JP2022033806A - Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented using the same, and nonwoven fabric - Google Patents

Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented using the same, and nonwoven fabric Download PDF

Info

Publication number
JP2022033806A
JP2022033806A JP2021189399A JP2021189399A JP2022033806A JP 2022033806 A JP2022033806 A JP 2022033806A JP 2021189399 A JP2021189399 A JP 2021189399A JP 2021189399 A JP2021189399 A JP 2021189399A JP 2022033806 A JP2022033806 A JP 2022033806A
Authority
JP
Japan
Prior art keywords
polyester composition
heat
chemical formula
compound represented
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021189399A
Other languages
Japanese (ja)
Other versions
JP7301935B2 (en
Inventor
ジョン ファン リー
Jong-Hwan Lee
ユング ヒョン チェ
Do Hyun Kim
ド ヒュン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Materials Korea Inc
Original Assignee
Toray Advanced Materials Korea Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Materials Korea Inc filed Critical Toray Advanced Materials Korea Inc
Publication of JP2022033806A publication Critical patent/JP2022033806A/en
Application granted granted Critical
Publication of JP7301935B2 publication Critical patent/JP7301935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/022Moisture-responsive characteristics hydrophylic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a polyester composition for a thermally adhesive fiber, more specifically, a polyester composition for a thermally adhesive fiber that has an excellent spinning property and excellent thermal adhesion with respect to a fiber, that minimizes aging and improves a store stability at room temperature, and can have an excellent feel when implemented in a product, and that has an excellent deodorizing property and hydrophilic property; a thermally adhesive composite fiber implemented using the same; and a nonwoven fabric.
SOLUTION: There is provided a polyester composition for a thermally adhesive fiber, which comprises: an acid component including terephthalic acid; a co-polyester in which polycondensation of an esterified compound obtained by reacting ethylene glycol and a specific diol component is performed; and a deodorant.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

発明の詳細な説明Detailed description of the invention

[技術分野]
本発明は、熱接着性繊維用ポリエステル組成物に関し、より詳細には、繊維への紡糸性、広い温度範囲で熱接着性に優れ、夏期の保存条件でも経時変化が最小化され、保存安定性が向上し、具現された製品において優れた触感、消臭特性および吸湿性を発現できる熱接着性繊維用ポリエステル組成物、これを通じて具現された熱接着性複合繊維および不織布に関する。
[背景技術]
[Technical field]
The present invention relates to a polyester composition for heat-adhesive fibers, more specifically, excellent in spinnability to fibers, heat-adhesiveness in a wide temperature range, minimal change over time even under storage conditions in summer, and storage stability. The present invention relates to a polyester composition for a heat-adhesive fiber capable of exhibiting excellent tactile sensation, deodorizing properties and hygroscopicity in the embodied product, and the heat-adhesive composite fiber and the non-woven fabric embodied therein.
[Background technology]

一般的に、合成繊維は、融点が高くて用途が制限される場合が少なくない。特に繊維等の接着用途において芯等の用途やテープ状の織物の間に挿入して加圧接着する接着剤として使用される場合には、加熱によって繊維織物自体が劣化することがあり、高周波ミシンのような特殊な装備を使用しなければならないという煩わしさがあるので、このような特殊装備を利用することなく、通常の簡単な加熱プレスにより容易に接着することが要望されている。 In general, synthetic fibers have a high melting point, which often limits their use. In particular, when it is used as an adhesive for bonding fibers, etc., such as a core, or as an adhesive that is inserted between tape-shaped fabrics and pressure-bonded, the fiber fabric itself may deteriorate due to heating, and a high-frequency sewing machine Since there is the trouble of having to use special equipment such as, there is a demand for easy bonding by a normal simple heating press without using such special equipment.

従来の低融点ポリエステル繊維は、マットレス、自動車用内蔵材または各種不織布のパッティング用途に製造時に使用される相互繊維構造物において異種の繊維を接着する目的でホットメルト(Hot Melt)型バインダー繊維が幅広く使用されてきた。 Conventional low melting point polyester fibers are widely used as hot melt type binder fibers for the purpose of adhering different kinds of fibers in a mutual fiber structure used at the time of manufacturing for putting of mattresses, built-in materials for automobiles or various non-woven fabrics. Has been used.

例えば、米国登録特許第4,129,675号には、テレフタル酸(terephthalic acid:TPA)とイソフタル酸(isophthalic acid:IPA)を利用して共重合された低融点ポリエステルが紹介されており、また、韓国登録特許第10-1216690号には、接着性を改善させるためのイソフタル酸、ジエチレングリコールを含んで具現された低融点ポリエステル繊維を開示している。 For example, US Registered Patent No. 4,129,675 introduces a low melting point polyester copolymerized using terephthalic acid (TPA) and isophthalic acid (IPA). , Korea Registered Patent No. 10-1216690 discloses a low melting point polyester fiber embodied containing isophthalic acid and diethylene glycol for improving adhesiveness.

しかしながら、上記のような従来の低融点ポリエステル繊維は、一定水準以上の紡糸性および接着性を有することができるが、剛直な改質剤の環構造によって熱接着後にかたい感じの不織布または織物構造体を得る問題点がある。 However, the conventional low melting point polyester fiber as described above can have a certain level of spinnability and adhesiveness, but has a non-woven fabric or woven structure that feels hard after thermal bonding due to the ring structure of the rigid modifier. There is a problem of getting a body.

また、バインダー特性の発現のために、低い融点や低いガラス転移温度を有する方向に開発が進行されることによって、具現されたポリエステルの耐熱性が悪くなって、夏期に40℃を超える保存条件でも経時変化が顕著に発生し、保存中に発生するポリエステルチップや繊維間結合が発生して、保存安定性も顕著に低下する問題がある。 In addition, due to the development of a low melting point and a low glass transition temperature due to the development of binder properties, the heat resistance of the embodied polyester deteriorates, and even under storage conditions exceeding 40 ° C in summer. There is a problem that the change with time is remarkably generated, polyester chips and interfiber bonds generated during storage are generated, and the storage stability is remarkably lowered.

ひいては、従来の低融点ポリエステル繊維を利用して製造された不織布は、高分子自体が親水性が殆どないため、衛生材料の用途に使用する場合には、体液を吸収しない問題がある。 As a result, the non-woven fabric produced by using the conventional low melting point polyester fiber has a problem that it does not absorb body fluid when it is used as a sanitary material because the polymer itself has almost no hydrophilicity.

したがって、従来の低融点ポリエステル繊維が有する紡糸性および接着性を維持または改善させることができると共に、顕著に改善された触感、染着特性と共に、常温での経時変化を最小化し、保存安定性を向上させることができ、親水性を向上させて吸湿性が要求される用途にも使用可能な熱接着性ポリエステル繊維に対する開発が求められているのが現状である。
[発明の概要]
[発明が解決しようとする課題]
Therefore, it is possible to maintain or improve the spinnability and adhesiveness of conventional low melting point polyester fibers, and at the same time, with significantly improved tactile sensation and dyeing characteristics, the change with time at room temperature is minimized and storage stability is improved. At present, there is a demand for the development of heat-adhesive polyester fibers that can be improved and that can be used in applications that require improved hydrophilicity and hygroscopicity.
[Outline of the invention]
[Problems to be solved by the invention]

本発明は、上記のような点に鑑みてなされたものであって、その目的は、繊維への紡糸性に優れ、優れた熱接着性を発現すると同時に、応用された物品において顕著に改善された触感と染着特性を発現することができ、ひいては、常温で経時変化が最小化され、保存安定性が向上した熱接着性繊維用ポリエステル組成物、これを通じて具現された熱接着性複合繊維および不織布を提供することにある。 The present invention has been made in view of the above points, and an object thereof is excellent in spinnability to fibers, excellent thermal adhesion is exhibited, and at the same time, it is remarkably improved in an applied article. Polyester compositions for heat-adhesive fibers that are capable of exhibiting tactile sensation and dyeing properties, with minimal change over time at room temperature and improved storage stability, and the heat-adhesive composite fibers embodied through them. The purpose is to provide non-woven fabrics.

また、本発明の他の目的は、消臭特性が向上し、親水性を向上させて吸湿性が要求される用途にも用途展開が拡大され得る熱接着性繊維用ポリエステル組成物、これを通じて具現された熱接着性複合繊維および不織布を提供することにある。
[課題を解決するための手段]
Another object of the present invention is a polyester composition for heat-adhesive fibers, which can be expanded to applications where deodorizing properties are improved, hydrophilicity is improved, and hygroscopicity is required. The present invention is to provide a heat-adhesive composite fiber and a non-woven fabric.
[Means to solve problems]

上述した課題を解決するために、本発明は、テレフタル酸を含む酸成分、およびエチレングリコールと下記化学式1で表される化合物および化学式2で表される化合物を含むジオール成分が反応したエステル化化合物が重縮合されたコポリエステルおよび消臭剤を含む熱接着性繊維用ポリエステル組成物を提供する。 In order to solve the above-mentioned problems, the present invention presents an esterified compound in which an acid component containing terephthalic acid and a diol component containing ethylene glycol and a compound represented by the following chemical formula 1 and a compound represented by the chemical formula 2 are reacted. Provided is a polyester composition for heat-adhesive fibers, which comprises polycondensed copolyester and a deodorant.

Figure 2022033806000002
Figure 2022033806000002

Figure 2022033806000003
Figure 2022033806000003

本発明の実施例によれば、前記化学式1で表される化合物と化学式2で表される化合物の含量の総和は、前記ジオール成分中に30~45モル%で含まれ得る。 According to the embodiment of the present invention, the total content of the compound represented by the chemical formula 1 and the compound represented by the chemical formula 2 can be contained in the diol component in an amount of 30 to 45 mol%.

また、前記ジオール成分中に、化学式1で表される化合物の含量(モル%)が、化学式2で表される化合物の含量(モル%)よりさらに大きくてもよい。 Further, the content (mol%) of the compound represented by the chemical formula 1 in the diol component may be further larger than the content (mol%) of the compound represented by the chemical formula 2.

また、前記ジオール成分は、ジエチレングリコールを実質的に含まなくてもよい。 Further, the diol component may be substantially free of diethylene glycol.

また、前記酸成分は、イソフタル酸を、酸成分を基準として1~10モル%でさらに含まれ得る。 Further, the acid component may further contain isophthalic acid in an amount of 1 to 10 mol% based on the acid component.

また、前記ジオール成分中に、前記化学式1で表される化合物は1~40モル%、前記化学式2で表される化合物は1~20モル%で含まれ得、より好ましくは、前記ジオール成分中に、前記化学式1で表される化合物は20~40モル%、前記化学式2で表される化合物は1~10モル%、より好ましくは、前記化学式1で表される化合物は30~40モル%、前記化学式2で表される化合物は1~6モル%で含まれ得る。 Further, the compound represented by the chemical formula 1 may be contained in an amount of 1 to 40 mol%, and the compound represented by the chemical formula 2 may be contained in an amount of 1 to 20 mol%, more preferably in the diol component. In addition, the compound represented by the chemical formula 1 is 20 to 40 mol%, the compound represented by the chemical formula 2 is 1 to 10 mol%, and more preferably, the compound represented by the chemical formula 1 is 30 to 40 mol%. , The compound represented by the chemical formula 2 may be contained in an amount of 1 to 6 mol%.

また、前記酸成分は、イソフタル酸をさらに含み、前記コポリエステル中に、前記イソフタル酸、前記化学式1で表される化合物、化学式2で表される化合物の含量の総和は、55モル%以下で含まれ得る。 Further, the acid component further contains isophthalic acid, and the total content of the isophthalic acid, the compound represented by the chemical formula 1 and the compound represented by the chemical formula 2 in the copolyester is 55 mol% or less. Can be included.

また、ブルーおよびレッド染料を含む補色剤を、ポリエステル組成物の総重量に基づいて、1~10ppmさらに含むことができる。 Also, complementary colors containing blue and red dyes can be further included at 1-10 ppm based on the total weight of the polyester composition.

また、前記消臭剤は、遷移金属がドープされた光触媒酸化物であり、ポリエステル組成物の総重量に基づいて、0.3~5.0重量%具備され得る。 Further, the deodorant is a photocatalytic oxide doped with a transition metal, and may be provided in an amount of 0.3 to 5.0% by weight based on the total weight of the polyester composition.

また、前記コポリエステルの総重量に基づいて、チタン系重合触媒がTi元素量を基準として5~40ppmさらに含まれ得る。 Further, based on the total weight of the copolyester, a titanium-based polymerization catalyst may be further contained in an amount of 5 to 40 ppm based on the amount of Ti element.

前記コポリエステルの総重量に基づいて、リン系熱安定剤がP元素量を基準として10~30ppmさらに含まれ得る。 Based on the total weight of the copolyester, a phosphorus-based heat stabilizer may be further contained in an amount of 10 to 30 ppm based on the amount of P element.

また、前記組成物は、融点がなく、軟化挙動を示し、ガラス転移温度が60~75℃、 より好ましくは、65~72℃でありうる。 Further, the composition has no melting point, exhibits softening behavior, and has a glass transition temperature of 60 to 75 ° C, more preferably 65 to 72 ° C.

また、前記組成物は、固有粘度が0.500~0.800dl/gでありうる。 Further, the composition may have an intrinsic viscosity of 0.500 to 0.800 dl / g.

また、本発明は、本発明による熱接着性繊維用ポリエステル組成物を含むポリエステルチップを提供する。 The present invention also provides a polyester chip containing the polyester composition for heat-adhesive fibers according to the present invention.

また、本発明は、芯部と、前記芯部を囲む本発明による熱接着性繊維用ポリエステル組成物を含む鞘部と、を含む熱接着性複合繊維を提供する。 The present invention also provides a heat-adhesive composite fiber comprising a core portion and a sheath portion comprising the polyester composition for heat-adhesive fibers according to the present invention surrounding the core portion.

また、本発明は、本発明による熱接着性複合繊維単独、または前記熱接着性複合繊維とポリエステル系繊維を含んで所定の形状に成形された不織布を提供する。 The present invention also provides a heat-adhesive composite fiber alone according to the present invention, or a nonwoven fabric containing the heat-adhesive composite fiber and a polyester-based fiber and formed into a predetermined shape.

本発明の一実施例によれば、前記不織布は、各種衛生用品、自動車用マットレス、建築用内蔵材、寝装材、衣類用保温材および農業用断熱材よりなる群から選ばれたいずれか1つでありうる。
[発明の効果]
According to one embodiment of the present invention, the nonwoven fabric is any one selected from the group consisting of various hygiene products, automobile mattresses, building built-in materials, bedding materials, clothing heat insulating materials and agricultural heat insulating materials. Can be one.
[The invention's effect]

本発明によれば、繊維への紡糸性に優れ、優れた熱接着性を発現すると同時に、応用された物品において顕著に改善された触感と、染着性を発現することができる。また、常温で経時変化が最小化され、保存安定性が向上することができる。ひいては、ポリエステル組成物をチップに製造するとき、乾燥時間を顕著に減少させて製造時間を顕著に短縮させることができる。これにより、これを利用して具現された物品も、夏期のような保存条件(例えば40℃以上)でも経時変化が最小化され、保存安定性に優れているので、物品の初回形状の変形や使用中の変形を防止することができる。また、優れた消臭特性と親水特性に起因して各種衛生用品に広く使用され得る。 According to the present invention, it is possible to exhibit excellent spinnability to fibers and excellent thermal adhesion, and at the same time, it is possible to exhibit a significantly improved tactile sensation and dyeability in an applied article. In addition, the change with time is minimized at room temperature, and the storage stability can be improved. As a result, when the polyester composition is produced into chips, the drying time can be significantly reduced and the production time can be significantly shortened. As a result, the article embodied by utilizing this is also excellent in storage stability because the change with time is minimized even under storage conditions such as summer (for example, 40 ° C or higher), so that the initial shape of the article can be deformed. It is possible to prevent deformation during use. In addition, it can be widely used in various hygiene products due to its excellent deodorant and hydrophilic properties.

本発明の一実施例による複合繊維の断面図である。It is sectional drawing of the composite fiber by one Example of this invention.

[発明を実施するための最良の形態]
以下、本発明の実施例について本発明の属する技術分野における通常の知識を有する者が容易に実施できるように詳細に説明する。本発明は、様々な異なる形態で具現され得、ここで説明する実施例に限定されない。
[Best mode for carrying out the invention]
Hereinafter, examples of the present invention will be described in detail so as to be easily carried out by a person having ordinary knowledge in the technical field to which the present invention belongs. The present invention may be embodied in a variety of different forms and is not limited to the examples described herein.

本発明による熱接着性繊維用ポリエステル組成物は、テレフタル酸を含む酸成分、およびエチレングリコールと下記化学式1で表される化合物および化学式2で表される化合物を含むジオール成分が反応したエステル化化合物が重縮合されたコポリエステルおよび消臭剤を含む。 The polyester composition for heat-adhesive fibers according to the present invention is an esterified compound obtained by reacting an acid component containing terephthalic acid and a diol component containing ethylene glycol with a compound represented by the following chemical formula 1 and a compound represented by the chemical formula 2. Includes polycondensed copolyester and deodorant.

Figure 2022033806000004
Figure 2022033806000004

Figure 2022033806000005
Figure 2022033806000005

まず、前記酸成分は、テレフタル酸を含み、それ以外にテレフタル酸でない炭素数6~14の芳香族多価カルボン酸や、炭素数2~14の脂肪族多価カルボン酸および/または、スルホン酸金属塩をさらに含むことができる。 First, the acid component contains an aromatic polyvalent carboxylic acid having 6 to 14 carbon atoms, which is not terephthalic acid, and an aliphatic polyvalent carboxylic acid having 2 to 14 carbon atoms and / or a sulfonic acid. Further metal salts can be included.

前記炭素数6~14の芳香族多価カルボン酸は、ポリエステルの製造のために使用される酸成分として公知となったものを制限なしに使用できるが、好ましくは、ジメチルテレフタレート、イソフタル酸およびジメチルイソフタレートよりなる群から選ばれたいずれか1つ以上であり得、より好ましくは、テレフタル酸との反応安定性、取り扱い容易性および経済的な観点からイソフタル酸でありうる。 As the aromatic polyvalent carboxylic acid having 6 to 14 carbon atoms, those known as acid components used for producing polyester can be used without limitation, but dimethyl terephthalate, isophthalic acid and dimethyl are preferable. It can be any one or more selected from the group consisting of isophthalates, and more preferably isophthalic acid from the viewpoint of reaction stability with terephthalic acid, ease of handling and economics.

また、炭素数2~14の脂肪族多価カルボン酸は、ポリエステルの製造のために使用される酸成分として公知となったものを制限なしに使用できるが、これに対する非制限的な例として、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、クエン酸、ピメリン酸、アゼライン酸、セバシン酸、ノナン酸、デカン酸、ドデカン酸およびヘキサデカン酸よりなる群から選ばれたいずれか1つ以上でありうる。 Further, as the aliphatic polyvalent carboxylic acid having 2 to 14 carbon atoms, those known as acid components used for producing polyester can be used without limitation, but as a non-limiting example thereof, there is no limitation. Any one selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, citric acid, pimelic acid, azelaic acid, sebacic acid, nonanoic acid, decanoic acid, dodecanoic acid and hexadecanoic acid. It can be one or more.

また、前記スルホン酸金属塩は、ソジウム3,5-ジカルボメトキシベンゼンスルホネートでありうる。 Further, the sulfonic acid metal salt may be sodium 3,5-dicarbomethoxybenzenesulfonate.

一方、前記酸成分としてテレフタル酸以外に具備され得る他の成分は、ポリエステル組成物の耐熱性を低下させることができて、好ましくは、含まない方が良い。ただし、テレフタル酸との反応安定性、取り扱い容易性および経済的観点等を考慮して他の種類の酸成分がさらに含む場合には、イソフタル酸を含んだ方が良く、この場合にも、イソフタル酸は、酸成分を基準として1~10モル%で含まれることが好ましい。もしイソフタル酸が酸成分を基準として1モル%未満で具備される場合、目的とする追加的な低い温度での高い熱接着特性を発現しにくいことがあり、10モル%を超過して具備される場合、具現される物品が固くなって、やわらかい触感を顕著に低下させ、ガラス転移温度が過度に低くなっても耐熱性の低下が問題になり得る。また、コポリエステルにおいて後述する化学式1で表される化合物、化学式2で表される化合物およびイソフタル酸の総含量が過度に増加することによって、かえって結晶を形成できる主成分として作用して、目的とする温度での熱接着特性を顕著に低下させるなど発明の目的を達成しにくいことがある。 On the other hand, other components other than terephthalic acid as the acid component can reduce the heat resistance of the polyester composition, and are preferably not contained. However, if other types of acid components are further contained in consideration of reaction stability with terephthalic acid, ease of handling, economic viewpoint, etc., it is better to contain isophthalic acid, and in this case also, isophthalic acid. The acid is preferably contained in an amount of 1 to 10 mol% based on the acid component. If isophthalic acid is provided in an amount of less than 1 mol% based on the acid component, it may be difficult to develop high thermal adhesion properties at an additional low temperature of interest, and an isophthalic acid is provided in an amount of more than 10 mol%. In this case, the embodied article becomes hard and the soft tactile sensation is remarkably lowered, and even if the glass transition temperature becomes excessively low, the deterioration of heat resistance may become a problem. Further, in copolyester, the compound represented by the chemical formula 1 described later, the compound represented by the chemical formula 2 and the total content of isophthalic acid are excessively increased, so that the compound acts as a main component capable of forming crystals. It may be difficult to achieve the object of the invention, such as significantly reducing the thermal adhesion characteristics at the temperature at which the compound is applied.

次に、前記ジオール成分は、エチレングリコールと下記化学式1で表される化合物および化学式2で表される化合物を含む。 Next, the diol component includes ethylene glycol, a compound represented by the following chemical formula 1, and a compound represented by the chemical formula 2.

Figure 2022033806000006
Figure 2022033806000006

Figure 2022033806000007
Figure 2022033806000007

まず、前記化学式1で表される化合物は、製造されるポリエステル組成物の結晶化度、ガラス転移温度を低くして、優れた熱接着性能を発現するようにすることができる。また、繊維状に製造された後、染色工程で常圧の条件で染色を可能にして染色工程をさらに容易にし、染着特性に優れていて、洗濯堅牢度が向上し、不織布等の成形物の触感を向上させることができる。好ましくは、前記ジオール成分中に、前記化学式1で表される化合物は、13~40モル%、より好ましくは、20~40モル%、さらに好ましくは、30~40モル%で含まれ得る。もし化学式1で表される化合物がジオール成分基準13モル%未満で具備される場合、紡糸性に優れているが、接着可能温度が高くなるか、熱接着特性が低下し、使用される用途が制限され得るという恐れがある。また、もし化学式1で表される化合物が40モル%を超過して具備される場合、紡糸性が良くないので、商用化が難しい問題点が発生し得、かえって結晶性が増大して熱接着特性が低下する恐れがある。 First, the compound represented by the chemical formula 1 can lower the crystallinity and the glass transition temperature of the produced polyester composition so as to exhibit excellent thermal adhesion performance. In addition, after being manufactured in the form of fibers, it is possible to dye under normal pressure conditions in the dyeing process, further facilitating the dyeing process, excellent dyeing characteristics, improved washing fastness, and molded products such as non-woven fabrics. It is possible to improve the tactile sensation of. Preferably, the compound represented by the chemical formula 1 can be contained in the diol component in an amount of 13 to 40 mol%, more preferably 20 to 40 mol%, still more preferably 30 to 40 mol%. If the compound represented by Chemical Formula 1 is provided in an amount of less than 13 mol% based on the diol component standard, it has excellent spinnability, but the bondable temperature becomes high or the thermal adhesion property deteriorates, and the application is used. There is a risk that it can be restricted. Further, if the compound represented by the chemical formula 1 is provided in an amount of more than 40 mol%, the spinnability is not good, which may cause a problem that it is difficult to commercialize the compound. The characteristics may deteriorate.

一方、好ましくは、化学式1で表される化合物が20モル%以上具備され得、これを通じて後述する化学式2で表される化合物と共にポリエステル組成物の低温での熱接着特性をさらに向上させることができ、ポリエステル組成物をチップ化させるとき、乾燥時間が顕著に短縮され得る利点がある。 On the other hand, preferably, the compound represented by the chemical formula 1 can be contained in an amount of 20 mol% or more, and through this, the thermal adhesion characteristics of the polyester composition at a low temperature can be further improved together with the compound represented by the chemical formula 2 described later. , There is an advantage that the drying time can be significantly reduced when the polyester composition is chipped.

前記化学式2で表される化合物は、上述した化学式1で表される化合物と共に製造されるポリエステル組成物の熱接着特性をさらに向上させながらも、化学式1で表される化合物のガラス転移温度の顕著な低下を防止して、40℃以上の保存温度にもかかわらず、経時変化を最小化させ、保存安定性を向上させることができる。熱接着性と関連して化学式2で表される化合物は、化学式1で表される化合物との混合使用に伴って、具現されるポリエステル組成物を利用した熱接着性繊維に適切な収縮特性を発現させ、このような特性発現によって熱接着時に点接着力をさらに増加させることによって、より上昇した熱接着特性を発現することができる。 The compound represented by the chemical formula 2 has a remarkable glass transition temperature of the compound represented by the chemical formula 1 while further improving the thermal adhesion characteristics of the polyester composition produced together with the compound represented by the chemical formula 1 described above. It is possible to prevent such a decrease, minimize the change with time, and improve the storage stability despite the storage temperature of 40 ° C. or higher. The compound represented by the chemical formula 2 in relation to the heat-adhesiveness has appropriate shrinkage characteristics for the heat-adhesive fiber using the embodied polyester composition when used in combination with the compound represented by the chemical formula 1. By expressing and further increasing the point adhesive force at the time of thermal adhesion by expressing such characteristics, it is possible to develop more enhanced thermal adhesion characteristics.

好ましくは、前記ジオール成分中に、前記化学式2で表される化合物は1~20モル%、より好ましくは、1~10モル%、さらに好ましくは、1~6モル%で含まれ得る。 Preferably, the compound represented by the chemical formula 2 can be contained in the diol component in an amount of 1 to 20 mol%, more preferably 1 to 10 mol%, still more preferably 1 to 6 mol%.

もし化学式2で表される化合物が、ジオール成分を基準として1モル%未満で含まれる場合、目的とする耐熱性の向上が難しくて、保存安定性が良くなく、経時変化が非常に大きくなり得るという恐れがある。また、上述した化学式1で表される化合物と共に使用されることによって、化学式2で表される化合物が20モル%を超過して含まれると、紡糸性が良くなくて、商用化が難しい問題点が発生することがあり、場合によって、イソフタル酸まで追加で含む場合には、結晶性が十分に低下してそれ以上の効果がなく、追加されるイソフタル酸の含量が増加するとき、かえって結晶性が増大して、目的とする温度での優れた熱接着特性を顕著に低下させることができるなど発明の目的を達成しない恐れがある。また、繊維状等に具現されるとき、収縮性が顕著に大きく発現して、加工の困難がある。 If the compound represented by Chemical Formula 2 is contained in an amount of less than 1 mol% based on the diol component, it is difficult to improve the desired heat resistance, the storage stability is not good, and the change with time may be very large. There is a fear that. Further, when used together with the compound represented by the above-mentioned chemical formula 1, if the compound represented by the chemical formula 2 is contained in an amount of more than 20 mol%, the spinnability is not good and commercialization is difficult. In some cases, when isophthalic acid is additionally contained, the crystallinity is sufficiently reduced to have no further effect, and when the content of the added isophthalic acid is increased, the crystallinity is rather crystalline. May not achieve the object of the invention, such as being able to significantly reduce excellent thermal adhesion properties at a target temperature. Further, when it is embodied in a fibrous form or the like, shrinkage is remarkably greatly exhibited, which makes processing difficult.

本発明の好ましい一実施例によれば、前記化学式1で表される化合物と化学式2で表される化合物の含量の総和は、前記ジオール成分中に30~45モル%で含まれることが好ましく、より好ましくは、33~41モル%で含まれ得る。もし30モル%未満でこれらが含まれる場合、コポリエステルの結晶性が増加して、高い融点が発現したり、軟化点を低い温度で具現したりすることが難しくなって、熱接着可能温度が顕著に高くなり、低い温度では優れた熱接着特性が発現しないことがある。また、もし化学式2で表される化合物が45モル%を超過して含まれる場合、重合反応性と紡糸性が顕著に低下する恐れがあり、製造されるコポリエステルの結晶性がかえって増加して、目的とする温度での高い熱接着特性を発現しにくいことがある。 According to a preferred embodiment of the present invention, the total content of the compound represented by the chemical formula 1 and the compound represented by the chemical formula 2 is preferably contained in the diol component in an amount of 30 to 45 mol%. More preferably, it may be contained in an amount of 33 to 41 mol%. If they are contained in less than 30 mol%, the crystallinity of the copolyester increases, making it difficult to develop a high melting point or to realize a softening point at a low temperature, resulting in a heat-bondable temperature. It will be significantly higher and may not exhibit excellent thermal adhesion properties at low temperatures. Further, if the compound represented by the chemical formula 2 is contained in an amount of more than 45 mol%, the polymerization reactivity and the spinnability may be significantly lowered, and the crystallinity of the produced copolyester is rather increased. , It may be difficult to develop high thermal adhesion properties at the target temperature.

この際、前記ジオール成分中に、上述した化学式1で表される化合物が、化学式2で表される化合物よりさらに大きい含量(モル%)で含まれ得る。もし化学式1で表される化合物が、化学式2で表される化合物より少ないか、同じ量で含まれる場合、目的とする熱接着特性を発現しにくく、高温で接着されなければならないので、展開される製品の用途に制限がありえる。また、過度な収縮特性の発現によって展開される製品への加工が困難になる恐れがある。ひいては、目的とする用途への使用が困難な問題があり得る。 At this time, the compound represented by the above-mentioned chemical formula 1 may be contained in the diol component in a content (mol%) further larger than that of the compound represented by the chemical formula 2. If the compound represented by the chemical formula 1 is contained in a smaller amount or in the same amount than the compound represented by the chemical formula 2, it is difficult to develop the desired thermal adhesion property and the compound must be bonded at a high temperature, so that it is developed. There may be restrictions on the use of these products. In addition, excessive shrinkage characteristics may make it difficult to process the developed product. As a result, there may be a problem that it is difficult to use it for the intended purpose.

一方、前記ジオール成分は、上述した化学式1で表される化合物、化学式2で表される化合物およびエチレングリコール以外に、他の種類のジオール成分をさらに含むことができる。 On the other hand, the diol component may further contain other types of diol components in addition to the compound represented by the above-mentioned chemical formula 1, the compound represented by the chemical formula 2, and ethylene glycol.

前記他の種類のジオール成分は、ポリエステルの製造に使用される公知のジオール成分でありうるので、本発明は、これに特に限定されないが、これに対する非制限的な例として、炭素数2~14の脂肪族ジオール成分であり得、具体的に1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ヘプタメチレングリコール、オクタメチレングリコール、ノナメチレングリコール、デカメチレングリコール、ウンデカメチレングリコール、ドデカメチレングリコールおよびトリデカメチレングリコールよりなる群から選ばれるいずれか1つ以上でありうる。ただし、目的とする水準の熱接着特性と同時に耐熱性を兼ね備えるために、化学式1で表される化合物、化学式2で表される化合物およびエチレングリコール以外に、他の種類のジオール成分をさらに含まないことが好ましく、特にジエチレングリコールは、コポリエステルを収得するために使用されるジオール成分に実質的に含まれなくてもよい。もしジエチレングリコールがジオール成分に含まれる場合、ガラス転移温度の急激な低下を招いて、化学式2で表される化合物を具備する場合にも、目的とする水準の耐熱性を達成しないことがある。この際、前記ジオール成分にジエチレングリコールを実質的に含まないか、または含まないという意味は、コポリエステルの製造時に意図的にジエチレングリコールを投入しないことを意味し、酸成分およびジオール成分のエステル化反応、重縮合反応で自然発生するジエチレングリコールまで含まないことを意味しない。一方、本発明の一実施例によれば、ポリエステル組成物に含まれる自然発生的なジエチレングリコールの含量は、全体組成物の3重量%未満でありうる。もし自然発生的なジエチレングリコールの含量が適正水準を超過する場合、繊維へ紡糸時にパック圧を増加させ、頻繁な糸切れを誘発して、紡糸性が顕著に低下し得る問題がある。 The other type of diol component may be a known diol component used in the production of polyester, and thus the present invention is not particularly limited thereto, but as a non-limiting example thereof, the number of carbon atoms is 2 to 14. Can be an aliphatic diol component of, specifically 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, propylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene. It may be any one or more selected from the group consisting of glycols, heptamethylene glycols, octamethylene glycols, nonamethylene glycols, decamethylene glycols, undecamethylene glycols, dodecamethylene glycols and tridecamethylene glycols. However, in order to have heat resistance as well as heat adhesion properties of the desired level, it does not further contain other types of diol components other than the compound represented by the chemical formula 1, the compound represented by the chemical formula 2, and ethylene glycol. It is preferable that diethylene glycol in particular may not be substantially contained in the diol component used to obtain copolyester. If diethylene glycol is contained in the diol component, the glass transition temperature may drop sharply, and even when the compound represented by the chemical formula 2 is provided, the desired level of heat resistance may not be achieved. At this time, the meaning that the diol component does not substantially contain or does not contain diethylene glycol means that diethylene glycol is not intentionally added during the production of copolyester, and the esterification reaction of the acid component and the diol component, It does not mean that it does not contain diethylene glycol that naturally occurs in the polycondensation reaction. On the other hand, according to one embodiment of the present invention, the content of spontaneous diethylene glycol contained in the polyester composition may be less than 3% by weight of the total composition. If the content of spontaneous diethylene glycol exceeds an appropriate level, there is a problem that the pack pressure is increased at the time of spinning to the fiber, causing frequent yarn breakage, and the spinnability may be significantly reduced.

上述した酸成分およびジオール成分は、ポリエステル合成分野における公知の合成条件を利用してエステル化反応および重縮合を経てコポリエステルに製造され得る。この際、酸成分とジオール成分は、1:1.1~2.0のモル比で反応するように投入され得るが、これに制限されるものではない。 The above-mentioned acid component and diol component can be produced into copolyester through an esterification reaction and polycondensation using known synthetic conditions in the field of polyester synthesis. At this time, the acid component and the diol component can be added so as to react at a molar ratio of 1: 1.1 to 2.0, but the present invention is not limited thereto.

一方、前記酸成分およびジオール成分は、上記のような適正のモル比で一度に混合された後、エステル化反応および重縮合を経てコポリエステルに製造されるか、酸成分とジオール成分中に、エチレングリコールと化学式1で表される化合物間のエステル化反応中に化学式2で表される化合物を投入して、エステル化反応および重縮合を経てコポリエステルに製造され得、本発明は、これに対して特に限定しない。 On the other hand, the acid component and the diol component may be produced into copolyester through an esterification reaction and polycondensation after being mixed at a time at an appropriate molar ratio as described above, or may be added to the acid component and the diol component. During the esterification reaction between ethylene glycol and the compound represented by the chemical formula 1, the compound represented by the chemical formula 2 can be added to produce copolyester through an esterification reaction and polycondensation. On the other hand, there is no particular limitation.

前記エステル化反応で触媒をさらに含むことができる。前記触媒は、通常、ポリエステルの製造時に使用される触媒を使用することができるが、好ましくは、チタン系重合触媒であり得、さらに具体的に下記化学式3で表されるチタン系重合触媒でありうる。 The esterification reaction can further include a catalyst. The catalyst can usually be a catalyst used in the production of polyester, but is preferably a titanium-based polymerization catalyst, and more specifically, a titanium-based polymerization catalyst represented by the following chemical formula 3. sell.

Figure 2022033806000008
Figure 2022033806000008

前記化学式3で表されるチタン系重合触媒は、水分子の存在下でも安定しているので、水が多量で副生するエステル化反応前に添加しても、失活しないので、従来より短縮された時間内にエステル化反応および重縮合反応が進行され得、これを通じて黄変による着色を抑制することができる。前記触媒は、収得されるコポリエステルの総重量においてチタニウム原子換算で5~40ppmになるように含まれ得、これを通じてコポリエステルの熱安定性や色調がさらに良好になって好ましい。もしチタニウム原子換算で5ppm未満で具備される場合、エステル化反応を適切に促進させにくいことがあり、もし40ppmを超過して具備される場合、反応性は促進されるが、着色が発生する問題点がありえる。 Since the titanium-based polymerization catalyst represented by the chemical formula 3 is stable even in the presence of water molecules, it is not deactivated even if it is added before the esterification reaction in which a large amount of water is produced as a by-product. The esterification reaction and the polycondensation reaction can proceed within the time required, and through this, coloring due to yellowing can be suppressed. The catalyst may be contained so as to have a total weight of the obtained copolyester of 5 to 40 ppm in terms of titanium atoms, which is preferable because the thermal stability and the color tone of the copolyester are further improved. If it is provided at less than 5 ppm in terms of titanium atom, it may be difficult to properly promote the esterification reaction, and if it is provided in excess of 40 ppm, the reactivity is promoted, but coloring occurs. There can be points.

また、前記エステル化反応は、好ましくは、200~270℃の温度および1100~1350トル(Torr)の圧力下で行われ得る。前記条件を満たさない場合、エステル化反応時間が長くなったり、反応性の低下によって重縮合反応に適合したエステル化化合物を形成できなかったりする問題が発生する問題点がありえる。 Also, the esterification reaction can preferably be carried out at a temperature of 200 to 270 ° C. and a pressure of 1100 to 1350 torr (Torr). If the above conditions are not satisfied, there may be a problem that the esterification reaction time becomes long or the esterification compound suitable for the polycondensation reaction cannot be formed due to the decrease in reactivity.

また、前記重縮合反応は、250~300℃の温度および0.3~1.0トル(Torr)の圧力下で行われ得、もし前記条件を満たさない場合、反応時間の遅延、重合度の低下、熱分解の誘発等の問題点がありえる。 Further, the polycondensation reaction can be carried out under a temperature of 250 to 300 ° C. and a pressure of 0.3 to 1.0 torr (Torr), and if the above conditions are not satisfied, the reaction time is delayed and the degree of polymerization is reduced. There may be problems such as deterioration and induction of thermal decomposition.

一方、重縮合反応時に熱安定剤をさらに含むことができる。前記熱安定剤は、高温で熱分解を通した色相の変色を防止するためのものであり、リン系化合物を使用することができる。前記リン系化合物は、一例として、リン酸、モノメチルリン酸、トリメチルリン酸、トリエチルリン酸等のリン酸類およびその誘導体を使用した方が良く、これらのうちでも、特にトリメチルリン酸またはトリエチルリン酸が、効果が優れるので、さらに好ましい。前記リン系化合物の使用量は、最終収得されるコポリエステルの総重量に対してリン原子換算で10~30ppmを使用することが好ましい。もしリン系熱安定剤が10ppm未満で使用される場合、高温熱分解を防止しにくくいため、コポリエステルが変色することがあり、もし30ppmを超過する場合、製造費用の観点から不利になり得、重縮合反応時に熱安定剤による触媒活性の抑制によって反応遅延現象が発生する問題点がありえる。 On the other hand, a heat stabilizer can be further contained during the polycondensation reaction. The heat stabilizer is for preventing discoloration of the hue through thermal decomposition at a high temperature, and a phosphorus-based compound can be used. As the phosphorus-based compound, as an example, it is better to use phosphoric acids such as phosphoric acid, monomethylphosphoric acid, trimethylphosphoric acid, and triethylphosphate and their derivatives, and among these, trimethylphosphoric acid or triethylphosphate in particular. However, it is more preferable because the effect is excellent. The amount of the phosphorus compound used is preferably 10 to 30 ppm in terms of phosphorus atom with respect to the total weight of the final obtained copolyester. If the phosphorus-based heat stabilizer is used at less than 10 ppm, it is difficult to prevent high-temperature thermal decomposition, so that the polypolyester may discolor, and if it exceeds 30 ppm, it may be disadvantageous in terms of manufacturing cost. There may be a problem that a reaction delay phenomenon occurs due to suppression of catalytic activity by a heat stabilizer during the polycondensation reaction.

本発明による熱接着性ポリエステル組成物は、上述したコポリエステルの重縮合反応時に、またはコポリエステルを収得した後に具備される消臭剤を含む。前記消臭剤は、ホルムアルデヒド、アンモニア、トリメチルアミン等のVOC物質のような有害ガスを分解して低減または除去させる機能を行い、繊維に使用する公知の消臭剤の場合、制限なしに使用することができる。ただし、繊維の親水性を向上させ、より容易に活性化されるために、好ましくは、無光触媒であり得、具体的に遷移金属がドープされた光触媒酸化物でありうる。無光触媒は、光のない状態でも水分の吸収を通じて触媒作用ができる触媒を意味する。前記遷移金属は、特別な制限はないが、反応性を考慮してZn、Mn、Fe、Cu、Ni、Co、Cr、V、Zr、Mo、Ag、W、PtおよびAuよりなる群から選ばれた2種以上のものを使用することが好ましい。なお、前記光触媒酸化物は、TiO、SrTiO、ZrO、SnO、WO、Bi、Fe等が挙げられるが、特にTiOが好ましく、より好ましくは、アナターゼ型TiOを含有することが好ましく、さらに好ましくは、アナターゼ型TiO光触媒酸化物に遷移金属FeおよびAgがドープされたものでありうる。 The heat-adhesive polyester composition according to the present invention contains a deodorant provided during the polycondensation reaction of the copolyester described above or after the copolyester is obtained. The deodorant has a function of decomposing and reducing or removing harmful gases such as VOC substances such as formaldehyde, ammonia and trimethylamine, and in the case of a known deodorant used for fibers, it should be used without limitation. Can be done. However, it may be a photocatalytic oxide, specifically a transition metal-doped photocatalytic oxide, as it improves the hydrophilicity of the fiber and is more easily activated. A non-photocatalyst means a catalyst that can catalyze through absorption of water even in the absence of light. The transition metal is not particularly limited, but is selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt and Au in consideration of reactivity. It is preferable to use two or more of the above. Examples of the photocatalytic oxide include TiO 2 , SrTIO 3 , ZrO, SnO 2 , WO 3 , Bi 2 O 3 , Fe 2 O 3 , and the like, but TiO 2 is particularly preferable, and anatase-type TiO is more preferable. 2 is preferably contained, and more preferably, the anatase-type TiO 2 photocatalytic oxide may be doped with the transition metals Fe and Ag.

前記消臭剤は、熱接着性ポリエステル組成物の総重量に基づいて、0.3~5.0重量%、より好ましくは、0.3~2.5重量%、さらに好ましくは、0.3~1.2重量%で具備され得る。もし0.3重量%未満で具備される場合、目的とする水準の消臭特性および親水性を増加させにくいことがあり、5.0重量%を超過する場合、単糸強度が低下し、糸の破損による紡糸作業性が悪化することがある。また、糸が切れずに紡糸された原糸であっても、保存中または製品に使用された後、水分または露出される光、一例として紫外線により活性化される無光触媒の触媒反応によって有害ガスだけでなく、繊維形成成分であるコポリエステルにも影響を及ぼして、原糸の強度をさらに顕著に低下させることができる恐れがある。 The deodorant is 0.3 to 5.0% by weight, more preferably 0.3 to 2.5% by weight, still more preferably 0.3, based on the total weight of the heat-adhesive polyester composition. It can be provided in ~ 1.2% by weight. If it is provided in an amount of less than 0.3% by weight, it may be difficult to increase the deodorizing properties and hydrophilicity of the desired level, and if it exceeds 5.0% by weight, the single yarn strength decreases and the yarn Spinning workability may deteriorate due to breakage. In addition, even if the yarn is spun without breaking, it is a harmful gas due to the catalytic reaction of a non-photocatalyst activated by moisture or exposed light, for example, ultraviolet rays, during storage or after use in the product. Not only that, it may affect copolyester, which is a fiber-forming component, and the strength of the raw yarn may be further significantly reduced.

また、前記熱接着性ポリエステル組成物は、補色剤をさらに含むことができる。前記補色剤は、繊維へ紡糸された後に進行される染色工程で染着される染料の色相をさらに強く、良くするための色調調整のためのものであり、繊維分野において公知となったものを添加することができ、これに対する非制限的な例として原着用染料、顔料、建染染料、分散染料、有機顔料等がある。ただし、好ましくは、ブルーおよびレッド染料が混合されたものを使用することができる。これは、補色剤として一般的に使用されるコバルト化合物の場合、人体有害性が大きくて、好ましくないためであるのに対し、ブルーおよびレッド染料が混合された補色剤は、人体に無害であるので好ましい。また、ブルーおよびレッド染料を混合して使用される場合、色調を微細に制御できる利点がある。前記ブルー染料は、一例として、solvent blue 104、solvent blue 122、solvent blue 45等があり得、前記レッド染料は、一例としてsolvent red 111、solvent red 179、solvent red 195等がありえる。また、前記ブルー染料とレッド染料は、1:1.0~3.0の重量比で混合され得、これを通じて目的とする微細な色調制御に顕著な効果を発現するのに有利である。 In addition, the heat-adhesive polyester composition may further contain a complementary colorant. The complementary colorant is for adjusting the color tone to further strengthen and improve the hue of the dye dyed in the dyeing process that is carried out after being spun into the fiber, and is known in the field of textiles. Non-limiting examples of the dyes that can be added are raw dyes, pigments, vat dyes, disperse dyes, organic pigments and the like. However, preferably, a mixture of blue and red dyes can be used. This is because the cobalt compound generally used as a complementary color agent is harmful to the human body and is not preferable, whereas the complementary color agent mixed with blue and red dyes is harmless to the human body. Therefore, it is preferable. Further, when blue and red dyes are mixed and used, there is an advantage that the color tone can be finely controlled. As an example, the blue dye may be solvent blue 104, solvent blue 122, solvent blue 45 or the like, and the red dye may be solvent red 111, solvent red 179, solvent red or the like as an example. Further, the blue dye and the red dye can be mixed in a weight ratio of 1: 1.0 to 3.0, which is advantageous for exhibiting a remarkable effect in the desired fine color tone control.

前記補色剤は、ポリエステル組成物の総重量に基づいて、1~10ppm具備され得るが、もし1ppm未満で具備される場合、目的とする水準の補色特性を達成しにくいことかあり、10ppmを超過する場合、L値が減少して、透明性が低下し、暗い色を帯びる問題点がありえる。 The complementary colorant may be provided in an amount of 1 to 10 ppm based on the total weight of the polyester composition, but if it is provided in an amount of less than 1 ppm, it may be difficult to achieve the desired level of complementary color characteristics, and the amount exceeds 10 ppm. If this is the case, there may be a problem that the L value is reduced, the transparency is lowered, and the color is dark.

上述した方法を通じて製造された本発明によるポリエステル組成物は、固有粘度が0.5~0.8dl/gでありうる。もし固有粘度が0.5dl/g未満の場合、断面形成に問題点があり得、固有粘度が0.8dl/gを超過する場合、パック(Pack)圧力が高くて、紡糸性に問題点がありえる。 The polyester composition according to the present invention produced through the method described above can have an intrinsic viscosity of 0.5 to 0.8 dl / g. If the intrinsic viscosity is less than 0.5 dl / g, there may be a problem in cross-section formation, and if the intrinsic viscosity exceeds 0.8 dl / g, the pack pressure is high and there is a problem in spinnability. It is possible.

また、前記ポリエステル組成物は、融点がなく、軟化挙動を示す熱的特性を有することができ、好ましくは、軟化点が90~110℃であり得、これを通じて本発明の目的を達成するのにさらに有利になり得る。 In addition, the polyester composition has no melting point and can have thermal properties exhibiting softening behavior, preferably having a softening point of 90 to 110 ° C., through which the object of the present invention can be achieved. It can be even more advantageous.

また、前記ポリエステル組成物は、ガラス転移温度が60~75℃でありうる。もしガラス転移温度が60℃未満の場合、ポリエステル組成物を通じて具現されたポリエステルチップ、繊維またはこれらを通じて具現された物品が、夏期のような例えば40℃を超える温度条件でも経時変化が大きく、チップや繊維間接合が発生して保存安定性が顕著に低下する恐れがある。また、チップ間の結合が発生する場合、紡糸不良を引き起こす恐れもある。ひいては、繊維等で具現された後、収縮特性が過度に発現して、かえって接合特性が低下する恐れがある。また、チップ形成後に乾燥工程、繊維へ紡糸後に後加工工程等に必要とされる熱処理の限界によって工程所要時間の長期化または当該工程を円滑に行うことができない問題があり得る。 Further, the polyester composition may have a glass transition temperature of 60 to 75 ° C. If the glass transition temperature is less than 60 ° C, the polyester chips, fibers or articles embodied through them will change significantly over time, even under temperature conditions above 40 ° C, for example, such as in summer, and the chips or Interfiber bonding may occur and storage stability may be significantly reduced. In addition, when bonding between chips occurs, spinning defects may occur. As a result, after being embodied in fibers or the like, the shrinkage characteristics may be excessively expressed, and the bonding characteristics may be deteriorated. Further, there may be a problem that the time required for the process is lengthened or the process cannot be smoothly performed due to the limitation of the heat treatment required for the drying process after chip formation, the post-processing process after spinning into the fiber, and the like.

また、もしガラス転移温度が75℃を超過する場合、熱接合特性が顕著に低下する恐れがあり、接合工程の実行温度が高温に制限されることによって、用途展開に制限がある恐れがある。 Further, if the glass transition temperature exceeds 75 ° C., the thermal bonding characteristics may be significantly deteriorated, and the execution temperature of the bonding process is limited to a high temperature, which may limit the development of applications.

上述した本発明の一実施例によるポリエステル組成物は、ポリエステルチップで具現され得、前記ポリエステルチップの製造方法、チップの規格は、当該技術分野における公知の製造方法と規格に従うことができるので、本発明は、これに関する具体的な説明を省略する。 The polyester composition according to one embodiment of the present invention described above can be embodied in a polyester chip, and the method for producing the polyester chip and the specifications of the chip can follow the production methods and standards known in the art. The invention omits a specific description thereof.

また、本発明は、図1に示されたように、芯部11と、前記芯部11を囲む本発明による熱接着性繊維用ポリエステル組成物を含む鞘部12とを含む熱接着性複合繊維10を具現する。 Further, as shown in FIG. 1, the present invention comprises a heat-adhesive composite fiber including a core portion 11 and a sheath portion 12 containing the polyester composition for heat-adhesive fibers according to the present invention surrounding the core portion 11. Embody 10.

前記芯部は、繊維へ紡糸可能な高分子の場合、制限なしに使用され得、一例として、鞘部に比べて耐熱性および機械的強度が大きい公知のポリエステル系成分であり得、具体的にポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等でありうるが、これに制限されるものではない。 The core portion can be used without limitation in the case of a polymer that can be spun into fibers, and as an example, it can be a known polyester-based component having higher heat resistance and mechanical strength than the sheath portion, specifically. It may be polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, etc., but is not limited thereto.

前記芯部と鞘部は、一例として8:2~2:8の重量比で複合紡糸されたものでありうるが、これに制限されるものではなく、目的に応じて比率を適切に調節して紡糸することができる。 As an example, the core portion and the sheath portion may be composite-spun at a weight ratio of 8: 2 to 2: 8, but the ratio is not limited to this, and the ratio is appropriately adjusted according to the purpose. Can be spun.

前記複合繊維を紡糸条件、紡糸装置および紡糸後の複合繊維に対する冷却、延伸等の工程は、当該技術分野における公知の条件、装置および工程を利用したり、これを適切に変形したりして行われ得るので、本発明は、これに対して特に限定されない。 The steps of spinning the composite fiber, the spinning device, and the cooling, drawing, and the like of the composite fiber after spinning utilize the conditions, devices, and processes known in the art, or appropriately deform the composite fiber. The present invention is not particularly limited to this, as it can be done.

一例として、前記複合繊維は、270~290℃の紡糸温度で紡糸されたものであり得、紡糸後に2.5~4.0倍延伸されたものでありうる。また、複合繊維の繊度は、1~15デニールであり、繊維長は、一例として1~100mmでありうる。 As an example, the composite fiber may be spun at a spinning temperature of 270 to 290 ° C. and may be stretched 2.5 to 4.0 times after spinning. Further, the fineness of the composite fiber is 1 to 15 denier, and the fiber length can be 1 to 100 mm as an example.

一方、本発明の一実施例による熱接着性ポリエステル組成物は、図1とは異なって、単独で紡糸されて単独の熱接着性繊維で具現されることもできることを明らかにする。 On the other hand, it is clarified that the heat-adhesive polyester composition according to one embodiment of the present invention can be spun alone and embodied in a single heat-adhesive fiber, unlike FIG. 1.

また、本発明は、上述した熱接着性複合繊維や、熱接着性単独繊維を含んで具現された不織布を含む。 Further, the present invention includes the above-mentioned heat-adhesive composite fiber and a non-woven fabric embodied including the heat-adhesive single fiber.

前記不織布は、熱接着性複合繊維や熱接着性単独繊維のような熱接着性繊維単独、または前記熱接着性繊維に支持繊維としてポリエステル系繊維を共に混合して具現され得る。一例として、前記熱接着性繊維およびポリエステル系繊維は、単繊維であり得、それぞれの単繊維が混繊および開繊された後、熱処理を経て不織布が製造され得る。 The non-woven fabric can be embodied as a heat-adhesive fiber alone such as a heat-adhesive composite fiber or a heat-adhesive single fiber, or by mixing a polyester-based fiber as a support fiber with the heat-adhesive fiber. As an example, the heat-adhesive fiber and the polyester-based fiber can be single fibers, and after each single fiber is mixed and opened, a nonwoven fabric can be produced by heat treatment.

本発明の一実施例によれば、前記熱接着性繊維およびポリエステル系繊維は、3:7~1:9の割合で混合され得るが、これに制限されるものではなく、用途等を考慮して適切に変更され得る。 According to one embodiment of the present invention, the heat-adhesive fiber and the polyester-based fiber can be mixed at a ratio of 3: 7 to 1: 9, but the present invention is not limited to this, and the application and the like are taken into consideration. Can be changed appropriately.

また、前記熱処理は、100~180℃、より好ましくは、120~180℃であり得、これを通じてさらに向上した接着特性を発現することができる。 Further, the heat treatment may be 100 to 180 ° C., more preferably 120 to 180 ° C., through which further improved adhesive properties can be exhibited.

また、前記多孔性構造体は、一例として各種衛生用品、自動車用マットレス、建築用内蔵材、寝装材、衣類用保温材および農業用断熱材よりなる群から選ばれたいずれか1つでありうるが、これに制限されるものではない。
[発明を実施するための形態]
Further, the porous structure is one selected from the group consisting of various hygiene products, automobile mattresses, building built-in materials, bedding materials, clothing heat insulating materials and agricultural heat insulating materials as an example. Yes, but not limited to this.
[Mode for carrying out the invention]

下記の実施例を通じて本発明をさらに具体的に説明することとするが、下記実施例が本発明の範囲を制限するものではなく、これは、本発明の理解を助けるためのものと解釈されなければならない。 The present invention will be described in more detail through the following examples, but the following examples do not limit the scope of the present invention and should be construed as an aid to the understanding of the present invention. Must be.

<実施例1>
ジオール成分として下記化学式1で表される化合物38モル%と下記化学式2で表される化合物3モル%および残余ジオール成分としてエチレングリコール59モル%を投入し、酸成分としてテレフタル酸100モル%を投入して前記酸成分とジオール成分を1:1.5の割合で250℃で1140トル(torr)の圧力下でエステル化反応させてエステル反応物を得、その反応率は、97.5%であった。形成されたエステル反応物を重縮合反応器に移送し、収得されるコポリエステル総重量に基づいて、重縮合触媒として下記化学式3で表されるチタン系化合物15ppm(Ti元素基準)、熱安定剤としてトリエチルリン酸25ppm(P元素基準)を投入して最終圧力0.5トル(torr)になるように徐々に減圧しつつ、285℃まで昇温して重縮合反応を行ってコポリエステルを形成させ、これに遷移金属FeおよびAgがドープされたアナターゼ型TiO光触媒酸化物を、製造されるポリエステル組成物の総重量に基づいて、1重量%を含ませて、熱接着性繊維用ポリエステル組成物を収得した。
<Example 1>
38 mol% of the compound represented by the following chemical formula 1 and 3 mol% of the compound represented by the following chemical formula 2 are added as the diol component, 59 mol% of ethylene glycol is added as the residual diol component, and 100 mol% of terephthalic acid is added as the acid component. Then, the acid component and the diol component were esterified at a ratio of 1: 1.5 at 250 ° C. under a pressure of 1140 torr (torr) to obtain an ester reaction product, and the reaction rate was 97.5%. there were. The formed ester reaction product is transferred to a polycondensation reactor, and based on the total weight of copolyester obtained, a titanium compound represented by the following chemical formula 3 is 15 ppm (based on Ti element) as a polycondensation catalyst, and a heat stabilizer. As a result, 25 ppm of triethylphosphate (based on P element) was added and the pressure was gradually reduced to 0.5 torr (torr) as the final pressure, and the temperature was raised to 285 ° C. to carry out a polycondensation reaction to form copolyester. Then, 1% by weight of the anatase-type TiO 2 photocatalytic oxide doped with the transition metals Fe and Ag was added to the polyester composition based on the total weight of the produced polyester composition, and the polyester composition for the heat-adhesive fiber was added. I got the thing.

その後、前記ポリエステル組成物を通常の方法で横、縦、高さがそれぞれ2mm×4mm×3mmであるポリエステルチップに製造した。 Then, the polyester composition was produced by a usual method into polyester chips having a width, a length, and a height of 2 mm × 4 mm × 3 mm, respectively.

その後、前記ポリエステル組成物を鞘部とし、固有粘度が0.65dl/gであるポリエチレンレーテフタレート(PET)を芯部とする芯鞘型複合繊維を製造するために、前記ポリエステル組成物で具現されたポリエステルチップと、PETチップをホッパーにそれぞれ投入後に溶融させて、芯鞘型紡糸口金にそれぞれ投入した後、275℃下で1000mpmの紡糸速度で芯部と鞘部が5:5の重量比になるように複合紡糸し、3.0倍延伸して、繊維長が51mmであり、繊度が4.0deである下記表1のような芯鞘型熱接着性複合繊維を製造した。 Then, in order to produce a core-sheath type composite fiber having the polyester composition as a sheath and a polyethylene late phthalate (PET) having an intrinsic viscosity of 0.65 dl / g as a core, it is embodied in the polyester composition. After the polyester chips and PET chips were put into the hopper and then melted, they were put into the core-sheath type spinneret, and then the core and sheath had a weight ratio of 5: 5 at a spinning speed of 1000 mpm at 275 ° C. The composite was spun so as to be, and stretched 3.0 times to produce a core-sheath type heat-adhesive composite fiber as shown in Table 1 below, which had a fiber length of 51 mm and a fineness of 4.0 de.

Figure 2022033806000009
Figure 2022033806000009

Figure 2022033806000010
Figure 2022033806000010

Figure 2022033806000011
Figure 2022033806000011

<実施例2~14>
実施例1と同一に実施して製造するものの、下記表1、表2または表3のようにコポリエステルを製造するための単量体の組成比を変更させて、下記表1、表2または表3のようなポリエステルチップおよびこれを利用した芯鞘型複合繊維を製造した。
<Examples 2 to 14>
Although it is produced in the same manner as in Example 1, the composition ratio of the monomers for producing copolyester is changed as shown in Table 1, Table 2 or Table 3 below, and Table 1, Table 2 or the following Table 2 or Polyester chips as shown in Table 3 and core-sheath type composite fibers using the same were produced.

<比較例1~4>
実施例1と同一に実施して製造するものの、下記表2のようにコポリエステルを製造するための単量体の組成を変更させて、下記表2のようなポリエステルチップおよびこれを利用した芯鞘型複合繊維を製造した。
<Comparative Examples 1 to 4>
Although it is produced in the same manner as in Example 1, the composition of the monomer for producing copolyester is changed as shown in Table 2 below, and the polyester chip as shown in Table 2 below and the core using the same are used. A sheath type composite fiber was produced.

<実験例1>
実施例および比較例によって製造されたポリエステルチップや、芯鞘型熱接着性複合繊維について下記の物性を評価して、その結果を下記表1~表3に示した。
<Experimental Example 1>
The following physical characteristics were evaluated for the polyester chips produced by Examples and Comparative Examples and the core-sheath type heat-adhesive composite fiber, and the results are shown in Tables 1 to 3 below.

1.固有粘度
ポリエステルチップに対してオルソクロロフェノール(Ortho-Chloro Phenol)を溶媒として110℃、2.0g/25mlの濃度で30分間溶融後、25℃で30分間恒温して、キャノン(CANON)粘度計が連結された自動粘度測定装置から分析した。
1. 1. Intrinsic Viscosity After melting with orthochlorophenol (Ortho-ChloroPhenol) as a solvent for 30 minutes at a concentration of 2.0 g / 25 ml for polyester chips, the temperature is kept constant at 25 ° C for 30 minutes, and a CANON viscometer is used. Was analyzed from an automatic viscosity measuring device connected to the device.

2.ガラス転移温度、融点
示差熱分析装置を利用してガラス転移温度および融点を測定し、分析条件は、昇温速度を20℃/minにした。
2. 2. Glass transition temperature and melting point The glass transition temperature and melting point were measured using a differential thermal analyzer, and the analysis conditions were such that the temperature rise rate was 20 ° C./min.

3.ポリエステルチップ乾燥時間
製造されたポリエステル組成物をチップ(chip)化後、真空乾燥器で55℃、4時間間隔で水分率を測定し、測定結果、水分率100ppm以下と測定されたときの時間を乾燥時間で示した。
3. 3. Polyester chip drying time After the produced polyester composition is made into chips (chip), the moisture content is measured at 55 ° C. at 4 hour intervals with a vacuum dryer, and the measurement result shows the time when the moisture content is 100 ppm or less. Shown by drying time.

4.単繊維保存安定性
製造された芯鞘型複合繊維500gに対して温度40℃、相対湿度45%のチャンバーで圧力2kgf/cmを加えて3日間放置して、繊維間の融着状態を専門家10人が肉眼で観察し、その結果、融着が発生しない場合を10点、全部融着が発生した場合を0点を基準として0~10点で評価した後、平均値を計算した。その結果、平均値が9.0以上である場合、非常に優秀(◎)、7.0以上9.0未満の場合、優秀(○)、5.0以上7.0未満は、普通(△)、5.0未満は、悪い(×)で示した。
4. Single fiber storage stability Specializes in the fusion state between fibers by applying a pressure of 2 kgf / cm 2 to 500 g of manufactured core-sheath composite fiber in a chamber with a temperature of 40 ° C and a relative humidity of 45% and leaving it for 3 days. Ten people in the house observed it with the naked eye, and as a result, the case where fusion did not occur was evaluated with 10 points, and the case where all fusion occurred was evaluated with 0 to 10 points as a reference, and then the average value was calculated. As a result, when the average value is 9.0 or more, it is very excellent (◎), when it is 7.0 or more and less than 9.0, it is excellent (○), and when it is 5.0 or more and less than 7.0, it is normal (Δ). ), Less than 5.0 are indicated by bad (x).

5.紡糸作業性
紡糸作業性は、実施例および比較例別に同一含量で紡糸された芯鞘型複合繊維に対して紡糸加工中にドリップ(口金を通過する繊維ストランドが一部融着されたり、糸切れ後にストランドが不規則に融着されたりして形成された塊りを意味する)発生数値をドリップ感知器を用いてカウントし、実施例1でのドリップ発生数値を100を基準として残りの実施例および比較例で発生したドリップ個数を相対的な百分率で表示した。
5. Spinning workability Spinning workability is such that the core-sheath type composite fibers spun with the same content in each of the examples and comparative examples are drip (partially fused fiber strands passing through the base or yarn breakage) during the spinning process. The generated value (meaning a mass formed by irregular fusion of the strands later) is counted using a drip sensor, and the drip generation value in Example 1 is used as a reference for the remaining Examples. And the number of drips generated in the comparative example is displayed as a relative percentage.

6.染着率の評価
芯鞘型複合繊維重量を基準として2重量%のブルー(blue)染料を含む染液に対して、浴比1:50で90℃で60分間染着工程を行った後、日本のクラボウ(KURABO)社の色彩測定システムを利用して染色された複合繊維に対する可視領域(360~740nm、10nm間隔)の分光反射率を測定した後、CIE 1976規格に基づく染着量の指標であるTotal K/S値を算出して、染料の色収得率を評価した。
6. Evaluation of dyeing rate A dyeing solution containing 2% by weight of blue dye based on the weight of the core-sheath composite fiber was dyed at 90 ° C. for 60 minutes at a bath ratio of 1:50. After measuring the spectral reflectance in the visible region (360 to 740 nm, 10 nm interval) for the composite fiber dyed using the color measurement system of Kurabo Industries of Japan, an index of the amount of dyeing based on the CIE 1976 standard. The total K / S value was calculated, and the color acquisition rate of the dye was evaluated.

7.接着強度
製造された芯鞘型複合繊維とポリエチレンテレフタレート(PET)単繊維(繊維長51mm、繊度4.0de)を5:5で混繊および開繊した後、120℃、140℃および160℃の温度条件で熱処理して、坪量が35g/mのホットメルト不織布を具現し、横、縦および厚さがそれぞれ100mm×20mm×10mmの試験片で具現して、KS M ISO 36方法に基づいてUTM(universal testing machine)を利用して接着強度を測定した。
7. Adhesive strength The manufactured core-sheath composite fiber and polyethylene terephthalate (PET) single fiber (fiber length 51 mm, fineness 4.0 de) are mixed and opened at a ratio of 5: 5, and then at 120 ° C, 140 ° C and 160 ° C. Heat-treated under temperature conditions to embody a hot-melt non-woven fabric with a basis weight of 35 g / m 2 , embodied in test pieces measuring 100 mm × 20 mm × 10 mm in width, length and thickness, respectively, based on the KS M ISO 36 method. The adhesive strength was measured using UTM (universal testing machine).

一方、熱処理時に過度な収縮によって形態が変形された場合、接着強度を評価せず、「形態変形」と評価した。 On the other hand, when the morphology was deformed due to excessive shrinkage during the heat treatment, the adhesive strength was not evaluated and was evaluated as "morphological deformation".

8.ソフト触感
接着強度の評価のために140℃の温度条件で熱処理されて製造された不織布に対して10人の同業界の専門家からなるグループによる官能検査を実施し、評価結果、8人以上がソフトであると判断する場合、優秀(◎)、6~7人は良好(○)、5~4人は普通(△)、4人未満は不良(×)に区分した。
8. Soft tactile sensation A sensory test by a group of 10 experts in the same industry was conducted on the non-woven fabric manufactured by heat treatment at a temperature condition of 140 ° C to evaluate the adhesive strength, and as a result of the evaluation, 8 or more people When it was judged to be soft, it was classified as excellent (◎), 6 to 7 people were good (○), 5 to 4 people were normal (Δ), and less than 4 people were bad (×).

Figure 2022033806000012
Figure 2022033806000012

Figure 2022033806000013
Figure 2022033806000013

Figure 2022033806000014
Figure 2022033806000014

表1~表3を通じて確認できるように、比較例は、乾燥時間が顕著に延長されるか(比較例1~3)、紡糸作業性が顕著に良くないか(比較例2、比較例3)、単繊維保存安定性が非常に悪くなるか(比較例2、比較例3)、温度別の接着強度評価で形態が変形(比較例4)されたことを確認できて、すべての物性を同時に満足させることができないことを確認できるが、実施例は、すべての物性を優れた水準で発現していることを確認できる。 As can be confirmed through Tables 1 to 3, in the comparative example, whether the drying time is significantly extended (Comparative Examples 1 to 3) or the spinning workability is not significantly good (Comparative Example 2, Comparative Example 3). , It can be confirmed whether the storage stability of the single fiber becomes very poor (Comparative Example 2, Comparative Example 3), or the morphology is deformed by the adhesive strength evaluation by temperature (Comparative Example 4), and all the physical properties are simultaneously exhibited. Although it can be confirmed that it cannot be satisfied, it can be confirmed that all the physical properties are expressed at an excellent level in the examples.

一方、実施例においても、化学式1で表される化合物より化学式2で表される化合物の含量がさらに多く含まれた実施例15は、他の実施例に比べて温度別の接着強度評価で形態が変形されて、目的とする物性を達成するのに適していないことを確認できる。 On the other hand, also in the examples, the example 15 in which the content of the compound represented by the chemical formula 2 is higher than that of the compound represented by the chemical formula 1 is more morphologically evaluated by the adhesive strength evaluation by temperature as compared with the other examples. Can be confirmed to be deformed and not suitable for achieving the desired physical properties.

<実施例15~実施例18>
実施例1と同一に実施して製造するものの、消臭剤の含量を下記表4のように変更して芯鞘型複合繊維を製造した。
<Examples 15 to 18>
Although it was produced in the same manner as in Example 1, the content of the deodorant was changed as shown in Table 4 below to produce a core-sheath type composite fiber.

<比較例5>
実施例1と同一に実施して製造するものの、消臭剤を投入せずに、表4のような芯鞘型複合繊維を製造した。
<Comparative Example 5>
Although it was produced in the same manner as in Example 1, the core-sheath type composite fiber as shown in Table 4 was produced without adding a deodorant.

<実験例2>
実施例1、15~18、比較例1および比較例5による芯鞘型複合繊維を利用して下記の物性を評価し、その結果を表4に示した。
<Experimental Example 2>
The following physical properties were evaluated using the core-sheath type composite fibers according to Examples 1, 15 to 18, Comparative Example 1 and Comparative Example 5, and the results are shown in Table 4.

1.紡糸作業性
実験例1と同じ方法で紡糸作業性を評価した。
1. 1. Spinning workability The spinning workability was evaluated by the same method as in Experimental Example 1.

2.水分および光に対する保存安定性
芯鞘型複合繊維を130℃で熱処理して不織布を製造した。製造された不織布を所定の大きさに切って各実施例および比較例別に試験片を2個ずつ準備した後、あらかじめ準備されたUVランプ付き恒温恒湿チャンバー内に準備された試験片1個(試験片1)を投入し、温度25℃、相対湿度50%RH、紫外線を300mJ/cmの強さで30日間照射した。水分および光に対する保存安定性は、恒温恒湿チャンバーで30日間保存された試験片の引張強度と恒温恒湿チャンバーに投入されない残りの試験片1個(試験片2、未処理試験片)の引張強度をそれぞれ測定して下記の式を通じて導き出し、その値が大きいほど外部の水分や紫外線等の光による機械的強度の低下が大きいものと評価することができる。この際、前記試験片2の引張強度は、試験片1を恒温恒湿チャンバーに投入して評価を始める時点で測定した。
2. 2. Storage stability against moisture and light A non-woven fabric was produced by heat-treating a core-sheath type composite fiber at 130 ° C. After cutting the manufactured non-woven fabric into a predetermined size and preparing two test pieces for each example and comparative example, one test piece prepared in a pre-prepared constant temperature and humidity chamber with a UV lamp ( The test piece 1) was put in and irradiated with ultraviolet rays at a temperature of 25 ° C., a relative humidity of 50% RH, and an intensity of 300 mJ / cm 2 for 30 days. The storage stability against moisture and light is the tensile strength of the test piece stored in the constant temperature and humidity chamber for 30 days and the tensile strength of the remaining one test piece (test piece 2, untreated test piece) that is not put into the constant temperature and humidity chamber. The intensities are measured and derived through the following formulas, and it can be evaluated that the larger the value, the greater the decrease in mechanical intensity due to external moisture or light such as ultraviolet rays. At this time, the tensile strength of the test piece 2 was measured at the time when the test piece 1 was put into the constant temperature and humidity chamber and the evaluation was started.

[式]
機械的強度の低下率(%)=[(試験片2の引張強度(N)-試験片1の引張強度(N))/試験片2の引張強度(N)]×100
[formula]
Rate of decrease in mechanical strength (%) = [(Tensile strength of test piece 2 (N) -Tension strength of test piece 1 (N)) / Tensile strength of test piece 2 (N)] × 100

3.ガス低減率
芯鞘型複合繊維を130℃で熱処理して不織布を製造した後、10cm×10cmに切断して試験片を準備した。準備された試験片を3Lテドラーバッグに入れ、対象ガスと清浄空気を注入して密封した後、120分経過後にそれぞれの濃度をガステック検知管法で測定して、下記計算式1からガス低減率を計算した。
3. 3. Gas reduction rate The core-sheath type composite fiber was heat-treated at 130 ° C. to produce a nonwoven fabric, and then cut into 10 cm × 10 cm to prepare a test piece. Put the prepared test piece in a 3L tedler bag, inject the target gas and clean air, seal it, and after 120 minutes, measure each concentration by the gas tech detector tube method, and calculate the gas reduction rate from the following formula 1. Was calculated.

[計算式1]
低減率(%)=[(C-C)/C]×100
[Calculation formula 1]
Reduction rate (%) = [(C b -C a ) / C b ] x 100

この際、前記計算式1でCは、空試験濃度、Cは、試料濃度を示す。 At this time, in the above formula 1, C b indicates a blank test concentration and C a indicates a sample concentration.

4.吸収性
吸収性は、バイレック法を利用し、ガス低減率の評価のために製造された不織布を2.5cm×20cmに切断した試験片を製作した後、下側を水槽に浸水して、毛細管現象により試験片に吸収される高さを10分間測定した。
4. Absorption For absorbability, a test piece is produced by cutting a non-woven fabric manufactured for evaluation of gas reduction rate into 2.5 cm x 20 cm using the Bilek method, and then the lower side is submerged in a water tank to make a capillary tube. The height absorbed by the test piece due to the phenomenon was measured for 10 minutes.

Figure 2022033806000015
Figure 2022033806000015

表4を参照して確認できるように、消臭剤を含む実施例は、比較例5に比べてガス低減率、紡糸作業性、親水性および光/水分による保存安定性を同時に満たすのに有利であることを確認できる。 As can be confirmed with reference to Table 4, the examples containing the deodorant are advantageous in simultaneously satisfying the gas reduction rate, spinning workability, hydrophilicity and storage stability due to light / moisture as compared with Comparative Example 5. Can be confirmed as.

また、化学式2の化合物を含まない比較例1の場合、消臭剤を含む場合においても、同一含量で消臭剤を含む実施例1に比べて吸収性、紡糸作業性および光/水分による保存安定性において良くないことを確認できる。 Further, in the case of Comparative Example 1 containing no compound of Chemical Formula 2, even when a deodorant is contained, the absorbency, spinning workability and storage by light / moisture are as compared with those of Example 1 containing the deodorant in the same content. It can be confirmed that the stability is not good.

以上、本発明の一実施例について説明したが、本発明の思想は、本明細書に提示される実施例に制限されず、本発明の思想を理解する当業者は、同じ思想の範囲内で、構成要素の付加、変更、削除、追加等により他の実施例を容易に提案することができるが、これも、本発明の思想範囲内に入るといえる。 Although one embodiment of the present invention has been described above, the idea of the present invention is not limited to the examples presented in the present specification, and those skilled in the art who understand the idea of the present invention are within the scope of the same idea. , Other embodiments can be easily proposed by adding, changing, deleting, adding, etc., which are also within the scope of the present invention.

Claims (13)

テレフタル酸を含む酸成分、およびエチレングリコールと下記化学式1で表される化合物および化学式2で表される化合物を含むジオール成分が反応したエステル化化合物が重縮合されたコポリエステルおよび消臭剤を含む熱接着性繊維用ポリエステル組成物。
Figure 2022033806000016
Figure 2022033806000017
It contains a copolyester and a deodorant obtained by polycondensing an acid component containing terephthalic acid and an esterified compound obtained by reacting ethylene glycol with a compound represented by the following chemical formula 1 and a diol component containing a compound represented by the chemical formula 2. Polyester composition for heat-adhesive fibers.
Figure 2022033806000016
Figure 2022033806000017
前記ジオール成分は、ジエチレングリコールを含まないことを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The polyester composition for heat-adhesive fibers according to claim 1, wherein the diol component does not contain diethylene glycol. 前記化学式1で表される化合物と化学式2で表される化合物の含量の総和は、前記ジオール成分中に、30~45モル%で含まれることを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The thermal adhesiveness according to claim 1, wherein the total content of the compound represented by the chemical formula 1 and the compound represented by the chemical formula 2 is contained in the diol component in an amount of 30 to 45 mol%. Polyester composition for textiles. 前記酸成分は、イソフタル酸を酸成分を基準として1~10モル%でさらに含むことを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The polyester composition for heat-adhesive fibers according to claim 1, wherein the acid component further contains isophthalic acid in an amount of 1 to 10 mol% based on the acid component. ブルーおよびレッド染料を含む補色剤を、ポリエステル組成物の総重量に基づいて、1~10ppmさらに含むことを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The polyester composition for heat-adhesive fibers according to claim 1, further comprising 1 to 10 ppm of a complementary color agent containing a blue and red dye based on the total weight of the polyester composition. 前記ジオール成分中に、前記化学式1で表される化合物は、ジオール成分を基準として20~40モル%、前記化学式2で表される化合物は、ジオール成分を基準として1~10モル%で含まれることを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The compound represented by the chemical formula 1 is contained in the diol component in an amount of 20 to 40 mol% based on the diol component, and the compound represented by the chemical formula 2 is contained in an amount of 1 to 10 mol% based on the diol component. The polyester composition for a heat-adhesive fiber according to claim 1, wherein the polyester composition is characterized by the above. 前記消臭剤は、遷移金属がドープされた光触媒酸化物であり、ポリエステル組成物の総重量に基づいて、0.3~5.0重量%具備されることを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The deodorant is a photocatalytic oxide doped with a transition metal, and according to claim 1, the deodorant is provided in an amount of 0.3 to 5.0% by weight based on the total weight of the polyester composition. Polyester composition for heat-adhesive fibers. 前記コポリエステルの総重量に基づいて、チタン系重合触媒が、Ti元素量を基準として5~40ppmさらに含まれることを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The polyester composition for heat-adhesive fibers according to claim 1, wherein the titanium-based polymerization catalyst is further contained in an amount of 5 to 40 ppm based on the total weight of the copolyester, based on the amount of Ti elements. 前記コポリエステルの総重量に基づいて、リン系熱安定剤が、P元素量を基準として10~30ppmさらに含まれることを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The polyester composition for heat-adhesive fibers according to claim 1, wherein a phosphorus-based heat stabilizer is further contained in an amount of 10 to 30 ppm based on the total weight of the copolyester. 融点がなく、軟化挙動を示し、ガラス転移温度が60~75℃であることを特徴とする請求項1に記載の熱接着性繊維用ポリエステル組成物。 The polyester composition for heat-adhesive fibers according to claim 1, wherein the polyester composition has no melting point, exhibits softening behavior, and has a glass transition temperature of 60 to 75 ° C. 請求項1に記載の熱接着性繊維用ポリエステル組成物を含むポリエステルチップ。 A polyester chip containing the polyester composition for heat-adhesive fibers according to claim 1. 芯部と、
前記芯部を囲む請求項1に記載の熱接着性繊維用ポリエステル組成物を含む鞘部と、を含む熱接着性複合繊維。
With the core
A heat-adhesive composite fiber comprising a sheath portion containing the polyester composition for heat-adhesive fiber according to claim 1 surrounding the core portion.
請求項12に記載の熱接着性複合繊維を含んで所定の形状に成形された不織布。 A non-woven fabric containing the heat-adhesive composite fiber according to claim 12 and molded into a predetermined shape.
JP2021189399A 2019-05-13 2021-11-22 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same Active JP7301935B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190055705A KR102172280B1 (en) 2019-05-13 2019-05-13 Thermal adhesive polyester composition, thermal adhesive polyester complex-fiber comprising the same, and non-woven fabric
KR10-2019-0055705 2019-05-13
JP2021515614A JP7154400B2 (en) 2019-05-13 2020-05-13 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same
PCT/KR2020/006267 WO2020231166A1 (en) 2019-05-13 2020-05-13 Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented therethrough, and nonwoven fabric

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021515614A Division JP7154400B2 (en) 2019-05-13 2020-05-13 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same

Publications (2)

Publication Number Publication Date
JP2022033806A true JP2022033806A (en) 2022-03-02
JP7301935B2 JP7301935B2 (en) 2023-07-03

Family

ID=73048309

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021515614A Active JP7154400B2 (en) 2019-05-13 2020-05-13 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same
JP2021189399A Active JP7301935B2 (en) 2019-05-13 2021-11-22 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021515614A Active JP7154400B2 (en) 2019-05-13 2020-05-13 Polyester composition for heat-adhesive fiber, heat-adhesive composite fiber and non-woven fabric embodied through the same

Country Status (4)

Country Link
JP (2) JP7154400B2 (en)
KR (1) KR102172280B1 (en)
CN (1) CN113874562B (en)
WO (1) WO2020231166A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419939B1 (en) * 2019-12-27 2022-07-11 도레이첨단소재 주식회사 Wet-laid nonwoven fabrics and article comprising the same
KR102648800B1 (en) * 2021-08-09 2024-03-15 도레이첨단소재 주식회사 Polyester resin, preparing method thereof, thermally adhesive polyester fiber made thereof
KR20230119466A (en) * 2022-02-07 2023-08-16 도레이첨단소재 주식회사 Polyester composition for film containing titanium-based catalyst and method for manufacturing the same
KR20240043990A (en) 2022-09-28 2024-04-04 도레이첨단소재 주식회사 Thermally adhesive sheath-core composite fiber having low-shrinkage and high-bulky property and Non-woven of sanitary products containing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139212A (en) * 1990-09-28 1992-05-13 Chisso Corp Modified polyester resin and heat bonding conjugate fiber using the same
JPH0959825A (en) * 1995-06-13 1997-03-04 Nippon Ester Co Ltd Polyester conjugated fiber
WO2013115096A1 (en) * 2012-01-30 2013-08-08 東レ株式会社 Polyester composition having dyeability at atmospheric pressure, method for producing same, fibers comprising same and molded article comprising same
JP2016113615A (en) * 2014-12-10 2016-06-23 ユニチカ株式会社 Polyester resin and laminate using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT290131B (en) * 1967-12-15 1971-05-25 Alpine Chemische Ag Process for the production of polyesters and copolyesters
CA1103842A (en) * 1977-05-04 1981-06-23 Joseph Lacona Process for reducing the processing time in the production of polyesters
AUPM316193A0 (en) * 1993-12-24 1994-01-27 Bhp Steel (Jla) Pty Limited Thermosetting polyester resin
JP2006206860A (en) * 2004-12-27 2006-08-10 Toyobo Co Ltd Manufacturing method of polyester resin
KR20160079347A (en) * 2014-12-26 2016-07-06 도레이케미칼 주식회사 low melting polyester complex fiber having soft touch
CN107580637A (en) * 2016-02-29 2018-01-12 汇维仕股份公司 Low-melting-point composite fiber
KR101866521B1 (en) * 2016-07-28 2018-06-12 신동수 Polyester fiber having antimicrobial effect
KR102502868B1 (en) * 2017-02-09 2023-02-23 도레이 카부시키가이샤 Heat-sealed core-sheath type composite fiber and tricot letter
KR102016794B1 (en) * 2017-09-22 2019-08-30 (주)영원코포레이션 Method Of Producing Antibacterial and Deodorizing Fabrics Having Excellent Stretch And Comfortness
KR102061805B1 (en) * 2018-06-27 2020-01-03 도레이첨단소재 주식회사 Thermal adhesive polyester composition, thermal adhesive polyester complex-fiber comprising the same, and non-woven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139212A (en) * 1990-09-28 1992-05-13 Chisso Corp Modified polyester resin and heat bonding conjugate fiber using the same
JPH0959825A (en) * 1995-06-13 1997-03-04 Nippon Ester Co Ltd Polyester conjugated fiber
WO2013115096A1 (en) * 2012-01-30 2013-08-08 東レ株式会社 Polyester composition having dyeability at atmospheric pressure, method for producing same, fibers comprising same and molded article comprising same
JP2016113615A (en) * 2014-12-10 2016-06-23 ユニチカ株式会社 Polyester resin and laminate using the same

Also Published As

Publication number Publication date
JP2022501526A (en) 2022-01-06
CN113874562B (en) 2023-11-24
KR102172280B1 (en) 2020-10-30
JP7301935B2 (en) 2023-07-03
JP7154400B2 (en) 2022-10-17
WO2020231166A1 (en) 2020-11-19
CN113874562A (en) 2021-12-31

Similar Documents

Publication Publication Date Title
JP2022033806A (en) Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented using the same, and nonwoven fabric
CN112601774B (en) Polyester composition for heat-bondable fibers, heat-bondable composite fiber and nonwoven fabric obtained therefrom
KR101038466B1 (en) Flame Retardant Polyester Having Good Durability, High Sweat Absorption Property and Fast Drying Property
EP4043622A1 (en) Thermal bonding fiber, and fiber assembly for automotive interior and exterior materials, comprising same
CN114846185B (en) Wet nonwoven fabric and product comprising same
JP7145986B2 (en) Polyester composition for thermoadhesive fiber and thermoadhesive composite fiber containing the same
KR102219081B1 (en) Thermal adhesive fiber, and fiber assembly for vehicle interior material comprising the same
CN1165877A (en) Temp. regulating fibre and its products
KR102415149B1 (en) Fiber assembly for automobile interior material and automobile interior material comprising the same
JP7419540B2 (en) Fiber aggregate for automobile interior materials and automobile interior materials containing the same
KR102410331B1 (en) Fiber assembly for automobile interior material and automobile interior material comprising the same
KR102648800B1 (en) Polyester resin, preparing method thereof, thermally adhesive polyester fiber made thereof
JP3736432B2 (en) Highly hygroscopic polyester fiber
KR102619704B1 (en) Heavy metal free-antimicrobial polyester draw textured yarn and Manufacturing method thereof
JP7009995B2 (en) Copolymerized polyester and composite fibers containing it
JP4108873B2 (en) Polyester fiber
EP1493853B1 (en) Modified polyester fiber and process for producing the same
KR20220105383A (en) Thermal adhesive fiber, polyester chip for thermal adhesive fiber, fabric comprising the same
JPH0881831A (en) Sheath-core type conjugate fiber excellent in hygroscopicity
JP2023115979A (en) Heat-adhesive composite fiber
JP3935705B2 (en) Method for producing polyester fiber
TW202208497A (en) Polyester yarn for apparel use and method for preparing the same
JP2024518359A (en) Core-sheath composite fiber for support of separation membrane for water treatment, support for separation membrane for water treatment containing the same, separation membrane for water treatment containing the same, and filter module containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R150 Certificate of patent or registration of utility model

Ref document number: 7301935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150