WO2020234528A1 - Lattice structure - Google Patents

Lattice structure Download PDF

Info

Publication number
WO2020234528A1
WO2020234528A1 PCT/FR2020/050800 FR2020050800W WO2020234528A1 WO 2020234528 A1 WO2020234528 A1 WO 2020234528A1 FR 2020050800 W FR2020050800 W FR 2020050800W WO 2020234528 A1 WO2020234528 A1 WO 2020234528A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
lattice structure
elementary
plane
lattice
Prior art date
Application number
PCT/FR2020/050800
Other languages
French (fr)
Inventor
Arnaud Georges NIFENECKER
Rémi Joseph LANQUETIN
Original Assignee
Safran Helicopter Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines filed Critical Safran Helicopter Engines
Publication of WO2020234528A1 publication Critical patent/WO2020234528A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1118Making porous workpieces or articles with particular physical characteristics comprising internal reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the field of lattice structures for mechanical parts for transmitting forces.
  • the weight saving must be achieved while maintaining a high level of mechanical performance.
  • the rim where the teeth are located, is connected to the hub by a simple veil.
  • the shapes of the web and the rim, as well as their thicknesses and orientation, are the result of optimization in order to best meet the design constraints in terms of deformation under load and modal behavior in particular.
  • the available design volume can be thought of as a full disk.
  • the material that works the least is the material inside.
  • An optimal shape should therefore be hollow.
  • the rim is kept tilting under load, by the veil, is ensured on a reduced surface
  • the rim overhangs on either side of the web may be subject to vibrations
  • the thickness of the veil is strongly conditioned by the manufacturability A mass gain can be made by perforating the web, however this can prove to be detrimental to the yield by increasing the losses by mixing
  • the invention provides a lattice structure for a mechanical part for transmitting forces, adapted to be produced by additive manufacturing.
  • the structure has a trellis having recesses and comprising a plurality of elementary structures, each elementary structure comprising several beams connected to form a polyhedron, the beams of each elementary structure being inclined relative to a reference plane called the manufacturing plane.
  • Each elementary structure can include a first subset of two beams each connected at one of their ends at a junction point.
  • Each elementary structure can include a second subset of two beams each connected at one of their ends to said junction point.
  • Said junction point can be substantially at the center of each elementary structure.
  • the beams of the first sub-assembly may belong to a first plane and the beams of the second sub-assembly may belong to a second plane, intersecting the first plane.
  • the foreground and second plane can be oriented approximately 90 degrees to each other.
  • Each beam can have a section of between 0.2 millimeters and 4 millimeters.
  • the ends not joined at the junction point of two beams of the same sub-assembly can be spaced 0.5 mm to 4 mm, and the unjointed ends at the junction point of two beams of two distinct sub-assemblies of the same elementary structure, can be separated from 1 millimeter to 5 millimeters.
  • the beams of each elementary structure can be inclined 40 to 50 degrees relative to the manufacturing plane.
  • the invention relates to a part of a turbomachine produced in additive manufacturing, comprising at least one portion made of solid material and at least one lattice structure according to the invention.
  • the invention relates to an aircraft comprising at least one part of a turbomachine according to the invention.
  • Figure 1 shows a pinion according to the prior art.
  • Figure 2 shows a pinion according to the prior art, in section.
  • Figure 3 is a perspective representation of an elementary structure of a lattice structure according to the invention.
  • Figure 4 is a front view of an elementary structure of a lattice structure according to the invention.
  • Figure 5 is a side view of an elementary structure of a lattice structure according to the invention.
  • Figure 6 is a sectional representation of a gable comprising a trellis according to the invention.
  • the invention relates to a lattice structure 1 adapted to be produced by additive manufacturing.
  • additive manufacturing is meant a manufacturing process in which layers of powder are successively deposited which are locally melted by an electrode or a laser. Additive manufacturing is carried out on a flat surface on which the layers of material (i.e. powder) are stacked. This flat surface defines a reference plane, called the production plane P, for a part 100 thus manufactured.
  • the lattice structure 1 is adapted to form part of a mechanical part 100 for transmitting forces.
  • the transmission of forces can be a rotational force.
  • the force transmission can be a translational movement, or a combined movement.
  • the part can, for example, withstand compressive, shear and / or tensile forces
  • the part 100 is preferably produced in additive manufacturing so as to form a coherent one-piece assembly with solid portions and the lattice structure 1.
  • the lattice structure 1 has a lattice having recesses 11 and comprising a plurality of elementary patterns 12.
  • Each elementary pattern 12 comprises several beams 14 connected to form a polyhedron.
  • the beams 14 of each elementary structure 12 are inclined relative to the manufacturing plane P.
  • the beams 14 are inclined 40 to 50 degrees relative to the manufacturing plane P.
  • the beams 14 are inclined 45 degrees relative to the manufacturing plane P. This arrangement allows the elementary structures 12, and therefore the lattice structure 1, to be particularly resistant to compressive forces.
  • each elementary structure 12 comprises a first sub-assembly 121 of two beams 14 each connected to one of their ends 141 at a junction point 15.
  • each structure elementary 12 comprises a second sub-assembly 122 of two beams 14 each connected at one of their ends 141 to said junction point 15.
  • junction point 15 is substantially at the center of each elementary structure 12.
  • the beams 14 of the first sub-assembly 121 belong to a first plane P1 and the beams 14 of the second sub-assembly 122 belong to a second plane P2, intersecting the first plane.
  • the first plane P1 and the second plane P2 are oriented approximately 90 degrees with respect to each other.
  • each beam 14 has a section of between 0.2 millimeters and 4 millimeters.
  • each beam 14 can, for example, have a section of 0.4 millimeter or of 1 millimeter.
  • ends 142 not joined at the junction point 15 of two beams 14 of the same subassembly 121, 122 can be spaced 0.5 millimeters to 4 millimeters (preferably 1 or 2.5 millimeters).
  • the unjoined ends 142 at the junction point 15 of two beams 14 of two separate subassemblies 121, 122 of the same elementary structure 12 can be spaced from 1 millimeter to 5 millimeters (preferably 1.6 or 4 millimeters).
  • the invention relates to a part 100 of a turbomachine produced in additive manufacturing.
  • the part 100 comprises at least a portion of solid material 101 and at least one lattice structure 1 according to the invention.
  • the part 100 may, for example, be a pinion.
  • the lattice structure 1 makes it possible in this case to reinforce the veil 103.
  • This arrangement makes it possible to have a hollow veil 103 enveloping the lattice structure 1.
  • the lattice structure 1 combines the advantages of having a reduced mass (presence of very numerous recesses 11) and to be particularly resistant to mechanical forces due to the geometry and orientation of each elementary structure 12.
  • the mechanical forces are shear forces linked to the transmission of a force of rotation by the pinion.
  • the forces are also compressive forces linked to the loads applied to the pinion.
  • thin webs 103 may exhibit unacceptable resonances.
  • the stiffness provided by the lattice structure 1 makes it possible to rule out these resonances.
  • thin webs 103 could be too flexible and cause deformation under too great a load. In a particularly advantageous manner, the stiffness provided by the lattice structure 1 makes it possible to greatly reduce these deformations.
  • thin webs 103 could present stress levels that are too high, the resistance provided by the lattice structure 1 makes it possible to better redistribute the forces in the structure and therefore to reduce the stresses in the part 100.
  • the lattice structure 1 also makes it possible to reduce the overhangs, for example of a rim in the frame of a pinion. It will be understood that the lattice structure 1 can be used in a plurality of other parts 100 of a turbomachine, for example, to make fan blades, for transmission rods, gearbox housings, hydraulic unit housings. , bearing brackets, transmission shafts, etc. Aircraft
  • the invention relates to an aircraft (not shown) which comprises a turbomachine incorporating a part 100.
  • the aircraft also includes all the usual features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

The invention relates to a lattice structure (1) for a mechanical component (100) for force transmission which is suitable for production by means of additive manufacture. The structure comprises a lattice having recesses (11), and comprising a plurality of basic structures (12), each basic structure (12) comprising a plurality of beam elements (14) connected to form a polyhedron, wherein the beam elements (14) of each basic structure (12) are at an incline with respect to a reference plane, referred to as the manufacturing plane (P).

Description

STRUCTURE EN TREILLIS LATTICE STRUCTURE
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne le domaine des structures en treillis pour pièces mécaniques de transmission d’efforts. The present invention relates to the field of lattice structures for mechanical parts for transmitting forces.
ETAT DE LA TECHNIQUE STATE OF THE ART
Dans le domaine de la construction aéronautique, l’optimisation de la masse est un problème constant. In the field of aircraft construction, mass optimization is a constant problem.
En outre, pour certaines pièces, le gain de masse doit être réalisé en conservant un haut niveau de performances mécaniques. In addition, for certain parts, the weight saving must be achieved while maintaining a high level of mechanical performance.
Il s’agit d’un paradoxe délicat à résoudre puisque le plus souvent le gain de masse est réalisé en diminuant les performances mécaniques. En effet, on comprend bien que si l’on enlève de la matière à une pièce pour l’alléger, on diminue, le plus souvent, ses performances mécaniques. This is a delicate paradox to resolve since most often the weight gain is achieved by reducing mechanical performance. Indeed, we understand that if we remove material from a part to lighten it, we usually reduce its mechanical performance.
Dans ce contexte, il est connu d’utiliser des méthodes d’optimisation paramétrique pour concevoir une pièce conciliant une masse réduite et de bonnes performances mécaniques. In this context, it is known to use parametric optimization methods to design a part reconciling reduced mass and good mechanical performance.
Dans le cas, par exemple, d’un pignon, tel que représenté sur les figures 1 et 2. In the case, for example, of a pinion, as shown in Figures 1 and 2.
La jante, où se trouve la denture, est reliée au moyeu par un voile simple. Les formes du voile et de la jante, ainsi que leurs épaisseurs et orientation sont issues d’une optimisation afin de satisfaire au mieux les contraintes de conception en termes de déformation sous charge et comportement modal notamment. The rim, where the teeth are located, is connected to the hub by a simple veil. The shapes of the web and the rim, as well as their thicknesses and orientation, are the result of optimization in order to best meet the design constraints in terms of deformation under load and modal behavior in particular.
Les moyens de fabrication traditionnels ne permettent pas une optimisation complète du volume de conception disponible. Traditional manufacturing means do not allow complete optimization of the available design volume.
Le volume de conception disponible peut être assimilé à un disque plein. La matière qui travaille le moins est celle qui se trouve à l’intérieur. Une forme optimale devrait donc être creuse. The available design volume can be thought of as a full disk. The material that works the least is the material inside. An optimal shape should therefore be hollow.
Le maintien de la jante en basculement sous charge, par le voile, est assuré sur une surface réduite The rim is kept tilting under load, by the veil, is ensured on a reduced surface
Les porte-à-faux de la jante de part et d’autre du voile peuvent être sujet à des vibrations The rim overhangs on either side of the web may be subject to vibrations
L’épaisseur du voile est fortement conditionnée par la fabricabilité Un gain de masse peut être fait par ajourage du voile, cependant cela peut s’avérer pénalisant pour le rendement en augmentant les pertes par brassage The thickness of the veil is strongly conditioned by the manufacturability A mass gain can be made by perforating the web, however this can prove to be detrimental to the yield by increasing the losses by mixing
Dans ce contexte, il est donc souhaitable de fournir une structure permettant de combiner masse minimale et performances mécaniques maximales. In this context, it is therefore desirable to provide a structure making it possible to combine minimum mass and maximum mechanical performance.
EXPOSE DE L'INVENTION DISCLOSURE OF THE INVENTION
Selon un premier aspect, l’invention propose une structure en treillis pour une pièce mécanique de transmission d’efforts, adaptée pour être réalisée par fabrication additive. La structure présente un treillis présentant des évidements et comprenant une pluralité de structures élémentaires, chaque structure élémentaire comprenant plusieurs poutres reliées pour former un polyèdre, les poutres de chaque structure élémentaire étant inclinées par rapport à un plan de référence dit plan de fabrication. According to a first aspect, the invention provides a lattice structure for a mechanical part for transmitting forces, adapted to be produced by additive manufacturing. The structure has a trellis having recesses and comprising a plurality of elementary structures, each elementary structure comprising several beams connected to form a polyhedron, the beams of each elementary structure being inclined relative to a reference plane called the manufacturing plane.
Chaque structure élémentaire peut comprendre un premier sous-ensemble de deux poutres reliées chacune à l’une de leurs extrémités en un point de jonction. Each elementary structure can include a first subset of two beams each connected at one of their ends at a junction point.
Chaque structure élémentaire peut comprendre un deuxième sous-ensemble de deux poutres reliées chacune à l’une de leurs extrémités audit point de jonction. Each elementary structure can include a second subset of two beams each connected at one of their ends to said junction point.
Ledit point de jonction peut être sensiblement au centre de chaque structure élémentaire. Said junction point can be substantially at the center of each elementary structure.
Les poutres du premier sous-ensemble peuvent appartenir à un premier plan et les poutres du deuxième sous-ensemble peuvent appartenir à un deuxième plan, sécant du premier plan. The beams of the first sub-assembly may belong to a first plane and the beams of the second sub-assembly may belong to a second plane, intersecting the first plane.
Le premier plan et le deuxième plan peuvent être orientés d’environ 90 degrés l’un par rapport à l’autre. The foreground and second plane can be oriented approximately 90 degrees to each other.
Chaque poutre peut présenter une section comprise entre 0.2 millimètres et 4 millimètres. Each beam can have a section of between 0.2 millimeters and 4 millimeters.
Les extrémités non jointes au point de jonction de deux poutres d’un même sous-ensemble peuvent être écartées de 0,5 mm à 4 mm, et les extrémités non jointes au point de jonction de deux poutres de deux sous-ensembles distincts d’une même structure élémentaire, peuvent être écartées de 1 millimètre à 5 millimètres. The ends not joined at the junction point of two beams of the same sub-assembly can be spaced 0.5 mm to 4 mm, and the unjointed ends at the junction point of two beams of two distinct sub-assemblies of the same elementary structure, can be separated from 1 millimeter to 5 millimeters.
Les poutres de chaque structure élémentaire peuvent être inclinées de 40 à 50 degrés par rapport au plan de fabrication. The beams of each elementary structure can be inclined 40 to 50 degrees relative to the manufacturing plane.
Selon un deuxième aspect, l’invention concerne une pièce de turbomachine réalisée en fabrication additive, comprenant au moins une portion en matériau plein et au moins une structure en treillis selon l’invention. Selon un troisième aspect, l’invention concerne un aéronef comprenant au moins une pièce de turbomachine selon l’invention. According to a second aspect, the invention relates to a part of a turbomachine produced in additive manufacturing, comprising at least one portion made of solid material and at least one lattice structure according to the invention. According to a third aspect, the invention relates to an aircraft comprising at least one part of a turbomachine according to the invention.
DESCRIPTION DES FIGURES DESCRIPTION OF FIGURES
D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels : Other characteristics, aims and advantages of the invention will emerge from the following description, which is purely illustrative and not limiting, and which should be read with reference to the accompanying drawings in which:
La figure 1 représente un pignon selon l’art antérieur. Figure 1 shows a pinion according to the prior art.
La figure 2 représente un pignon selon l’art antérieur, en coupe. Figure 2 shows a pinion according to the prior art, in section.
La figure 3 est une représentation en perspective d’une structure élémentaire d’une structure en treillis selon l’invention. Figure 3 is a perspective representation of an elementary structure of a lattice structure according to the invention.
La figure 4 est une représentation de face d’une structure élémentaire d’une structure en treillis selon l’invention. Figure 4 is a front view of an elementary structure of a lattice structure according to the invention.
La figure 5 est une représentation de côté d’une structure élémentaire d’une structure en treillis selon l’invention. Figure 5 is a side view of an elementary structure of a lattice structure according to the invention.
La figure 6 est une représentation en coupe d’un pignon comprenant un treillis selon l’invention. Figure 6 is a sectional representation of a gable comprising a trellis according to the invention.
Sur l’ensemble des figures, les éléments similaires portent des références identiques. In all of the figures, similar elements bear identical references.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
Structure en treillis Truss structure
Selon un premier aspect, l’invention concerne une structure en treillis 1 adaptée pour être réalisée par fabrication additive. According to a first aspect, the invention relates to a lattice structure 1 adapted to be produced by additive manufacturing.
Par fabrication additive, il est entendu un procédé de fabrication dans lequel on dépose successivement des couches de poudre qui sont fondues localement par une électrode ou un laser. La fabrication additive est réalisée sur une surface plane sur laquelle sont empilées les couches de matière (i. e. de poudre). Cette surface plane définit un plan de référence, dit plan de fabrication P, pour une pièce 100 ainsi fabriquée. By additive manufacturing is meant a manufacturing process in which layers of powder are successively deposited which are locally melted by an electrode or a laser. Additive manufacturing is carried out on a flat surface on which the layers of material (i.e. powder) are stacked. This flat surface defines a reference plane, called the production plane P, for a part 100 thus manufactured.
Tel que cela sera détaillé ci-après, la structure en treillis 1 est adaptée pour faire partie d’une pièce 100 mécanique de transmission d’efforts. Typiquement, tel que cela sera détaillé ci-après, la transmission d’efforts peut être un effort en rotation. Selon d’autres exemples, la transmission d’effort peut être un mouvement de translation, ou un mouvement combiné. En outre, la pièce peut, par exemple, supporter des efforts de compression, de cisaillement et/ ou de traction As will be detailed below, the lattice structure 1 is adapted to form part of a mechanical part 100 for transmitting forces. Typically, as will be detailed below, the transmission of forces can be a rotational force. According to other examples, the force transmission can be a translational movement, or a combined movement. In addition, the part can, for example, withstand compressive, shear and / or tensile forces
Tel que cela sera décrit, la pièce 100 est préférentiellement réalisée en fabrication additive de sorte à former un ensemble monobloc cohérent avec des portions pleines et la structure en treillis 1. As will be described, the part 100 is preferably produced in additive manufacturing so as to form a coherent one-piece assembly with solid portions and the lattice structure 1.
La structure en treillis 1 présente un treillis présentant des évidements 11 et comprenant une pluralité de motifs élémentaires 12. The lattice structure 1 has a lattice having recesses 11 and comprising a plurality of elementary patterns 12.
Chaque motif élémentaire 12 comprend plusieurs poutres 14 reliées pour former un polyèdre. Each elementary pattern 12 comprises several beams 14 connected to form a polyhedron.
Selon une disposition particulièrement avantageuse, les poutres 14 de chaque structure élémentaire 12 sont inclinées par rapport au plan fabrication P. D’une manière préférentielle, les poutres 14 sont inclinées de 40 à 50 degrés par rapport au plan de fabrication P. D’une manière encore plus préférentielle, les poutres 14 sont inclinées de 45 degrés par rapport au plan de fabrication P. Cette disposition permet aux structures élémentaires 12, et donc à la structure en treillis 1 , d’être particulièrement résistantes aux efforts de compression. According to a particularly advantageous arrangement, the beams 14 of each elementary structure 12 are inclined relative to the manufacturing plane P. Preferably, the beams 14 are inclined 40 to 50 degrees relative to the manufacturing plane P. Even more preferably, the beams 14 are inclined 45 degrees relative to the manufacturing plane P. This arrangement allows the elementary structures 12, and therefore the lattice structure 1, to be particularly resistant to compressive forces.
Selon une disposition particulière, représentée sur les figures 3 à 5, chaque structure élémentaire 12 comprend un premier sous-ensemble 121 de deux poutres 14 reliées chacune à l’une de leurs extrémités 141 en un point de jonction 15. De plus, chaque structure élémentaire 12 comprend un deuxième sous-ensemble 122 de deux poutres 14 reliées chacune à l’une de leurs extrémités 141 audit point de jonction 15. According to a particular arrangement, shown in Figures 3 to 5, each elementary structure 12 comprises a first sub-assembly 121 of two beams 14 each connected to one of their ends 141 at a junction point 15. In addition, each structure elementary 12 comprises a second sub-assembly 122 of two beams 14 each connected at one of their ends 141 to said junction point 15.
Préférentiellement, le point de jonction 15 est sensiblement au centre de chaque structure élémentaire 12. Preferably, the junction point 15 is substantially at the center of each elementary structure 12.
En outre, les poutres 14 du premier sous-ensemble 121 appartiennent à un premier plan P1 et les poutres 14 du deuxième sous-ensemble 122 appartiennent à un deuxième plan P2, sécant du premier plan. D’une manière préférentielle, le premier plan P1 et le deuxième plan P2 sont orientés d’environ 90 degrés l’un par rapport à l’autre. In addition, the beams 14 of the first sub-assembly 121 belong to a first plane P1 and the beams 14 of the second sub-assembly 122 belong to a second plane P2, intersecting the first plane. Preferably, the first plane P1 and the second plane P2 are oriented approximately 90 degrees with respect to each other.
Selon une disposition particulière, chaque poutre 14 présente une section comprise entre 0.2 millimètres et 4 millimètres. Préférentiellement, chaque poutre 14 peut, par exemple, présenter une section de 0.4 millimètre ou de 1 millimètre. According to a particular arrangement, each beam 14 has a section of between 0.2 millimeters and 4 millimeters. Preferably, each beam 14 can, for example, have a section of 0.4 millimeter or of 1 millimeter.
En sus, les extrémités 142 non jointes au point de jonction 15 de deux poutres 14 d’un même sous-ensemble 121 , 122 peuvent être écartées de 0,5 millimètres à 4 millimètres (préférentiellement de 1 ou 2.5 millimètres). De plus, les extrémités non jointes 142 au point de jonction 15 de deux poutres 14 de deux sous-ensembles distincts 121 , 122 d’une même structure élémentaire 12, peuvent être écartées de 1 millimètre à 5 millimètres (préférentiellement de 1.6 ou 4 millimètres). In addition, the ends 142 not joined at the junction point 15 of two beams 14 of the same subassembly 121, 122 can be spaced 0.5 millimeters to 4 millimeters (preferably 1 or 2.5 millimeters). In addition, the unjoined ends 142 at the junction point 15 of two beams 14 of two separate subassemblies 121, 122 of the same elementary structure 12, can be spaced from 1 millimeter to 5 millimeters (preferably 1.6 or 4 millimeters).
On comprendra que ces valeurs ne sont données qu’à titre d’exemple, toute autre valeur pourrait être envisagée en respectant un rapport homothétique. It will be understood that these values are given only by way of example, any other value could be considered while respecting a homothetic ratio.
En outre, une modification de la densité et/ou de la forme de structure en treillis 1 , permet d’adapter au mieux la structure en treillis 1 aux efforts mécaniques appliqués (résistance à la traction, compression et cisaillement) In addition, a modification of the density and / or the shape of the lattice structure 1 makes it possible to best adapt the lattice structure 1 to the mechanical forces applied (tensile strength, compression and shear)
Pièce de turbomachine Turbomachine part
Selon un deuxième aspect, l’invention concerne une pièce 100 de turbomachine réalisée en fabrication additive. La pièce 100 comprend au moins une portion en matériau plein 101 et au moins une structure en treillis 1 selon l’invention. According to a second aspect, the invention relates to a part 100 of a turbomachine produced in additive manufacturing. The part 100 comprises at least a portion of solid material 101 and at least one lattice structure 1 according to the invention.
Typiquement, selon l’exemple donné sur la figure 6, la pièce 100 peut, par exemple, être un pignon. La structure en treillis 1 permet en l’espèce de renforcer le voile 103. Cette disposition permet d’avoir un voile 103 creux enveloppant la structure en treillis 1. La structure en treillis 1 combine les avantages de présenter une masse réduite (présence de très nombreux évidements 11 ) et d’être particulièrement résistance aux efforts mécanique du fait de la géométrie et de l’orientation de chaque structure élémentaire 12. Dans le cas présent, les efforts mécaniques sont des efforts de cisaillements liés à la transmission d’un effort de rotation par le pignon. De plus, les efforts, sont aussi des efforts de compression liés aux charges appliquées au pignon. Typically, according to the example given in Figure 6, the part 100 may, for example, be a pinion. The lattice structure 1 makes it possible in this case to reinforce the veil 103. This arrangement makes it possible to have a hollow veil 103 enveloping the lattice structure 1. The lattice structure 1 combines the advantages of having a reduced mass (presence of very numerous recesses 11) and to be particularly resistant to mechanical forces due to the geometry and orientation of each elementary structure 12. In the present case, the mechanical forces are shear forces linked to the transmission of a force of rotation by the pinion. In addition, the forces are also compressive forces linked to the loads applied to the pinion.
En outre, dans certaines configurations géométriques de pièces, des voiles 103 minces peuvent présenter des résonnances qui ne seraient pas acceptable. La raideur apportée par la structure en treillis 1 permet d’écarter ces résonnances. De plus, des voiles 103 minces pourraient être trop souples et engendrer une déformation sous charge trop importante. D’une manière particulièrement avantageuse, la raideur apportée par la structure en treillis 1 permet de réduire fortement ces déformations. De même, des voiles 103 minces pourraient présenter des niveaux de contraintes trop élevées, la tenue apportée par la structure en treillis 1 permet de mieux redistribuer les efforts dans la structure et donc de réduire les contraintes dans la pièce 100. Further, in certain geometric configurations of rooms, thin webs 103 may exhibit unacceptable resonances. The stiffness provided by the lattice structure 1 makes it possible to rule out these resonances. In addition, thin webs 103 could be too flexible and cause deformation under too great a load. In a particularly advantageous manner, the stiffness provided by the lattice structure 1 makes it possible to greatly reduce these deformations. Likewise, thin webs 103 could present stress levels that are too high, the resistance provided by the lattice structure 1 makes it possible to better redistribute the forces in the structure and therefore to reduce the stresses in the part 100.
En sus, d’une manière particulièrement avantageuse, la structure en treillis 1 permet aussi de réduire les portes à faux, par exemple d’une jante dans le cadre d’un pignon. On comprendra que la structure en treillis 1 peut être utilisée dans une pluralité d’autres pièces 100 d’une turbomachine, par exemple, pour réaliser des aubes de soufflante, pour des bielles de transmission, des carters de réducteurs, des carters de groupes hydrauliques, des supports de paliers, des arbres de transmission, etc. Aéronef In addition, in a particularly advantageous manner, the lattice structure 1 also makes it possible to reduce the overhangs, for example of a rim in the frame of a pinion. It will be understood that the lattice structure 1 can be used in a plurality of other parts 100 of a turbomachine, for example, to make fan blades, for transmission rods, gearbox housings, hydraulic unit housings. , bearing brackets, transmission shafts, etc. Aircraft
Selon un troisième aspect, l’invention concerne un aéronef (non représenté) qui comprend une turbomachine intégrant une pièce 100. According to a third aspect, the invention relates to an aircraft (not shown) which comprises a turbomachine incorporating a part 100.
L’aéronef comprend, en sus, l’ensemble des caractéristiques habituelles. The aircraft also includes all the usual features.

Claims

REVENDICATIONS
1. Structure en treillis (1 ) pour une pièce (100) mécanique de transmission d’efforts, adaptée pour être réalisée par fabrication additive, caractérisée en ce qu’elle présente un treillis présentant des évidements (11 ) et comprenant une pluralité de structures élémentaires (12), chaque structure élémentaire (12) comprenant plusieurs poutres (14) reliées pour former un polyèdre, les poutres (14) de chaque structure élémentaire (12) étant inclinées de 40 à 50 degrés par rapport à un plan de référence dit plan de fabrication (P). 1. Lattice structure (1) for a mechanical part (100) for transmitting forces, adapted to be produced by additive manufacturing, characterized in that it has a lattice having recesses (11) and comprising a plurality of structures elementary (12), each elementary structure (12) comprising several beams (14) connected to form a polyhedron, the beams (14) of each elementary structure (12) being inclined by 40 to 50 degrees with respect to a reference plane called manufacturing plan (P).
2. Structure en treillis (1 ) dans laquelle chaque structure élémentaire (12) comprend un premier sous-ensemble (121 ) de deux poutres (14) reliées chacune à l’une de leurs extrémités (141 ) en un point de jonction (15). 2. Lattice structure (1) in which each elementary structure (12) comprises a first sub-assembly (121) of two beams (14) each connected at one of their ends (141) at a junction point (15 ).
3. Structure en treillis (1 ) selon la revendication 2, dans laquelle chaque structure élémentaire (12) comprend un deuxième sous-ensemble (122) de deux poutres (14) reliées chacune à l’une de leurs extrémités (141 ) audit point de jonction (15). 3. Lattice structure (1) according to claim 2, wherein each elementary structure (12) comprises a second sub-assembly (122) of two beams (14) each connected at one of their ends (141) to said point. junction (15).
4. Structure en treillis (1 ) selon la revendication 3, dans laquelle ledit point de jonction (15) est sensiblement au centre de chaque structure élémentaire (12). 4. Lattice structure (1) according to claim 3, wherein said junction point (15) is substantially at the center of each elementary structure (12).
5. Structure en treillis (1 ) selon la revendication 4 dans laquelle les poutres (14) du premier sous-ensemble (121 ) appartiennent à un premier plan (P1 ) et les poutres (14) du deuxième sous-ensemble (122) appartiennent à un deuxième plan (P2), sécant du premier plan (P1 ). 5. Lattice structure (1) according to claim 4 wherein the beams (14) of the first subassembly (121) belong to a first plane (P1) and the beams (14) of the second subassembly (122) belong to a second plane (P2), secant to the first plane (P1).
6. Structure en treillis (1 ) selon la revendication 5, dans laquelle le premier plan (P1 ) et le deuxième plan (P2) sont orientés d’environ 90 degrés l’un par rapport à l’autre. 6. A lattice structure (1) according to claim 5, wherein the first plane (P1) and the second plane (P2) are oriented about 90 degrees to each other.
7. Structure en treillis (1 ) selon l’une quelconque des revendications 1 à 6, dans laquelle chaque poutre (14) présente une section comprise entre 0.2 millimètres et 4 millimètres. 7. Lattice structure (1) according to any one of claims 1 to 6, wherein each beam (14) has a section of between 0.2 millimeters and 4 millimeters.
8. Structure en treillis (1 ) selon l’une quelconque des revendications 1 à 7, dans laquelle les extrémités (142) non jointes au point de jonction (15) de deux poutres (14) d’un même sous- ensemble (121 ,122) sont écartées de 0,5 mm à 4 mm, et les extrémités (142) non jointes au point de jonction (15) de deux poutres (14) de deux sous-ensembles distincts (121 , 122) d’une même structure élémentaire (12), sont écartées de 1 millimètre à 5 millimètres. 8. Lattice structure (1) according to any one of claims 1 to 7, wherein the ends (142) not joined at the junction point (15) of two beams (14) of the same subassembly (121 , 122) are spaced from 0.5 mm to 4 mm, and the ends (142) not joined at the junction point (15) of two beams (14) of two distinct sub-assemblies (121, 122) of the same elementary structure (12), are spaced from 1 millimeter to 5 millimeters.
9. Pièce (100) de turbomachine réalisée en fabrication additive, comprenant au moins une portion en matériau plein et au moins une structure en treillis (1 ) selon l’une quelconque des revendications 1 à 8. 9. Part (100) of a turbomachine produced in additive manufacturing, comprising at least one portion of solid material and at least one lattice structure (1) according to any one of claims 1 to 8.
10. Aéronef comprenant au moins une pièce (100) de turbomachine selon la revendication 10. An aircraft comprising at least one part (100) of a turbomachine according to claim.
PCT/FR2020/050800 2019-05-17 2020-05-14 Lattice structure WO2020234528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905170A FR3096110B1 (en) 2019-05-17 2019-05-17 Truss structure
FR1905170 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020234528A1 true WO2020234528A1 (en) 2020-11-26

Family

ID=67742766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050800 WO2020234528A1 (en) 2019-05-17 2020-05-14 Lattice structure

Country Status (2)

Country Link
FR (1) FR3096110B1 (en)
WO (1) WO2020234528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205523A1 (en) * 2019-05-15 2022-06-30 Safran Helicopter Engines Pinion of a turbine engine shaft having a web comprising a cross-linked structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240151160A1 (en) * 2022-11-07 2024-05-09 Rtx Corporation Spring damping for bearing compartment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843192A1 (en) * 2013-08-28 2015-03-04 Techspace Aero S.A. Composite blade made by additive manufacturing ahd associated manufacturing process
EP3078836A1 (en) * 2015-04-09 2016-10-12 United Technologies Corporation Additive manufactured gear for a geared architecture gas turbine engine
EP3253998A1 (en) * 2015-02-03 2017-12-13 GKN Sinter Metals Engineering GmbH Quiet gear wheel and method for producing such a gear wheel
EP3435259A1 (en) * 2017-07-25 2019-01-30 Bell Helicopter Textron Inc. Methods of customizing, manufacturing, and repairing a rotor blade using additive manufacturing processes and a rotor blade incorporating the same
EP3447245A1 (en) * 2017-08-22 2019-02-27 Siemens Aktiengesellschaft Turbine blade foot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843192A1 (en) * 2013-08-28 2015-03-04 Techspace Aero S.A. Composite blade made by additive manufacturing ahd associated manufacturing process
EP3253998A1 (en) * 2015-02-03 2017-12-13 GKN Sinter Metals Engineering GmbH Quiet gear wheel and method for producing such a gear wheel
EP3078836A1 (en) * 2015-04-09 2016-10-12 United Technologies Corporation Additive manufactured gear for a geared architecture gas turbine engine
EP3435259A1 (en) * 2017-07-25 2019-01-30 Bell Helicopter Textron Inc. Methods of customizing, manufacturing, and repairing a rotor blade using additive manufacturing processes and a rotor blade incorporating the same
EP3447245A1 (en) * 2017-08-22 2019-02-27 Siemens Aktiengesellschaft Turbine blade foot

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANCESCO FABBROCINO ET AL: "SEISMIC APPLICATION OF PENTAMODE LATTICES", 1 January 2016 (2016-01-01), XP055440430, Retrieved from the Internet <URL:http://ingegneriasismica.org/wp-content/uploads/2016/08/Fraternali-Nuova-impaginazione.pdf> [retrieved on 20180112] *
ULLAH I ET AL: "Failure and energy absorption characteristics of advanced 3D truss core structures", MATERIALS & DESIGN, vol. 92, 15 December 2015 (2015-12-15), pages 937 - 948, XP029384871, ISSN: 0264-1275, DOI: 10.1016/J.MATDES.2015.12.058 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205523A1 (en) * 2019-05-15 2022-06-30 Safran Helicopter Engines Pinion of a turbine engine shaft having a web comprising a cross-linked structure

Also Published As

Publication number Publication date
FR3096110A1 (en) 2020-11-20
FR3096110B1 (en) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2020234528A1 (en) Lattice structure
EP3131746B1 (en) Polygonal part having cavities for a panel core, in particular of a satellite antenna reflector
CA2500494C (en) Longeron for aircraft and centre-wing section equipped with such a longeron
EP2761164B1 (en) Rotating machine blade with reinforced modular structure
FR2815900A1 (en) NOISE REDUCING SANDWICH PANEL, ESPECIALLY FOR AN AIRCRAFT TURBOREACTOR
EP2480454A1 (en) Aircraft assembly including an element for attaching an engine and related aircraft
EP1385740B1 (en) Satellite solar generator structure comprising bracing elements between panels
FR3001267A1 (en) SUSPENSION ELEMENT FOR THE MECHANICAL CONNECTION OF A SUSPENDED LOAD IN A SUPPORT
FR3072945A1 (en) PRIMARY SUPPORT MAT STRUCTURE OF AN AIRCRAFT PROPELLER GROUP COMPRISING A LOWER PART IN U-SINGLE OR MONOBLOC OBTAINED
EP2576192B1 (en) Fibrous structure forming a flange and a counter-flange
FR3126639A1 (en) Blade comprising a composite material structure and associated manufacturing method
EP4045873A1 (en) Sensor with mechanical compensation for frequency anisotropy
EP0797284A1 (en) Magnetoelectric rotor with claw-type poles and method for producing such rotor
FR3044723A1 (en) MOUNTING ASSEMBLY WITH INCLINED GROOVES
FR3093534A1 (en) Aeronautical turbomachine fan platform
FR3087509A1 (en) Elastomeric bearing having a reduced weight end cap
FR2818421A1 (en) Acoustic sandwich panel with several degrees of freedom has two or more cellular layers of different dimensions with porous separators
WO2020229668A1 (en) Pinion of a turbine engine shaft having a web comprising a cross-linked structure
FR3040366A1 (en) AIRCRAFT STRUCTURE HAVING ACOUSTIC SHIELD PROPERTIES
FR3119702A1 (en) Magnet structure with several unitary magnets with reinforced fastening
EP4115051A1 (en) Blade made of multiple materials
EP4308326A1 (en) Method for manufacturing a fan disc with a part by additive manufacturing
WO2020240128A1 (en) Method for additive manufacturing of a part comprising a step of manufacturing a mixed support
FR3106633A1 (en) Remote power port actuator
EP0789440A1 (en) Method for producing a magnetoelectric rotor with claw-type poles and rotor produced by this method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737234

Country of ref document: EP

Kind code of ref document: A1