to prevent the occurrence of stroke.
  • Metabolic syndrome and all causes and mortality from cardiovascular disease A prospective (JPHC) study based on the Public Health Center. Between 1990 and 2005, a Japanese health center-based prospective (JPHC) study found metabolic risk in 12,412 and 21,639 men aged 40-69 years with no history of cardiovascular disease (CVD) or cancer. Baseline measurements of the factors were performed. To clarify the role of obesity adopted by the definition of MetS in Japan, we investigated the clustering of risk factors in data grouped according to overweight status. During the 12.3 year follow-up, there were 2,040 deaths, of which 947 died of cancer and 304 died of CVD. MetS significantly increased the hazard ratios for all-cause mortality in women and CVD mortality in men. Non-overweight with two or more risk factors had similar effects on all-cause mortality and CVD mortality. Clustering of metabolic factors caused a linear increase in risk relative to mortality. CONCLUSIONS: MetS moderately increased all-cause mortality and CVD mortality.
  • Metabolic syndrome is defined as at least three clusters of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high density lipoprotein (HDL) and insulin resistance. It is estimated that more than 20% of the world's adult population is affected. Abdominal (visceral) obesity is considered to be a major risk factor for metabolic syndrome, and it is estimated that by 2030, 50% of adults will be classified as obese. According to health and economic evidence, regular and consistent exercise reduces abdominal obesity and results in favorable changes in body composition.
  • FIG. 1 is a schematic diagram showing the entire system to which the MHA application according to an embodiment of the present invention is applied. Further, FIG. 2 is a diagram showing an image of a screen that the user can actually see. This is just an example, and can be changed by the user and customization at the time of manufacture and sale.
  • This system is composed of a device A worn by the user, an information communication terminal B such as a smartphone carried by the user, and a cloud server C.
  • the device A mainly collects exercise data and transmits it to the information communication terminal B.
  • the information / communication terminal B mainly photographs foods to be ingested, uploads images together with exercise data to cloud server C, downloads PFC data from the cloud server C, and displays various information.
  • the cloud server C uses the uploaded image, exercise data, etc., analyzes what the user has ingested by the AI engine, generates PFC data based on the analysis result, and downloads it to the information communication terminal B.
  • the user can obtain the PFC of the meal or beverage simply by automatically reading (sometimes taking a picture) the identification code such as the voice, photo, and bar code of the meal and uploading it. As a result, it becomes easy to recognize which factor of the PFC factor should be lowered or increased. The user can adjust the main factors of the diet by himself.
  • PFC is used as basic data to improve the eating habits of users, but exercise and sleep collected by devices such as smart watches shown in 1a, which are collectively called devices including healthcare devices.
  • devices such as smart watches shown in 1a, which are collectively called devices including healthcare devices.
  • blood pressure and heart rate data By adding blood pressure and heart rate data, it becomes an integrated integrated data, which enables integrated analysis of not only PFC but also exercise to support people's choices and decisions.
  • the data collected by healthcare devices is mainly exercise data such as steps, distance, and calories burned, but in recent years, devices that can collect health support data such as heart rate and sleep records have appeared.
  • Sphygmomanometers, blood glucose meters, weight scales / body composition analyzers, activity meters, etc. equipped with communication functions have also been commercialized, and data collected from these devices can also be integrated and utilized with PFC.
  • the exercise data of 1 is generally accumulated in the built-in storage of the smartphone paired with the healthcare device via Bluetooth or the like. This data can be freely obtained from external systems and applications at any time via the library provided by the OS.
  • Recent smartphones are equipped with a motion coprocessor that processes sensor information such as gyro sensors, accelerometers, and compasses, which is less accurate than dedicated healthcare devices, but the smartphone itself can also be used as a pedometer. It is possible.
  • Meal photography 2a is a smartphone application (hereinafter referred to as MHA application) to which the present invention is applied.
  • MHA application a smartphone application
  • the first step of the MHA app is to take pictures of food, beverages, and sometimes medicines that enter the body and read codes, but before that, I will briefly explain the work required.
  • the photos / codes, PFC, exercise data / health supplement data, etc. uploaded by the user will be integrated and further accumulated.
  • the 6a and 7a servers are built on the cloud platform.
  • Meals, beverages, drug images, cosmetics, skin, blood vessels Upload Meal photos taken with the MHA app are uploaded to storage on the 7a cloud server via the Internet, unless the user deletes the account thereafter. Stay in the cloud. If the upload is successful, the user may delete the photo from their smartphone.
  • the upload of 3 is managed by linking it to the database as a user-specific history, and it is also used for learning AI. Uploads can be treated as anonymous data, and it is possible to propose PFC, which is a dietary factor, with numerical values and photographs. When registering the account described in 2, specify the purpose of use and ask for consent for secondary use by the MHA app.
  • Image input The process of recognizing 3 included in the photograph uses the external image recognition AI service described in 4a.
  • Image recognition technology has been created by major IT companies based on many years of research, and in recent years it has been released in a form that can be used by general users. In other words, this technology already has sufficient practicality, and it is not the kind of technology that will be newly developed and competed in the future. Needless to say, it is AI learning that improves the recognition accuracy of uploads. Since the development of blueprints and theories has been completed, improvement in recognition accuracy cannot be denied if learning is performed according to individual characteristics.
  • a trained model is prepared for such an image recognition AI service, and for the present invention, "a recognition model for something that enters or touches the body" is selected, or another model is used. If you enter something that touches the body uploaded in 3 to this AI, all the objects contained in the image will be recognized. All means that one is recognized as one, and three is recognized as three.
  • the accuracy of the present invention is increased by continuous use. In other words, it is the learning effect of AI. I want to clearly define the following behavior. In addition, since it is difficult to calculate the amount of food and drink with AI at the beginning, if 4 to 7 are completed normally, there is a degree of freedom to have the user correct the amount before 8 or at the same timing as 8. Yes (numerical correction by human, voice correction) is possible. AI will relearn this correction as well.
  • the collation PFC engine works in conjunction with the database, as shown in 6a. Let's take breakfast of toast, fried egg, and bacon as an example.
  • the PFC of each food is P: 4.9g, F: 2.6g, C: 30.3g per toast, P: 6.7g, F: 7.6g, C: 0.2g, bacon per fried egg.
  • the primary assumption is P: 2.58g, F: 7.82g, C: 0.06g per sheet.
  • the PFC engine plays a role of collation by registering those PFC grams in the database and matching them with the correction of 5.
  • 8a is the entrance to correct, input, and select PFC by yourself. If you include a few normal patterns that capture and upload what goes into your body, there are four main patterns to get PFC.
  • the first is a pattern that accepts the result of 8 as it is.
  • the second is a pattern that manually corrects the result of 8 after performing 2 to 3
  • the third is a pattern that inputs PFC from the beginning in the second stage
  • the fourth is the one that the user himself uploaded in the past.
  • It is a pattern (reuse of PFC) to select the one that is close to the meal that you ingested from the ones uploaded by other users.
  • PFC can be calculated automatically, and can be input manually, by voice, barcode, etc., and the automatically calculated result can be corrected. We can meet all your needs.
  • the data accumulated through the MHA app is accumulated in the cloud.
  • This data can be provided externally by installing an API on the PFC server of 7a, and in the future, cooperation with medical, national, corporate and school systems, external application systems and services, anonymous big
  • the range of applications, such as sales as data, is endless. So far, we have explained the connections related to KPIs of MHA applications, and at the same time, explained the significance and novelty of integrated display.
  • FIG. 2 a display example on the information communication terminal B is shown on the left side, and an image recognition AI service is displayed on the right side.
  • the information and communication terminal B S-phone Wave
  • Protein P: protein
  • Fat F: lipid
  • Carbohydrates C: carbohydrate
  • Al Alcohol ingested next.
  • Alcohol 5" Alcohol 5".
  • the degree of sleep quality is shown as "SleepQ good”
  • the degree of exercise quality is shown as “Exercise perfect”.
  • HR / BP good the degree of heart rate and blood pressure quality
  • BMI index the height-to-weight ratio
  • Waist size fine the waist size
  • the change status of the dosage is shown as "Drug reductions”
  • the blood is shown as "Blood great”. In this way, the status of blood in general may be shown, or individual measured values such as blood glucose level may be displayed.
  • the indications for heart rate and blood pressure quality, height-to-weight ratio (BMI index), waist size, dosage changes, and blood glucose levels are just examples.
  • the display can be changed as appropriate, such as displaying graphically.
  • PFC and Al can be captured and accumulated. Also, 1. 1. 2. Capture and collect electronic signals such as barcodes (supermarkets, drug stores, convenience stores, etc.) with smartphones. Capture, integration, and correction with a voice input system 3. AI captures and accumulates PFC + Al by photographs 4. Improve the accuracy of captured data by manual correction (input)
  • Integrated display using AI is an invention that can be displayed on the screen of a device such as a wearable, a smartphone, a PC, a VR, or the like.
  • the user is the first invention in the world to be able to self-determine what and how much to change.
  • the American Sleep Education Society (sleep education.com) recommends the following to the public:
  • BMI body mass index
  • EE factor scores were calculated using confirmatory factor analysis and dietary patterns were identified using principal component analysis.
  • the association of EE with health behavior and BMI z-score was analyzed using a multilevel model that included age, gender, and household income as covariates.
  • the positive link between EE and physical activity and watching television was inconsistent between sites. Results tended to be similar for boys and girls.
  • EE is independent of BMI, but prospective studies are needed to determine whether higher EE in children predicts unwanted dietary patterns and the development of obesity over time.
  • MHA collects data from devices such as wearables and smartphones for a long period of time and returns it to the user, so that the user can work on improvement for good sleep for a long period of time.
  • MHA is an invention that allows patients to always discuss and support better medical care with their doctors.
  • H) A smartphone camera captures skin data and AI accumulates. It is an invention that allows users to compare and refer to past data and the present at any time and find the true value of cosmetics and esthetics. In reality, even in cases such as psoriasis in dermatology, case photo recording with a smartphone camera is useful, and it is an invention that can be integrated and examined with other KPIs possessed by MHA. Users can think deeply like never before.
  • FIG. 3 is a block diagram of a smartphone corresponding to the information communication terminal B
  • FIG. 4 is a block diagram of a wearable terminal corresponding to the device A.
  • the cloud server C is not shown, it will be described as a computer system equipped with the AI engine described above.
  • CPU 21, ROM 22, RAM 23 and the like are connected to each other via a bus 24 as main control elements.
  • a basic program or data for the smartphone 20 to function is recorded in the ROM 22, and the CPU 21 expands the data or program in the memory area of the RAM 23 to perform predetermined control.
  • the RAM 23 is mainly a volatile device
  • the storage 25 is a non-volatile area
  • the storage 25 is a variety of application programs that add functions in addition to the basic program, image data, audio data, and the like.
  • the display 26 displays information based on control by the CPU 21.
  • the display 26 has a touch function, and provides an input function such as a software keyboard by displaying an image and detecting touch information.
  • the smartphone 20 can perform voice call communication and data communication via the network interface 27. Data communication supports both WAN and LAN. With this data communication function, the smartphone 20 performs data communication with the cloud server C. By uploading and downloading the predetermined data, the smartphone 20 and the cloud server C share the functions and the MHA application of the present invention is executed.
  • Various devices are connected to the smartphone 20 via the interface 28.
  • a camera 29, a microphone 31, a Bluetooth interface (BT) 32, a barcode reader 33, and the like are connected.
  • the barcode reader 33 can also be realized by software processing using the camera 28 as an image pickup element.
  • a power button (not shown), a volume up / down button, and the like are also connected via the interface 28.
  • the smartphone 20 communicates with the wearable terminal 40 via the Bluetooth interface 32.
  • a control unit 41 including a CPU and the like and a display 42 with a touch function are connected via a bus 43.
  • An acceleration sensor 44, a heart rate sensor 45, a GPS sensor 46, and the like are further connected to the bus 43, and the control unit 41 obtains the detection signals of these sensors and obtains predetermined motion data.
  • a Bluetooth interface 47 is connected to the bus 43, and the control unit 41 can communicate with the smartphone 20 via the Bluetooth interface 47.
  • the wearable terminal 40 is supposed to be worn by the user on a daily basis, and the control unit 41 accumulates motion data based on the detection signal of the sensor and transmits the motion data to the smartphone 20 at a predetermined timing.
  • 5 to 7 are flowcharts of programs executed by the smartphone 20, the wearable terminal 40, and the cloud server C, respectively. Although the processing of each step does not match the execution instruction of the CPU 21 or the control unit 41, it is functionally expressed.
  • each step includes the step shown in the step.
  • the process of step S100 is a process of a higher concept including the process of steps S102 to S114, and in the process of step S100, the processes of steps S102 and S110 are executed, and the process of step S102.
  • the processes of steps S104 to S108 are sequentially performed, and in the process of step S110, the processes of steps S112 and S114 are sequentially performed.
  • step S100 the CPU 21 requests the wearable terminal to transmit data in step S102 and requests the non-wearable terminal to transmit data in step S110 in order to acquire the exercise data. Since it communicates with the other party that sends data, processing is performed for each device on the other party.
  • step S102 the wearable terminal that makes the data transmission request performs the following processing.
  • the control unit 41 collects exercise data in step S200, and if there is a request for transmission of exercise data in step S208, the collected exercise data is transmitted in step S210. Normally, there is no request for transmission of exercise data, and exercise data is collected as an original function of the wearable terminal 40 in step S200.
  • the wearable terminal 40 of this embodiment includes an acceleration sensor 44, a heart rate sensor 45, and a GPS sensor 46, and counts a pedometer using the detection result of the acceleration sensor 44, and the acceleration sensor 44 and the GPS sensor 45 The movement amount is measured using the detection result, and the heart rate is measured using the detection signal of the heart rate sensor 45.
  • data based on the physical characteristics of the user is set in advance as a setting. For example, data such as height, weight, gender, age, and stride length are available.
  • step S202 the control unit 41 collects exercise data as a pedometer, in step S204, collects exercise data as a movement amount, and in step S206, collects heart rate information associated with exercise as exercise data. Do. In the wearable terminal 40, when motion is detected, the detection result of each sensor may be used.
  • the partner device with which communication is performed in step S110 is a non-wearable terminal.
  • the device that collects exercise data does not refer to direct exercise, whereas the wearable terminal 40 collects exercise data indicating the amount of activity, but the data of body weight and blood pressure have important meaning. And these are more accurate data to use with non-wearable instruments than to collect with wearables. Therefore, in this embodiment, the non-wearable data transmission request is made. Specifically, in step S112, the body weight data is acquired from the non-wearable weight scale, and in step S114, the blood pressure data is acquired from the non-wearable sphygmomanometer.
  • the number of devices that can communicate with the smartphone 20 is increasing due to Bluetooth for weight scales and blood pressure monitors, and by pairing in advance, when communication with the smartphone 20 becomes possible, it will be detected and described above.
  • Many weight scales have a function as a body composition meter, and by transmitting the measured body composition meter data together, exercise is performed when comparing with PFC data and exercise data including energy consumption. You will also be able to judge the efficiency of. For example, it becomes easy to determine whether exercise contributes to a decrease in body fat percentage.
  • the smartphone 20 makes a data transmission request via communication in Bluetooth at a predetermined timing, and when the data transmission request is made to the wearable terminal 40 in step S102, the wearable terminal 40 steps.
  • the transmission request is received in S208, and exercise data including pedometer data, movement amount data, and heart rate data is transmitted in step S210.
  • the smartphone 20 acquires the exercise data and saves it in the storage 25.
  • the CPU 21 acquires ingestion information in step S116.
  • the ingestion is all meals, snacks, etc. that the user ingests.
  • image data of a meal bar code data purchased, image data of a receipt of a meal, image data of a beverage, and a beverage Use the image data of the receipt you ordered.
  • the smartphone 20 acquires these data as much as possible. Specifically, when the user has a meal, the smartphone 20 is operated so that the CPU 21 takes a picture of the meal and saves it as image data in step S118. When the foodstuff is purchased, the barcode is read and the barcode data is saved in step S120. Similarly, in step S122, the meal receipt is read and the order contents and purchase contents are saved, in step S124, the beverage is photographed and saved as image data, and in step S126, the receipt related to the beverage is read and the order contents are saved. And save your purchase. By repeating this on a daily basis, the smartphone 20 performs a process of acquiring ingestion information in step S116.
  • the CPU 21 makes it possible to correct the information of the ingested food, and accepts the correction of the ingested amount by the user. As a result, accurate PFC data can be obtained.
  • the CPU 21 of the smartphone 20 After collecting the ingested data, the CPU 21 of the smartphone 20 uploads the acquired information in step S130.
  • the other party to upload the information is the cloud server C, and the CPU 21 starts communication with the cloud server C using a predetermined protocol. Then, the CPU 21 uploads the image data in step S132, the command in step S134, the audio data in step S136, and the correction data in step S138.
  • the command means data that represents the content such as "same as the previous day's meal” or "usually eaten meal 1" instead of taking a picture of the meal and sending the image data.
  • a command may be used in which a meal whose PFC data can be specified is registered in advance, and instructions such as meal 1 and meal 2 are given.
  • the voice data is such that the user verbally explains the contents of the meal and the contents of the beverage, and the voice data is uploaded to the cloud server C.
  • the cloud server C waits for upload from the smartphone 20 in step S300, and when uploaded, acquires the uploaded data in steps S302 to S308.
  • image data is acquired
  • step S304 a command is acquired
  • step S306 audio data is acquired
  • step S308, correction data is acquired.
  • the cloud server C After acquiring the data, the cloud server C identifies the image in step S310.
  • the content of the meal is identified by using the AI engine for material determination based on the image data. The results are mainly the materials used and their amounts.
  • a PFC weighing AI engine is used based on the identified material. Primarily, once the material and amount are determined, the amount of protein, fat and carbohydrate contained in it can be identified. By adding other information included in the content of the meal, such as the name of the dish, the amount of protein, fat, and carbohydrate can be identified more accurately.
  • the main purpose of using this cloud server C is to measure the amount of protein, fat, and carbohydrate ingested by the user as accurately as possible. Therefore, as one means, the ingested meal is photographed, and the material and amount used are determined from the image. It is assumed that the amount of protein, fat, and carbohydrate contained in a predetermined unit weight for each material is digitized. Such data conversion is generally already completed. Therefore, if you know the ingredients and amount, you can calculate the amount of protein, fat, and carbohydrate ingested by the user.
  • the image data not only the image of the meal but also the image of the receipt, the barcode, etc. can be used.
  • the contents of that dish should be stored in a database in advance, or it should be associated with an image taken by another user. Then, you will be able to specify the contents of the meal.
  • the command, voice data, and correction data are identified in step S316. If there is any processing required for the image data based on the audio data and correction data, execute it. For example, the material and amount may be specified while specifying the meal based on the command and voice data.
  • a command a command "same as what I ate yesterday" or a command "standard breakfast 1" in which a standard breakfast is registered can be assumed. Designate a meal that is so-called a meal that has already been registered.
  • voice data the content of the meal is expressed by voice, and the amount of protein, fat, and carbohydrate ingested by the user is calculated based on the reproduced meal.
  • the PFC data is corrected in step S318 based on the correction data. For example, if two people eat a meal, each value in the PFC data is halved.
  • the PFC data is downloaded in step S320. Downloading is a process of transmitting the generated PFC data to the smartphone 20.
  • the CPU 21 downloads the PFC data in step S140 and stores the PFC data in the storage 25.
  • Exercise data is also stored in the storage 25.
  • the smartphone 20 displays information in step S142. As shown in FIG. 2, the display is performed. Specifically, the PFC data is displayed in step S144, and the exercise data is displayed in step S146.
  • the above-mentioned PFC data is displayed as the user's health management, and the user's exercise data corresponding to the above-mentioned PFC data can mainly determine the energy consumption and the content of the muscle training. Those are suitable.
  • the energy consumption reflects the content of the exercise performed at the fitness gym in addition to the measured number of steps and the amount of movement. Since various exercise devices are equipped with a function that can display the energy consumption, the energy consumption is communicated by Bluetooth and transferred to the smartphone 20, or the exercise device converts the energy consumption into a QR code and displays it on the smartphone. 20 may take a picture and read the energy consumption.
  • the smartphone 20 may use the display 26 of the smartphone 20 to input information such as the type, load, number of times, and interval of muscle training as well as information on the time zone during exercise.
  • the fact that the amount of protein intake and the time zone correspond to the content and time of muscle training is one of the elements of health management judgment based on PRC data.
  • a health information management system that includes a mobile terminal device and a server device that can communicate with each other via a network.
  • the server device receives the information indicating the content and amount of the meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and returns the data representing the amount of this protein, fat and carbohydrate. It is possible and The mobile terminal device can collect exercise data representing the content and amount of exercise of a predetermined user. Information indicating the content of the meal ingested by the user is transmitted to the server device, The server device returns and receives data representing the amount of protein, fat and carbohydrate ingested by the user.
  • a health information management system that displays the exercise data for a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
  • the mobile terminal device is provided with a camera, images the meal ingested by the user to obtain image data, and transmits the image data to the server device as information representing the contents of the meal ingested by the user.
  • the server device is a health information management system that receives image data of images of meals ingested by the user as information representing the contents and amount of meals.
  • the mobile terminal device is equipped with a microphone, and the user transmits a voice explaining the content and amount of the ingested meal as voice data to the server device.
  • the server device identifies the audio data, and if the audio data represents the content and amount of the ingested meal, identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and this A health information management system that returns data representing the amount of protein, fat and carbohydrates.
  • the mobile terminal device captures a two-dimensional image showing the content and amount of the meal ingested by the user, and transmits the two-dimensional image data to the server device. If the two-dimensional image data represents the content and amount of the ingested meal, the server device identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and the protein, fat and carbohydrate.
  • a health information management system that returns data representing the amount of.
  • the mobile terminal device can communicate with a wearable terminal worn by the user, and the wearable terminal collects data on the content and amount of exercise of the user and provides health information by communicating with the mobile terminal device. Management system.
  • the server device accumulates and analyzes information representing the contents of meals transmitted from the plurality of mobile terminal devices, and autonomously identifies the amount of protein, fat, and carbohydrate contained in the contents and amount of the meal.
  • a health information management system that has the function of improving the accuracy of meals. It can be connected via a network, and when it receives information indicating the content and amount of a meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and determines the amount of this protein, fat and carbohydrate.
  • a mobile terminal device capable of communicating with a server device capable of returning the representative data via the above network. The mobile terminal device can collect exercise data representing the content and amount of exercise of a predetermined user.
  • Information indicating the content of the meal ingested by the user is transmitted to the server device, Receives data representing the amount of protein, fat and carbohydrate ingested by the user, returned by the server device, A portable terminal device that displays the exercise data for a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
  • the mobile terminal device can communicate with a wearable terminal worn by the user, and the wearable terminal collects data on the content and amount of exercise of the user and communicates with the mobile terminal device to provide the mobile terminal.
  • the server device accumulates and analyzes information representing the contents of meals transmitted from the plurality of mobile terminal devices, and autonomously identifies the amount of protein, fat, and carbohydrate contained in the contents and amount of the meal.
  • a mobile terminal device having a function of improving the accuracy of the operation.
  • the mobile terminal device collects exercise data representing the content and amount of exercise of a predetermined user, and collects exercise data.
  • the mobile terminal device transmits information representing the contents of the meal ingested by the user to the server device, and the mobile terminal device transmits the information to the server device.
  • the server device receives information indicating the content and amount of the meal, identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and outputs data representing the amount of this protein, fat and carbohydrate.
  • the mobile terminal device receives data indicating the amount of protein, fat, and carbohydrate ingested by the user, which is returned by the server device.
  • the mobile terminal device is a health information management method that displays the exercise data in a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user. It can be connected via a network, and when it receives information indicating the content and amount of a meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and determines the amount of this protein, fat and carbohydrate. It is a health information management program of a mobile terminal device that can communicate with a server device that can return the data to be represented via the above network.
  • the health information management program is applied to the mobile terminal device.
  • a function to collect exercise data showing the content and amount of exercise of a given user A function to send information indicating the contents of the meal ingested by the user to the server device, and The function to receive the data representing the amount of protein, fat and carbohydrate ingested by the user, which is returned by the server device, and
  • a health information management program for a mobile terminal device that realizes a function of displaying the exercise data in a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
  • the present invention is not limited to the above examples. Needless to say, those skilled in the art -Applying the mutually replaceable members and configurations disclosed in the above-mentioned Examples by appropriately changing the combination thereof-Although not disclosed in the above-mentioned Examples, it is a known technique and the above-mentioned Examples.
  • the members and configurations that can be mutually replaced with the members and configurations disclosed in the above are appropriately replaced, and the combinations thereof are changed and applied.-Although not disclosed in the above examples, known techniques and the like It is an embodiment of the present invention to appropriately replace the members and configurations that can be assumed as substitutes for the members and configurations disclosed by those skilled in the art based on the above, and to change and apply the combinations thereof. It is disclosed as.
  • BT Bluetooth interface

Abstract

Ingested protein (P), fat (F), and carbohydrate (C) and the amount of exercise have not been able to be displayed. A wearable terminal 40 collects exercise data in Step S200, and, when determining that a request to transmit exercise data is made in Step S208, transmits the exercise data in Step S210. A smartphone 20 acquires the exercise data in Step S100, acquires information on ingested substances in Step S116, corrects the information on ingested substances in Step S128, and uploads the acquired information in Step S130. A cloud server C stands by for the uploading from the smartphone 20 in Step S300, identifies an image by using AI technology in Step S310 on the basis of the uploaded data, calculates ingested PFC on the basis of the image and corrects the ingested PFC, and causes the smartphone 20 to download PFC data in Step S320. The smartphone 20 displays the downloaded PFC data in Step S144, and displays exercise data in Step S146.

Description

健康情報管理システム、携帯端末装置、健康情報管理方法、携帯端末装置の健康情報管理プログラムHealth information management system, mobile terminal device, health information management method, health information management program for mobile terminal device

 本発明は、利用者にとって何が最も強いKPIなのかが把握できることを可能にした世界初めての「マイ・ヘルスアナトミー=My Health Anatomy(MHA)私の解剖図」アプリケーションである。例えば、AIを用いて、健康に関するKPIs(Key Performance Indicators)をウエアラブル(機器、チップ等を含む)、スマートフォンにて捕捉・集積し、スマートフォンなどにKPIsを表示する。なお、医療機器ではなく、自己決定を支援するためのものである。

The present invention is the world's first "My Health Anatomy (MHA) My Anatomy" application that makes it possible for users to understand what is the strongest KPI. For example, using AI, KPIs (Key Performance Indicators) related to health are captured and accumulated by wearables (including devices, chips, etc.) and smartphones, and KPIs are displayed on smartphones and the like. It is not a medical device, but is intended to support self-determination.
 肥満人口は既に21憶人を超え、人類の3人に一人以上を占め、しかも急拡大しているので地球肥満戦争と呼ぶ。戦争は何もかも破壊する。肥満も同様である。肥満は高血圧、糖尿病、無呼吸症候群、腎臓病、心筋梗塞、脳梗塞、がん、認知症、精神疾患、整形疾患、透析、失明など多くの疾患を連鎖させ甚大な犠牲を伴うことは広く知られている。肥満は慢性的に進行する。劇的な効果のある薬はなく、肥満者の努力は報われないことがとても多いと地球史に刻まれている。そして、個人の財政破綻のみでなく社会の破綻を加速させている。上記の疾患については、WHO、肥満学会の主要な取り組み事項である。 The obese population has already exceeded 2.1 billion, accounting for more than one in three human beings, and because it is expanding rapidly, it is called the Global Obesity War. War destroys everything. The same is true for obesity. It is widely known that obesity is associated with many diseases such as hypertension, diabetes, aspiration syndrome, kidney disease, myocardial infarction, cerebral infarction, cancer, dementia, psychiatric disorder, orthopedic disorder, dialysis, and blindness, and is accompanied by enormous sacrifice. Has been done. Obesity progresses chronically. Earth history states that there are no drugs with dramatic effects and that the efforts of obese people are often unrewarded. And it is accelerating not only individual financial collapse but also social collapse. The above diseases are the main efforts of WHO and the Japan Society for the Study of Obesity.
 上述の起因となる肥満に対して、2007 JAMA A to Z試験の結論として、低炭水化物、高タンパク質、高脂肪の食事療法は減量のための実行可能な代替勧告と評価された。即ち、単純に炭水化物を低下させるのではなく、高タンパク・高脂質である点が重要であった。 N Engl J Med. 2008では、カロリー無制限の糖質制限食が糖尿病患者の血糖管理をよくした。即ち、カロリー神話の崩壊を示した結果であった。この世界No.1の医学誌での結果発表は、現在各国の先端医療センターにて実施され、極めて優れた成績が書籍等でも報告されている。 As a conclusion of the 2007 JAMA A to Z study, a low-carbohydrate, high-protein, high-fat diet was evaluated as a viable alternative recommendation for weight loss for the above-mentioned causative obesity. That is, it was important that it was high in protein and high in fat, rather than simply lowering carbohydrates. In N Engl J Med. 2008, a carbohydrate-restricted diet with unlimited calories improved glycemic control in diabetic patients. That is, it was a result showing the collapse of the calorie myth. The results of this publication in the world's No. 1 medical journal are currently being published at advanced medical centers in each country, and extremely excellent results have been reported in books and the like.
 以上の見地は世界最高峰の医学ジャーナルにより、未来においても、それら結果を覆すことは不可能であると想定される。この二つの試験結果から如何に炭水化物をマネージメントしながら十分なタンパク質と脂肪を摂取することが減量に対して、また、血糖値のコントロールに有益なのかが明らかにされた。しかし、現代社会では単に炭水化物オフといった謳い文句が流行ってしまっている。従って、世界の先端医療機関が実施しているように、そしてこれらの論文が示したように、炭水化物をマネージメントしながら十分なタンパク質と脂肪を摂取することが、肝要である。 From the above points of view, it is assumed that it will be impossible to overturn those results even in the future by the world's best medical journal. The results of these two studies revealed how consuming sufficient protein and fat while managing carbohydrates is beneficial for weight loss and control of blood glucose levels. However, in modern society, slogans such as simply carbs off have become popular. Therefore, as practiced by leading medical institutions around the world, and as these treatises have shown, it is imperative to get enough protein and fat while managing carbohydrates.
 炭水化物が肥満、糖尿病との関わりだけでなく、多数の疾患と関連していることについて、メジャーな論文を引用し、説明する。
 炭水化物と病気の関係として、 Low-glycemic-load ダイエットが肥満や慢性疾患に影響を与えることが明らかにされている(注:慢性疾患については下段においてアメリカCDCが簡潔にまとめているため、ここでは省略する)。砂糖のダイエットと水癌のリスクについてもアメリカNIH誌に掲載されており、因果関係が示されている。更に、砂糖と乳がん、食事の血糖負荷と結腸直腸癌のリスクも明らかにされた。タンパク質、脂肪、炭水化物の異なる供給源を与えられたマウスにおける結腸腫瘍の修正と免疫反応がCancer Lettersで示された。最終糖化産物(AGEs)の加齢との関連性および後期糖尿病合併症の病因について、Diabetes Researchにて解明された。
Cite and explain major treatises about how carbohydrates are associated not only with obesity and diabetes, but also with numerous diseases.
As for the relationship between carbohydrates and illness, it has been clarified that the low-glycemic-load diet affects obesity and chronic diseases (Note: Chronic diseases are briefly summarized by the US CDC at the bottom, so here. Omitted). The sugar diet and the risk of water cancer have also been published in the US NIH magazine, showing a causal relationship. In addition, the risk of sugar and breast cancer, dietary glycemic load and colorectal cancer was revealed. Cancer Letters showed colon tumor correction and immune response in mice fed different sources of protein, fat, and carbohydrate. The association of advanced glycation end products (AGEs) with aging and the etiology of late-stage diabetic complications have been elucidated by Diabetes Research.
 AGEsはスマートフォンのカメラで捕捉、集積が可能になるので、MHAにて集積表示することの意義は高く、ユーザーは健康な肌のみならず、動脈硬化(即ち老化)に対抗しうる。従来、AGEsは既に認知症との関連性の深さの指摘をされているが、極めて限られた医療機関が高額な費用で皮膚から測定しているのが現状であり、安価に、且つ、長期に観察する方法がなかったが、MHAとスマホカメラの発展により、AGEsを一つのKPIとして捕捉、集積表示することも可能になった。単純な捕捉だけであればMHAは必要ないが、AGEsは終生関わる問題であることより、高額医療費を使うのではなく、自己管理が望ましい。同様に、歯周病と冠動脈疾患との関連のさらなる証拠がJournal of Periodontologyで報告されている。既に多数の試験のメタアナリシスにおいて、脂質は冠動脈疾患の因果関係が否定されており、現在もっとも悪さをしていると注目されているのはAGEsであり、AGEsは砂糖とタンパクとのメイラード反応により体内にて生成される。怖いことに、子供の行動や認知に及ぼす砂糖の影響のメタアナリシスがJAMAで報告されている。現在世界では子供の肥満が最も懸念されている。それはこの論文に示されたように、行動と認知に異変が起きることのみならず、子供の肥満か糖尿病に展開される問題の深さもある。即ち、メタボリックシンドロームの低年齢化である。以上、炭水化物(糖質)と様々の疾患につき説明した。 Since AGEs can be captured and accumulated by a smartphone camera, it is highly meaningful to accumulate and display them by MHA, and users can counter not only healthy skin but also arteriosclerosis (that is, aging). Conventionally, it has already been pointed out that AGEs are closely related to dementia, but the current situation is that extremely limited medical institutions measure them from the skin at a high cost, and they are inexpensive and inexpensive. There was no way to observe for a long time, but with the development of MHA and smartphone cameras, it has become possible to capture and display AGEs as one KPI. MHA is not necessary for simple capture, but since AGEs are a lifelong problem, self-management is desirable rather than spending high medical expenses. Similarly, further evidence of a link between periodontal disease and coronary artery disease has been reported in the Journal of Periodontology. In a meta-analysis of many studies, lipids have already been ruled out as having a causal relationship with coronary artery disease, and it is currently noted that AGEs are the worst, and AGEs are due to the Maillard reaction between sugar and protein. Produced in the body. Scary, a meta-analysis of the effects of sugar on children's behavior and cognition has been reported in JAMA. Currently, obesity in children is the greatest concern in the world. Not only does it cause behavioral and cognitive abnormalities, as shown in this paper, but it also has the depth of the problem that develops into obesity or diabetes in children. That is, the age of metabolic syndrome is getting younger. So far, we have described carbohydrates and various diseases.
参照論文1)Bell, S.J., Sears, B., “Low-glycemic-load diets: impact on obesity and chronic diseases." Critical Reviews in Food Science & Nutrition, 43(4), 2003, pages 357-77.
参照論文2)Michaud, D.S., Liu, S., Giovannucci, E., et al., “Dietary Sugar, Glycemic Load, and Pancreatic Cancer Risk in a Prospective Study." Journal of the National Cancer Institute, 94(17), 2002, pages 1293-1300.
参照論文3)Romieu, I., Lazcano-Ponce, E., Sanchez-Zamorano, L.M., et al., “Carbohydrates and the Risk of Breast Cancer Among Mexican Women." Cancer Epidemiology and Biomarkers Preview, 13(8), 2004, pages 1283-1289.
参照論文4)Franceschi, S., Dal Maso, L., Augustin, L., et al., “Dietary Glycemic Load and Colorectal Cancer Risk." Annals of Oncology, 12(2), 2001, pages 173-178.
参照論文5)Nutter, R.L., Gridley, D.S., Kettering, J.D., et al., “Modification of a transplantable colon tumor and immune responses in mice fed different sources of protein, fat and carbohydrate." Cancer Letters, 18(1), 1983, pages 49-62.
参照論文6)Sensi, M., Pricci, F., Andreani, D., et al., “Advanced Nonenzymatic Glycation Endproducts (AGE): Their Relevance to Aging and the Pathogenesis of Late Diabetic Complications." Diabetes Research, 16(1), 1991, pages 1-9.
参照論文7)Geerts, S.O., Legrand, V., Charpentier, J., et al. “Further evidence of the association between periodontal conditions and coronary artery disease." Journal of Periodontology, 75(9), 2004, pages 1274-80.
参照論文8)Wolraich, M.L., Wilson, D.B., White, J.W, “The effect of sugar on behavior or cognition in children. A meta-analysis." JAMA, 274 (20), 1995, pages 1617-21.
Reference papers 1) Bell, SJ, Sears, B., “Low-glycemic-load diets: impact on obesity and chronic diseases.” Critical Reviews in Food Science & Nutrition, 43 (4), 2003, pages 357-77.
Reference paper 2) Michaud, DS, Liu, S., Giovannucci, E., et al., “Dietary Sugar, Glycemic Load, and Pancreatic Cancer Risk in a Prospective Study.” Journal of the National Cancer Institute, 94 (17) , 2002, pages 1293-1300.
References 3) Romieu, I., Lazcano-Ponce, E., Sanchez-Zamorano, LM, et al., “Carbohydrates and the Risk of Breast Cancer Among Mexican Women.” Cancer Epidemiology and Biomarkers Preview, 13 (8), 2004, pages 1283-1289.
References 4) Franceschi, S., Dal Maso, L., Augustin, L., et al., “Dietary Glycemic Load and Colorectal Cancer Risk.” Annals of Oncology, 12 (2), 2001, pages 173-178.
References 5) Nutter, RL, Gridley, DS, Kettering, JD, et al., “Modification of a transplantable colon tumor and immune responses in mice fed different sources of protein, fat and carbohydrate.” Cancer Letters, 18 (1) , 1983, pages 49-62.
Reference paper 6) Sensi, M., Pricci, F., Andreani, D., et al., “Advanced Nonenzymatic Glycation Endproducts (AGE): Their Relevance to Aging and the Pathogenesis of Late Diabetic Complications.” Diabetes Research, 16 ( 1), 1991, pages 1-9.
Reference Article 7) Gererts, SO, Legrand, V., Charpentier, J., et al. “Further evidence of the association between periodontal conditions and coronary artery disease.” Journal of Periodontology, 75 (9), 2004, pages 1274- 80.
References 8) Wolraich, ML, Wilson, DB, White, JW, “The effect of sugar on behavior or cognition in children. A meta-analysis.” JAMA, 274 (20), 1995, pages 1617-21.
 KPIとしてのタンパク質(P)、脂質(F)、炭水化物(C)、ニューロン、インスリン抵抗性、血糖値らの深い関係性(コネクションの存在)
 タンパク質について、従来栄養学ではタンパクは臓器、骨など人間の主たる組織である細胞形成に必須である。Natureから重要な論文が発表されているので、ここに記載する。多様な神経変性疾患が共通の原因および病理学的メカニズム - 脳内でのタンパク質の誤った折り畳み、凝集および蓄積、をもたらし、ニューロンのアポトーシスをもたらす可能性があることを示している。さまざまな分野の研究がこの仮説を強く支持し、これらの壊滅的な疾患に対する一般的な治療法が可能であるかもしれないことを論文1)にて示した。次に論文2)では、骨格筋におけるインスリン抵抗性は、2型糖尿病の発症において主要な役割を果たしており、筋肉内脂肪酸代謝物の増加と因果関係がある可能性がある。FATP1欠失は、全身脂肪過多症を変化させることなく、KOマウスを脂肪誘発インスリン抵抗性および脂肪アシルCoAの筋肉内蓄積から保護した。これらの知見は、インスリン抵抗性を引き起こすことにおける筋肉内脂肪酸代謝物の重要な役割を実証した。即ち、筋肉内の脂肪とインスリン抵抗性には関係がある。糖尿病学会は、適度な運動を肥満や糖尿病患者に指導するが、論文1)、2)の関係を見ても、タンパク質、脂質が十分に摂取されることの重要性は高い。例えば、血糖値とインスリン抵抗性(肥満ホルモン)は双子の関係にあることが広く知られている。従って、学会が指導するように、食後の散歩等は血糖値を下げ、インスリン抵抗性を改善させる。しかしながら、残念なことに血液データからでは運動の質と量、適切な時間は解明できない 。つまり、運動はどれほどやればいいのだろうか?また、何時やれば良いのであろうか?世界最先端の医大であるクリーブランドクリニックでは食後90分以内に運動することを奨励しているが、それが現時点の医学の限界である。踏み込んだ答えを知り得るには、血液検査やウエアラブル等機器から得られる心拍数、血圧、運動、睡眠の質、食品(アルコール含む)をKPIとして捉え、MHAがAIデータベース化し、集積表示して血液検査データとこれらのKPIの相互関係を知ることであり、まさに「私の健康解剖図=MHA」の使命になる。残念なことに、ウエアラブル等の機器とスマートフォンと連動はしているものの、運動、AGEs、血液データ、薬歴、心拍、血圧や睡眠の質、食事、アルコールに関してはコネクションしていなく集積表示する方法が従来なかった。更に、体重、ウエストサイズ、BMIについても同様の相互関係を見ることはできなかった。ここに本質的なMHAの開発の経緯と意義がある。最後に睡眠と血圧や肥満は深い関係もあるので、連動(ウエアラブル等の機器、スマートフォン、MHA)が未来を明るく、平らかな世を形成するために必要な新規発明である。更に掘り下げて、上述のKPIと血圧、睡眠の重要な関係について記載する。Mayo Clinicの研究者たちは最近、睡眠量と質の低下が人の血圧にどのように影響するかを見いだした。8人の参加者を16日間モニターした後、被験者が長期間のより短い睡眠を経験したとき、夜間にかなり高い血圧数を記録したことを見出した。この結果や他の研究においても血圧と睡眠は深い関係がある。従って、KPIsとして捕捉、集積表示する意義と新規性は高い。肥満者は高血圧を高く合併することから、以下のKPIsである食事とウエアラブル等の機器、スマートフォンのMHAは、理論的医学合理性を持つ。
Deep relationship between protein (P), lipid (F), carbohydrate (C), neurons, insulin resistance, blood glucose level, etc. as KPI (existence of connection)
Regarding proteins, in conventional nutrition, proteins are essential for cell formation, which is the main human tissue such as organs and bones. An important paper has been published by Nature, so I will describe it here. It has been shown that a variety of neurodegenerative diseases lead to common causes and pathological mechanisms-misfolding, aggregation and accumulation of proteins in the brain, which can lead to neuronal apoptosis. Studies in various fields strongly support this hypothesis and show in the paper 1) that general treatments for these catastrophic diseases may be possible. Next, in paper 2), insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally related to an increase in intramuscular fatty acid metabolites. FATP1 deletion protected KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without altering systemic hyperlipidemia. These findings demonstrated an important role of intramuscular fatty acid metabolites in inducing insulin resistance. That is, there is a relationship between intramuscular fat and insulin resistance. The Diabetes Society guides moderate exercise to obese and diabetic patients, but even from the relationship between the papers 1) and 2), it is highly important that sufficient protein and lipid intake are taken. For example, it is widely known that blood glucose level and insulin resistance (obesity hormone) have a twin relationship. Therefore, as instructed by the academic society, walking after a meal lowers the blood glucose level and improves insulin resistance. However, unfortunately, blood data do not reveal the quality and quantity of exercise and the appropriate time. In other words, how much exercise should I do? Also, what time should I do it? The Cleveland Clinic, the world's most advanced medical college, encourages exercise within 90 minutes of eating, which is the current limit of medicine. In order to know the in-depth answer, heart rate, blood pressure, exercise, sleep quality, food (including alcohol) obtained from blood tests, wearables, etc. are taken as KPIs, and MHA creates an AI database, collects and displays blood. Knowing the interrelationship between test data and these KPIs is exactly the mission of "my health anatomy = MHA". Unfortunately, although it is linked with devices such as wearables and smartphones, there is no connection regarding exercise, AGEs, blood data, drug history, heart rate, blood pressure and sleep quality, diet, and alcohol. Was not previously available. Furthermore, no similar interrelationships could be found for body weight, waist size, or BMI. Here is the essential background and significance of the development of MHA. Finally, since sleep is closely related to blood pressure and obesity, interlocking (devices such as wearables, smartphones, MHA) is a new invention necessary to form a bright and flat world in the future. We will dig deeper and describe the important relationships between KPIs, blood pressure, and sleep described above. Researchers at Mayo Clinic have recently discovered how poor sleep and quality affect a person's blood pressure. After monitoring eight participants for 16 days, they found that subjects recorded significantly higher blood pressure at night when they experienced longer, shorter sleeps. Blood pressure and sleep are closely related in this result and in other studies. Therefore, the significance and novelty of capturing and displaying as KPIs are high. Since obese people are highly associated with hypertension, the following KPIs such as diet and wearable devices and MHA of smartphones have theoretical medical rationality.
論文1)Nature Reviews Neuroscience volume 4, pages 49-60 (2003) Recent evidence indicates that diverse neurodegenerative diseases might have a common cause and pathological mechanism-the misfolding, aggregation and accumulation of proteins in the brain, resulting in neuronal apoptosis. Studies from different disciplines strongly support this hypothesis and indicate that a common therapy for these devastating disorders might be possible. The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases. Many questions still need to be answered and future research in this field will result in exciting new discoveries that might impact other areas of biology. Paper 1) Nature Reviews Neuroscience volume 4, pages 49-60 (2003) Recent evidence indicates that diverse neurodegenerative diseases might have a common cause and pathological mechanism-the misfolding, aggregation and apoptosis of protein. from different disciplines strongly support this hypothesis and indicate that a common therapy for these devastating disorders might be possible. The aim of this article is to review the literature on the molecular mechanism of protein misfold therapeutic intervention in neurodegenerative diseases. Many questions still need to be answered and future research in this field will result in exciting new discoveries that might impact other areas of biology.
論文2)J Investigation. Clin Invest. 2004;113(5):756-763. c 2004 The American Society for Clinical Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle, Department of Internal Medicine, Yale University School of Medicine. 
 Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the role of FATP1 in glucose homeostasis and in the pathogenesis of insulin resistance, we examined the effect of acute lipid infusion or chronic high-fat feeding on insulin action in FATP1 KO mice. Whole-body adiposity, adipose tissue expression of adiponectin, intramuscular fatty acid metabolites, and insulin sensitivity were not altered in FATP1 KO mice fed a regular chow diet. In contrast, FATP1 deletion protected the KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without alteration in whole-body adiposity. These findings demonstrate an important role of intramuscular fatty acid metabolites in causing insulin resistance and suggest that FATP1 may be a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.
Paper 2) J Investigation. Clin Invest. 2004; 113 (5): 756-763. C 2004 The American Society for Clinical Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle, Department of Internal Medicine, Yale University School of Medicine.
Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the role of FATP1 in glucose homeostasis and in the pathogenesis of insulin resistance, we examined the effect of acute lipid infusion or chronic high-fat feeding on insulin action in FATP1 KO mice. Whole-body adiposity, adipose tissue expression of adiponectin, intramuscular fatty acid metabolites, and insulin sensitivity were not altered in FATP1 KO mice fed a regular chow diet. In contrast, FATP1 deletion protected the KO mice from fat-induced insulin. resistance and intramuscular accumulation of fatty acyl-CoA without alteration in whole-body adiposity. These findings demonstrate an important role of intramuscular fatty acid metabolites in causing insulin resistance and suggest that FATP1 may be a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.
論文3)Glucose levels hit their peak within 90 minutes of a meal, according to a 2017 study. By Cleveland clinic
論文4)Mayo Clinic researchers recently set out to find how reduced sleep quantity and quality could affect a person's blood pressure. After monitoring their eight participants for 16 days, they found that when their subjects experienced prolonged periods of shorter sleep, they also registered substantially higher blood pressure numbers at night. While the size of the study was small, they presented their findings at the American College of Cardiology's 64th Annual Scientific Session in San Diego, California, on March 15.
Paper 3) Glucose levels hit their peak within 90 minutes of a meal, according to a 2017 study. By Cleveland clinic
Paper 4) Mayo Clinic researchers recently set out to find how reduced sleep quantity and quality could affect a person's blood pressure. After monitoring their eight participants for 16 days, they found that when their subjects experienced prolonged periods of shorter sleep, they also registered substantially higher blood pressure numbers at night. While the size of the study was small, they presented their findings at the American College of Cardiology's 64th Annual Scientific Session in San Diego, California, on March 15.
 肥満が起因の米国CDCによる1988-2012年の国民健康栄養調査について記載する、
 18歳以上の米国の成人のうち、メタボリックシンドロームの罹患率は、1988~1994年の25.3%から34.2%に増加し、1988年から1994年にかけて35%以上増加した。 2012年までに、米国の全成人の3分の1以上が、いくつかの国際機関によって合意されたメタボリックシンドロームの定義と基準を満たしている。(注:肥満と他の疾患を合併することをメタボリックシンドロームと定義している)。下記に対する論文を下段に示す。
Describes the 1988-2012 National Health and Nutrition Examination Survey by the US CDC due to obesity,
Among US adults aged 18 years and older, the prevalence of metabolic syndrome increased from 25.3% in 1988-1994 to 34.2% and increased by more than 35% between 1988 and 1994. By 2012, more than one-third of all adults in the United States have met the definition and criteria for metabolic syndrome agreed by several international organizations. (Note: Combining obesity with other diseases is defined as metabolic syndrome). The treatises for the following are shown at the bottom.
・全死因(死亡率)⇒下記で表際説明する。
・高血圧⇒肥満者の高血圧は世界の流行であるので、論文を用いた説明は割愛する。
・高LDLコレステロール、低HDLコレステロール、または高レベルのトリグリセリド(脂質異常症)⇒2004年12月糖尿病治療27(12):3009-3016 6月のアメリカ糖尿病協会(ADA)会議での多数の発表が、糖尿病患者の脂質療法の側面を取り上げた。 Brown et al。 (要約929)は、Kaiser Permanente北西部の人口11,938人の糖尿病患者における空腹時脂質とHbA1c(=血糖値の異常を見るもの)の相関を報告しています。 1つ、2つ、高心血管疾患(CVD)リスクの脂質異常を有する人を比較すると、HbA 1cは7.3、7.5、および7.9%、トリグリセリド150、210、および381 mg / dl、ならびにHDL 54、40、および37 mg 1 / dlはそれぞれ、2型糖尿病における血糖コントロール不良と脂質異常症との関連を示唆している。 Pladevall等。 (要約948)1997年から2001年の間に6,751人が追跡された9,642人の管理されたケアデータベースを使用して糖尿病患者における脂質異常症の管理における傾向を記述した。脂質テストは37、44、51、55、および6%で行われた1997年、1998年、1999年、2000年、および2001年にそれぞれ。この期間中、患者の19、23、28、33、および41%に脂質低下薬が処方され、LDLコレステロール目標<100mg / dlは22%、27%、32%、34%により達成された。米国では糖尿病患者の脂質治療にまだ多くのことがなされているが、それぞれ37%と37%が重要な改善がなされたことを示唆している。即ち、血糖値の推移(HbA1cの変化)と脂質の異常は関係が深い。運動と脂質の関係を記す。
・ All causes of death (mortality rate) ⇒ Explained below.
・ Hypertension ⇒ Since hypertension in obese people is a global epidemic, explanations using papers are omitted.
High LDL cholesterol, low HDL cholesterol, or high levels of triglyceride (dyslipidemia) ⇒ December 2004 Diabetes Treatment 27 (12): 3009-3016 Many presentations at the American Diabetes Association (ADA) meeting in June , Aspects of lipid therapy in diabetics. Brown et al. (Summary 929) reports the correlation between fasting lipids and HbA1c (= abnormal blood glucose levels) in a diabetic patient with a population of 11,938 in the northwestern part of Kaiser Permanente. Comparing one or two people with dyslipidemia at risk of high cardiovascular disease (CVD), HbA 1c was 7.3, 7.5, and 7.9%, triglycerides 150, 210, and 381 mg / dl, and HDL 54, 40 and 37 mg 1 / dl suggest an association between poor glycemic control and dyslipidemia in type 2 diabetes, respectively. Pladevall etc. (Summary 948) A managed care database of 9,642 people, with 6,751 people followed between 1997 and 2001, was used to describe trends in the management of dyslipidemia in diabetic patients. Lipid tests were performed at 37, 44, 51, 55, and 6% in 1997, 1998, 1999, 2000, and 2001, respectively. During this period, 19, 23, 28, 33, and 41% of patients were prescribed lipid-lowering drugs, and the LDL cholesterol target <100 mg / dl was achieved by 22%, 27%, 32%, and 34%. Much is still being done in the treatment of lipids in diabetics in the United States, with 37% and 37% suggesting significant improvements, respectively. That is, there is a close relationship between changes in blood glucose levels (changes in HbA1c) and abnormal lipids. Describe the relationship between exercise and lipids.
 ・脂質異常について
 脂質異常症治療のための食事療法と運動療法の組み合わせ介入について
 コレステロール値を下げるための効果的な予備的戦略。現在、脂質異常症は最も一般的には薬物療法で治療されている。しかしながら、医薬品の使用に関する安全上の懸念が生じているので、代替の非薬理学的療法の必要性がますます明らかになってきている。全国コレステロール教育プログラム(NCEP)成人治療パネルIII(ATP III)は、中程度の範囲の冠状動脈性心臓病(CHD)に該当する患者の薬物治療の代わりに、食事療法と運動療法の組み合わせを含むライフスタイル療法を推奨している。このレビューでは、以下の2つのNCEP推奨併用療法のコレステロール低下効果を調べた。1)運動と組み合わせた低飽和脂肪食、および2)栄養補助食品、すなわち魚油、オートムギ、または植物ステロール補給と運動脂質異常症の治療。食事療法および運動は脂質プロファイルに対する相補的効果を引き出すため、併用療法は特に有利である。より具体的には、いくつかの例外を除いて、食事療法は、総(TC)およびLDLコレステロール(LDL-C)濃度が低いのに対して、運動介入は、HDLコレステロール(HDL-C)を増加させる一方、トリグリセリド(TG)レベルを減少させる。具体的な介入に関しては、運動と組み合わせた低飽和脂肪食はTC、LDL-C、およびTG濃度をそれぞれ7-18、7-15、および4-18%低下させ、HDL-Cレベルを5-14向上させた。 %あるいは、栄養補助食品と運動を組み合わせると、TC、LDL-C、およびTGの濃度がそれぞれ8~26、8~30、および12~39%減少し、HDL-Cレベルは2~8%増加した。これらの所見は、脂質代謝異常と診断された患者では、併用療法がコレステロール値を改善するための効果的で予備的な手段であり、コレステロール値が正常範囲をわずかに超える場合は薬物療法の代わりに実施すべきであることを示唆する。
・ About dyslipidemia About combined intervention of diet and exercise therapy for the treatment of dyslipidemia An effective preliminary strategy for lowering cholesterol levels. Currently, dyslipidemia is most commonly treated with drug therapy. However, as safety concerns about the use of medicines have arisen, the need for alternative non-pharmacological therapies is becoming increasingly apparent. The National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) includes a combination of diet and exercise therapy instead of medication for patients with moderate range of coronary heart disease (CHD). Lifestyle therapy is recommended. In this review, we examined the cholesterol-lowering effects of the following two NCEP-recommended combination therapies. 1) A low-saturated fat diet combined with exercise, and 2) Dietary supplements, namely fish oil, oats, or plant sterol supplementation and treatment of exercise dyslipidemia. Combination therapy is particularly advantageous because diet and exercise elicit complementary effects on lipid profiles. More specifically, with a few exceptions, diets have low total (TC) and LDL cholesterol (LDL-C) levels, whereas exercise interventions have HDL cholesterol (HDL-C). While increasing, it decreases triglyceride (TG) levels. For specific interventions, a low-saturated fat diet combined with exercise reduced TC, LDL-C, and TG levels by 7-18, 7-15, and 4-18%, respectively, and HDL-C levels of 5-. 14 improved. % Or, when combined with dietary supplements and exercise, TC, LDL-C, and TG levels decreased by 8-26, 8-30, and 12-39%, respectively, and HDL-C levels increased by 2-8%. did. These findings indicate that combination therapy is an effective and preliminary means of improving cholesterol levels in patients diagnosed with dyslipidemia, and is an alternative to drug therapy if cholesterol levels are slightly above the normal range. Suggest that it should be done.
 糖尿病と運動との関係
 2型糖尿病の女性におけるインスリン抵抗性を減少させるための効果的な運動療法 Diabetes Care 2003目的は、2型糖尿病の閉経後女性において、レジスタンスと有酸素トレーニングを組み合わせたトレーニングプログラムが、有酸素トレーニング単独と比較してインスリン感受性を改善するかどうかを評価することでした。第二の目的は、改善されたインスリン感受性を腹部脂肪組織(AT)および大腿筋密度の変化に関連付けることであった。研究デザインおよび方法 - 2型糖尿病の合計28人の肥満閉経後女性を、無作為に3つの16週間治療のうちの1つに割り当てた:対照、有酸素のみ訓練(Aeのみ)、または有酸素プラス耐性訓練(Ae + RT)。治療前後の転帰測定には、高インスリン正常血糖クランプによるグルコース処理、および腹部ATおよび大腿中央骨格筋のコンピュータ断層撮影スキャンが含まれた。結果 - グルコース注入率はAe + RT群で有意に増加した(P <0.05)。両方の運動群は、腹部皮下および内臓ATを減少させ、そして筋肉密度を増加させた。 Ae + RTトレーニング群は、Aeのみの群よりも有意に大きい筋肉密度の増加を示した。改善されたブドウ糖処理は独立して皮下AT、内臓AT、および筋肉密度の変化と関連していました。腹部ATをコントロールした後、筋肉密度はブドウ糖処理との関係を保持していた。結論、有酸素トレーニングにレジスタンストレーニングを追加することで、2型糖尿病の閉経後女性におけるブドウ糖処理が強化されました。改善されたインスリン感受性は、腹部皮下および内臓のATの喪失ならびに筋肉密度の増加に関連している。従って、インスリン抵抗性と上述のブドウ糖処理の強化と深い関係にあることが明白になっている。このような素晴らしい有酸素トレーニングにレジスタンストレーニングを追加することは高齢糖尿病者にとってハードルが低くない現実がある。ではじっとして死を待つのか?ここにMHA開発のもう一つの起源があり、新しいエビデンスレベルの高い論文が発表されたときなどに、MHAのAIデータベースが集積しているデータとその論文の差分を弾き出すことが可能であることから、主治医の指導を受けながら、少しずつ運動(色々な種類はあるが)を変化させて行ける。ユーザーはもとより、医療者含めた関係者も参照できる運動KPIと他のKPIを持つMHAがよりより高齢者の未来を支援する。
Relationship between diabetes and exercise Effective exercise therapy to reduce insulin resistance in women with type 2 diabetes Diabetes Care 2003 The purpose is a training program that combines resistance and aerobic training in postmenopausal women with type 2 diabetes. However, it was to evaluate whether insulin sensitivity was improved compared to aerobic training alone. A second objective was to correlate improved insulin sensitivity with changes in abdominal adipose tissue (AT) and thigh muscle density. Study Design and Methods-A total of 28 obese postmenopausal women with type 2 diabetes were randomly assigned to one of three 16-week treatments: control, aerobic training (Ae only), or aerobic. Plus resistance training (Ae + RT). Measurements of outcomes before and after treatment included glucose treatment with a hyperinsulin normoglycemic clamp and computed tomography scans of abdominal AT and central femoral skeletal muscle. Results-Glucose infusion rate was significantly increased in the Ae + RT group (P <0.05). Both exercise groups reduced subcutaneous and visceral AT in the abdomen and increased muscle density. The Ae + RT training group showed a significantly greater increase in muscle density than the Ae-only group. Improved glucose treatment was independently associated with changes in subcutaneous AT, visceral AT, and muscle density. After controlling abdominal AT, muscle density remained associated with glucose processing. In conclusion, the addition of resistance training to aerobic training enhanced glucose treatment in postmenopausal women with type 2 diabetes. Improved insulin sensitivity is associated with loss of AT under the abdomen and viscera and increased muscle density. Therefore, it has been clarified that there is a deep relationship between insulin resistance and the above-mentioned enhancement of glucose treatment. Adding resistance training to such great aerobic training is not a low hurdle for older diabetics. So do you wait for death? This is another origin of MHA development, because it is possible to extract the difference between the data accumulated in the MHA AI database and the treatise when a new treatise with a high level of evidence is published. , You can change the exercise (although there are various types) little by little under the guidance of your doctor. MHA with exercise KPIs and other KPIs that can be referred not only to users but also to related parties including medical professionals will support the future of the elderly.
 ・冠状動脈性心疾患については、説明したので、ここでは割愛する。
 ・脳梗塞との関係J Stroke Cerebrovasc Dis. 2017 メタボリックシンドローム(MetS)と虚血性脳卒中のリスク結果5398人の被験者のうち、2021人が37.4%の発生率でMetSを患った。 MetSの有無による脳卒中の発生率は、それぞれ2.6%および1.1%であり、前者の群でより高い有意性を示した(P = 0.026)。対照と比較して、脳卒中の参加者は高血糖および高血圧を含むMetSのいくつかの成分より高い罹患率を示した。 Cox比例ハザード分析では、虚血性脳卒中の長期リスクに対するハザード比は、MetS患者において全体で1.37(95%信頼区間:1.15-1.63、P <0.001)であった。 MetSの異なる成分を考慮すると、高血糖症(ハザード比= 1.83、P = 0.01)および高血圧症(1.74、P = 0.019)は、長期の虚血性脳卒中の発生を効果的に予測することができた。結論:MetSとその主成分は長期虚血性脳卒中の強力な予測因子となりうる。したがって、脳卒中の発生を防ぐために、MetSコンポーネントの識別と適切な管理に焦点を当てる必要がある。
-Since I explained about coronary heart disease, I will omit it here.
Relationship with cerebral infarction J Stroke Cerebrovasc Dis. 2017 Risk of metabolic syndrome (MetS) and ischemic stroke Out of 5398 subjects, 2021 suffered from MetS with an incidence of 37.4%. The incidence of stroke with and without MetS was 2.6% and 1.1%, respectively, showing greater significance in the former group (P = 0.026). Compared to controls, stroke participants showed higher prevalence than some components of MetS, including hyperglycemia and hypertension. In a Cox proportional hazard analysis, the overall hazard ratio to long-term risk of ischemic stroke was 1.37 (95% confidence interval: 1.15-1.63, P <0.001) in MetS patients. Considering the different components of MetS, hyperglycemia (hazard ratio = 1.83, P = 0.01) and hypertension (1.74, P = 0.019) are effective in developing long-term ischemic stroke. I was able to predict it. CONCLUSIONS: MetS and its main components can be powerful predictors of long-term ischemic stroke. Therefore, it is necessary to focus on the identification and proper management of MetS components to prevent the occurrence of stroke.
・胆嚢疾患、代謝障害、BMI,TG,胴囲、血圧、トリグリセライド等の関係 World J Gastroenterol. 2012 Metabolic syndrome and gallstone disease メタボリックシンドローム(MetS)と胆石症結果:7570人の被験者のうち、胆石症の有病率は12.1%(男性13.1%、女性10.2%)でした。症例群におけるBMI、胴囲、収縮期血圧、拡張期血圧、空腹時血糖および血清トリグリセリド(TG)は対照より高かったが、血清高密度脂質は対照より低かった。症例と対照の間で胴囲、血圧、FPG(空腹時血糖)およびTGに有意差があった。年齢調整ロジスティック回帰モデルでは、メタボリックシンドロームは胆石症と関連していた。男性のGSD(糖原病)に対するMetSの年齢調整オッズ比は1.29であった[95%信頼区間(CI)、1.09-1.52; P = 0.0030]、および女性で1.68(95%CI、1.26~2.25; P = 0.0004)。 GSDに対するMetSの全体の年齢調整オッズ比は1.42であった(95%CI、1.23-1.64; P <0.0001)。より多くの代謝障害を有する男性は胆石症のより高い有病率を有し、傾向は統計的有意性を有した(P <0.0001)。 MetSの5つの成分の存在は、胆石症のリスクを3.4倍増加させた(P <0.0001)。 MetSの5つの構成要素を持つ女性におけるGSDの有病率は、MetSの構成要素を持たない女性よりも5倍高かった。 MetSの成分が多いほど、GSDの有病率は高い(P <0.0001)。 MetSの5つの成分の存在は、胆石症のリスクを4.0倍増加させました。結論:GSDはMetSと強く関連しているようであり、MetSの構成要素が多いほど、GSDの有病率は高い。この論文では胴囲、血圧、FPG(空腹時血糖)およびTGにも研究が実施され、如何にこれらがGSDに対するKPIなのかが分かる。 ・ Relationship between gallbladder disease, metabolic disorder, BMI, TG, waist circumference, blood pressure, triglyceride, etc. World J Gastroenterol. 2012 Metabolic syndrome and gallstone disease Metabolic syndrome (MetS) and cholelithiasis Results: Of 7570 subjects, cholelithiasis The prevalence was 12.1% (13.1% for men and 10.2% for women). Body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, fasting blood glucose and serum triglyceride (TG) were higher than controls, but serum high-density lipids were lower than controls in the case group. There were significant differences in waist circumference, blood pressure, FPG (fasting blood glucose) and TG between the case and the control. In an age-adjusted logistic regression model, metabolic syndrome was associated with cholelithiasis. The age-adjusted odds ratio for MetS to GSD (glycogen storage disease) in men was 1.29 [95% confidence interval (CI), 1.09-1.52; P = 0.0030], and 1.68 (95% CI) in women. , 1.26 to 2.25; P = 0.0004). The overall age-adjusted odds ratio for MetS to GSD was 1.42 (95% CI, 1.23-1.64; P <0.0001). Men with more metabolic disorders had a higher prevalence of cholelithiasis, and the tendency was statistically significant (P <0.0001). The presence of the five components of MetS increased the risk of cholelithiasis by a factor of 3.4 (P <0.0001). The prevalence of GSD in women with the five MetS components was five-fold higher than in women without the MetS component. The higher the MetS component, the higher the prevalence of GSD (P <0.0001). The presence of the five components of MetS increased the risk of cholelithiasis by a factor of 4.0. Conclusion: GSD appears to be strongly associated with MetS, and the more components of MetS, the higher the prevalence of GSD. This paper also studies waist circumference, blood pressure, FPG (Fasting Blood Glucose) and TG to see how these are KPIs for GSD.
 ・変形性関節症(関節内の軟骨および骨の崩壊)は肥満により発症しやすくなることは広く医学会では知られているため、論文による説明を割愛する。痩せれば人工関節手術を回避できる症例があることも良く知られている。一般に整形外科では、体重の低下による手術回避を指導する。この指導には関節に負担の少ない自転車や歩行、水泳等がある。当然ながら、体重低下には食事と運動は重要であるので、このようなKPIを集積表示するMHAの果たす役割は大である。
 睡眠時無呼吸と呼吸の問題
 新聞やテレビで良く報道されているので論文の説明は割愛する。肥満を改善すると、睡眠時無呼吸症候群の改善が見られることは古くから知られている。しかし、現時点ではこの病気とウエアラブル等の機器等の相関関係は分かっていない。MHAが他のKPIとこの機器等によって相関関係を見られることは、早期治療のきっかけを作り、適切な医療によって、バスや電車の事故などを未然に防ぐことを期待するものである。
-Since it is widely known in the medical community that osteoarthritis (cartilage and bone collapse in joints) is more likely to occur due to obesity, the explanation in the treatise is omitted. It is also well known that there are cases in which artificial joint surgery can be avoided if the patient loses weight. Generally, in orthopedics, guidance is given to avoid surgery due to weight loss. This instruction includes biking, walking, and swimming with less strain on the joints. Of course, diet and exercise are important for weight loss, so MHA, which accumulates and displays such KPIs, plays a major role.
Sleep apnea and breathing problems Since it is often reported in newspapers and television, the explanation of the treatise is omitted. It has long been known that improving obesity improves sleep apnea syndrome. However, at this time, the correlation between this disease and devices such as wearables is unknown. The fact that MHA can be correlated with other KPIs using this device is expected to trigger early treatment and prevent bus and train accidents by appropriate medical care.
 ・いくつかの癌(子宮内膜、乳房、結腸、腎臓、胆嚢および肝臓)については、先述したので割愛する。肥満者や糖尿病患者に多いことは広く知られている。そのため、HBA1cと運動の関係を終生見て行けるシステムも望まれるが、それこそ、MHAの使命である。
 ・低品質の生活について、太ってメタボリックシンドロームになれば不都合が多い。広く報道されているので、説明を割愛する。服、薬のポリファーマシー問題など。
 ・体の痛みと身体機能の困難。上述の整形外科の関節手術が必要になる患者でなくとも、肥満によって体に痛みが走ることは臨床的に古くから知られている。従って、ダイエット(痩身)の意味は大である。しかし、良いからと言ってカロリー制限(糖尿病学会の旧き時代には)のダイエットが世の中の主流であったが、現在はアメリカ、アトキンス博士、バーンスタイン博士が考案した、カーボカウント方式によって、患者は強い強度と苦しい有酸素運動をしなくても、痩せることが分かった。これらの画期的な証明は2007年のA to Z試験(世界最高峰の試験結果)で証明されている。
-Some cancers (endometrium, breast, colon, kidney, gallbladder and liver) are omitted as mentioned above. It is widely known that it is common in obese and diabetic patients. Therefore, a system that allows you to see the relationship between HBA1c and exercise for the rest of your life is desired, and that is the mission of MHA.
・ There are many inconveniences in low quality life if you get fat and have metabolic syndrome. Since it is widely reported, I will omit the explanation. Polypharmacy problems of clothes and medicines.
・ Body pain and difficulty in physical function. It has long been clinically known that obesity causes pain in the body, even in patients who do not require the above-mentioned orthopedic joint surgery. Therefore, the meaning of diet (slimming) is great. However, calorie restriction (in the old days of the Diabetes Society) diet was the mainstream in the world just because it was good, but now patients are affected by the carb counting method devised by Dr. Atkins and Dr. Bernstein in the United States. It turns out that you can lose weight without strong intensity and painful aerobic exercise. These groundbreaking proofs are evidenced in the 2007 A to Z test (the world's best test results).
 メタボリックシンドロームと全原因および心血管疾患による死亡率:公衆衛生センターに基づく前向き(JPHC)研究。1990年から2005年の間に、日本の保健所ベースの前向き(JPHC)研究は、心血管疾患(CVD)または癌の病歴のない、40~69歳の男性12,412人および21,639人の女性において代謝危険因子のベースライン測定を行った。日本におけるMetSの定義が必須基準として採用している肥満の役割を明らかにするために、過体重状態に従ってグループ分けされたデータにおける危険因子のクラスタリングを調べた。 12.3年の追跡調査中に、2,040人の死亡があり、そのうち947人は癌による死亡、304人はCVDによる死亡です。 MetSは、女性の全死因死亡率および男性のCVD死亡率のハザード比を有意に増加させた。 2以上の危険因子を伴う非過体重は、全原因死亡率およびCVD死亡率に同様の影響を及ぼした。代謝因子のクラスタリングは、死亡率に対する危険率の直線的増加を引き起こした。結論:MetSは、全原因死亡率およびCVD死亡率を中程度に増加させた。 Metabolic syndrome and all causes and mortality from cardiovascular disease: A prospective (JPHC) study based on the Public Health Center. Between 1990 and 2005, a Japanese health center-based prospective (JPHC) study found metabolic risk in 12,412 and 21,639 men aged 40-69 years with no history of cardiovascular disease (CVD) or cancer. Baseline measurements of the factors were performed. To clarify the role of obesity adopted by the definition of MetS in Japan, we investigated the clustering of risk factors in data grouped according to overweight status. During the 12.3 year follow-up, there were 2,040 deaths, of which 947 died of cancer and 304 died of CVD. MetS significantly increased the hazard ratios for all-cause mortality in women and CVD mortality in men. Non-overweight with two or more risk factors had similar effects on all-cause mortality and CVD mortality. Clustering of metabolic factors caused a linear increase in risk relative to mortality. CONCLUSIONS: MetS moderately increased all-cause mortality and CVD mortality.
 以上のように、メタボリックシンドロームの死亡への危険性は高い。肥満を先ずは予防、解消するには、先に記載したように単に食事KPIだけではなく、他のKPIである運動、睡眠、心拍、血圧、睡眠、血液データ、薬歴と相関関係を掴むMHAアプリケーションの設計合理性及び新規性がある。 As mentioned above, the risk of death of metabolic syndrome is high. To prevent and eliminate obesity first, as mentioned above, not only dietary KPIs, but also other KPIs such as exercise, sleep, heart rate, blood pressure, sleep, blood data, and drug history. There is design rationality and novelty of the application.
 肥満メタボリックシンドロームと運動の関係性及び効果を示す。BMC Sports Sci Med Rehabil. 2018 2018年腹部肥満とメタボリックシンドローム:薬としての運動。メタボリックシンドロームは、腹部(内臓)肥満、高血圧、血清トリグリセリド上昇、低血清高密度リポタンパク質(HDL)およびインスリン抵抗性の5つの臨床危険因子のうち少なくとも3つのクラスターとして定義されます。世界の成人人口の20%以上が罹患していると推定されています。腹部(内臓)肥満はメタボリックシンドロームの主な危険因子であると考えられており、予測によると2030年までに成人の50%が肥満と分類されると推定されている。健康経済証拠によると、定期的かつ一貫した運動は腹部肥満を軽減し、体組成の好ましい変化をもたらします。したがって、運動はそれ自体で薬であり、そのように処方されるべきであることが示唆されてきた。この総説は、機能不全脂肪組織の病態生理学に関する現在の証拠の要約を提供している(脂肪症)。それは脂肪症とメタボリックシンドロームとの関係、そして運動がこれらの過程をどのように媒介するかを説明し、腹部肥満の管理における運動の臨床的有効性に関する現在の証拠を評価します。このレビューではまた、入手可能な証拠に関連して健康状態の最適な改善に必要な運動の種類と量についても議論し、運動プログラムの順守を達成することの困難性を考察しています。結論:現時点では最適な用量と運動の種類は不明であるが、メタボリックシンドロームを逆転させる運動プログラムの使用を支持する適度な証拠がある。医療従事者にとっての主な課題は、予防的にそしてメタボリックシンドロームの治療として用いられる運動プログラムへの参加および遵守を個人にやる気を起こさせる方法である。 Show the relationship and effects of obesity metabolic syndrome and exercise. BMC Sports Sci Med Rehabil. 2018 2018 Abdominal Obesity and Metabolic Syndrome: Exercise as a medicine. Metabolic syndrome is defined as at least three clusters of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high density lipoprotein (HDL) and insulin resistance. It is estimated that more than 20% of the world's adult population is affected. Abdominal (visceral) obesity is considered to be a major risk factor for metabolic syndrome, and it is estimated that by 2030, 50% of adults will be classified as obese. According to health and economic evidence, regular and consistent exercise reduces abdominal obesity and results in favorable changes in body composition. Therefore, it has been suggested that exercise is a drug in itself and should be prescribed as such. This review provides a summary of current evidence for the pathophysiology of dysfunctional adipose tissue (lipidosis). It explains the relationship between steatosis and metabolic syndrome, and how exercise mediates these processes, and assesses current evidence for the clinical effectiveness of exercise in the management of abdominal obesity. The review also discusses the types and amounts of exercise needed to optimally improve health in relation to the available evidence and considers the difficulty of achieving adherence to an exercise program. CONCLUSIONS: The optimal dose and type of exercise are unknown at this time, but there is reasonable evidence to support the use of an exercise program that reverses metabolic syndrome. The main challenge for healthcare professionals is how to motivate individuals to participate in and comply with exercise programs that are used prophylactically and as a treatment for metabolic syndrome.
 従来は、スマートフォン・ウエアラブル等の機器によって捕捉、集積表示をデータベース化することは従来不可能であった。
 本発明によれば、バーコード等含めたシグナル、音声、写真、手による補正によってAIを学習させれば、肥満者の主要なKPIsを表示し、ユーザー自らが自らの生活管理に役立てることができる。
In the past, it was not possible to create a database of captured and integrated displays using devices such as smartphones and wearables.
According to the present invention, if AI is learned by signals including barcodes, voices, photographs, and manual corrections, the main KPIs of obese people can be displayed and the users themselves can use them for their own life management. ..
本発明の一実施例にかかるMHAアプリケーションが適用されるシステムの全体を示す概略図である。It is the schematic which shows the whole system to which the MHA application which concerns on one Example of this invention is applied. ユーザーが実際に見ることができる画面のイメージを示す図である。It is a figure which shows the image of the screen which a user can actually see. 情報通信端末Bに相当するスマートフォンのブロック図である。It is a block diagram of the smartphone corresponding to the information communication terminal B. デバイスAに相当するウェアラブル端末のブロック図である。It is a block diagram of the wearable terminal corresponding to the device A. スマートフォンとが実施するプログラムのフローチャートである。It is a flowchart of a program carried out by a smartphone. ウェアラブル端末が実施するプログラムのフローチャートである。It is a flowchart of a program executed by a wearable terminal. クラウドサーバーCが実施するプログラムのフローチャートである。It is a flowchart of the program executed by the cloud server C.
(第1の実施例)
 図1は、本発明の一実施例にかかるMHAアプリケーションが適用されるシステムの全体を示す概略図である。また、図2は、ユーザーが実際に見ることができる画面のイメージを示す図である。なお、これは一例に過ぎず、ユーザーや、製造販売時のカスタマイゼーションによっても変更可能である。
(First Example)
FIG. 1 is a schematic diagram showing the entire system to which the MHA application according to an embodiment of the present invention is applied. Further, FIG. 2 is a diagram showing an image of a screen that the user can actually see. This is just an example, and can be changed by the user and customization at the time of manufacture and sale.
 このシステムは、ユーザーが身体に装着するデバイスAと、ユーザーが携帯するスマートフォンなどの情報通信端末Bと、クラウドサーバーCとから構成される。
 デバイスAは主に運動データを収集し、情報通信端末Bに送信する。情報通信端末Bは主に摂取する食べ物などを撮影し、運動データとともに画像をクラウドサーバーCにアップロードしたり、同クラウドサーバーCからPFCデータをダウンロードし、各種の情報を表示する。クラウドサーバーCはアップロードされた画像や運動データなどを利用し、AIエンジンによってユーザーが摂取したものを解析し、解析結果に基づいてPFCデータを生成し、情報通信端末Bにダウンロードさせる。
This system is composed of a device A worn by the user, an information communication terminal B such as a smartphone carried by the user, and a cloud server C.
The device A mainly collects exercise data and transmits it to the information communication terminal B. The information / communication terminal B mainly photographs foods to be ingested, uploads images together with exercise data to cloud server C, downloads PFC data from the cloud server C, and displays various information. The cloud server C uses the uploaded image, exercise data, etc., analyzes what the user has ingested by the AI engine, generates PFC data based on the analysis result, and downloads it to the information communication terminal B.
 以下、図面中の符号を参照しながら、関連する技術内容を説明する
 1 運動データの説明及びPFC等の食事、外用物質因子との統合における新規性
 PFC(因子)とは、Protein(タンパク質)、Fat(脂質)、Carbohydrate(炭水化物)の頭文字を由来とする。この因子バランスを集積し、意識しながら食生活に役立て、病気の予防等や健康を維持するために現代に至るまでその重要性は揺るぎない。しかし、毎食のPFC因子を自ら捕捉し、集積管理していくことは容易ではない。これらを瞬時に、人々が簡易に無理なく継続的に実践できるようにするのが本発明の起源であり目的である。
Hereinafter, the related technical contents will be explained with reference to the reference numerals in the drawings. 1 Explanation of exercise data and novelty in diet such as PFC and integration with external substance factors PFC (factor) is Protein (protein), It is derived from the acronyms Fat and Carbohydrate. The importance of accumulating this factor balance, consciously using it for eating habits, preventing illness, and maintaining health remains unwavering until today. However, it is not easy to capture the PFC factor of each meal and manage it. It is the origin and purpose of the present invention to enable people to practice these things instantly, easily, reasonably and continuously.
 ユーザーは食事の音声、写真、バーコード等の識別コードを自動読み込み(時に撮影)してアップロードするだけで、その食事や飲料のPFCを手に入れることができる。その結果、PFC因子のどの因子をどれくらい低下させ、あるいは増加されれば良いかが簡単に認識できるようになる。ユーザー自らが食事の主要因子を調整していけるのである。 The user can obtain the PFC of the meal or beverage simply by automatically reading (sometimes taking a picture) the identification code such as the voice, photo, and bar code of the meal and uploading it. As a result, it becomes easy to recognize which factor of the PFC factor should be lowered or increased. The user can adjust the main factors of the diet by himself.
 PFCは、ユーザーの食生活を改善するための基礎データとして用いられるが、ここに1aで示したようなスマートウォッチ等、総称としてはヘルスケアデバイスを含めた機器と呼ばれるデバイスが採取した運動、睡眠、血圧、心拍データを加味することで、統合的集積データとなり、PFCのみならず運動をも集積分析し、人々の選択と決定を支えることが可能になる。 PFC is used as basic data to improve the eating habits of users, but exercise and sleep collected by devices such as smart watches shown in 1a, which are collectively called devices including healthcare devices. By adding blood pressure and heart rate data, it becomes an integrated integrated data, which enables integrated analysis of not only PFC but also exercise to support people's choices and decisions.
 ヘルスケアデバイスが採取するデータは、歩数や距離や消費カロリーといった運動データが主であるが、近年、心拍数や睡眠記録といった健康補助データを採取できるデバイスが登場している。通信機能を搭載した血圧計、血糖測定器、体重計・体組成計、活動量計なども商用化されており、これらデバイスから採取したデータもPFCと統合され活用していける。 The data collected by healthcare devices is mainly exercise data such as steps, distance, and calories burned, but in recent years, devices that can collect health support data such as heart rate and sleep records have appeared. Sphygmomanometers, blood glucose meters, weight scales / body composition analyzers, activity meters, etc. equipped with communication functions have also been commercialized, and data collected from these devices can also be integrated and utilized with PFC.
 なお、1の運動データは、ヘルスケアデバイスとBluetoothなどでペアリングされたスマートフォンの内蔵ストレージに蓄積されていくのが一般的である。このデータはOSが提供するライブラリを介して、外部システムやアプリケーションからいつでも自由に取得できる。 It should be noted that the exercise data of 1 is generally accumulated in the built-in storage of the smartphone paired with the healthcare device via Bluetooth or the like. This data can be freely obtained from external systems and applications at any time via the library provided by the OS.
 近年のスマートフォンにはジャイロセンサー、加速度センサー、コンパスなどのセンサー情報を処理するモーションコプロセッサが搭載されており、専用のヘルスケアデバイスよりも精度は劣るが、スマートフォン自身を歩数計として利用することも可能である。 Recent smartphones are equipped with a motion coprocessor that processes sensor information such as gyro sensors, accelerometers, and compasses, which is less accurate than dedicated healthcare devices, but the smartphone itself can also be used as a pedometer. It is possible.
 2 食事の撮影
 2aは本発明を適用したスマートフォンのアプリケーション(以降、MHAアプリと呼称)である。
 MHAアプリの最初のステップは食事、飲料、時に薬等の体に入るもの撮影やコード等の読み込みであるが、その前に必要となる作業を簡単に説明する。
2 Meal photography 2a is a smartphone application (hereinafter referred to as MHA application) to which the present invention is applied.
The first step of the MHA app is to take pictures of food, beverages, and sometimes medicines that enter the body and read codes, but before that, I will briefly explain the work required.
 ユーザーはスマートフォンにMHAアプリをダウンロードして、アカウント登録手続きを進める。この手続きが正常に完了すると、クラウド上の7aのデータベースにユーザー専用のレコードが作成される。以上が終わったら、食事、飲料の撮影が可能になる。具体的には2bにスマートフォンのカメラを向けて、MHAアプリ内の撮影ボタンをタップすると、2cのような画像がスマートフォンの内蔵ストレージに保存される。既に撮影済みの写真があるのならば、それを指定しても構わない。これを毎食後に繰り返していくだけで良い。 The user downloads the MHA application to the smartphone and proceeds with the account registration procedure. If this procedure is completed successfully, a user-specific record will be created in the 7a database on the cloud. After the above, you can take pictures of food and drinks. Specifically, if you point the smartphone's camera at 2b and tap the shooting button in the MHA app, an image like 2c will be saved in the smartphone's internal storage. If you already have a photo taken, you can specify it. All you have to do is repeat this after each meal.
 以後、ユーザーがアップロードした写真・コード、PFC、運動データ・健康補助データなどが統合され、更に集積される。
 ちなみに6aや7aのサーバー群は、クラウドプラットフォーム上に構築される。
After that, the photos / codes, PFC, exercise data / health supplement data, etc. uploaded by the user will be integrated and further accumulated.
By the way, the 6a and 7a servers are built on the cloud platform.
 3 食事、飲料、薬剤画像、化粧品等、皮膚、血管アップロード
 MHAアプリで撮影された食事の写真は、インターネットを介して7aのクラウドサーバー上のストレージにアップロードされ、以後、ユーザーがアカウントを削除しない限りクラウドに残り続ける。アップロードが成功したら、ユーザーは自身のスマートフォンから写真を削除しても構わない。
3 Meals, beverages, drug images, cosmetics, skin, blood vessels Upload Meal photos taken with the MHA app are uploaded to storage on the 7a cloud server via the Internet, unless the user deletes the account thereafter. Stay in the cloud. If the upload is successful, the user may delete the photo from their smartphone.
 3のアップロードはユーザー固有の履歴として、データベースにひも付けて管理され、AIの学習にも活用される。アップロードは匿名的データとして取り扱い、数値や写真で食事因子であるPFCを提案することも可能となる。2に記したアカウント登録時に利用目的を明示して、MHAアプリによる二次利用の同意を求める。 The upload of 3 is managed by linking it to the database as a user-specific history, and it is also used for learning AI. Uploads can be treated as anonymous data, and it is possible to propose PFC, which is a dietary factor, with numerical values and photographs. When registering the account described in 2, specify the purpose of use and ask for consent for secondary use by the MHA app.
 毎食の食事の写真をアップロードしていくのが基本だが、アップロードしなくても済む場合が増加する(以前に利用した写真、音声、コード等の読み取り等)。例えば「朝食はいつも同じ」というユーザーがいるような場合は、MHAに指示(触れる、音声)を出す。ユーザー自身が過去にアップロードしたものはストレジされているので再利用でき、手間が省ける。
 後の9に詳細を記すが、3~8までに記す流れは、あくまでも食事、飲料等の体に入る写真からPFCを算出する。
Basically, you upload photos of each meal, but there are more cases where you don't have to upload them (reading previously used photos, sounds, codes, etc.). For example, if there is a user who says "breakfast is always the same", give instructions (touch, voice) to MHA. The ones uploaded by the user in the past are stored and can be reused, saving time and effort.
Details will be described in 9 below, but the flow described in 3 to 8 is to calculate PFC from photographs that enter the body such as food and beverages.
 4 画像入力
 写真に含まれる3を認識する処理は、4aに記した外部の画像認識AIサービスを利用する。画像認識技術は大手IT企業の各社が、長年の研究に基づき作り上げてきたもので、近年、一般ユーザーが利用できる形で公開されるようになってきた。つまり、この技術は既に十分な実用性を兼ね備えており、これから新規開発して競争していく類いの技術ではない。
 言うまでもなくアップロードの認識精度の高精度化するのはAIの学習である。設計図及び理論の開発が終了したので、個人の特性に応じた学習をすれば、認識精度向上は否定されない。
4 Image input The process of recognizing 3 included in the photograph uses the external image recognition AI service described in 4a. Image recognition technology has been created by major IT companies based on many years of research, and in recent years it has been released in a form that can be used by general users. In other words, this technology already has sufficient practicality, and it is not the kind of technology that will be newly developed and competed in the future.
Needless to say, it is AI learning that improves the recognition accuracy of uploads. Since the development of blueprints and theories has been completed, improvement in recognition accuracy cannot be denied if learning is performed according to individual characteristics.
 現在、4aに採用できるAIの選択肢は商用・非商用問わず多数存在するが、ここでは一例として市場で提供される画像認識AIサービスを用いた場合の流れを説明する。
 このような画像認識AIサービスには学習済みのモデルが用意されており、本発明向けには「体にはいる、触れるものの認識モデル」を選択するか、他のモデルを利用する。このAIに3でアップロードされた体にはいる、触れるものを入力すると、画像内に含まれる対象がすべて認識される。すべて、というのは一つなら一つ、三つなら三つ認識されるという意味である。
Currently, there are many AI options that can be adopted for 4a, both commercial and non-commercial, but here we will explain the flow when using the image recognition AI service provided in the market as an example.
A trained model is prepared for such an image recognition AI service, and for the present invention, "a recognition model for something that enters or touches the body" is selected, or another model is used. If you enter something that touches the body uploaded in 3 to this AI, all the objects contained in the image will be recognized. All means that one is recognized as one, and three is recognized as three.
 5 結果返却
 どの画像認識AIサービスも、基本的には認識した物体とその確度などが返される。5aのように「トースト0.9354、ベーコン:0.892、目玉焼き:0.813」という具合である。確度は1に近いほどマッチ率が高いという見方になる。上述した画像認識AIサービスの場合、4の結果はJSON形式にテキストにフォーマットされて返却される。この内容を解析してPFCエンジンに渡すための処理は7aのPFCサーバーが行う。
5 Return of results All image recognition AI services basically return the recognized object and its accuracy. Like 5a, it is "toast 0.9354, bacon: 0.892, fried egg: 0.813". The closer the accuracy is to 1, the higher the match rate. In the case of the image recognition AI service described above, the result of 4 is formatted as JSON format and returned. The process for analyzing this content and passing it to the PFC engine is performed by the PFC server in 7a.
 本発明は継続して利用してことで精度が増す。つまりAIの学習効果である。下記の挙動を明確に定めておきたい。
 なお、食べ物、飲み物の分量についてはAIで算出することが初期は難しいため、4から7までが正常に終了したら、8の前あるいは8と同じタイミングでユーザーに分量を補正してもらう自由度があり(人による数値補正、音声補正)を可能にしている。この補正もAIが再学習する。
The accuracy of the present invention is increased by continuous use. In other words, it is the learning effect of AI. I want to clearly define the following behavior.
In addition, since it is difficult to calculate the amount of food and drink with AI at the beginning, if 4 to 7 are completed normally, there is a degree of freedom to have the user correct the amount before 8 or at the same timing as 8. Yes (numerical correction by human, voice correction) is possible. AI will relearn this correction as well.
 6 照合
 PFCエンジンとは、6aの通り、データベースと連動して機能する。トースト、目玉焼き、ベーコンという朝食を例に説明する。それぞれの食べ物のPFCは、トーストが1枚当たりP:4.9g、F:2.6g、C:30.3g、目玉焼きが1つ当たりP:6.7g、F:7.6g、C:0.2g、ベーコンが1枚当たりP:2.58g、F:7.82g、C:0.06gと一次仮定する。次に、それらPFCグラム数をデータベースに登録しておき、5の補正とすり合わせることで、PFCエンジンは照合する役割を果たす。
6 The collation PFC engine works in conjunction with the database, as shown in 6a. Let's take breakfast of toast, fried egg, and bacon as an example. The PFC of each food is P: 4.9g, F: 2.6g, C: 30.3g per toast, P: 6.7g, F: 7.6g, C: 0.2g, bacon per fried egg. The primary assumption is P: 2.58g, F: 7.82g, C: 0.06g per sheet. Next, the PFC engine plays a role of collation by registering those PFC grams in the database and matching them with the correction of 5.
 PFCデータベースに捕捉されていないケースを想定し、人による入力(手、音声、参考写真の使用)をバックアップとして設定した。これは5と同じ方式である。 Assuming a case that was not captured in the PFC database, human input (hand, voice, use of reference photo) was set as a backup. This is the same method as 5.
 7 数値化
 それぞれの体に入る物のレコードが見つかったら、次はそれを合算してグラムから割合に変換する。
 例として、5aの食事をAIがチーズトースト、目玉焼き、ベーコンと認識し、ユーザーがチーズトーストを1枚、目玉焼きを1枚、ベーコン2枚の場合、PFCの総計は、P:20.16g、F:30.34g、C:31.12。割合として表すとP:約25%、F:約37%、C:約31%となる。
7 Quantification When you find a record of things that fit in each body, the next step is to add them up and convert them from grams to percentages.
As an example, if AI recognizes the meal of 5a as cheese toast, fried egg, and bacon, and the user has one cheese toast, one fried egg, and two bacon, the total PFC is P: 20.16g, F: 30.34g, C: 31.12. Expressed as a ratio, P: about 25%, F: about 37%, C: about 31%.
 8 結果返却
 7の結果をMHAアプリに返却するのがPFC割り出しの最後のフローとなる。
 PFCの結果は、将来の外部システム開発(医療機関、トレーナー、学校、企業、政府)などとの連携も視野に入れ、インターネット技術と相性が良いJSON形式のテキストにフォーマットして返却する。
8 Returning the result Returning the result of 7 to the MHA app is the final flow of PFC indexing.
The results of PFC will be returned in JSON format, which is compatible with Internet technology, with a view to cooperation with future external system development (medical institutions, trainers, schools, companies, governments).
 9 インフォグラフィックス
8aにおける分析の一例を示す。
 1997年のアメリカ食事ゴールでは、P:20%、F:20%、C:60%が理想的なバランスとされている。この基準に照らし合わせると、5aの食事はPが少し超過、Fが大きく超過、Cが不足となる。また、ユーザーが意図するPFC案がる場合、例えばPF>Cという具合にユーザー実行とその成果を評価できる。PFCを含んだMHAは追跡能力を持ち合わせるため、過去集積結果と比較検討できる。
9 Infographics
An example of the analysis in 8a is shown.
In the 1997 American Dietary Goal, P: 20%, F: 20%, and C: 60% are the ideal balance. By this criterion, the diet of 5a has a slight excess of P, a large excess of F, and a shortage of C. In addition, when there is a PFC plan intended by the user, the user execution and its result can be evaluated, for example, PF> C. Since MHA including PFC has tracking ability, it can be compared with past accumulation results.
 上記はPFCだけで分析した例だが、ここに1の運動データを加えると、極めて能動的になる。PFCに歩数を加味した一例として「P:10%、F:20%、C:70%、運動:非常に少ない」だったユーザーに対して「PF>Cに操舵、8,000歩」という選択肢を掲示できる。
 グラフにより直感的に何をどれくらい減らして、あるいは増やしていけるかを判断できるようになる。眺めること自体が楽しくなり、これが継続のモチベーションにつながる。なによりも、日、週、月、3カ月、6カ月、12カ月という単位での集積結果を用い、中長期的な食生活や運動の改善計画指針を変更を可能。
The above is an example analyzed only by PFC, but if 1 motion data is added here, it becomes extremely active. As an example of adding the number of steps to PFC, the option "steering to PF> C, 8,000 steps" is posted for users who were "P: 10%, F: 20%, C: 70%, exercise: very few" it can.
The graph allows you to intuitively determine what you can reduce or increase. The viewing itself becomes fun, which motivates us to continue. Above all, it is possible to change the medium- to long-term dietary habits and exercise improvement plan guidelines by using the accumulation results in units of days, weeks, months, 3 months, 6 months, and 12 months.
 次に、8aにおける自己入力補正について補足する。
 AIの学習がどれだけ進んでも、100%の精度でPFCを出すことは不可能に近い。写真の品質(白飛び、黒つぶれ、不鮮明、過剰な加工など)が良くなかったり、調理に使われた調味料や油、それぞれの分量まではとても把握できなかったりするからである。ハンバーグにかかったソースが緑色だった場合に、それがチーズベースのソースなのか豆ベースのソースなのかを区別するのも難しいだろう。これは人間の目で見ても判別が難しい。
Next, the self-input correction in 8a is supplemented.
No matter how much AI learning progresses, it is almost impossible to produce PFC with 100% accuracy. This is because the quality of the photographs (blown out, blackout, blurring, excessive processing, etc.) is not good, and the seasonings and oils used in cooking and the amount of each are not very clear. If the hamburger steak is green, it can be difficult to tell if it's a cheese-based sauce or a bean-based sauce. This is difficult to distinguish even with the human eye.
 また、日常的に自身の食生活をコントロールしている人々にとっては、自身が把握するPFCの方がAIのPFCよりも信頼できると考えるはずである。
 このようなときに、自分でPFCを補正したり入力したり選択したりする入り口となるのが8aである。体に入るものを撮影してアップロードする2から3の通常パターンをこれに含めると、PFCを得るまでのパターンは主に四つとなる。
Also, for those who control their eating habits on a daily basis, they should think that the PFC they understand is more reliable than the AI PFC.
In such a case, 8a is the entrance to correct, input, and select PFC by yourself. If you include a few normal patterns that capture and upload what goes into your body, there are four main patterns to get PFC.
 一つ目は、8の結果をそのまま受け入れるパターン。二つ目は2から3を行った後に8の結果を手で補正するパターン、三つ目は2の段階で始めからPFCを入力するパターン、四つ目はユーザー自身が過去にアップロードしたものや、他のユーザーがアップロードしたものから、自分が摂取した食事に近いものを選ぶパターン(PFCの再利用)である。PFCは自動でも算出でき、手動、音声、バーコード等でも入力でき、自動で算出された結果を補正することもできることになる。あらゆるニーズに対応できる。 The first is a pattern that accepts the result of 8 as it is. The second is a pattern that manually corrects the result of 8 after performing 2 to 3, the third is a pattern that inputs PFC from the beginning in the second stage, and the fourth is the one that the user himself uploaded in the past. , It is a pattern (reuse of PFC) to select the one that is close to the meal that you ingested from the ones uploaded by other users. PFC can be calculated automatically, and can be input manually, by voice, barcode, etc., and the automatically calculated result can be corrected. We can meet all your needs.
 MHAアプリを通じて蓄積されたデータはクラウドに蓄積される。このデータは7aのPFCサーバーにAPIを設置することで外部に提供することが可能であり、将来、医療、国、企業、学校のシステムや、外部アプリケーション・システムやサービスとの連携、匿名的ビッグデータとしての販売など、応用の幅は無限大である。
 以上、MHAアプリケーションのKPIに関するコネクションについて説明したと同時に、集積表示することの意義と新規性を説明した。
The data accumulated through the MHA app is accumulated in the cloud. This data can be provided externally by installing an API on the PFC server of 7a, and in the future, cooperation with medical, national, corporate and school systems, external application systems and services, anonymous big The range of applications, such as sales as data, is endless.
So far, we have explained the connections related to KPIs of MHA applications, and at the same time, explained the significance and novelty of integrated display.
 図2においては、左側に情報通信端末Bでの表示例を示し、右側には画像認識AIサービスを表示している。
 情報通信端末B(S-phone Wearable)では、上段から摂取したProtein (P:タンパク質) Fat(F:脂質) Carbohydrates(C:炭水化物)を「P35 F55 C5」として示しており、次に摂取したアルコール(Al)を「Alcohol 5」として示している。これらは主に画像認識AIサービスから得られるデータである。
In FIG. 2, a display example on the information communication terminal B is shown on the left side, and an image recognition AI service is displayed on the right side.
In the information and communication terminal B (S-phone Wave), Protein (P: protein) Fat (F: lipid) Carbohydrates (C: carbohydrate) ingested from the upper row is shown as "P35 F55 C5", and the alcohol ingested next. (Al) is shown as "Alcohol 5". These are mainly data obtained from the image recognition AI service.
 次に、睡眠品質の程度を「SleepQ good」として示し、運動品質の程度を「Exercise perfect」として示している。これらはデバイスAから得られるデータではあるが、品質の解析の向上のために外部の認識サービスを利用しても良い。
 次に、心拍数と血圧の質の程度を「HR/BP good」として示し、身長体重比(BMI指標)を「Body-w good」として示し、ウェストサイズを「Waist size fine」として示している。これらはデバイスAだけでは得られないデータも含んでおり、手入力あるいは外部の計測器と接続してデータを得る。
 次に、投薬量の変化状況として「Drug reduces」として示し、血液を「Blood great」として示している。このように血液全般についての状況を示すようにしても良いし、血糖値など個別の計測値などを表示しても良い。これらもデバイスAだけでは得られないデータも含んでおり、手入力あるいは外部の計測器と接続してデータを得る。
Next, the degree of sleep quality is shown as "SleepQ good", and the degree of exercise quality is shown as "Exercise perfect". Although these are data obtained from device A, an external recognition service may be used to improve quality analysis.
Next, the degree of heart rate and blood pressure quality is shown as "HR / BP good", the height-to-weight ratio (BMI index) is shown as "Body-w good", and the waist size is shown as "Waist size fine". .. These include data that cannot be obtained by device A alone, and data can be obtained manually or by connecting to an external measuring instrument.
Next, the change status of the dosage is shown as "Drug reductions", and the blood is shown as "Blood great". In this way, the status of blood in general may be shown, or individual measured values such as blood glucose level may be displayed. These also include data that cannot be obtained by device A alone, and data can be obtained manually or by connecting to an external measuring instrument.
 むろん、心拍数と血圧の質、身長体重比(BMI指標)、ウェストサイズ、投薬量の変化状況、血糖値に対する表示は一例に過ぎない。
 その他、表示はグラフィカルに表示するなど、適宜変更可能である。
Of course, the indications for heart rate and blood pressure quality, height-to-weight ratio (BMI index), waist size, dosage changes, and blood glucose levels are just examples.
In addition, the display can be changed as appropriate, such as displaying graphically.
 本実施例で実現されるもの。
 A)Protein (P:タンパク質) Fat(F:脂質) Carbohydrates(C:炭水化物)+アルコール(Al)の世界で初めてPFC、Alは捕捉・集積表示ができる。また、
1.バーコードなどの電子シグナル(スーパー、ドラックストア、コンビニなど)をスマホで捕捉、集積
2.音声入力システムで捕捉、集積、補正
3.写真によってPFC+AlをAIが捕捉、集積
4.手による補正(入力)により捕捉データの精度を高める
What is realized in this embodiment.
A) Protein (P: protein) Fat (F: lipid) Carbohydrates (C: carbohydrate) + alcohol (Al) For the first time in the world, PFC and Al can be captured and accumulated. Also,
1. 1. 2. Capture and collect electronic signals such as barcodes (supermarkets, drug stores, convenience stores, etc.) with smartphones. Capture, integration, and correction with a voice input system 3. AI captures and accumulates PFC + Al by photographs 4. Improve the accuracy of captured data by manual correction (input)
 B)A)及び体に触れるもの、入るものに関し、体にとって何がKPIかを見いだせる発明である。AIを用い、集積表示することが、ウエアラブル等の機器、スマートフォン、PC、VR等の画面で表示できる発明である。
 C)アルコールが睡眠の質とどのような関係にあるのかウエアラブル等の機器と連動させ、且つA)と比較参照することができる発明である。睡眠の質はアルコール、運動、A)と深い関係がある。本発明において、ユーザーは何をどれだけ変動させるか自己決定できる世界で初の発明である。米国睡眠学会(sleep education.com)では、以下の事項を国民に推奨している。
B) A) It is an invention that can find out what is a KPI for the body regarding things that touch and enter the body. Integrated display using AI is an invention that can be displayed on the screen of a device such as a wearable, a smartphone, a PC, a VR, or the like.
C) It is an invention that can be linked with devices such as wearables and can be compared and referred to with A) to see how alcohol is related to sleep quality. Sleep quality is closely related to alcohol, exercise, and A). In the present invention, the user is the first invention in the world to be able to self-determine what and how much to change. The American Sleep Education Society (sleep education.com) recommends the following to the public:
I.起床・就寝時刻を決める習慣化
II.日中起きている時間は別途に近づかない
III.睡眠を妨げるカフェイン、アルコール、たばこを吸わないようにする
IV.入眠前の入浴、軽食、読書などの習慣を見直す
V.寝室を暗く、静かに、少し涼しくしておくと眠りやすくなる
VI.ベッドに心配事や悩み事をもっていかないようにする
I. Habituation to determine wake-up / bedtime
II. Stay awake during the day
III. Avoid smoking caffeine, alcohol and tobacco that interfere with sleep
IV. Review habits such as bathing, light meals, and reading before falling asleep
V. Keeping your bedroom dark, quiet, and a little cool will help you sleep better.
VI. Don't bring worries or worries to your bed
 Nutrients. 2019:子供の感情的な食事、健康行動、および肥満:12カ国における横断的研究。否定的な感情(感情的な食事、EE)に反応して食べることは、個人を肥満に罹患させる可能性がある。それでも、子供のEEがボディマスインデックス(BMI)および健康行動(すなわち食事、身体活動、睡眠、およびテレビ視聴)とどのように関連しているかはよく知られていない。本研究では、12の国と5つの大陸からの5426人(女子54%)の9-11歳の子供たちの横断的なサンプルでこれらの関連性を調べた。 EE、摂餌量、およびテレビ視聴は、自己管理型の質問票を用いて測定し、身体活動および夜間の睡眠時間は加速度計を用いて測定した。測定された体重および身長を用いてBMIを計算した。確認因子分析を用いてEE因子スコアを計算し、主成分分析を用いて食事パターンを同定した。 EEと健康行動およびBMI zスコアとの関連は、共変量として年齢、性別、および世帯収入を含むマルチレベルモデルを使用して分析されました。 EEは不健康な食事パターン(β= 0.29、SE = 0.02、p <0.0001)と正直にそして一貫して(12の研究サイトにわたって)関連しており、この関連は西欧諸国に限定されないことを示唆している。 EEと身体活動およびテレビ視聴の間の積極的な関連は、サイト間で一貫していませんでした。結果は男の子と女の子で似ている傾向がありました。このサンプルでは、EEはBMIとは無関係ですが、小児のより高いEEが望ましくない食事パターンおよび肥満の発生を長期にわたって予測するかどうかを決定するために前向き研究が必要です。
 上記のように、ウエアラブル等の機器、スマホからのデータをMHAが集長期積してユーザーに返すことによって、ユーザーは良い睡眠のための改善に長期取り組める。
Nutrients. 2019: Children's Emotional Diet, Health Behavior, and Obesity: A Cross-sectional Study in 12 Countries. Eating in response to negative emotions (emotional diet, EE) can cause an individual to become obese. Still, it is not well known how a child's EE is associated with body mass index (BMI) and health behavior (ie, diet, physical activity, sleep, and watching television). In this study, we examined these associations in a cross-sectional sample of 5426 (54% girls) children aged 9-11 from 12 countries and 5 continents. EE, food intake, and TV viewing were measured using a self-managed questionnaire, and physical activity and nighttime sleep were measured using an accelerometer. BMI was calculated using the measured weight and height. EE factor scores were calculated using confirmatory factor analysis and dietary patterns were identified using principal component analysis. The association of EE with health behavior and BMI z-score was analyzed using a multilevel model that included age, gender, and household income as covariates. EE is honestly and consistently (over 12 research sites) associated with unhealthy dietary patterns (β = 0.29, SE = 0.02, p <0.0001), suggesting that this association is not limited to Western countries. ing. The positive link between EE and physical activity and watching television was inconsistent between sites. Results tended to be similar for boys and girls. In this sample, EE is independent of BMI, but prospective studies are needed to determine whether higher EE in children predicts unwanted dietary patterns and the development of obesity over time.
As described above, MHA collects data from devices such as wearables and smartphones for a long period of time and returns it to the user, so that the user can work on improvement for good sleep for a long period of time.
 次に、アルコールと睡眠の関係について記す。2000年から2018年までの一般集団および特定の集団におけるフランスの大うつ病の有病率:文献の系統的レビュー。結果:過去12ヶ月間のフランスでの大うつ病の有病率は2000年代には約8%であり、2010年代には10%に増加した。国内データベースに関する研究では、この有病率を過小評価する傾向があり(2%未満)、入院して抗うつ薬で治療された最も重度のうつ病のみが残った。特定の集団では、データは、HIV、てんかん、いくつかの癌および心血管疾患、大麻およびタバコ喫煙者において公表されている。結論:フランスでは、うつ病の有病率は2000年から2010年の間に増加したようです。特にアルコール摂取障害、癌、心血管疾患、免疫炎症性疾患については、その有病率が高いこととMDD(major depressive disorders)との特異的な関係性から、さらなる研究を発表する必要があります。フランスの一般集団における別の研究もまた実施されるべきである。このデータはフランスのMDDのケアを改善するための精密医療の開発に役立つはずです。
 上記に示したように、MHAは睡眠の集積を行うことから、KPIsを捕捉集積しユーザーが自分を知ることを助ける。睡眠と血圧はリンクし、血圧は心機能に影響し、睡眠の不具合は肥満にリンクするという、これぞ肥満が起因してのメタボリックシンドロームである。
Next, the relationship between alcohol and sleep will be described. Prevalence of major depression in France in the general and specific populations from 2000 to 2018: a systematic review of the literature. RESULTS: The prevalence of major depression in France over the last 12 months was about 8% in the 2000s and increased to 10% in the 2010s. Studies on national databases tended to underestimate this prevalence (less than 2%), leaving only the most severe depression hospitalized and treated with antidepressants. In certain populations, data have been published for HIV, epilepsy, some cancers and cardiovascular diseases, cannabis and tobacco smokers. Conclusion: In France, the prevalence of depression appears to have increased between 2000 and 2010. In particular, with regard to alcohol intake disorders, cancer, cardiovascular diseases, and immunoinflammatory diseases, further research needs to be published due to the specific relationship between the high prevalence and MDD (major depressive disorders). Another study in the French general population should also be conducted. This data should help develop precision medicine to improve care for MDD in France.
As shown above, MHA accumulates sleep, so it captures and accumulates KPIs and helps users to know themselves. Sleep and blood pressure are linked, blood pressure affects cardiac function, and sleep problems are linked to obesity, which is a metabolic syndrome caused by obesity.
 D)MHAを利用すると、薬剤疫学試験や医療効率もより深く解明できる。例えば、A)と薬剤、疾患は非常に因果関係が強い。しかし、「外来では良い患者」が医療では広く知られており、課題は、「病院の外の患者」のMHAである。この部分は、患者の自由意思であった範疇の「病院の外」でのMHA(例外を除く)をトレースすることによって、今まで医療では成しえなかった医療費削減が劇的及び医療効率向上が実施可能になることを実現させた世界で初めての発明である。特にC(PFCのC)は肥満との関連性は深く、糖尿病、高血圧、心筋梗塞、脳梗塞、精神疾患、アレルギー、認知症との関連も世界で報告されている。 D) By using MHA, drug epidemiological tests and medical efficiency can be clarified more deeply. For example, A) has a very strong causal relationship with drugs and diseases. However, "good outpatients" are widely known in medicine, and the challenge is MHA for "patients outside the hospital." In this part, by tracing the MHA (with exceptions) in the category of "outside the hospital" that was the patient's free will, medical cost reduction that could not be achieved by medical care is dramatic and medical efficiency. This is the world's first invention that has made it possible to improve. In particular, C (C of PFC) is closely associated with obesity, and has been reported worldwide to be associated with diabetes, hypertension, myocardial infarction, cerebral infarction, psychiatric disorders, allergies, and dementia.
 E)薬剤履歴は、患者、各医療機関、薬局が独占的に有しているが(世界ではスマートフォンにて情報提供型が少し増えてきている)、MHAとして薬剤も他のKPIも比較参照することによって「病院の外でも良い患者」を増やし、薬剤効率を改善する。世界的な発見にあるように、Cを削減させるもPFを増加する方法(日本では女子医大などは難しい高血圧に対してCの削減が有名であるし、世界では多数実施されている)がとられている。結果、多数の疾患において減薬が可能になるが、スマートフォン等にて捕捉・集積し、PFCをマネージメントすることの人類に対する影響は大きい。このCの変化に対する科学的意義は、世界TopジャーナルのNew Engl、Lancet, JAMAに掲載され、約10年の歴史がある。しかし、「病院の外でも良い患者」になることは困難であった。なぜなら、患者は先端栄養学・運動学を知らないからである。これらは通例保険診療外(患者が自分ですること)である。加えて最悪なことに、この10年で栄養学も激変しているが、それを知らない、医師・栄養士も非常に多い。(例:旧糖尿病食で治った患者はいないが、カーボカウントでは緩解する事実が世界で報告されるようになった。しかし、管理が面倒でノートに記録してもそれを持ち歩かなければならないことや、AIを用いた集積もできないため、感に頼るしかない。音声やバー、写真等により有効にMHAを活用することが従来科学や方式を遥かに凌駕している新規性がある。 E) The drug history is exclusively owned by patients, medical institutions, and pharmacies (the number of information provided by smartphones is increasing a little in the world), but as MHA, drugs and other KPIs are compared and referred to. By doing so, we will increase the number of “good patients outside the hospital” and improve drug efficiency. As in the global discovery, there is a way to reduce C but increase PF (in Japan, women's medical colleges are famous for reducing C for difficult hypertension, and many are implemented in the world). Has been done. As a result, drug reduction is possible for many diseases, but the impact on humankind of capturing and accumulating PFCs on smartphones and the like is great. The scientific significance of this change in C has been published in New Engl, Lancet, JAMA, the world's top journals, and has a history of about 10 years. However, it was difficult to become a “good patient outside the hospital”. This is because patients do not know advanced nutrition and kinematics. These are usually out of insurance (patients are themselves). Worst of all, nutrition has changed dramatically in the last decade, but there are many doctors and nutritionists who do not know it. (Example: No patient has been cured by the old diabetic diet, but the fact that carb counts are relieving has been reported worldwide, but it is cumbersome to manage and you have to carry it with you even if you record it in a notebook. In addition, since it is not possible to integrate using AI, there is no choice but to rely on the feeling. Effective use of MHA by voice, bar, photograph, etc. has a novelty that far surpasses conventional science and methods.
 F)更に、薬剤や疾患の長期疫学の質の向上が可能となった発明である。例えば、1~3の化粧品や医薬品の皮膚に対する効果を例えると、スマホにMHAが基礎数値をして存在しているので、その基礎数値別(グループ別)の比較検証や交差比較試験が可能になる。つまり、偽物の痩身製品などは簡単に化けの皮がはがれるようになる。体は、経年変化する。その為、昔は良いPFC+Al、運動だったものが、現時点に有効とはならない。だからこそMHAのような集積表示できるAI データベースが必要になる。例になるが太ったから、食事を少なくするというのは、この10年以上の最新栄養学では否定され、PFCと運動が基本の指導である。 F) Furthermore, it is an invention that has made it possible to improve the quality of long-term epidemiology of drugs and diseases. For example, if you compare the effects of 1 to 3 cosmetics and pharmaceuticals on the skin, since MHA exists on smartphones with basic numerical values, it is possible to perform comparative verification and cross-comparison tests by basic numerical values (by group). Become. In other words, fake slimming products can easily peel off ghosts. The body changes over time. Therefore, what used to be good PFC + Al and exercise is not effective at this time. That is why an AI database that can be integrated and displayed like MHA is needed. As an example, eating less because you are fat has been denied in the latest nutritional sciences for more than a decade, and PFC and exercise are the basic teachings.
 G)MHAは、患者がより良い医療を常に主治医と議論サポートできる発明である。
 H)スマートフォンカメラで皮膚のデータを捕捉し、AIが集積する。ユーザーは何時でも過去のデータと現在を比較参照でき、化粧品・エステの真の価値を見出せる発明である。現実的に皮膚科においての乾癬の例のような症例においても、スマホのカメラによる症例写真記録は有益であり、それをMHAが持つ他のKPIと集積検討できる発明である。利用者は従来ない深い考察ができる。
G) MHA is an invention that allows patients to always discuss and support better medical care with their doctors.
H) A smartphone camera captures skin data and AI accumulates. It is an invention that allows users to compare and refer to past data and the present at any time and find the true value of cosmetics and esthetics. In reality, even in cases such as psoriasis in dermatology, case photo recording with a smartphone camera is useful, and it is an invention that can be integrated and examined with other KPIs possessed by MHA. Users can think deeply like never before.
 I)他の人がどうなっているのか?比較参照できる。消費者は騙され迷い混沌としている。その中で開発されたのがMHAである。あらゆる触れる、体に入るものをMHAはKPIとして捕捉・集積し、比較参照(=自分と他の人達)できる新規発明である。
 J)ペットの肥満の原因は運動と食事であるが、MHAがその原因をKPIとして捉え、集積表示することによってユーザーは、ペットに従来よりも良い生活環境を提供できるのみならず、長い年月にわたってペットの健康管理が可能になる。時に代謝性変化がでて、体重が上、血糖値が上がり始めたら(その疑いをもったならば)、その時点より、MHAを変化することを決定できる支援になり、主治医とMHAで議論して最高の医療を享受できる発明である。
I) What's happening to others? You can compare and refer to it. Consumers are deceived and confused and chaotic. Among them, MHA was developed. MHA is a new invention that can capture and accumulate everything that touches and enters the body as KPIs and can be compared and referenced (= yourself and others).
J) The causes of obesity in pets are exercise and diet, but by having MHA capture the causes as KPIs and display them in an integrated manner, users can not only provide pets with a better living environment than before, but also for many years. It will be possible to manage the health of pets over the years. Occasionally there are metabolic changes, weight gain, and blood sugar levels begin to rise (if you suspect that), from that point on, helping you decide to change your MHA and discuss it with your doctor. It is an invention that allows you to enjoy the best medical care.
 背景社会に存在する問題
 加齢に伴う人間の体の変化は良く知られているが、そのため詐欺とも思えるような悪徳な化粧品、ダイエット商品、方法が横行している。そして経済的・健康被害も受けている。しかし、それらから身を守る姿勢に立つならば、何かの方法が必要になる。それがないが故に、ユーザーは無駄な出費を余儀なくされ、加えて、MHA方式で集積していないために、何が強いKPIなのかを知りえる機会がなかった。
Problems in Background Society The changes in the human body with age are well known, and as a result, unscrupulous cosmetics, diet products, and methods that seem to be fraudulent are rampant. It also suffers financial and health damage. But if you want to protect yourself from them, you need some way. Without it, users were forced to waste money, and in addition, they didn't have the opportunity to know what was a strong KPI because they weren't agglomerated by the MHA method.
 また、医療界では普通の問題、時にそれは極めて深刻な保険行政の問題として抱える「病院ではいい患者」=病院の外では「医師、薬剤師の指導を無視している患者」の実態をユーザー自身がMHAにより集積したKPIを認知し、変わることを自己決定することを支援することができる。 In addition, users themselves understand the actual situation of "good patients in hospitals" = "patients ignoring the guidance of doctors and pharmacists", which is a common problem in the medical world, and sometimes it is a very serious problem of insurance administration. It can help recognize the accumulated KPIs by MHA and self-determine to change.
 しかし一方で、医療界では誠に残念なことに、患者は薬歴、病歴を他院にいったときは必ず自ら記載して(電子的に渡すことが可能な国もあるが)、担当医に示すことが要求されている。しかし、薬歴、病歴だけでは、最良の医療は実現できない。何故ならば、肥満に起因するメタボリックシンドロームは単科だけでは見れなく、集学治療が必要なのである。MHAをユーザーが自己管理し、今の病歴、薬歴だけでなく、他のKPIを医療者と議論し「二人三脚の集学医療」を実行することが医療費抑制戦略として必要である。戦争に例えるならば、戦線に必要なもの、因子解析が必要=効果的な戦略立案と結果の解析、軌道修正し、費用対効果が最大になる確率を高められる。コンビニ、スーパー、薬局等でバーコード、写真「薬、血液検査含む」をアップロードしMHAが作動し、集積、ヒィードバックを行い、ユーザーは医療者だけでなくフィジカルコーチ、美容専門家とコストを追求できるようになった発明である。繰り返すが、他の人がどうなっているのかの数値を見見れるおとは生きる希望にもなろう。 However, on the other hand, unfortunately in the medical world, patients always write down their medication history and medical history when they go to another hospital (although in some countries it is possible to give it electronically) to the doctor in charge. It is required to show. However, the best medical care cannot be realized only by the drug history and medical history. This is because metabolic syndrome caused by obesity cannot be seen in a single department alone and requires multidisciplinary treatment. It is necessary for the user to self-manage MHA, discuss not only the current medical history and drug history, but also other KPIs with medical professionals, and carry out "two-legged race multidisciplinary medical care" as a medical cost control strategy. If you compare it to war, you need what you need for the front, factor analysis = effective strategy planning and result analysis, orbit correction, and increase the probability of maximizing cost effectiveness. Upload barcodes and photos "including medicines and blood tests" at convenience stores, supermarkets, pharmacies, etc., MHA operates, accumulates, and heeds back, and users pursue costs not only with medical professionals but also with physical coaches and beauty specialists. It is an invention that has become possible. Again, being able to see what's going on with other people would be a hope for life.
 加齢に伴う人間の体の変化は良く知られているが、それに見合った対策方法は存在していなかった。その結果、詐欺とも思えるような悪徳なダイエット商品、方法が横行している。しかし、それらを評価する姿勢に立つならば、評価方法が必要になる。それがないが故に、顧客は無駄な出費を余儀なくなれ、且つ、MHAの方法で集積評価していないために、真実を知りえる機会がなかった。つまり、体の変化と体に触れる、入るものをKPIとして捉え、集積表示を可能にすれば、MHAが明らかになる。本発明は、2007/8のエビデンスレベル1として世界Top医学ジャーナルの結果から、基本構造を設計開発した。 The changes in the human body with aging are well known, but there was no suitable countermeasure. As a result, vicious diet products and methods that seem to be fraudulent are rampant. However, if you are willing to evaluate them, you need an evaluation method. Without it, customers were forced to spend unnecessary money, and because they did not perform cumulative evaluation by the MHA method, they did not have the opportunity to know the truth. In other words, MHA will be clarified if changes in the body and things that come into contact with the body are captured as KPIs and integrated display is possible. The present invention was designed and developed as a basic structure based on the results of the world's top medical journals as evidence level 1 of 2007/8.
 18世紀以前と現在
 小規模勝利:PF>C  1977大作戦:C>PF
 Note 1)PFを優位にさせてエビデンスレベル1(証拠や裏付けが一番強い)の勝利が見られている。しかし、昨年8月にCと死亡率はU字の関係にあるとの研究結果もでてきている。1977大作戦は、肥満、糖尿病、心筋梗塞、がん、認知症への停戦効果が低く、加速度的に悪化している事実は消えていない。MHAから、KPIとして何を自分が選択し、重点的に実施すべきなのかが明らかになる。
Before and now before the 18th century Small victory: PF> C 1977 Great strategy: C> PF
Note 1) Evidence level 1 (strongest evidence and support) has been seen to win with PF dominating. However, in August of last year, research results showed that C and mortality rate have a U-shaped relationship. The fact that the 1977 Great Operation has a low ceasefire effect on obesity, diabetes, myocardial infarction, cancer, and dementia, and is worsening at an accelerating rate has not disappeared. MHA makes it clear what you should choose as a KPI and focus on it.
 近年、発展を遂げている機器(ウエアラブル、チップ等)は、利用者個人の下記(1)(3)を除く因子を捕捉している。
(1)PFC+アルコール
(2)運動、心拍、血圧、睡眠
(3)医療機関別:血液データと薬剤履歴(は紙もしくは電子的に渡されている)
(4)体重、BMI、ウエストサイズ
 そして、本MHAによれば、(1)(2)(3)(4)を簡易集積表示できる。そして、何が強い影響因子(KPI:重要評価指標)なのかが一瞬で把握できる。KPIsを統合したMHAは、良きレーダーにもなる。
In recent years, devices (wearables, chips, etc.) that have been developing have captured factors other than the following (1) and (3) of individual users.
(1) PFC + alcohol (2) Exercise, heart rate, blood pressure, sleep (3) By medical institution: Blood data and drug history (delivered on paper or electronically)
(4) Weight, BMI, waist size According to this MHA, (1), (2), (3) and (4) can be simply integrated and displayed. Then, you can instantly understand what is a strong influence factor (KPI: key performance indicator). MHA with integrated KPIs is also a good radar.
(第2実施例)
 本実施例は、第1実施例をさらに具体化した構成の一例である。
 図3は情報通信端末Bに相当するスマートフォンのブロック図であり、図4はデバイスAに相当するウェアラブル端末のブロック図である。なお、クラウドサーバーCについては図示しないが、上述したAIエンジンを備えたコンピュータシステムとして説明する。
(Second Example)
This embodiment is an example of a configuration that further embodies the first embodiment.
FIG. 3 is a block diagram of a smartphone corresponding to the information communication terminal B, and FIG. 4 is a block diagram of a wearable terminal corresponding to the device A. Although the cloud server C is not shown, it will be described as a computer system equipped with the AI engine described above.
 スマートフォン20は、主な制御素子としてCPU21,ROM22,RAM23などがバス24を介して相互に接続されている。ROM22には、本スマートフォン20が機能するための基本プログラムなどやデータなどが記録されており、CPU21は、RAM23のメモリ領域にデータやプログラムを展開して所定の制御を実施する。RAM23が主に揮発性を有するデバイスであるのに対してストレージ25は不揮発性の領域であり、ストレージ25は基本プログラムに加えて機能を追加する各種のアプリケーションプログラムや、画像データや、音声データなどを記憶する。 In the smartphone 20, CPU 21, ROM 22, RAM 23 and the like are connected to each other via a bus 24 as main control elements. A basic program or data for the smartphone 20 to function is recorded in the ROM 22, and the CPU 21 expands the data or program in the memory area of the RAM 23 to perform predetermined control. While the RAM 23 is mainly a volatile device, the storage 25 is a non-volatile area, and the storage 25 is a variety of application programs that add functions in addition to the basic program, image data, audio data, and the like. Remember.
 ディスプレイ26はCPU21による制御に基づいて情報を表示する。ディスプレイ26はタッチ機能付きであり、画像の表示と、タッチ情報の検出により、ソフトウェアキーボードなどの入力機能を提供する。
 本スマートフォン20は、ネットワークインターフェイス27を介して、音声通話通信、データ通信を実施可能となっている。データ通信は、WANおよびLANの両方に対応している。このデータ通信の機能により、スマートフォン20はクラウドサーバーCとデータ通信を行なう。所定のデータのアップロードとダウンロードにより、スマートフォン20とクラウドサーバーCとが機能を共有して本発明のMHAアプリケーションが実行されることになる。
The display 26 displays information based on control by the CPU 21. The display 26 has a touch function, and provides an input function such as a software keyboard by displaying an image and detecting touch information.
The smartphone 20 can perform voice call communication and data communication via the network interface 27. Data communication supports both WAN and LAN. With this data communication function, the smartphone 20 performs data communication with the cloud server C. By uploading and downloading the predetermined data, the smartphone 20 and the cloud server C share the functions and the MHA application of the present invention is executed.
 スマートフォン20は、インターフェイス28を介して各種のデバイスが接続されている。デバイスとして、カメラ29,マイク31,ブルートゥースインターフェイス(BT)32、バーコードリーダ33などが接続されている。なお、バーコードリーダー33については、カメラ28を撮像素子としてソフトウェアの処理で実現することも可能である。 Various devices are connected to the smartphone 20 via the interface 28. As devices, a camera 29, a microphone 31, a Bluetooth interface (BT) 32, a barcode reader 33, and the like are connected. The barcode reader 33 can also be realized by software processing using the camera 28 as an image pickup element.
 また、図示しない電源ボタンや音量の増減ボタン等もインターフェイス28を介して接続されることになる。
 スマートフォン20は、一例として、ブルートゥースインターフェイス32を介してウェラブル端末40と通信を行なう。
 ウェラブル端末40は、CPUなどを含む制御部41と、タッチ機能付きのディスプレイ42とが、バス43を介して接続されている。バス43には、さらに、加速度センサ44、心拍センサ45、GPSセンサ46などが接続されており、制御部41がこれらのセンサの検出信号を得て所定の運動データとする。また、バス43には、ブルートゥースインターフェイス47が接続されており、制御部41はブルートゥースインターフェイス47を介してスマートフォン20と通信可能となっている。
Further, a power button (not shown), a volume up / down button, and the like are also connected via the interface 28.
As an example, the smartphone 20 communicates with the wearable terminal 40 via the Bluetooth interface 32.
In the wearable terminal 40, a control unit 41 including a CPU and the like and a display 42 with a touch function are connected via a bus 43. An acceleration sensor 44, a heart rate sensor 45, a GPS sensor 46, and the like are further connected to the bus 43, and the control unit 41 obtains the detection signals of these sensors and obtains predetermined motion data. Further, a Bluetooth interface 47 is connected to the bus 43, and the control unit 41 can communicate with the smartphone 20 via the Bluetooth interface 47.
 ウェラブル端末40は、ユーザーが日常的に装着することを想定されており、制御部41はセンサの検出信号に基づいて運動データを蓄積し、所定のタイミングで同運動データをスマートフォン20に送信する。 The wearable terminal 40 is supposed to be worn by the user on a daily basis, and the control unit 41 accumulates motion data based on the detection signal of the sensor and transmits the motion data to the smartphone 20 at a predetermined timing.
 図5~図7は、それぞれスマートフォン20と、ウェアラブル端末40と、クラウドサーバーCが実施するプログラムのフローチャートである。
 なお、各ステップの処理は、CPU21や制御部41の実行命令と一致はしていないが、機能的に表現している。
5 to 7 are flowcharts of programs executed by the smartphone 20, the wearable terminal 40, and the cloud server C, respectively.
Although the processing of each step does not match the execution instruction of the CPU 21 or the control unit 41, it is functionally expressed.
 スマートフォン20では、定期的にあるいはユーザーが明示的な指示をしたタイミングで、以下の処理が実施される。まず、CPU21は、ステップS100において、運動データの取得を行なう。ここで、本実施例においては、図5に示すように、各ステップは、その中に図示されたステップを含むものとする。例えば、ステップS100の処理は、ステップS102~S114の処理を含む上位概念の処理であり、このステップS100の処理の中で、ステップS102とステップS110の処理が実施され、また、ステップS102の処理の中では、順次、ステップS104~S108の処理が行われるし、ステップS110の処理の中では、順次、ステップS112,S114の処理が行われる。 On the smartphone 20, the following processing is performed periodically or at the timing when the user gives an explicit instruction. First, the CPU 21 acquires motion data in step S100. Here, in this embodiment, as shown in FIG. 5, each step includes the step shown in the step. For example, the process of step S100 is a process of a higher concept including the process of steps S102 to S114, and in the process of step S100, the processes of steps S102 and S110 are executed, and the process of step S102. In the process, the processes of steps S104 to S108 are sequentially performed, and in the process of step S110, the processes of steps S112 and S114 are sequentially performed.
 CPU21は、ステップS100では、運動データを取得するために、ステップS102において、ウェアラブル端末にデータ送信を要求し、また、ステップS110において、非ウェアラブル端末にデータ送信を要求する。データを送信する相手側と通信を行うので、相手側の機器ごとに処理を実施している。 In step S100, the CPU 21 requests the wearable terminal to transmit data in step S102 and requests the non-wearable terminal to transmit data in step S110 in order to acquire the exercise data. Since it communicates with the other party that sends data, processing is performed for each device on the other party.
 ステップS102において、データ送信要求を行なうウェアラブル端末は、以下の処理を行う。ウェアラブル端末40では、制御部41は、ステップS200において、運動データの収集を行なっており、ステップS208において、運動データの送信要求があれば収集した運動データをステップS210において送信する。通常は、運動データの送信要求がないのであり、ウェラブル端末40の本来の機能としての運動データの収集をステップS200にて行っている。 In step S102, the wearable terminal that makes the data transmission request performs the following processing. In the wearable terminal 40, the control unit 41 collects exercise data in step S200, and if there is a request for transmission of exercise data in step S208, the collected exercise data is transmitted in step S210. Normally, there is no request for transmission of exercise data, and exercise data is collected as an original function of the wearable terminal 40 in step S200.
 本実施例のウェアラブル端末40は、加速度センサ44、心拍センサ45、GPSセンサ46とを備えており、加速度センサ44の検出結果を利用して歩数計をカウントし、加速度センサ44とGPSセンサ45の検出結果を利用して移動量を計測し、心拍センサ45の検出信号を利用して心拍数を計測する。なお、あらかじめ設定としてユーザーの身体的特徴に基づくデータを設定しておくことが多い。例えば、身長、体重、性別、年齢、歩幅などのデータを利用可能である。 The wearable terminal 40 of this embodiment includes an acceleration sensor 44, a heart rate sensor 45, and a GPS sensor 46, and counts a pedometer using the detection result of the acceleration sensor 44, and the acceleration sensor 44 and the GPS sensor 45 The movement amount is measured using the detection result, and the heart rate is measured using the detection signal of the heart rate sensor 45. In many cases, data based on the physical characteristics of the user is set in advance as a setting. For example, data such as height, weight, gender, age, and stride length are available.
 制御部41は、ステップS202において、歩数計としての運動データを収集し、ステップS204において、移動量としての運動データを収集し、ステップS206において、運動に伴う心拍情報を運動データとして収集する処理を行う。ウェラブル端末40では、運動を検知したら各センサの検出結果を利用するようにしても良い。 In step S202, the control unit 41 collects exercise data as a pedometer, in step S204, collects exercise data as a movement amount, and in step S206, collects heart rate information associated with exercise as exercise data. Do. In the wearable terminal 40, when motion is detected, the detection result of each sensor may be used.
 一方、ステップS110において通信を行う相手機器は、非ウェアラブル端末である。運動データを収集する機器は、ウェアラブル端末40が活動量を示す運動データを収集するのに対して、直接の運動を指すものではないものの、体重や血圧のデータは重要な意味を持つ。そして、これらはウェアラブル機器で収集するよりもウェラブルではない計測器を使用する方が正確なデータを得られる。このため、、本実施例では、
ステップS110において、非ウェアラブルにデータ送信要求を行ない、具体的には、ステップS112において、非ウェアラブルな体重計から体重データを取得し、ステップS114において、非ウェアラブルな血圧計から血圧データを取得する。
On the other hand, the partner device with which communication is performed in step S110 is a non-wearable terminal. The device that collects exercise data does not refer to direct exercise, whereas the wearable terminal 40 collects exercise data indicating the amount of activity, but the data of body weight and blood pressure have important meaning. And these are more accurate data to use with non-wearable instruments than to collect with wearables. Therefore, in this embodiment,
In step S110, the non-wearable data transmission request is made. Specifically, in step S112, the body weight data is acquired from the non-wearable weight scale, and in step S114, the blood pressure data is acquired from the non-wearable sphygmomanometer.
 図示していないが、体重計や血圧計もブルートゥースによってスマートフォン20と通信な機器が増えてきており、あらかじめペアリングしておくことで、スマートフォン20と通信可能となった場合に、検知して上述したデータ送信要求を行って体重データや血圧データを取得する。なお、体重計には、体組成計としての機能を持つものも多く、計測した体組成計のデータを合わせて送信することで、PFCデータ、消費エネルギーを含む運動データと対比する際に、運動の効率についても判断できるようになる。例えば、運動が体脂肪率の低下に貢献しているか否かということが容易に判断できるようになる。 Although not shown, the number of devices that can communicate with the smartphone 20 is increasing due to Bluetooth for weight scales and blood pressure monitors, and by pairing in advance, when communication with the smartphone 20 becomes possible, it will be detected and described above. Make a data transmission request and acquire weight data and blood pressure data. Many weight scales have a function as a body composition meter, and by transmitting the measured body composition meter data together, exercise is performed when comparing with PFC data and exercise data including energy consumption. You will also be able to judge the efficiency of. For example, it becomes easy to determine whether exercise contributes to a decrease in body fat percentage.
 上述したように、スマートフォン20は、所定のタイミングでブルートゥースで通信を介してデータ送信要求を行っており、ステップS102で、ウェアラブル端末40に対してデータ送信要求を行うと、ウェアラブル端末40は、ステップS208にてその送信要求を受信し、ステップS210にて、歩数計データと移動量データと心拍数データを含む運動データを送信する。 As described above, the smartphone 20 makes a data transmission request via communication in Bluetooth at a predetermined timing, and when the data transmission request is made to the wearable terminal 40 in step S102, the wearable terminal 40 steps. The transmission request is received in S208, and exercise data including pedometer data, movement amount data, and heart rate data is transmitted in step S210.
 スマートフォン20は、運動データを取得したらストレージ25に保存する。その後、CPU21は、ステップS116において、摂取物の情報を取得する。摂取物は、ユーザーが摂取する食事、間食など、すべてである。何を摂取したかを記録するため、本実施例では、食事を撮影した画像データや、購入したバーコードのデータや、食事をとったレシートの画像データや、飲料を撮影した画像データや、飲料を注文したレシートの画像データなどを利用する。 The smartphone 20 acquires the exercise data and saves it in the storage 25. After that, the CPU 21 acquires ingestion information in step S116. The ingestion is all meals, snacks, etc. that the user ingests. In order to record what was ingested, in this embodiment, image data of a meal, bar code data purchased, image data of a receipt of a meal, image data of a beverage, and a beverage Use the image data of the receipt you ordered.
 ユーザーは、これらのデータをできるだけ取得する。具体的には、ユーザーが食事をしたら、スマートフォン20を操作することで、CPU21が、ステップS118において、食事を撮影し、画像データとして保存する。また、食材を購入した場合には、ステップS120において、バーコードを読み取り、バーコードデータを保存する。同様に、ステップS122において、食事のレシートを読み取って注文内容や購入内容を保存し、ステップS124において、飲料を撮影して画像データとして保存し、ステップS126において、飲料にかかわるレシートを読み取って注文内容や購入内容を保存する。これを日常的に繰り返すことで、スマートフォン20は、ステップS116において摂取物の情報を取得する処理を行っていく。 The user acquires these data as much as possible. Specifically, when the user has a meal, the smartphone 20 is operated so that the CPU 21 takes a picture of the meal and saves it as image data in step S118. When the foodstuff is purchased, the barcode is read and the barcode data is saved in step S120. Similarly, in step S122, the meal receipt is read and the order contents and purchase contents are saved, in step S124, the beverage is photographed and saved as image data, and in step S126, the receipt related to the beverage is read and the order contents are saved. And save your purchase. By repeating this on a daily basis, the smartphone 20 performs a process of acquiring ingestion information in step S116.
 上述したように、摂取した食事や飲料の量を正確に蓄積させるためには、ユーザーによる積極的な情報の補正も有効になる。画像データは2人前であるが、3人でシェアしていただくという場合もあるし、逆に一人で全部いただいてしまうということもある。そういった場合に、画像データやレシートのデータからはあくまでも2人前の食事をしたことしか分からない。CPU21は、ステップS128において、摂取物の情報の修正を行なえるようにし、ユーザーによる摂取した量の補正を受け付ける。この結果、正確なPFCデータを得られることになる。 As mentioned above, in order to accurately accumulate the amount of food and beverages ingested, it is also effective for users to actively correct information. The image data is for two people, but in some cases it is shared by three people, and conversely it is all in one person. In such a case, the image data and the receipt data only tell us that we had a meal for two people. In step S128, the CPU 21 makes it possible to correct the information of the ingested food, and accepts the correction of the ingested amount by the user. As a result, accurate PFC data can be obtained.
 摂取したもののデータを収集したら、スマートフォン20のCPU21は、ステップS130において、取得した情報のアップロードを行なう。情報をアップロードする相手は、クラウドサーバーCであり、CPU21は、所定のプロトコールを使用してクラウドサーバーCと通信を開始する。そして、CPU21は、ステップS132において、画像データ、ステップS134において、コマンド、ステップS136において、音声データ、ステップS138において、補正データをアップロードする。 After collecting the ingested data, the CPU 21 of the smartphone 20 uploads the acquired information in step S130. The other party to upload the information is the cloud server C, and the CPU 21 starts communication with the cloud server C using a predetermined protocol. Then, the CPU 21 uploads the image data in step S132, the command in step S134, the audio data in step S136, and the correction data in step S138.
 コマンドは、食事を撮影して画像データを送信する代わりに、「前日の食事と同じ」であるとか「普段よくとる食事1」といった内容を表すデータを意味している。あらかじめPFCデータが特定できている食事を登録しておいて、食事1,食事2というように指示するコマンドであっても良い。 The command means data that represents the content such as "same as the previous day's meal" or "usually eaten meal 1" instead of taking a picture of the meal and sending the image data. A command may be used in which a meal whose PFC data can be specified is registered in advance, and instructions such as meal 1 and meal 2 are given.
 また、音声データは、食事の内容や飲料の内容をユーザーが口頭で説明し、その音声データをクラウドサーバーCにアップロードするというものである。
 クラウドサーバーCでは、ステップS300において、スマートフォン20からのアップロードを待機しており、アップロードされたらステップS302~S308において、アップロードされたデータを取得する。具体的には、ステップS302において、画像データを取得し、ステップS304において、コマンドを取得し、ステップS306において、音声データを取得し、ステップS308において、補正データを取得する。
Further, the voice data is such that the user verbally explains the contents of the meal and the contents of the beverage, and the voice data is uploaded to the cloud server C.
The cloud server C waits for upload from the smartphone 20 in step S300, and when uploaded, acquires the uploaded data in steps S302 to S308. Specifically, in step S302, image data is acquired, in step S304, a command is acquired, in step S306, audio data is acquired, and in step S308, correction data is acquired.
 クラウドサーバーCでは、データを取得したら、ステップS310において、画像を識別する。本実施例では、まず、ステップS312において、画像データに基づいて素材判別のAIエンジンを使って食事の内容を識別する。結果は主に使用されている素材とその量などである。続いて、ステップS314において、判別した素材に基づいてPFC計量のAIエンジンを使用する。主に、素材と量が判別されれば、それに含まれるプロテイン、ファット、炭水化物の量を特定できる。これに食事の内容として含まれる他の情報、例えば料理名の情報などが加わることで、プロテイン、ファット、炭水化物の量をより正確に特定できるようになっていく。 After acquiring the data, the cloud server C identifies the image in step S310. In this embodiment, first, in step S312, the content of the meal is identified by using the AI engine for material determination based on the image data. The results are mainly the materials used and their amounts. Subsequently, in step S314, a PFC weighing AI engine is used based on the identified material. Primarily, once the material and amount are determined, the amount of protein, fat and carbohydrate contained in it can be identified. By adding other information included in the content of the meal, such as the name of the dish, the amount of protein, fat, and carbohydrate can be identified more accurately.
 ユーザーが摂取したプロテイン、ファット、炭水化物の量をできるだけ正確に計測するのがこのクラウドサーバーCを利用する主な目的である。このため、一つの手段として摂取した食事を撮影し、その画像から使用されている素材と量を判別する。各素材ごと、所定の単位重量に含まれるプロテイン、ファット、炭水化物の量はデータ化されていることを前提としている。このようなデータ化は一般的にすでに完了している。従って、素材と量が分かれば、ユーザーが摂取したプロテイン、ファット、炭水化物の量が計算できる。 The main purpose of using this cloud server C is to measure the amount of protein, fat, and carbohydrate ingested by the user as accurately as possible. Therefore, as one means, the ingested meal is photographed, and the material and amount used are determined from the image. It is assumed that the amount of protein, fat, and carbohydrate contained in a predetermined unit weight for each material is digitized. Such data conversion is generally already completed. Therefore, if you know the ingredients and amount, you can calculate the amount of protein, fat, and carbohydrate ingested by the user.
 画像データについては、食事の画像だけでなく、レシートの画像であったり、バーコードなども利用可能である。特に、データを蓄積していく過程において、あるレストランのある料理ということが特定できれば、事前にその料理の内容をデータベース化しておいたり、あるいは別のユーザーが撮影した画像と対応化させておくことで、食事の内容を特定することができるようになる。 As for the image data, not only the image of the meal but also the image of the receipt, the barcode, etc. can be used. In particular, in the process of accumulating data, if it is possible to identify a certain dish in a restaurant, the contents of that dish should be stored in a database in advance, or it should be associated with an image taken by another user. Then, you will be able to specify the contents of the meal.
 クラウドサーバーCでは、ステップS316において、コマンド、音声データ、補正データの識別を行なう。音声データ、補正データに基づいて画像データに対して必要となる処理があれば実行する。例えば、コマンドや音声データに基づいて食事を特定しつつ、素材や量を特定するようにしても良い。コマンドとしては、「昨日食べたものと同じ」というコマンドや、定型的な朝食を登録しておいて、「定型的な朝食1」というコマンドなどが想定できる。いわゆる、すでに登録してある食事をとったというような食事の指定をする。音声データについては、食事の内容を音声で表現し、それを再現した食事に基づいてユーザーが摂取したプロテイン、ファット、炭水化物の量を計算する。 In the cloud server C, the command, voice data, and correction data are identified in step S316. If there is any processing required for the image data based on the audio data and correction data, execute it. For example, the material and amount may be specified while specifying the meal based on the command and voice data. As a command, a command "same as what I ate yesterday" or a command "standard breakfast 1" in which a standard breakfast is registered can be assumed. Designate a meal that is so-called a meal that has already been registered. For voice data, the content of the meal is expressed by voice, and the amount of protein, fat, and carbohydrate ingested by the user is calculated based on the reproduced meal.
 さらに、補正データにもとづいて、ステップS318において、PFCデータの修正を行なう。例えば、食事は2人でいただいたということであれば、PFCデータの各数値を1/2とする。
 そのようにして修正の処理も終えたら、ステップS320において、PFCデータのダウンロードを行なう。ダウンロードは、スマートフォン20に対して、生成したPFCデータを送信する処理である。
Further, the PFC data is corrected in step S318 based on the correction data. For example, if two people eat a meal, each value in the PFC data is halved.
When the correction process is completed in this way, the PFC data is downloaded in step S320. Downloading is a process of transmitting the generated PFC data to the smartphone 20.
 一方の、スマートフォン20では、CPU21は、ステップS140において、PFCデータのダウンロードを行ない、ストレージ25にPFCデータを保存する。ストレージ25には、運動データも保存されている。
 スマートフォン20は、ステップS142において、情報表示を行なう。図2に示すように、表示を行う。具体的には、ステップS144において、PFCデータを表示し、ステップS146において、運動データを表示する。
On the other hand, in the smartphone 20, the CPU 21 downloads the PFC data in step S140 and stores the PFC data in the storage 25. Exercise data is also stored in the storage 25.
The smartphone 20 displays information in step S142. As shown in FIG. 2, the display is performed. Specifically, the PFC data is displayed in step S144, and the exercise data is displayed in step S146.
 運動データの表示については、すでに各種のものが提案されている。本実施例においては、ユーザーの健康管理として、上述したPFCデータを表示しており、これに対応するユーザーの運動データは、主に消費エネルギーを判別したり、筋肉トレーニングの内容を判別できるようなものが好適である。 Various types of exercise data display have already been proposed. In this embodiment, the above-mentioned PFC data is displayed as the user's health management, and the user's exercise data corresponding to the above-mentioned PFC data can mainly determine the energy consumption and the content of the muscle training. Those are suitable.
 消費エネルギーの総量のみならず、消費している時間帯を表示できるのも好ましい。食事を摂取してすぐに就寝する場合と、ある時間を経てから睡眠する場合とでは、肥満に影響する度合いが異なるという意見もある。 It is also preferable to be able to display not only the total amount of energy consumed but also the time zone in which it is consumed. There is also an opinion that the degree of influence on obesity differs between the case of eating a meal and going to bed immediately and the case of sleeping after a certain period of time.
 消費エネルギーは、計測した歩数や移動量に加え、フィットネスジムで行った運動の内容を反映させるのも好ましい。各種の運動機器には消費エネルギーを表示できる機能が備えられているので、その消費エネルギーをブルートゥースで通信してスマートフォン20に転送したり、運動機器がQRコードに変換して表示したものを、スマートフォン20が撮影して消費エネルギーを読み取るようにしてもよい。 It is also preferable that the energy consumption reflects the content of the exercise performed at the fitness gym in addition to the measured number of steps and the amount of movement. Since various exercise devices are equipped with a function that can display the energy consumption, the energy consumption is communicated by Bluetooth and transferred to the smartphone 20, or the exercise device converts the energy consumption into a QR code and displays it on the smartphone. 20 may take a picture and read the energy consumption.
 筋肉トレーニングの内容として、同様に、フィットネスジムの運動機器からスマートフォン20に通知できるのが好ましい。しかし、筋肉トレーニングの種別、負荷、回数、インターバルという情報とともに、運動した時間帯の情報も加えてユーザーがスマートフォン20のディスプレイ26を使用して入力してもよい。プロテインの摂取量と時間帯が筋肉トレーニングの内容と時間帯とに対応していることで、PRCデータに基づく健康管理の判断の一要素となる。 Similarly, as the content of muscle training, it is preferable to be able to notify the smartphone 20 from the exercise equipment of the fitness gym. However, the user may use the display 26 of the smartphone 20 to input information such as the type, load, number of times, and interval of muscle training as well as information on the time zone during exercise. The fact that the amount of protein intake and the time zone correspond to the content and time of muscle training is one of the elements of health management judgment based on PRC data.
 以上説明したように、本実施例は、以下の内容を含んでいる。
 ネットワークを介して、相互に通信可能な、携帯端末装置と、サーバー装置とを含む健康情報管理システムであって、
 上記サーバー装置は、食事の内容と量を表す情報を受信すると、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信可能であり、
 上記携帯端末装置は、所定のユーザーの運動の内容と量を表す運動データを収集可能であり、
 上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信し、
 上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信し、
 所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する健康情報管理システム。
 上記携帯端末装置は、カメラを備えており、上記ユーザーが摂取した食事を撮像して画像データとし、同画像データを上記ユーザーが摂取した食事の内容を表す情報として上記サーバー装置に送信し、
 上記サーバー装置は、上記ユーザーが摂取した食事を撮像した画像データを、食事の内容と量を表す情報として受信する健康情報管理システム。
 上記携帯端末装置は、マイクを備えており、上記ユーザーは摂取した食事の内容と量を説明する音声を音声データとして上記サーバー装置に送信し、
 上記サーバー装置は、上記音声データを識別し、同音声データが摂取した食事の内容と量を表すのであれば、その食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信する健康情報管理システム。
As described above, this embodiment includes the following contents.
A health information management system that includes a mobile terminal device and a server device that can communicate with each other via a network.
When the server device receives the information indicating the content and amount of the meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and returns the data representing the amount of this protein, fat and carbohydrate. It is possible and
The mobile terminal device can collect exercise data representing the content and amount of exercise of a predetermined user.
Information indicating the content of the meal ingested by the user is transmitted to the server device,
The server device returns and receives data representing the amount of protein, fat and carbohydrate ingested by the user.
A health information management system that displays the exercise data for a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
The mobile terminal device is provided with a camera, images the meal ingested by the user to obtain image data, and transmits the image data to the server device as information representing the contents of the meal ingested by the user.
The server device is a health information management system that receives image data of images of meals ingested by the user as information representing the contents and amount of meals.
The mobile terminal device is equipped with a microphone, and the user transmits a voice explaining the content and amount of the ingested meal as voice data to the server device.
The server device identifies the audio data, and if the audio data represents the content and amount of the ingested meal, identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and this A health information management system that returns data representing the amount of protein, fat and carbohydrates.
 上記携帯端末装置は、上記ユーザーが摂取した食事の内容と量を表す二次元画像を撮像して、その二次元画像データを上記サーバー装置に送信し、
 上記サーバー装置は、上記二次元画像データが摂取した食事の内容と量を表すのであれば、その食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信する健康情報管理システム。
 上記携帯端末装置は、上記ユーザーが身につけるウェアラブル端末と通信可能であり、同ウェアラブル端末は上記ユーザーの運動の内容と量のデータを収集し、上記携帯端末装置に通信して提供する健康情報管理システム。
The mobile terminal device captures a two-dimensional image showing the content and amount of the meal ingested by the user, and transmits the two-dimensional image data to the server device.
If the two-dimensional image data represents the content and amount of the ingested meal, the server device identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and the protein, fat and carbohydrate. A health information management system that returns data representing the amount of.
The mobile terminal device can communicate with a wearable terminal worn by the user, and the wearable terminal collects data on the content and amount of exercise of the user and provides health information by communicating with the mobile terminal device. Management system.
 上記サーバー装置は、複数の上記携帯端末装置から送信される食事の内容を表す情報を蓄積し、解析し、自立的に、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定する精度を向上させる機能を有する健康情報管理システム。
 ネットワークを介して接続可能であり、食事の内容と量を表す情報を受信すると、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信可能なサーバー装置に対し、上記ネットワークを介して通信可能な携帯端末装置であって、
 当該携帯端末装置は、所定のユーザーの運動の内容と量を表す運動データを収集可能であり、
 上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信し、
 上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信し、
 所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する携帯端末装置。
The server device accumulates and analyzes information representing the contents of meals transmitted from the plurality of mobile terminal devices, and autonomously identifies the amount of protein, fat, and carbohydrate contained in the contents and amount of the meal. A health information management system that has the function of improving the accuracy of meals.
It can be connected via a network, and when it receives information indicating the content and amount of a meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and determines the amount of this protein, fat and carbohydrate. A mobile terminal device capable of communicating with a server device capable of returning the representative data via the above network.
The mobile terminal device can collect exercise data representing the content and amount of exercise of a predetermined user.
Information indicating the content of the meal ingested by the user is transmitted to the server device,
Receives data representing the amount of protein, fat and carbohydrate ingested by the user, returned by the server device,
A portable terminal device that displays the exercise data for a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
 上記携帯端末装置は、上記ユーザーが身につけるウェアラブル端末と通信可能であり、同ウェアラブル端末は上記ユーザーの運動の内容と量のデータを収集し、上記携帯端末装置に通信して提供する携帯端末装置。
 上記サーバー装置は、複数の上記携帯端末装置から送信される食事の内容を表す情報を蓄積し、解析し、自立的に、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定する精度を向上させる機能を有する携帯端末装置。
The mobile terminal device can communicate with a wearable terminal worn by the user, and the wearable terminal collects data on the content and amount of exercise of the user and communicates with the mobile terminal device to provide the mobile terminal. apparatus.
The server device accumulates and analyzes information representing the contents of meals transmitted from the plurality of mobile terminal devices, and autonomously identifies the amount of protein, fat, and carbohydrate contained in the contents and amount of the meal. A mobile terminal device having a function of improving the accuracy of the operation.
 ネットワークを介して、相互に通信可能な、携帯端末装置と、サーバー装置とを含む健康情報管理システムで実施される健康情報管理方法であって、
 上記携帯端末装置は、所定のユーザーの運動の内容と量を表す運動データを収集し、
 上記携帯端末装置は、上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信し、
 上記サーバー装置は、食事の内容と量を表す情報を受信して、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信し、
 上記携帯端末装置は、上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信し、
 上記携帯端末装置は、所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する健康情報管理方法。
 ネットワークを介して接続可能であり、食事の内容と量を表す情報を受信すると、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信可能なサーバー装置に対し、上記ネットワークを介して通信可能な携帯端末装置の健康情報管理プログラムであって、
 当該健康情報管理プログラムは、前記携帯端末装置に対して、
 所定のユーザーの運動の内容と量を表す運動データを収集する機能と、
 上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信する機能と、
 上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信する機能と、
 所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する機能を実現させる携帯端末装置の健康情報管理プログラム。
It is a health information management method implemented in a health information management system including a mobile terminal device and a server device that can communicate with each other via a network.
The mobile terminal device collects exercise data representing the content and amount of exercise of a predetermined user, and collects exercise data.
The mobile terminal device transmits information representing the contents of the meal ingested by the user to the server device, and the mobile terminal device transmits the information to the server device.
The server device receives information indicating the content and amount of the meal, identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and outputs data representing the amount of this protein, fat and carbohydrate. Reply,
The mobile terminal device receives data indicating the amount of protein, fat, and carbohydrate ingested by the user, which is returned by the server device.
The mobile terminal device is a health information management method that displays the exercise data in a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
It can be connected via a network, and when it receives information indicating the content and amount of a meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and determines the amount of this protein, fat and carbohydrate. It is a health information management program of a mobile terminal device that can communicate with a server device that can return the data to be represented via the above network.
The health information management program is applied to the mobile terminal device.
A function to collect exercise data showing the content and amount of exercise of a given user,
A function to send information indicating the contents of the meal ingested by the user to the server device, and
The function to receive the data representing the amount of protein, fat and carbohydrate ingested by the user, which is returned by the server device, and
A health information management program for a mobile terminal device that realizes a function of displaying the exercise data in a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
 なお、本発明は上記実施例に限られるものでないことは言うまでもない。当業者であれば言うまでもないことであるが、
・上記実施例の中で開示した相互に置換可能な部材および構成等を適宜その組み合わせを変更して適用すること
・上記実施例の中で開示されていないが、公知技術であって上記実施例の中で開示した部材および構成等と相互に置換可能な部材および構成等を適宜置換し、またその組み合わせを変更して適用すること
・上記実施例の中で開示されていないが、公知技術等に基づいて当業者が上記実施例の中で開示した部材および構成等の代用として想定し得る部材および構成等と適宜置換し、またその組み合わせを変更して適用すること
は本発明の一実施例として開示されるものである。
Needless to say, the present invention is not limited to the above examples. Needless to say, those skilled in the art
-Applying the mutually replaceable members and configurations disclosed in the above-mentioned Examples by appropriately changing the combination thereof-Although not disclosed in the above-mentioned Examples, it is a known technique and the above-mentioned Examples. The members and configurations that can be mutually replaced with the members and configurations disclosed in the above are appropriately replaced, and the combinations thereof are changed and applied.-Although not disclosed in the above examples, known techniques and the like It is an embodiment of the present invention to appropriately replace the members and configurations that can be assumed as substitutes for the members and configurations disclosed by those skilled in the art based on the above, and to change and apply the combinations thereof. It is disclosed as.
A…デバイス、B…情報通信端末、C…クラウドサーバー、20…スマートフォン、21…CPU、22…ROM、23…RAM、24…バス、25…ストレージ、26…ディスプレイ、27…ネットワークインターフェイス、28…インターフェイス、29…カメラ、31…マイク、32…ブルートゥースインターフェイス(BT)、33…バーコードリーダ、40…ウェラブル端末、41…制御部、42…ディスプレイ、43…バス、44…加速度センサ、45…心拍センサ、46…GPSセンサ。 A ... device, B ... information communication terminal, C ... cloud server, 20 ... smartphone, 21 ... CPU, 22 ... ROM, 23 ... RAM, 24 ... bus, 25 ... storage, 26 ... display, 27 ... network interface, 28 ... Interface, 29 ... Camera, 31 ... Microphone, 32 ... Bluetooth interface (BT), 33 ... Barcode reader, 40 ... Wearable terminal, 41 ... Control unit, 42 ... Display, 43 ... Bus, 44 ... Acceleration sensor, 45 ... Heartbeat Sensor, 46 ... GPS sensor.

Claims (11)

  1.  ネットワークを介して、相互に通信可能な、携帯端末装置と、サーバー装置とを含む健康情報管理システムであって、
     上記サーバー装置は、食事の内容と量を表す情報を受信すると、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信可能であり、
     上記携帯端末装置は、所定のユーザーの運動の内容と量を表す運動データを収集可能であり、
     上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信し、
     上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信し、
     所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する
    ことを特徴とする健康情報管理システム。
    A health information management system that includes a mobile terminal device and a server device that can communicate with each other via a network.
    When the server device receives the information indicating the content and amount of the meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and returns the data representing the amount of this protein, fat and carbohydrate. It is possible and
    The mobile terminal device can collect exercise data representing the content and amount of exercise of a predetermined user.
    Information indicating the content of the meal ingested by the user is transmitted to the server device,
    The server device returns and receives data representing the amount of protein, fat and carbohydrate ingested by the user.
    A health information management system characterized by displaying the exercise data for a predetermined period and data representing the amount of protein, fat and carbohydrate ingested by the user.
  2.  上記携帯端末装置は、カメラを備えており、上記ユーザーが摂取した食事を撮像して画像データとし、同画像データを上記ユーザーが摂取した食事の内容を表す情報として上記サーバー装置に送信し、
     上記サーバー装置は、上記ユーザーが摂取した食事を撮像した画像データを、食事の内容と量を表す情報として受信する
    ことを特徴とする請求項1に記載の健康情報管理システム。
    The mobile terminal device is provided with a camera, images the meal ingested by the user to obtain image data, and transmits the image data to the server device as information representing the contents of the meal ingested by the user.
    The health information management system according to claim 1, wherein the server device receives image data of an image of a meal ingested by the user as information representing the content and amount of the meal.
  3.  上記携帯端末装置は、マイクを備えており、上記ユーザーは摂取した食事の内容と量を説明する音声を音声データとして上記サーバー装置に送信し、
     上記サーバー装置は、上記音声データを識別し、同音声データが摂取した食事の内容と量を表すのであれば、その食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信する
    ことを特徴とする請求項1に記載の健康情報管理システム。
    The mobile terminal device is equipped with a microphone, and the user transmits a voice explaining the content and amount of the ingested meal as voice data to the server device.
    The server device identifies the audio data, and if the audio data represents the content and amount of the ingested meal, identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and this The health information management system according to claim 1, wherein data representing the amounts of protein, fat and carbohydrate is returned.
  4.  上記携帯端末装置は、上記ユーザーが摂取した食事の内容と量を表す二次元画像を撮像して、その二次元画像データを上記サーバー装置に送信し、
     上記サーバー装置は、上記二次元画像データが摂取した食事の内容と量を表すのであれば、その食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信する
    ことを特徴とする請求項1に記載の健康情報管理システム。
    The mobile terminal device captures a two-dimensional image showing the content and amount of the meal ingested by the user, and transmits the two-dimensional image data to the server device.
    If the two-dimensional image data represents the content and amount of the ingested meal, the server device identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and the protein, fat and carbohydrate. The health information management system according to claim 1, further comprising returning data representing the amount of.
  5.  上記携帯端末装置は、上記ユーザーが身につけるウェアラブル端末と通信可能であり、同ウェアラブル端末は上記ユーザーの運動の内容と量のデータを収集し、上記携帯端末装置に通信して提供する
    ことを特徴とする請求項1に記載の健康情報管理システム。
    The mobile terminal device can communicate with the wearable terminal worn by the user, and the wearable terminal collects data on the content and amount of exercise of the user and communicates with the mobile terminal device to provide the data. The health information management system according to claim 1, which is characterized.
  6.  上記サーバー装置は、複数の上記携帯端末装置から送信される食事の内容を表す情報を蓄積し、解析し、自立的に、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定する精度を向上させる機能を有する
    ことを特徴とする請求項1に記載の健康情報管理システム。
    The server device accumulates and analyzes information representing the contents of meals transmitted from the plurality of mobile terminal devices, and autonomously identifies the amount of protein, fat, and carbohydrate contained in the contents and amount of the meal. The health information management system according to claim 1, further comprising a function of improving the accuracy of the operation.
  7.  ネットワークを介して接続可能であり、食事の内容と量を表す情報を受信すると、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信可能なサーバー装置に対し、上記ネットワークを介して通信可能な携帯端末装置であって、
     当該携帯端末装置は、所定のユーザーの運動の内容と量を表す運動データを収集可能であり、
     上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信し、
     上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信し、
     所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する
    ことを特徴とする携帯端末装置。
    It can be connected via a network, and when it receives information indicating the content and amount of a meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and determines the amount of this protein, fat and carbohydrate. A mobile terminal device capable of communicating with a server device capable of returning the representative data via the above network.
    The mobile terminal device can collect exercise data representing the content and amount of exercise of a predetermined user.
    Information indicating the content of the meal ingested by the user is transmitted to the server device,
    The server device returns and receives data representing the amount of protein, fat and carbohydrate ingested by the user.
    A mobile terminal device characterized by displaying the exercise data in a predetermined period and data representing the amounts of protein, fat and carbohydrate ingested by the user.
  8.  上記携帯端末装置は、上記ユーザーが身につけるウェアラブル端末と通信可能であり、同ウェアラブル端末は上記ユーザーの運動の内容と量のデータを収集し、上記携帯端末装置に通信して提供する
    ことを特徴とする請求項7に記載の携帯端末装置。
    The mobile terminal device can communicate with the wearable terminal worn by the user, and the wearable terminal collects data on the content and amount of exercise of the user and provides the data by communicating with the mobile terminal device. The mobile terminal device according to claim 7.
  9.  上記サーバー装置は、複数の上記携帯端末装置から送信される食事の内容を表す情報を蓄積し、解析し、自立的に、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定する精度を向上させる機能を有する
    ことを特徴とする請求項7に記載の携帯端末装置。
    The server device accumulates and analyzes information representing the contents of meals transmitted from the plurality of mobile terminal devices, and autonomously identifies the amount of protein, fat, and carbohydrate contained in the contents and amount of the meal. The mobile terminal device according to claim 7, further comprising a function of improving the accuracy of the operation.
  10.  ネットワークを介して、相互に通信可能な、携帯端末装置と、サーバー装置とを含む健康情報管理システムで実施される健康情報管理方法であって、
     上記携帯端末装置は、所定のユーザーの運動の内容と量を表す運動データを収集し、
     上記携帯端末装置は、上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信し、
     上記サーバー装置は、食事の内容と量を表す情報を受信して、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信し、
     上記携帯端末装置は、上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信し、
     上記携帯端末装置は、所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する
     ことを特徴とする健康情報管理方法。
    It is a health information management method implemented in a health information management system including a mobile terminal device and a server device that can communicate with each other via a network.
    The mobile terminal device collects exercise data representing the content and amount of exercise of a predetermined user, and collects exercise data.
    The mobile terminal device transmits information representing the contents of the meal ingested by the user to the server device, and the mobile terminal device transmits the information to the server device.
    The server device receives information indicating the content and amount of the meal, identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and outputs data representing the amount of this protein, fat and carbohydrate. Reply,
    The mobile terminal device receives data indicating the amount of protein, fat, and carbohydrate ingested by the user, which is returned by the server device.
    The mobile terminal device is a health information management method characterized by displaying the exercise data in a predetermined period and data representing the amounts of protein, fat and carbohydrate ingested by the user.
  11.  ネットワークを介して接続可能であり、食事の内容と量を表す情報を受信すると、同食事の内容と量に含まれるプロテインとファットと炭水化物の量を特定し、このプロテインとファットと炭水化物の量を表すデータを返信可能なサーバー装置に対し、上記ネットワークを介して通信可能な携帯端末装置の健康情報管理プログラムであって、
     当該健康情報管理プログラムは、前記携帯端末装置に対して、
     所定のユーザーの運動の内容と量を表す運動データを収集する機能と、
     上記ユーザーが摂取した食事の内容を表す情報を上記サーバー装置に送信する機能と、
     上記サーバー装置が返信する上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータを受信する機能と、
     所定の期間における上記運動データと、上記ユーザーが摂取したプロテインとファットと炭水化物の量を表すデータとを表示する機能を
    実現させることを特徴とする携帯端末装置の健康情報管理プログラム。
    It can be connected via a network, and when it receives information indicating the content and amount of a meal, it identifies the amount of protein, fat and carbohydrate contained in the content and amount of the meal, and determines the amount of this protein, fat and carbohydrate. It is a health information management program of a mobile terminal device that can communicate with a server device that can return the data to be represented via the above network.
    The health information management program is applied to the mobile terminal device.
    A function to collect exercise data showing the content and amount of exercise of a given user,
    A function to send information indicating the contents of the meal ingested by the user to the server device, and
    The function to receive the data representing the amount of protein, fat and carbohydrate ingested by the user, which is returned by the server device, and
    A health information management program for a mobile terminal device, which realizes a function of displaying the exercise data in a predetermined period and data representing the amount of protein, fat, and carbohydrate ingested by the user.
PCT/JP2019/020197 2019-05-22 2019-05-22 Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device WO2020235028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020197 WO2020235028A1 (en) 2019-05-22 2019-05-22 Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020197 WO2020235028A1 (en) 2019-05-22 2019-05-22 Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device

Publications (1)

Publication Number Publication Date
WO2020235028A1 true WO2020235028A1 (en) 2020-11-26

Family

ID=73459289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020197 WO2020235028A1 (en) 2019-05-22 2019-05-22 Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device

Country Status (1)

Country Link
WO (1) WO2020235028A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613504A (en) * 2022-03-09 2022-06-10 北京无极慧通科技有限公司 Medical health intelligent management method based on AI technology and service platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221637A (en) * 2010-04-06 2011-11-04 Sony Corp Information processing apparatus, information output method, and program
JP2015534686A (en) * 2012-09-25 2015-12-03 セラノス, インコーポレイテッド System and method for calibration of answers
JP2015225460A (en) * 2014-05-27 2015-12-14 京セラ株式会社 Meal management method, meal management system, and meal management terminal
JP2016173658A (en) * 2015-03-16 2016-09-29 株式会社ブイカム Health management system, health management method, program, and recording medium
WO2017022017A1 (en) * 2015-07-31 2017-02-09 株式会社FiNC Health management server, health-management-server control method, and health management program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221637A (en) * 2010-04-06 2011-11-04 Sony Corp Information processing apparatus, information output method, and program
JP2015534686A (en) * 2012-09-25 2015-12-03 セラノス, インコーポレイテッド System and method for calibration of answers
JP2015225460A (en) * 2014-05-27 2015-12-14 京セラ株式会社 Meal management method, meal management system, and meal management terminal
JP2016173658A (en) * 2015-03-16 2016-09-29 株式会社ブイカム Health management system, health management method, program, and recording medium
WO2017022017A1 (en) * 2015-07-31 2017-02-09 株式会社FiNC Health management server, health-management-server control method, and health management program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613504A (en) * 2022-03-09 2022-06-10 北京无极慧通科技有限公司 Medical health intelligent management method based on AI technology and service platform

Similar Documents

Publication Publication Date Title
Reber et al. Nutritional risk screening and assessment
Pope et al. Use of wearable technology and social media to improve physical activity and dietary behaviors among college students: a 12-week randomized pilot study
Klag et al. Coffee intake and risk of hypertension: the Johns Hopkins precursors study
Picciano et al. Dietary supplement use among infants, children, and adolescents in the United States, 1999-2002
US20020099274A1 (en) Portable self-administered health care terminal and a self-administered health support system
US20150126873A1 (en) Wearable Spectroscopy Sensor to Measure Food Consumption
Thaung Zaw et al. Sustained cerebrovascular and cognitive benefits of resveratrol in postmenopausal women
US20140236759A1 (en) Wellness System and Methods
CN108492878A (en) A kind of comprehensive health services system of personalization with health score assigning function
Parr et al. Effects of providing high-fat versus high-carbohydrate meals on daily and postprandial physical activity and glucose patterns: a randomised controlled trial
Romero-Tapiador et al. AI4FoodDB: a database for personalized e-Health nutrition and lifestyle through wearable devices and artificial intelligence
Cokorilo et al. An intervention of 12 weeks of Nordic walking and recreational walking to improve cardiorespiratory capacity and fitness in older adult women
Rossato et al. Development, validation, and reproducibility of food group-based frequency questionnaires for clinical use in Brazil: a pre-hypertension and hypertension diet assessment
JP2004302498A (en) Dietary habit modification support device
WO2020235028A1 (en) Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device
Grant et al. How long is long enough? Controlling for acute caffeine intake in cardiovascular research
Seimon et al. Rationale and protocol for a randomized controlled trial comparing fast versus slow weight loss in postmenopausal women with obesity—the TEMPO Diet Trial
Magrini et al. Suppl-1, M7: Wearable Devices for Caloric Intake Assessment: State of Art and Future Developments
McLaren et al. Nutritional screening and assessment
CN109887575A (en) A kind of blood lipid management method and management system
da Silva et al. Intermittent Fasting Promotes Weight Loss without Decreasing Performance in Taekwondo
Papadakis et al. High-Intensity Interval Exercise Performance and Short-Term Metabolic Responses to Overnight-Fasted Acute-Partial Sleep Deprivation
El Sherbini et al. Artificial intelligence in preventive cardiology
Welsh et al. Lifestyles of Jamaican men with hypertension
US20220084654A1 (en) Health management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP