WO2020230976A1 - Method for selecting gene-edited cells from undifferentiated pluripotent stem cells - Google Patents

Method for selecting gene-edited cells from undifferentiated pluripotent stem cells Download PDF

Info

Publication number
WO2020230976A1
WO2020230976A1 PCT/KR2020/000078 KR2020000078W WO2020230976A1 WO 2020230976 A1 WO2020230976 A1 WO 2020230976A1 KR 2020000078 W KR2020000078 W KR 2020000078W WO 2020230976 A1 WO2020230976 A1 WO 2020230976A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
slc35f2
cells
edited
stem cells
Prior art date
Application number
PCT/KR2020/000078
Other languages
French (fr)
Korean (ko)
Inventor
차혁진
김근태
박주찬
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2020230976A1 publication Critical patent/WO2020230976A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, and more particularly, a method for enriching and selecting gene-edited cells using YM155 resistance induced by transient knockdown of SLC35F2 by siRNA. It is about.
  • the present invention was made by the project number 2017M3A9B3061843 under the support of the Ministry of Science, Technology and Communication of the Republic of Korea. Cell Screening Technology Development and Characteristic Research", the host institution is Seoul National University, and the research period is 2017.06.30 ⁇ 2022.06.29.
  • hPSCs human pluripotent stem cells
  • iPSCs patient-derived induced pluripotent stem cells
  • hPSCs provide an equal pair of control and disease model cells, allowing rigorous comparisons.
  • the time required for clonal selection is consuming, and the laborious process and extremely low efficiency of this process result in pooled sgRNA from mouse embryonic stem cells (ESC). It remains a significant hurdle for a wide range of applications, such as performing screening.
  • Another factor contributing to the technical barrier is the low Cas9 activity in hPSCs; Also, by the effect of Cas9, cells undergo a large amount of p53-dependent cell death in response to DNA damage.
  • hPSC-based cell therapy Teratoma formation due to unintentional transplantation of undifferentiated hPSCs is a serious risk for hPSC-based cell therapy.
  • several approaches have been developed to selectively remove residual hPSCs.
  • YM155 a survivin inhibitor developed as an anticancer drug, selectively has cytotoxicity to undifferentiated hPSCs and inhibits teratoma formation, and this finding has been reproduced in several independent studies. .
  • the molecular mechanisms underlying the high susceptibility of hPSCs to YM155 were not fully elucidated.
  • the present inventors introduced YM155 induced by the introduction of a gene-editing single guide RNA (sgRNA) targeting the gene of interest. Enrichment selection of gene-edited hPSCs through resistance was efficiently achieved. It was confirmed that this scar-free approach to highly efficient enrichment selection did not require cumbersome clone selection, so that a single clone could be obtained within at least 3 weeks.
  • siRNA transient short interfering RNA
  • an object of the present invention is to provide a method for selecting gene-edited cells.
  • Another object of the present invention is to provide the use of YM155 for selectively inducing apoptosis in undifferentiated pluripotent stem cells in which the expression of the SLC35F2 gene has been suppressed.
  • the present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, and more particularly, YM155 (CAS 781661-94-7) resistance induced by transient knockdown of SLC35F2 by siRNA. It relates to a method for enriching and selecting the gene-edited cells by using.
  • One aspect of the present invention relates to a method for selecting genetically edited cells comprising the following steps:
  • YM155 (CAS 781661-94-7) treatment to selectively kill the cells in which the expression of the SLC35F2 gene is not suppressed.
  • YM155 refers to a survivin inhibitor and refers to a compound represented by the following formula (1) (CAS No. 781661-94-7).
  • SLC35F2 is a drug-specific membrane transporter for YM155 , and inhibiting the expression of the SLC35F2 gene can block the cellular uptake of YM155, thereby causing cells to Resistance to YM155 can be induced.
  • the cells selected by the method for selecting gene-edited cells of the present invention may be gene-edited by targeting at least one gene of interest (GOI) in addition to the SLC35F2 gene.
  • GOI gene of interest
  • the term "gene editing” refers to a nucleic acid molecule (one or more, such as 1-100,000bp, 1-10,000bp, 1-1000bp, 1-100bp), by cleavage at the target site of the target gene, unless otherwise specified. , 1-70bp, 1-50bp, 1-30bp, 1-20bp, or 1-10bp) by deletion, insertion, substitution, etc., can be used to mean loss, alteration, and/or recovery (modification) of gene function. have.
  • CRISPR/Cas9 or “CRISPR/Cas9 system” is a genome editing method called CRISPR gene scissors, and RNA that specifically binds to a specific nucleotide sequence (gRNA) and the Cas9 protein, which acts as a scissors that cuts a specific sequence.
  • gRNA nucleotide sequence
  • CRISPR associated protein 9 protein refers to a protein element essential in the CRISPR/Cas9 system, and two RNAs called CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) When forming a complex with, it forms an active endonuclease or nickase.
  • This step is a process of performing gene editing on the SLC35F2 gene in undifferentiated pluripotent stem cells.
  • suppression of the expression of the SLC35F2 gene according to knock-out may be achieved by this process.
  • the gene editing is 1 selected from the group consisting of an antisense nucleotide that specifically binds to the SLC35F2 gene, a small interfering RNA (siRNA), and a short hairpin RNA (shRNA).
  • siRNA small interfering RNA
  • shRNA short hairpin RNA
  • the siRNA may be a nucleic acid having the sequence of SEQ ID NO: 6.
  • this step is performed in undifferentiated pluripotent stem cells.
  • SLC35F2 gene it may include a process of performing gene editing on one or more additional genes of interest.
  • a sequence variation due to knock-out may occur in a gene of interest by this process.
  • the gene editing may be performed by introducing a single guide RNA (sgRNA) that specifically binds to the gene of interest to achieve sequence variation of the gene of interest, but is not limited thereto.
  • sgRNA single guide RNA
  • this step may be to operably link the reporter gene expressed when a sequence mutation occurs in the gene of interest to the downstream of the gene of interest, and the sequence mutation may be a frame shift mutation. , But is not limited thereto.
  • the reporter gene may be inserted into a nucleic acid sequence forming a transcription termination structure upstream.
  • a reporter gene operably linked downstream thereof is expressed.
  • the reporter gene is configured not to be expressed because a nucleic acid sequence forming a transcription termination structure is inserted upstream, but when a frame shift mutation occurs, the reporter gene is expressed because it cannot form a transcription termination structure.
  • the reporter gene encodes a fluorescent protein, since fluorescence is observed due to a frame shift mutation occurring in the gene of interest, transformed cells can be easily identified.
  • the reporter gene is a fluorescent protein, beta-galactosidase, beta-lactamase, TEV-protease, dihydrofolate reductase, lucifer.
  • Protein selected from the group consisting of luciferase, Renilla luciferase, Gaussia luciferase, selection marker, surface marker gene, and antibiotic resistance protein May be coding, for example, may be coding a fluorescent protein, but is not limited thereto.
  • sequence variation may occur due to knock-in in the gene of interest by this process.
  • the gene editing may be achieved by introducing a single stranded oligodeoxynucleotide (ssODN) specifically binding to the gene of interest into the cell to achieve sequence variation of the gene of interest, but is not limited thereto. .
  • ssODN single stranded oligodeoxynucleotide
  • the ssODN is composed of a single strand of DNA, and is used as a donor of a gene of interest in order to replace a specific base with another base.
  • the ssODN may be a nucleic acid having any one sequence selected from the group consisting of SEQ ID NO: 9 to SEQ ID NO: 11.
  • the ssODN binds complementarily to a target site, thereby inducing a sequence mutation of a gene of interest by homologous recombination.
  • the target site may be a specific locus on the gene of interest, and the sequence mutation may be a substitution mutation, but is not limited thereto.
  • the undifferentiated pluripotent stem cells may be selected from the group consisting of embryonic stem cells (Embryonic Stem Cells; hereinafter ESC), induced pluripotent stem cells (iPSCs), embryonic germ cells, embryonic tumor cells, and adult stem cells. It may be, for example, ESC, but is not limited thereto.
  • the concentration of YM155 is 5 to 2000 nM, 5 to 1000 nM, 5 to 500 nM, 5 to 200 nM, 5 to 100 nM, 5 to 50 nM, 5 to 20 nM, 10 to 2000 nM, 10 to 1000 nM, It may be 10 to 500 nM, 10 to 200 nM, 10 to 100 nM, or 10 to 50 nM, for example, 10 to 20 nM, but is not limited thereto.
  • Another aspect of the present invention relates to a gene-edited cell selected by a method for selecting a gene-edited cell comprising the following steps:
  • YM155 (CAS 781661-94-7) treatment to selectively kill the cells in which the expression of the SLC35F2 gene is not suppressed.
  • Another aspect of the invention is a method for the identification of YM155 cytotoxicity, comprising the step of predicting that the generation cytotoxic for YM155 if more differentiated cells YM155 treatment when, expression of SLC35F2 the derived from the undifferentiated pluripotent stem cells.
  • the present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, wherein the gene-edited cells can be concentrated and selected using YM155 resistance induced by transient knockdown of SLC35F2 by siRNA in the undifferentiated pluripotent stem cells. Therefore, it can be effectively used for selection of gene-edited cells.
  • 1A is a result of calculating the score of human pluripotent stem cells (hPSCs) for 666 human cancer cells by performing enrichment analysis.
  • hPSCs human pluripotent stem cells
  • 1B is a result of confirming YM155 as the most effective drug in cells with high hPSC scores by correlating the sensitivity of each cell line to 543 compounds.
  • 1C is a graph comparing the expression level of SLC35F2 in human embryonic stem cells (hESCs) with cancer cell lines.
  • 1D is a graph showing the mRNA expression of SLC35F2 and POU5F1 in human dermal fibroblasts (hDF), hESC-MSCs (Mesenchymal stem cells), and hESCs.
  • 1e is a graph showing the mRNA expression of SLC35F2 and POU5F1 in hESC-MSCs, hCHA3, H9 and induced pluripotent stem cells (iPSCs: SES8).
  • 1F is a photograph showing a fluorescence image of H9 stained with ⁇ H2AX after YM155 treatment.
  • Figure 1g is a result of performing immunoblotting analysis between hESC-MSC and hESC in order to detect the level of pH2AX (Ser 139) and cleaved caspase (c-Casp 3) after YM155 treatment.
  • 1H is a result of quantifying the amount of YM155 absorbed in cells between hDF and hESC by performing LC-MS/MS analysis.
  • 2A is a schematic diagram showing that exon 7 is selected as a target for SLC35F2 knockout.
  • 2B is a cytometry result and a micrograph showing the cell death of SLC35F2 knocked out SLC35F2 KO hESC according to YM155 treatment.
  • 2C is a T7E1 analysis result showing the frequency of insertion/deletion (indel) for clones that survive in the presence of YM155 after the introduction of sgRNA to Cas9 and SLC35F2 .
  • Figure 2d is a graph showing the percentage of indels through the next-generation sequencing (NGS) analysis for the clones that survive in the presence of YM155 after the introduction of sgRNA to SLC35F2 and Cas9.
  • NGS next-generation sequencing
  • 2E is sequence information showing that a single clone of YM155R is a homozygous bi-allelic SLC35F2 KO compared to wild-type hESC (NC).
  • Figure 2f is a result showing the degree of cell death in SLC35F2 KO #1 hESC after YM155 treatment through flow cytometry.
  • Figure 2g is a result showing the expression level of SLC35F2 in SLC35F2 KO #1 hESC after YM155 treatment.
  • 2H is a photograph showing DNA damage in SLC35F2 KO #1 hESC after YM155 treatment.
  • Figure 3a is a graph confirming the expression levels of the pluripotency markers NANOG, SOX2 and POU5F1 in SLC35F2 KO #1 hESC.
  • 3B is a photograph of immunoblocking analysis confirming the level of proteins such as SOX2 and OCT4 , which are pluripotent markers, in SLC35F2 KO #1 hESC.
  • Figure 3c is a photograph showing the result of alkaline phosphatase (phosphathase) analysis of the control (NC) and SLC35F2 KO #1 hESC.
  • 3D is a graph showing the cell growth rate of the control (NC) and SLC35F2 KO #1 hESC.
  • 3E is a result of confirming the degree of cell growth competition through co-culture with wild-type hESCs (EGFP-hESCs) expressing green fluorescent protein by flow cytometry.
  • 3F is a graph showing the mRNA expression of endoderm, mesoderm and ectoderm-specific genes (endoderm: SOX17, GATA6, mesoderm: MSX1 and ectoderm: NESTIN) after somatic differentiation from SLC35F2 KO #1 hESC in relative levels.
  • 3G is a photograph of teratoma formed using SLC35F2 KO hESCs.
  • 3H is transcript data showing a total gene scattering plot of pluripotency marker genes (POU5F1, SOX2, NANOG, Lin28A) in SLC35F2 KO #1 hESC.
  • FIG. 4A is a schematic diagram showing a YM155 mediated enrichment selection approach in HEK293T cells (GOI: gene of interest).
  • Figure 4b is a photograph showing the results of T7E1 analysis of the band (asterisk) cut after enzyme treatment in SLC35F2 KO HEK293T cells.
  • Figure 4c is a diagram showing the NGS data of the wild-type control and various SLC35F2 KO HEK293T cells.
  • 4D is a schematic diagram of a green fluorescent protein expression system for targeting CCR5 .
  • Figure 4e is a picture confirming the CRISPR/Cas9 targeting efficiency through co-targeting SLC35F2 and CCR5 and checking the ratio of GFP-positive cells.
  • Figure 4f is a graph confirming the CRISPR/Cas9 targeting efficiency through co-targeting SLC35F2 and CCR5 and checking the ratio of GFP-positive cells.
  • 4G is a T7E1 analysis result confirming the CRISPR/Cas9 targeting efficiency by co-targeting SLC35F2 and CCR5 and checking the ratio of GFP-positive cells.
  • Figure 5a is a photograph showing the T7E1 analysis of the CCR5 and SLC35F2 from each clone is applied to by a CCR5 (C) and SLC35F2 (S) to the target combination of the sgRNA by two different percentage of the CCR5 and SLC35F2 target.
  • NGS next-generation sequencing
  • 5C is an RNA-seq sample using t-distributed stochastic neighbor embedding (t-SNE) based on the expression of whole genes, hPSC signature genes and cell transition metal ion homeostasis (GO: 0046916) genes. This is a graph of the clustering results.
  • t-SNE stochastic neighbor embedding
  • Figure 6a is a schematic diagram showing a YES- approach by introduction of siRNA by the CCR5 target sgRNA and SLC35F2 target.
  • 6B is a graph showing relative levels of mRNA expression of SLC35F2 according to the indicated days after siRNA transduction in hESCs.
  • Figure 6c shows the results of annexin V/7-AAD (Annexin-V/7-AAD) staining and flow cytometry confirming cell death by comparing the 2nd and 5th days after transduction of the siRNA targeting SLC35F2 .
  • 6D is a graph showing the average of the indel ratio as the target efficiency of CCR5 after performing the YES-approach with different YM155 treatment doses.
  • 6E is a graph showing the results of sequencing analysis of CCR5 KO clones after performing the YES-approach at different YM155 treatment doses.
  • 6F is a result of NGS analysis for CCR5 target sequence, sgRNA target and PAM sequence.
  • Figure 6g shows the results of flow cytometry by varying the treatment dose of YM155 in WT or CCR5 KO hESC and staining with Annexin V/7-AAD.
  • 7A is a result of T7E1 analysis according to the presence or absence of the YES-approach targeting CCR5 , HEK2 and HEK3 loci (*, predicted DNA bands cleaved by T7E1 endonuclease).
  • Figure 7b is a graph showing the insertion frequency of CCR5 , HEK2 and HEK3 by the control (Cont) or the YES-approach (YES) determined by deep sequencing (*, p ⁇ 0.05; **, p ⁇ 0.01).
  • FIG. 7D is a graphical diagram for determining the target efficiency by the GFP reporter hESC expressing the Cas9 (Cas9-EGFP #1) system.
  • 7E is a flow cytometric analysis result of EGFP positive and negative populations under labeling conditions (black arrows indicate EGFP target populations).
  • 7F is a graph showing the EGFP positive (EGFP+) and EGFP negative (EGFP-) populations determined by flow cytometry.
  • 8A is a graphic diagram showing knock-in (KI) targets at the EYA4 , TMEM67, and SLC6A5 loci.
  • KI knock-in
  • ssODN an HDR marker sequence (capital red) capable of recognizing each KI was inserted.
  • Figure 8b is a result showing the indel (KO: Open bar, KI: Red bar) efficiency of the indicator gene according to the presence or absence of the scar-free YES-approach.
  • Figures 8c to 8e show the HDR frequency of the indel ratio based on deep sequencing analysis for three different objects ( EYA4 , TMEM67 and SLC6A5 genes), respectively, 8c is EYA4 , 8d is TMEM67 , and 8e is SLC6A5 . Is the result.
  • % used to indicate the concentration of a specific substance is (weight/weight)% for solids/solids, (weight/volume)% for solids/liquids, and Liquid/liquid is (vol/vol)%.
  • hESC Human embryonic stem cells (WA09, WiCell Research Institute; hereinafter hESC) were supplied with mTeSRTM-E8TM culture medium (STEMCELL technologies) and StemMACSTM medium (Miltenyi-Biotec) supplemented with 50 ug/ml gentamicin (Life Technologies). It was incubated on a Rigel (BD Biosciences) coated plate. Cells were cultured every 5 to 6 days and the medium was changed daily.
  • mTeSRTM-E8TM culture medium STMCELL technologies
  • StemMACSTM medium Miltenyi-Biotec
  • hESC was washed with DPBS (Dulbecco's Phosphate-Buffered Saline) and exposed to Dispase (Gibco) to exfoliate.
  • the separated cells were washed with DMEM/F-12 (Gibco) medium and plated on a Matrigel coated plate. If necessary, 10 uM of Y27632 (Gibco) was added for cell adhesion.
  • HEK293T Human embryonic kidney 293 cells
  • a culture dish Falcon
  • DMEM Gibco
  • FBS FBS
  • HEK293T cells were washed with DPBS and enzymatically separated with 0.25% trypsin. Trypsin was inactivated by adding DMEM containing 10% FBS, and an appropriate amount of cells was sprayed on the dish.
  • hPSCs human pluripotent stem cells
  • BIRC5 encoding survivin
  • GEO gene expression omnibus
  • KS Kolmogorov-Smirnov
  • the hPSC score, the area under the fitted curve (AUC) for each of the 543 compounds and the cell line hPSC score for each compound were correlated with the sensitivity of each cell line.
  • Cell viability values were adjusted in the range of 0-100% and were adjusted by 4-parameter logistic regression analysis. In order to calculate the AUC (area under the fit curve), a specific concentration range was selected for each compound that tested the most cells. AUC was normalized to a range of 0 to 1 by the maximum AUC assumed to be 0% growth inhibition in a given concentration range.
  • Quantitative data are expressed as mean value ⁇ standard error (SEM). To analyze the statistical significance of each response variable, a student's paired t-test or one-way ANOVA was performed. Pre-specified comparisons between groups were performed (where appropriate) via Tukey's post hoctest using the SPSS program (Social Science Statistics Package, Version 17). P values less than 0.05 were considered statistically significant.
  • the expression value of each gene was compared with the AUC of YM155 to show the strength of the correlation of 18,858 genes.
  • ATP1B1 and SLC35F2 were highly expressed in YM155 resistant and sensitive cells, respectively, indicating that cells with high hPSC scores were selectively sensitive to YM155.
  • the gene expression profile database (http://nextbio.com) was used to compare the relative SLC35F2 expression between 24 human embryonic stem cells (hESCs) and various cancer cell lines.
  • hESCs human embryonic stem cells
  • PC-3 prostate cancer cell
  • PC positive control
  • hESC-MSCs mesenchymal stem cells
  • hDFs human dermal fibroblasts
  • iPSCs pluripotent stem cells
  • SLC35F2 is a membrane transporter responsible for the uptake of YM155 into cells, causing DNA damage.
  • SLC35F2 is a membrane transporter responsible for the uptake of YM155 into cells, causing DNA damage.
  • HEK293T and H9 cells were exposed to 1 uM YM155 for 1 hour, and cells were counted as 1 ⁇ 10 6 .
  • the harvested cells were lysed with 80% methanol and incubated for an additional hour on ice. After spin down at 13,000 rpm for 20 minutes, the supernatant was collected and evaporated with N2 gas until no more solvent remained.
  • the sample residue was resuspended with 100 uL of 50% methanol and filtered through 10 seconds sonication, 5 seconds vortex, spin-down and 0.2 um membrane filter.
  • Example 3 In hPSCs induced by YM155 SLC35F2 Of selective cell death mediated by
  • hPSCs (EC 50: 10 nM) in order to confirm the link between YM155 selective cytotoxicity and high expression of SLC35F2 in these cells, using the CRISPR / Cas9 to target the exon 7 was knockout the SLC35F2 from hESCs in ( 2a).
  • sgRNA single guide RNA
  • cells were separated with Accutase TM (561527, BD Biosciences) and washed 3 times with DPBS, and then with FITC Annexin-V (556419, BD Biosciences) and 7-AAD (559925, BD Biosciences) for cell death detection. Dyed. Diluted 1X Annexin V binding buffer (556454, BD Biosciences) was used as a staining solvent. FACS calibur from BD Biosciences and Cell Quest software was used for FACS analysis.
  • the resistant clone YM155R was very resistant to additional YM155 treatment.
  • NGS Next-generation nucleotide sequence analysis
  • PCR was performed according to the supplier's instructions with a total volume of 10 ul per sample using SolgTM Taq DNA polymerase (STD16-R500, SolGent).
  • the first PCR was performed with primer F1 and primer R for each gene.
  • the first PCR product was diluted with 190 ul of DW.
  • the second PCR was performed with 1 ul of the first PCR product diluted using primers F2 and R for each gene.
  • the second PCR product was mixed with an equal volume of 2X NEBuffer2 (B7002S, New England BioLabs) and hybridized.
  • Three units of T7E1 endonuclease (M0302S, New England BioLabs) were treated with 10 ul of the hybridized second PCR product.
  • Enzymatic reaction was performed in a water bath at 37° C. for 40 minutes.
  • the sequence information from the YM155R clone (KO #1), the sgRNA target sequence, and the PAM sequence are shown in green and orange, respectively, and the single clone of YM155R maintained under the YM155 treatment is homozygous biallele (homozygous bi -allelic) turned out to be SLC35F2 KO.
  • the resistant clone SLC35F2 KO hESCs: KO #1 was found to be very strong against YM155-induced cell death.
  • the resistance obtained from SLC35F2 KO hESCs could be confirmed through the expression level of SLC35F2 and the degree of DNA damage, which was exhibited by YM155 treatment.
  • Example 3 Based on the results of Example 3, to characterize SLC35F2 KO hESCs, human skin fibroblasts; the typical, such as (human dermal fibroblasts or less hDF), wild-type hESCs (NC) and SLC35F2 KO from hESCs NANOG, SOX2 and POU5F1 The level of expression of potency markers was monitored.
  • a typical system of a specific gene in the KO SLC35F2 # 1 hESC are shown as relative levels of mRNA expression of the (endoderm: NESTIN SOX17, GATA6, mesoderm:: MSX1 and ectoderm).
  • the measurement results were expressed in units of days after somatic cell differentiation, measured in units of 2 days.
  • Example 5 YM155 mediated cell enrichment selection through co-target selection
  • SLC35F2 KO concentrated selection of hESC is from a point that can be achieved by YM155 treatment, SLC35F2 the gene of interest; the two-induced resistance to the If YM155 targeting with (gene of interest GOI) gene editing hPSC It can be predicted that it may be useful for screening.
  • HEK293T cells showing a relatively high level of SLC35F2 were utilized to induce dose-dependent cell death after YM155 treatment (EC 50 10 times higher than hESC).
  • YM155 treatment EC 50 10 times higher than hESC.
  • gene editing populations were created with an efficiency of 88.4% (see FIGS. 4B and 4C).
  • CCR5 CC motif Chemokine Receptor
  • CCR5 reporter substitute surrogate reporter
  • mRFP monomeric red fluorescent protein
  • GFP green fluorescent protein
  • Sequence number designation order 3 Nucleic acid sequence of CCR5 targeting site to which sgRNA specifically binds TGACATCAATTATTATACAT 4 Nucleic acid sequence of sgRNA targeting CCR5 TGACATCAATTATTATACATCGG
  • the GFP-positive result group of 25% or less according to the YM155 selection has a high probability of 80%. Suggested that the gene was edited.
  • Example 5 Based on the results of Example 5, after testing this approach (YM155-based enriched selection of CRISPR co-targeting (YM155-based Enriched Selection of CRISPR Co-15 target), hereinafter'YES approach') in HEK293T cells , This was applied to human pluripotent stem cells (hPSCs) more sensitive to YM155. In order to prove the concept of the YES-approach, the production of CCR5 -target hESCs was attempted.
  • hPSCs human pluripotent stem cells
  • the present inventors selected this gene for the following reasons.
  • the cells may have potential for future applications in HIV-1 studies, for example the production of CCR5 depleted CD4 + T cells.
  • the single clone was 85.5% indel, indicating that the surviving clone was successfully gene edited in the desired manner.
  • the sgRNA target sequence is indicated in green, and the PAM sequence is indicated in red.
  • Example 7 CCR5 A scar-free YES approach for the establishment of target hESCs
  • YES- approach is the presence of permanent KO of SLC35F2 to was effective in establishing a gene of interest (GOI) target hESC, an induced resistance is YM155 SLC35F2 impact on the inorganic ion homeostasis, or can be a problem in terms of the same disease model The point could not be ruled out.
  • GOI gene of interest
  • GOI in this case, CCR5
  • siRNA introduction of siRNA by the SLC35F2 target to target
  • Sequence number designation order 5 Nucleic acid sequence of SLC35F2 targeting site to which siRNA is specifically bound cagatgttgtccttgtgta 6 SLC35F2 targeting siRNA nucleic acid sequence cagauguuguccuugugua
  • Example 8 Expanding the application of the scar-free YES approach for gene knockout in hESCs
  • the known HEK2 and HEK3 genes were further targeted.
  • the HEK2 and HEK3 targeting siRNA nucleic acid sequences are the same as those used in Example 7, and the nucleic acid sequence of the CCR5 targeting site to which sgRNA specifically binds and the nucleic acid sequence of sgRNA targeting CCR5 were used in Example 5 above. Same as sequence.
  • Sequence number designation order 7 Nucleic acid sequence of HEK2 targeting site to which siRNA is specifically bound GAACACAAAGCATAGACTGCGGG 8
  • EGFP green fluorescent protein
  • the Cas9-2A-EGFP gene (plasmid vector) was optionally introduced into H9 cells (hESCs) using the PiggyBac system, and cells expressing EGFP were collected through flow cytometry (FACS). Then, the nucleotide sequence of each colony derived from a single cell was analyzed to establish a clone that actually expresses Cas9 and EGFP.
  • gene knock-in (KI) in hESCs remains an important technical obstacle, despite the high demand for genetic modification of patient iPSCs as well as for modeling allogeneic diseases.
  • Sequence number designation Sequence (except PAM sequence) 12 Nucleic acid sequence of sgRNA targeting EYA4 (nucleic acid sequence of EYA4 targeting site to which sgRNA specifically binds) agagtttggatagcctgtat 13 Nucleic acid sequence of sgRNA targeting TMEM67 (nucleic acid sequence of TMEM67 targeting site to which sgRNA specifically binds) gttcacgttcttgtcaatag 14 Nucleic acid sequence of sgRNA targeting SLC6A5 (nucleic acid sequence of SLC6A5 targeting site to which sgRNA specifically binds) ttgcaaagaatgccttcacc
  • hESCs human embryonic stem cells
  • 2ug of Cas9 vector, 2ug of sgRNA, 5ug of ssODN, and 2ug of siRNA were transferred into the cell by electroporation.
  • 20 nM of YM155 was treated for 6 hours and then washed-off to YES-select.
  • gDNA was extracted from the selected cells to perform next-generation nucleotide sequence (NGS) analysis.
  • NGS next-generation nucleotide sequence
  • the present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, and more particularly, a method for enriching and selecting gene-edited cells using YM155 resistance induced by transient knockdown of SLC35F2 by siRNA. It is about.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, wherein gene-edited cells can be enriched and selected from the undifferentiated pluripotent stem cells by using YM155 resistance induced through the transient knockdown of SLC35F2 by siRNA, and thus the method can be effectively used for selecting gene-edited cells.

Description

미분화 만능 줄기세포로부터 유전자 편집된 세포의 선별 방법Selection method for gene-edited cells from undifferentiated pluripotent stem cells
본 발명은 미분화 만능 줄기세포로부터 유전자 편집된 세포의 선별 방법에 관한 것으로서, 더욱 상세하게는 siRNA에 의한 SLC35F2의 일시적인 녹다운에 의해 유도된 YM155 저항성을 이용하여 유전자 편집된 세포를 농축 선별할 수 있는 방법에 관한 것이다.The present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, and more particularly, a method for enriching and selecting gene-edited cells using YM155 resistance induced by transient knockdown of SLC35F2 by siRNA. It is about.
본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 2017M3A9B3061843에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 "바이오의료기술개발사업", 연구과제명은 "전분화성 기능강화 세포 선별 기술 개발 및 특성 연구", 주관기관은 서울대학교, 연구기간은 2017.06.30 ~ 2022.06.29이다.The present invention was made by the project number 2017M3A9B3061843 under the support of the Ministry of Science, Technology and Communication of the Republic of Korea. Cell Screening Technology Development and Characteristic Research", the host institution is Seoul National University, and the research period is 2017.06.30 ~ 2022.06.29.
본 특허출원은 2019년 5월 14일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0056334호에 대하여 우선권을 주장하며, 상기 특허출원의 개시사항은 본 명세서에 참조로서 삽입된다.This patent application claims priority to Korean Patent Application No. 10-2019-0056334 filed with the Korean Intellectual Property Office on May 14, 2019, and the disclosures of the patent application are incorporated herein by reference.
인간 다능성 줄기세포(human pluripotent stem cells; 이하 hPSCs)의 최근 진보와 함께, hPSCs의 유전자 기술은 재생 의학의 맥락에서 유전자 보정에 대한 큰 가능성을 보여주었다. 유전 질환 환자로부터 유래된 hPSCs의 사용은 병리를 모방한 특정 유형의 세포(즉, 질병 모델링)의 지속적인 공급을 가능하게 하여 약물 스크리닝 및 기초 연구 모두에 가치 있는 기여를 할 수 있다.With recent advances in human pluripotent stem cells (hPSCs), the genetic technology of hPSCs has shown great potential for genetic modification in the context of regenerative medicine. The use of hPSCs derived from patients with genetic diseases enables a continuous supply of certain types of cells that mimic pathology (i.e. disease modeling), which can make a valuable contribution to both drug screening and basic research.
그러나 환자 유래의 유도만능줄기세포(induced pluripotent stem cells; 이하 iPSCs)는 관련 없는 hPSC 계통 사이의 변동성 영향을 최소화하기 위해 많은 수의 케이스 및 제어 iPSC를 필요로 한다.However, patient-derived induced pluripotent stem cells (iPSCs) require a large number of case and control iPSCs to minimize the effect of variability between unrelated hPSC lines.
대조적으로, 유전자 편집 hPSC는 대조군과 질병 모델 세포의 동등한 쌍을 제공하여 엄격한 비교를 가능하게 한다. hPSCs의 유전자 기술의 잠재력에도 불구하고 영양계 선발(clonal selection)에 필요한 시간은 소모적이고, 이 과정의 힘든 과정과 극히 낮은 효율은 마우스 배아 줄기세포(Embryonic Stem Cell; 이하 ESC)에서의 풀링된 sgRNA 스크리닝 수행과 같은 광범위한 응용에 있어 중요한 장애물로 남아있다.In contrast, gene edited hPSCs provide an equal pair of control and disease model cells, allowing rigorous comparisons. Despite the potential of the genetic technology of hPSCs, the time required for clonal selection is consuming, and the laborious process and extremely low efficiency of this process result in pooled sgRNA from mouse embryonic stem cells (ESC). It remains a significant hurdle for a wide range of applications, such as performing screening.
기술적 장벽에 기여하는 또 다른 요소는 hPSCs에서의 Cas9 활성이 낮다는 사실이다; 또한 Cas9의 효과에 의해 DNA 손상에 대한 반응으로 세포가 대량의 p53 의존성 세포 사멸을 겪는다.Another factor contributing to the technical barrier is the low Cas9 activity in hPSCs; Also, by the effect of Cas9, cells undergo a large amount of p53-dependent cell death in response to DNA damage.
hPSC(뿐만 아니라 다른 체세포 모델)에서 유전자 편집의 낮은 효율을 다루기 위한 여러 전략이 개발되었다: 유도성 Cas9 시스템, 퓨로마이신(puromycin) 선택, 자기복제형 에피소말 벡터 등이 있다. 대안으로, 타겟 편집 클론 중 일부의 농축 선별은 타겟 편집 클론이 약물 감수성을 담당하는 유전자의 녹아웃(knockout)에 의해 유도된 획득 저항을 통해 생존할 수 있게 하는 '공동 표적화(co-targeting)' 접근법에 의해 시도되었다.Several strategies have been developed to address the low efficiency of gene editing in hPSCs (as well as other somatic models): the inducible Cas9 system, puromycin selection, and self-replicating episomal vectors. Alternatively, enrichment selection of some of the target-edited clones is a'co-targeting' approach that allows the target-edited clones to survive through acquisition resistance induced by knockout of the gene responsible for drug sensitivity. Was tried by
그러나 추가적으로 제조되는 원치 않는 부작용을 최소화하기 위해, 영구적인 '흉터'를 만들거나 외래 유전자(예: 약물 저항 유도에 관여하는 유전자 조작)없이 표적 편집 클론의 '흉터 없는 농축'을 달성하는 것이 바람직하다.However, in order to minimize additionally produced unwanted side effects, it is desirable to create a permanent'scar' or achieve'scar-free enrichment' of target-edited clones without foreign genes (e.g., genetic manipulations involved in drug resistance induction). .
미분화 hPSCs의 의도하지 않은 이식으로 인한 기형종 형성은 hPSC 기반 세포 치료의 심각한 위험이다. 이러한 위험을 해결하기 위해, 잔여 hPSC를 선택적으로 제거하기 위한 몇 가지 접근법이 개발되었다. 예를 들어, 항암제로 개발된 서바이빈(survivin) 억제제인 YM155가 미분화된 hPSC에 대해 선택적으로 세포 독성을 가지며 기형종 형성을 억제한다고 보고된 바 있는데, 이 발견은 몇몇 독립적인 연구에서 재현되었다. 그러나 그 당시에는 YM155에 대한 hPSC의 높은 감수성의 기초가 되는 분자 메커니즘은 완전히 밝혀지지 않았다.Teratoma formation due to unintentional transplantation of undifferentiated hPSCs is a serious risk for hPSC-based cell therapy. To address this risk, several approaches have been developed to selectively remove residual hPSCs. For example, it has been reported that YM155, a survivin inhibitor developed as an anticancer drug, selectively has cytotoxicity to undifferentiated hPSCs and inhibits teratoma formation, and this finding has been reproduced in several independent studies. . However, at that time the molecular mechanisms underlying the high susceptibility of hPSCs to YM155 were not fully elucidated.
본 발명자들은 SLC35F2의 일시적인 짧은 간섭 RNA(small interfering RNA; 이하 siRNA) 매개 녹다운과 병행하여, 목적 유전자를 표적으로 하는 유전자 편집 단일 가이드 RNA(single guide RNA; 이하 sgRNA)의 도입을 통해, 유도된 YM155 저항성을 통한 유전자-편집된 hPSCs의 농축 선별을 효율적으로 달성하였다. 고효율의 농축 선별에 대한 이 흉터 없는 접근 방식은 번거로운 클론 선별을 필요로 하지 않아, 최소 3주 내에 단일 클론을 얻을 수 있는 것을 확인하였다.In parallel with the transient short interfering RNA (siRNA) mediated knockdown of SLC35F2, the present inventors introduced YM155 induced by the introduction of a gene-editing single guide RNA (sgRNA) targeting the gene of interest. Enrichment selection of gene-edited hPSCs through resistance was efficiently achieved. It was confirmed that this scar-free approach to highly efficient enrichment selection did not require cumbersome clone selection, so that a single clone could be obtained within at least 3 weeks.
따라서, 본 발명의 목적은 유전자 편집된 세포의 선별 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for selecting gene-edited cells.
본 발명의 다른 목적은 미분화 만능 줄기세포에서 유래된 분화세포에 YM155 처리 시, SLC35F2의 발현량이 증가하면 YM155에 대한 세포 독성이 발생하는 것으로 예측하는 단계를 포함하는, YM155의 세포 독성 확인 방법을 제공하는 것이다.It is another object of the present invention upon the differentiation in YM155 treated cells derived from undifferentiated pluripotent stem cells, an increase in the amount of expression of SLC35F2 service, YM155 cytotoxic check method comprising the steps of predicting that the generated cytotoxic for YM155 Is to do.
본 발명의 또 다른 목적은 SLC35F2 유전자의 발현이 억제된 미분화 다능성 줄기세포에 있어서, 유전자 편집이 이루어지지 않은 세포에 대하여 선택적으로 세포 사멸을 유도하는 YM155의 용도를 제공하는 것이다.Another object of the present invention is to provide the use of YM155 for selectively inducing apoptosis in undifferentiated pluripotent stem cells in which the expression of the SLC35F2 gene has been suppressed.
본 발명은 미분화 만능 줄기세포(undifferentiated pluripotent stem cells)로부터 유전자 편집된 세포의 선별 방법에 관한 것으로서, 더욱 상세하게는 siRNA에 의한 SLC35F2의 일시적인 녹다운에 의해 유도된 YM155(CAS 781661-94-7) 저항성을 이용하여 유전자 편집된 세포를 농축 선별할 수 있는 방법에 관한 것이다.The present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, and more particularly, YM155 (CAS 781661-94-7) resistance induced by transient knockdown of SLC35F2 by siRNA. It relates to a method for enriching and selecting the gene-edited cells by using.
이하, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 양태는 다음의 단계를 포함하는 유전자 편집된 세포의 선별 방법에 관한 것이다:One aspect of the present invention relates to a method for selecting genetically edited cells comprising the following steps:
미분화 만능 줄기세포(undifferentiated pluripotent stem cells)에서 SLC35F2 유전자를 표적화하여 유전자 편집을 진행하는 유전자 편집 단계로, 상기 유전자 편집은 SLC35F2 유전자의 발현을 억제하는 것인, 유전자 편집 단계; 및Gene editing step of targeting the SLC35F2 gene in undifferentiated pluripotent stem cells to proceed with gene editing, wherein the gene editing is to suppress the expression of the SLC35F2 gene, the gene editing step; And
YM155(CAS 781661-94-7)를 처리하여 SLC35F2 유전자의 발현이 억제되지 않은 세포를 선택적으로 사멸시키는 세포 사멸 유도 단계.YM155 (CAS 781661-94-7) treatment to selectively kill the cells in which the expression of the SLC35F2 gene is not suppressed.
본 명세서에서 "YM155"는 서바이빈(Survivin) 억제제로, 하기 화학식 1로 표시되는 화합물을 의미한다(CAS No. 781661-94-7).In the present specification, "YM155" refers to a survivin inhibitor and refers to a compound represented by the following formula (1) (CAS No. 781661-94-7).
[화학식 1][Formula 1]
Figure PCTKR2020000078-appb-I000001
Figure PCTKR2020000078-appb-I000001
본 발명에 따르면, 다른 화학 물질 기반의 선별 접근법과는 달리, SLC35F2는 YM155에 대한 약물-특이적 막 수송체로서, SLC35F2 유전자의 발현을 억제하면 YM155의 세포 흡수를 차단할 수 있고, 이로 인하여 세포에 YM155에 대한 저항성이 유도될 수 있다.According to the present invention, unlike other chemical-based screening approaches, SLC35F2 is a drug-specific membrane transporter for YM155 , and inhibiting the expression of the SLC35F2 gene can block the cellular uptake of YM155, thereby causing cells to Resistance to YM155 can be induced.
본 발명의 유전자 편집된 세포의 선별 방법에 의해 선별된 세포는, 상기 SLC35F2 유전자 외에 추가적으로 1종 이상의 관심 유전자(gene of interest; GOI)를 표적화하여 유전자 편집된 것일 수 있다.The cells selected by the method for selecting gene-edited cells of the present invention may be gene-edited by targeting at least one gene of interest (GOI) in addition to the SLC35F2 gene.
본 명세서에서 용어 "유전자 편집"은, 특별한 언급이 없는 한, 표적 유전자의 표적 부위에서의 절단에 의한 핵산 분자(하나 이상, 예컨대 1-100,000bp, 1-10,000bp, 1-1000bp, 1-100bp, 1-70bp, 1-50bp, 1-30bp, 1-20bp 또는 1-10bp)의 결실, 삽입, 치환 등에 의하여 유전자 기능을 상실, 변경, 및/또는 회복(수정)시키는 것을 의미하기 위하여 사용될 수 있다.In the present specification, the term "gene editing" refers to a nucleic acid molecule (one or more, such as 1-100,000bp, 1-10,000bp, 1-1000bp, 1-100bp), by cleavage at the target site of the target gene, unless otherwise specified. , 1-70bp, 1-50bp, 1-30bp, 1-20bp, or 1-10bp) by deletion, insertion, substitution, etc., can be used to mean loss, alteration, and/or recovery (modification) of gene function. have.
본 명세서에서 용어 "CRISPR/Cas9" 또는 "CRISPR/Cas9 시스템"은, 크리스퍼(Clustered regularly interspaced short palindromic repeat, CRISPR) 유전자 가위라 불리는 게놈 편집 방법으로, 특정 염기서열에 특이적으로 결합하는 RNA(gRNA)와 특정한 염기서열을 자르는 가위 역할인 Cas9 단백질로 구성된다. In the present specification, the term "CRISPR/Cas9" or "CRISPR/Cas9 system" is a genome editing method called CRISPR gene scissors, and RNA that specifically binds to a specific nucleotide sequence ( gRNA) and the Cas9 protein, which acts as a scissors that cuts a specific sequence.
본 명세서에서 용어 "Cas9(CRISPR associated protein 9) 단백질"은, CRISPR/Cas9 시스템에서 필수적인 단백질 요소를 의미하고, CRISPR RNA(crRNA) 및 트랜스-활성화 crRNA (trans-activating crRNA, tracrRNA)로 불리는 두 RNA와 복합체를 형성할 때, 활성 엔도뉴클레아제 또는 니카아제(nickase)를 형성한다.The term "Cas9 (CRISPR associated protein 9) protein" as used herein refers to a protein element essential in the CRISPR/Cas9 system, and two RNAs called CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) When forming a complex with, it forms an active endonuclease or nickase.
이하, 본 발명의 유전자 편집된 세포의 선별 방법에 대하여 상세히 설명한다.Hereinafter, the method for selecting the gene-edited cells of the present invention will be described in detail.
유전자 편집 단계Gene editing steps
본 단계는 미분화 만능 줄기세포에서 SLC35F2 유전자에 대하여 유전자 편집을 수행하는 과정이다.This step is a process of performing gene editing on the SLC35F2 gene in undifferentiated pluripotent stem cells.
일 구현예에 따르면, 본 과정에 의해 녹아웃(knock-out)에 따른 SLC35F2 유전자의 발현 억제가 달성될 수 있다.According to an embodiment, suppression of the expression of the SLC35F2 gene according to knock-out may be achieved by this process.
구체적으로, 상기 유전자 편집은 SLC35F2 유전자에 특이적으로 결합하는 안티센스 뉴클레오티드(antisense nucleotide), 짧은 간섭 RNA(small interfering RNA; siRNA) 및 짧은 헤어핀 RNA(short hairpin RNA; shRNA)로 이루어진 군으로부터 선택되는 1종 이상을 세포에 도입하여 SLC35F2 유전자의 발현 억제가 달성되는 것일 수 있고, 예를 들어, siRNA를 도입하여 달성되는 것일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the gene editing is 1 selected from the group consisting of an antisense nucleotide that specifically binds to the SLC35F2 gene, a small interfering RNA (siRNA), and a short hairpin RNA (shRNA). By introducing more than one species into cells, suppression of the expression of the SLC35F2 gene may be achieved, for example, may be achieved by introducing siRNA, but is not limited thereto.
상기 siRNA는 서열번호 6의 서열을 갖는 핵산일 수 있다.The siRNA may be a nucleic acid having the sequence of SEQ ID NO: 6.
또한, 본 단계는 미분화 만능 줄기세포에서 상기 SLC35F2 유전자 외에, 추가적인 1종 이상의 관심 유전자에 대하여 유전자 편집을 수행하는 과정을 포함할 수 있다.In addition, this step is performed in undifferentiated pluripotent stem cells. In addition to the SLC35F2 gene, it may include a process of performing gene editing on one or more additional genes of interest.
일 구현예에 따르면, 본 과정에 의해 관심 유전자에서 녹아웃(knock-out)에 따른 서열 변이가 발생할 수 있다.According to one embodiment, a sequence variation due to knock-out may occur in a gene of interest by this process.
구체적으로, 상기 유전자 편집은 관심 유전자에 특이적으로 결합하는 단일 가이드 RNA(single guide RNA; sgRNA)를 세포에 도입하여 관심 유전자의 서열 변이가 달성되는 것일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the gene editing may be performed by introducing a single guide RNA (sgRNA) that specifically binds to the gene of interest to achieve sequence variation of the gene of interest, but is not limited thereto.
이에 따라, 본 단계는 상기 관심 유전자에 서열 변이가 발생하면 발현되는 리포터 유전자를 관심 유전자의 다운스트림에 작동가능하게 연결하는 것일 수 있고, 상기 서열 변이는 프레임 이동 돌연변이(frame shift mutation)일 수 있으나, 이에 한정되는 것은 아니다.Accordingly, this step may be to operably link the reporter gene expressed when a sequence mutation occurs in the gene of interest to the downstream of the gene of interest, and the sequence mutation may be a frame shift mutation. , But is not limited thereto.
상기 리포터 유전자는 업스트림에 전사 종결 구조를 형성하는 핵산 서열이 삽입된 것일 수 있다.The reporter gene may be inserted into a nucleic acid sequence forming a transcription termination structure upstream.
상기 관심 유전자에서 프레임 이동 돌연변이가 발생하는 경우, 그 다운스트림에 작동가능하게 연결된 리포터 유전자가 발현된다. 리포터 유전자는 업스트림에 전사 종결 구조를 형성하는 핵산 서열이 삽입되어 있기 때문에 발현되지 않도록 구성되어 있으나, 프레임 이동 돌연변이가 발생하면 전사 종결 구조를 형성할 수 없으므로 리포터 유전자가 발현된다. 리포터 유전자가 형광 단백질을 코딩하는 경우, 관심 유전자에서 발생한 프레임 이동 돌연변이로 인하여 형광 발광이 관찰되므로 형질전환 세포를 용이하게 확인할 수 있다.When a frame shift mutation occurs in the gene of interest, a reporter gene operably linked downstream thereof is expressed. The reporter gene is configured not to be expressed because a nucleic acid sequence forming a transcription termination structure is inserted upstream, but when a frame shift mutation occurs, the reporter gene is expressed because it cannot form a transcription termination structure. When the reporter gene encodes a fluorescent protein, since fluorescence is observed due to a frame shift mutation occurring in the gene of interest, transformed cells can be easily identified.
상기 리포터 유전자는 형광 단백질, 베타-갈락토시다제(beta-galactosidase), 베타-락타마아제(β-lactamase), TEV-프로테아제(TEV-protease), 디히드로엽산환원효소(Dihydrofolate reductase), 루시퍼라제(luciferase), 레닐라 루시퍼라아제(Renilla luciferase), 가우시아 루시퍼라아제(Gaussia luciferase), 선택마커(selection marker), 표면 마커 유전자(surface marker gene) 및 항생제 저항성 단백질로 구성된 군으로부터 선택된 단백질을 코딩하는 것일 수 있고, 예를 들어, 형광 단백질을 코딩하는 것일 수 있으나, 이에 한정되는 것은 아니다.The reporter gene is a fluorescent protein, beta-galactosidase, beta-lactamase, TEV-protease, dihydrofolate reductase, lucifer. Protein selected from the group consisting of luciferase, Renilla luciferase, Gaussia luciferase, selection marker, surface marker gene, and antibiotic resistance protein May be coding, for example, may be coding a fluorescent protein, but is not limited thereto.
다른 일 구현예에 따르면, 본 과정에 의해 관심 유전자에서 녹인(knock-in)에 따른 서열 변이가 발생할 수 있다.According to another embodiment, sequence variation may occur due to knock-in in the gene of interest by this process.
구체적으로, 상기 유전자 편집은 관심 유전자에 특이적으로 결합하는 단일 가닥 올리고데옥시뉴클레오타이드(single stranded oligodeoxynucleotides; ssODN)를 세포에 도입하여 관심 유전자의 서열 변이가 달성되는 것일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the gene editing may be achieved by introducing a single stranded oligodeoxynucleotide (ssODN) specifically binding to the gene of interest into the cell to achieve sequence variation of the gene of interest, but is not limited thereto. .
상기 ssODN은 한 가닥의 DNA로 구성되어 있고, 특정 염기(base)를 다른 염기로 교체하기 위하여 관심 유전자의 공여자(donor)로 사용된다.The ssODN is composed of a single strand of DNA, and is used as a donor of a gene of interest in order to replace a specific base with another base.
상기 ssODN은 서열번호 9 내지 서열번호 11로 이루어진 군으로부터 선택된 어느 하나의 서열을 갖는 핵산일 수 있다.The ssODN may be a nucleic acid having any one sequence selected from the group consisting of SEQ ID NO: 9 to SEQ ID NO: 11.
상기 ssODN은 표적 부위에 상보적으로 결합함으로써, 상동 재조합(homologous recombination)에 의해 관심 유전자의 서열 변이를 유도할 수 있다.The ssODN binds complementarily to a target site, thereby inducing a sequence mutation of a gene of interest by homologous recombination.
상기 표적 부위는 관심 유전자 상의 특정 유전자좌일 수 있고, 상기 서열 변이는 치환 돌연변이(substitution mutation)일 수 있으나, 이에 한정되는 것은 아니다.The target site may be a specific locus on the gene of interest, and the sequence mutation may be a substitution mutation, but is not limited thereto.
상기 미분화 만능 줄기세포는 배아 줄기세포(Embryonic Stem Cell; 이하 ESC), 유도만능줄기세포(induced pluripotent stem cells; 이하 iPSCs), 배아 생식세포, 배아 종양세포 및 성체 줄기세포로 이루어진 군으로부터 선택되는 것일 수 있고, 예를 들어, ESC인 것일 수 있으나, 이에 한정되는 것은 아니다.The undifferentiated pluripotent stem cells may be selected from the group consisting of embryonic stem cells (Embryonic Stem Cells; hereinafter ESC), induced pluripotent stem cells (iPSCs), embryonic germ cells, embryonic tumor cells, and adult stem cells. It may be, for example, ESC, but is not limited thereto.
세포 사멸 유도 단계Steps to induce apoptosis
상기 YM155의 농도는 5 내지 2000 nM, 5 내지 1000 nM, 5 내지 500 nM, 5 내지 200 nM, 5 내지 100 nM, 5 내지 50 nM, 5 내지 20 nM, 10 내지 2000 nM, 10 내지 1000 nM, 10 내지 500 nM, 10 내지 200 nM, 10 내지 100 nM 또는 10 내지 50 nM, 예를 들어, 10 내지 20 nM인 것일 수 있으나, 이에 한정되는 것은 아니다.The concentration of YM155 is 5 to 2000 nM, 5 to 1000 nM, 5 to 500 nM, 5 to 200 nM, 5 to 100 nM, 5 to 50 nM, 5 to 20 nM, 10 to 2000 nM, 10 to 1000 nM, It may be 10 to 500 nM, 10 to 200 nM, 10 to 100 nM, or 10 to 50 nM, for example, 10 to 20 nM, but is not limited thereto.
본 발명의 다른 일 양태는 다음의 단계를 포함하는 유전자 편집된 세포의 선별 방법에 의해 선별된, 유전자 편집된 세포에 관한 것이다:Another aspect of the present invention relates to a gene-edited cell selected by a method for selecting a gene-edited cell comprising the following steps:
미분화 만능 줄기세포(undifferentiated pluripotent stem cells)에서 SLC35F2 유전자를 표적화하여 유전자 편집을 진행하는 유전자 편집 단계로, 상기 유전자 편집은 SLC35F2 유전자의 발현을 억제하는 것인, 유전자 편집 단계; 및Gene editing step of targeting the SLC35F2 gene in undifferentiated pluripotent stem cells to proceed with gene editing, wherein the gene editing is to suppress the expression of the SLC35F2 gene, the gene editing step; And
YM155(CAS 781661-94-7)를 처리하여 SLC35F2 유전자의 발현이 억제되지 않은 세포를 선택적으로 사멸시키는 세포 사멸 유도 단계.YM155 (CAS 781661-94-7) treatment to selectively kill the cells in which the expression of the SLC35F2 gene is not suppressed.
본 발명의 다른 양태는 미분화 만능 줄기세포에서 유래된 분화세포에 YM155처리 시, SLC35F2의 발현량이 증가하면 YM155에 대한 세포 독성이 발생하는 것으로 예측하는 단계를 포함하는, YM155의 세포 독성 확인 방법이다.Another aspect of the invention is a method for the identification of YM155 cytotoxicity, comprising the step of predicting that the generation cytotoxic for YM155 if more differentiated cells YM155 treatment when, expression of SLC35F2 the derived from the undifferentiated pluripotent stem cells.
본 발명은 미분화 만능 줄기세포로부터 유전자 편집된 세포의 선별 방법에 관한 것으로서, 상기 미분화 만능 줄기세포에서 siRNA에 의한 SLC35F2의 일시적인 녹다운에 의해 유도된 YM155 저항성을 이용하여 유전자 편집된 세포를 농축 선별할 수 있으므로, 이를 효과적으로 유전자 편집된 세포의 선별에 이용할 수 있다.The present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, wherein the gene-edited cells can be concentrated and selected using YM155 resistance induced by transient knockdown of SLC35F2 by siRNA in the undifferentiated pluripotent stem cells. Therefore, it can be effectively used for selection of gene-edited cells.
도 1a는 농축 분석을 수행하여 666개의 인간 암 세포에 대한 인간 다능성 줄기세포(hPSCs) 점수를 계산한 결과이다.1A is a result of calculating the score of human pluripotent stem cells (hPSCs) for 666 human cancer cells by performing enrichment analysis.
도 1b는 543가지 화합물에 대한 각 세포주의 민감도를 연관시켜 높은 hPSC 점수를 가진 세포에서 가장 효과적인 약물로 YM155를 확인한 결과이다.1B is a result of confirming YM155 as the most effective drug in cells with high hPSC scores by correlating the sensitivity of each cell line to 543 compounds.
도 1c는 인간 배아 줄기세포(human embryonic stem cells; 이하 hESCs)에서의 SLC35F2 발현 수준을 암 세포주와 비교한 그래프이다.1C is a graph comparing the expression level of SLC35F2 in human embryonic stem cells (hESCs) with cancer cell lines.
도 1d는 인간 피부 섬유아세포(human dermal fibroblasts; 이하 hDF), hESC-MSCs(Mesenchymal stem cells) 및 hESCs에서의 SLC35F2POU5F1의 mRNA 발현을 나타낸 그래프이다.1D is a graph showing the mRNA expression of SLC35F2 and POU5F1 in human dermal fibroblasts (hDF), hESC-MSCs (Mesenchymal stem cells), and hESCs.
도 1e는 hESC-MSCs, hCHA3, H9 및 유도만능줄기세포(induced pluripotent stem cells; 이하 iPSCs: SES8)에서의 SLC35F2POU5F1의 mRNA 발현을 나타낸 그래프이다.1e is a graph showing the mRNA expression of SLC35F2 and POU5F1 in hESC-MSCs, hCHA3, H9 and induced pluripotent stem cells (iPSCs: SES8).
도 1f는 YM155 처리 후 γH2AX로 염색된 H9의 형광 이미지를 나타낸 사진이다.1F is a photograph showing a fluorescence image of H9 stained with γH2AX after YM155 treatment.
도 1g는 YM155 처리 후 pH2AX(Ser 139) 및 절단된 케스페이즈 3(cleaved Caspase; c-Casp 3) 수준을 검출하기 위해 hESC-MSC와 hESC 사이의 면역 블로팅 분석을 수행한 결과이다.Figure 1g is a result of performing immunoblotting analysis between hESC-MSC and hESC in order to detect the level of pH2AX (Ser 139) and cleaved caspase (c-Casp 3) after YM155 treatment.
도 1h는 LC-MS/MS 분석을 수행하여 hDF와 hESC 사이의 세포 내 흡수된 YM155 양을 정량화한 결과이다.1H is a result of quantifying the amount of YM155 absorbed in cells between hDF and hESC by performing LC-MS/MS analysis.
도 2a는 SLC35F2 녹아웃을 위한 타겟으로 엑손 7을 선택하였음을 나타내는 모식도이다.2A is a schematic diagram showing that exon 7 is selected as a target for SLC35F2 knockout.
도 2b는 SLC35F2 녹아웃 된 SLC35F2 KO hESC에 YM155를 처리함에 따른 세포 사멸 여부를 나타낸 세포 계측 결과 및 현미경 사진이다.2B is a cytometry result and a micrograph showing the cell death of SLC35F2 knocked out SLC35F2 KO hESC according to YM155 treatment.
도 2c는 Cas9 및 SLC35F2에 대한 sgRNA의 도입 후, YM155의 존재 하에서 생존하는 클론에 대한 삽입/결실(indel) 빈도를 나타낸 T7E1 분석 결과이다.2C is a T7E1 analysis result showing the frequency of insertion/deletion (indel) for clones that survive in the presence of YM155 after the introduction of sgRNA to Cas9 and SLC35F2 .
도 2d는 SLC35F2 및 Cas9에 대한 sgRNA의 도입 후, YM155의 존재 하에서 생존하는 클론에 대하여 차세대염기서열(Next-generation sequencing; 이하 NGS) 분석법을 통한 인델(indel) 백분율을 나타낸 그래프이다.Figure 2d is a graph showing the percentage of indels through the next-generation sequencing (NGS) analysis for the clones that survive in the presence of YM155 after the introduction of sgRNA to SLC35F2 and Cas9.
도 2e는 야생형 hESC(NC)와 대비하여 YM155R의 단일 클론이 동형 접합체 복대립형(homozygous bi-allelic) SLC35F2 KO임을 나타내는 서열 정보이다.2E is sequence information showing that a single clone of YM155R is a homozygous bi-allelic SLC35F2 KO compared to wild-type hESC (NC).
도 2f는 YM155 처리 후 SLC35F2 KO #1 hESC에서의 세포 사멸 정도를 유동 세포 계측을 통해 나타낸 결과이다.Figure 2f is a result showing the degree of cell death in SLC35F2 KO #1 hESC after YM155 treatment through flow cytometry.
도 2g는 YM155 처리 후 SLC35F2 KO #1 hESC에서의 SLC35F2의 발현량을 나타낸 결과이다.Figure 2g is a result showing the expression level of SLC35F2 in SLC35F2 KO #1 hESC after YM155 treatment.
도 2h는 YM155 처리 후 SLC35F2 KO #1 hESC에서의 DNA 손상 여부를 나타낸 사진이다.2H is a photograph showing DNA damage in SLC35F2 KO #1 hESC after YM155 treatment.
도 3a는 SLC35F2 KO #1 hESC에서 다능성 마커인 NANOG, SOX2 및 POU5F1의 발현 수준을 확인한 그래프이다.Figure 3a is a graph confirming the expression levels of the pluripotency markers NANOG, SOX2 and POU5F1 in SLC35F2 KO #1 hESC.
도 3b는 SLC35F2 KO #1 hESC에서 다능성 마커인 SOX2 및 OCT4와 같은 단백질 수준을 확인한 면역 블로킹 분석 사진이다.3B is a photograph of immunoblocking analysis confirming the level of proteins such as SOX2 and OCT4 , which are pluripotent markers, in SLC35F2 KO #1 hESC.
도 3c는 대조군(NC) 및 SLC35F2 KO #1 hESC의 알칼리성 인산가수분해효소(phosphathase)분석 결과를 나타낸 사진이다.Figure 3c is a photograph showing the result of alkaline phosphatase (phosphathase) analysis of the control (NC) and SLC35F2 KO #1 hESC.
도 3d는 대조군(NC) 및 SLC35F2 KO #1 hESC의 세포 성장 속도를 나타낸 그래프이다.3D is a graph showing the cell growth rate of the control (NC) and SLC35F2 KO #1 hESC.
도 3e는 녹색 형광 단백질을 발현하는 야생형 hESCs(EGFP-hESCs)와의 공배양을 통한 세포 성장 경쟁도를 유세포 계측법으로 확인한 결과이다.3E is a result of confirming the degree of cell growth competition through co-culture with wild-type hESCs (EGFP-hESCs) expressing green fluorescent protein by flow cytometry.
도 3f는 SLC35F2 KO #1 hESC으로부터의 체세포 분화 후 내배엽, 중배엽 및 외배엽 특정 유전자(내배엽: SOX17, GATA6, 중배엽: MSX1 및 외배엽: NESTIN)의 mRNA 발현을 상대적 수준으로 나타낸 그래프이다.3F is a graph showing the mRNA expression of endoderm, mesoderm and ectoderm-specific genes (endoderm: SOX17, GATA6, mesoderm: MSX1 and ectoderm: NESTIN) after somatic differentiation from SLC35F2 KO #1 hESC in relative levels.
도 3g는 SLC35F2 KO hESCs를 이용하여 형성한 기형종의 사진이다.3G is a photograph of teratoma formed using SLC35F2 KO hESCs.
도 3h는 SLC35F2 KO #1 hESC에서 다능성 마커 유전자(POU5F1, SOX2, NANOG, Lin28A)의 전체 유전자 산란 플롯을 나타낸 전사체 데이터이다.3H is transcript data showing a total gene scattering plot of pluripotency marker genes (POU5F1, SOX2, NANOG, Lin28A) in SLC35F2 KO #1 hESC.
도 4a는 HEK293T 세포(GOI: 관심 유전자)에서 YM155 매개 농축 선별 접근법에 대해 나타낸 모식도이다.4A is a schematic diagram showing a YM155 mediated enrichment selection approach in HEK293T cells (GOI: gene of interest).
도 4b는 SLC35F2 KO HEK293T 세포에서 효소 처리 후 절단된 밴드(별표)에 대하여 T7E1 분석 결과를 나타낸 사진이다.Figure 4b is a photograph showing the results of T7E1 analysis of the band (asterisk) cut after enzyme treatment in SLC35F2 KO HEK293T cells.
도 4c는 야생형 대조군 및 다양한 SLC35F2 KO HEK293T 세포의 NGS 데이터를 나타낸 그림이다.Figure 4c is a diagram showing the NGS data of the wild-type control and various SLC35F2 KO HEK293T cells.
도 4d는 CCR5를 표적화하기 위한 녹색형광 단백질 발현 시스템의 모식도이다.4D is a schematic diagram of a green fluorescent protein expression system for targeting CCR5 .
도 4e는 SLC35F2CCR5를 공동 표적화하고 GFP 양성 세포의 비율 확인을 통해 CRISPR/Cas9 표적화 효율을 확인한 사진이다.Figure 4e is a picture confirming the CRISPR/Cas9 targeting efficiency through co-targeting SLC35F2 and CCR5 and checking the ratio of GFP-positive cells.
도 4f는 SLC35F2CCR5를 공동 표적화하고 GFP 양성 세포의 비율 확인을 통해 CRISPR/Cas9 표적화 효율을 확인한 그래프이다.Figure 4f is a graph confirming the CRISPR/Cas9 targeting efficiency through co-targeting SLC35F2 and CCR5 and checking the ratio of GFP-positive cells.
도 4g는 SLC35F2CCR5를 공동 표적화하고 GFP 양성 세포의 비율 확인을 통해 CRISPR/Cas9 표적화 효율을 확인한 T7E1 분석 결과이다.4G is a T7E1 analysis result confirming the CRISPR/Cas9 targeting efficiency by co-targeting SLC35F2 and CCR5 and checking the ratio of GFP-positive cells.
도 5a는 CCR5(C) 및 SLC35F2(S)를 표적으로 하여 sgRNA를 CCR5SLC35F2를 표적으로 하는 2가지의 상이한 비율로 조합하여 적용한 각 클론에서 CCR5SLC35F2에 대한 T7E1 분석 결과를 나타낸 사진이다.Figure 5a is a photograph showing the T7E1 analysis of the CCR5 and SLC35F2 from each clone is applied to by a CCR5 (C) and SLC35F2 (S) to the target combination of the sgRNA by two different percentage of the CCR5 and SLC35F2 target.
도 5b는 대조군(WT) 및 #1에 해당하는 클론(C:S = 1:1) 선택 후 차세대염기서열분석(NGS) 분석한 결과이다.5B is a result of next-generation sequencing (NGS) analysis after selection of a control group (WT) and a clone corresponding to #1 (C:S = 1:1).
도 5c는 전체 유전자, hPSC 시그니처 유전자 및 세포 전이 금속 이온 항상성 (GO: 0046916) 유전자의 발현에 기초한 t-분포 확률적 이웃 삽입(t-distributed stochastic neighbor embedding; t-SNE)을 이용한 RNA-seq 샘플의 클러스터링 결과 그래프이다.5C is an RNA-seq sample using t-distributed stochastic neighbor embedding (t-SNE) based on the expression of whole genes, hPSC signature genes and cell transition metal ion homeostasis (GO: 0046916) genes. This is a graph of the clustering results.
도 6a는 CCR5 표적 sgRNA 및 SLC35F2를 표적으로 한 siRNA의 도입에 의한 YES-접근 방식을 나타낸 모식도이다.Figure 6a is a schematic diagram showing a YES- approach by introduction of siRNA by the CCR5 target sgRNA and SLC35F2 target.
도 6b는 hESCs에서 siRNA 형질도입 후 표시된 경과일에 따라 SLC35F2의 mRNA 발현을 상대적 수준으로 나타낸 그래프이다.6B is a graph showing relative levels of mRNA expression of SLC35F2 according to the indicated days after siRNA transduction in hESCs.
도 6c는 SLC35F2를 표적으로 한 siRNA의 형질도입 후 2일째 및 5일째를 비교하여 세포 사멸을 확인한 아넥신 V/7-AAD(Annexin-V/7-AAD)염색 및 유동 세포 계측법 확인 결과이다.Figure 6c shows the results of annexin V/7-AAD (Annexin-V/7-AAD) staining and flow cytometry confirming cell death by comparing the 2nd and 5th days after transduction of the siRNA targeting SLC35F2 .
도 6d는 YM155 처리 용량을 달리하여 각각 YES-접근법 수행 후 CCR5의 표적 효율로서 인델 비율의 평균을 나타낸 그래프이다.6D is a graph showing the average of the indel ratio as the target efficiency of CCR5 after performing the YES-approach with different YM155 treatment doses.
도 6e는 YM155 처리 용량을 달리하여 각각 YES-접근법 수행 후 CCR5 KO 클론의 시퀀싱 분석 결과를 나타낸 그래프이다.6E is a graph showing the results of sequencing analysis of CCR5 KO clones after performing the YES-approach at different YM155 treatment doses.
도 6f는 CCR5 표적 서열, sgRNA 표적 및 PAM 서열에 대한 NGS 분석 결과이다.6F is a result of NGS analysis for CCR5 target sequence, sgRNA target and PAM sequence.
도 6g는 WT 또는 CCR5 KO hESC에서 YM155의 처리용량을 달리하고 아넥신 V/7-AAD로 염색하여 유동 세포 계측법으로 나타낸 결과이다.Figure 6g shows the results of flow cytometry by varying the treatment dose of YM155 in WT or CCR5 KO hESC and staining with Annexin V/7-AAD.
도 7a는 CCR5, HEK2HEK3 유전자좌를 표적으로 한 YES-접근법 유무에 따른 T7E1 분석 결과이다(*, T7E1 엔도뉴클레아제에 의해 절단되는 예상 DNA 밴드).7A is a result of T7E1 analysis according to the presence or absence of the YES-approach targeting CCR5 , HEK2 and HEK3 loci (*, predicted DNA bands cleaved by T7E1 endonuclease).
도 7b는 딥 시퀀싱에 의해 결정된, 대조군(Cont) 또는 YES-접근법(YES)에 의한 CCR5, HEK2HEK3의 삽입 빈도를 나타낸 그래프이다(*, p<0.05; **, p<0.01).Figure 7b is a graph showing the insertion frequency of CCR5 , HEK2 and HEK3 by the control (Cont) or the YES-approach (YES) determined by deep sequencing (*, p<0.05; **, p<0.01).
도 7c는 Cas9-EGFP #1 hESC 클론(스케일 바 = 100 μm)의 대표적인 위상차(상단) 및 EGFP(하단) 이미지, 및 야생형 hESCs(대조군)에 대한 Cas9-EGFP #1의 Cas9 및 EGFP의 상대적 mRNA 발현 정도를 나타낸 결과이다.Figure 7c is a representative phase difference (top) and EGFP (bottom) images of Cas9-EGFP #1 hESC clone (scale bar = 100 μm), and relative mRNA of Cas9 and EGFP of Cas9-EGFP #1 against wild-type hESCs (control). It is a result showing the degree of expression.
도 7d는 Cas9(Cas9-EGFP #1) 시스템을 발현하는 GFP 리포터 hESC에 의해 목표 효율을 결정하기 위한 그래픽 다이어그램이다.7D is a graphical diagram for determining the target efficiency by the GFP reporter hESC expressing the Cas9 (Cas9-EGFP #1) system.
도 7e는 표지 조건에서의 EGFP 양성 및 음성 집단의 유세포 분석 결과이다(검은색 화살표는 EGFP 표적 집단을 나타냄).7E is a flow cytometric analysis result of EGFP positive and negative populations under labeling conditions (black arrows indicate EGFP target populations).
도 7f는 유세포 분석에 의해 결정된 EGFP 양성(EGFP+) 및 EGFP 음성(EGFP-) 집단을 나타낸 그래프이다.7F is a graph showing the EGFP positive (EGFP+) and EGFP negative (EGFP-) populations determined by flow cytometry.
도 8a는 EYA4, TMEM67SLC6A5 유전자좌에서의 녹인(knock-in; KI) 표적을 나타내는 그래픽 다이어그램으로, ssODN에는 각각의 KI를 인지할 수 있는 HDR 마커 서열(빨간색 대문자)이 삽입되었다.8A is a graphic diagram showing knock-in (KI) targets at the EYA4 , TMEM67, and SLC6A5 loci. In ssODN, an HDR marker sequence (capital red) capable of recognizing each KI was inserted.
도 8b는 흉터 없는 YES-접근법 유무에 따른 지시 유전자의 인델(KO: Open bar, KI: Red bar) 효율을 나타낸 결과이다.Figure 8b is a result showing the indel (KO: Open bar, KI: Red bar) efficiency of the indicator gene according to the presence or absence of the scar-free YES-approach.
도 8c 내지 8e는 3개의 서로 다른 대상(EYA4, TMEM67SLC6A5 유전자)에 대한 딥 시퀀싱 분석을 기반으로 한 인델 비율의 HDR 프리퀀시를 나타낸 것으로, 각각 8c는 EYA4, 8d는 TMEM67, 및 8e는 SLC6A5에 대한 결과이다.Figures 8c to 8e show the HDR frequency of the indel ratio based on deep sequencing analysis for three different objects ( EYA4 , TMEM67 and SLC6A5 genes), respectively, 8c is EYA4 , 8d is TMEM67 , and 8e is SLC6A5 . Is the result.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)%이다.Throughout this specification, "%" used to indicate the concentration of a specific substance is (weight/weight)% for solids/solids, (weight/volume)% for solids/liquids, and Liquid/liquid is (vol/vol)%.
실시예 1: 세포의 준비Example 1: Preparation of cells
인간 배아 줄기세포(WA09, WiCell Research Institute; 이하 hESC)를 mTeSRTM-E8TM 배양액(STEMCELL technologies) 및 50 ug/ml 젠타마이신(Gentamicin, Life Technologies)이 첨가된 StemMACSTM 배지(Miltenyi-Biotec)가 공급된 마트리겔(Matrigel, BD Biosciences) 코팅 플레이트에서 배양되었다. 세포는 5 내지 6일마다 배양되었고 배지는 매일 교체하였다.Human embryonic stem cells (WA09, WiCell Research Institute; hereinafter hESC) were supplied with mTeSRTM-E8TM culture medium (STEMCELL technologies) and StemMACSTM medium (Miltenyi-Biotec) supplemented with 50 ug/ml gentamicin (Life Technologies). It was incubated on a Rigel (BD Biosciences) coated plate. Cells were cultured every 5 to 6 days and the medium was changed daily.
hESC를 DPBS(Dulbecco's Phosphate-Buffered Saline)로 세척하고 디스페이즈(Dispase, Gibco)에 노출시켜 박리시켰다. 분리된 세포를 DMEM/F-12(Gibco) 배지로 세척하고 마트리겔 코팅 플레이트 상에 플레이팅하였다. 필요 시 세포 부착을 위해 10 uM의 Y27632(Gibco)를 첨가하였다.hESC was washed with DPBS (Dulbecco's Phosphate-Buffered Saline) and exposed to Dispase (Gibco) to exfoliate. The separated cells were washed with DMEM/F-12 (Gibco) medium and plated on a Matrigel coated plate. If necessary, 10 uM of Y27632 (Gibco) was added for cell adhesion.
HEK293T(Human embryonic kidney 293 cells) 세포를 10% FBS(Gibco) 및 50 ug/ml 젠타마이신이 첨가된 DMEM(Gibco)이 공급된 배양 접시(Falcon)에서 배양하였다. 트랜스퍼 시, HEK293T 세포를 DPBS로 세척하고 0.25% 트립신으로 효소적으로 분리하였다. 트립신은 10% FBS를 함유하는 DMEM을 첨가하여 불활성화시키고 적정량의 세포를 접시에 뿌렸다.HEK293T (Human embryonic kidney 293 cells) cells were cultured in a culture dish (Falcon) supplied with DMEM (Gibco) supplemented with 10% FBS (Gibco) and 50 ug/ml gentamicin. Upon transfer, HEK293T cells were washed with DPBS and enzymatically separated with 0.25% trypsin. Trypsin was inactivated by adding DMEM containing 10% FBS, and an appropriate amount of cells was sprayed on the dish.
실시예 2:Example 2: hPSCs에서의 YM155의 세포 내 흡수로 인한 due to intracellular uptake of YM155 in hPSCs SLC35F2SLC35F2 의 높은 발현 확인High expression of
YM155에 의한 인간 다능성 줄기세포(hPSCs)에서의 세포 사멸의 선택적 유도는 DNA 손상 반응과 관련이 있다. YM155의 세포 독성은 BIRC5(서바이빈을 코딩함)의 억제에 의해 완전히 예방될 수는 없다. 따라서, hPSCs의 선택적 세포 사멸의 기전을 규명하고자 하였다. 이를 위해 암세포 백과 사전(Cancer Cell Line Encyclopedia; 이하 CCLE)과 암 치료제 반응 포털(Cancer Therapeutics Response Portal; 이하 CTRP)의 고형암 세포주 유전자 발현 데이터와 약물 반응 데이터를 각각 활용하였다.The selective induction of apoptosis in human pluripotent stem cells (hPSCs) by YM155 is associated with a DNA damage response. The cytotoxicity of YM155 cannot be completely prevented by inhibition of BIRC5 (encoding survivin). Therefore, it was attempted to investigate the mechanism of selective cell death of hPSCs. To this end, solid cancer cell line gene expression data and drug response data from the Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP) were used, respectively.
유전자 발현 옴니버스(gene expression omnibus; 이하 GEO)의 데이터를 사용하여 hPSC 시그니쳐(signiture), 즉 그들의 차별화된 대응물과 비교하여 hPSC에서 상이하게 발현되는 유전자 세트를 확인하였다.Data from the gene expression omnibus (GEO) were used to identify the hPSC signature, i.e., a set of genes that were expressed differently in hPSCs compared to their differentiated counterparts.
약물유전체학(Pharmacogenomics) 데이터 세트 기초 수준의 세포주 mRNA 발현 데이터는 데이터 포털(Cancer Cell Line Encyclopedia; CCLE, https://portals.broadinstitute.org/ccle/data)에서 얻은 것이다. Raw Affymetrix CEL 파일은 Robust Multi-Array Average(RMA) 방법을 사용하여 각 유전자 프로브 세트에 대한 실제 발현 값을 정상화하도록 변환되었다.Cell line mRNA expression data at the baseline level of the Pharmacogenomics data set were obtained from the Data Portal (Cancer Cell Line Encyclopedia; CCLE, https://portals.broadinstitute.org/ccle/data). Raw Affymetrix CEL files were transformed to normalize the actual expression values for each set of gene probes using the Robust Multi-Array Average (RMA) method.
프로브를 유전자로 붕괴시킬 때, 유전자 당 다수의 프로브의 발현 값의 최대 값을 유전자의 대표적인 발현 값으로 삼았다. 총 886 개의 세포주 중에서 혈액 계통, 비인간 및 모호한 조직 유형을 제외하고 본 분석에서는 약물 감수성 데이터와 함께 666개의 암 세포주를 사용하였다. 세포주 약물 반응 데이터는 Cancer Therapeutics Response Portal(https://ocg.cancer.gov/programs/ctd2/data-portal)에서 다운로드 되었다.When the probe was disrupted into a gene, the maximum value of the expression values of multiple probes per gene was taken as a representative expression value of the gene. Out of a total of 886 cell lines, 666 cancer cell lines with drug sensitivity data were used in this analysis, excluding blood lineage, non-human and ambiguous tissue types. Cell line drug response data was downloaded from the Cancer Therapeutics Response Portal (https://ocg.cancer.gov/programs/ctd2/data-portal).
도 1a과 같이 hPSC 시그니처를 사용하여, 콜모고로프 스미르노프 검정(Kolmogorov-Smirnov; 이하 KS)을 통한 단일 시료의 농축 분석을 수행하여 666개의 인간 암 세포에 대한 hPSC 점수를 계산하였다.Using the hPSC signature as shown in Figure 1a, the concentration analysis of a single sample through the Kolmogorov-Smirnov test (Kolmogorov-Smirnov; hereinafter KS) was performed to calculate the hPSC score for 666 human cancer cells.
구체적으로, hPSC 점수와 543가지 화합물 각각에 대한 세포주 약물 반응(area under the fitted curve; 이하 AUC)과 화합물 각각에 대한 세포 라인 hPSC 점수를 각 세포주의 민감도로 연관시켰다.Specifically, the hPSC score, the area under the fitted curve (AUC) for each of the 543 compounds and the cell line hPSC score for each compound were correlated with the sensitivity of each cell line.
세포 생존력 값을 0 내지 100%의 범위로 조정하고 4-매개 변수 로지스틱 회귀 분석으로 조절하였다. AUC(fit curve 아래의 면적)를 계산하기 위해 각 화합물에 대해 가장 많은 세포를 테스트한 특이적인 농도 범위를 선택하였다. AUC는 주어진 농도 범위에서 0% 성장 억제라고 가정된 최대 AUC에 의해 0 내지 1의 범위로 정규화되었다.Cell viability values were adjusted in the range of 0-100% and were adjusted by 4-parameter logistic regression analysis. In order to calculate the AUC (area under the fit curve), a specific concentration range was selected for each compound that tested the most cells. AUC was normalized to a range of 0 to 1 by the maximum AUC assumed to be 0% growth inhibition in a given concentration range.
정량적 데이터는 평균값±표준 오차(SEM)로 표현된다. 각 반응 변수의 통계적 유의미성을 분석하기 위해 학생의 paired t-test 또는 one-way ANOVA를 수행하였다. SPSS 프로그램(사회 과학 통계 패키지, 버전 17)을 사용하여 Tukey's post hoctest을 통해 그룹 간에 미리 지정된 비교가 수행되었다(적절한 경우). 0.05 미만의 p 값은 통계적으로 유의하다고 간주되었다.Quantitative data are expressed as mean value ± standard error (SEM). To analyze the statistical significance of each response variable, a student's paired t-test or one-way ANOVA was performed. Pre-specified comparisons between groups were performed (where appropriate) via Tukey's post hoctest using the SPSS program (Social Science Statistics Package, Version 17). P values less than 0.05 were considered statistically significant.
도 1b 좌측에서 확인할 수 있듯이, AUC와 hPSC 점수를 비교한 543가지 화합물의 상관 강도(z-scored Pearson correlation coefficient; z-점수 피어슨 상관 계수)가 높은 hPSC 점수(hPSC 유사 세포)를 갖는 세포는 YM155에 선택적으로 민감한 것으로 나타났다.As can be seen from the left side of FIG. 1B, cells with a high hPSC score (hPSC-like cells) of 543 compounds comparing the AUC and hPSC scores (z-scored Pearson correlation coefficient) were YM155 Has been shown to be selectively sensitive to.
각 유전자의 발현값을 YM155의 AUC와 비교하여 18,858개 유전자의 상관 관계의 강도를 나타내었다. The expression value of each gene was compared with the AUC of YM155 to show the strength of the correlation of 18,858 genes.
도 1b 우측에서 확인할 수 있듯이, ATP1B1SLC35F2는 YM155 저항성 및 민감성 세포에서 각각 고도로 발현되었고, 이는 높은 hPSC 점수를 가진 세포가 YM155에 대하여 선택적으로 민감하다는 것을 의미한다.As can be seen from the right of FIG. 1B, ATP1B1 and SLC35F2 were highly expressed in YM155 resistant and sensitive cells, respectively, indicating that cells with high hPSC scores were selectively sensitive to YM155.
도 1a의 약물 및 유전자 발현 시그니처의 상관 관계에 기초하여, YM155에 대한 감수성과 높은 상관 관계가 있는 유전자가 이전에 기술된 바와 같이 확인되었다. 막 수송체인 SLC35F2는 YM155 감수성과 가장 관련이 있는 전사물이었고(도 1b, 왼쪽 패널), SLC35F2에 의한 YM155의 세포 내 도입이 hPSCs에서 약물의 고도의 선택적 세포 독성을 일으킨다는 것을 암시한다. 이것은 암 모델의 이전 보고서와 일치한다.Based on the correlation of drug and gene expression signatures in FIG. 1A, genes with high correlation with susceptibility to YM155 were identified as previously described. The membrane transporter, SLC35F2, was the transcript most associated with YM155 sensitivity (Fig. 1b, left panel), suggesting that the intracellular introduction of YM155 by SLC35F2 causes highly selective cytotoxicity of the drug in hPSCs. This is consistent with previous reports of cancer models.
유전자 발현 프로파일 데이터베이스(http://nextbio.com)를 사용하여 24개의 인간 배아 줄기세포(human embryonic stem cells; 이하 hESCs)와 다양한 암 세포주 사이의 상대적 SLC35F2 발현을 비교하였다. 인간 전립선 암 세포주인 PC-3(prostate cancer cell)를 SLC35F2의 발현이 높은 양성 대조군(P.C.)으로 사용하였다.The gene expression profile database (http://nextbio.com) was used to compare the relative SLC35F2 expression between 24 human embryonic stem cells (hESCs) and various cancer cell lines. A human prostate cancer cell line, PC-3 (prostate cancer cell), was used as a positive control (PC) with high expression of SLC35F2 .
도 1c에서 확인할 수 듯이, hESC 표면 마커 단백질을 동정한 이전 연구와 일치하는 모든 hESCs(이 연구에서 주로 사용된 H9 포함)는 다른 암 세포주보다 높은 수준의 SLC35F2를 발현하였다.As can be seen in Fig. 1c, all hESCs (including H9 mainly used in this study) consistent with previous studies that identified hESC surface marker proteins expressed higher levels of SLC35F2 than other cancer cell lines.
한편, 도 1d 및 1e에서 확인할 수 있듯이, YM155 처리에 대해 저항성이 강한 hESCs에서 유래한 중간엽 줄기세포(Mesenchymal stem cells)(hESC-MSCs) 및 인간 피부 섬유아세포(human dermal fibroblasts; 이하 hDFs)는, 두 개의 독립적인 hESC 계열(H9 및 hCHA3) 및 다능성 줄기세포(iPSCs: SES8)보다 낮은 수준의 SLC35F2를 발현하였다. POU5F1는 다능성 마커로서 확인하였다. 이로부터, hESCs의 SLC35F2 발현량이 다른 세포들에 비해 월등히 높음을 확인할 수 있었다.On the other hand, as can be seen in Figures 1d and 1e, mesenchymal stem cells (hESC-MSCs) and human dermal fibroblasts (hereinafter hDFs) derived from hESCs with strong resistance to YM155 treatment , Two independent hESC lines (H9 and hCHA3) and pluripotent stem cells (iPSCs: SES8) expressed lower levels of SLC35F2 . POU5F1 was identified as a pluripotency marker. From this, it was confirmed that the expression level of SLC35F2 in hESCs was significantly higher than that of other cells.
SLC35F2는 YM155의 세포 내로의 흡수를 담당하는 막 수송체로서 DNA 손상을 일으킨다. 도 1f 및 1g에서 확인할 수 있듯이, YM155 처리 후에 hESC에서는 뚜렷한 DNA 손상이 발견되었지만 hESC-MSC에서는 검출되지 않았으므로 이를 확인할 수 있다(DAPI로 핵 대조 염색, 스케일 바 = 10 um, α-tubulin은 내부 통제에 사용). SLC35F2 is a membrane transporter responsible for the uptake of YM155 into cells, causing DNA damage. As can be seen in Figures 1f and 1g, after YM155 treatment, distinct DNA damage was found in hESC, but not detected in hESC-MSC, so this can be confirmed (nuclear control staining with DAPI, scale bar = 10 um, α-tubulin is internal Used for control).
LC-MS/MS 분석을 수행하기 위해 HEK293T 및 H9 세포를 1 uM YM155에 1시간 동안 노출시켰고, 세포는 1x106으로 계수하였다. 수확된 세포를 80% 메탄올로 용해시키고 얼음에서 1시간 더 배양하였다. 13,000 rpm으로 20분 동안 스핀 다운한 후, 상등액을 수집하고 용매가 더 이상 남아 있지 않을 때까지 N2 가스로 증발시켰다. 샘플 잔류물을 50% 메탄올 100 uL로 재현탁하고, 10초 초음파 처리, 5초 보텍스, 스핀-다운 및 0.2 um 멤브레인 필터로 여과하였다. 컬럼(ACQUITY UPLC BEH C18, 50 x 2.1 mm, 1.7 mm, 30℃)을 사용하여 UHPLC/Q-TOF MS(Waters, Milford, MA, USA)에 총 5 uL의 용매를 주입하였다. 시료를 0.2 mL/min 유속으로 판독하였고, YM155에 대한 추정 피크는 4.32 내지 4.90 분이었다.To perform LC-MS/MS analysis, HEK293T and H9 cells were exposed to 1 uM YM155 for 1 hour, and cells were counted as 1×10 6 . The harvested cells were lysed with 80% methanol and incubated for an additional hour on ice. After spin down at 13,000 rpm for 20 minutes, the supernatant was collected and evaporated with N2 gas until no more solvent remained. The sample residue was resuspended with 100 uL of 50% methanol and filtered through 10 seconds sonication, 5 seconds vortex, spin-down and 0.2 um membrane filter. A total of 5 uL of solvent was injected into UHPLC/Q-TOF MS (Waters, Milford, MA, USA) using a column (ACQUITY UPLC BEH C18, 50 x 2.1 mm, 1.7 mm, 30°C). Samples were read at 0.2 mL/min flow rate, and the estimated peak for YM155 was 4.32 to 4.90 minutes.
도 1h에서 확인할 수 있듯이, hDF에 비해 hESCs에서 YM155의 세포 내 수준이 더 높게 나타났다. 이는 hPSCs에서의 높은 SLC35F2 발현이 hPSCs에서 이 약물 선택적 세포 독성을 초래한다는 것을 분명히 나타낸다.As can be seen in FIG. 1h, the intracellular level of YM155 was higher in hESCs than in hDF. This clearly indicates that high SLC35F2 expression in hPSCs leads to this drug selective cytotoxicity in hPSCs.
따라서, YM155에 의한 hPSCs의 세포 사멸의 선택적 유도가 SLC35F2의 높은 발현으로 인한 약물의 선택적 세포 흡수로 인한 것임을 입증하였다.Therefore, it was demonstrated that the selective induction of apoptosis of hPSCs by YM155 was due to the selective cellular uptake of the drug due to the high expression of SLC35F2 .
실시예 3: hPSCs에서 YM155에 의해 유발되고 Example 3: In hPSCs induced by YM155 SLC35F2SLC35F2 가 매개하는 선택적 세포 사멸 확인Of selective cell death mediated by
hPSCs(EC50: 10 nM)에서의 YM155의 선택적 세포 독성과 이들 세포에서의 SLC35F2의 높은 발현 사이의 연결을 확인하기 위해, 엑손 7을 표적화하는 CRISPR/Cas9를 사용하여 hESCs에서 SLC35F2를 녹아웃시켰다(도 2a 참조).hPSCs (EC 50: 10 nM) in order to confirm the link between YM155 selective cytotoxicity and high expression of SLC35F2 in these cells, using the CRISPR / Cas9 to target the exon 7 was knockout the SLC35F2 from hESCs in ( 2a).
구체적으로, hESCs에 Cas9와 함께 SLC35F2에 대한 단일 가이드 RNA(single guide RNA; 이하 sgRNA)를 도입한 후, YM155로 세포를 처리하여 편집되지 않은 야생형 hESC를 제거하였다. 살아남은 콜로니 중 하나(YM155R)를 선택하고 유지하였다.Specifically, after introducing a single guide RNA (sgRNA) for SLC35F2 together with Cas9 into hESCs, the cells were treated with YM155 to remove unedited wild-type hESCs. One of the surviving colonies (YM155R) was selected and maintained.
서열번호Sequence number 명칭designation 서열order
1One sgRNA가 특이적으로 결합하는 SLC35F2 엑손 7의 핵산 서열Nucleic acid sequence of SLC35F2 exon 7 to which sgRNA specifically binds AGTGCCACTTCCGTCAACCT AGTGCCACTTCCGTCAACCT
22 SLC35F2 엑손 7을 표적화하는 sgRNA의 핵산 서열 Nucleic acid sequence of sgRNA targeting SLC35F2 exon 7 TGACATCAATTATTATACATCGGTGACATCAATTATTATACATCGG
그 다음, Annexin V의 유동 세포 계측법 및 hESCs의 현미경 이미지(빨간색 화살표는 YM155 저항성 클론: YM155R, 스케일 바 = 500 nm)를 이용하여, YM155 처리 전과 후(YM155R)를 비교하였다.Then, using flow cytometry of Annexin V and microscopic images of hESCs (red arrow indicates YM155 resistant clone: YM155R, scale bar = 500 nm), before and after YM155 treatment (YM155R) were compared.
구체적으로, 세포를 AccutaseTM(561527, BD Biosciences)로 분리하고 DPBS로 3회 세척한 다음, 세포 사멸 검출을 위해 FITC Annexin-V(556419, BD Biosciences) 및 7-AAD(559925, BD Biosciences)로 염색하였다. 희석된 1X Annexin V 결합 완충액(556454, BD Biosciences)을 염색용 용매로 사용하였다. BD Biosciences 및 Cell Quest 소프트웨어의 FACS calibur를 FACS 분석에 사용하였다.Specifically, cells were separated with Accutase TM (561527, BD Biosciences) and washed 3 times with DPBS, and then with FITC Annexin-V (556419, BD Biosciences) and 7-AAD (559925, BD Biosciences) for cell death detection. Dyed. Diluted 1X Annexin V binding buffer (556454, BD Biosciences) was used as a staining solvent. FACS calibur from BD Biosciences and Cell Quest software was used for FACS analysis.
도 2b 좌측(적색 화살표)에서 확인할 수 있듯이, YM155 처리 후 소수의 콜로니가 생존한 반면, 대부분의 세포는 세포 사멸을 경험하였다.As can be seen from the left side of FIG. 2B (red arrow), a small number of colonies survived after YM155 treatment, while most of the cells experienced apoptosis.
또한, 도 2b 우측에서 확인할 수 있듯이, 저항성 클론 YM155R은 추가적인 YM155 처리에 매우 저항성이 있었다.In addition, as can be seen from the right side of Figure 2b, the resistant clone YM155R was very resistant to additional YM155 treatment.
다음으로, SLC35F2 및 Cas9 형질 감염된 hESCs의 sgRNA의 도입 후, YM155R에 대하여 YM155의 용량을 0, 25, 50 및 100 uM로 달리하여 처리하고, 생존한 클론에 대한 T7E1 분석 및 인델(Indel) 백분율을 확인하기 위한 차세대염기서열분석법(NGS) 분석을 수행하였다.Next, after the introduction of sgRNA of SLC35F2 and Cas9 transfected hESCs, YM155R was treated with different doses of YM155 at 0, 25, 50 and 100 uM, and T7E1 analysis and Indel percentage for surviving clones Next-generation nucleotide sequence analysis (NGS) analysis was performed to confirm.
구체적으로, T7E1 분석에 있어서, PCR은 SolgTM Taq DNA 중합효소(STD16-R500, SolGent)를 사용하여 시료 당 총 부피가 10 ul 인 공급 업체의 지침에 따라 수행되었다. 제1 PCR은 각 유전자에 대해 프라이머 F1 및 프라이머 R로 수행되었다. 제1 PCR 산물은 190 ul의 DW로 희석되었다. 제2 PCR은 각 유전자에 대해 프라이머 F2와 프라이머 R을 사용하여 희석된 제1 PCR 산물 1 ul로 수행되었다. 제2 PCR 생성물을 동일한 부피의 2X NEBuffer2(B7002S, New England BioLabs)와 혼합하고 하이브리드화시켰다. 3 단위의 T7E1 엔도뉴클레이즈(M0302S, New England BioLabs)를 하이브리드화된 제2 PCR 산물 10 ul에 처리하였다. 37℃의 수조에서 40분 동안 효소 반응을 수행하였다.Specifically, for T7E1 analysis, PCR was performed according to the supplier's instructions with a total volume of 10 ul per sample using SolgTM Taq DNA polymerase (STD16-R500, SolGent). The first PCR was performed with primer F1 and primer R for each gene. The first PCR product was diluted with 190 ul of DW. The second PCR was performed with 1 ul of the first PCR product diluted using primers F2 and R for each gene. The second PCR product was mixed with an equal volume of 2X NEBuffer2 (B7002S, New England BioLabs) and hybridized. Three units of T7E1 endonuclease (M0302S, New England BioLabs) were treated with 10 ul of the hybridized second PCR product. Enzymatic reaction was performed in a water bath at 37° C. for 40 minutes.
도 2c에서 확인할 수 있듯이, SLC35F2 에 대한 Cas9 및 sgRNA의 도입 후, 삽입/결실(indel) 빈도가 농도 의존적으로 증가하여 유전자 편집 여부를 확인할 수 있었다.As can be seen in Fig. 2c, after the introduction of Cas9 and sgRNA to SLC35F2 , the frequency of insertion/deletion (indel) increased in a concentration-dependent manner, so that gene editing was confirmed.
도 2d에서 확인할 수 있듯이, 100 nM YM155의 존재 하에서 생존하는 클론은 거의 100%로 유전자-편집된 hESC(100% indel)였으며, 이는 SLC35F2 녹아웃(SLC35F2 KO) hESC 집단이 용량 의존적 방식으로 농축됨으로써 긍정 오류(false positive)(즉, 야생형 SLC35F2로 남은 hESC)를 효과적으로 제거한다는 것을 시사한다.As can be seen in Figure 2d, the clones surviving in the presence of 100 nM YM155 were almost 100% gene-edited hESC (100% indel ), which was positive as the SLC35F2 knockout (SLC35F2 KO) hESC population was enriched in a dose-dependent manner. This suggests that it effectively eliminates false positives (i.e., hESC left by wild-type SLC35F2).
도 2e와 같이 YM155R 클론(KO #1), sgRNA 표적 서열 및 PAM 서열로부터의 서열 정보는 각각 녹색 및 오렌지색으로 나타내었고, 상기 YM155 처리하에 유지된 YM155R의 단일 클론은 동형 접합체 복대립형(homozygous bi-allelic) SLC35F2 KO로 밝혀졌다.As shown in Figure 2e, the sequence information from the YM155R clone (KO #1), the sgRNA target sequence, and the PAM sequence are shown in green and orange, respectively, and the single clone of YM155R maintained under the YM155 treatment is homozygous biallele (homozygous bi -allelic) turned out to be SLC35F2 KO.
다음으로, 0, 5 및 25 uM의 YM155 처리 후, 야생형(NC) 및 SLC35F2 KO #1 hESC에서의 세포 사멸 분석을 유동 세포 계측을 통해 수행하였다.Next, after treatment with 0, 5 and 25 uM of YM155, cell death assays in wild-type (NC) and SLC35F2 KO #1 hESCs were performed through flow cytometry.
도 2f에서 확인할 수 있듯이, 저항성 클론(SLC35F2 KO hESCs: KO #1)은 YM155에 의해 유도된 세포 사멸에 매우 강한 것으로 나타났다.As can be seen in Figure 2f, the resistant clone ( SLC35F2 KO hESCs: KO #1) was found to be very strong against YM155-induced cell death.
SLC35F2 KO hESCs에서 획득한 저항성은 YM155 처리에 의해 나타나는 SLC35F2의 발현량 및 DNA의 손상 정도를 통해 확인할 수 있었다. The resistance obtained from SLC35F2 KO hESCs could be confirmed through the expression level of SLC35F2 and the degree of DNA damage, which was exhibited by YM155 treatment.
도 2g에서 확인할 수 있듯이, YM155 처리(1 및 2 uM)에 의한 SLC35F2의 발현은 야생형 hESCs(NC)에서는 용량의존적으로 증가한 반면 SLC35F2 KO hESCs에서는 거의 발현되지 않았다.As can be seen in Fig. 2g, the expression of SLC35F2 by YM155 treatment (1 and 2 uM) increased dose-dependently in wild-type hESCs (NC), whereas it was hardly expressed in SLC35F2 KO hESCs.
도 2h에서 확인할 수 있듯이, γH2AX로 염색하여 형광 현미경 이미지로 분석한 결과 YM155 처리(20 nM)에 의한 DNA 손상이 야생형 hESCs에서만 확인되고 SLC35F2 KO hESCs에서는 거의 나타나지 않았다(DAPI로 핵 대조 염색, scale bar = 10 μm).As can be seen in Figure 2h, as a result of staining with γH2AX and analyzing with a fluorescence microscope image, DNA damage by YM155 treatment (20 nM) was confirmed only in wild-type hESCs, and almost not in SLC35F2 KO hESCs (nuclear control staining with DAPI, scale bar = 10 μm).
따라서, SLC35F2 KO hESCs에서는 YM155 처리로 인한 SLC35F2 매개의 세포 사멸이 거의 나타나지 않았다.Therefore, in SLC35F2 KO hESCs, SLC35F2- mediated cell death by YM155 treatment was hardly observed .
실시예 4: Example 4: SLC35F2SLC35F2 KO hESCs의 세포 기능 유지 확인 Confirmation of maintenance of cellular function of KO hESCs
상기 실시예 3의 결과에 기초하여, SLC35F2 KO hESCs를 특성화하기 위해, 인간 피부 섬유아세포(human dermal fibroblasts; 이하 hDF), 야생형 hESCs(NC) 및 SLC35F2 KO hESCs에서 NANOG, SOX2POU5F1과 같은 전형적인 다능성 마커의 발현 수준을 모니터링하였다.Based on the results of Example 3, to characterize SLC35F2 KO hESCs, human skin fibroblasts; the typical, such as (human dermal fibroblasts or less hDF), wild-type hESCs (NC) and SLC35F2 KO from hESCs NANOG, SOX2 and POU5F1 The level of expression of potency markers was monitored.
SLC35F2 KO hESCs에 대하여, 도 3a에서 전형적인 다능성 마커의 상대적인 mRNA 발현 정도를 확인하고, 도 3b에서 면역 블로킹 분석을 통한 SOX2OCT4와 같은 단백질 수준을 확인함으로써 알 수 있듯이(β-액틴은 로딩 대조군으로 사용), SLC35F2의 유전자 결손이 배아줄기세포의 자기-재생산(self-renewal) 과정에 미치는 영향이 없음을 확인할 수 있었다. 또한, SLC35F2 KO hESCs에서 대표적인 콜로니를 확대하였을 때의 알칼리성 인산가수분해효소(phosphathase) 활성(도 3c), 및 SLC35F2 KO #1 hESC의 세포 성장 속도의 실측 정도(도 3d)로부터도 동일한 결과를 도출하였다. For SLC35F2 KO hESCs, as can be seen by confirming the relative mRNA expression levels of typical pluripotent markers in FIG. 3A and protein levels such as SOX2 and OCT4 through immunoblocking analysis in FIG. 3B (β-actin is a loading control Used as), it was confirmed that the gene deletion of SLC35F2 had no effect on the self-renewal process of embryonic stem cells. In addition, the same results were derived from alkaline phosphatase activity (Fig. 3c) when representative colonies were enlarged in SLC35F2 KO hESCs, and the measured degree of cell growth rate of SLC35F2 KO #1 hESC (Fig. 3d). I did.
다음으로, SLC35F2 KO #1 hESC와 녹색 형광 단백질을 발현하는 대조군인 정상 hESCs(EGFP-hESCs)의 공배양 후, 시간에 따른 비율을 유세포 계측법으로 확인하였다.Next, after co-culture of SLC35F2 KO #1 hESC and normal hESCs (EGFP-hESCs) expressing green fluorescent protein, the ratio over time was confirmed by flow cytometry.
도 3e에서 확인할 수 있듯이, 공배양 과정에서 두 세포의 비율이 크게 변화하지 않는 것으로 보아, SLC35F2의 유전자 결손이 hESCs의 성장에 큰 영향을 미치지 않음을 알 수 있었다.As can be seen in Figure 3e, as the ratio of the two cells did not change significantly during the co-culture process, it was found that the gene deletion of SLC35F2 did not significantly affect the growth of hESCs.
이어서, SLC35F2 KO #1 hESC에서의 전형적인 계통 특정 유전자(내배엽: SOX17, GATA6, 중배엽: MSX1 및 외배엽: NESTIN)의 mRNA 발현을 상대적 수준으로 나타내었다. 측정 결과는 체세포 분화 후 2일 단위로 측정한 값을 경과일 단위로 표시하였다.Then, a typical system of a specific gene in the KO SLC35F2 # 1 hESC are shown as relative levels of mRNA expression of the (endoderm: NESTIN SOX17, GATA6, mesoderm:: MSX1 and ectoderm). The measurement results were expressed in units of days after somatic cell differentiation, measured in units of 2 days.
구체적으로, SLC35F2 KO #1 hESC으로부터의 체세포 분화 후 내배엽, 중배엽 및 외배엽 특정 유전자들의 in vitro에서 자발적 분화를 유도하고, 각 배엽의 특이적인 mRNA 발현량을 대조군(NC)과 비교하였다. in vitro 자발적 분화 과정에서 내배엽성 세포(GATA6 유전자 발현으로 확인할 수 있는) 분화와 중배엽성 세포(MSX1 유전자 발현으로 확인할 수 있는)로의 분화가 감소함을 확인하였다.Specifically, after somatic differentiation from SLC35F2 KO #1 hESC, spontaneous differentiation of endoderm, mesoderm, and ectoderm-specific genes was induced in vitro , and the specific mRNA expression level of each germ was compared with the control (NC). confirmed that the province endoderm cell differentiation in vitro is reduced to (you can see in the MSX1 gene expression) differentiation and mesenchymal cells Castle (which can be identified by GATA6 gene expression) in the spontaneous differentiation.
도 3f에서 확인할 수 있듯이, in vitro의 자발적 분화 결과로는 SLC35F2 유전자의 결손이 내배엽과 중배엽 분화를 억제하는 것으로 확인되었다.As can be seen in Figure 3f, as a result of spontaneous differentiation in vitro , it was confirmed that the deletion of the SLC35F2 gene inhibits endoderm and mesoderm differentiation.
다음으로, 각 세포의 생체 내 다분화능을 조사하기 위해, 마우스(Balb/C Nude, 수컷 4주령)를 마취시킨 후, NC, SLC35F2 KO hESCs를 직접 고환에 주사하였다. Next, in order to investigate the in vivo multipotency of each cell, a mouse (Balb/C Nude, male 4 weeks old) was anesthetized, and then NC, SLC35F2 KO hESCs were directly injected into the testis.
구체적으로, 각 NC(n = 3) 및 SLC35F2 KO(n = 3) hESC의 5x106 세포를 4주령 마우스에 피하 및 피부 접종하였다. 마우스는 각각의 WT 및 SLC35F2 KO hESC 접종 후 2개월 후 안락사시켰다. 이 동물 실험은 서울대학교 동물 보호 및 사용위원회(허가 번호: SNU-180810-1)의 허가 하에 수행되었다.Specifically, 5×10 6 cells of each NC (n = 3) and SLC35F2 KO (n = 3) hESC were inoculated subcutaneously and skin into 4 week old mice. Mice were euthanized 2 months after each WT and SLC35F2 KO hESC inoculation. This animal experiment was conducted under the permission of the Animal Protection and Use Committee of Seoul National University (license number: SNU-180810-1).
도 3g에서 확인할 수 있듯이, H&E, Masson trichrome, Alcian Blue로 염색한 결과, 기형종에서 전형적인 세 계층의 이미지를 확인할 수 있었다(눈금 막대는 50 mm). in vivo에서의 자발적인 분화를 기형종 형성을 통해 확인하였을 때 외배엽성 조직인 Nerual rosette, 중배엽성 조직인 cartilage, 및 내배엽성 조직인 Gut-like 조직이 발견되는 것으로 보아, SLC35F2 유전자 결손이 in vivo 자발적인 3배엽성 분화에 큰 영향이 없음을 알 수 있었다.As can be seen in Figure 3g, as a result of staining with H&E, Masson's trichrome, and Alcian Blue, it was possible to confirm the typical three-layered image of teratoma (scale bar is 50 mm). When spontaneous differentiation in vivo was confirmed through teratoma formation, it was found that ectodermal tissue (Nerual rosette), mesodermal tissue (cartilage), and endodermal tissue (Gut-like tissue) were found, indicating that the SLC35F2 gene defect was in vivo spontaneous triodenality. It was found that there was no significant effect on differentiation.
끝으로, SLC35F2 KO #1 hESC에서 다능성 마커 유전자(POU5F1, SOX2, NANOGLin28A)의 전체 유전자 산란 플롯을 나타내었으며, 각 유전자를 빨간색 원으로 표시하였다.Finally, a total gene scattering plot of pluripotency marker genes ( POU5F1 , SOX2 , NANOG and Lin28A ) in SLC35F2 KO #1 hESC was shown, and each gene was indicated by a red circle.
도 3h에서 확인할 수 있듯이, SLC35F2 KO #1 hESC에서 다능성 마커 유전자(POU5F1, SOX2, NANOGLin28A)의 발현 수준은 야생형 hESC에 대비하여 변화가 없음을 알 수 있었다.As can be seen in Figure 3h, it was found that the expression level of pluripotency marker genes ( POU5F1 , SOX2 , NANOG, and Lin28A ) in SLC35F2 KO #1 hESC was not changed compared to wild-type hESC.
따라서, YM155로 인한 높은 세포 독성은 SLC35F2의 녹아웃에 의해 완전히 없어졌음을 알 수 있었다.Thus, it was found that the high cytotoxicity caused by YM155 was completely eliminated by knockout of SLC35F2 .
실시예 5: 공동 표적 선정을 통한 YM155 매개의 세포 농축 선별Example 5: YM155 mediated cell enrichment selection through co-target selection
SLC35F2 KO hESC의 농축 선택이 YM155 처리에 의해 달성될 수 있다는 점으로부터(도 4a 참조), SLC35F2가 관심 유전자(gene of interest; GOI)와 함께 표적화된 경우 YM155에 대한 유도된 저항성이 유전자 편집된 hPSC를 선별하는 데 유용할 수 있음을 예측할 수 있다. SLC35F2 KO concentrated selection of hESC (see Fig. 4a) is from a point that can be achieved by YM155 treatment, SLC35F2 the gene of interest; the two-induced resistance to the If YM155 targeting with (gene of interest GOI) gene editing hPSC It can be predicted that it may be useful for screening.
가설의 증명을 위해, 상대적으로 높은 수준의 SLC35F2를 나타내는 HEK293T 세포를 활용하여 YM155 치료 후 용량-의존적 세포 사멸을 유도하였다(hESC보다 10 배 높은 EC50). 구체적으로, Cas9와 함께 SLC35F2를 표적으로 하는 sgRNA의 간단한 도입에 이은 YM155 처리를 통해, 88.4%의 효율로 유전자 편집 집단을 만들었다(도 4b 및 4c 참조).To prove the hypothesis, HEK293T cells showing a relatively high level of SLC35F2 were utilized to induce dose-dependent cell death after YM155 treatment (EC 50 10 times higher than hESC). Specifically, through simple introduction of sgRNA targeting SLC35F2 with Cas9 followed by YM155 treatment, gene editing populations were created with an efficiency of 88.4% (see FIGS. 4B and 4C).
다음으로, CCR5(C-C motif Chemokine Receptor)와 함께 SLC35F2의 공동 표적을 시도했다. CCR5 대용 리포터(surrogate reporter) 시스템을 활용하여 CCR5 타겟팅의 효율성을 모니터링하였다. 이 시스템에서, 적색 형광 단백질(monomeric red fluorescent protein; mRFP)은 기본적으로 발현되는 반면, 녹색 형광 단백질(green fluorescent protein; GFP)의 발현은 CCR5가 Cas9 발현에 의해 표적화된 후에만 개시된다(도 4d 참조). 따라서, SLC35F2CCR5를 공동 표적화하고 GFP 양성 세포의 비율 확인을 통해 CRISPR/Cas9 표적화 효율의 실시간 모니터링을 가능하게 하였다.Next, co-targeting of SLC35F2 was attempted with CCR5 (CC motif Chemokine Receptor). Utilizing the CCR5 reporter substitute (surrogate reporter) system was monitoring the effectiveness of the CCR5 target. In this system, monomeric red fluorescent protein (mRFP) is expressed by default, whereas expression of green fluorescent protein (GFP) is initiated only after CCR5 is targeted by Cas9 expression (Fig. Reference). Therefore, by co-targeting SLC35F2 and CCR5 and confirming the proportion of GFP-positive cells, real-time monitoring of CRISPR/Cas9 targeting efficiency was possible.
서열번호Sequence number 명칭designation 서열order
33 sgRNA가 특이적으로 결합하는 CCR5 표적화 부위의 핵산 서열Nucleic acid sequence of CCR5 targeting site to which sgRNA specifically binds TGACATCAATTATTATACAT TGACATCAATTATTATACAT
44 CCR5를 표적화하는 sgRNA의 핵산 서열Nucleic acid sequence of sgRNA targeting CCR5 TGACATCAATTATTATACATCGGTGACATCAATTATTATACATCGG
구체적으로, YM155 처리 유무에 관계 없이 CCR5만 또는 CCR5/SLC35F2의 sgRNA 형질전환 후 대용 리포터를 발현하는 HEK293T 세포의 형광 현미경 이미지를 mRFP 양성 군에 대비하여 GFP 비율로 나타내었다. CCR5SLC35F2에 대한 표지 조건(TS: 대용 리포터만, C: CCR5에 대한 sgRNA, S: SLC35F2에 대한 sgRNA, CCR5+SLC35F2: CCR5SLC35F2 모두에 대한 sgRNA)에서 mRFP 양성 집단 대비 평균 GFP 비율을 그래프로 나타내었다.Specifically, fluorescence microscopic images of HEK293T cells expressing a surrogate reporter after sgRNA transformation of CCR5 alone or CCR5 / SLC35F2 with or without YM155 treatment were shown as a GFP ratio compared to the mRFP-positive group. In the labeling conditions for CCR5 and SLC35F2 (TS: surrogate reporter only, C: sgRNA for CCR5 , S: sgRNA for SLC35F2, CCR5+SLC35F2: sgRNA for both CCR5 and SLC35F2), the average GFP ratio compared to the mRFP positive group is plotted. Represented by
도 4e에서 확인할 수 있듯이, YM155를 처리하여 GFP 양성 집단의 유의한 증가를 관찰할 수 있었다.As can be seen in Figure 4e, it was possible to observe a significant increase in the GFP positive group by treatment with YM155.
또한, 도 4f 및 표 3에서 확인할 수 있듯이, 대용 리포터 시스템이 유전자 편집군의 3분의 1 밖에 되지 않는다는 점을 고려할 때, YM155 선택에 따른 25% 이하의 GFP 양성 결과군은 80%의 높은 확률로 유전자가 편집된 군임을 암시하였다.In addition, as can be seen in Figure 4f and Table 3, considering that the substitute reporter system is only one-third of the gene editing group, the GFP-positive result group of 25% or less according to the YM155 selection has a high probability of 80%. Suggested that the gene was edited.
TSTS CC SS ContCont YM155YM155
GFP 발현 세포(%)GFP expressing cells (%) 0.4650.465 6.8856.885 0.6150.615 6.6656.665 23.75023.750
다음으로, CCR5SLC35F2의 동시 표적화와 YM155 처리에 의한 CCR5 KO의 농축을 확인하기 위해, CCR5에 대한 T7E1 분석을 수행하였다.Next, in order to confirm the simultaneous targeting of CCR5 and SLC35F2 and enrichment of CCR5 KO by YM155 treatment, a T7E1 analysis for CCR5 was performed.
도 4g에서 확인할 수 있듯이, 상대적인 밴드의 밀도를 측정하여 비교한 결과 KO 효율이 뚜렷하게 증가하였다.As can be seen in FIG. 4G, as a result of measuring and comparing the relative density of the bands, the KO efficiency was clearly increased.
결과적으로, SLC35F2의 녹아웃에 의한 YM155 내성의 유도는 유전자 편집 클론의 농축 선별에 유용하였다.As a result, the induction of tolerance by the knockout of YM155 SLC35F2 was useful for the selective enrichment of a gene clone editing.
실시예 6: YM155 처리에 의한 유전자 편집 hESCs의 항상성 확인Example 6: Confirmation of homeostasis of gene-edited hESCs by YM155 treatment
상기 실시예 5의 결과에 기초하여, HEK293T 세포에서 이 접근법(YM155에 기반한 CRISPR 공동 타겟팅의 농축 선별((YM155-based Enriched Selection of CRISPR Co-15 target), 이하 'YES 접근법')을 시험한 후, 이를 YM155에 보다 민감한 인간 다능성 줄기세포(hPSCs)에 적용하였다. YES-접근법의 개념 증명을 위해 CCR5-표적 hESCs의 생산을 시도하였다.Based on the results of Example 5, after testing this approach (YM155-based enriched selection of CRISPR co-targeting (YM155-based Enriched Selection of CRISPR Co-15 target), hereinafter'YES approach') in HEK293T cells , This was applied to human pluripotent stem cells (hPSCs) more sensitive to YM155. In order to prove the concept of the YES-approach, the production of CCR5 -target hESCs was attempted.
본 발명자들은 다음과 같은 이유로 이 유전자를 선택하였다.The present inventors selected this gene for the following reasons.
(i) CCR5(a genomic safe harbor)의 파괴는 hPSC의 다능성에 거의 영향을 미치지 않는다; 및(i) destruction of CCR5 (a genomic safe harbor) has little effect on the pluripotency of hPSCs; And
(ii) 상기 세포가 HIV-1 연구, 예를 들어 CCR5가 고갈된 CD4+ T 세포의 생산에 있어서의 미래 응용 가능성을 가질 수 있다.(ii) The cells may have potential for future applications in HIV-1 studies, for example the production of CCR5 depleted CD4 + T cells.
이 실험에서, YM155 처리 하에서 여전히 생존할 수 있는 긍정 오류 클론(예: CCR5WT/SLC35F2KO)의 선택을 최소화하기 위해, CCR5SLC35F2를 표적으로 하는 2 가지의 상이한 sgRNA 비율을 사용하였다. CCR5(C) 및 SLC35F2(S)를 표적으로 하는 sgRNA를 이용한 YES-접근법을 통해 7개(C:S = 1:1 비율) 또는 4개(C:S = 2:1) 콜로니가 생존하여 분리되었다.In this experiment, two different sgRNA ratios targeting CCR5 and SLC35F2 were used to minimize the selection of false positive clones (e.g., CCR5WT/SLC35F2KO) that could still survive under YM155 treatment. Seven (C:S = 1:1 ratio) or 4 (C:S = 2:1) colonies survive and isolate through the YES-approach using sgRNA targeting CCR5 (C) and SLC35F2 (S). Became.
도 5a 및 표 4에서 확인할 수 있듯이, CCR5SLC35F2를 표적으로 하는 sgRNA의 상이한 투여율에 따라, 그 중 3개의 클론과 1개의 클론이 각각 CCR5 표적 hESC(25 % 이상의 효율)로 나타났으며, 각각의 KO 클론 수를 요약하여 표기하였다.As can be seen in Figure 5a and Table 4, according to the different dosage rates of the sgRNA targeting CCR5 and SLC35F2 , three clones and one clone were each shown as a CCR5 target hESC (25% or more efficiency), The number of each KO clone was summarized and indicated.
C:SC:S 1:11:1 2:12:1
CCR5 KO CCR5 KO 3/73/7 1/41/4
SLC35F2 KO SLC35F2 EN 5/75/7 4/44/4
CCR5 KO (%) CCR5 KO (%) 42.942.9 2525
다음으로, 대조군(WT) 및 #1에 해당하는 클론(C:S = 1:1)을 선택하여 차세대염기서열분석(NGS)을 수행하였다(도 5b 참조).Next, next-generation sequencing (NGS) was performed by selecting a control (WT) and a clone corresponding to #1 (C:S = 1:1) (see FIG. 5B).
구체적으로, Easy-BLUETM RNA 분리 키트(iNtRON Biotechnology)를 사용하여 세포에서 총 RNA를 추출하고 품질 관리를 수행하였다. 검증된 샘플은 라이브러리 구축에 활용된다. 시퀀싱 라이브러리는 DNA 또는 cDNA 샘플의 무작위 단편화와 5' 및 3' 어댑터 결찰에 의해 준비된다. 원시 RNA-seq 파일(FASTQ)의 리드(read) 품질은 FastQC(v0.11.7)를 사용하여 확인되었으며, 리드의 어댑터 시퀀스는 cutadapt(v1.8.1)를 사용하여 제거되었다. 손질된 FASTQ 파일을 STAR aligner(v2.6.0a)를 사용하여 GRCh38 게놈에 맞춘 다음, Gencode v22 annotation GTF(https://www.gencodegenes.org/human/release_22.html)와 함께 HTseq(v0.11.0)를 사용하여 유전자에 대한 리드 카운트(read count)를 획득하였다.Specifically, total RNA was extracted from the cells using Easy-BLUE TM RNA isolation kit (iNtRON Biotechnology) and quality control was performed. The verified samples are used to build the library. Sequencing libraries are prepared by random fragmentation of DNA or cDNA samples and 5'and 3'adapter ligation. The read quality of the raw RNA-seq file (FASTQ) was confirmed using FastQC (v0.11.7), and the adapter sequence of the read was removed using cutadapt (v1.8.1). Align the trimmed FASTQ file to the GRCh38 genome using STAR aligner (v2.6.0a), then HTseq (v0.11.0 with Gencode v22 annotation GTF (https://www.gencodegenes.org/human/release_22.html)) ) Was used to obtain a read count for the gene.
그 결과, 단일 클론은 85.5% 인델로 나타났으며, 이는 살아남은 클론이 원하는 방식으로 성공적으로 유전자 편집되었음을 의미한다. sgRNA 타겟 서열은 녹색, PAM 서열은 적색으로 표시하였다.As a result, the single clone was 85.5% indel, indicating that the surviving clone was successfully gene edited in the desired manner. The sgRNA target sequence is indicated in green, and the PAM sequence is indicated in red.
야생형 hESC 대비 SLC35F2 KO hESCs에서 전체 유전자 발현과 다능성 유전자의 발현은 변화하지 않았지만, hESCs에서 SLC35F2의 영구 KO 효과를 배제할 수 없었다. 따라서, SLC35F2 KO 세포에서 발현이 변화된 유전자를 면밀히 검토하기 위해, t-분포 확률적 이웃 삽입(t-distributed stochastic neighbor embedding; t-SNE)을 이용한 RNA-seq 샘플의 클러스터링을 수행하였다.Compared to wild-type hESCs, SLC35F2 KO hESCs did not change total gene expression and pluripotent gene expression, but the permanent KO effect of SLC35F2 in hESCs could not be excluded. Therefore, in order to closely examine genes whose expression is changed in SLC35F2 KO cells, clustering of RNA-seq samples using t-distributed stochastic neighbor embedding (t-SNE) was performed.
도 5c에서 확인할 수 있듯이, 비록 전체 전사와 hPSC 신호 모두에서 야생형(NC #1과 NC #2)과 KO 세포(KO #1과 KO #2) 사이에서는 사소한 차이점을 발견하였을 뿐이나, SLC35F2의 원래의 기능과 관련되어 있는 '세포질 전이 금속 이온 항상성(homeostasis)'이 크게 변화되었다.As can be seen in Figure 5c, although only minor differences were found between wild-type (NC #1 and NC #2) and KO cells (KO #1 and KO #2) in both total transcription and hPSC signals, the original SLC35F2 The'cytoplasmic transition metal ion homeostasis', which is related to the function of, has changed significantly.
따라서, SLC35F2의 영구적인 녹아웃으로 인해 발생할 수 있는 바람직하지 않은 편향을 고려하여. SLC35F2의 일시적 녹다운에 의해 일시적으로만 YM155 내성을 유도할 필요가 있음을 확인하였다.Therefore, taking into account the undesirable bias that may occur due to permanent knockout of the SLC35F2 . By transient knockdown of SLC35F2 it was temporarily confirmed that only need to be YM155 induced immunity.
실시예 7: Example 7: CCR5CCR5 표적 hESCs의 확립을 위한 흉터 없는 YES 접근법 A scar-free YES approach for the establishment of target hESCs
YES-접근법은 관심 유전자(GOI) 표적 hESC를 확립하는 데 효과적이었지만, YM155 내성을 유도하기 위한 SLC35F2의 영구 KO는 SLC35F2가 무기 또는 이온 항상성에 미치는 영향이 동종 질병 모델링의 관점에서 문제가 될 수 있다는 점을 배제할 수 없었다.YES- approach is the presence of permanent KO of SLC35F2 to was effective in establishing a gene of interest (GOI) target hESC, an induced resistance is YM155 SLC35F2 impact on the inorganic ion homeostasis, or can be a problem in terms of the same disease model The point could not be ruled out.
이 문제를 해결하기 위해, GOI(이 경우, CCR5)를 표적으로 하는 sgRNA 및 SLC35F2를 표적으로 한 siRNA의 도입에 따라, SLC35F2의 고갈에 의해 매개되는 일시적으로 유도된 YM155 저항성이 달성되었다(도 6a 참조).To solve this problem, GOI (in this case, CCR5) the according to sgRNA and introduction of siRNA by the SLC35F2 target to target, is temporarily YM155 resistance induced mediated by depletion of SLC35F2 was achieved (Fig. 6a Reference).
서열번호Sequence number 명칭designation 서열order
55 siRNA가 특이적으로 결합되는 SLC35F2 표적화 부위의 핵산 서열Nucleic acid sequence of SLC35F2 targeting site to which siRNA is specifically bound cagatgttgtccttgtgta cagatgttgtccttgtgta
66 SLC35F2 표적화 siRNA 핵산 서열 SLC35F2 targeting siRNA nucleic acid sequence cagauguuguccuuguguacagauguuguccuugugua
도 6b에서 확인할 수 있듯이, 예상대로 SLC35F2의 고갈은 siRNA 형질도입 5 일 후에 완전히 회복되었다.As can be seen in Figure 6b, as expected, the depletion of SLC35F2 completely recovered 5 days after siRNA transduction.
또한, 아넥신 V/7-AAD 염색으로 확인한 결과, SLC35F2를 표적으로 한 siRNA의 형질도입 후 도 6c의 왼쪽 패널과 같이 2일째에는 농축 선별이 가능하였으나, 도 6c의 오른쪽 패널과 같이 5일째에는 유도되었던 YM155 저항성이 사라졌다. In addition, as a result of confirming by annexin V/7-AAD staining, after transduction of siRNA targeting SLC35F2 , concentration selection was possible on the second day as shown in the left panel of FIG. 6C, but on the 5th day as shown in the right panel of FIG. 6C The induced YM155 resistance disappeared.
이러한 관찰은, SLC35F2를 표적으로 한 siRNA에 의해 유도된 YM155 저항성이 영구적인 흉터 없이 일시적으로만 발생함을 시사하였다.These observations suggested that YM155 resistance induced by siRNA targeting SLC35F2 only occurred transiently without permanent scarring.
도 6d에 도시된 바와 같이, CCR5 표적 효율은 YM155 용량 의존적인 방식으로 개선되었다.As shown in Fig. 6D, the CCR5 targeting efficiency was improved in a YM155 dose dependent manner.
도 6e에서 확인할 수 있듯이, 유전자 편집 집단의 돌연변이 패턴은 20 nM YM155 처리에 의해 단순화되었으며, 20 nM 처리 후 생존한 콜로니는 거의 없었다.As can be seen in Figure 6e, the mutation pattern of the gene editing group was simplified by 20 nM YM155 treatment, there were few colonies that survived after 20 nM treatment.
도 6f에서 확인할 수 있듯이, YES-접근법에서 얻은 클론 중 하나는 정확하게 CCR5를 표적으로 삼았다.As can be seen in Fig. 6f, one of the clones obtained from the YES-approach accurately targeted CCR5 .
도 6g에서 확인할 수 있듯이, SLC35F2 발현의 회복과 함께 YM155의 세포 독성은 완전히 회복되었으며, 이는 SLC35F2의 기능 회복을 시사한다.As can be seen in Fig. 6g, with the recovery of SLC35F2 expression, the cytotoxicity of YM155 was completely recovered, suggesting functional recovery of SLC35F2 .
실시예 8: hESCs에서 유전자 녹아웃(knockout)을 위한 흉터 없는 YES 접근법의 적용 확대Example 8: Expanding the application of the scar-free YES approach for gene knockout in hESCs
hESC에서 게놈 편집을 위한 흉터 없는 YES 접근법의 높은 효율을 검증하고 일반화하기 위해, 공지된 HEK2HEK3 유전자(GOI)가 추가로 표적화되었다. 이때, HEK2 HEK3 표적화 siRNA 핵산 서열은 상기 실시예 7에서 사용한 서열과 동일하며, sgRNA가 특이적으로 결합하는 CCR5 표적화 부위의 핵산 서열 및 CCR5를 표적화하는 sgRNA의 핵산 서열은 상기 실시예 5에서 사용한 서열과 동일하다.To validate and generalize the high efficiency of the scar-free YES approach for genome editing in hESCs , the known HEK2 and HEK3 genes (GOI) were further targeted. At this time, the HEK2 and HEK3 targeting siRNA nucleic acid sequences are the same as those used in Example 7, and the nucleic acid sequence of the CCR5 targeting site to which sgRNA specifically binds and the nucleic acid sequence of sgRNA targeting CCR5 were used in Example 5 above. Same as sequence.
서열번호Sequence number 명칭designation 서열order
77 siRNA가 특이적으로 결합되는 HEK2 표적화 부위의 핵산 서열Nucleic acid sequence of HEK2 targeting site to which siRNA is specifically bound GAACACAAAGCATAGACTGCGGG GAACACAAAGCATAGACTGCGGG
88 siRNA가 특이적으로 결합되는 HEK3 표적화 부위의 핵산 서열Nucleic acid sequence of HEK3 targeting site to which siRNA is specifically bound GGCCCAGACTGAGCACGTGATGGGGCCCAGACTGAGCACGTGATGG
도 7a 및 7b에서 확인할 수 있듯이, CCR5, HEK2HEK3의 인델 빈도는 일관성 있게 YES-접근법에 의해 크게 개선되었다.As can be seen in Figures 7a and 7b, the indel frequencies of CCR5 , HEK2 and HEK3 were consistently greatly improved by the YES-approach.
또한, 게놈 편집 효율을 쉽게 정량화하기 위해, Cas9(Cas9-EGFP #1)를 안정적으로 발현하는 녹색 형광 단백질(EGFP) 리포터 hESC를 추가로 확립하였다(도 7c 참조). EGFP에 sgRNA를 도입한 후에는 EGFP 음성 집단을 측정하여 EGFP 목표 효율을 간단히 결정하였다(도 7d 참조).In addition, in order to easily quantify the genome editing efficiency, a green fluorescent protein (EGFP) reporter hESC stably expressing Cas9 (Cas9-EGFP #1) was further established (see Fig. 7c). After introducing sgRNA into EGFP, the EGFP target efficiency was simply determined by measuring the EGFP negative population (see FIG. 7D).
구체적으로, H9 세포(hESCs)에 PiggyBac 시스템을 이용하여 Cas9-2A-EGFP 유전자(플라스미드 벡터)를 임의로 도입하고, 유세포 분석(FACS)을 통해 EGFP가 발현되는 세포들을 수집하였다. 그 다음, 단일 세포에서 유래한 각각의 콜로니들의 염기 서열을 분석하여 실제로 Cas9 및 EGFP가 발현되는 클론을 확립하였다.Specifically, the Cas9-2A-EGFP gene (plasmid vector) was optionally introduced into H9 cells (hESCs) using the PiggyBac system, and cells expressing EGFP were collected through flow cytometry (FACS). Then, the nucleotide sequence of each colony derived from a single cell was analyzed to establish a clone that actually expresses Cas9 and EGFP.
도 7e 및 7f에서 확인할 수 있듯이, EGFP 음성 집단은 흉터 없는 YES-접근법에 의해 뚜렷하게 증가하였다. 구체적으로, sgRNA만 처리했을 경우의 타겟팅 효율(도 7e의 빨간색 히스토그램)과 비교했을 때, YES-접근법(SLC35F2의 siRNA 처리 후 YM155 선별)으로 선별한 세포들의 타겟팅 효율(도 7e의 주황색 히스토그램)이 월등히 증가하였다.As can be seen in Figures 7e and 7f, the EGFP negative population was significantly increased by the scar-free YES-approach. Compared to the specific, targeting efficiency (red histogram of Fig. 7e) in the case where only process sgRNA, YES- approach (after siRNA treatment of SLC35F2 YM155 screening) targeting efficiency of the cells (orange histogram of Fig. 7e) screened with the It increased significantly.
실시예 9: ssODN을 이용한 유전자 녹인(knock-in)에의 적용Example 9: Application to gene knock-in using ssODN
한편, hESC에서의 유전자 녹인(Knock-in; KI)은 환자 iPSC의 유전자 교정뿐만 아니라 동종 질병 모델링을 위한 높은 수요에도 불구하고, 극히 낮은 효율이 중요한 기술적 장애물로 남아있다.On the other hand, gene knock-in (KI) in hESCs remains an important technical obstacle, despite the high demand for genetic modification of patient iPSCs as well as for modeling allogeneic diseases.
따라서, 흉터 없는 YES-접근법을 유전자 녹인(KI)에도 적용할 수 있는지 조사하였다. 내부(In house)에서 보유하고 있는 서로 다른 세 종류의 유전자(EYA4, TMEM67 또는 SLC6A5)의 인트론 부위(sgRNA 표적화에 의한 유전자 기능 손실을 방지)를 sgRNA로 타겟 후, 동시에, 전기천공법(electroporation)으로 EYA4, TMEM67 또는 SLC6A5 유전자좌에 각각을 표적화하는 단일 가닥 올리고데옥시뉴클레오타이드(single stranded oligodeoxynucleotides; ssODN)를 전달하여 흉터 없는 YES-접근법의 유무에 따른 상동성-지정 복구(homology-directed repair; HDR)-매개 KI(도 8a) 적용 가능성을 확인하였다. 이때, siRNA가 특이적으로 결합하는 SLC35F2 표적화 부위의 핵산 서열은 상기 실시예 7에서 사용한 서열과 동일하다.Therefore, it was investigated whether the scar-free YES-approach can be applied to gene knockdown (KI). Target the intron site (prevents loss of gene function due to sgRNA targeting) of three different genes (EYA4, TMEM67 or SLC6A5 ) held in house with sgRNA, and then simultaneously, electroporation By delivering single-stranded oligodeoxynucleotides (ssODN) targeting each to the EYA4 , TMEM67 or SLC6A5 loci, homology-directed repair (HDR) with or without a scar-free YES-approach. -It was confirmed the possibility of applying the mediated KI (Fig. 8a). At this time, the nucleic acid sequence of the SLC35F2 targeting site to which siRNA specifically binds is the same as the sequence used in Example 7.
서열번호Sequence number 명칭designation 서열order
99 EYA4를 표적화하는 ssODN의 핵산 서열 Nucleic acid sequence of ssODN targeting EYA4 cttgtcctgcttcagttccttttcccaactacttagctagttcCAGCTGcaggctatccaaactctcacc GGGcaatgatttcatcaataataacttatgcttgtcctgcttcagttccttttcccaactacttagctagttcCAGCTGcaggctatccaaactctcaccGGGcaatgatttcatcaataataacttatg
1010 TMEM67을 표적화하는 ssODN의 핵산 서열 Nucleic acid sequence of ssODN targeting TMEM67 ctattactataaagctgaggactctcaaaggcccttcagagCAGCTGtattgacaagaacgtgaactctg GGGtcaggctgcctgagttccaattccagtctattactataaagctgaggactctcaaaggcccttcagagCAGCTGtattgacaagaacgtgaactctgGGGtcaggctgcctgagttccaattccagt
1111 SLC6A5를 표적화하는 ssODN의 핵산 서열 Nucleic acid sequence of ssODN targeting SLC6A5 gtggagtctgctgtaatttagcttgcaaagaatgccttcaccCAGCTGtgggtgctttagggaggcagctgaaatggaagcagactgaatattttgaaatgtggagtctgctgtaatttagcttgcaaagaatgccttcaccCAGCTGtgggtgctttagggaggcagctgaaatggaagcagactgaatattttgaaat
서열번호Sequence number 명칭designation 서열(PAM 서열 제외)Sequence (except PAM sequence)
1212 EYA4를 표적화하는 sgRNA의 핵산 서열(sgRNA가 특이적으로 결합하는 EYA4 표적화 부위의 핵산 서열) Nucleic acid sequence of sgRNA targeting EYA4 (nucleic acid sequence of EYA4 targeting site to which sgRNA specifically binds) agagtttggatagcctgtatagagtttggatagcctgtat
1313 TMEM67을 표적화하는 sgRNA의 핵산 서열(sgRNA가 특이적으로 결합하는 TMEM67 표적화 부위의 핵산 서열) Nucleic acid sequence of sgRNA targeting TMEM67 (nucleic acid sequence of TMEM67 targeting site to which sgRNA specifically binds) gttcacgttcttgtcaataggttcacgttcttgtcaatag
1414 SLC6A5를 표적화하는 sgRNA의 핵산 서열(sgRNA가 특이적으로 결합하는 SLC6A5 표적화 부위의 핵산 서열) Nucleic acid sequence of sgRNA targeting SLC6A5 (nucleic acid sequence of SLC6A5 targeting site to which sgRNA specifically binds) ttgcaaagaatgccttcaccttgcaaagaatgccttcacc
구체적으로, 인간 배아 줄기세포(hESCs)를 단일 세포로 분리한 후 1x106의 세포를 카운팅하였다. 그 다음, 전기천공법(electroporation)을 이용하여 Cas9 벡터 2ug, sgRNA 2ug, ssODN 5ug 및 siRNA 2ug을 세포 내부로 전달하였다. 벡터 형질주입(transfection) 2일 후, YM155 20nM을 6시간 동안 처리한 후 세척(wash-off)하여 YES-선별하였다. 4-5일 후, 선별된 세포로부터 gDNA을 추출하여 차세대염기서열(NGS) 분석을 진행하였다.Specifically, human embryonic stem cells (hESCs) were separated into single cells and then 1×10 6 cells were counted. Then, 2ug of Cas9 vector, 2ug of sgRNA, 5ug of ssODN, and 2ug of siRNA were transferred into the cell by electroporation. Two days after vector transfection, 20 nM of YM155 was treated for 6 hours and then washed-off to YES-select. After 4-5 days, gDNA was extracted from the selected cells to perform next-generation nucleotide sequence (NGS) analysis.
도 8a 및 8b에서 확인할 수 있듯이, KO 뿐만 아니라 KI의 유전자 편집 효율은 YES-접근법에 의해 12.5%까지 현저히 증가하였다.As can be seen in Figures 8a and 8b, the gene editing efficiency of KO as well as KI was significantly increased up to 12.5% by the YES-approach.
본 발명은 미분화 만능 줄기세포로부터 유전자 편집된 세포의 선별 방법에 관한 것으로서, 더욱 상세하게는 siRNA에 의한 SLC35F2의 일시적인 녹다운에 의해 유도된 YM155 저항성을 이용하여 유전자 편집된 세포를 농축 선별할 수 있는 방법에 관한 것이다.The present invention relates to a method for selecting gene-edited cells from undifferentiated pluripotent stem cells, and more particularly, a method for enriching and selecting gene-edited cells using YM155 resistance induced by transient knockdown of SLC35F2 by siRNA. It is about.

Claims (12)

  1. 다음의 단계를 포함하는 유전자 편집된 세포의 선별 방법:A method for selecting genetically edited cells comprising the following steps:
    미분화 만능 줄기세포(undifferentiated pluripotent stem cells)에서 SLC35F2 유전자를 표적화하여 유전자 편집을 진행하는 유전자 편집 단계로, 상기 유전자 편집은 SLC35F2 유전자의 발현을 억제하는 것인, 유전자 편집 단계; 및Gene editing step of targeting the SLC35F2 gene in undifferentiated pluripotent stem cells to proceed with gene editing, wherein the gene editing is to suppress the expression of the SLC35F2 gene, the gene editing step; And
    YM155(CAS 781661-94-7)를 처리하여 SLC35F2 유전자의 발현이 억제되지 않은 세포를 선택적으로 사멸시키는 세포 사멸 유도 단계.YM155 (CAS 781661-94-7) treatment to selectively kill the cells in which the expression of the SLC35F2 gene is not suppressed.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 방법에 의해 선별된 세포는 1종 이상의 관심 유전자(gene of interest; GOI)를 표적화하여 유전자 편집된 세포를 포함하는 것인, 유전자 편집된 세포의 선별 방법.The cell selected by the method is one or more genes of interest (GOI) targeting to include gene-edited cells, gene-edited cell selection method.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 유전자 편집은 안티센스 뉴클레오티드(antisense nucleotide), 짧은 간섭 RNA(small interfering RNA; siRNA), 짧은 헤어핀 RNA(short hairpin RNA; shRNA) 및 단일 가닥 올리고데옥시뉴클레오타이드(single stranded oligodeoxynucleotides; ssODN)로 이루어진 군으로부터 선택되는 1종 이상을 세포에 도입하여 수행되는 것인, 유전자 편집된 세포의 선별 방법.The gene editing is from the group consisting of antisense nucleotides, small interfering RNA (siRNA), short hairpin RNA (shRNA), and single stranded oligodeoxynucleotides (ssODN). A method for selecting a gene-edited cell that is performed by introducing at least one selected type into a cell.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 siRNA는 서열번호 6의 서열을 갖는 핵산인, 유전자 편집된 세포의 선별 방법.The siRNA is a nucleic acid having the sequence of SEQ ID NO: 6, a method for selecting a gene-edited cell.
  5. 제 3 항에 있어서,The method of claim 3,
    상기 ssODN은 서열번호 9 내지 서열번호 11로 이루어진 군으로부터 선택된 서열을 갖는 핵산인, 유전자 편집된 세포의 선별 방법.The ssODN is a nucleic acid having a sequence selected from the group consisting of SEQ ID NO: 9 to SEQ ID NO: 11, a method for selecting a gene-edited cell.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 관심 유전자는 상기 관심 유전자에 서열 변이가 발생하면 발현되는 리포터 유전자가 상기 관심 유전자의 다운스트림에 작동가능하게 연결된 것인, 유전자 편집된 세포의 선별 방법.In the gene of interest, a reporter gene expressed when a sequence mutation occurs in the gene of interest is operably linked to the downstream of the gene of interest.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 서열 변이는 프레임 이동 돌연변이(frame shift mutation)인, 유전자 편집된 세포의 선별 방법.The sequence mutation is a frame shift mutation, a method for selecting a gene-edited cell.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 리포터 유전자는 업스트림에 전사 종결 구조를 형성하는 핵산 서열이 삽입된 것인, 유전자 편집된 세포의 선별 방법.The reporter gene is a method for selecting a gene-edited cell in which a nucleic acid sequence forming a transcription termination structure is inserted upstream.
  9. 제 6 항에 있어서,The method of claim 6,
    상기 리포터 유전자는 형광 단백질, 베타-갈락토시다제(beta-galactosidase), 베타-락타마아제(β-lactamase), TEV-프로테아제(TEV-protease), 디히드로엽산환원효소(Dihydrofolate reductase), 루시퍼라제(luciferase), 레닐라 루시퍼라아제(Renilla luciferase), 가우시아 루시퍼라아제(Gaussia luciferase), 선택마커(selection marker), 표면 마커 유전자(surface marker gene) 및 항생제 저항성 단백질로 구성된 군으로부터 선택된 단백질을 코딩하는 것인, 유전자 편집된 세포의 선별 방법.The reporter gene is a fluorescent protein, beta-galactosidase, beta-lactamase, TEV-protease, dihydrofolate reductase, lucifer. Protein selected from the group consisting of luciferase, Renilla luciferase, Gaussia luciferase, selection marker, surface marker gene, and antibiotic resistance protein The method of selecting a gene-edited cell that encodes.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 미분화 만능 줄기세포는 배아 줄기세포(Embryonic Stem Cell; 이하 ESC), 유도만능줄기세포(induced pluripotent stem cells; 이하 iPSCs), 배아 생식세포, 배아 종양세포 및 성체 줄기세포로 이루어진 군으로부터 선택되는 것인, 유전자 편집된 세포의 선별 방법.The undifferentiated pluripotent stem cells are selected from the group consisting of embryonic stem cells (Embryonic Stem Cells; hereinafter ESC), induced pluripotent stem cells (iPSCs), embryonic germ cells, embryonic tumor cells, and adult stem cells. Phosphorus, a method for selecting genetically edited cells.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 YM155의 농도는 10 내지 2000 nM인 것인, 유전자 편집된 세포의 선별 방법.The concentration of the YM155 is 10 to 2000 nM, the method for selecting a gene-edited cell.
  12. 미분화 만능 줄기세포(undifferentiated pluripotent stem cells)에서 유래된 분화세포에 YM155(CAS 781661-94-7) 처리 시 SLC35F2의 발현량이 증가하면 YM155에 대한 세포 독성이 발생하는 것으로 예측하는 단계를 포함하는, YM155의 세포 독성 확인 방법.YM155 comprising the step of predicting that cytotoxicity to YM155 occurs when the expression level of SLC35F2 increases when treated with YM155 (CAS 781661-94-7) to differentiated cells derived from undifferentiated pluripotent stem cells. How to determine the cytotoxicity of.
PCT/KR2020/000078 2019-05-14 2020-01-03 Method for selecting gene-edited cells from undifferentiated pluripotent stem cells WO2020230976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0056334 2019-05-14
KR20190056334 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020230976A1 true WO2020230976A1 (en) 2020-11-19

Family

ID=73290216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000078 WO2020230976A1 (en) 2019-05-14 2020-01-03 Method for selecting gene-edited cells from undifferentiated pluripotent stem cells

Country Status (2)

Country Link
KR (1) KR102404828B1 (en)
WO (1) WO2020230976A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139124A1 (en) * 2014-11-04 2016-05-19 Bloodcenter Research Foundaton Method to bioengineer designer platelets using gene editing and stem cell methodologies
WO2018039783A1 (en) * 2016-08-30 2018-03-08 UNIVERSITé LAVAL Selection systems and methods for genome editing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383816B1 (en) 2000-06-26 2003-05-16 한국전력공사 A 3-D shape measuring method and system using a adaptive area clustering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139124A1 (en) * 2014-11-04 2016-05-19 Bloodcenter Research Foundaton Method to bioengineer designer platelets using gene editing and stem cell methodologies
WO2018039783A1 (en) * 2016-08-30 2018-03-08 UNIVERSITé LAVAL Selection systems and methods for genome editing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEORG E WINTER, RADIC BRANKA, MAYOR-RUIZ CRISTINA, BLOMEN VINCENT A, TREFZER CLAUDIA, KANDASAMY RICHARD K, HUBER KILIAN V M, GRIDL: "The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity", NATURE CHEMICAL BIOLOGY, vol. 10, 1 September 2014 (2014-09-01), pages 768 - 773, XP055761040, ISSN: 1552-4450, DOI: 10.1038/nchembio.1590 *
KEUN-TAE KIM, JU-CHAN PARK, HAESEUNG LEE, HYEON-KI JANG, YAN JIN, WANKYU KIM, JEONGMI LEE, HYONGBUM HENRY KIM, SANG-SU BAE, HYUK-J: "Scarless enriched selection of genome edited human pluripotent stem cells using induced drug resistance", BIORXIV, 18 January 2019 (2019-01-18), pages 1 - 33, XP055761048 *
YOUNG-HYUN GO, LIM CHANGJIN, JEONG HO-CHANG, KWON OK-SEON, CHUNG SUNGKYUN, LEE HAESEUNG, KIM WANKYU, SUH YOUNG-GER, SON WOO SUNG, : "Structure-activity relationship analysis of YM155 for inducing selective cell death of human pluripotent stem cell s", FRONTIERS IN CHEMISTRY, vol. 7, 16 May 2019 (2019-05-16), pages 1 - 16, XP055761050, DOI: 10.3389/fchem.2019.00298 *
YVONNE VOGES; MARTIN MICHAELIS; FLORIAN ROTHWEILER; TORSTEN SCHALLER; CONSTANZE SCHNEIDER; KATHARINA POLITT; MARCO MERNBERGER; AND: "Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance", CELL DEATH AND DISEASE, vol. 7, no. 10, e2410, 1 October 2016 (2016-10-01), pages 1 - 11, XP055686799, DOI: 10.1038/cddis.2016.257 *

Also Published As

Publication number Publication date
KR20200131724A (en) 2020-11-24
KR102404828B1 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2016111546A2 (en) Endonuclease targeting blood coagulation factor viii gene and composition for treating hemophilia comprising same
EP3194578A1 (en) Immune-compatible cells created by nuclease-mediated editing of genes encoding hla
Serafimidis et al. Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors
WO2019050071A1 (en) Composition for preventing or treating liver fibrosis, containing exosome or exosome-derived ribonucleic acid
US20210230539A1 (en) Haploid human embryonic stem cell lines and somatic cell lines and methods of making the same
US11085020B2 (en) Mammalian haploid embryonic stem cells
WO2012115454A2 (en) Method for concentrating cells that are genetically altered by nucleases
Zhang et al. Inhibition of apoptosis reduces diploidization of haploid mouse embryonic stem cells during differentiation
Fütterer et al. Impaired stem cell differentiation and somatic cell reprogramming in DIDO3 mutants with altered RNA processing and increased R-loop levels
WO2020230976A1 (en) Method for selecting gene-edited cells from undifferentiated pluripotent stem cells
US20150344910A1 (en) Methods for controlling stem cell differentiation
WO2016080608A1 (en) Compositions comprising a mitofusin inhibitor for promoting cell reprogramming and a use thereof
WO2020055187A1 (en) Composition for inducing death of cells having mutated gene, and method for inducing death of cells having modified gene by using composition
Zhang et al. Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells
WO2021256668A1 (en) Human induced pluripotent stem cell line transformed with fluorescent protein-labeled cytochrome p450 and ahr modulator screening method using same
WO2016093668A2 (en) Integrative method for generating induced pluripotent stem cells for gene therapy
WO2022181880A1 (en) Method for constructing human pluripotent stem cell-derived liver organoid having enhanced drug metabolic potential and liver organoid constructed by same method
WO2022211604A1 (en) Stem cells edited with fe-fviii mutant gene, endothelial cells differentiated therefrom, and pharmaceutical composition containing same for prevention or treatment of hemophilia
US11261433B2 (en) Autosomal-identical pluripotent stem cell populations having non-identical sex chromosomal composition and uses thereof
Guo et al. Generation of an Abcc8 heterozygous mutation human embryonic stem cell line using CRISPR/Cas9
WO2022035287A1 (en) Cell having gene corrected ex vivo, and use thereof
WO2022255825A1 (en) Novel pluripotent cells
WO2023043278A1 (en) Method for evaluating efficacy of anticancer agent or screening anticancer agent
WO2021145700A1 (en) Cells having high adaptability under hypoxic conditions, and use thereof
Vallabhaneni et al. Replication-associated DNA damage in induced pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805913

Country of ref document: EP

Kind code of ref document: A1