WO2020231166A1 - Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented therethrough, and nonwoven fabric - Google Patents

Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented therethrough, and nonwoven fabric Download PDF

Info

Publication number
WO2020231166A1
WO2020231166A1 PCT/KR2020/006267 KR2020006267W WO2020231166A1 WO 2020231166 A1 WO2020231166 A1 WO 2020231166A1 KR 2020006267 W KR2020006267 W KR 2020006267W WO 2020231166 A1 WO2020231166 A1 WO 2020231166A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
heat
formula
compound represented
adhesive
Prior art date
Application number
PCT/KR2020/006267
Other languages
French (fr)
Korean (ko)
Inventor
이정환
최중현
김도현
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to CN202080035612.8A priority Critical patent/CN113874562B/en
Priority to JP2021515614A priority patent/JP7154400B2/en
Publication of WO2020231166A1 publication Critical patent/WO2020231166A1/en
Priority to JP2021189399A priority patent/JP7301935B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/022Moisture-responsive characteristics hydrophylic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present invention relates to a polyester composition for heat-adhesive fibers, and more particularly, spinning into fibers, excellent heat-adhesion over a wide temperature range, and minimizes change over time even in summer storage conditions, and improves storage stability, It relates to a polyester composition for heat-adhesive fibers capable of expressing excellent touch, deodorant properties, and hygroscopicity in an embodied product, and a heat-adhesive composite fiber and non-woven fabric implemented through it.
  • synthetic fibers have a high melting point and are often limited in use.
  • adhesive use of fibers, etc. in the case of use as an adhesive that is inserted between fabrics on a tape or interposed between fabrics on a tape, the fabric itself may be deteriorated and special equipment such as high-frequency sewing machine must be used. Because of the inconvenience of doing so, it is desired to easily adhere by a common simple heating press without using such special equipment.
  • U.S. Patent No. 4,129,675 introduces a low-melting-point polyester copolymerized using terephthalic acid (TPA) and isophthalic acid (IPA), and Korean Patent No. 10-1216690
  • TPA terephthalic acid
  • IPA isophthalic acid
  • Korean Patent No. 10-1216690 The issue discloses a low melting point polyester fiber including isophthalic acid and diethylene glycol to improve adhesion.
  • the conventional low-melting polyester fiber as described above may have a certain level of spinnability and adhesiveness, but there is a problem of obtaining a rigid nonwoven fabric or a woven structure after heat bonding due to the ring structure of a rigid modifier.
  • the nonwoven fabric manufactured using conventional low-melting-point polyester fibers has a problem in that it cannot absorb body fluids when used as a sanitary material because the polymer itself has little hydrophilicity.
  • the present invention has been devised in view of the above points, has excellent spinnability into fibers, exhibits excellent thermal adhesion, and at the same time, can exhibit remarkably improved tactile feel and dyeing properties in applied articles, and furthermore, at room temperature. It is an object of the present invention to provide a polyester composition for heat-adhesive fibers with minimal change over time and improved storage stability, and a heat-adhesive composite fiber and non-woven fabric implemented through it.
  • the present invention is a polyester composition for heat-adhesive fibers that can be expanded in applications requiring hygroscopicity by improving deodorization properties and improving hydrophilicity, and heat-adhesive composite fibers and non-woven fabrics implemented through them. It has a different purpose to provide.
  • the present invention is a polycondensation of an acid component containing terephthalic acid, and an esterified compound in which ethylene glycol and a diol component including a compound represented by the following formula (1) and a diol component including a compound represented by formula (2) are reacted. It provides a polyester composition for heat-adhesive fibers comprising a copolyester and a deodorant.
  • the total amount of the compound represented by Formula 1 and the compound represented by Formula 2 may be included in 30 to 45 mol% of the diol component.
  • the content (mol%) of the compound represented by Formula 1 in the diol component may be greater than the content (mol%) of the compound represented by Formula 2.
  • the diol component may not substantially contain diethylene glycol.
  • the acidic component may further include isophthalic acid in an amount of 1 to 10 mol% based on the acidic component.
  • the compound represented by Formula 1 may be contained in an amount of 1 to 40 mol%, and the compound represented by Formula 2 may be included in an amount of 1 to 20 mol%, and more preferably, the diol component represented by Formula 1
  • the compound represented is 20 to 40 mol%, the compound represented by Formula 2 is 1 to 10 mol%, more preferably the compound represented by Formula 1 is 30 to 40 mol%, the compound represented by Formula 2 is It may be included in 1 to 6 mol%.
  • the acidic component may further include isophthalic acid, and the total amount of the isophthalic acid, the compound represented by Formula 1, and the compound represented by Formula 2 in the copolyester may be included in 55 mol% or less.
  • a complementary colorant including blue and red dyes may be further included from 1 to 10 ppm based on the total weight of the polyester composition.
  • the deodorant is a photocatalyst oxide doped with a transition metal, and may be provided in an amount of 0.3 to 5.0% by weight based on the total weight of the polyester composition.
  • a titanium-based polymerization catalyst based on the total weight of the copolyester may further include 5 to 40 ppmm based on the amount of Ti element.
  • a phosphorus-based thermal stabilizer may be further included in an amount of 10 to 30 ppm based on the amount of P element.
  • the composition has no melting point, exhibits a softening behavior, and may have a glass transition temperature of 60 to 75°C, more preferably 65 to 72°C.
  • composition may have an intrinsic viscosity of 0.500 to 0.800 dl/g.
  • the present invention provides a polyester chip comprising the polyester composition for heat-adhesive fibers according to the present invention.
  • the present invention provides a heat-adhesive composite fiber comprising a core, and a sheath comprising the polyester composition for heat-adhesive fibers according to the present invention surrounding the core.
  • the present invention provides a heat-adhesive composite fiber alone or a non-woven fabric molded into a predetermined shape, including the heat-adhesive composite fiber and the polyester fiber according to the present invention.
  • the non-woven fabric may be any one selected from the group consisting of various sanitary products, automobile mattresses, interior materials for construction, bedding materials, insulation materials for clothes, and insulation materials for agriculture.
  • the present invention it is possible to exhibit excellent spinnability to fibers and excellent thermal adhesion, and at the same time, remarkably improved tactile feel and dyeing property in the applied article.
  • changes over time at room temperature are minimized, and storage stability may be improved.
  • the polyester composition is manufactured into chips, the drying time can be significantly reduced, and thus the manufacturing time can be significantly shortened. Accordingly, changes over time are also minimized even under storage conditions such as summer (for example, 40°C or higher), and the deformation of the initial shape of the product or deformation during use can be prevented according to the excellent storage stability.
  • summer for example, 40°C or higher
  • the deformation of the initial shape of the product or deformation during use can be prevented according to the excellent storage stability.
  • due to its excellent deodorizing properties and hydrophilic properties it can be widely used in various hygiene products.
  • FIG. 1 is a cross-sectional view of a composite fiber according to an embodiment of the present invention.
  • the acidic component includes terephthalic acid, and in addition to terephthalic acid, an aromatic polyhydric carboxylic acid having 6 to 14 carbon atoms, or an aliphatic polyhydric carboxylic acid having 2 to 14 carbon atoms and/or a metal sulfonic acid metal salt may be further included.
  • the aromatic polyhydric carboxylic acid having 6 to 14 carbon atoms is an acid component used for the production of polyester, and known ones may be used without limitation, but preferably any selected from the group consisting of dimethyl terephthalate, isophthalic acid and dimethyl isophthalate It may be one or more, and more preferably isophthalic acid in terms of reaction stability with terephthalic acid, ease of handling, and economy.
  • aliphatic polyhydric carboxylic acids having 2 to 14 carbon atoms may be used without limitation as known as acidic components used for the production of polyester, but non-limiting examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, and It may be any one or more selected from the group consisting of acid, adipic acid, suberic acid, citric acid, pimeric acid, azelaic acid, sebacic acid, nonanoic acid, decanoic acid, dodecanoic acid, and hexanodecanoic acid.
  • the sulfonic acid metal salt may be sodium 3,5-dicarbomethoxybenzene sulfonate.
  • terephthalic acid may reduce the heat resistance of the polyester composition, so it is preferable not to include it.
  • isophthalic acid when other types of acidic content are further included, and in this case, isophthalic acid is 1 to 10 moles based on the acidic content. It is preferably included in %. If isophthalic acid is provided in an amount of less than 1 mol% based on the acid content, it may be difficult to express high thermal adhesion properties at an additional low temperature for the purpose. If it is provided in excess of 10 mol%, the material to be implemented is hard.
  • the soft touch is significantly lowered, and the glass transition temperature is excessively lowered, resulting in a problem of lowering of heat resistance.
  • the total content of the compound represented by Formula 1, the compound represented by Formula 2, and isophthalic acid to be described later in the copolyester increases excessively, it acts as a main component capable of forming crystals at a desired temperature. It may be difficult to achieve the object of the invention, such as significantly lowering the thermal bonding properties.
  • the diol component includes ethylene glycol, a compound represented by Formula 1 below, and a compound represented by Formula 2.
  • the compound represented by Formula 1 may lower the crystallinity and glass transition temperature of the polyester composition to be prepared to exhibit excellent thermal bonding performance.
  • the compound represented by Formula 1 among the diol components may be included in an amount of 13 to 40 mol%, more preferably 20 to 40 mol%, and even more preferably 30 to 40 mol%.
  • the compound represented by Chemical Formula 1 is contained in an amount of less than 13 mol% based on the diol component, spinnability is excellent, but there is a concern that the adhesive temperature may be increased or the thermal adhesive property may be reduced, and the intended use may be limited.
  • the compound represented by Formula 1 is provided in excess of 40 mol%, there may be a problem that it is difficult to commercialize because of poor radioactivity, and rather, there is a concern that the thermal bonding properties may be deteriorated due to increased crystallinity.
  • the compound represented by Chemical Formula 2 further improves the thermal adhesive properties of the polyester composition prepared with the compound represented by Chemical Formula 1 and prevents a significant decrease in the glass transition temperature of the compound represented by Chemical Formula 1 Despite the storage temperature, changes over time can be minimized and storage stability can be improved.
  • the compound represented by Formula 2 exhibits appropriate shrinkage properties for heat-adhesive fibers using a polyester composition that is implemented as it is mixed with the compound represented by Formula 1, and due to the development of these properties, By further increasing the point adhesion, it is possible to exhibit more enhanced thermal adhesion properties.
  • the compound represented by Formula 2 may be included in an amount of 1 to 20 mol%, more preferably 1 to 10 mol%, and even more preferably 1 to 6 mol%.
  • the compound represented by Formula 2 is contained in an amount of less than 1 mol% based on the diol component, it is difficult to improve the desired heat resistance, so that the storage stability is poor, and there is a concern that the change over time may be very large.
  • the compound represented by Formula 2 since it is used together with the compound represented by Formula 1, if the compound represented by Formula 2 is contained in an amount exceeding 20 mol%, it may cause problems that are difficult to commercialize due to poor radioactivity, and in some cases, isophthalic acid is additionally included.
  • the crystallinity is sufficiently deteriorated and there is no further effect, and when the amount of isophthalic acid to be added increases, the crystallinity is rather increased, so that excellent thermal bonding properties at the desired temperature can be significantly reduced. There is a fear that the purpose will not be achieved.
  • the shrinkage is remarkably large, and processing is difficult.
  • the total amount of the compound represented by Formula 1 and the compound represented by Formula 2 is preferably contained in 30 to 45 mol% of the diol component, more preferably 33 to It may be contained in 41 mol%. If they are contained in less than 30 mol%, the crystallinity of the copolyester increases and a high melting point or softening point becomes difficult to implement at a low temperature, so that the possible thermal bonding temperature is remarkably high, and excellent thermal bonding properties are expressed at low temperatures. May not be.
  • the compound represented by Formula 1 may be included in a larger content (mol%) than the compound represented by Formula 2. If the compound represented by Formula 1 is included in an amount less than or equal to the compound represented by Formula 2, it is difficult to express the desired heat-adhesive properties, and as it must be adhered at a high temperature, the use of the product may be limited. In addition, there is a concern that processing into a developed product may be difficult due to excessive shrinkage characteristics. Furthermore, there may be a problem that it is difficult to use it for a purpose.
  • the diol component may further include other types of diol components in addition to the compound represented by Formula 1, the compound represented by Formula 2, and ethylene glycol.
  • the other type of diol component may be a known diol component used in the production of polyester, so the present invention is not particularly limited thereto, but as a non-limiting example thereof, an aliphatic diol component having 2 to 14 carbon atoms may be used.
  • Nonamethylene glycol, decamethylene glycol, undecamethylene glycol, dodecamethylene glycol and may be any one or more selected from the group consisting of tridecamethylene glycol.
  • diethylene Glycol may be substantially free from the diol component used to obtain the copolyester. If diethylene glycol is included in the diol component, it may cause a rapid decrease in the glass transition temperature, so that even when the compound represented by Formula 2 is provided, the desired level of heat resistance may not be achieved.
  • diethylene glycol is not substantially contained in or does not contain diethylene glycol
  • diethylene glycol is not intentionally added when preparing the copolyester, and the esterification reaction of the acidic component and the diol component
  • the content of naturally occurring diethylene glycol included in the polyester composition may be less than 3% by weight of the total composition. If the naturally occurring content of diethylene glycol exceeds an appropriate level, there is a problem in that the pack pressure is increased when spinning into fibers, and the spinning property may be significantly reduced by causing frequent trimming.
  • the above-described acidic component and diol component can be prepared into copolyester through esterification and polycondensation using known synthetic conditions in the polyester synthesis field. At this time, the acid component and the diol component may be added to react at a molar ratio of 1: 1.1 to 2.0, but is not limited thereto.
  • the acid component and the diol component are mixed at one time in an appropriate molar ratio as described above, and then esterified and polycondensed to form a copolyester, or between ethylene glycol and a compound represented by Formula 1 among the acid component and diol component.
  • the compound represented by Formula 2 may be added to form a copolyester through esterification and polycondensation, and the present invention is not particularly limited thereto.
  • the catalyst may be a catalyst typically used in the production of polyester, but preferably may be a titanium-based polymerization catalyst, and more specifically, may be a titanium-based polymerization catalyst represented by the following formula (3).
  • the titanium-based polymerization catalyst represented by Chemical Formula 3 is stable even in the presence of water molecules, it is not deactivated even if it is added before the esterification reaction in which a large amount of water is produced.Therefore, the esterification reaction and polycondensation within a shorter time than the conventional one The reaction may proceed, and coloration due to yellowing may be suppressed through this.
  • the catalyst may be included so as to be 5 to 40 ppm in terms of titanium atoms in the total weight of the obtained copolyester, through which the thermal stability or color tone of the copolyester is better, and thus it is preferable.
  • the esterification reaction may be preferably carried out under a temperature of 200 to 270 °C and a pressure of 1100 to 1350 Torr. If the above conditions are not satisfied, there may be a problem in that an esterification reaction time is prolonged or an esterification compound suitable for polycondensation reaction cannot be formed due to a decrease in reactivity.
  • the polycondensation reaction may be performed under a temperature of 250 to 300°C and a pressure of 0.3 to 1.0 Torr, and if the above conditions are not satisfied, there may be problems such as delay in reaction time, decrease in polymerization degree, and induce thermal decomposition. .
  • the polycondensation reaction may further include a thermal stabilizer.
  • the thermal stabilizer is for preventing discoloration of color through thermal decomposition at high temperature, and a phosphorus compound may be used.
  • a phosphorus compound may be used.
  • phosphorus-based compound phosphoric acid, such as phosphoric acid, monomethyl phosphoric acid, trimethyl phosphoric acid, and triethyl phosphoric acid, and derivatives thereof are preferably used, and among them, trimethyl phosphoric acid or triethyl phosphoric acid is particularly preferable because of its excellent effect.
  • the amount of the phosphorus-based compound is preferably 10 to 30 ppm in terms of phosphorus atoms based on the total weight of the final copolyester.
  • the phosphorus-based thermal stabilizer is used in less than 10 ppm, it is difficult to prevent high-temperature thermal decomposition and the copolyester may be discolored. If it exceeds 30 ppm, it may be disadvantageous in terms of manufacturing cost. In the case of polycondensation reaction, the thermal stabilizer inhibits catalytic activity. There may be a problem in that the reaction delay phenomenon occurs.
  • the heat-adhesive polyester composition according to the present invention includes a deodorant provided during the polycondensation reaction of the above-described copolyester or after obtaining the copolyester.
  • the deodorant performs a function of decomposing and reducing or removing harmful gases such as VOC substances such as formaldehyde, ammonia, and trimethylamine, and known deodorants used for textiles can be used without limitation.
  • VOC substances such as formaldehyde, ammonia, and trimethylamine
  • known deodorants used for textiles can be used without limitation.
  • it may be preferably a matte catalyst, and specifically, may be a photocatalyst oxide doped with a transition metal.
  • a matte catalyst refers to a catalyst that can act as a catalyst through absorption of moisture even in the absence of light.
  • the transition metal is not particularly limited, but in consideration of reactivity, two or more types selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, and Au are used. It is desirable.
  • the photocatalyst oxide may include TiO 2 , SrTiO 3 , ZrO, SnO 2 , WO 3 , Bi 2 O 3 , Fe 2 O 3, etc., but TiO 2 is particularly preferable and contains anatase type TiO 2 It is preferable to do, and even more preferably, the anatase type TiO 2 photocatalyst oxide may be doped with transition metals Fe and Ag.
  • the deodorant may be provided in an amount of 0.3 to 5.0% by weight, more preferably 0.3 to 2.5% by weight, and even more preferably 0.3 to 1.2% by weight based on the total weight of the heat-adhesive polyester composition. If it is provided in less than 0.3% by weight, it may be difficult to increase the desired level of deodorizing properties and hydrophilicity, and if it exceeds 5.0% by weight, the single yarn strength is lowered, and spinning workability due to yarn breakage may be deteriorated.
  • the heat-adhesive polyester composition may further include a complementary colorant.
  • the complementary colorant is for color tone adjustment to make the color of the dye dyed stronger and better in the dyeing process that proceeds after being spun into the fiber, and a known one in the textile field may be added, as a non-limiting example.
  • a mixture of blue and red dyes may be used. This is because cobalt compounds, which are generally used as complementary colors, are not preferable because they are harmful to the human body, whereas complementary colors mixed with blue and red dyes are preferable because they are harmless to the human body.
  • the color tone can be finely controlled.
  • the blue dye may include solvent blue 104, solvent blue 122, and solvent blue 45
  • examples of the red dye may include solvent red 111, solvent red 179, and solvent red 195.
  • the blue dye and the red dye may be mixed in a weight ratio of 1: 1.0 to 3.0, which is advantageous in expressing a remarkable effect on a desired fine color tone control.
  • the complementary colorant may be provided with 1 to 10 ppm based on the total weight of the polyester composition. If it is provided with less than 1 ppm, it may be difficult to achieve the desired level of complementary color characteristics, and if it exceeds 10 ppm, the L value is reduced. Therefore, there may be a problem in that transparency is deteriorated and a dark color appears.
  • the polyester composition according to the present invention prepared through the above-described method may have an intrinsic viscosity of 0.5 to 0.8 dl/g. If the intrinsic viscosity is less than 0.5 dl/g, there may be a problem in cross-section formation, and if the intrinsic viscosity is more than 0.8 dl/g, there may be a problem in radioactivity due to high pack pressure.
  • the polyester composition may have no melting point, may have thermal properties showing a softening behavior, and preferably may have a softening point of 90 to 110°C, which may be more advantageous in achieving the object of the present invention.
  • the polyester composition may have a glass transition temperature of 60 to 75°C. If the glass transition temperature is less than 60°C, the polyester chips, fibers, or articles implemented through the polyester composition change with time even at temperatures exceeding 40°C, such as in summer. There is a fear that bonding occurs and storage stability is significantly lowered. In addition, there is a concern that radiation failure may occur when inter-chip bonding occurs. Furthermore, there is a concern that the shrinkage property is excessively expressed after being implemented with fibers, etc., and the bonding property is rather deteriorated. In addition, due to the limitation of heat treatment required for a drying process after chip formation or a post-processing process after spinning into fibers, there may be a problem in that the time required for the process is prolonged or the process cannot be smoothly performed.
  • the glass transition temperature exceeds 75°C, there is a concern that the thermal bonding characteristics may be significantly deteriorated, and there is a concern that the development of the use may be limited as the performing temperature of the bonding process is limited to high temperatures.
  • polyester composition according to an embodiment of the present invention described above may be implemented as a polyester chip, and the method of manufacturing the polyester chip and the specification of the chip may follow the manufacturing method and specification known in the art. In the present invention, detailed descriptions thereof will be omitted.
  • the present invention is a thermal bonding including a core portion 11, and a sheath 12 including the polyester composition for heat-adhesive fibers according to the present invention surrounding the core portion 11 as shown in FIG. Implement the castle composite fiber (10).
  • the core portion may be used without limitation in the case of a polymer capable of spinning as a fiber, and for example, may be a known polyester-based component having high heat resistance and mechanical strength compared to the sheath, specifically polyethylene terephthalate, polybutylene terephthalate, Polypropylene terephthalate may be used, but is not limited thereto.
  • the core portion and the sheath portion may be, for example, a composite spun in a weight ratio of 8:2 to 2:8, but is not limited thereto, and may be spun by appropriately adjusting the ratio according to the purpose.
  • the process of spinning the composite fiber, the spinning device, and the cooling, stretching, etc. of the composite fiber after spinning can be performed through known conditions, devices, and processes in the art, or by appropriately modifying it. It does not specifically limit.
  • the composite fiber may be spun at a spinning temperature of 270 to 290°C, and may be stretched 2.5 to 4.0 times after spinning.
  • the fineness of the composite fiber may be 1 to 15 denier, and the fiber length may be 1 to 100 mm, for example.
  • the heat-adhesive polyester composition according to an embodiment of the present invention may be spun alone unlike FIG. 1 to be implemented as a single heat-adhesive fiber.
  • the present invention includes a nonwoven fabric implemented including the above-described heat-adhesive composite fiber or heat-adhesive single fiber.
  • the nonwoven fabric may be implemented by mixing a heat-adhesive fiber alone, such as a heat-adhesive composite fiber or a heat-adhesive single fiber, or a polyester-based fiber as a support fiber with the heat-adhesive fiber.
  • a heat-adhesive fiber alone such as a heat-adhesive composite fiber or a heat-adhesive single fiber
  • a polyester-based fiber as a support fiber with the heat-adhesive fiber.
  • the heat-adhesive fiber and the polyester fiber may be short fibers, and each of the short fibers may be honed and opened, and then heat treated to produce a nonwoven fabric.
  • the heat-adhesive fiber and the polyester fiber may be mixed in a ratio of 3:7 to 1:9, but are not limited thereto and may be appropriately changed in consideration of use.
  • the heat treatment may be 100 to 180 °C, more preferably 120 to 180 °C, through which more improved adhesive properties may be expressed.
  • porous structure may be any one selected from the group consisting of various hygiene products, automobile mattresses, interior materials for construction, bedding materials, insulation materials for clothes, and insulation materials for agriculture, but is not limited thereto.
  • the formed ester reaction product was transferred to a polycondensation reactor, and based on the total weight of the copolyester to be obtained, 15 ppm of a titanium-based compound represented by the following formula (3) (based on Ti element) as a polycondensation catalyst, and 25 ppm of triethyl phosphate as a heat stabilizer (P Elemental) and gradually reduced to a final pressure of 0.5 torr, and heated up to 285°C to perform a polycondensation reaction to form a copolyester, and anatase-type TiO 2 doped with transition metals Fe and Ag.
  • a polyester composition for heat-adhesive fibers was obtained by including 1% by weight based on the total weight of the polyester composition to prepare the photocatalyst oxide.
  • the polyester composition was prepared as a polyester chip having a width, length, and height of 2mm ⁇ 4mm ⁇ 3mm, respectively, by a conventional method.
  • a core-sheath type composite fiber having the polyester composition as a sheath and a polyethylene retephthalate (PET) having an intrinsic viscosity of 0.65 dl/g as a core part, a polyester chip made of the polyester composition, and PET
  • PET polyethylene retephthalate
  • the chips were melted and put into a core sheath type spinneret, and then combined spinning at a spinning speed of 1000mpm at 275°C so that the core and the sheath had a weight ratio of 5:5, and the fiber length was 51mm by stretching 3.0 times.
  • a core sheath type heat-adhesive composite fiber as shown in Table 1 with a fineness of 4.0de was prepared.
  • Example 2 Prepared by carrying out the same manner as in Example 1, but by changing the composition ratio of the monomer for the production of copolyester as shown in Table 1, Table 2 or Table 3 below, a polyester chip as shown in Table 1, Table 2, or Table 3, and A core sheath type composite fiber was prepared using this.
  • Example 2 It was prepared in the same manner as in Example 1, but by changing the composition of the monomer for preparing the copolyester as shown in Table 2 below, a polyester chip as shown in Table 2 and a core sheath type composite fiber using the same were prepared.
  • ortho-chlorophenol (Ortho-Chloro Phenol) is used as a solvent and melted for 30 minutes at a concentration of 110°C, 2.0g/25ml, and then incubated at 25°C for 30 minutes, automatically connected with a CANON viscometer. It was analyzed from a viscosity measuring device.
  • the glass transition temperature and melting point were measured using a differential calorimeter, and the analysis condition was a temperature increase rate of 20°C/min.
  • the moisture content was measured in a vacuum dryer at 55° C. at 4 hour intervals, and the time was expressed as drying time when the moisture content was 100 ppm or less as a result of the measurement.
  • Spinning workability occurs during spinning process for core sheath type composite fibers spun in the same amount for each Example and Comparative Example (means a lump formed by fusion of some of the fiber strands passing through the detention or irregular fusion of strands after trimming) Numerical values were counted through a drip detector, and the number of drips generated in the remaining Examples and Comparative Examples was expressed as a relative percentage based on the number of drip occurrences in Example 1 as 100.
  • Japan's KURABO After performing a dyeing process at 90° C. for 60 minutes at a bath ratio of 1:50 for a dye solution containing 2% by weight of blue dye based on the weight of the core sheath type composite fiber, Japan's KURABO After measuring the spectral reflectance of the visible region (360 ⁇ 740nm, 10nm interval) of the dyed composite fiber using the company's color measurement system, the Total K/S value, an index of the amount of dyeing according to the CIE 1976 standard, was calculated. The color yield of the dye was evaluated.
  • Example 15 in which the content of the compound represented by Formula 2 was higher than that of the compound represented by Formula 1, the shape was changed in the adhesive strength evaluation by temperature compared to other examples to achieve the desired physical properties. It can be confirmed that it is not suitable for.
  • the core sheath type composite fiber was heat-treated at 130°C to prepare a nonwoven fabric.
  • the prepared nonwoven fabric was cut into a predetermined size, and two specimens were prepared for each Example and Comparative Example, and then one prepared specimen (Sample 1) in a constant temperature and humidity chamber equipped with a UV lamp prepared in advance was added, and a temperature of 25°C, Relative humidity of 50%RH and ultraviolet rays were irradiated for 30 days at an intensity of 300mJ/cm2.
  • the storage stability against moisture and light is determined by measuring the tensile strength of the specimen stored for 30 days in the constant temperature and humidity chamber and the tensile strength of the remaining specimens (specimen 2, untreated specimen) that were not put into the constant temperature and humidity chamber, respectively.
  • the core-sheath type composite fiber was heat-treated at 130°C to prepare a nonwoven fabric, and then cut into 10cm ⁇ 10cm to prepare a specimen.
  • the prepared specimen was put in a 3L Tedler bag and sealed by injecting the target gas and clean air, and after 120 minutes, the respective concentrations were measured by the gastec detection tube method, and the gas reduction rate was calculated from the following calculation formula 1.
  • C b represents a blank test concentration
  • C a represents a sample concentration
  • the examples including the deodorant are advantageous in simultaneously satisfying the gas reduction rate, spinning workability, hydrophilicity, and storage stability due to light/moisture compared to Comparative Example 5.
  • Comparative Example 1 that does not contain the compound of Formula 2, even when the deodorant is included, it is not good in absorbency, spinning workability, and storage stability due to light/moisture compared to Example 1 including the deodorant in the same amount. I can confirm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a polyester composition for a thermally adhesive fiber, and more specifically, to a polyester composition for a thermally adhesive fiber, a thermally adhesive composite fiber implemented therethrough, and a nonwoven fabric, the polyester composition for a thermally adhesive fiber having excellent fiber spinning properties and thermal adhesion properties, exhibiting minimal aging and improved storage stability at room temperature, enabling excellent texture to be expressed in a product implemented therethrough, and having excellent deodorizing properties and hydrophilic properties.

Description

열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유 및 부직포Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric realized through it
본 발명은 열접착성 섬유용 폴리에스테르 조성물에 관한 것이며, 더욱 상세하게는 섬유로의 방사성, 넓은 온도범위에서 열접착성이 뛰어나고, 여름철 저장조건에서도 경시변화가 최소화되며, 저장안정성이 향상되고, 구현된 제품에서 우수한 촉감, 소취특성 및 흡습성을 발현할 수 있는 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유 및 부직포에 관한 것이다.The present invention relates to a polyester composition for heat-adhesive fibers, and more particularly, spinning into fibers, excellent heat-adhesion over a wide temperature range, and minimizes change over time even in summer storage conditions, and improves storage stability, It relates to a polyester composition for heat-adhesive fibers capable of expressing excellent touch, deodorant properties, and hygroscopicity in an embodied product, and a heat-adhesive composite fiber and non-woven fabric implemented through it.
일반적으로 합성섬유는 융점이 높아 용도가 제한되는 경우가 적지 않다. 특히 섬유 등의 접착용도에 있어서 심지 등의 용도나 테이프상의 직물 사이에 삽입하여 가압 접착하게 되는 접착제로 사용되는 경우에는 가열에 의해 섬유 직물 자체가 열화될 수 있고, 고주파미싱 같은 특수한 장비를 사용해야만 하는 번거로움이 있기 때문에, 이러한 특수 장비를 이용하지 않고도 통상의 간단한 가열 프레스에 의해 용이하게 접착하는 것이 요망되고 있다.In general, synthetic fibers have a high melting point and are often limited in use. In particular, in the case of adhesive use of fibers, etc., in the case of use as an adhesive that is inserted between fabrics on a tape or interposed between fabrics on a tape, the fabric itself may be deteriorated and special equipment such as high-frequency sewing machine must be used. Because of the inconvenience of doing so, it is desired to easily adhere by a common simple heating press without using such special equipment.
종래의 저융점 폴리에스테르 섬유는 매트리스, 자동차용 내장재 또는 각종 부직포 패팅 용도로 제조시 사용되는 상호 섬유구조물에 있어 이종의 섬유를 접착하는 목적으로 핫멜트(Hot Melt)형 바인더 섬유가 폭넓게 사용되어 왔다.Conventional low-melt polyester fibers have been widely used for the purpose of adhering different types of fibers in mutual fiber structures used in manufacturing mattresses, interior materials for automobiles, or various nonwoven fabric patting applications.
예를 들어, 미국등록특허 제4,129,675호에는 테레프탈산(terephthalic acid: TPA)과 이소프탈산(isophthalic acid: IPA)을 이용하여 공중합된 저융점 폴리에스테르가 소개되어 있으며, 또한, 한국등록특허 제10-1216690호에는 접착성을 개선시키기 위한 이소프탈산, 디에틸렌글리콜을 포함하여 구현된 저융점 폴리에스테르 섬유를 개시하고 있다.For example, U.S. Patent No. 4,129,675 introduces a low-melting-point polyester copolymerized using terephthalic acid (TPA) and isophthalic acid (IPA), and Korean Patent No. 10-1216690 The issue discloses a low melting point polyester fiber including isophthalic acid and diethylene glycol to improve adhesion.
그러나 위와 같은 종래의 저융점 폴리에스테르 섬유는 일정 수준이상의 방사성 및 접착성을 가질 수 있지만, 강직한 개질제의 고리구조로 인해 열접착 후 딱딱한 느낌의 부직포 또는 직물 구조체를 얻는 문제점이 있다.However, the conventional low-melting polyester fiber as described above may have a certain level of spinnability and adhesiveness, but there is a problem of obtaining a rigid nonwoven fabric or a woven structure after heat bonding due to the ring structure of a rigid modifier.
또한, 바인더 특성의 발현을 위해 낮은 융점이나, 낮은 유리전이온도를 갖는 방향으로 개발이 진행됨에 따라서 구현된 폴리에스테르의 내열성이 열악해져서 여름철 40℃를 넘는 저장조건에서도 경시변화가 현저히 발생하며, 저장 중에 발생하는 폴리에스테르 칩이나 섬유 간 결합이 발생하여 저장안정성 역시 현저히 저하되는 문제가 있다. In addition, as development progresses toward a low melting point or low glass transition temperature for the development of binder properties, the heat resistance of the embodied polyester deteriorates, resulting in significant changes with time even under storage conditions exceeding 40℃ in summer. There is a problem in that the storage stability is also markedly deteriorated due to the occurrence of bonding between polyester chips or fibers occurring in the material.
나아가, 종래의 저융점 폴리에스테르 섬유를 이용해 제조된 부직포는 고분자 자체가 친수성이 거의 없음에 기인해 위생재 용도로 사용할 경우에는 체액을 흡수하지 못하는 문제가 있다.Further, the nonwoven fabric manufactured using conventional low-melting-point polyester fibers has a problem in that it cannot absorb body fluids when used as a sanitary material because the polymer itself has little hydrophilicity.
따라서, 종래의 저융점 폴리에스테르 섬유가 가지는 방사성 및 접착성을 유지 또는 개선시킬 수 있을 뿐만 아니라, 현저히 개선된 촉감, 염착특성과 함께 상온에서의 경시변화 최소화 및 저장 안정성을 향상시킬 수 있고, 친수성을 향상시켜 흡습성이 요구되는 용도로도 사용 가능한 열접착성 폴리에스테르 섬유에 대한 개발이 시급한 시점이다.Therefore, it is possible not only to maintain or improve the spinning property and adhesion of the conventional low-melting-point polyester fiber, but also to minimize change over time at room temperature and improve storage stability with remarkably improved tactile feel and dyeing properties, and hydrophilicity. It is an urgent time to develop a heat-adhesive polyester fiber that can be used for applications requiring hygroscopicity by improving the value.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 섬유로의 방사성이 뛰어나고, 우수한 열접착성을 발현하는 동시에, 응용된 물품에서 현저히 개선된 촉감과 염착특성을 발현할 수 있고, 나아가 상온에서 경시변화가 최소화 되며, 저장 안정성이 향상된 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유 및 부직포를 제공하는데 목적이 있다.The present invention has been devised in view of the above points, has excellent spinnability into fibers, exhibits excellent thermal adhesion, and at the same time, can exhibit remarkably improved tactile feel and dyeing properties in applied articles, and furthermore, at room temperature. It is an object of the present invention to provide a polyester composition for heat-adhesive fibers with minimal change over time and improved storage stability, and a heat-adhesive composite fiber and non-woven fabric implemented through it.
또한, 본 발명은 소취특성이 향상되고, 친수성을 향상시켜 흡습성이 요구되는 용도로도 용도전개가 확대될 수 있는 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유 및 부직포를 제공하는데 다른 목적이 있다.In addition, the present invention is a polyester composition for heat-adhesive fibers that can be expanded in applications requiring hygroscopicity by improving deodorization properties and improving hydrophilicity, and heat-adhesive composite fibers and non-woven fabrics implemented through them. It has a different purpose to provide.
상술한 과제를 해결하기 위하여 본 발명은 테레프탈산을 포함하는 산성분, 및 에틸렌글리콜과 하기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 포함하는 디올성분이 반응된 에스테르화 화합물이 중축합된 코폴리에스테르 및 소취제를 포함하는 열접착성 섬유용 폴리에스테르 조성물을 제공한다.In order to solve the above problems, the present invention is a polycondensation of an acid component containing terephthalic acid, and an esterified compound in which ethylene glycol and a diol component including a compound represented by the following formula (1) and a diol component including a compound represented by formula (2) are reacted. It provides a polyester composition for heat-adhesive fibers comprising a copolyester and a deodorant.
[화학식 1][Formula 1]
Figure PCTKR2020006267-appb-I000001
Figure PCTKR2020006267-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2020006267-appb-I000002
Figure PCTKR2020006267-appb-I000002
본 발명의 실시예에 의하면, 상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 함량 총합은 상기 디올성분 중 30 ~ 45 몰%로 포함될 수 있다. According to an embodiment of the present invention, the total amount of the compound represented by Formula 1 and the compound represented by Formula 2 may be included in 30 to 45 mol% of the diol component.
또한, 상기 디올성분 중 화학식 1로 표시되는 화합물의 함량(몰%)이 화학식 2로 표시되는 화합물의 함량(몰%)보다 더 클 수 있다.In addition, the content (mol%) of the compound represented by Formula 1 in the diol component may be greater than the content (mol%) of the compound represented by Formula 2.
또한, 상기 디올성분은 디에틸렌글리콜을 실질적으로 포함하지 않을 수 있다. In addition, the diol component may not substantially contain diethylene glycol.
또한, 상기 산성분은 이소프탈산을 산성분을 기준으로 1 ~ 10몰%로 더 포함될 수 있다.In addition, the acidic component may further include isophthalic acid in an amount of 1 to 10 mol% based on the acidic component.
또한, 상기 디올성분 중 상기 화학식 1로 표시되는 화합물은 1 ~ 40몰%, 상기 화학식 2로 표시되는 화합물은 1 ~ 20몰%로 포함될 수 있고, 보다 바람직하게는 상기 디올성분 중 상기 화학식 1로 표시되는 화합물은 20 ~ 40몰%, 상기 화학식 2로 표시되는 화합물은 1 ~ 10몰%, 더욱 바람직하게는 상기 화학식 1로 표시되는 화합물은 30 ~ 40몰%, 상기 화학식 2로 표시되는 화합물은 1 ~ 6몰%로 포함될 수 있다.In addition, of the diol component, the compound represented by Formula 1 may be contained in an amount of 1 to 40 mol%, and the compound represented by Formula 2 may be included in an amount of 1 to 20 mol%, and more preferably, the diol component represented by Formula 1 The compound represented is 20 to 40 mol%, the compound represented by Formula 2 is 1 to 10 mol%, more preferably the compound represented by Formula 1 is 30 to 40 mol%, the compound represented by Formula 2 is It may be included in 1 to 6 mol%.
또한, 상기 산성분은 이소프탈산을 더 포함하고, 상기 코폴리에스테르 중 상기 이소프탈산, 상기 화학식 1로 표시되는 화합물, 화학식 2로 표시되는 화합물의 함량 총합은 55몰% 이하로 포함될 수 있다. In addition, the acidic component may further include isophthalic acid, and the total amount of the isophthalic acid, the compound represented by Formula 1, and the compound represented by Formula 2 in the copolyester may be included in 55 mol% or less.
또한, 블루 및 레드 염료를 포함하는 보색제를 폴리에스테르 조성물 전체 중량을 기준으로 1 ~ 10ppm 더 포함할 수 있다.In addition, a complementary colorant including blue and red dyes may be further included from 1 to 10 ppm based on the total weight of the polyester composition.
또한, 상기 소취제는 전이금속이 도핑된 광촉매 산화물로서, 폴리에스테르 조성물 전체 중량을 기준으로 0.3 ~ 5.0 중량% 구비될 수 있다.In addition, the deodorant is a photocatalyst oxide doped with a transition metal, and may be provided in an amount of 0.3 to 5.0% by weight based on the total weight of the polyester composition.
또한, 상기 코폴리에스테르 전체 중량을 기준으로 티타늄계 중합촉매가 Ti 원소량 기준 5 ~ 40ppmm 더 포함될 수 있다.In addition, a titanium-based polymerization catalyst based on the total weight of the copolyester may further include 5 to 40 ppmm based on the amount of Ti element.
상기 코폴리에스테르 전체 중량을 기준으로 인계 열안정제가 P 원소량 기준 10 ~ 30 ppm 더 포함될 수 있다.Based on the total weight of the copolyester, a phosphorus-based thermal stabilizer may be further included in an amount of 10 to 30 ppm based on the amount of P element.
또한, 상기 조성물은 융점이 없고, 연화거동을 보이며, 유리전이온도가 60 ~ 75℃, 보다 바람직하게는 65 ~ 72℃일 수 있다.In addition, the composition has no melting point, exhibits a softening behavior, and may have a glass transition temperature of 60 to 75°C, more preferably 65 to 72°C.
또한, 상기 조성물은 고유점도가 0.500 ~ 0.800dl/g일 수 있다.In addition, the composition may have an intrinsic viscosity of 0.500 to 0.800 dl/g.
또한, 본 발명은 본 발명에 따른 열접착성 섬유용 폴리에스테르 조성물을 포함하는 폴리에스테르 칩을 제공한다.In addition, the present invention provides a polyester chip comprising the polyester composition for heat-adhesive fibers according to the present invention.
또한, 본 발명은 심부, 및 상기 심부를 둘러싸는 본 발명에 따른 열접착성 섬유용 폴리에스테르 조성물을 포함하는 초부를 포함하는 열접착성 복합섬유를 제공한다.In addition, the present invention provides a heat-adhesive composite fiber comprising a core, and a sheath comprising the polyester composition for heat-adhesive fibers according to the present invention surrounding the core.
또한, 본 발명은 본 발명에 따른 열접착성 복합섬유 단독, 또는 상기 열접착성 복합섬유와 폴리에스테르계 섬유를 포함하여 소정의 형상으로 성형된 부직포를 제공한다.In addition, the present invention provides a heat-adhesive composite fiber alone or a non-woven fabric molded into a predetermined shape, including the heat-adhesive composite fiber and the polyester fiber according to the present invention.
본 발명의 일 실시예에 의하면, 상기 부직포는 각종 위생용품, 자동차용 매트리스, 건축용 내장재, 침장재, 의류용 보온재 및 농업용 단열재로 이루어진 군에서 선택된 어느 하나일 수 있다.According to an embodiment of the present invention, the non-woven fabric may be any one selected from the group consisting of various sanitary products, automobile mattresses, interior materials for construction, bedding materials, insulation materials for clothes, and insulation materials for agriculture.
본 발명에 의하면, 섬유로의 방사성이 뛰어나고, 우수한 열접착성을 발현하는 동시에, 응용된 물품에서 현저히 개선된 촉감과, 염착성을 발현할 수 있다. 또한, 상온에서 경시변화가 최소화 되며, 저장 안정성이 향상될 수 있다. 나아가 폴리에스테르 조성물을 칩으로 제조 시 건조시간을 현저히 감소시켜 제조시간을 현저히 단축시킬 수 있다. 이에 이를 이용하여 구현된 물품 역시 여름철과 같은 저장조건(예를 들어 40℃ 이상)에서도 경시변화가 최소화되고, 저장안정성이 우수함에 따라서 물품의 초도 형상의 변형이나 사용 중의 변형을 방지할 수 있다. 더불어 우수한 소취특성과 친수특성에 기인해 각종 위생용품에 널리 사용될 수 있다.Advantageous Effects of Invention According to the present invention, it is possible to exhibit excellent spinnability to fibers and excellent thermal adhesion, and at the same time, remarkably improved tactile feel and dyeing property in the applied article. In addition, changes over time at room temperature are minimized, and storage stability may be improved. Furthermore, when the polyester composition is manufactured into chips, the drying time can be significantly reduced, and thus the manufacturing time can be significantly shortened. Accordingly, changes over time are also minimized even under storage conditions such as summer (for example, 40°C or higher), and the deformation of the initial shape of the product or deformation during use can be prevented according to the excellent storage stability. In addition, due to its excellent deodorizing properties and hydrophilic properties, it can be widely used in various hygiene products.
도 1은 본 발명이 일실시예에 의한 복합섬유의 단면도이다.1 is a cross-sectional view of a composite fiber according to an embodiment of the present invention.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement the present invention. The present invention may be implemented in various different forms, and is not limited to the embodiments described herein.
본 발명에 따른 열접착성 섬유용 폴리에스테르 조성물은 테레프탈산을 포함하는 산성분, 및 에틸렌글리콜과 하기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 포함하는 디올성분이 반응된 에스테르화 화합물이 중축합된 코폴리에스테르 및 소취제를 포함한다.In the polyester composition for heat-adhesive fibers according to the present invention, an acid component including terephthalic acid, and an esterified compound in which a diol component including a compound represented by the following Formula 1 and a compound represented by Formula 2 is reacted with ethylene glycol It includes polycondensed copolyester and deodorant.
[화학식 1][Formula 1]
Figure PCTKR2020006267-appb-I000003
Figure PCTKR2020006267-appb-I000003
[화학식 2][Formula 2]
Figure PCTKR2020006267-appb-I000004
Figure PCTKR2020006267-appb-I000004
먼저, 상기 산성분은 테레프탈산을 포함하며, 이외에 테레프탈산이 아닌 탄소수 6 내지 14의 방향족 다가 카르복실산이나, 탄소수 2 내지 14의 지방족 다가 카르복실산 및/또는 설폰산 금속염을 더 포함할 수 있다. First, the acidic component includes terephthalic acid, and in addition to terephthalic acid, an aromatic polyhydric carboxylic acid having 6 to 14 carbon atoms, or an aliphatic polyhydric carboxylic acid having 2 to 14 carbon atoms and/or a metal sulfonic acid metal salt may be further included.
상기 탄소수 6 내지 14의 방향족 다가 카르복실산은 폴리에스테르의 제조를 위해 사용되는 산성분으로써 공지된 것들을 제한 없이 사용할 수 있으나, 바람직하게는 디메틸테레프탈레이트, 이소프탈산 및 디메틸이소프탈레이트로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 보다 바람직하게는 테레프탈산과의 반응 안정성, 취급 용이성 및 경제적인 측면에서 이소프탈산일 수 있다. The aromatic polyhydric carboxylic acid having 6 to 14 carbon atoms is an acid component used for the production of polyester, and known ones may be used without limitation, but preferably any selected from the group consisting of dimethyl terephthalate, isophthalic acid and dimethyl isophthalate It may be one or more, and more preferably isophthalic acid in terms of reaction stability with terephthalic acid, ease of handling, and economy.
또한, 탄소수 2 내지 14의 지방족 다가 카르복실산은 폴리에스테르의 제조를 위해 사용되는 산성분으로써 공지된 것들을 제한 없이 사용할 수 있으나, 이에 대한 비제한적인 예로써, 옥살산, 말론산, 석신산, 글루타르산, 아디프산, 수베린산, 시트르산, 피메르산, 아젤라인산, 세바스산, 노나노산, 데카노인산, 도데카노인산 및 헥사노데카노인산으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.In addition, aliphatic polyhydric carboxylic acids having 2 to 14 carbon atoms may be used without limitation as known as acidic components used for the production of polyester, but non-limiting examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, and It may be any one or more selected from the group consisting of acid, adipic acid, suberic acid, citric acid, pimeric acid, azelaic acid, sebacic acid, nonanoic acid, decanoic acid, dodecanoic acid, and hexanodecanoic acid.
또한, 상기 설폰산 금속염은 소디움 3,5-디카르보메톡시벤젠 설포네이트일 수 있다. In addition, the sulfonic acid metal salt may be sodium 3,5-dicarbomethoxybenzene sulfonate.
한편, 상기 산성분으로써 테레프탈산 이외에 구비될 수 있는 다른 성분들은 폴리에스테르 조성물의 내열성을 저하시킬 수 있어서 바람직하게는 포함하지 않는 것이 좋다. 다만, 테레프탈산과의 반응 안정성, 취급용이성 및 경제적 측면 등을 고려하여 다른 종류의 산성분이 더 포함하는 경우에는 이소프탈산을 포함하는 것이 좋으며, 이 경우에도 이소프탈산은 산성분을 기준으로 1 ~ 10몰%로 포함되는 것이 바람직하다. 만일 이소프탈산이 산성분을 기준으로 1몰% 미만으로 구비되는 경우 목적으로 하는 추가적인 낮은 온도에서의 높은 열접착 특성을 발현하기 어려울 수 있고, 10몰%를 초과하여 구비되는 경우 구현되는 물품이 딱딱해져 부드러운 촉감을 현저히 저하시키고, 유리전이온도가 과도하게 낮아져 내열성 저하가 문제될 수 있다. 또한, 코폴리에스테르에서 후술하는 화학식 1로 표시되는 화합물, 화학식 2로 표시되는 화합물 및 이소프탈산의 총함량이 과도히 증가함에 따라서 오히려 결정을 형성할 수 있는 주성분으로 작용하여 목적으로 하는 온도에서의 열접착 특성을 현저히 저하시키는 등 발명의 목적을 달성하기 어려울 수 있다. On the other hand, other components that may be provided in addition to terephthalic acid as the acidic component may reduce the heat resistance of the polyester composition, so it is preferable not to include it. However, in consideration of the stability of the reaction with terephthalic acid, ease of handling, and economical aspects, it is recommended to include isophthalic acid when other types of acidic content are further included, and in this case, isophthalic acid is 1 to 10 moles based on the acidic content. It is preferably included in %. If isophthalic acid is provided in an amount of less than 1 mol% based on the acid content, it may be difficult to express high thermal adhesion properties at an additional low temperature for the purpose. If it is provided in excess of 10 mol%, the material to be implemented is hard. The soft touch is significantly lowered, and the glass transition temperature is excessively lowered, resulting in a problem of lowering of heat resistance. In addition, as the total content of the compound represented by Formula 1, the compound represented by Formula 2, and isophthalic acid to be described later in the copolyester increases excessively, it acts as a main component capable of forming crystals at a desired temperature. It may be difficult to achieve the object of the invention, such as significantly lowering the thermal bonding properties.
다음으로 상기 디올성분은 에틸렌글리콜과 하기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 포함한다. Next, the diol component includes ethylene glycol, a compound represented by Formula 1 below, and a compound represented by Formula 2.
[화학식 1][Formula 1]
Figure PCTKR2020006267-appb-I000005
Figure PCTKR2020006267-appb-I000005
[화학식 2][Formula 2]
Figure PCTKR2020006267-appb-I000006
Figure PCTKR2020006267-appb-I000006
먼저, 상기 화학식 1로 표시되는 화합물은 제조되는 폴리에스테르 조성물의 결정화도, 유리전이온도를 낮춰서 우수한 열접착 성능을 발현하도록 할 수 있다. 또한, 섬유상으로 제조된 뒤 염색공정에서 상압의 조건으로 염색을 가능케 하여 염색공정을 보다 용이하게 하고, 염착특성이 우수해 세탁견뢰도가 향상되며, 부직포 등의 성형물의 촉감을 향상시킬 수 있다. 바람직하게는 상기 디올성분 중 상기 화학식 1로 표시되는 화합물은 13 ~ 40몰%, 보다 바람직하게는 20 ~ 40몰%, 보다 더 바람직하게는 30 ~ 40몰%로 포함될 수 있다. 만일 화학식 1로 표시되는 화합물이 디올성분 기준 13몰% 미만으로 포함되는 경우 방사성은 우수하나, 접착 가능 온도가 높아지거나 열접착 특성이 저하되고, 사용되는 용도가 제한될 수 있는 우려가 있다. 또한, 만일 화학식 1로 표시되는 화합물이 40몰%를 초과하여 구비될 경우 방사성이 좋지 않아서 상용화가 어려운 문제점이 발생할 수 있으며, 오히려 결정성이 증대되어 열접착 특성이 저하될 우려가 있다.First, the compound represented by Formula 1 may lower the crystallinity and glass transition temperature of the polyester composition to be prepared to exhibit excellent thermal bonding performance. In addition, it is possible to dye the dyeing process under normal pressure conditions in the dyeing process after it is manufactured in a fibrous form, thereby facilitating the dyeing process, improving the washing fastness due to excellent dyeing properties, and improving the feel of molded articles such as nonwoven fabrics. Preferably, the compound represented by Formula 1 among the diol components may be included in an amount of 13 to 40 mol%, more preferably 20 to 40 mol%, and even more preferably 30 to 40 mol%. If the compound represented by Chemical Formula 1 is contained in an amount of less than 13 mol% based on the diol component, spinnability is excellent, but there is a concern that the adhesive temperature may be increased or the thermal adhesive property may be reduced, and the intended use may be limited. In addition, if the compound represented by Formula 1 is provided in excess of 40 mol%, there may be a problem that it is difficult to commercialize because of poor radioactivity, and rather, there is a concern that the thermal bonding properties may be deteriorated due to increased crystallinity.
한편, 바람직하게는 화학식 1로 표시되는 화합물이 20몰% 이상 구비될 수 있는데, 이를 통해 후술하는 화학식 2로 표시되는 화합물과 함께 폴리에스테르 조성물의 저온에서의 열접착 특성을 더욱 향상시킬 수 있고, 폴리에스테르 조성물을 칩화시킬 때 건조시간이 현저히 단축될 수 있는 이점이 있다. On the other hand, preferably 20 mol% or more of the compound represented by Formula 1 may be provided, through which, together with the compound represented by Formula 2, which will be described later, thermal adhesion properties at low temperatures of the polyester composition may be further improved, There is an advantage that the drying time can be significantly shortened when the polyester composition is chipped.
상기 화학식 2로 표시되는 화합물은 상술한 화학식 1로 표시되는 화합물과 함께 제조되는 폴리에스테르 조성물의 열접착 특성을 더욱 향상시키면서도 화학식 1로 표시되는 화합물의 유리전이 온도의 현저한 저하를 방지하여 40℃ 이상의 저장온도에도 불구하고 경시변화를 최소화시키고, 저장안정성을 향상시킬 수 있다. 열접착성과 관련하여 화학식 2로 표시되는 화합물은 화학식 1로 표시되는 화합물과의 혼합사용 됨에 따라서 구현되는 폴리에스테르 조성물을 이용한 열접착성 섬유에 적절한 수축특성을 발현시키고 이러한 특성발현으로 인해 열접착시 점 접착력을 더욱 증가시킴으로써 보다 상승된 열접착 특성을 발현할 수 있다. The compound represented by Chemical Formula 2 further improves the thermal adhesive properties of the polyester composition prepared with the compound represented by Chemical Formula 1 and prevents a significant decrease in the glass transition temperature of the compound represented by Chemical Formula 1 Despite the storage temperature, changes over time can be minimized and storage stability can be improved. Regarding heat adhesion, the compound represented by Formula 2 exhibits appropriate shrinkage properties for heat-adhesive fibers using a polyester composition that is implemented as it is mixed with the compound represented by Formula 1, and due to the development of these properties, By further increasing the point adhesion, it is possible to exhibit more enhanced thermal adhesion properties.
바람직하게는 상기 디올성분 중 상기 화학식 2로 표시되는 화합물은 1 ~ 20몰%, 보다 바람직하게는 1 ~ 10몰%, 보다 더 바람직하게는 1 ~ 6몰%로 포함될 수 있다. Preferably, of the diol component, the compound represented by Formula 2 may be included in an amount of 1 to 20 mol%, more preferably 1 to 10 mol%, and even more preferably 1 to 6 mol%.
만일 화학식 2로 표시되는 화합물이 디올성분 기준 1몰% 미만으로 포함되는 경우 목적하는 내열성의 향상이 어려워 저장안정성이 좋지 않고, 경시변화가 매우 클 수 있는 우려가 있다. 또한, 상술한 화학식 1로 표시되는 화합물과 함께 사용됨으로 인해 화학식 2로 표시되는 화합물이 20몰% 초과하여 포함된다면 방사성이 좋지 않아 상용화가 어려운 문제점이 발생할 수 있고, 경우에 따라서 이소프탈산까지 추가 포함 할 경우에서는 결정성이 충분히 저하되어 더 이상의 효과가 없으며, 추가되는 이소프탈산의 함량이 증가할 시 오히려 결정성이 증대되어 목적으로 하는 온도에서의 우수한 열접착 특성을 현저히 저하 시킬 수 있는 등 발명의 목적을 달성하지 못할 우려가 있다. 또한, 섬유 상 등으로 구현 시 수축성이 현저히 크게 발현되어 가공의 어려움이 있다.If the compound represented by Formula 2 is contained in an amount of less than 1 mol% based on the diol component, it is difficult to improve the desired heat resistance, so that the storage stability is poor, and there is a concern that the change over time may be very large. In addition, since it is used together with the compound represented by Formula 1, if the compound represented by Formula 2 is contained in an amount exceeding 20 mol%, it may cause problems that are difficult to commercialize due to poor radioactivity, and in some cases, isophthalic acid is additionally included. In the case of the invention, the crystallinity is sufficiently deteriorated and there is no further effect, and when the amount of isophthalic acid to be added increases, the crystallinity is rather increased, so that excellent thermal bonding properties at the desired temperature can be significantly reduced. There is a fear that the purpose will not be achieved. In addition, when implemented in a fibrous form, the shrinkage is remarkably large, and processing is difficult.
본 발명의 바람직한 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 함량 총합은 상기 디올성분 중 30 ~ 45몰%로 포함되는 것이 바람직하고, 보다 바람직하게는 33 ~ 41몰%로 포함될 수 있다. 만일 30몰% 미만으로 이들이 포함되는 경우 코폴리에스테르의 결정성이 증가하여 높은 융점이 발현되거나 연화점을 낮은 온도로 구현하기 어려워져서 열접착 가능온도가 현저히 높아지고, 낮은온도에서는 우수한 열접착 특성이 발현되지 않을 수 있다. 또한, 만일 화학식 2로 표시되는 화합물이 45몰%를 초과하여 포함되는 경우 중합 반응성과 방사성이 현저한 저하가 우려되며, 제조되는 코폴리에스테르의 결정성이 오히려 증가되어 목적하는 온도에서의 높은 열접착 특성을 발현하기 어려울 수 있다. According to a preferred embodiment of the present invention, the total amount of the compound represented by Formula 1 and the compound represented by Formula 2 is preferably contained in 30 to 45 mol% of the diol component, more preferably 33 to It may be contained in 41 mol%. If they are contained in less than 30 mol%, the crystallinity of the copolyester increases and a high melting point or softening point becomes difficult to implement at a low temperature, so that the possible thermal bonding temperature is remarkably high, and excellent thermal bonding properties are expressed at low temperatures. May not be. In addition, if the compound represented by Formula 2 is contained in excess of 45 mol%, there is a concern that the polymerization reactivity and radioactivity may be significantly lowered, and the crystallinity of the prepared copolyester is rather increased, resulting in high thermal adhesion at the desired temperature. It can be difficult to express the trait.
이때, 상기 디올성분 중에 상술한 화학식 1로 표시되는 화합물이 화학식 2로 표시되는 화합물보다 더 큰 함량(몰%)으로 포함될 수 있다. 만일 화학식 1로 표시되는 화합물이 화학식 2로 표시되는 화합물보다 적거나 같은 양으로 포함될 경우 목적하는 열접착 특성을 발현하기 어렵고, 고온에서 접착되어야 됨에 따라서 전개되는 제품의 용도에 제한이 있을 수 있다. 또한, 과도한 수축특성의 발현으로 전개되는 제품으로의 가공이 곤란할 우려가 있다. 나아가, 목적으로 하는 용도로의 사용이 곤란한 문제가 있을 수 있다. In this case, in the diol component, the compound represented by Formula 1 may be included in a larger content (mol%) than the compound represented by Formula 2. If the compound represented by Formula 1 is included in an amount less than or equal to the compound represented by Formula 2, it is difficult to express the desired heat-adhesive properties, and as it must be adhered at a high temperature, the use of the product may be limited. In addition, there is a concern that processing into a developed product may be difficult due to excessive shrinkage characteristics. Furthermore, there may be a problem that it is difficult to use it for a purpose.
한편, 상기 디올성분은 상술한 화학식 1로 표시되는 화합물, 화학식 2로 표시되는 화합물 및 에틸렌글리콜 이외에 다른 종류의 디올성분을 더 포함할 수 있다.Meanwhile, the diol component may further include other types of diol components in addition to the compound represented by Formula 1, the compound represented by Formula 2, and ethylene glycol.
상기 다른 종류의 디올성분은 폴리에스테르의 제조에 사용되는 공지된 디올성분일 수 있어서 본 발명은 이에 대해 특별히 한정하지 않으나, 이에 대한 비제한적인 예로써, 탄소수 2 내지 14의 지방족 디올성분일 수 있고, 구체적으로 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 프로필렌글리콜, 트리메틸글리콜, 테트라메킬렌글리콜, 펜타메틸글리콜, 헥사메틸렌글리콜, 헵타메틸렌클리콜, 옥타메틸렌글리콜, 노나메틸렌글리콜, 데카메틸렌글리콜, 운데카메틸렌글리콜, 도데카메틸렌글리콜 및 트리데카메틸렌글리콜으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있다. 다만, 목적하는 수준의 열접착 특성과 동시에 내열성을 겸비하기 위하여 화학식 1로 표시되는 화합물, 화학식 2로 표시되는 화합물 및 에틸렌글리콜 이외에 다른 종류의 디올성분은 더 포함하지 않는 것이 바람직하며, 특히 디에틸렌글리콜은 코폴리에스테르를 수득하기 위해 사용되는 디올성분에 실질적으로 포함되지 않을 수 있다. 만일 디에틸렌글리콜이 디올성분에 포함될 경우 유리전이온도의 급격한 저하를 초래해 화학식 2로 표시되는 화합물을 구비하는 경우에도 목적하는 수준의 내열성을 달성하지 못할 수 있다. 이때, 상기 디올성분에 디에틸렌글리콜이 실질적으로 포함하지 않는다거나 또는 포함하지 않는다는 의미는 코폴리에스테르의 제조 시 의도적으로 디에틸렌글리콜을 투입하지 않음을 의미하며, 산성분 및 디올성분의 에스테르화 반응, 중/축합 반응에서 자연 발생하는 디에틸렌글리콜까지 불포함함을 의미하지는 않는다. 한편, 본 발명의 일 실시예에 의하면 폴리에스테르 조성물에 포함되는 자연발생적인 디에틸렌글리콜의 함량은 전체 조성물의 3중량% 미만일 수 있다. 만일 자연발생적인 디에틸렌글리콜의 함량이 적정 수준을 초과할 경우 섬유로 방사시 팩압을 증가시키며, 잦은 사절을 유발하여 방사성이 현저히 저하될 수 있는 문제가 있다. The other type of diol component may be a known diol component used in the production of polyester, so the present invention is not particularly limited thereto, but as a non-limiting example thereof, an aliphatic diol component having 2 to 14 carbon atoms may be used. , Specifically 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, propylene glycol, trimethyl glycol, tetramekylene glycol, pentamethyl glycol, hexamethylene glycol, heptamethylene glycol, octamethylene glycol , Nonamethylene glycol, decamethylene glycol, undecamethylene glycol, dodecamethylene glycol, and may be any one or more selected from the group consisting of tridecamethylene glycol. However, in order to combine heat resistance at the same time as the desired level of thermal adhesive properties, it is preferable not to further contain other types of diol components other than the compound represented by Formula 1, the compound represented by Formula 2, and ethylene glycol. In particular, diethylene Glycol may be substantially free from the diol component used to obtain the copolyester. If diethylene glycol is included in the diol component, it may cause a rapid decrease in the glass transition temperature, so that even when the compound represented by Formula 2 is provided, the desired level of heat resistance may not be achieved. At this time, the meaning that diethylene glycol is not substantially contained in or does not contain diethylene glycol means that diethylene glycol is not intentionally added when preparing the copolyester, and the esterification reaction of the acidic component and the diol component However, it does not mean that it does not contain diethylene glycol that occurs naturally in the poly/condensation reaction. Meanwhile, according to an embodiment of the present invention, the content of naturally occurring diethylene glycol included in the polyester composition may be less than 3% by weight of the total composition. If the naturally occurring content of diethylene glycol exceeds an appropriate level, there is a problem in that the pack pressure is increased when spinning into fibers, and the spinning property may be significantly reduced by causing frequent trimming.
상술한 산성분 및 디올성분은 폴리에스테르 합성분야의 공지된 합성조건을 이용하여 에스테르화 반응 및 중·축합을 거쳐 코폴리에스테르로 제조될 수 있다. 이때, 산성분과 디올성분은 1 : 1.1 ~ 2.0의 몰비로 반응하도록 투입될 수 있는데, 이에 제한되는 것은 아니다. The above-described acidic component and diol component can be prepared into copolyester through esterification and polycondensation using known synthetic conditions in the polyester synthesis field. At this time, the acid component and the diol component may be added to react at a molar ratio of 1: 1.1 to 2.0, but is not limited thereto.
한편, 상기 산성분 및 디올성분은 위와 같은 적정의 몰비로 한번에 혼합된 후 에스테르화 반응 및 중·축합을 거쳐 코폴리에스테르로 제조되거나, 산성분과 디올성분 중 에틸렌글리콜과 화학식 1로 표시되는 화합물 간 에스테르화 반응 중에 화학식 2로 표시되는 화합물을 투입하여 에스테르화 반응 및 중·축합을 거쳐 코폴리에스테르로 제조될 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다.On the other hand, the acid component and the diol component are mixed at one time in an appropriate molar ratio as described above, and then esterified and polycondensed to form a copolyester, or between ethylene glycol and a compound represented by Formula 1 among the acid component and diol component. During the esterification reaction, the compound represented by Formula 2 may be added to form a copolyester through esterification and polycondensation, and the present invention is not particularly limited thereto.
상기 에스테르화 반응에서 촉매를 더 포함할 수 있다. 상기 촉매는 통상적으로 폴리에스테르 제조 시에 사용되는 촉매를 사용할 수 있으나, 바람직하게는 티타늄계 중합촉매일 수 있고, 더욱 구체적으로 하기 화학식 3으로 표시되는 티타늄계 중합촉매일 수 있다. In the esterification reaction, a catalyst may be further included. The catalyst may be a catalyst typically used in the production of polyester, but preferably may be a titanium-based polymerization catalyst, and more specifically, may be a titanium-based polymerization catalyst represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2020006267-appb-I000007
Figure PCTKR2020006267-appb-I000007
상기 화학식 3으로 표시되는 티타늄계 중합촉매는 물분자 존재 하에서도 안정하기 때문에 물이 다량으로 부생하는 에스테르화 반응의 이전에 첨가해도 실활되지 않음에 따라서 종래보다 단축된 시간 내 에스테르화 반응 및 중축합 반응이 진행될 수 있고, 이를 통해 황변에 의한 착색을 억제할 수 있다. 상기 촉매는 수득되는 코폴리에스테르 전체 중량에서 티타늄 원자 환산으로 5~40ppm이 되도록 포함될 수 있고, 이를 통해 코폴리에스테르의 열안정성이나 색조가 보다 양호해져 바람직하다. 만일 티타늄 원자 환산으로 5 ppm 미만으로 구비되는 경우 에스테르화 반응을 적절히 촉진시키기 어려울 수 있으며, 만일 40ppm을 초과하여 구비되는 경우 반응성은 촉진되나 착색이 발생하는 문제점이 있을 수 있다.Since the titanium-based polymerization catalyst represented by Chemical Formula 3 is stable even in the presence of water molecules, it is not deactivated even if it is added before the esterification reaction in which a large amount of water is produced.Therefore, the esterification reaction and polycondensation within a shorter time than the conventional one The reaction may proceed, and coloration due to yellowing may be suppressed through this. The catalyst may be included so as to be 5 to 40 ppm in terms of titanium atoms in the total weight of the obtained copolyester, through which the thermal stability or color tone of the copolyester is better, and thus it is preferable. If it is provided with less than 5 ppm in terms of titanium atoms, it may be difficult to adequately promote the esterification reaction, and if it is provided in excess of 40 ppm, reactivity may be promoted, but there may be a problem in that coloring occurs.
또한, 상기 에스테르화 반응은 바람직하게는 200 ~ 270℃의 온도 및 1100 ~ 1350 토르(Torr)의 압력 하에서 수행될 수 있다. 상기 조건을 만족하지 않는 경우 에스테르화 반응 시간이 길어지거나 반응성 저하로 중축합 반응에 적합한 에스테르화 화합물을 형성할 수 없는 문제가 발생하는 문제점이 있을 수 있다.In addition, the esterification reaction may be preferably carried out under a temperature of 200 to 270 °C and a pressure of 1100 to 1350 Torr. If the above conditions are not satisfied, there may be a problem in that an esterification reaction time is prolonged or an esterification compound suitable for polycondensation reaction cannot be formed due to a decrease in reactivity.
또한, 상기 중축합 반응은 250 ~ 300℃ 온도 및 0.3 ~ 1.0 토르(Torr) 압력 하에서 이루어질 수 있으며, 만일 상기 조건을 만족하지 못하는 경우 반응시간 지연, 중합도 저하, 열분해 유발 등의 문제점이 있을 수 있다.In addition, the polycondensation reaction may be performed under a temperature of 250 to 300°C and a pressure of 0.3 to 1.0 Torr, and if the above conditions are not satisfied, there may be problems such as delay in reaction time, decrease in polymerization degree, and induce thermal decomposition. .
한편, 중축합 반응 시 열안정제를 더 포함할 수 있다. 상기 열안정제는 고온에서 열분해를 통한 색상의 변색을 방지하기 위한 것으로서 인계 화합물을 사용할 수 있다. 상기 인계 화합물은 일예로 인산, 모노메틸인산, 트리메틸인산, 트리에틸인산 등 인산류 및 그의 유도체들을 사용하는 것이 좋으며, 이 중에서도 특히 트리메틸인산 또는 트리에틸인산이 효과가 우수하여 보다 바람직하다. 상기 인계 화합물의 사용량은 최종 수득되는 코폴리에스테르 전체 중량에 대해서 인 원자 환산으로 10 ~ 30ppm을 사용하는 것이 바람직하다. 만일 인계 열안정제가 10ppm 미만으로 사용될 경우 고온 열분해를 방지하기 어려워 코폴리에스테르가 변색될 수 있으며, 만일 30ppm을 초과할 경우 제조 비용 면에서 불리할 수 있고 중축합 반응 시 열안정제에 의한 촉매 활성 억제로 반응 지연 현상이 발생하는 문제점이 있을 수 있다.On the other hand, the polycondensation reaction may further include a thermal stabilizer. The thermal stabilizer is for preventing discoloration of color through thermal decomposition at high temperature, and a phosphorus compound may be used. As the phosphorus-based compound, phosphoric acid, such as phosphoric acid, monomethyl phosphoric acid, trimethyl phosphoric acid, and triethyl phosphoric acid, and derivatives thereof are preferably used, and among them, trimethyl phosphoric acid or triethyl phosphoric acid is particularly preferable because of its excellent effect. The amount of the phosphorus-based compound is preferably 10 to 30 ppm in terms of phosphorus atoms based on the total weight of the final copolyester. If the phosphorus-based thermal stabilizer is used in less than 10 ppm, it is difficult to prevent high-temperature thermal decomposition and the copolyester may be discolored. If it exceeds 30 ppm, it may be disadvantageous in terms of manufacturing cost. In the case of polycondensation reaction, the thermal stabilizer inhibits catalytic activity. There may be a problem in that the reaction delay phenomenon occurs.
본 발명에 따른 열접착성 폴리에스테르 조성물은 상술한 코폴리에스테의 중축합 반응 시, 또는 코폴리에스테르를 수득한 후 구비되는 소취제를 포함한다. 상기 소취제는 포름알데히드, 암모니아, 트리메틸아민 등의 VOC 물질과 같은 유해가스를 분해하여 저감 또는 제거시키는 기능을 수행하며, 섬유에 사용하는 공지된 소취제의 경우 제한 없이 사용할 수 있다. 다만, 섬유의 친수성을 향상시키고, 보다 용이하게 활성화 되기 위하여 바람직하게는 무광촉매일 수 있으며, 구체적으로 전이금속이 도핑된 광촉매 산화물일 수 있다. 무광촉매는 광이 없는 상태에서도 수분의 흡수를 통해 촉매작용을 할 수 있는 촉매를 의미한다. 상기 전이금속은 특별한 제한은 없으나 반응성을 고려하여 Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt 및 Au로 이루어진 군으로부터 선택된 2종 이상의 것을 사용하는 것이 바람직하다. 덧붙여 상기 광촉매 산화물은 TiO2, SrTiO3, ZrO, SnO2, WO3, Bi2O3, Fe2O3 등을 들 수 있지만, 특히 TiO2가 바람직하고 보다 바람직하게는 아나타제형 TiO2를 함유하는 것이 바람직하고, 보다 더 바람직하게는 아나타제형 TiO2 광촉매 산화물에 전이금속 Fe 및 Ag가 도핑된 것일 수 있다.The heat-adhesive polyester composition according to the present invention includes a deodorant provided during the polycondensation reaction of the above-described copolyester or after obtaining the copolyester. The deodorant performs a function of decomposing and reducing or removing harmful gases such as VOC substances such as formaldehyde, ammonia, and trimethylamine, and known deodorants used for textiles can be used without limitation. However, in order to improve the hydrophilicity of the fiber and to be activated more easily, it may be preferably a matte catalyst, and specifically, may be a photocatalyst oxide doped with a transition metal. A matte catalyst refers to a catalyst that can act as a catalyst through absorption of moisture even in the absence of light. The transition metal is not particularly limited, but in consideration of reactivity, two or more types selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, and Au are used. It is desirable. In addition, the photocatalyst oxide may include TiO 2 , SrTiO 3 , ZrO, SnO 2 , WO 3 , Bi 2 O 3 , Fe 2 O 3, etc., but TiO 2 is particularly preferable and contains anatase type TiO 2 It is preferable to do, and even more preferably, the anatase type TiO 2 photocatalyst oxide may be doped with transition metals Fe and Ag.
상기 소취제는 열접착성 폴리에스테르 조성물 전체 중량을 기준으로 0.3 ~ 5.0 중량%, 보다 바람직하게는 0.3 ~ 2.5 중량%, 보다 더 바람직하게는 0.3 ~ 1.2 중량%로 구비될 수 있다. 만일 0.3 중량% 미만으로 구비되는 경우 목적하는 수준의 소취특성 및 친수성을 증가시키기 어려울 수 있고, 5.0 중량%를 초과하는 경우 단사 강도가 저하되고, 실 파손으로 인한 방사작업성이 악화될 수 있다. 또한, 사절되지 않고 방사된 원사일지라도 저장 중 또는 제품으로 사용된 후 수분 또는 노출되는 광, 일예로 자외선에 의해 활성화되는 무광촉매의 촉매반응에 의해 유해가스 뿐만 아니라 섬유형성성분인 코폴리에스테르에도 영향을 미쳐 원사의 강도가 더욱 현저히 저하시킬 수 있는 우려가 있다. The deodorant may be provided in an amount of 0.3 to 5.0% by weight, more preferably 0.3 to 2.5% by weight, and even more preferably 0.3 to 1.2% by weight based on the total weight of the heat-adhesive polyester composition. If it is provided in less than 0.3% by weight, it may be difficult to increase the desired level of deodorizing properties and hydrophilicity, and if it exceeds 5.0% by weight, the single yarn strength is lowered, and spinning workability due to yarn breakage may be deteriorated. In addition, even if the yarn is spun without being trimmed, not only harmful gases but also the fiber-forming component copolyester are affected by the catalytic reaction of moisture or exposed light during storage or after use as a product, for example, a matte catalyst activated by ultraviolet rays. There is a concern that the strength of the yarn may be further markedly lowered.
더불어 상기 열접착성 폴리에스테르 조성물은 보색제를 더 포함할 수 있다. 상기 보색제는 섬유로 방사된 후 진행되는 염색공정에서 염착되는 염료의 색상을 보다 강하고 좋게 하기 위한 색조조정을 위한 것으로서, 섬유분야에서 공지된 것을 첨가할 수 있고, 이에 대한 비제한적인 예로서 원착용 염료, 안료, 건염염료, 분산염료, 유기안료 등이 있다. 다만, 바람직하게는 블루 및 레드 염료가 혼합된 것을 사용할 수 있다. 이는 보색제로 일반적으로 사용되는 코발트 화합물의 경우 인체유해성이 커 바람직하지 못하기 때문인데 반해 블루 및 레드 염료가 혼합된 보색제는 인체에 무해하여 바람직하다. 또한, 블루 및 레드 염료를 혼합하여 사용되는 경우 색조를 미세하게 제어할 수 있는 이점이 있다. 상기 블루 염료는 일예로 solvent blue 104, solvent blue 122, solvent blue 45 등이 있을 수 있고, 상기 레드 염료는 일예로 solvent red 111, solvent red 179, solvent red 195 등이 있을 수 있다. 또한, 상기 블루염료와 레드염료는 1: 1.0 ~ 3.0 중량비로 혼합될 수 있고, 이를 통해 목적하는 미세한 색조제어에 현저한 효과를 발현하기에 유리하다. In addition, the heat-adhesive polyester composition may further include a complementary colorant. The complementary colorant is for color tone adjustment to make the color of the dye dyed stronger and better in the dyeing process that proceeds after being spun into the fiber, and a known one in the textile field may be added, as a non-limiting example. Wear dyes, pigments, vat dyes, disperse dyes, organic pigments, etc. However, preferably, a mixture of blue and red dyes may be used. This is because cobalt compounds, which are generally used as complementary colors, are not preferable because they are harmful to the human body, whereas complementary colors mixed with blue and red dyes are preferable because they are harmless to the human body. In addition, when a mixture of blue and red dyes is used, there is an advantage in that the color tone can be finely controlled. Examples of the blue dye may include solvent blue 104, solvent blue 122, and solvent blue 45, and examples of the red dye may include solvent red 111, solvent red 179, and solvent red 195. In addition, the blue dye and the red dye may be mixed in a weight ratio of 1: 1.0 to 3.0, which is advantageous in expressing a remarkable effect on a desired fine color tone control.
상기 보색제는 폴리에스테르 조성물 전체 중량을 기준으로 1 ~ 10ppm 구비될 수 있는데, 만일 1 ppm미만으로 구비되는 경우 목적하는 수준의 보색 특성을 달성하기 어려울 수 있고, 10 ppm을 초과하는 경우 L치가 감소하여 투명성이 저하되고 어두운 색을 띄는 문제점이 있을 수 있다.The complementary colorant may be provided with 1 to 10 ppm based on the total weight of the polyester composition.If it is provided with less than 1 ppm, it may be difficult to achieve the desired level of complementary color characteristics, and if it exceeds 10 ppm, the L value is reduced. Therefore, there may be a problem in that transparency is deteriorated and a dark color appears.
상술한 방법을 통해 제조된 본 발명에 따른 폴리에스테르 조성물은 고유점도가 0.5 ~ 0.8dl/g일 수 있다. 만일 고유점도가 0.5dl/g 미만일 경우 단면형성에 문제점이 있을 수 있고, 고유점도가 0.8dl/g을 초과하는 경우 팩(Pack) 압력이 높아 방사성에 문제점이 있을 수 있다.The polyester composition according to the present invention prepared through the above-described method may have an intrinsic viscosity of 0.5 to 0.8 dl/g. If the intrinsic viscosity is less than 0.5 dl/g, there may be a problem in cross-section formation, and if the intrinsic viscosity is more than 0.8 dl/g, there may be a problem in radioactivity due to high pack pressure.
또한, 상기 폴리에스테르 조성물은 융점이 없고, 연화거동을 보이는 열적특성을 가질 수 있으며, 바람직하게는 연화점이 90 ~ 110℃일 수 있고 이를 통해 본 발명의 목적을 달성하기에 보다 유리할 수 있다. In addition, the polyester composition may have no melting point, may have thermal properties showing a softening behavior, and preferably may have a softening point of 90 to 110°C, which may be more advantageous in achieving the object of the present invention.
또한, 상기 폴리에스테르 조성물은 유리전이온도가 60 ~ 75℃일 수 있다. 만일 유리전이온도가 60℃ 미만일 경우 폴리에스테르 조성물을 통해 구현된 폴리에스테르 칩, 섬유 또는 이들을 통해 구현된 물품이 여름철과 같은 예를 들어 40℃를 넘는 온도조건에서도 경시변화가 크고, 칩이나 섬유간 접합이 발생하여 저장 안정성이 현저히 저하될 우려가 있다. 또한, 칩간 결합이 발생할 경우 방사불량을 야기할 우려도 있다. 나아가 섬유 등으로 구현된 후 수축특성이 과도하게 발현되어 오히려 접합특성이 저하될 우려가 있다. 더불어 칩 형성 후 건조공정, 섬유로 방사 후 후가공 공정 등에 소요되는 열처리의 한계로 인해 공정 소요시간의 장기화 또는 해당 공정을 원활히 수행할 수 없는 문제가 있을 수 있다. In addition, the polyester composition may have a glass transition temperature of 60 to 75°C. If the glass transition temperature is less than 60℃, the polyester chips, fibers, or articles implemented through the polyester composition change with time even at temperatures exceeding 40℃, such as in summer. There is a fear that bonding occurs and storage stability is significantly lowered. In addition, there is a concern that radiation failure may occur when inter-chip bonding occurs. Furthermore, there is a concern that the shrinkage property is excessively expressed after being implemented with fibers, etc., and the bonding property is rather deteriorated. In addition, due to the limitation of heat treatment required for a drying process after chip formation or a post-processing process after spinning into fibers, there may be a problem in that the time required for the process is prolonged or the process cannot be smoothly performed.
또한, 만일 유리전이온도가 75℃를 초과할 경우 열 접합 특성이 현저히 저하될 우려가 있고, 접합공정의 수행온도가 고온으로 제한됨에 따라서 용도 전개에 제한이 있을 우려가 있다.In addition, if the glass transition temperature exceeds 75°C, there is a concern that the thermal bonding characteristics may be significantly deteriorated, and there is a concern that the development of the use may be limited as the performing temperature of the bonding process is limited to high temperatures.
상술한 본 발명의 일실시예에 따른 폴리에스테르 조성물은 폴리에스테르 칩으로 구현될 수 있으며, 상기 폴리에스테르 칩의 제조방법, 칩의 규격은 당해 기술분야의 공지된 제조방법과 규격을 따를 수 있어서 본 발명은 이에 대한 구체적인 설명은 생략한다.The polyester composition according to an embodiment of the present invention described above may be implemented as a polyester chip, and the method of manufacturing the polyester chip and the specification of the chip may follow the manufacturing method and specification known in the art. In the present invention, detailed descriptions thereof will be omitted.
또한, 본 발명은 도 1에 도시된 것과 같이 심부(11), 및 상기 심부(11)를 둘러싸는 본 발명에 따른 열접착성 섬유용 폴리에스테르 조성물을 포함하는 초부(12)를 포함하는 열접착성 복합섬유(10)를 구현한다. In addition, the present invention is a thermal bonding including a core portion 11, and a sheath 12 including the polyester composition for heat-adhesive fibers according to the present invention surrounding the core portion 11 as shown in FIG. Implement the castle composite fiber (10).
상기 심부는 섬유로 방사가능한 고분자의 경우 제한없이 사용될 수 있고, 일예로 초부에 대비하여 내열성 및 기계적 강도가 큰 공지된 폴리에스테르계 성분일 수 있으며, 구체적으로 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리프로필렌테레프탈레이트 등일 수 있으나 이에 제한되는 것은 아니다. The core portion may be used without limitation in the case of a polymer capable of spinning as a fiber, and for example, may be a known polyester-based component having high heat resistance and mechanical strength compared to the sheath, specifically polyethylene terephthalate, polybutylene terephthalate, Polypropylene terephthalate may be used, but is not limited thereto.
상기 심부와 초부는 일예로 8:2 ~ 2:8의 중량비로 복합방사된 것일 수 있으나 이에 제한되는 것은 아니며, 목적에 따라서 비율을 적절히 조절하여 방사할 수 있다. The core portion and the sheath portion may be, for example, a composite spun in a weight ratio of 8:2 to 2:8, but is not limited thereto, and may be spun by appropriately adjusting the ratio according to the purpose.
상기 복합섬유를 방사조건, 방사장치 및 방사 후의 복합섬유에 대한 냉각, 연신 등의 공정은 당해 기술분야의 공지된 조건, 장치 및 공정을 통하거나 이를 적절히 변형하여 수행될 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다. The process of spinning the composite fiber, the spinning device, and the cooling, stretching, etc. of the composite fiber after spinning can be performed through known conditions, devices, and processes in the art, or by appropriately modifying it. It does not specifically limit.
일예로, 상기 복합섬유는 270 ~ 290℃의 방사온도로 방사된 것일 수 있고, 방사 후 2.5 ~ 4.0배 연신된 것일 수 있다. 또한, 복합섬유의 섬도는 1 ~ 15데니어이고, 섬유장은 일예로 1 ~ 100mm일 수 있다. As an example, the composite fiber may be spun at a spinning temperature of 270 to 290°C, and may be stretched 2.5 to 4.0 times after spinning. In addition, the fineness of the composite fiber may be 1 to 15 denier, and the fiber length may be 1 to 100 mm, for example.
한편, 본 발명의 일 실시예에 따른 열접착성 폴리에스테르 조성물은 도 1과 다르게 단독으로 방사되어 단독의 열접착성 섬유로 구현될 수도 있음을 밝혀둔다.On the other hand, it turns out that the heat-adhesive polyester composition according to an embodiment of the present invention may be spun alone unlike FIG. 1 to be implemented as a single heat-adhesive fiber.
또한, 본 발명은 상술한 열접착성 복합섬유나, 열접착성 단독섬유를 포함하여 구현된 부직포를 포함한다.In addition, the present invention includes a nonwoven fabric implemented including the above-described heat-adhesive composite fiber or heat-adhesive single fiber.
상기 부직포는 열접착성 복합섬유나 열접착성 단독섬유와 같은 열접착성 섬유 단독, 또는 상기 열접착성 섬유에 지지섬유로서 폴리에스테르계 섬유를 함께 혼합해서 구현될 수 있다. 일예로 상기 열접착성 섬유 및 폴리에스테르계 섬유는 단섬유일 수 있고, 각각의 단섬유들이 혼섬 및 개섬된 후 열처리를 거쳐 부직포가 제조될 수 있다. The nonwoven fabric may be implemented by mixing a heat-adhesive fiber alone, such as a heat-adhesive composite fiber or a heat-adhesive single fiber, or a polyester-based fiber as a support fiber with the heat-adhesive fiber. For example, the heat-adhesive fiber and the polyester fiber may be short fibers, and each of the short fibers may be honed and opened, and then heat treated to produce a nonwoven fabric.
본 발명의 일 실시예에 의하면 상기 열접착성 섬유 및 폴리에스테르계 섬유는 3:7 내지 1:9의 비율로 혼합될 수 있으나, 이에 제한되는 것은 아니며 용도 등을 고려하여 적절히 변경될 수 있다. According to an embodiment of the present invention, the heat-adhesive fiber and the polyester fiber may be mixed in a ratio of 3:7 to 1:9, but are not limited thereto and may be appropriately changed in consideration of use.
또한, 상기 열처리는 100 ~ 180℃, 보다 바람직하게는 120 ~ 180℃일 수 있고, 이를 통해 보다 향상된 접착특성을 발현할 수 있다. In addition, the heat treatment may be 100 to 180 °C, more preferably 120 to 180 °C, through which more improved adhesive properties may be expressed.
또한, 상기 다공성 구조체는 일예로 각종 위생용품, 자동차용 매트리스, 건축용 내장재, 침장재, 의류용 보온재 및 농업용 단열재로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 제한 되는 것은 아니다. In addition, the porous structure may be any one selected from the group consisting of various hygiene products, automobile mattresses, interior materials for construction, bedding materials, insulation materials for clothes, and insulation materials for agriculture, but is not limited thereto.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.The present invention will be described in more detail through the following examples, but the following examples do not limit the scope of the present invention, which should be interpreted to aid understanding of the present invention.
<실시예1><Example 1>
디올성분으로 하기 화학식 1로 표시되는 화합물 38몰%와 하기 화학식 2로 표시되는 화합물 3몰% 및 잔여 디올 성분으로 에틸렌글리콜 59몰%를 투입하고, 산성분으로 테레프탈산 100몰%를 투입하여 상기 산성분과 디올성분을 1:1.5의 비율로 250℃에서 1140 토르(torr) 압력 하에서 에스테르화 반응시켜 에스테르 반응물을 얻었고, 그 반응률은 97.5%였다. 형성된 에스테르 반응물을 중축합 반응기에 이송하고, 수득될 전체 코폴리에스테르 중량을 기준으로 중축합 촉매로서 하기 화학식3으로 표시되는 티타늄계 화합물 15ppm(Ti 원소기준), 열안정제로 트리에틸인산 25ppm(P원소 기준)을 투입하여 최종압력 0.5 토르(torr)가 되도록 서서히 감압하면서 285℃까지 승온하여 중축합 반응을 수행하여 코폴리에스테르를 형성시켰고, 여기에 전이금속 Fe 및 Ag가 도핑된 아나타제형 TiO2 광촉매 산화물을 제조되는 폴리에스테르 조성물 전체 중량을 기준으로 1중량%를 포함시켜 열접착성 섬유용 폴리에스테르 조성물을 수득하였다. 38 mol% of a compound represented by the following formula (1) as a diol component, 3 mol% of a compound represented by the following formula (2), and 59 mol% of ethylene glycol are added as the remaining diol component, and 100 mol% of terephthalic acid is added as an acidic component. The component and the diol component were esterified at 250° C. in a ratio of 1:1.5 under 1140 torr pressure to obtain an ester reaction product, and the reaction rate was 97.5%. The formed ester reaction product was transferred to a polycondensation reactor, and based on the total weight of the copolyester to be obtained, 15 ppm of a titanium-based compound represented by the following formula (3) (based on Ti element) as a polycondensation catalyst, and 25 ppm of triethyl phosphate as a heat stabilizer (P Elemental) and gradually reduced to a final pressure of 0.5 torr, and heated up to 285°C to perform a polycondensation reaction to form a copolyester, and anatase-type TiO 2 doped with transition metals Fe and Ag. A polyester composition for heat-adhesive fibers was obtained by including 1% by weight based on the total weight of the polyester composition to prepare the photocatalyst oxide.
이후 상기 폴리에스테르 조성물을 통상의 방법으로 가로, 세로, 높이가 각각 2mm×4mm×3mm인 폴리에스테르 칩으로 제조하였다. Thereafter, the polyester composition was prepared as a polyester chip having a width, length, and height of 2mm×4mm×3mm, respectively, by a conventional method.
이후 상기 폴리에스테르 조성물을 초부로 하고, 고유점도가 0.65dl/g인 폴리에틸렌레테프탈레이트(PET)를 심부로 하는 심초형 복합섬유를 제조하기 위해, 상기 폴리에스테르 조성물로 구현된 폴리에스테르 칩과, PET 칩을 호퍼에 각각 투입 후 용융시켜 심초형 방사 구금에 각각 투입한 다음, 275℃ 하에서 1000mpm 방사속도로 심부와 초부가 5:5 중량비가 되도록 복합 방사하고, 3.0배 연신하여 섬유장이 51㎜이고, 섬도가 4.0de인 하기 표 1과 같은 심초형 열접착성 복합섬유를 제조하였다. Thereafter, in order to manufacture a core-sheath type composite fiber having the polyester composition as a sheath and a polyethylene retephthalate (PET) having an intrinsic viscosity of 0.65 dl/g as a core part, a polyester chip made of the polyester composition, and PET After each inserting the chips into the hopper, they were melted and put into a core sheath type spinneret, and then combined spinning at a spinning speed of 1000mpm at 275℃ so that the core and the sheath had a weight ratio of 5:5, and the fiber length was 51mm by stretching 3.0 times. A core sheath type heat-adhesive composite fiber as shown in Table 1 with a fineness of 4.0de was prepared.
[화학식 1][Formula 1]
Figure PCTKR2020006267-appb-I000008
Figure PCTKR2020006267-appb-I000008
[화학식 2][Formula 2]
Figure PCTKR2020006267-appb-I000009
Figure PCTKR2020006267-appb-I000009
[화학식 3][Formula 3]
Figure PCTKR2020006267-appb-I000010
Figure PCTKR2020006267-appb-I000010
<실시예 2 ~ 14><Examples 2 to 14>
실시예1과 동일하게 실시하여 제조하되, 하기 표 1, 표 2 또는 표 3과 같이 코폴리에스테르의 제조하기 위한 단량체의 조성비를 변경시켜 하기 표 1, 표 2 또는 표 3과 같은 폴리에스테르 칩 및 이를 이용한 심초형 복합섬유를 제조하였다.Prepared by carrying out the same manner as in Example 1, but by changing the composition ratio of the monomer for the production of copolyester as shown in Table 1, Table 2 or Table 3 below, a polyester chip as shown in Table 1, Table 2, or Table 3, and A core sheath type composite fiber was prepared using this.
<비교예 1 ~ 4><Comparative Examples 1 to 4>
실시예1과 동일하게 실시하여 제조하되, 하기 표 2과 같이 코폴리에스테르의 제조하기 위한 단량체의 조성을 변경시켜 하기 표 2과 같은 폴리에스테르 칩 및 이를 이용한 심초형 복합섬유를 제조하였다.It was prepared in the same manner as in Example 1, but by changing the composition of the monomer for preparing the copolyester as shown in Table 2 below, a polyester chip as shown in Table 2 and a core sheath type composite fiber using the same were prepared.
<실험예1><Experimental Example 1>
실시예 및 비교예에 따라서 제조된 폴리에스테르 칩이나, 심초형 열접착성 복합섬유에 대해 하기의 물성을 평가하여 그 결과를 하기 표 1 내지 표 3에 나타내었다.The following physical properties were evaluated for polyester chips or core-sheath heat-adhesive composite fibers prepared according to Examples and Comparative Examples, and the results are shown in Tables 1 to 3 below.
1. 고유점도1. Intrinsic viscosity
폴리에스테르 칩에 대해 오르쏘-클로로 페놀(Ortho-Chloro Phenol)을 용매로 하여 110℃, 2.0g/25ml의 농도로 30분간 용융 후, 25℃에서 30분간 항온하여 캐논(CANON) 점도계가 연결된 자동 점도 측정 장치로부터 분석하였다.For polyester chips, ortho-chlorophenol (Ortho-Chloro Phenol) is used as a solvent and melted for 30 minutes at a concentration of 110℃, 2.0g/25ml, and then incubated at 25℃ for 30 minutes, automatically connected with a CANON viscometer. It was analyzed from a viscosity measuring device.
2. 유리전이온도, 융점2. Glass transition temperature, melting point
시차 열량분석기를 이용하여 유리전이온도 및 융점을 측정하였고 분석조건은 승온속도를 20℃/min로 하였다.The glass transition temperature and melting point were measured using a differential calorimeter, and the analysis condition was a temperature increase rate of 20°C/min.
3. 폴리에스테르 칩 건조시간3. Polyester chip drying time
제조된 폴리에스테르 조성물을 칩(chip)화 후 진공건조기에서 55℃, 4시간 간격으로 수분율을 측정하였고, 측정결과 수분율 100ppm 이하로 측정되었을 때 시간을 건조시간으로 나타내었다.After the polyester composition was chipped, the moisture content was measured in a vacuum dryer at 55° C. at 4 hour intervals, and the time was expressed as drying time when the moisture content was 100 ppm or less as a result of the measurement.
4. 단섬유 저장안정성4. Short fiber storage stability
제조된 심초형 복합섬유 500g에 대해 온도 40℃, 상대습도 45%인 챔버에서 압력 2kgf/㎠을 가해 3일간 방치하여 섬유간 융착 상태를 전문가 10인이 육안으로 관찰했고, 그 결과 융착이 미발생한 경우를 10점, 전부 융착이 발생한 경우를 0점으로 기준해서 0 ~ 10점으로 평가한 뒤, 평균값을 계산했다. 그 결과 평균값이 9.0 이상인 경우 매우 우수(◎), 7.0 이상 9.0 미만인 경우 우수(○), 5.0 이상 7.0 미만은 보통(△), 5.0 미만은 나쁨(X)으로 나타내었다.For 500 g of the manufactured core sheath type composite fiber, 10 experts observed the state of fusion between the fibers with the naked eye by applying a pressure of 2 kgf/㎠ in a chamber at a temperature of 40°C and a relative humidity of 45% for 3 days. The case was evaluated as 0 to 10 points based on 10 points and 0 points for all cases of fusion, and then the average value was calculated. As a result, when the average value was 9.0 or more, it was very good (◎), when it was 7.0 or more and less than 9.0, it was excellent (○), 5.0 or more and less than 7.0 were indicated as normal (△), and less than 5.0 was indicated as bad (X).
5. 방사작업성5. Spinning workability
방사작업성은 실시예 및 비교예별로 동일함량으로 방사된 심초형 복합섬유 에 대해서 방사 가공 중 드립(구금을 통과하는 섬유가닥들이 일부 융착되거나 사절 이후 가닥들이 불규칙하게 융착되어 형성된 덩어리를 의미함) 발생 수치를 드립 감지기를 통해 카운팅하였고, 실시예1에서의 드립발생 수치를 100으로 기준해서 나머지 실시예 및 비교예에서 발생한 드립 개수를 상대적인 백분율로 표시하였다. Spinning workability occurs during spinning process for core sheath type composite fibers spun in the same amount for each Example and Comparative Example (means a lump formed by fusion of some of the fiber strands passing through the detention or irregular fusion of strands after trimming) Numerical values were counted through a drip detector, and the number of drips generated in the remaining Examples and Comparative Examples was expressed as a relative percentage based on the number of drip occurrences in Example 1 as 100.
6. 염착율 평가6. Evaluation of dyeing rate
심초형 복합섬유 중량을 기준으로 2중량%의 블루(blue)염료를 포함하는 염액에 대해, 욕비 1:50으로 90℃에서 60분 동안 염착공정을 수행한 후, 일본의 구라보(KURABO) 회사의 색채측정 시스템을 이용해 염색된 복합섬유에 대한 가시영역(360 ~ 740nm, 10nm 간격)의 분광반사율을 측정한 후, CIE 1976 규격에 의거한 염착량의 지표인 Total K/S 값을 산출해 염료의 색수득률을 평가하였다. After performing a dyeing process at 90° C. for 60 minutes at a bath ratio of 1:50 for a dye solution containing 2% by weight of blue dye based on the weight of the core sheath type composite fiber, Japan's KURABO After measuring the spectral reflectance of the visible region (360 ~ 740nm, 10nm interval) of the dyed composite fiber using the company's color measurement system, the Total K/S value, an index of the amount of dyeing according to the CIE 1976 standard, was calculated. The color yield of the dye was evaluated.
7. 접착강도7. Adhesive strength
제조된 심초형 복합섬유와 폴리에틸렌테레프탈레이트(PET) 단섬유(섬유장 51㎜, 섬도 4.0de)를 5: 5로 혼섬 및 개섬한 뒤 120℃, 140℃? 및 160℃의 온도조건으로 열처리하여 평량이 35g/㎡인 핫멜트 부직포를 구현하였고, 가로, 세로 및 두께가 각각 100mmХ20mmХ10mm인 시편으로 구현하여 KS M ISO 36 방법에 의거하여 UTM(universal testing machine)을 이용하여 접착강도를 측정하였다.After blending and opening the core sheath type composite fiber and polyethylene terephthalate (PET) short fiber (fiber length 51㎜, fineness 4.0de) to 5: 5, 120℃, 140℃? And a hot melt nonwoven fabric having a basis weight of 35g/m2 by heat treatment at a temperature of 160°C, and implemented as a specimen with a width, length and thickness of 100mmХ20mmХ10mm, respectively, using a universal testing machine (UTM) based on the KS M ISO 36 method. The adhesive strength was measured.
한편, 열처리 시 과도한 수축으로 인해 형태가 변형된 경우 접착강도를 평가하지 않고, '형태변형'으로 평가하였다. On the other hand, when the shape was deformed due to excessive shrinkage during heat treatment, the adhesive strength was not evaluated but evaluated as'shape deformation'.
8. 소프트 촉감8. Soft touch
접착강도의 평가를 위해 140℃의 온도 조건으로 열처리 되어 제조된 부직포에 대해서 10명의 동종업계 전문가로 이루어진 그룹에 의한 관능검사를 실시하였고, 평가 결과 8명 이상이 소프트 하다고 판단할 경우 우수(◎), 6~7명은 양호(○), 5~4명은 보통(△), 4명 미만은 불량(×)으로 구분하였다.For the evaluation of the adhesive strength, a sensory test by a group of 10 experts in the same industry was conducted on the nonwoven fabric manufactured by heat treatment at a temperature of 140℃, and the evaluation result is excellent (◎) if more than 8 people are judged to be soft. , 6 to 7 were classified as good (○), 5 to 4 were normal (△), and less than 4 were classified as bad (×).
Figure PCTKR2020006267-appb-T000001
Figure PCTKR2020006267-appb-T000001
Figure PCTKR2020006267-appb-T000002
Figure PCTKR2020006267-appb-T000002
Figure PCTKR2020006267-appb-T000003
Figure PCTKR2020006267-appb-T000003
표 1 내지 표 3을 통해 확인할 수 있듯이, As can be seen through Tables 1 to 3,
비교예들은 건조시간이 현저히 연장되거나(비교예1 내지 3), 방사작업성이 현저히 좋지 않거나(비교예2, 비교예3), 단섬유 저장안정성이 매우 나빠지거나(비교예2, 비교예3), 온도별 접착강도 평가에서 형태가 변형(비교예4)된 것을 확인할 수 있어서 모든 물성을 동시에 만족시킬 수 없음을 확인할 수 있으나, 실시예들은 모든 물성을 우수한 수준으로 발현하고 있는 것을 확인할 수 있다.In Comparative Examples, the drying time was remarkably extended (Comparative Examples 1 to 3), spinning workability was remarkably poor (Comparative Example 2, Comparative Example 3), or short fiber storage stability was very poor (Comparative Examples 2 and 3). ), it can be confirmed that the shape is deformed (Comparative Example 4) in the evaluation of the adhesive strength by temperature, so it can be confirmed that all physical properties cannot be satisfied at the same time, but it can be seen that the examples express all physical properties at an excellent level. .
한편, 실시예에서도 화학식 1로 표시되는 화합물보다 화학식 2로 표시되는 화합물의 함량이 더 많이 포함된 실시예15는 다른 실시예에 비해 온도별 접착강도 평가에서 형태가 변형되어 목적하는 물성을 달성하기에 부적합한 것을 확인할 수 있다.On the other hand, in Example 15, in which the content of the compound represented by Formula 2 was higher than that of the compound represented by Formula 1, the shape was changed in the adhesive strength evaluation by temperature compared to other examples to achieve the desired physical properties. It can be confirmed that it is not suitable for.
<실시예15 ~ 실시예 18><Examples 15 to 18>
실시예1과 동일하게 실시하여 제조하되, 소취제의 함량을 하기 표 4와 같이 변경하여 심초형 복합섬유를 제조하였다.It was prepared in the same manner as in Example 1, but the content of the deodorant was changed as shown in Table 4 to prepare a core sheath type composite fiber.
<비교예5><Comparative Example 5>
실시예1과 동일하게 실시하여 제조하되, 소취제를 투입하지 않고 표 4와 같은 심초형 복합섬유를 제조하였다.Manufacturing was carried out in the same manner as in Example 1, but without adding a deodorant, a core sheath type composite fiber as shown in Table 4 was prepared.
<실험예2><Experimental Example 2>
실시예1, 15 ~ 18, 비교예1 및 비교예5에 따른 심초형 복합섬유를 이용해서 하기의 물성을 평가했고, 그 결과를 표 4에 나타내었다.The following physical properties were evaluated using the core sheath type composite fibers according to Examples 1, 15 to 18, Comparative Examples 1 and 5, and the results are shown in Table 4.
1. 방사작업성1. Spinning workability
실험예1과 동일한 방법으로 방사작업성을 평가하였다.Spinning workability was evaluated in the same manner as in Experimental Example 1.
2. 수분 및 광에 대한 저장 안정성2. Storage stability against moisture and light
심초형 복합섬유를 130℃에서 열처리하여 부직포를 제조하였다. 제조된 부직포를 소정의 크기로 잘라서 각 실시예 및 비교예별로 시편을 2개씩 준비한 뒤, 미리 준비된 UV램프가 구비된 항온항습 챔버 내 준비된 시편 1개(시편1)를 투입하였고, 온도 25℃, 상대습도 50%RH, 자외선을 300mJ/㎠의 세기로 30일간 조사하였다. 수분 및 광에 대한 저장안정성은 항온항습 챔버에서 30일간 저장된 시편의 인장강도와 항온항습 챔버에 투입되지 않은 나머지 시편 1개(시편2, 미처리 시편)의 인장강도를 각각 측정하여 하기의 식을 통해 도출하였고, 그 값이 클수록 외부의 수분이나 자외선 등의 광에 의한 기계적 강도의 저하가 큰 것으로 평가할 수 있다. 이때 상기 시편2의 인장강도는 시편1을 항온항습 챔버에 투입하여 평가를 시작할 시점에서 측정하였다.The core sheath type composite fiber was heat-treated at 130°C to prepare a nonwoven fabric. The prepared nonwoven fabric was cut into a predetermined size, and two specimens were prepared for each Example and Comparative Example, and then one prepared specimen (Sample 1) in a constant temperature and humidity chamber equipped with a UV lamp prepared in advance was added, and a temperature of 25°C, Relative humidity of 50%RH and ultraviolet rays were irradiated for 30 days at an intensity of 300mJ/cm2. The storage stability against moisture and light is determined by measuring the tensile strength of the specimen stored for 30 days in the constant temperature and humidity chamber and the tensile strength of the remaining specimens (specimen 2, untreated specimen) that were not put into the constant temperature and humidity chamber, respectively. It was derived, and it can be evaluated that the higher the value, the greater the decrease in mechanical strength caused by external moisture or light such as ultraviolet rays. At this time, the tensile strength of the specimen 2 was measured at the point of starting the evaluation by putting the specimen 1 into a constant temperature and humidity chamber.
[식][expression]
기계적 강도 저하율(%) = [(시편2의 인장강도(N) - 시편1의 인장강도(N))/시편2의 인장강도(N)] ×100Mechanical strength reduction rate (%) = [(Tensile strength of specimen 2 (N)-Tensile strength of specimen 1 (N))/Tensile strength of specimen 2 (N)] ×100
3. 가스 저감율3. Gas reduction rate
심초형 복합섬유를 130℃에서 열처리하여 부직포를 제조한 뒤, 10㎝ × 10㎝로 절단하여 시편을 준비했다. 준비된 시편을 3L 테들러 백에 넣고 대상가스와 청정공기를 주입하여 밀봉한 다음, 120분 경과 후 각각의 농도를 가스텍검지관법으로 측정하여 하기 계산식1로부터 가스 저감율을 계산하였다.The core-sheath type composite fiber was heat-treated at 130°C to prepare a nonwoven fabric, and then cut into 10cm×10cm to prepare a specimen. The prepared specimen was put in a 3L Tedler bag and sealed by injecting the target gas and clean air, and after 120 minutes, the respective concentrations were measured by the gastec detection tube method, and the gas reduction rate was calculated from the following calculation formula 1.
[계산식 1][Calculation 1]
저감율(%) = [(Cb - Ca)/Cb ]× 100Reduction rate (%) = [(C b -C a )/C b ]× 100
이때, 상기 계산식1에서 Cb 는 공시험 농도, Ca 는 시료농도를 나타낸다.At this time, in the above formula 1, C b represents a blank test concentration, and C a represents a sample concentration.
4. 흡수성4. Absorbency
흡수성은 바이렉법을 이용하였으며, 가스 저감율 평가를 위해 제조된 부직포를 2.5cm × 20cm로 절단한 시편을 제작한 후, 아래쪽을 수조에 침수하여 모세관 현상에 의해 시편에 흡수되는 높이를 10분 동안 측정하였다.Absorption was performed using the Virec method, and after making a specimen obtained by cutting the prepared nonwoven fabric into 2.5cm × 20cm to evaluate the gas reduction rate, the lower part was immersed in a water bath, and the height absorbed by the specimen by capillary phenomenon was measured for 10 minutes. I did.
Figure PCTKR2020006267-appb-T000004
Figure PCTKR2020006267-appb-T000004
표 4를 참조하여 확인할 수 있듯이, As can be seen by referring to Table 4,
소취제를 포함한 실시예들은 비교예 5에 대비해 가스저감율, 방사작업성, 친수성 및 광/수분에 의한 저장안정성을 동시에 만족하기에 유리한 것을 확인할 수 있다. It can be seen that the examples including the deodorant are advantageous in simultaneously satisfying the gas reduction rate, spinning workability, hydrophilicity, and storage stability due to light/moisture compared to Comparative Example 5.
또한, 화학식 2의 화합물을 불포함하는 비교예1의 경우 소취제를 포함하는 경우에 있어서도 동일함량으로 소취제를 포함한 실시예1에 대비해 흡수성, 방사작업성 및 광/수분에 의한 저장안정성에 있어서 좋지 못한 것을 확인할 수 있다. In addition, in the case of Comparative Example 1 that does not contain the compound of Formula 2, even when the deodorant is included, it is not good in absorbency, spinning workability, and storage stability due to light/moisture compared to Example 1 including the deodorant in the same amount. I can confirm.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although an embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiment presented in the present specification, and those skilled in the art who understand the spirit of the present invention can add components within the scope of the same idea. It will be possible to easily propose other embodiments by changing, deleting, adding, etc., but it will be said that this is also within the scope of the present invention.

Claims (13)

  1. 테레프탈산을 포함하는 산성분, 및 에틸렌글리콜과 하기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 포함하는 디올성분이 반응된 에스테르화 화합물이 중·축합된 코폴리에스테르 및 소취제를 포함하는 열접착성 섬유용 폴리에스테르 조성물.Heat containing a copolyester and a deodorant in which an acidic component containing terephthalic acid, and an esterified compound in which ethylene glycol and a diol component including a compound represented by the following formula (1) and a diol component (2) are reacted are polycondensed and a deodorant Polyester composition for adhesive fibers.
    [화학식 1][Formula 1]
    Figure PCTKR2020006267-appb-I000011
    Figure PCTKR2020006267-appb-I000011
    [화학식 2][Formula 2]
    Figure PCTKR2020006267-appb-I000012
    Figure PCTKR2020006267-appb-I000012
  2. 제1항에 있어서, The method of claim 1,
    상기 디올성분은 디에틸렌글리콜을 포함하지 않는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.The diol component is a polyester composition for heat-adhesive fibers, characterized in that it does not contain diethylene glycol.
  3. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 함량 총합은 상기 디올성분 중 30 ~ 45 몰%로 포함되는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.The total content of the compound represented by Formula 1 and the compound represented by Formula 2 is a polyester composition for heat-adhesive fibers, characterized in that contained in 30 to 45 mol% of the diol component.
  4. 제1항에 있어서,The method of claim 1,
    상기 산성분은 이소프탈산을 산성분을 기준으로 1 ~ 10몰%로 더 포함하는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.The acid component is a polyester composition for heat-adhesive fibers, characterized in that it further comprises 1 to 10 mol% of isophthalic acid based on the acid component.
  5. 제1항에 있어서,The method of claim 1,
    블루 및 레드 염료를 포함하는 보색제를 폴리에스테르 조성물 전체 중량을 기준으로 1 ~ 10ppm 더 포함하는 열접착성 섬유용 폴리에스테르 조성물.A polyester composition for heat-adhesive fibers further comprising 1 to 10 ppm of a complementary colorant including blue and red dyes based on the total weight of the polyester composition.
  6. 제1항에 있어서,The method of claim 1,
    상기 디올성분 중 상기 화학식 1로 표시되는 화합물은 디올성분을 기준으로 20 ~ 40몰%, 상기 화학식 2로 표시되는 화합물은 디올성분을 기준으로 1 ~ 10몰%로 포함되는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.Among the diol components, the compound represented by Formula 1 is contained in an amount of 20 to 40 mol% based on the diol component, and the compound represented by the formula 2 is contained in an amount of 1 to 10 mol% based on the diol component. Polyester composition for sex fibers.
  7. 제1항에 있어서, The method of claim 1,
    상기 소취제는 전이금속이 도핑된 광촉매 산화물로서, 폴리에스테르 조성물 전체 중량을 기준으로 0.3 ~ 5.0 중량% 구비되는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.The deodorant is a photocatalyst oxide doped with a transition metal, and is provided in an amount of 0.3 to 5.0% by weight based on the total weight of the polyester composition.
  8. 제1항에 있어서, The method of claim 1,
    상기 코폴리에스테르 전체 중량을 기준으로 티타늄계 중합촉매가 Ti 원소량 기준 5 ~ 40ppmm 더 포함되는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.A polyester composition for heat-adhesive fibers, characterized in that the titanium-based polymerization catalyst further comprises 5 to 40 ppmm based on the amount of Ti element based on the total weight of the copolyester.
  9. 제1항에 있어서, The method of claim 1,
    상기 코폴리에스테르 전체 중량을 기준으로 인계 열안정제가 P 원소량 기준 10 ~ 30 ppm 더 포함되는 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물. A polyester composition for heat-adhesive fibers, characterized in that the phosphorus-based thermal stabilizer further comprises 10 to 30 ppm based on the amount of P element based on the total weight of the copolyester.
  10. 제1항에 있어서, The method of claim 1,
    융점이 없고, 연화거동을 보이며, 유리전이온도가 60 ~ 75℃ 인 것을 특징으로 하는 열접착성 섬유용 폴리에스테르 조성물.There is no melting point, exhibits a softening behavior, and a heat-adhesive fiber polyester composition, characterized in that the glass transition temperature is 60 ~ 75 ℃.
  11. 제1항에 따른 열접착성 섬유용 폴리에스테르 조성물을 포함하는 폴리에스테르 칩.Polyester chip comprising the polyester composition for heat-adhesive fibers according to claim 1.
  12. 심부; 및Deep; And
    상기 심부를 둘러싸는 제1항에 따른 열접착성 섬유용 폴리에스테르 조성물을 포함하는 초부;를 포함하는 열접착성 복합섬유.A heat-adhesive composite fiber comprising; a sheath comprising the polyester composition for heat-adhesive fibers according to claim 1 surrounding the core.
  13. 제12항에 따른 열접착성 복합섬유를 포함하여 소정의 형상으로 성형된 부직포.A nonwoven fabric formed into a predetermined shape, including the heat-adhesive composite fiber according to claim 12.
PCT/KR2020/006267 2019-05-13 2020-05-13 Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented therethrough, and nonwoven fabric WO2020231166A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080035612.8A CN113874562B (en) 2019-05-13 2020-05-13 Polyester composition for thermal bonding fiber, thermal bonding composite fiber and nonwoven fabric obtained therefrom
JP2021515614A JP7154400B2 (en) 2019-05-13 2020-05-13 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same
JP2021189399A JP7301935B2 (en) 2019-05-13 2021-11-22 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0055705 2019-05-13
KR1020190055705A KR102172280B1 (en) 2019-05-13 2019-05-13 Thermal adhesive polyester composition, thermal adhesive polyester complex-fiber comprising the same, and non-woven fabric

Publications (1)

Publication Number Publication Date
WO2020231166A1 true WO2020231166A1 (en) 2020-11-19

Family

ID=73048309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006267 WO2020231166A1 (en) 2019-05-13 2020-05-13 Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented therethrough, and nonwoven fabric

Country Status (4)

Country Link
JP (2) JP7154400B2 (en)
KR (1) KR102172280B1 (en)
CN (1) CN113874562B (en)
WO (1) WO2020231166A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419939B1 (en) * 2019-12-27 2022-07-11 도레이첨단소재 주식회사 Wet-laid nonwoven fabrics and article comprising the same
KR102648800B1 (en) * 2021-08-09 2024-03-15 도레이첨단소재 주식회사 Polyester resin, preparing method thereof, thermally adhesive polyester fiber made thereof
KR20230119466A (en) * 2022-02-07 2023-08-16 도레이첨단소재 주식회사 Polyester composition for film containing titanium-based catalyst and method for manufacturing the same
KR20240043990A (en) * 2022-09-28 2024-04-04 도레이첨단소재 주식회사 Thermally adhesive sheath-core composite fiber having low-shrinkage and high-bulky property and Non-woven of sanitary products containing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206860A (en) * 2004-12-27 2006-08-10 Toyobo Co Ltd Manufacturing method of polyester resin
KR20160079347A (en) * 2014-12-26 2016-07-06 도레이케미칼 주식회사 low melting polyester complex fiber having soft touch
KR20180013118A (en) * 2016-07-28 2018-02-07 신동수 Polyester fiber having antimicrobial effect
WO2018147251A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric
KR20190033712A (en) * 2017-09-22 2019-04-01 (주)영원코포레이션 Method Of Producing Antibacterial and Deodorizing Fabrics Having Excellent Stretch And Comfortness

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT290131B (en) * 1967-12-15 1971-05-25 Alpine Chemische Ag Process for the production of polyesters and copolyesters
CA1103842A (en) * 1977-05-04 1981-06-23 Joseph Lacona Process for reducing the processing time in the production of polyesters
JPH04139212A (en) * 1990-09-28 1992-05-13 Chisso Corp Modified polyester resin and heat bonding conjugate fiber using the same
AUPM316193A0 (en) * 1993-12-24 1994-01-27 Bhp Steel (Jla) Pty Limited Thermosetting polyester resin
JPH0959825A (en) * 1995-06-13 1997-03-04 Nippon Ester Co Ltd Polyester conjugated fiber
CN103874732B (en) 2012-01-30 2016-09-07 东丽株式会社 Normal pressure dispersion dyeable polyester composition, its manufacture method and the fiber formed by it and the formed body formed by it
JP2016113615A (en) * 2014-12-10 2016-06-23 ユニチカ株式会社 Polyester resin and laminate using the same
WO2017150747A1 (en) * 2016-02-29 2017-09-08 (주)휴비스 Low melting point conjugate fiber
KR102061805B1 (en) * 2018-06-27 2020-01-03 도레이첨단소재 주식회사 Thermal adhesive polyester composition, thermal adhesive polyester complex-fiber comprising the same, and non-woven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206860A (en) * 2004-12-27 2006-08-10 Toyobo Co Ltd Manufacturing method of polyester resin
KR20160079347A (en) * 2014-12-26 2016-07-06 도레이케미칼 주식회사 low melting polyester complex fiber having soft touch
KR20180013118A (en) * 2016-07-28 2018-02-07 신동수 Polyester fiber having antimicrobial effect
WO2018147251A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric
KR20190033712A (en) * 2017-09-22 2019-04-01 (주)영원코포레이션 Method Of Producing Antibacterial and Deodorizing Fabrics Having Excellent Stretch And Comfortness

Also Published As

Publication number Publication date
CN113874562A (en) 2021-12-31
KR102172280B1 (en) 2020-10-30
JP7301935B2 (en) 2023-07-03
JP2022033806A (en) 2022-03-02
CN113874562B (en) 2023-11-24
JP2022501526A (en) 2022-01-06
JP7154400B2 (en) 2022-10-17

Similar Documents

Publication Publication Date Title
WO2020231166A1 (en) Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented therethrough, and nonwoven fabric
WO2020004732A1 (en) Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented using same, and nonwoven fabric
KR100210727B1 (en) Polyvinyl alcohol fibers excellent in resistance to boiling water and process for the production thereof
BRPI0809457A2 (en) POLYLATIC ACID COMPOSITION, POLYLATIC ACID MOLDED ARTICLE, FIBER PRODUCT, AND PROCESS FOR PRODUCTION OF A POLYLATIC ACID FIBER
WO2021071250A1 (en) Thermal bonding fiber, and fiber assembly for automotive interior and exterior materials, comprising same
WO2021133114A1 (en) Wet non-woven fabric and article comprising same
WO2018124832A1 (en) Lyocell fiber, nonwoven fabric aggregate comprising same, and mask pack sheet comprising same
WO2021071251A1 (en) Thermally adhesive fiber and fiber aggregate comprising same for motor vehicle interior material
WO2021133116A1 (en) Fibre aggregate for vehicle interior material, and vehicle interior material comprising same
WO2020004803A1 (en) Polyester composition for thermally adhesive fiber, and thermally adhesive composite fiber comprising same
WO2022086062A1 (en) Polyester staple yarn for wet non-woven fabric, wet non-woven fabric comprising same, and preparation method therefor
WO2015076540A1 (en) Copolyester readily soluble in alkali, for preparing conjugate fiber, preparation method therefor, and conjugate fiber containing same
WO2022019625A1 (en) Copolyester resin for binder fiber, method for preparing same, and binder fiber comprising same
WO2023018049A1 (en) Polyester resin and method for preparing same, and thermally adhesive polyester fiber prepared therefrom
KR102415149B1 (en) Fiber assembly for automobile interior material and automobile interior material comprising the same
JPH0238421A (en) Production of modified polyester
KR102410331B1 (en) Fiber assembly for automobile interior material and automobile interior material comprising the same
KR960011604B1 (en) Highly-soluble polyester resin compositions and fiber
WO2023113144A1 (en) Sheath-core conjugated fiber for supporter of water treatment separation membrane, supporter comprising same for water treatment separation membrane, water treatment separation membrane comprising same, and filter module comprising same
KR100493110B1 (en) Thermoplastic Synthetic Fiber Nonwoven Fabric and its Manufacturing Method
KR20220105383A (en) Thermal adhesive fiber, polyester chip for thermal adhesive fiber, fabric comprising the same
WO2023022421A1 (en) Tricot filtration fabric with which there is no release of heavy metals and method for manufacturing same
EP1493853B1 (en) Modified polyester fiber and process for producing the same
JP3072907B2 (en) Underwear
WO2022039483A1 (en) Polyester yarn, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806656

Country of ref document: EP

Kind code of ref document: A1