WO2020230786A1 - Curable composition and cured product of same - Google Patents

Curable composition and cured product of same Download PDF

Info

Publication number
WO2020230786A1
WO2020230786A1 PCT/JP2020/018978 JP2020018978W WO2020230786A1 WO 2020230786 A1 WO2020230786 A1 WO 2020230786A1 JP 2020018978 W JP2020018978 W JP 2020018978W WO 2020230786 A1 WO2020230786 A1 WO 2020230786A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
curable composition
epoxy
Prior art date
Application number
PCT/JP2020/018978
Other languages
French (fr)
Japanese (ja)
Inventor
大澤歩
芝本明弘
三宅弘人
原田美由紀
Original Assignee
学校法人関西大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西大学, 株式会社ダイセル filed Critical 学校法人関西大学
Priority to JP2021519441A priority Critical patent/JPWO2020230786A1/ja
Publication of WO2020230786A1 publication Critical patent/WO2020230786A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used

Definitions

  • the present disclosure relates to a curable composition and a cured product thereof. More specifically, the present invention relates to a curable composition having excellent heat resistance, toughness, etc., and which can be suitably used for electric / electronic devices and the like, and a cured product thereof.
  • the present application claims the priority of Japanese Patent Application No. 2019-090991 filed in Japan on May 13, 2019, the contents of which are incorporated herein by reference.
  • Epoxy resins are used in various industrial applications because they have excellent heat resistance, mechanical properties, electrical properties, adhesive strength, etc. For example, insulating materials, printed wiring boards, encapsulants, laminated boards, etc. Its use as an advanced material in the field of electronic devices such as prepregs and underfills is expanding. In recent years, as electronic devices have been rapidly miniaturized and improved in performance, there is an increasing demand for further improvement of heat resistance and mechanical properties of epoxy resins.
  • Japanese Unexamined Patent Publication No. 2014-122337 Japanese Unexamined Patent Publication No. 2016-8218 Japanese Unexamined Patent Publication No. 2008-214599 JP-A-2015-48400
  • Patent Documents 3 and 4 a hydrosilylation reaction using a platinum catalyst was carried out in order to introduce a siloxane structure into an epoxy resin having a mesogen group, and the process was complicated and the cost was high. In addition, the heat resistance and mechanical properties of the obtained cured epoxy resin were not satisfactory as advanced materials for electronic devices.
  • a curable composition containing an epoxy compound having a mesogen group and polyorganosylsesquioxane having an epoxy group has heat resistance. It has been found that it is useful as an advanced material for electronic devices because it can form a cured product having excellent mechanical properties (for example, toughness) and high surface hardness.
  • the invention of the present disclosure has been completed based on these findings.
  • the present disclosure provides a curable composition containing an epoxy compound (A) having a mesogen group and polyorganosylsesquioxane (B) having an epoxy group.
  • the content of the polyorganosylsesquioxane (B) having an epoxy group is the total amount of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group. It is preferably 1 to 50% by weight with respect to (100% by weight).
  • the curable composition may further contain a curing agent (C).
  • the curing agent (C) may be an amine-based curing agent (C1).
  • the content of the amine-based curing agent (C1) is such that the active hydrogen of the amino group contained in the amine-based curing agent (C1) is 0.1 per 1 equivalent of the epoxy group contained in the curable composition.
  • the amount is preferably about 10 equivalents.
  • the epoxy compound (A) having a mesogen group is represented by the following formula (A).
  • M represents a mesogen group.
  • E 1 and E 2 each independently represent an epoxy group-containing group.
  • X 1 and X 2 each independently represent a single bond or linking group. Shows.) It may contain a compound represented by.
  • the M may be at least one selected from the group consisting of divalent groups represented by the following formulas (a1) to (a7).
  • R a and R b each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n1 and n2 independently represent 0 to 0 to n2, respectively. If .n1 showing 4 of the integer is 2 or more, plural R a, if may be the same or different .n2 is 2 or more, plural R b, optionally substituted by one or more identical
  • the wavy line may indicate the binding site with the group represented by -X 1- E 1 or -X 2- E 2.
  • R c , R d and R e independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • N3, n4 and n5 are n3, n4 and n5, respectively. independently, when the .n3 represents an integer of 0 to 4 is 2 or more, the plurality of R c, if may be the same or different .n4 is 2 or more, plural R d, the same If may be different even .n5 is 2 or more, plural R e, may be the same or different.
  • R f , R g and R h independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • N6, n7 and n8 are n6, n7 and n8, respectively. Independently, it indicates an integer of 0 to 4.
  • n6 is 2 or more, a plurality of R fs may be the same or different.
  • n7 is 2 or more, a plurality of R g are the same. It may be different.
  • R i and R j each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n9 and n10 independently represent 0 to 0 to n10, respectively.
  • R i if may be the same or different .n10 is 2 or more, plural R j, are be the same or different R k may be a hydrogen atom, a methyl group, or a cyano group.
  • a wavy line indicates a bond site with a group represented by -X 1- E 1 or -X 2- E 2.
  • R l and R m independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n11 and n12 independently represent 0 to 0 to n12, respectively. Indicates an integer of 4.
  • n11 is 2 or more, the plurality of R l may be the same or different. If n12 is 2 or more, the plurality of R m may be the same or different.
  • the wavy line may indicate the binding site with the group represented by -X 1- E 1 or -X 2- E 2.
  • R n and R o are each independently .N13 and n14 represents a straight-chain or branched alkyl group or a halogen atom having 1 to 6 carbon atoms are each independently 0 to If .n13 showing 4 of the integer is 2 or more, plural R n, if may be the same or different .n14 is 2 or more, plural R o, not be the same or different Wavy lines may indicate binding sites with groups represented by -X 1- E 1 or -X 2- E 2.
  • R p and R q independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n15 and n16 independently represent 0 to 0 to n16, respectively. If .n15 showing 4 of the integer is 2 or more, plural R p, if may be the same or different .n16 is 2 or more, plural R q, optionally substituted by one or more identical Wavy lines may indicate binding sites with groups represented by -X 1- E 1 or -X 2- E 2. )
  • the polyorganosylsesquioxane (B) having an epoxy group may be a polyorganosylsesquioxane having a structural unit represented by the following formula (1).
  • R 1 represents a group containing an epoxy group.
  • the R 1 is represented by the following formula (1a).
  • R 1a represents a linear or branched alkylene group.
  • the group represented by, the following formula (1b) [In formula (1b), R 1b represents a linear or branched alkylene group.
  • the group represented by the following formula (1c) [In formula (1c), R 1c represents a linear or branched alkylene group.
  • the group represented by or the following formula (1d) [In formula (1d), R 1d represents a linear or branched alkylene group. ] It may be a group represented by.
  • the present disclosure also provides a cured product of a cured product of a curable composition. Further, the present disclosure provides an electronic device including the cured product.
  • the curable composition of the present disclosure contains an epoxy compound having a mesogen group and polyorganosylsesquioxane having an epoxy group, it is excellent in heat resistance and mechanical properties (for example, toughness) and has high surface hardness. A cured product can be formed. Therefore, the curable composition of the present disclosure is useful as an advanced material in the field of electronic devices such as an insulating material, a printed wiring board, a sealing material, a laminated board, a prepreg, and an underfill. Further, the curable composition of the present disclosure can be prepared simply by mixing without requiring a chemical reaction such as hydrosilylation in order to introduce a silsesquioxane structure, and thus can be produced easily and at low cost.
  • the curable composition of the present disclosure includes an epoxy compound (A) having a mesogen group (hereinafter, may be referred to as “component (A)”) and a polyorganosylsesquioxane (B) having an epoxy group (hereinafter, hereafter , May be referred to as “component (B)”).
  • component (A) a mesogen group
  • component (B) a polyorganosylsesquioxane having an epoxy group
  • the curable composition of the present disclosure may further contain other components such as a curing agent (C) (for example, an amine-based curing agent) and a curing accelerator.
  • C curing agent
  • the component (A) which is an essential component of the curable composition of the present disclosure, is a compound having at least one mesogen group and at least one epoxy group in the molecule. That is, the component (A) is a curable compound having at least an epoxy group in the molecule. Since the component (A) has a rigid mesogen group, it has excellent heat resistance and mechanical properties in the cured product of the curable composition of the present disclosure (hereinafter, may be simply referred to as "the cured product of the present disclosure”). Can be given.
  • the "mesogen group" possessed by the component (A) is a general term for a rigid molecular structure capable of exhibiting liquid crystallinity. Since the mesogen group has a rigid molecular structure in which molecular motion is suppressed, when the curable composition containing the component (A) is cured, the mesogen structure is oriented to form a tough network structure, resulting in excellent heat resistance. It is thought to exhibit sex and mechanical properties.
  • the molecular structure of the mesogen group is not particularly limited, and examples thereof include the structures described on pages 14 to 15 of the Journal of the Japanese Society of Adhesion, Vol. 40, No. 1 (2004).
  • the mesogen group includes a group represented by-(-M 1 -X-) n- M 2- .
  • X for example, single bond
  • -CH N-
  • -CH CH-
  • -CH C (Me)-
  • -CH C (CN)-
  • -CH. N ( ⁇ O)-
  • -CH CH-CO-
  • -N N-
  • -N N ( ⁇ O)-, -COO-, -CONH-, -CO- and the like.
  • M 1 and M 2 contains one or more benzene rings
  • M 1 and M 2 include, for example, independently of a phenyl group (benzene ring), a biphenyl group, a terphenyl group, and the like.
  • Aromatic groups such as benzyl group, pyrimidine group and pyridine group; saturated or unsaturated cycloalkyl group such as cyclohexyl group and cyclohexenyl group; saturated hetero 6-membered ring group such as piperidine group and tetrahydropyran group can be mentioned.
  • M 1 and M 2 may have a substituent, and examples of the substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. , Pentyl group, hexyl group and other linear or branched alkyl groups having 1 to 6 carbon atoms, fluorine atoms, chlorine atoms, bromine atoms and other halogen atoms.
  • M 1 or M 2 has two or more substituents, the substituents may be the same or different.
  • n is an integer of 1 to 3, preferably 1 or 2.
  • the structures represented by a plurality of (-M 1 -X-) may be the same or different.
  • More specifically preferred mesogen groups include divalent groups represented by the following formulas (a1) to (a7).
  • the wavy line in the chemical formula of the present specification indicates a binding site with another structure.
  • R a and R b each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n1 and n2 each independently represent an integer of 0 to 4.
  • the plurality of Ras may be the same or different.
  • a plurality of R bs may be the same or different.
  • R c , R d, and R e each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n3, n4 and n5 each independently represent an integer of 0 to 4.
  • n3 is 2 or more, a plurality of R cs may be the same or different.
  • n4 is 2 or more, the plurality of R ds may be the same or different.
  • n5 is 2 or more, a plurality of Res may be the same or different.
  • R f , R g, and R h independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n6, n7 and n8 each independently represent an integer of 0 to 4.
  • n6 is 2 or more
  • a plurality of R fs may be the same or different.
  • n7 is 2 or more
  • a plurality of R g may be the same or different.
  • n8 is 2 or more, a plurality of R h may be the same or different.
  • R i and R j each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n9 and n10 each independently represent an integer of 0 to 4. If n9 is 2 or more, plural R i may be be the same or different. When n10 is 2 or more, a plurality of R js may be the same or different.
  • R k is a hydrogen atom, a methyl group, or a cyano group.
  • R l and R m independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n11 and n12 each independently represent an integer of 0 to 4. When n11 is 2 or more, a plurality of R l may be the same or different. When n12 is 2 or more, the plurality of R m may be the same or different.
  • R n and R o each independently represent a straight-chain or branched alkyl group or a halogen atom having 1 to 6 carbon atoms.
  • n13 and n14 each independently represent an integer of 0 to 4. If n13 is 2 or more, plural R n may be be the same or different. If n14 is 2 or more, plural R o may be be the same or different.
  • R p and R q independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • n15 and n16 each independently represent an integer of 0 to 4. When n15 is 2 or more, a plurality of R ps may be the same or different. When n16 is 2 or more, a plurality of R qs may be the same or different.
  • the linear or branched alkyl group having 1 to 6 carbon atoms represented by R a to R q includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert.
  • -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable.
  • Examples of the halogen atom represented by R a to R q include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
  • the mesogen group preferably has a structure represented by the formulas (a1) to (a3), and is represented by the formula (a1) or (a3).
  • the structure represented by the formula (a3) is more preferable, and the structure represented by the formula (a3) is further preferable.
  • the number of mesogen groups contained in the component (A) is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • the "epoxide group" contained in the component (A) is not particularly limited, and for example, an epoxy group (oxylanyl group), a glycidyl group (2,3-epoxypropyl group), and an alicyclic epoxy group (constituting an alicyclic). (Epoxide group composed of two adjacent carbon atoms and oxygen atoms) and the like.
  • an alicyclic epoxy group a group (cyclohexene oxide group) composed of two adjacent carbon atoms and oxygen atoms constituting the cyclohexane ring is preferable.
  • the number of epoxy groups contained in one molecule of the component (A) is not particularly limited, but two or more are preferable and preferably two or more from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • the number is 2 to 10, more preferably 2 to 5, and even more preferably 2.
  • the plurality of epoxy groups may be the same or different.
  • the component (A) is not particularly limited, and examples thereof include a compound represented by the following formula (A).
  • M represents the above-mentioned mesogen group.
  • E 1 and E 2 each independently indicate a group containing an epoxy group.
  • X 1 and X 2 each independently represent a single bond or a linking group (a divalent group having one or more atoms).
  • Examples of the group containing an epoxy group represented by E 1 and E 2 include known and commonly used groups having an oxylane ring, and the cured product of the present disclosure is not particularly limited, but imparts excellent heat resistance and mechanical properties to the cured product of the present disclosure. From the viewpoint of being capable, the group represented by the following formula (E1) or the group represented by (E2) is preferable, and the group represented by the formula (E1) is more preferable.
  • R r represents a linear or branched alkylene group having 1 to 6 carbon atoms.
  • the linear or branched alkylene group having 1 to 6 carbon atoms include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group. Groups, decamethylene groups and the like can be mentioned.
  • R r a linear alkylene group having 1 to 4 carbon atoms is preferable, and a methylene group and ethylene are more preferable, from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • R s is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R t represents a linear or branched alkylene group having 1 to 6 carbon atoms, and a group similar to R r is exemplified.
  • R t a linear alkylene group having 1 to 4 carbon atoms is preferable, and a methylene group and ethylene are more preferable, from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is a group, a trimethylene group, and more preferably a methylene group or an ethylene group.
  • R u is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • Examples of the linking group represented by X 1 and X 2 include a linear or branched alkylene group having 1 to 6 carbon atoms (a group similar to R r is exemplified), an ether bond (-O-), and an amino.
  • R X is a linear or branched alkyl group having 1 to 6 carbon hydrogen atom or a C), sulfenyl group (-S-), sulfinyl group (-SO-), sulfonyl groups ( -SO 2- ), carbonyl group (-CO-), ester bond (-COO-), amide group (-CONR Y H-;
  • RY is a hydrogen atom or a linear or branched chain with 1 to 6 carbon atoms.
  • Alkyl group a group in which a plurality of these are linked, and the like.
  • the linking group represented by X 1 and X 2 is an ether bond (-O-) or one or more ether bonds from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • a group in which one or two or more of the alkylene groups are linked is preferable, and an ether bond (—O—) is more preferable.
  • the component (A) is preferably a compound represented by the following formulas (A1) to (A3), and from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • the compound represented by the following formula (A1) or (A3) is more preferable, and the compound represented by the following formula (A3) is further preferable.
  • one type of component (A) may be used alone, or two or more types may be used in combination.
  • the component (A) can be produced by a known method, and a commercially available product can also be used.
  • Examples of commercially available products of the component (A) include the trade name "YX4000” (biphenyl type epoxy resin; manufactured by Mitsubishi Chemical Corporation).
  • the content (blending amount) of the component (A) in the curable composition of the present disclosure is not particularly limited, but the solvent is excluded from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is preferably 40 to 99% by weight, more preferably 50 to 95% by weight, still more preferably 60 to 90% by weight, based on the curable composition (100% by weight).
  • the component (B) which is an essential component of the curable composition of the present disclosure, has at least one epoxy group in the molecule and is a silsesquioxane structural unit (so-called T) represented by [RSiO 3/2 ].
  • T silsesquioxane structural unit
  • R in the above formula indicates a hydrogen atom or a monovalent organic group, and the same applies to the following.
  • the silsesquioxane constituent unit represented by the above formula is the hydrolyzed of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compounds represented by the formulas (a) to (c) described later). It is formed by decomposition and condensation reactions.
  • the heat resistance and mechanical properties (for example, toughness) of the cured product of the present disclosure are improved, and the surface hardness is also increased. improves. This is because the introduction of the three-dimensional structure formed by silsesquioxane contained in the component (B) constrains the motility of the network formed by the mesogen group contained in the component (A), resulting in heat resistance. It is thought that it will improve. Further, it is considered that the introduction of the silsesquioxane structure makes the network density of the mesogen groups sparse, resulting in improvement in mechanical properties (for example, toughness).
  • the surface hardness is increased by introducing the silsesquioxane structure which is a hard inorganic skeleton. It should be noted that these mechanisms are merely estimates and should not be construed as limiting the invention of the present disclosure by these mechanisms.
  • the "epoxide group" contained in the component (B) is not particularly limited, and for example, an epoxy group (oxylanyl group), a glycidyl group (2,3-epoxypropyl group), and an alicyclic epoxy group (constituting an alicyclic). (Epoxide group composed of two adjacent carbon atoms and oxygen atoms) and the like.
  • an alicyclic epoxy group a group (cyclohexene oxide group) composed of two adjacent carbon atoms and oxygen atoms constituting the cyclohexane ring is preferable.
  • Examples of the group containing a glycidyl group include a glycidyloxy C 1-10 alkyl group (for example, a glycidyloxy C 1-4 alkyl group) such as a glycidyloxymethyl group, a 2-glycidyloxyethyl group, and a 3-glycidyloxypropyl group. ) Etc. can be mentioned.
  • the group containing the alicyclic epoxy group is not particularly limited, but is an epoxy C 5-12 cycloalkyl-linear or branched C 1-10 alkyl group, for example, a 2,3-epoxycyclopentylmethyl group.
  • Epoxycyclopentyl C 1-10 alkyl groups such as 2- (2,3-epoxycyclopentyl) ethyl group, 2- (3,4-epoxycyclopentyl) ethyl group, 3- (2,3-epoxycyclopentyl) propyl group, 4 , 5-Epoxycyclooctylmethyl group, 2- (4,5-epoxycyclooctyl) ethyl group, 3- (4,5-epoxycyclooctyl) propyl group and other epoxycyclooctyl C 1-10 alkyl groups. be able to.
  • These groups containing an alicyclic epoxy group may have a C 1-6 alkyl group such as a methyl group or an ethyl group as a substituent on the C 5-12 cycloalkane ring.
  • Examples of the group containing an alicyclic epoxy group having a substituent include 4-methyl-3,4-epoxycyclohexylmethyl group, 2- (3-methyl-3,4-epoxycyclohexyl) ethyl group, 2-( C such as 4-methyl-3,4-epoxycyclohexyl) ethyl group, 3- (4-methyl-3,4-epoxycyclohexyl) propyl group, 4- (4-methyl-3,4-epoxycyclohexyl) butyl group 1-4 Alkyl-epoxy C 5-12 Cycloalkyl-Linear or branched C 1-10 Alkyl groups and the like can be mentioned.
  • the number of epoxy groups contained in one molecule of the component (B) is not particularly limited, but two or more are preferable and preferably two or more from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • the number is 2 to 50, more preferably 2 to 30, and even more preferably 2 to 15.
  • the plurality of epoxy groups may be the same or different.
  • the ratio of the monomer unit having an epoxy group to the total amount of the siloxane structural unit in the component (B) [total siloxane structural unit; total amount of M unit, D unit, T unit, and Q unit] is the cured product of the present disclosure.
  • the content is 50 mol% or more (50 to 100 mol%), preferably 55 to 100 mol%, and more preferably 65 to 100. It is mol%, more preferably 80 to 100 mol%, and even more preferably 90 to 100 mol%.
  • the component (B) preferably has a structural unit represented by the following formula (1) as a silsesquioxane unit.
  • R 1 represents a group containing an epoxy group.
  • the component (B) is a structural unit represented by the following formula (I) (sometimes referred to as "T3 body") and a structural unit represented by the following formula (II) (referred to as "T2 body”). It may be preferable to have). Further, the component (B) preferably has a structural unit represented by the formula (4) described later.
  • the structural unit represented by the above formula (1) is a silsesquioxane structural unit (so-called T unit) generally represented by [RSiO 3/2 ].
  • T unit silsesquioxane structural unit
  • the structural unit represented by the above formula (1) is formed by a hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (a) described later). Will be done.
  • R 1 in the formula (1) represents a group containing an epoxy group (monovalent group).
  • the group containing an epoxy group include known and commonly used groups having an oxylan ring, and the cured product of the present disclosure is not particularly limited, but can impart excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • a group represented by the following formula (1a), a group represented by the following formula (1b), a group represented by the following formula (1c), and a group represented by the following formula (1d) are preferable. It is preferably a group represented by the following formula (1a), a group represented by the following formula (1c), and more preferably a group represented by the following formula (1c).
  • R 1a represents a linear or branched alkylene group.
  • the linear or branched alkylene group include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, decamethylene group and the like.
  • Examples thereof include a linear or branched alkylene group having 1 to 10 carbon atoms.
  • R 1a is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
  • R 1b represents a linear or branched alkylene group, and a group similar to R 1a is exemplified.
  • R 1b is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
  • R 1c represents a linear or branched alkylene group, and a group similar to R 1a is exemplified.
  • R 1c is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
  • R 1d represents a linear or branched alkylene group, and a group similar to R 1a is exemplified.
  • R 1d is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
  • R 1 in the formula (1) is a group represented by the above formula (1c) from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the component (B) may have only one type of structural unit represented by the above formula (1), or may have two or more types of structural units represented by the above formula (1). May be good.
  • the component (B) has a structural unit represented by the following formula (2) in addition to the structural unit represented by the above formula (1) as the silsesquioxane structural unit [RSiO 3/2 ]. You may.
  • the structural unit represented by the above formula (2) is a silsesquioxane structural unit (T unit) generally represented by [RSiO 3/2 ]. That is, the structural unit represented by the above formula (2) is the hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (b) described later). Is formed by.
  • R 2 in the above formula (2) is a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkyl group.
  • the aryl group include a phenyl group, a tolyl group, a naphthyl group and the like.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the cycloalkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the alkyl group include linear or branched alkyl such as methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group and isopentyl group. Group is mentioned.
  • Examples of the alkenyl group include a linear or branched alkenyl group such as a vinyl group, an allyl group, and an isopropenyl group.
  • Examples of the above-mentioned substituted aryl group, substituted aralkyl group, substituted cycloalkyl group, substituted alkyl group, and substituted alkenyl group include hydrogen atoms or main ribs in each of the above-mentioned aryl group, aralkyl group, cycloalkyl group, alkyl group and alkenyl group.
  • Part or all of the case consists of a group consisting of an ether group, an ester group, a carbonyl group, a siloxane group, a halogen atom (fluorine atom, etc.), an acrylic group, a methacryl group, a mercapto group, an amino group, and a hydroxy group (hydroxyl group).
  • Examples include groups substituted with at least one selected.
  • R 2 is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, and further preferably a phenyl group. is there.
  • the ratio of each of the above-mentioned silsesquioxane structural units (the structural unit represented by the formula (1) and the structural unit represented by the formula (2)) in the component (B) is for forming these structural units. It can be appropriately adjusted depending on the composition of the raw material (hydrolyzable trifunctional silane).
  • the component (B) is not only the structural unit represented by the above formula (1) and the structural unit represented by the formula (2), but also the structural unit represented by the above formula (1) and the structural unit (2).
  • in represented by other than structural units silsesquioxane structural units [RSiO 3/2], [R 3 SiO 1/2] structural units represented by (so-called M units), [R 2 SiO 2/2] It may have at least one siloxane structural unit selected from the group consisting of the structural unit represented (so-called D unit) and the structural unit represented by [SiO 4/2 ] (so-called Q unit).
  • silsesquioxane structural unit other than the structural unit represented by the above formula (1) and the structural unit represented by the formula (2) for example, the structural unit represented by the following formula (3) and the like are used. Can be mentioned.
  • the ratio [T3 body / T2] is not particularly limited, but can be appropriately selected from a range of, for example, 5 or more (for example, 5 or more, 500 or less).
  • the lower limit of the ratio [T3 / T2] is preferably 20, more preferably 21, more preferably 23, still more preferably 25 (for example, preferably 5, more preferably 6, still more preferably 7). is there.
  • the upper limit of the ratio [T3 / T2] is preferably 500, more preferably 100, more preferably 50, still more preferably 40 (for example, preferably less than 20, more preferably 18, more preferably. 16, more preferably 14).
  • the above ratio [T3 / T2] is 500 or less (for example, preferably less than 20, more preferably 18 or less)
  • the compatibility with other components in the curable composition is improved, and the viscosity is also suppressed. It is also easy to handle.
  • R a in the above formula (I) (formula (I ') in the R a same) and formula (II) in the R b (wherein (II') in the R b versa), respectively, an epoxy group A group containing, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom.
  • R a and R b include those similar to R 1 in the above formula (1) and R 2 in the above formula (2).
  • R a in the formula (I) and R b in the formula (II) are groups (alkoxy group and alkoxy group) bonded to a silicon atom in the hydrolyzable trifunctional silane compound used as a raw material of the component (B), respectively. It is derived from a group other than a halogen atom; for example, R 1 , R 2 , hydrogen atom, etc. in the formulas (a) to (c) described later.
  • R c in the formula (II) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms include a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group and an isobutyl group. ..
  • the alkyl group in R c in the formula (II) is generally an alkoxy group in the hydrolyzable silane compound used as a raw material for the component (B) (for example, an alkoxy group as X a to X c described later). ) Is derived from the alkyl group forming.
  • the ratio [T3 body / T2 body] in the component (B) can be determined by, for example, 29 Si-NMR spectrum measurement. 29 In the Si-NMR spectrum, the silicon atom in the structural unit (T3 body) represented by the above formula (I) and the silicon atom in the structural unit (T2 body) represented by the above formula (II) are at different positions. Since a signal (peak) is shown in (chemical shift), the above ratio [T3 / T2] can be obtained by calculating the integration ratio of each of these peaks. Specifically, for example, when the component (B) is represented by the above formula (1) and R 1 has a structural unit which is a 3- (glycidyloxy) propyl group, it is represented by the above formula (I).
  • the signal of the silicon atom in the structure (T3 body) to be formed appears at -62 to -70 ppm, and the signal of the silicon atom in the structure (T2 body) represented by the above formula (II) appears at -54 to -60 ppm. Therefore, in this case, the above ratio [T3 body / T2 body] can be obtained by calculating the integral ratio of the signal (T3 body) of -62 to -70 ppm and the signal (T2 body) of -54 to -60 ppm. it can.
  • R 1 is a group containing an epoxy group other than a 3- (glycidyloxy) propyl group
  • [T3 body / T2 body] can be obtained in the same manner.
  • the 29 Si-NMR spectrum of component (B) can be measured by, for example, the following equipment and conditions.
  • Measuring device Product name "JNM-ECA500NMR” (manufactured by JEOL Ltd.)
  • Solvent Deuterated chloroform Number of integrations: 1800 Measurement temperature: 25 ° C
  • T2 body examples include a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), a structural unit represented by the following formula (6), and the like.
  • R 2 in R 1 and the following formula (5) in the following equation (4) is the same as R 2 in R 1 and the formula in the formula (1) (2).
  • R c in the following formulas (4) to (6) represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, like R c in the formula (II).
  • the polyorganosilsesquioxane in the component (B) may have any of a complete cage type, an incomplete cage type, a ladder type, and a random type silsesquioxane structure, and these silsesquioxane structures may have a structure. You may have two or more in combination.
  • the component (B) has a complete cage type and / or an incomplete cage type silsesquioxane structure. It is preferable to have. Since the component (B) has a three-dimensional structure resulting from a complete cage type and / or an incomplete cage type silsesquioxane structure, the mobility of the network formed by the mesogen group of the component (A) is more constrained. , Heat resistance is more likely to be improved. In addition, the introduction of cage-type and / or incomplete cage-type silsesquioxane structures tends to further reduce the network density of mesogen groups and further improve mechanical properties (eg, toughness).
  • the FT-IR spectrum of the component (B) can be measured by, for example, the following devices and conditions.
  • Measuring device Product name "FT-720" (manufactured by HORIBA, Ltd.) Measurement method: Transmission method Resolution: 4 cm -1 Wavenumber range: 400-4000 cm -1 Accumulation number: 16 times
  • the total amount of the siloxane structural unit [total siloxane structural unit; total amount of M unit, D unit, T unit, and Q unit] (100 mol%).
  • the ratio (total amount) of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4) to) is not particularly limited, but is preferably 55 to 100 mol%, more preferably. Is 65 to 100 mol%, more preferably 80 to 99 mol%. By setting the above ratio to 55 mol% or more, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure are remarkably increased.
  • the ratio of each siloxane constituent unit in the component (B) can be calculated by, for example, the composition of the raw material, the NMR spectrum measurement, or the like.
  • the ratio (total amount) of the structural units represented by the above formula (5) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 60 mol%, still more preferably 0 to 40 mol%, and further. More preferably, it is 1 to 15 mol%.
  • the ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (4) can be relatively increased, and thus the curing of the present disclosure
  • the heat resistance, mechanical properties, and surface hardness of objects tend to be higher.
  • the ratio (total amount) of the structural unit represented by the above formula (2), the structural unit represented by the above formula (4), and the structural unit represented by the above formula (5) is not particularly limited, but is 60 to 60. It is preferably 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%. By setting the above ratio to 60 mol% or more, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be higher.
  • the standard polystyrene-equivalent number average molecular weight (Mn) of the component (B) by gel permeation chromatography is not particularly limited, but can be appropriately selected from the range of 1000 to 50,000, for example.
  • the lower limit of the number average molecular weight is preferably 1200, more preferably 1500.
  • the upper limit of the number average molecular weight is preferably 50,000, more preferably 10000, and even more preferably 8000 (for example, preferably 3000, more preferably 2800, still more preferably 2600).
  • the compatibility with other components in the curable composition is improved, and the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure are further improved. Tends to improve.
  • the molecular weight dispersion (Mw / Mn) of the component (B) in terms of standard polystyrene by gel permeation chromatography is not particularly limited, but can be appropriately selected from the range of 1.0 to 4.0.
  • the lower limit of the molecular weight dispersion is preferably 1.0, more preferably 1.1, and even more preferably 1.2.
  • the upper limit of the molecular weight dispersion is preferably 4.0, more preferably 3.0, still more preferably 2.5 (for example, preferably 3.0, more preferably 2.0, still more preferably 1. 9).
  • the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be higher.
  • the number average molecular weight and the degree of molecular weight dispersion of the component (B) can be measured by the following devices and conditions.
  • Measuring device Product name "LC-20AD” (manufactured by Shimadzu Corporation) Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: THF, sample concentration 0.1-0.2 wt% Flow rate: 1 mL / min
  • Detector UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
  • the component (B) can be produced by a known or conventional method for producing a polysiloxane, and is not particularly limited, but is produced, for example, by a method of hydrolyzing and condensing one or more hydrolyzable silane compounds. it can.
  • a hydrolyzable trifunctional silane compound (a compound represented by the following formula (a)) for forming a structural unit represented by the above formula (1) is indispensable.
  • a compound represented by the following formula (a) which is a hydrolyzable silane compound for forming a silsesquioxane structural unit (T unit) in the component (B), if necessary.
  • the component (B) can be produced by a method of hydrolyzing and condensing the compound represented by the following formula (b) and the compound represented by the following formula (c).
  • the compound represented by the above formula (a) is a compound forming a structural unit represented by the formula (1) in the component (B).
  • R 1 in the formula (a) like that of R 1 in the formula (1), a group containing an epoxy group. That is, as R 1 in the formula (a), the group represented by the above formula (1a), the group represented by the above formula (1b), the group represented by the above formula (1c), and the above formula (1d). ) Is preferred, more preferably the group represented by the above formula (1a), the group represented by the above formula (1c), still more preferably the group represented by the above formula (1c), and even more. It is preferably a group represented by the above formula (1c), wherein R 1c is a trimethylene group [among others, a 3- (glycidyloxy) propyl group].
  • X a in the above formula (a) represents an alkoxy group or a halogen atom.
  • the alkoxy group in X a for example, a methoxy group, an ethoxy group, a propoxy group, isopropyloxy group, a butoxy group, an alkoxy group having 1 to 4 carbon atoms such as isobutyl group and the like.
  • the halogen atom of X a for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X a is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X a may each be the same or may be different.
  • the compound represented by the above formula (b) is a compound forming a structural unit represented by the formula (2) in the component (B).
  • R 2 in formula (b) like the R 2 in the formula (2), a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted Indicates an alkyl group of, or a substituted or unsubstituted alkenyl group.
  • R 2 in the formula (b) a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group is preferable, and a substituted or unsubstituted aryl group is more preferable. More preferably, it is a phenyl group.
  • X b in the above formula (b) represents an alkoxy group or a halogen atom.
  • Specific examples of X b include those exemplified as X a .
  • X b an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X bs may be the same or different.
  • the compound represented by the above formula (c) is a compound forming a structural unit represented by the formula (3) in the component (B).
  • X c in the formula (c) is an alkoxy group or a halogen atom.
  • Specific examples of X c include those exemplified as X a .
  • X c an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three Xc may be the same or different.
  • hydrolyzable silane compound a hydrolyzable silane compound other than the compounds represented by the above formulas (a) to (c) may be used in combination.
  • hydrolyzable trifunctional silane compounds other than the compounds represented by the above formulas (a) to (c)
  • hydrolyzable monofunctional silane compounds forming M units hydrolyzable monofunctional silane compounds forming M units
  • hydrolyzable bifunctional silanes forming D units examples thereof include compounds, hydrolyzable tetrafunctional silane compounds forming Q units, and the like.
  • the amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the structure of the desired component (B).
  • the amount of the compound represented by the above formula (a) is not particularly limited, but is preferably 55 to 100 mol%, more preferably 55 to 100 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 65 to 100 mol%, more preferably 80 to 100 mol%.
  • the amount of the compound represented by the above formula (b) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 70 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 0 to 60 mol%, more preferably 0 to 40 mol%, and even more preferably 1 to 15 mol%.
  • the ratio (ratio of the total amount) of the compound represented by the formula (a) and the compound represented by the formula (b) to the total amount (100 mol%) of the hydrolyzable silane compound used is not particularly limited. It is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • hydrolysis and condensation reactions of these hydrolyzable silane compounds can be carried out simultaneously or sequentially.
  • the order in which the reactions are carried out is not particularly limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound may be carried out in one step or may be carried out in two or more steps.
  • the component (B) having the above ratio [T3 / T2] of less than 20 and / or the number average molecular weight of less than 2500 (hereinafter, may be referred to as "low molecular weight polyorganosylsesquioxane") is efficiently used.
  • low molecular weight polyorganosylsesquioxane low molecular weight polyorganosylsesquioxane
  • the component (B) having the above ratio [T3 / T2] of 20 or more and / or the number average molecular weight of 2500 or more (hereinafter, may be referred to as “high molecular weight polyorganosylsesquioxane”) is efficiently used.
  • the hydrolysis and condensation reactions are carried out in two or more steps (preferably two steps), that is, one or more times using the low molecular weight polyorganosylsesquioxane as a raw material. It is preferable to carry out hydrolysis and condensation reactions.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound is carried out in one step to obtain a low molecular weight polyorganosyl sesquioxane, and the low molecular weight polyorganosyl sesquioxane is further subjected to the hydrolysis and condensation reaction.
  • the embodiment for obtaining a high molecular weight polyorganosylsesquioxane will be described, but the method for producing the component (B) is not limited to this.
  • the above ratio [T3 / T2] is 5 or more and less than 20, and the number average molecular weight.
  • a low molecular weight polyorganosylsesquioxane having a value of 1000 or more and less than 2500 is obtained, and in the second stage, the low molecular weight polyorganosylsesquioxane is further subjected to a hydrolysis and condensation reaction to obtain the above ratio [T3].
  • a high molecular weight polyorganosylsesquioxane having a [body / T2 body] of 20 or more and 500 or less and a number average molecular weight of 2500 or more and 50,000 or less can be obtained.
  • the first-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent. Above all, it is preferable to carry out in the presence of a solvent.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on.
  • ketones and ethers are preferable as the solvent. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
  • the amount of the solvent used in the first-stage hydrolysis and condensation reaction is not particularly limited, and the desired reaction time is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of the hydrolyzable silane compound. It can be adjusted as appropriate according to the above.
  • the first stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkaline catalyst, but an alkaline catalyst is preferable in order to suppress the decomposition of the epoxy group.
  • the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitrate, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid and p.
  • -Sulfonic acids such as toluene sulfonic acid
  • solid acids such as active white clay
  • Lewis acids such as iron chloride can be mentioned.
  • alkali catalyst examples include hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; and alkaline earth metals such as magnesium hydroxide, calcium hydroxide and barium hydroxide.
  • Alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate
  • Alkali earth metal carbonates such as magnesium carbonate
  • Alkali metal hydrogen carbonates such as: Lithium acetate, sodium acetate, potassium acetate, cesium acetate and other alkali metal organic acid salts (eg acetates); alkaline earth metal organic acid salts such as magnesium acetate (eg) Acetate);
  • Alkali metal alkoxides such as lithium methoxydo, sodium methoxydo, sodium ethoxide, sodium isopropoxide, potassium ethoxide, potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; triethylamine, N-methyl Amines such as piperidine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo
  • the amount of the catalyst used in the first-stage hydrolysis and condensation reaction is not particularly limited, and is appropriately within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. Can be adjusted.
  • the amount of water used in the first-stage hydrolysis and condensation reactions is not particularly limited, and is appropriately adjusted within the range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. be able to.
  • the method of adding water in the first-stage hydrolysis and condensation reaction is not particularly limited, and the total amount of water used (total amount used) may be added all at once, or may be added sequentially. Good. When added sequentially, it may be added continuously or intermittently.
  • reaction conditions for the first-stage hydrolysis and condensation reactions it is possible to select reaction conditions such that the above ratio [T3 / T2] in the low molecular weight polyorganosylsesquioxane is 5 or more and less than 20. is important.
  • the reaction temperature of the first-stage hydrolysis and condensation reaction is not particularly limited, but is preferably 40 to 100 ° C, more preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the above ratio [T3 / T2] tends to be more efficiently controlled to 5 or more and less than 20.
  • the reaction time of the first-stage hydrolysis and condensation reaction is not particularly limited, but is preferably 0.1 to 10 hours, more preferably 1.5 to 8 hours.
  • the first-stage hydrolysis and condensation reaction can be carried out under normal pressure, or under pressure or reduced pressure.
  • the atmosphere at which the first stage hydrolysis and condensation reaction is carried out is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as an air atmosphere. However, it is preferable to use an inert gas atmosphere.
  • Low molecular weight polyorganosylsesquioxane can be obtained by the hydrolysis and condensation reaction of the first stage. After the completion of the first-stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition such as ring opening of the epoxy group.
  • separation means for low molecular weight polyorganosylsesquioxane for example, washing with water, washing with acid, washing with alkali, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., and separation by combining these. It may be separated and purified by means or the like.
  • a high molecular weight polyorganosylsesquioxane is produced by subjecting the low molecular weight polyorganosylsesquioxane obtained by the first-stage hydrolysis and condensation reaction to the second-stage hydrolysis and condensation reaction. be able to.
  • the second-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent.
  • the solvent mentioned in the first-stage hydrolysis and condensation reaction can be used.
  • the solvent for the hydrolysis and condensation reaction in the second stage the low molecular weight polyorganosylsesquioxane containing the reaction solvent for the hydrolysis and condensation reaction in the first stage, the extraction solvent, etc. is distilled off as it is or partially. You may use the solvent. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
  • the amount used is not particularly limited and is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the low molecular weight polyorganosylsesquioxane. Therefore, it can be appropriately adjusted according to the desired reaction time and the like.
  • the second stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water.
  • a catalyst the catalyst mentioned in the first-stage hydrolysis and condensation reaction can be used, and in order to suppress the decomposition of the epoxy group, an alkaline catalyst is preferable, and sodium hydroxide is more preferable.
  • Alkali metal hydroxides such as potassium hydroxide and cesium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate.
  • One type of catalyst may be used alone, or two or more types may be used in combination.
  • the catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
  • the amount of the catalyst used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 0.01 to 10000 ppm, more preferably 0, based on the low molecular weight polyorganosylsesquioxane (1000000 ppm). It can be appropriately adjusted within the range of 1 to 1000 ppm.
  • the amount of water used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 10 to 100,000 ppm, more preferably 100 to 20,000 ppm, based on the low molecular weight polyorganosylsesquioxane (1,000,000 ppm). It can be adjusted as appropriate within the range of. When the amount of water used is larger than 100,000 ppm, it tends to be difficult to control the ratio [T3 / T2] of high molecular weight polyorganosylsesquioxane and the number average molecular weight within a predetermined range.
  • the method of adding water in the second-stage hydrolysis and condensation reaction is not particularly limited, and the total amount of water used (total amount used) may be added all at once, or may be added sequentially. Good. When added sequentially, it may be added continuously or intermittently.
  • the reaction conditions for the second-stage hydrolysis and condensation reactions are such that the ratio [T3 / T2] in the high molecular weight polyorganosylsesquioxane is 20 or more and 500 or less, and the number average molecular weight is 2500 to 50,000. It is preferable to select various reaction conditions.
  • the reaction temperature of the hydrolysis and condensation reactions in the second stage varies depending on the catalyst used and is not particularly limited, but is preferably 5 to 200 ° C, more preferably 30 to 100 ° C. By controlling the reaction temperature within the above range, the ratio [T3 body / T2 body] and the number average molecular weight tend to be controlled more efficiently within the desired range.
  • the reaction time of the hydrolysis and condensation reactions in the second stage is not particularly limited, but is preferably 0.5 to 1000 hours, more preferably 1 to 500 hours. Further, a desired ratio is obtained by performing timely sampling while performing hydrolysis and condensation reactions within the above reaction temperature range, and performing the reaction while monitoring the above ratio [T3 / T2] and the number average molecular weight. [T3 / T2], high molecular weight polyorganosylsesquioxane having a number average molecular weight can also be obtained.
  • the second-stage hydrolysis and condensation reaction can be carried out under normal pressure, under pressure or under reduced pressure.
  • the atmosphere for performing the hydrolysis and condensation reactions in the second stage is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as an air atmosphere. However, it is preferable to use an inert gas atmosphere.
  • High molecular weight polyorganosylsesquioxane can be obtained by the hydrolysis and condensation reaction in the second stage. After completion of the second-stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition such as ring opening of the epoxy group.
  • separation means for high-molecular-weight polyorganosylsesquioxane for example, washing with water, washing with acid, washing with alkali, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., and separation by combining these. It may be separated and purified by means or the like.
  • the curing has the above-mentioned structure, by curing the curable composition containing the component (A) and the component (B) as essential components, the curing has excellent heat resistance, mechanical properties, and surface hardness. Can form things.
  • one type of component (B) may be used alone, or two or more types may be used in combination.
  • the content (blending amount) of the component (B) in the curable composition of the present disclosure is not particularly limited, but is preferably 1 to 50% by weight with respect to the total amount (100% by weight) of the curable composition excluding the solvent. %, More preferably 5 to 30% by weight, still more preferably 10 to 20% by weight.
  • the content (blending amount) of the component (B) in the curable composition of the present disclosure is not particularly limited, but is preferably 1 to 1 to the total amount (100% by weight) of the component (A) and the component (B). It is 50% by weight, more preferably 3 to 40% by weight, still more preferably 5 to 35% by weight.
  • the content of the component (B) in this range the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be improved in a well-balanced manner.
  • the curable composition of the present disclosure may further contain a curing agent (C).
  • the curing agent (C) is a compound having a function of curing the curable composition of the present disclosure by reacting with a curable compound such as the component (A) and the component (B).
  • a known or conventional curing agent can be used as a curing agent for epoxy resins, and the curing agent is not particularly limited, but for example, an amine-based curing agent (C1) and an acid anhydride-based curing agent (C2) can be used.
  • amine-based curing agent (C1) a known or commonly used amine-based curing agent can be used, and the present invention is not particularly limited, and examples thereof include aliphatic polyamines, alicyclic polyamines, aromatic polyamines, modified polyamines, and secondary amines. Examples thereof include tertiary amines.
  • aliphatic polyamine examples include polyethylene polyamines (eg, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.), hexamethylenediamine, 1,3-pentanediamine, 2-methylpentamethylenediamine, and the like. Examples thereof include dipropylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine and diethylaminopropylamine.
  • polyethylene polyamines eg, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.
  • hexamethylenediamine 1,3-pentanediamine
  • 2-methylpentamethylenediamine examples include dipropylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine and diethylaminopropylamine.
  • alicyclic polyamine examples include isophoronediamine, 1,3-bisaminomethylcyclohexylamine, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazin, and mensendiamine. , 4,4'-Methylenebiscyclohexyl, 4,4'-methylenebis (2-methylcyclohexylamine), bis (aminomethyl) norbornan, laromin C-260 and the like.
  • aromatic polyamine examples include m-phenylenediamine, p-phenylenediamine, diaminodiphenylsulfone (for example, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, etc.), m-xylenediamine.
  • Diaminodiphenylmethanes eg, 4,4'-methylenedianiline (4,4'-diaminodiphenylmethane), 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline) , 4,4'-methylenebis (2-isopropylaniline), 4,4'-methylenebis (2-chloroaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-methylenebis (2) , 6-Diethylaniline), 4,4'-methylenebis (2-isopropyl-6-methylaniline), 4,4'-methylenebis (2-ethyl-6-methylaniline), 4,4'-methylenebis (2- Bromo-6-ethylaniline), 4,4'-methylenebis (N-methylaniline), 4,4'-methylenebis (N-ethylaniline), 4,4'-methylenebis (N-sec-butylaniline), etc.)
  • modified polyamine examples include modified amines with carboxylic acids (polyaminoamides and aminoamides), modified amines with epoxy compounds (amine-epoxyadducts), modified amines with Michael reaction (Michael-added polyamines), modified amines with Mannig reaction, and ureas.
  • modified amines by reaction with thiourea modified amines by reaction with ketones (ketimine, Schiff base), modified amines by reaction with epichlorohydrin, modified amines by reaction with benzyl chloride, modified amines by reaction with phosphorus compounds, Modified amines by reaction with benzoquinone, trialkylsilylated amines, modified amines by reaction between amino groups and isocyanate compounds, modified amines by reaction between amine compounds with hydroxyl groups and isocyanate compounds, modified amines by reaction with carbonates, etc. Can be mentioned.
  • polyoxypropylene diamine for example, Jeffamine D230, etc.
  • polyoxypropylene triamine for example, Jeffamine T403, etc.
  • polycyclohexylpolyamine mixture for example, N-aminoethylpiperazine, etc.
  • Examples of the secondary amine or tertiary amine include imidazoles [for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 2-phenyl imidazole.
  • imidazoles for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 2-phenyl imidazole.
  • Heterocyclic tertiary amines such as octane, triethylenediamine (TEDA), pyridine, picolin, 1.8-diazabicyclo [5.4.0] -7-undecene (DBU) and the like can be mentioned. Be done.
  • acid anhydride-based curing agent (C2) a known or commonly used acid anhydride-based curing agent can be used, and is not particularly limited, and for example, methyltetrahydrophthalic anhydride (4-methyltetrahydrophthalic anhydride, 3-Methyltetrahydrophthalic anhydride, etc.), Methylhexahydrophthalic anhydride (4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, etc.), Dodecenyl succinic anhydride, Methylendomethylenetetrahydrophthalic anhydride, Phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexendicarboxylic acid anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride, nagicic
  • Examples of the polyamide-based curing agent (C3) include a polyamide resin having either or both of a primary amino group and a secondary amino group in the molecule.
  • Examples of the polymercaptan-based curing agent (C4) include liquid polymercaptan and polysulfide resin.
  • phenolic curing agent (C5) a known or commonly used phenolic curing agent can be used, and is not particularly limited.
  • novolak type phenol resin novolac type cresol resin
  • paraxylylene-modified phenol resin paraxylylene / metaxylylene.
  • examples thereof include aralkyl resins such as modified phenol resins, terpen-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
  • Examples of the polycarboxylic acid-based curing agent (C6) include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and carboxyl group-containing polyester.
  • an amine-based curing agent (C1) is preferable from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure.
  • the amine-based curing agent (C1) aromatic polyamines and aliphatic polyamines are preferable from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • amine-based curing agent (C1) a compound represented by the following formula (C1a) and a compound represented by the following formula (C1b) are more preferable, and a compound represented by the following formula (C1a) is further preferable.
  • R v and R w each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms.
  • m1 and m2 each independently represent an integer of 0 to 4. When m1 is 2 or more, a plurality of R vs may be the same or different. When m2 is 2 or more, a plurality of R ws may be the same or different.
  • Z represents a single bond or a linking group (a divalent group having one or more atoms).
  • m3 independently represents an integer of 0 to 6, preferably an integer of 2 to 5, and more preferably 3 or 4.
  • the linear or branched alkyl group having 1 to 6 carbon atoms represented by R v and R w includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert.
  • -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable.
  • the halogen atom represented by R v and R w include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
  • Examples of the linking group represented by Z include groups similar to the linking groups represented by X 1 and X 2 described above.
  • the linking group represented by Z includes a linear or branched alkylene group having 1 to 6 carbon atoms and an ether bond (-) from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
  • O-), sulphenyl group (-S-), sulfinyl group (-SO-), sulfonyl group (-SO 2- ) and the like are preferable, and methylene group (-CH 2- ), ether bond (-O-), A sulfonyl group (-SO 2- ) is more preferred, and a methylene group is more preferred.
  • the amine-based curing agent (C1) diaminodiphenylmethanes and polyethylene polyamines are more preferable, and the amine-based curing agent (C1) is composed of triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4,4'-methylenedianiline and the like. At least one selected from the group is more preferred.
  • one type of curing agent (C) may be used alone, or two or more types may be used in combination. Further, as the curing agent (C), commercially available reagents can also be used.
  • the content (blending amount) of the curing agent (C) in the curable composition of the present disclosure is not particularly limited, but is 1 with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition excluding the solvent. It is preferably up to 50 parts by weight, more preferably 5 to 30 parts by weight. By setting the content of the curing agent (C) in the above range, it can be sufficiently cured, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved.
  • the content (blending amount) of the amine-based curing agent (C1) is not particularly limited, but is included in the curable composition of the present disclosure. It is preferable to use the active hydrogen of the amino group of the amine-based curing agent (C1) at a ratio of 0.1 to 10 equivalents per 1 equivalent of the epoxy group in all the compounds having an epoxy group, preferably 0.3 to 10 equivalents. It is more preferable to use it in a ratio of 5 equivalents.
  • the content of the curing agent (C) in the above range, it can be sufficiently cured, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved.
  • the curing accelerator (D) is a compound having a function of accelerating the reaction rate of a curing compound (for example, a compound having an epoxy group) when it reacts with the curing agent (C).
  • a known or commonly used curing accelerator can be used, and is not particularly limited, but for example, a tertiary amine [for example, lauryldimethylamine, N, N-dimethylcyclohexylamine, N.
  • N-dimethylbenzylamine N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4,6-tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5 .4.0] Undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] Nonen-5 (DBN), etc.]
  • Tertiary amine salt [For example, carboxylate of the above tertiary amine , Ssulfonates, Inorganic Acidates, etc.]; imidazoles [eg 2-methylimidazole, 2-ethylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl -4-Methylimidazole, 1-benzyl-2-methylimidazole, etc.]; Organic phosphorus compounds [eg, triphenylphos,
  • Heptane-2,3-dicarboxylic acid and / or methylbicyclo [2.2.1] Heptane-2,3-dicarboxylic acid salt with anion, tetrabutylphosphonium cation and 1,2,4,5 -Salts of cyclohexanetetracarboxylic acids with anions, etc.], quaternary arsonium salts, tertiary sulfonium salts, tertiary selenonium salts, secondary iodonium salts, onium salts such as diazonium salts; strong acid esters [eg, sulfuric acid] Esters, sulfonic acid esters, phosphoric acid esters, phosphinic acid esters, phosphonic acid esters, etc.]; Complexes of Lewis acid and base [for example, boron trifluoride / aniline complex, boron trifluoride / p-chloroaniline complex, tri.
  • Lewis acid and base for example
  • one type of curing accelerator (D) may be used alone, or two or more types may be used in combination.
  • the curing accelerators (D) include the product names "U-CAT SA 506", “U-CAT SA 102", “U-CAT 5003", “U-CAT 18X”, and “U-CAT 12XD” ( (Manufactured by Sun Appro Co., Ltd.); Product names "TPP-K” and “TPP-MK” (manufactured by Hokuko Kagaku Kogyo Co., Ltd.); Commercial products such as can also be used.
  • the content (blending amount) of the curing accelerator (D) in the curable composition of the present disclosure is not particularly limited, but is 0.01 with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition. It is preferably from 5 parts by weight, more preferably 0.03 to 3 parts by weight, and even more preferably 0.03 to 2 parts by weight.
  • the content of the curing accelerator (D) is 0.01 parts by weight or more, a more efficient curing promoting effect tends to be obtained.
  • the content of the curing accelerator (D) is 5 parts by weight or less, coloring is suppressed and a cured product having an excellent hue tends to be obtained.
  • the curable composition of the present disclosure may further contain a curing catalyst (for example, instead of the curing agent (C)).
  • the curing catalyst is a compound capable of initiating or accelerating the polymerization reaction of a curable compound such as the component (A) and the component (B).
  • the curing catalyst is not particularly limited, and examples thereof include polymerization initiators such as a photocationic polymerization initiator (photoacid generator) and a thermocationic polymerization initiator (thermoacid generator).
  • a known or commonly used photocationic polymerization initiator can be used.
  • a sulfonium salt (a salt of a sulfonium ion and an anion) and an iodonium salt (a salt of an iodonium ion and an anion)
  • an iodonium salt (a salt of an iodonium ion and an anion)
  • Selenium salt (salt of selenium ion and anion)
  • ammonium salt salt of ammonium ion and anion
  • phosphonium salt salt of transition metal complex ion and anion, etc. ..
  • These can be used alone or in combination of two or more.
  • sulfonium salt examples include [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium salt, and tri-p-tolylsulfonium salt.
  • Tri-o-tolyl sulfonium salt tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenyl sulfonium salt, 2-naphthyldiphenyl sulfonium salt, tris (4-fluorophenyl) sulfonium salt, tri-1-naphthyl sulfonium salt, Triaryl such as tri-2-naphthyl sulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] sulfonium salt, 4- (p-tolylthio) phenyldi- (p-phenyl) sulfonium salt, etc.
  • Diarylsulfonium salt such as diphenylphenacil sulfonium salt, diphenyl4-nitrophenacil sulfonium salt, diphenylbenzylsulfonium salt, diphenylmethylsulfonium salt; phenylmethylbenzylsulfonium salt, 4-hydroxyphenylmethylbenzylsulfonium salt, 4- Monoaryl sulfonium salts such as methoxyphenyl methyl benzyl sulfonium salt; trialkyl sulfonium salts such as dimethyl phenacyl sulfonium salt, phenacyl tetrahydrothiophenyl salt, dimethyl benzyl sulfonium salt and the like can be mentioned.
  • diphenyl [4- (phenylthio) phenyl] sulfonium salt for example, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate and the like can be used. ..
  • diphenyl iodonium salt di-p-tolyl iodonium salt, bis (4-dodecylphenyl) iodonium salt, bis (4-methoxyphenyl) iodonium salt and the like.
  • selenium salt examples include triaryl selenium salts such as triphenyl selenium salt, tri-p-tolyl selenium salt, tri-o-tolyl selenium salt, tris (4-methoxyphenyl) selenium salt, and 1-naphthyldiphenyl selenium salt. Salts; Diarylselenium salts such as diphenylphenacyl selenium salt, diphenylbenzyl selenium salt, diphenylmethyl selenium salt; Monoaryl selenium salts such as phenyl methyl benzyl selenium salt; Trialkyl selenium salts such as dimethyl phenacyl selenium salt and the like. ..
  • ammonium salt examples include tetra, such as tetramethylammonium salt, ethyltrimethylammonium salt, diethyldimethylammonium salt, triethylmethylammonium salt, tetraethylammonium salt, trimethyl-n-propylammonium salt, and trimethyl-n-butylammonium salt.
  • Alkylammonium salt; Pyrrolidium salt such as N, N-dimethylpyrrolidium salt, N-ethyl-N-methylpyrrolidium salt; N, N'-dimethylimidazolinium salt, N, N'-diethylimidazolinium salt, etc.
  • Imidazolinium salt such as N, N'-dimethyltetrahydropyrimidium salt, N, N'-diethyltetrahydropyrimidium salt; N, N-dimethylmorpholinium salt, N, N -Morholinium salts such as diethylmorpholinium salt; piperidinium salts such as N, N-dimethylpiperidinium salt, N, N-diethylpiperidinium salt; pyridinium salts such as N-methylpyridinium salt and N-ethylpyridinium salt.
  • Imidazolium salts such as N, N'-dimethylimidazolium salt; quinolium salts such as N-methylquinolium salt; isoquinolium salts such as N-methylisoquinolium salt; thiazonium salts such as benzylbenzothiazonium salt; Examples thereof include acridium salts such as benzylacrydium salts.
  • the phosphonium salt examples include tetraarylphosphonium salts such as tetraphenylphosphonium salt, tetra-p-tolylphosphonium salt and tetrakis (2-methoxyphenyl) phosphonium salt; triarylphosphonium salt such as triphenylbenzylphosphonium salt; triethyl.
  • tetraalkylphosphonium salts such as benzylphosphonium salt, tributylbenzylphosphonium salt, tetraethylphosphonium salt, tetrabutylphosphonium salt and triethylphenacylphosphonium salt.
  • Examples of the salt of the transition metal complex ion include salts of chromium complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Cr + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Cr +.
  • Examples thereof include salts of iron complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Fe + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Fe + .
  • the anion constituting the salt described above for example, SbF 6 -, PF 6 - , BF 4 -, (CF 3 CF 2) 3 PF 3 -, (CF 3 CF 2 CF 2) 3 PF 3 -, (C 6 F 5) 4 B -, (C 6 F 5) 4 Ga -, a sulfonate anion (trifluoromethanesulfonic acid anion, pentafluoroethanesulfonate anion, nonafluorobutanesulfonic acid anion, methanesulfonic acid anion, benzenesulfonic acid anion, p- toluenesulfonate anion, etc.), (CF 3 SO 2) 3 C -, (CF 3 SO 2) 2 N -, perhalogenated acid ion, a halogenated sulfonic acid ion, carbonate ion, aluminate Examples thereof include an ion, a hexafluor
  • thermal cationic polymerization initiator examples include aryl sulfonium salts, aryl iodonium salts, allen-ion complexes, quaternary ammonium salts, aluminum chelates, boron trifluoride amine complexes and the like.
  • aryl sulfonium salt examples include hexafluoroantimonate salt and the like.
  • trade names "SP-66” and “SP-77” all manufactured by ADEKA Corporation
  • trade names "Sun Aid SI-60L” and “Sun Aid SI-80L” trade names "Sun Aid SI-100L”, “Sun Aid SI-150L” (all manufactured by Sanshin Chemical Industry Co., Ltd.) and other commercially available products can be used.
  • the aluminum chelate include ethyl acetoacetate aluminum diisopropyrate and aluminum tris (ethyl acetoacetate).
  • the boron trifluoride amine complex include a boron trifluoride monoethylamine complex, a boron trifluoride imidazole complex, and a boron trifluoride piperidine complex.
  • one type of curing catalyst may be used alone, or two or more types may be used in combination.
  • the content (blending amount) of the curing catalyst in the curable composition of the present disclosure is not particularly limited, but is 0.01 to 3.0 with respect to 100 parts by weight of the total of the component (A) and the component (B). It is preferably parts by weight, more preferably 0.05 to 3.0 parts by weight, and even more preferably 0.1 to 1.0 parts by weight (for example, 0.3 to 1.0 parts by weight).
  • the content of the curing catalyst is 0.01 parts by weight or more, the curing reaction can proceed efficiently and sufficiently, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved. ..
  • the content of the curing catalyst is 3.0 parts by weight or less, the storage stability of the curable composition tends to be further improved, and the coloring of the cured product tends to be suppressed.
  • the curable composition of the present disclosure further comprises curable compounds other than the component (A) and the component (B) (sometimes referred to as "other curable compounds") as long as the effects of the present disclosure are not impaired. It may be included.
  • the other curable compound a known or commonly used curable compound can be used, and is not particularly limited, but for example, an epoxy compound other than the component (A) and the component (B) (“other epoxy compound”). (Sometimes referred to as), oxetane compounds, vinyl ether compounds and the like.
  • one type of other curable compound may be used alone, or two or more types may be used in combination.
  • epoxy compound a known or commonly used compound having one or more epoxy groups (oxylan rings) in the molecule can be used, and the present invention is not particularly limited, but for example, an alicyclic epoxy compound (alicyclic ring type).
  • epoxy resin aromatic epoxy compound (aromatic epoxy resin), aliphatic epoxy compound (aliphatic epoxy resin) and the like can be mentioned.
  • Examples of the alicyclic epoxy compound include known and commonly used compounds having one or more alicyclics and one or more epoxy groups in the molecule, and are not particularly limited, but for example, (1) in the molecule.
  • a compound having an epoxy group (referred to as "alicyclic epoxy group") composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic; (2) The epoxy group is directly bonded to the alicyclic by a single bond.
  • Compounds; (3) Compounds having an alicyclic and a glycidyl ether group in the molecule (glycidyl ether type epoxy compound) and the like can be mentioned.
  • Examples of the compound (1) having an alicyclic epoxy group in the molecule include a compound represented by the following formula (i).
  • Y represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. Examples thereof include a group in which a plurality of groups are linked.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group and a trimethylene group.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group and 1,3-.
  • Examples thereof include a divalent cycloalkylene group (including a cycloalkylidene group) such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
  • a divalent cycloalkylene group such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
  • alkenylene group in the alkenylene group in which a part or all of the carbon-carbon double bond is epoxidized include a vinylene group, a propenylene group, and a 1-butenylene group.
  • an alkenylene group in which the entire carbon-carbon double bond is epoxidized is preferable, and more preferably, an alkenylene group having 2 to 4 carbon atoms in which the entire carbon-carbon double bond is epoxidized. Is.
  • Typical examples of the alicyclic epoxy compound represented by the above formula (i) are 3,4,3', 4'-diepoxybicyclohexane, and the following formulas (i-1) to (i-10). Examples thereof include compounds represented by.
  • l and m in the following formulas (i-5) and (i-7) represent integers of 1 to 30, respectively.
  • R'in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a linear or branched chain having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group and an isopropylene group.
  • the shape of the alkylene group is preferable.
  • N1 to n6 in the following formulas (i-9) and (i-10) represent integers of 1 to 30, respectively.
  • Examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl).
  • Examples of the compound in which the epoxy group is directly bonded to the alicyclic (2) by a single bond include a compound represented by the following formula (ii).
  • R " is a group (p-valent organic group) obtained by removing p hydroxyl groups (-OH) from the structural formula of the p-valent alcohol, and p and n each represent a natural number.
  • the valent alcohol [R "(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms) and the like.
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each group in () (inside the outer parentheses) may be the same or different.
  • Examples of the compound having an alicyclic and glycidyl ether group in the above-mentioned (3) molecule include glycidyl ether of an alicyclic alcohol (for example, an alicyclic polyhydric alcohol). More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy)).
  • Cyclohexyl A compound obtained by hydrogenating a bisphenol A type epoxy compound such as propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2,5-dimethylpropoxy) 3-Epoxypropoxy) Cyclohexyl] A compound obtained by hydrogenating a bisphenol F-type epoxy compound such as methane (hydrogenated bisphenol F-type epoxy compound); a hydrogenated biphenol-type epoxy compound; a hydrogenated phenol novolac-type epoxy compound; Novolak type epoxy compound; bisphenol A hydride cresol novolak type epoxy compound; hydride naphthalene type epoxy compound; hydride epoxy compound of epoxy
  • aromatic epoxy compound examples include epibis-type glycidyl ether-type epoxy resins obtained by a condensation reaction between bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, etc.] and epihalohydrin; High molecular weight epibis-type glycidyl ether-type epoxy resin obtained by further addition-reacting a bis-type glycidyl ether-type epoxy resin with the above bisphenols; phenols [for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehydes [for example, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicylaldehyde, etc.] and polyhydric alcohols obtained by condensing reaction with epihalohydrin.
  • bisphenols for example, bisphenol A, bisphenol F, bis
  • Alkyl type glycidyl ether type epoxy resin Two phenol skeletons are bonded to the 9-position of the fluorene ring, and glycidyl is attached to the oxygen atom obtained by removing the hydrogen atom from the hydroxy group of these phenol skeletons, either directly or via an alkyleneoxy group. Examples thereof include an epoxy compound to which a group is bonded.
  • Examples of the aliphatic epoxy compound include glycidyl ethers of alcohols having no q-valent cyclic structure (q is a natural number); monovalent or polyvalent carboxylic acids [eg, acetic acid, propionic acid, butyric acid, stearic acid, etc. Glycidyl ester of adipic acid, sebacic acid, maleic acid, itaconic acid, etc.; epoxidized fats and oils with double bonds such as epoxidized flaxseed oil, epoxidized soybean oil, epoxidized castor oil; polyolefin (poly) such as epoxidized polybutadiene Examples thereof include epoxidized compounds (including alkadiene).
  • monovalent or polyvalent carboxylic acids eg, acetic acid, propionic acid, butyric acid, stearic acid, etc. Glycidyl ester of adipic acid, sebacic acid, maleic acid, itaconic acid,
  • Examples of the alcohol having no q-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol and 1-butanol; ethylene glycol, 1,2-propanediol, 1 , 3-Propanediol, 1,4-Butanediol, Neopentyl glycol, 1,6-hexanediol, Diethylene glycol, Triethylene glycol, Tetraethylene glycol, Dipropylene glycol, Polyethylene glycol, Polypropylene glycol and other dihydric alcohols; Examples thereof include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol and sorbitol.
  • the q-valent alcohol may be a polyether polyol, a polyester polyol, a polycarbonate poly
  • oxetane compound examples include known and commonly used compounds having one or more oxetane rings in the molecule, and are not particularly limited, but for example, 3,3-bis (vinyloxymethyl) oxetane and 3-ethyl-3-.
  • the vinyl ether compound a known or commonly used compound having one or more vinyl ether groups in the molecule can be used, and is not particularly limited, but for example, 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxy.
  • 2-hydroxyethyl vinyl ether ethylene glycol monovinyl ether
  • 2-hydroxypropyl vinyl ether 2-hydroxyisopropyl vinyl ether
  • 4-hydroxybutyl vinyl ether 3-hydroxybutyl vinyl ether
  • 2-hydroxybutyl vinyl ether 3-hydroxyisobutylvinyl ether
  • 2-hydroxyisobutylvinyl ether 2-hydroxyisobutylvinyl ether
  • 1-methyl-3 -Hydroxypropyl vinyl ether 1-methyl-2-hydroxypropyl vinyl ether
  • 4-hydroxycyclohexylvinyl ether 1,6-hexanediol monovinyl ether, 1,6-hexanediol divinyl ether, 1,8- Octaned
  • Examples of the vinyl ether compound having one or more hydroxyl groups in the molecule include 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, and 4-hydroxy.
  • the content (blending amount) of the other curable compound in the curable composition of the present disclosure is not particularly limited, but is the total amount (100% by weight; curing) of the component (A), the component (B) and the other curable compound. 50% by weight or less (for example, 0 to 50% by weight), more preferably 30% by weight or less (for example, 0 to 30% by weight), still more preferably 10% by weight or less, based on the total amount of the sex compound. is there.
  • the content of the other curable compound By setting the content of the other curable compound to 50% by weight or less (preferably 10% by weight or less), the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be further improved.
  • desired performance for example, quick curability and viscosity adjustment for the curable composition
  • desired performance for example, quick curability and viscosity adjustment for the curable composition
  • the curable compositions of the present disclosure further include precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, as any other components.
  • the curable composition of the present disclosure is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature or, if necessary, while heating.
  • the curable composition of the present disclosure can be used as a one-component composition in which each component is mixed in advance and used as it is, or for example, two or more components stored separately.
  • the curable composition of the present disclosure is not particularly limited, but is preferably a liquid at room temperature (about 25 ° C.). More specifically, the curable composition of the present disclosure has a viscosity at 25 ° C. of a solution diluted in a solvent of 20% [for example, a curable composition (solution) in which the proportion of methyl isobutyl ketone is 20% by weight]. , 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, still more preferably 1000 to 8000 mPa ⁇ s. By setting the viscosity to 300 mPa ⁇ s or more, the heat resistance of the cured product tends to be further improved.
  • the viscosity of the curable composition of the present disclosure is determined by using a viscometer (trade name "MCR301", manufactured by Anton Pearl Co., Ltd.), a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature: Measured under the condition of 25 ° C.
  • the curable composition By advancing the polymerization reaction of the curable compound (component (A), component (B), etc.) in the curable composition of the present disclosure, the curable composition can be cured, and the cured product of the present disclosure can be obtained.
  • the curing method can be appropriately selected from well-known methods, and is not particularly limited, and examples thereof include a method of irradiating with active energy rays and / or heating.
  • active energy ray for example, any of infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used. Of these, ultraviolet rays are preferable because they are easy to handle.
  • the conditions for curing the curable composition of the present disclosure by irradiation with active energy rays depend on the type and energy of the active energy rays to be irradiated, the shape and size of the cured product, and the like. It can be adjusted as appropriate, and is not particularly limited, but when irradiating with ultraviolet rays, it is preferably about 1 to 1000 mJ / cm 2 for example.
  • a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser or the like can be used.
  • further heat treatment annealing, aging
  • the conditions for curing the curable composition of the present disclosure by heating are not particularly limited, but are preferably, for example, 30 to 250 ° C, more preferably 50 to 200 ° C.
  • the curing time can be set as appropriate.
  • the curable composition of the present disclosure can be cured to form a cured product having excellent heat resistance and mechanical properties (for example, toughness) and high surface hardness. Therefore, the curable compositions of the present disclosure are useful in various industrial applications such as electronic devices, adhesives, paints, etc., and electronic such as insulating materials, printed wiring boards, encapsulants, laminates, prepregs, underfills, etc. It can be suitably used as an advanced material in the field of equipment.
  • the cured product of the present disclosure has excellent heat resistance, and the glass transition point is high or the glass transition point is not clearly observed.
  • the glass transition point specified by the peak of tan ⁇ when the dynamic viscoelasticity of the cured product of the present disclosure is measured is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, more preferably 170 ° C. or higher, more preferably. Is 180 ° C. or higher, more preferably 190 ° C. or higher, even more preferably 200 ° C. or higher, and even more preferably no clear peak of tan ⁇ is observed, that is, the glass transition point is not clearly observed.
  • the dynamic viscoelasticity measurement of the cured product of the present disclosure can be carried out by the method described in Examples described later.
  • the cured product of the present disclosure has excellent mechanical properties.
  • the storage elastic modulus at 250 ° C. when the dynamic viscoelasticity of the cured product of the present disclosure is measured is preferably 100 MPa or more, more preferably 150 MPa or more.
  • the dynamic viscoelasticity measurement of the cured product of the present disclosure can be carried out by the method described in Examples described later.
  • the cured product of the present disclosure has excellent mechanical properties (for example, toughness).
  • the bending strain is preferably 9.0% or more, more preferably 9.1% or more, more preferably 9.2% MPa or more, and more preferably 9.3. % Or more, more preferably 9.4% or more, still more preferably 9.5% or more.
  • the bending test of the cured product of the present disclosure can be carried out by the method described in Examples described later.
  • the pencil hardness of the cured product of the present disclosure is not particularly limited, but is preferably 2H or more, more preferably 3H or more, still more preferably 4H or more.
  • the pencil hardness can be evaluated according to the method described in ISO15184.
  • the molecular weight of the product was measured under the following conditions. Measuring device: Product name "LC-20AD” (manufactured by Shimadzu Corporation) Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: THF, sample concentration 0.1-0.2 wt% Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
  • FT-IR was measured under the following conditions.
  • Measuring device Fourier transform infrared spectrophotometer IR Infinity-1, manufactured by Shimadzu Corporation Measuring range: 4000 to 650 cm -1 Number of integrations: 16 times Resolution: 4 cm -1 Measurement method: NaCl plate, permeation method
  • Production Example 1 Production of 1- (4-glycidyloxy-3-methylphenyl) -4- (4-glycidyloxyphenyl) -cyclohexene
  • 4-diphenyl cyclohexene 15.00g (5.36 ⁇ 10 -2 mol) , 12 times for one phenolic hydroxyl group equivalents of epichlorohydrin 119.64g (1.29mol)
  • DMSO90mL was added at room temperature as a solvent It was completely dissolved.
  • the inorganic salt was removed by filtration, and methanol (750 mL), which is a poor solvent, was added to the filtrate to precipitate a white solid. Then, it cooled in a refrigerator (8 ° C.) for 13 hours. After cooling, the precipitate was removed by suction filtration and washed 5 times with methanol (20 mL). The resulting solid was dried 60 ° C. ⁇ 2.5 hours under reduced pressure a constant temperature bath, a white solid 15.69g (3.99 ⁇ 10 -2 mol, 75% yield).
  • Production Example 2 Production of epoxy group-containing polyorganosylsesquioxane 3-glycidyloxypropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) 94.5 parts by weight (0.4 mol parts), 378.0 parts by weight of acetone 105.1 parts by weight (5.8 mol parts) of ion-exchanged water was placed in a 1 L flask under a nitrogen stream and heated to 50 ° C. with stirring. 11.1 parts by weight (0.4 mmol part) of a 5.0% by weight aqueous potassium carbonate solution was added dropwise over 5 minutes. After stirring at 50 ° C. for 5 hours, the reaction solution was cooled to room temperature.
  • MIBK methyl isobutyl ketone
  • Example 1 Biphenyl type epoxy resin (trade name "YX4000", 4,4'-bis (3-glycidyloxy) -3,3', 5,5'-tetramethylbiphenyl, manufactured by Mitsubishi Chemical Corporation) 1.00 g (epoxy) Group: 5.64 mmol) was placed in an aluminum cup (3.0 ⁇ 3.0 ⁇ 2.0 cm 3 ), and the epoxy group-containing polyorganosylsesquioxane obtained in Production Example 2 was added to the net amount excluding MIBK. 0.262 g (epoxy group: 1.57 mmol) was added, and the mixture was dissolved on a hot plate at 120 ° C. for 10 minutes. Then, MIBK was removed by heating at 120 ° C.
  • YX4000 4,4'-bis (3-glycidyloxy) -3,3', 5,5'-tetramethylbiphenyl, manufactured by Mitsubishi Chemical Corporation
  • -Dynamic viscoelasticity measuring device Non-resonant forced vibration type viscoelasticity measuring device (manufactured by Rphysel-E4000 UBM Co., Ltd.) Measuring jig: Tensile measurement temperature range: 25 ° C to 300 ° C Measurement mode: Temperature-dependent waveform: Sine wave heating rate: 2.0 ° C / min Frequency: 10Hz Displacement vibration: 5 ⁇ m Specimen size: length 30 mm x width 4.0 mm x thickness 0.40 mm
  • the graph showing the tan ⁇ caused by the glass transition temperature in the dynamic viscoelasticity measurement of Example 1, Comparative Examples 1, 2 and 3 and the storage elastic modulus is shown in FIG. 2, showing the relationship between the flexural modulus and the flexural modulus in the bending test.
  • the graph is shown in FIG.
  • Example 1 Compared with Comparative Examples 1 and 2 containing a bisphenol A epoxy compound having no mesogen group, and Comparative Example 3 containing a component (A) having a mesogen group but not containing a component (B), the components ( In Example 1 in which A) and the component (B) were blended, the decrease in storage elastic modulus was suppressed in the region of 200 ° C. to 250 ° C., and the maximum value of the peak of tan ⁇ and the decrease in area were observed (FIG. 2, Table). 1). A similar tendency was observed in Example 2 and Comparative Example 4 (see Table 1). Further, in Example 3 and Comparative Examples 5 to 6, a similar tendency was observed at around 150 ° C. (see Table 2). It is considered that this is because the heat resistance was improved due to the decrease in the motility of the network chain of the mesogen group due to the addition of the rigid silsesquioxane.
  • Example 1 Compared with Comparative Examples 1 and 2 containing a bisphenol A epoxy compound having no mesogen group, and Comparative Example 3 containing a component (A) having a mesogen group but not containing a component (B), the components ( In Example 1 in which A) and the component (B) were blended, higher bending strain was exhibited (see Tables 1 and 3). A similar tendency was observed in Example 2 and Comparative Example 4 (see Table 1). This is because the introduced silsesquioxane side chain partially loosens the peripheral network structure, forming nanopores in the system, and the pores act as stress concentration points in the peripheral part. It is considered that the toughness was improved by inducing the plastic deformation of the network chain. Since this effect occurs more prominently in the component (A) having a mesogen group, it is considered that a large distortion is obtained.
  • Example 1 Compared with Comparative Examples 1 and 2 containing a bisphenol A epoxy compound having no mesogen group, and Comparative Example 3 containing a component (A) having a mesogen group but not containing a component (B).
  • Example 1 in which (A) and the component (B) were blended, higher surface hardness was exhibited (see Table 1).
  • Example 2 and Comparative Example 4 see Table 1). It is considered that this is because the hardness was improved by introducing the silsesquioxane structure which is hard as an inorganic skeleton.
  • X is a single bond
  • -CH N-
  • -CH CH-
  • -CH C (Me)-
  • -CH C (CN)-
  • -C ⁇ C-
  • -CH N ( ⁇ O)-
  • -CH CH-CO-
  • -N N-
  • -N N ( ⁇ O)-
  • -COO- -CONH-, or -CO-.
  • cycloalkyl group e.g. cyclohexyl
  • a saturated hetero6-membered ring group e.g, a piperidine group, a tetrahydropyran group, etc.
  • at least one of M 1 and M 2 contains one or more benzene rings.
  • n is an integer of 1 to 3.
  • the epoxy group of the epoxy compound (A) having a mesogen group is an epoxy group (oxylanyl group), a glycidyl group, or an alicyclic epoxy group (preferably a cyclohexene oxide group).
  • the number of epoxy groups contained in one molecule of the epoxy compound (A) having a mesogen group is 2 or more (preferably 2 to 10, more preferably 2 to 5, still more preferably 2).
  • the epoxy compound (A) having a mesogen group is represented by the following formula (A).
  • M represents a mesogen group.
  • E 1 and E 2 each independently represent an epoxy group-containing group.
  • X 1 and X 2 each independently represent a single bond or linking group. Shows.
  • the groups E 1 and E 2 are independently represented by the above formula (E1) or the above formula (E2) (preferably the group represented by the above formula (E1)). ), The curable composition according to the above [8].
  • the linking groups represented by X 1 and X 2 are independently linked with an ether bond (-O-) or one or two or more ether bonds and one or two or more alkylene groups.
  • the M is any one of the above [8] to [10], which is at least one selected from the group consisting of divalent groups represented by the above formulas (a1) to (a7).
  • the epoxy compound (A) having a mesogen group is at least one selected from the group consisting of the compounds represented by the above formulas (A1) to (A3) (preferably by the above formula (A1) or (A3).
  • the content (blending amount) of the epoxy compound (A) having a mesogen group is 40 to 99% by weight (preferably 50 to 95% by weight) with respect to the curable composition (100% by weight) excluding the solvent. , More preferably 60 to 90% by weight), the curable composition according to any one of the above [1] to [12].
  • the number of epoxy groups contained in one molecule of polyorganosylsesquioxane (B) having an epoxy group is 2 or more (preferably 2 to 50, more preferably 2 to 30, and even more preferably.
  • the ratio of the monomer unit having an epoxy group to the total amount of the siloxane constituent units in the polyorganosylsesquioxane (B) having an epoxy group is 50 mol% or more (preferably 55 to 100 mol%). , More preferably 65 to 100 mol%, further preferably 80 to 100 mol%, even more preferably 90 to 100 mol%), to any one of the above [1] to [14].
  • the number average molecular weight (Mn) of the polyorganosylsesquioxane (B) having an epoxy group is 1000 to 50,000 (the lower limit is preferably 1200, more preferably 1500, and the upper limit is preferably 1500.
  • the molecular weight dispersion (Mw / Mn) of the polyorganosylsesquioxane (B) having an epoxy group is 1.0 to 4.0 (the lower limit is preferably 1.0, more preferably 1.
  • the content (blending amount) of the polyorganosylsesquioxane (B) having an epoxy group is 1 to 50% by weight (preferably) based on the total amount (100% by weight) of the curable composition excluding the solvent.
  • the content of the polyorganosylsesquioxane (B) having an epoxy group is the total amount (100% by weight) of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group.
  • the curing agent (C) is an amine-based curing agent (C1), an acid anhydride-based curing agent (C2), a polyamide-based curing agent (C3), a polymercaptan-based curing agent (C4), and a phenol-based curing agent (C).
  • the amine-based curing agent (C1) is a compound represented by the above formula (C1a) or a compound represented by the above formula (C1b) (preferably a compound represented by the above formula (C1a)).
  • the content (blending amount) of the curing agent (C) is 1 to 50 parts by weight (preferably 5 to 30 parts by weight) with respect to 100 parts by weight of the total amount of the curing compound contained in the curable composition excluding the solvent.
  • the content of the amine-based curing agent (C1) is 0.1 to 10 equivalents of the active hydrogen of the amino group contained in the amine-based curing agent (C1) per 1 equivalent of the epoxy group contained in the curable composition (C1).
  • the content (blending amount) of the curing accelerator (D) is 0.01 to 5 parts by weight (preferably 0.03) with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition.
  • the content (blending amount) of the curing catalyst is 0.01 to 100 parts by weight in total of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group. 3.0 parts by weight (preferably 0.05 to 3.0 parts by weight, more preferably 0.1 to 1.0 parts by weight, still more preferably 0.3 to 1.0 weight), the above [31].
  • the glass transition point specified by the peak of tan ⁇ when dynamic viscoelasticity measurement is performed is 150 ° C. or higher (preferably 160 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, further.
  • the bending strain when the bending test is performed is 9.0% or more (preferably 9.1% or more, more preferably 9.2% MPa or more, still more preferably 9.3% or more, still more.
  • An electronic device comprising the cured product according to any one of the above [33] to [35].
  • curable compositions of the present disclosure are useful in a variety of industrial applications such as electronic devices, adhesives, paints and the like, especially electronic materials such as insulating materials, printed wiring boards, encapsulants, laminates, prepregs and underfills. It can be suitably used as an advanced material in the field of equipment.

Abstract

The purpose of this invention is to provide a curable composition with which it is possible to form a cured product exhibiting outstanding heat resistance and mechanical properties. This invention provides a curable composition comprising: an epoxy compound (A) having a mesogenic group; and a polyorganosilsesquioxane (B) having an epoxy group. The epoxy compound (A) having a mesogenic group preferably contains a compound represented by formula (A). The polyorganosilsesquioxane (B) having an epoxy group is preferably a polyorganosilsesquioxane having a structural unit represented by formula (1). (In formula (A), M represents a mesogenic group. E1 and E2 each independently represent groups having epoxy groups. X1 and X2 each independently represent single bonds or linking groups.) [In formula (1), R1 represents a group containing an epoxy group.]

Description

硬化性組成物およびその硬化物Curable composition and its cured product
 本開示は、硬化性組成物およびその硬化物に関する。より詳細には、耐熱性、靭性等に優れ、電気・電子機器等に好適に使用することができる硬化性組成物およびその硬化物に関する。本願は、2019年5月13日に日本に出願した特願2019-090991の優先権を主張し、その内容をここに援用する。 The present disclosure relates to a curable composition and a cured product thereof. More specifically, the present invention relates to a curable composition having excellent heat resistance, toughness, etc., and which can be suitably used for electric / electronic devices and the like, and a cured product thereof. The present application claims the priority of Japanese Patent Application No. 2019-090991 filed in Japan on May 13, 2019, the contents of which are incorporated herein by reference.
 エポキシ樹脂は、耐熱性、機械的特性、電気的特性、接着力等に優れているため、様々な産業用途で使用されており、例えば、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料としての利用が拡大している。近年、電子機器の小型化、高性能化が急速に進んでいるため、エポキシ樹脂に対する耐熱性、機械的特性のさらなる向上の要求が高まっている。 Epoxy resins are used in various industrial applications because they have excellent heat resistance, mechanical properties, electrical properties, adhesive strength, etc. For example, insulating materials, printed wiring boards, encapsulants, laminated boards, etc. Its use as an advanced material in the field of electronic devices such as prepregs and underfills is expanding. In recent years, as electronic devices have been rapidly miniaturized and improved in performance, there is an increasing demand for further improvement of heat resistance and mechanical properties of epoxy resins.
 その解決手段のひとつとして、エポキシ樹脂中に剛直なメソゲン骨格を導入して、耐熱性や強靭性などの機械的特性を高める試みがなされている(例えば、特許文献1、2参照)。しかし、特許文献1、2などに開示されたメソゲン骨格を導入したエポキシ樹脂は、例えば、動的粘弾性測定において150℃未満での明瞭なガラス転移点、200℃を超える領域で貯蔵弾性率の急激な低下やtanδのピーク最大値、面積の低下を示すなど、電子機器の先端材料として十分な耐熱性を示すものではなかった。 As one of the solutions, an attempt has been made to introduce a rigid mesogen skeleton into an epoxy resin to improve mechanical properties such as heat resistance and toughness (see, for example, Patent Documents 1 and 2). However, the epoxy resin into which the mesogen skeleton disclosed in Patent Documents 1 and 2 and the like has a clear glass transition point below 150 ° C. and a storage elastic modulus in a region exceeding 200 ° C. in dynamic viscoelasticity measurement, for example. It did not show sufficient heat resistance as an advanced material for electronic devices, such as a sharp drop, a maximum peak value of tan δ, and a drop in area.
 また、エポキシ樹脂中に剛直なメソゲン骨格に加えて、優れた熱的特性を有する無機骨格として鎖状又は環状のシロキサン構造を導入して、耐熱性や機械的特性のさらなる向上が試みられている(例えば、特許文献3、4参照)。 Further, in addition to the rigid mesogen skeleton in the epoxy resin, a chain or cyclic siloxane structure is introduced as an inorganic skeleton having excellent thermal properties, and attempts are being made to further improve heat resistance and mechanical properties. (See, for example, Patent Documents 3 and 4).
特開2014-122337号公報Japanese Unexamined Patent Publication No. 2014-122337 特開2016-8218号公報Japanese Unexamined Patent Publication No. 2016-8218 特開2008-214599号公報Japanese Unexamined Patent Publication No. 2008-214599 特開2015-48400号公報JP-A-2015-48400
 特許文献3、4では、メソゲン基を有するエポキシ樹脂にシロキサン構造を導入するために白金触媒を用いたヒドロシリル化反応を行っており、工程が煩雑でコストが高いものであった。また、得られるエポキシ樹脂の硬化物の耐熱性や機械的特性も、電子機器の先端材料として満足できるものではなかった。 In Patent Documents 3 and 4, a hydrosilylation reaction using a platinum catalyst was carried out in order to introduce a siloxane structure into an epoxy resin having a mesogen group, and the process was complicated and the cost was high. In addition, the heat resistance and mechanical properties of the obtained cured epoxy resin were not satisfactory as advanced materials for electronic devices.
 従って、本開示の発明の目的は、優れた耐熱性と機械的特性を示す硬化物を形成できる硬化性組成物を提供することである。
 また、本開示の発明の他の目的は、優れた耐熱性と機械的特性を示す硬化物を提供することである。
 さらに、本開示の発明の他の目的は、優れた耐熱性と機械的特性を示す硬化物を備える電子機器を提供することである。
Therefore, it is an object of the present invention to provide a curable composition capable of forming a cured product exhibiting excellent heat resistance and mechanical properties.
Another object of the invention of the present disclosure is to provide a cured product that exhibits excellent heat resistance and mechanical properties.
Furthermore, another object of the invention of the present disclosure is to provide an electronic device provided with a cured product that exhibits excellent heat resistance and mechanical properties.
 本開示の発明者らは、上記課題を解決するために鋭意検討した結果、メソゲン基を有するエポキシ化合物と、エポキシ基を有するポリオルガノシルセスキオキサンとを含む硬化性組成物は、耐熱性、機械的特性(例えば、靭性)に優れると共に、表面硬度が高い硬化物を形成でき、電子機器の先端材料として有用であることを見出した。本開示の発明は、これらの知見に基づいて完成されたものである。 As a result of diligent studies to solve the above problems, the inventors of the present disclosure have found that a curable composition containing an epoxy compound having a mesogen group and polyorganosylsesquioxane having an epoxy group has heat resistance. It has been found that it is useful as an advanced material for electronic devices because it can form a cured product having excellent mechanical properties (for example, toughness) and high surface hardness. The invention of the present disclosure has been completed based on these findings.
 すなわち、本開示は、メソゲン基を有するエポキシ化合物(A)と、エポキシ基を有するポリオルガノシルセスキオキサン(B)とを含む硬化性組成物を提供する。 That is, the present disclosure provides a curable composition containing an epoxy compound (A) having a mesogen group and polyorganosylsesquioxane (B) having an epoxy group.
 前記硬化性組成物において、エポキシ基を有するポリオルガノシルセスキオキサン(B)の含有量は、メソゲン基を有するエポキシ化合物(A)及びエポキシ基を有するポリオルガノシルセスキオキサン(B)の全量(100重量%)に対して1~50重量%であることが好ましい。 In the curable composition, the content of the polyorganosylsesquioxane (B) having an epoxy group is the total amount of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group. It is preferably 1 to 50% by weight with respect to (100% by weight).
 前記硬化性組成物は、さらに、硬化剤(C)を含んでいてもよい。
 前記硬化剤(C)は、アミン系硬化剤(C1)であってもよい。
The curable composition may further contain a curing agent (C).
The curing agent (C) may be an amine-based curing agent (C1).
 前記硬化性組成物において、アミン系硬化剤(C1)の含有量は、硬化性組成物に含まれるエポキシ基1当量当たり、アミン系硬化剤(C1)が有するアミノ基の活性水素が0.1~10当量となる量であることが好ましい。 In the curable composition, the content of the amine-based curing agent (C1) is such that the active hydrogen of the amino group contained in the amine-based curing agent (C1) is 0.1 per 1 equivalent of the epoxy group contained in the curable composition. The amount is preferably about 10 equivalents.
 前記硬化性組成物において、メソゲン基を有するエポキシ化合物(A)は、下記式(A)
Figure JPOXMLDOC01-appb-C000014
(式(A)中、Mはメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基を示す。)
で表される化合物を含んでいてもよい。
In the curable composition, the epoxy compound (A) having a mesogen group is represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000014
(In the formula (A), M represents a mesogen group. E 1 and E 2 each independently represent an epoxy group-containing group. X 1 and X 2 each independently represent a single bond or linking group. Shows.)
It may contain a compound represented by.
 前記硬化性組成物において、前記Mは、下記式(a1)~(a7)で表される2価の基からなる群から選ばれる少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000015
(式(a1)中、Ra及びRbは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n1及びn2は、それぞれ独立に、0~4の整数を示す。n1が2以上の場合、複数のRaは、同一であっても異なっていてもよい。n2が2以上の場合、複数のRbは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000016
(式(a2)中、Rc、Rd及びReは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n3、n4及びn5は、それぞれ独立に、0~4の整数を示す。n3が2以上の場合、複数のRcは、同一であっても異なっていてもよい。n4が2以上の場合、複数のRdは、同一であっても異なっていてもよい。n5が2以上の場合、複数のReは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000017
(式(a3)中、Rf、Rg及びRhは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n6、n7及びn8は、それぞれ独立に、0~4の整数を示す。n6が2以上の場合、複数のRfは、同一であっても異なっていてもよい。n7が2以上の場合、複数のRgは、同一であっても異なっていてもよい。n8が2以上の場合、複数のRhは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000018
(式(a4)中、Ri及びRjは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n9及びn10は、それぞれ独立に、0~4の整数を示す。n9が2以上の場合、複数のRiは、同一であっても異なっていてもよい。n10が2以上の場合、複数のRjは、同一であっても異なっていてもよい。Rkは、水素原子、メチル基、又はシアノ基である。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000019
(式(a5)中、Rl及びRmは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n11及びn12は、それぞれ独立に、0~4の整数を示す。n11が2以上の場合、複数のRlは、同一であっても異なっていてもよい。n12が2以上の場合、複数のRmは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000020
(式(a6)中、Rn及びRoは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n13及びn14は、それぞれ独立に、0~4の整数を示す。n13が2以上の場合、複数のRnは、同一であっても異なっていてもよい。n14が2以上の場合、複数のRoは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
Figure JPOXMLDOC01-appb-C000021
(式(a7)中、Rp及びRqは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n15及びn16は、それぞれ独立に、0~4の整数を示す。n15が2以上の場合、複数のRpは、同一であっても異なっていてもよい。n16が2以上の場合、複数のRqは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
In the curable composition, the M may be at least one selected from the group consisting of divalent groups represented by the following formulas (a1) to (a7).
Figure JPOXMLDOC01-appb-C000015
(In the formula (a1), R a and R b each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n1 and n2 independently represent 0 to 0 to n2, respectively. If .n1 showing 4 of the integer is 2 or more, plural R a, if may be the same or different .n2 is 2 or more, plural R b, optionally substituted by one or more identical The wavy line may indicate the binding site with the group represented by -X 1- E 1 or -X 2- E 2. )
Figure JPOXMLDOC01-appb-C000016
(In the formula (a2), R c , R d and R e independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. N3, n4 and n5 are n3, n4 and n5, respectively. independently, when the .n3 represents an integer of 0 to 4 is 2 or more, the plurality of R c, if may be the same or different .n4 is 2 or more, plural R d, the same If may be different even .n5 is 2 or more, plural R e, may be the same or different. wavy line is a -X 1 -E 1 or -X 2 -E 2 Indicates the binding site with the represented group.)
Figure JPOXMLDOC01-appb-C000017
(In the formula (a3), R f , R g and R h independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. N6, n7 and n8 are n6, n7 and n8, respectively. Independently, it indicates an integer of 0 to 4. When n6 is 2 or more, a plurality of R fs may be the same or different. When n7 is 2 or more, a plurality of R g are the same. It may be different. If n8 is 2 or more, a plurality of R h may be the same or different. The wavy line is -X 1- E 1 or -X 2- E 2 . Indicates the binding site with the represented group.)
Figure JPOXMLDOC01-appb-C000018
(In the formula (a4), R i and R j each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n9 and n10 independently represent 0 to 0 to n10, respectively. If .n9 showing 4 of the integer is 2 or more, plural R i, if may be the same or different .n10 is 2 or more, plural R j, are be the same or different R k may be a hydrogen atom, a methyl group, or a cyano group. A wavy line indicates a bond site with a group represented by -X 1- E 1 or -X 2- E 2. )
Figure JPOXMLDOC01-appb-C000019
(In the formula (a5), R l and R m independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n11 and n12 independently represent 0 to 0 to n12, respectively. Indicates an integer of 4. If n11 is 2 or more, the plurality of R l may be the same or different. If n12 is 2 or more, the plurality of R m may be the same or different. The wavy line may indicate the binding site with the group represented by -X 1- E 1 or -X 2- E 2. )
Figure JPOXMLDOC01-appb-C000020
(In the formula (a6), R n and R o are each independently .N13 and n14 represents a straight-chain or branched alkyl group or a halogen atom having 1 to 6 carbon atoms are each independently 0 to If .n13 showing 4 of the integer is 2 or more, plural R n, if may be the same or different .n14 is 2 or more, plural R o, not be the same or different Wavy lines may indicate binding sites with groups represented by -X 1- E 1 or -X 2- E 2. )
Figure JPOXMLDOC01-appb-C000021
(In the formula (a7), R p and R q independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n15 and n16 independently represent 0 to 0 to n16, respectively. If .n15 showing 4 of the integer is 2 or more, plural R p, if may be the same or different .n16 is 2 or more, plural R q, optionally substituted by one or more identical Wavy lines may indicate binding sites with groups represented by -X 1- E 1 or -X 2- E 2. )
 前記硬化性組成物において、前記エポキシ基を有するポリオルガノシルセスキオキサン(B)は、下記式(1)で表される構成単位を有するポリオルガノシルセスキオキサンであってもよい。
Figure JPOXMLDOC01-appb-C000022
[式(1)中、R1は、エポキシ基を含有する基を示す。]
In the curable composition, the polyorganosylsesquioxane (B) having an epoxy group may be a polyorganosylsesquioxane having a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000022
[In formula (1), R 1 represents a group containing an epoxy group. ]
 前記硬化性組成物において、前記R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000023
[式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1b)
Figure JPOXMLDOC01-appb-C000024
[式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1c)
Figure JPOXMLDOC01-appb-C000025
[式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、又は、下記式(1d)
Figure JPOXMLDOC01-appb-C000026
[式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基であってもよい。
In the curable composition, the R 1 is represented by the following formula (1a).
Figure JPOXMLDOC01-appb-C000023
[In formula (1a), R 1a represents a linear or branched alkylene group. ]
The group represented by, the following formula (1b)
Figure JPOXMLDOC01-appb-C000024
[In formula (1b), R 1b represents a linear or branched alkylene group. ]
The group represented by the following formula (1c)
Figure JPOXMLDOC01-appb-C000025
[In formula (1c), R 1c represents a linear or branched alkylene group. ]
The group represented by or the following formula (1d)
Figure JPOXMLDOC01-appb-C000026
[In formula (1d), R 1d represents a linear or branched alkylene group. ]
It may be a group represented by.
 また、本開示は、硬化性組成物の硬化物の硬化物を提供する。
 さらに、本開示は、前記硬化物を備える電子機器を提供する。
The present disclosure also provides a cured product of a cured product of a curable composition.
Further, the present disclosure provides an electronic device including the cured product.
 本開示の硬化性組成物は、メソゲン基を有するエポキシ化合物と、エポキシ基を有するポリオルガノシルセスキオキサンを含むため、耐熱性と機械的特性(例えば、靭性)に優れると共に、表面硬度が高い硬化物を形成することができる。従って、本開示の硬化性組成物は、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料として有用である。
 また、本開示の硬化性組成物は、シルセスキオキサン構造を導入するために、ヒドロシリル化などの化学反応を要せず、単に混合するのみで調製できるので、簡便かつ低コストに製造できる。
Since the curable composition of the present disclosure contains an epoxy compound having a mesogen group and polyorganosylsesquioxane having an epoxy group, it is excellent in heat resistance and mechanical properties (for example, toughness) and has high surface hardness. A cured product can be formed. Therefore, the curable composition of the present disclosure is useful as an advanced material in the field of electronic devices such as an insulating material, a printed wiring board, a sealing material, a laminated board, a prepreg, and an underfill.
Further, the curable composition of the present disclosure can be prepared simply by mixing without requiring a chemical reaction such as hydrosilylation in order to introduce a silsesquioxane structure, and thus can be produced easily and at low cost.
製造例2で得られるエポキシ基含有ポリオルガノシルセスキオキサンのFT-IRのチャートである。It is a chart of FT-IR of the epoxy group-containing polyorganosylsesquioxane obtained in Production Example 2. 実施例1、比較例1、2、3の動的粘弾性測定におけるガラス転移温度に起因するtanδ、および貯蔵弾性率を示すグラフである。It is a graph which shows the tan δ caused by the glass transition temperature, and the storage elastic modulus in the dynamic viscoelasticity measurement of Example 1, Comparative Examples 1, 2 and 3. 実施例1、比較例1、2、3の曲げ試験における曲げ弾性率と曲げ歪みの関係を示すグラフである。It is a graph which shows the relationship between the flexural modulus and the bending strain in the bending test of Example 1, Comparative Examples 1, 2 and 3.
[硬化性組成物]
 本開示の硬化性組成物は、メソゲン基を有するエポキシ化合物(A)(以下、「成分(A)」と称する場合がある)と、エポキシ基を有するポリオルガノシルセスキオキサン(B)(以下、「成分(B)」と称する場合がある)とを含む。後述のように、本開示の硬化性組成物は、さらに、硬化剤(C)(例えば、アミン系硬化剤)、硬化促進剤等のその他の成分を含んでいてもよい。
[Curable composition]
The curable composition of the present disclosure includes an epoxy compound (A) having a mesogen group (hereinafter, may be referred to as “component (A)”) and a polyorganosylsesquioxane (B) having an epoxy group (hereinafter, hereafter , May be referred to as "component (B)"). As will be described later, the curable composition of the present disclosure may further contain other components such as a curing agent (C) (for example, an amine-based curing agent) and a curing accelerator.
[メソゲン基を有するエポキシ化合物(A)]
 本開示の硬化性組成物の必須成分である成分(A)は、分子内に少なくとも1個のメソゲン基と少なくとも1個のエポキシ基を有する化合物である。即ち、成分(A)は、分子内にエポキシ基を少なくとも有する硬化性化合物である。成分(A)は、剛直なメソゲン基を有するため、本開示の硬化性組成物の硬化物(以下、単に「本開示の硬化物」と称する場合がある)に優れた耐熱性と機械的特性を付与することができる。
[Epoxy compound (A) having a mesogen group]
The component (A), which is an essential component of the curable composition of the present disclosure, is a compound having at least one mesogen group and at least one epoxy group in the molecule. That is, the component (A) is a curable compound having at least an epoxy group in the molecule. Since the component (A) has a rigid mesogen group, it has excellent heat resistance and mechanical properties in the cured product of the curable composition of the present disclosure (hereinafter, may be simply referred to as "the cured product of the present disclosure"). Can be given.
 成分(A)が有する「メソゲン基」とは、液晶性を示し得る剛直な分子構造の総称である。メソゲン基は分子運動が抑制された剛直な分子構造をとるため、成分(A)を含有する硬化性組成物を硬化した場合、メソゲン構造が配向して強靱なネットワーク構造をとる結果、優れた耐熱性と機械的特性を示すと考えられる。 The "mesogen group" possessed by the component (A) is a general term for a rigid molecular structure capable of exhibiting liquid crystallinity. Since the mesogen group has a rigid molecular structure in which molecular motion is suppressed, when the curable composition containing the component (A) is cured, the mesogen structure is oriented to form a tough network structure, resulting in excellent heat resistance. It is thought to exhibit sex and mechanical properties.
 メソゲン基の分子構造としては、特に限定されないが、例えば、日本接着学会誌、第40巻、第1号(2004年)の第14頁から第15頁に記載されている構造が挙げられる。 The molecular structure of the mesogen group is not particularly limited, and examples thereof include the structures described on pages 14 to 15 of the Journal of the Japanese Society of Adhesion, Vol. 40, No. 1 (2004).
 メソゲン基は、より具体的には、例えば、-(-M1-X-)n-M2-で表される基が挙げられる。ここで、Xとしては、例えば、単結合、-CH=N-、-CH=CH-、-CH=C(Me)-、-CH=C(CN)-、-C≡C-、-CH=N(→O)-、-CH=CH-CO-、-N=N-、-N=N(→O)-、-COO-、-CONH-、-CO-などが挙げられる。M1およびM2の少なくとも一方は、1つ以上のベンゼン環を含んでおり、M1およびM2としては、例えば、それぞれ独立して、フェニル基(ベンゼン環)、ビフェニル基、ターフェニル基、ベンジル基、ピリミジン基、ピリジン基などの芳香族基;シクロヘキシル基、シクロヘキセニル基などの飽和又は不飽和シクロアルキル基;ピペリジン基、テトラヒドロピラン基などの飽和ヘテロ六員環基などが挙げられる。M1およびM2は置換基を有していてもよく、置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素数1~6の直鎖又は分岐鎖状のアルキル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子などが挙げられる。M1又はM2が2個以上の置換基を有する場合は、該置換基は、同一であっても異なっていてもよい。nは1~3の整数であり、好ましくは1又は2である。nが2以上である場合は、複数の(-M1-X-)で表される構造は、同一であっても異なっていてもよい。 More specifically, the mesogen group includes a group represented by-(-M 1 -X-) n- M 2- . Here, as X, for example, single bond, -CH = N-, -CH = CH-, -CH = C (Me)-, -CH = C (CN)-, -C≡C-, -CH. = N (→ O)-, -CH = CH-CO-, -N = N-, -N = N (→ O)-, -COO-, -CONH-, -CO- and the like. At least one of M 1 and M 2 contains one or more benzene rings, and M 1 and M 2 include, for example, independently of a phenyl group (benzene ring), a biphenyl group, a terphenyl group, and the like. Aromatic groups such as benzyl group, pyrimidine group and pyridine group; saturated or unsaturated cycloalkyl group such as cyclohexyl group and cyclohexenyl group; saturated hetero 6-membered ring group such as piperidine group and tetrahydropyran group can be mentioned. M 1 and M 2 may have a substituent, and examples of the substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. , Pentyl group, hexyl group and other linear or branched alkyl groups having 1 to 6 carbon atoms, fluorine atoms, chlorine atoms, bromine atoms and other halogen atoms. When M 1 or M 2 has two or more substituents, the substituents may be the same or different. n is an integer of 1 to 3, preferably 1 or 2. When n is 2 or more, the structures represented by a plurality of (-M 1 -X-) may be the same or different.
 より具体的に好ましいメソゲン基としては、下記式(a1)~(a7)で表される2価の基が挙げられる。なお、本明細書の化学式中の波線は、他の構造との結合部位を示す。
Figure JPOXMLDOC01-appb-C000027
More specifically preferred mesogen groups include divalent groups represented by the following formulas (a1) to (a7). The wavy line in the chemical formula of the present specification indicates a binding site with another structure.
Figure JPOXMLDOC01-appb-C000027
 式(a1)中、Ra及びRbは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n1及びn2は、それぞれ独立に、0~4の整数を示す。n1が2以上の場合、複数のRaは、同一であっても異なっていてもよい。n2が2以上の場合、複数のRbは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000028
In the formula (a1), R a and R b each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. n1 and n2 each independently represent an integer of 0 to 4. When n1 is 2 or more, the plurality of Ras may be the same or different. When n2 is 2 or more, a plurality of R bs may be the same or different.
Figure JPOXMLDOC01-appb-C000028
 式(a2)中、Rc、Rd及びReは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n3、n4及びn5は、それぞれ独立に、0~4の整数を示す。n3が2以上の場合、複数のRcは、同一であっても異なっていてもよい。n4が2以上の場合、複数のRdは、同一であっても異なっていてもよい。n5が2以上の場合、複数のReは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000029
In formula (a2), R c , R d, and R e each independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms. n3, n4 and n5 each independently represent an integer of 0 to 4. When n3 is 2 or more, a plurality of R cs may be the same or different. When n4 is 2 or more, the plurality of R ds may be the same or different. When n5 is 2 or more, a plurality of Res may be the same or different.
Figure JPOXMLDOC01-appb-C000029
 式(a3)中、Rf、Rg及びRhは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n6、n7及びn8は、それぞれ独立に、0~4の整数を示す。n6が2以上の場合、複数のRfは、同一であっても異なっていてもよい。n7が2以上の場合、複数のRgは、同一であっても異なっていてもよい。n8が2以上の場合、複数のRhは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000030
In formula (a3), R f , R g, and R h independently represent a linear or branched-chain alkyl group or halogen atom having 1 to 6 carbon atoms. n6, n7 and n8 each independently represent an integer of 0 to 4. When n6 is 2 or more, a plurality of R fs may be the same or different. When n7 is 2 or more, a plurality of R g may be the same or different. When n8 is 2 or more, a plurality of R h may be the same or different.
Figure JPOXMLDOC01-appb-C000030
 式(a4)中、Ri及びRjは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n9及びn10は、それぞれ独立に、0~4の整数を示す。n9が2以上の場合、複数のRiは、同一であっても異なっていてもよい。n10が2以上の場合、複数のRjは、同一であっても異なっていてもよい。Rkは、水素原子、メチル基、又はシアノ基である。
Figure JPOXMLDOC01-appb-C000031
In formula (a4), R i and R j each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. n9 and n10 each independently represent an integer of 0 to 4. If n9 is 2 or more, plural R i may be be the same or different. When n10 is 2 or more, a plurality of R js may be the same or different. R k is a hydrogen atom, a methyl group, or a cyano group.
Figure JPOXMLDOC01-appb-C000031
 式(a5)中、Rl及びRmは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n11及びn12は、それぞれ独立に、0~4の整数を示す。n11が2以上の場合、複数のRlは、同一であっても異なっていてもよい。n12が2以上の場合、複数のRmは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000032
In the formula (a5), R l and R m independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. n11 and n12 each independently represent an integer of 0 to 4. When n11 is 2 or more, a plurality of R l may be the same or different. When n12 is 2 or more, the plurality of R m may be the same or different.
Figure JPOXMLDOC01-appb-C000032
 式(a6)中、Rn及びRoは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n13及びn14は、それぞれ独立に、0~4の整数を示す。n13が2以上の場合、複数のRnは、同一であっても異なっていてもよい。n14が2以上の場合、複数のRoは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000033
Wherein (a6), R n and R o each independently represent a straight-chain or branched alkyl group or a halogen atom having 1 to 6 carbon atoms. n13 and n14 each independently represent an integer of 0 to 4. If n13 is 2 or more, plural R n may be be the same or different. If n14 is 2 or more, plural R o may be be the same or different.
Figure JPOXMLDOC01-appb-C000033
 式(a7)中、Rp及びRqは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n15及びn16は、それぞれ独立に、0~4の整数を示す。n15が2以上の場合、複数のRpは、同一であっても異なっていてもよい。n16が2以上の場合、複数のRqは、同一であっても異なっていてもよい。 In the formula (a7), R p and R q independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. n15 and n16 each independently represent an integer of 0 to 4. When n15 is 2 or more, a plurality of R ps may be the same or different. When n16 is 2 or more, a plurality of R qs may be the same or different.
 Ra~Rqで示される炭素数1~6の直鎖又は分岐鎖状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられ、メチル基、エチル基が好ましい。Ra~Rqで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、塩素原子が好ましい。 The linear or branched alkyl group having 1 to 6 carbon atoms represented by R a to R q includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert. -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable. Examples of the halogen atom represented by R a to R q include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
 本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、メソゲン基は、式(a1)~(a3)で表される構造が好ましく、式(a1)又は(a3)で表される構造がより好ましく、式(a3)で表される構造がさらに好ましい。 From the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure, the mesogen group preferably has a structure represented by the formulas (a1) to (a3), and is represented by the formula (a1) or (a3). The structure represented by the formula (a3) is more preferable, and the structure represented by the formula (a3) is further preferable.
 成分(A)が有するメソゲン基の数は、特に限定されないが、例えば、1~3個が好ましく、1又は2個がより好ましく、1個がさらに好ましい。 The number of mesogen groups contained in the component (A) is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
 成分(A)が有する「エポキシ基」としては、特に限定されず、例えば、エポキシ基(オキシラニル基)、グリシジル基(2,3-エポキシプロピル基)、脂環式エポキシ基(脂環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)などが挙げられる。上記脂環式エポキシ基としては、シクロヘキサン環を構成する隣接する2つの炭素原子と酸素原子とで構成される基(シクロヘキセンオキシド基)が好ましい。 The "epoxide group" contained in the component (A) is not particularly limited, and for example, an epoxy group (oxylanyl group), a glycidyl group (2,3-epoxypropyl group), and an alicyclic epoxy group (constituting an alicyclic). (Epoxide group composed of two adjacent carbon atoms and oxygen atoms) and the like. As the alicyclic epoxy group, a group (cyclohexene oxide group) composed of two adjacent carbon atoms and oxygen atoms constituting the cyclohexane ring is preferable.
 成分(A)が一分子中に有するエポキシ基の数は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、2個以上が好ましく、好ましくは2~10個、より好ましくは2~5個、さらに好ましくは2個である。成分(A)が一分子中に2個以上のエポキシ基を有する場合、複数のエポキシ基は、同一であっても異なっていてもよい。 The number of epoxy groups contained in one molecule of the component (A) is not particularly limited, but two or more are preferable and preferably two or more from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. The number is 2 to 10, more preferably 2 to 5, and even more preferably 2. When the component (A) has two or more epoxy groups in one molecule, the plurality of epoxy groups may be the same or different.
 成分(A)としては、特に限定されないが、例えば、下記式(A)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000034
The component (A) is not particularly limited, and examples thereof include a compound represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000034
 上記式(A)中、Mは上述のメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基(1以上の原子を有する二価の基)を示す。 In the above formula (A), M represents the above-mentioned mesogen group. E 1 and E 2 each independently indicate a group containing an epoxy group. X 1 and X 2 each independently represent a single bond or a linking group (a divalent group having one or more atoms).
 E1及びE2で示されるエポキシ基を含有する基は、オキシラン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、下記式(E1)で表される基又は(E2)で表される基が好ましく、式(E1)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000035
Examples of the group containing an epoxy group represented by E 1 and E 2 include known and commonly used groups having an oxylane ring, and the cured product of the present disclosure is not particularly limited, but imparts excellent heat resistance and mechanical properties to the cured product of the present disclosure. From the viewpoint of being capable, the group represented by the following formula (E1) or the group represented by (E2) is preferable, and the group represented by the formula (E1) is more preferable.
Figure JPOXMLDOC01-appb-C000035
 式(E1)中、Rrは、炭素数1~6の直鎖又は分岐鎖状のアルキレン基を示す。炭素数1~6の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等が挙げられる。中でも、Rrとしては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基が好ましく、より好ましくはメチレン基、エチレン基であり、さらに好ましくはメチレン基である。Rsは、水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基であり、好ましくは水素原子又はメチル基であり、より好ましくは水素原子である。
Figure JPOXMLDOC01-appb-C000036
In the formula (E1), R r represents a linear or branched alkylene group having 1 to 6 carbon atoms. Examples of the linear or branched alkylene group having 1 to 6 carbon atoms include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group. Groups, decamethylene groups and the like can be mentioned. Among them, as R r , a linear alkylene group having 1 to 4 carbon atoms is preferable, and a methylene group and ethylene are more preferable, from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is a group, more preferably a methylene group. R s is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
Figure JPOXMLDOC01-appb-C000036
 式(E2)中、Rtは、炭素数1~6の直鎖又は分岐鎖状のアルキレン基を示し、Rrと同様の基が例示される。中でも、Rtとしては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基が好ましく、より好ましくはメチレン基、エチレン基、トリメチレン基であり、さらに好ましくはメチレン基又はエチレン基である。Ruは、水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基であり、好ましくは水素原子又はメチル基であり、より好ましくは水素原子である。 In the formula (E2), R t represents a linear or branched alkylene group having 1 to 6 carbon atoms, and a group similar to R r is exemplified. Among them, as R t , a linear alkylene group having 1 to 4 carbon atoms is preferable, and a methylene group and ethylene are more preferable, from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is a group, a trimethylene group, and more preferably a methylene group or an ethylene group. R u is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
 X1及びX2で示される連結基としては、炭素数1~6の直鎖又は分岐鎖状のアルキレン基(Rrと同様の基が例示される)、エーテル結合(-O-)、アミノ基(-NRX-;RXは水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基)、スルフェニル基(-S-)、スルフィニル基(-SO-)、スルホニル基(-SO2-)、カルボニル基(-CO-)、エステル結合(-COO-)、アミド基(-CONRYH-;RYは水素原子又は炭素数1~6の直鎖又は分岐鎖状のアルキル基)、これらが複数個連結した基等が挙げられる。X1及びX2で示される連結基としては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、エーテル結合(-O-)、又はエーテル結合の1又は2以上とアルキレン基の1又は2以上とが連結した基が好ましく、より好ましくはエーテル結合(-O-)である。 Examples of the linking group represented by X 1 and X 2 include a linear or branched alkylene group having 1 to 6 carbon atoms (a group similar to R r is exemplified), an ether bond (-O-), and an amino. group (-NR X -; R X is a linear or branched alkyl group having 1 to 6 carbon hydrogen atom or a C), sulfenyl group (-S-), sulfinyl group (-SO-), sulfonyl groups ( -SO 2- ), carbonyl group (-CO-), ester bond (-COO-), amide group (-CONR Y H-; RY is a hydrogen atom or a linear or branched chain with 1 to 6 carbon atoms. Alkyl group), a group in which a plurality of these are linked, and the like. The linking group represented by X 1 and X 2 is an ether bond (-O-) or one or more ether bonds from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. A group in which one or two or more of the alkylene groups are linked is preferable, and an ether bond (—O—) is more preferable.
 成分(A)は、より具体的には、下記式(A1)~(A3)で表される化合物が好ましく、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、下記式(A1)又は(A3)で表される化合物がより好ましく、下記式(A3)で表される化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000037
More specifically, the component (A) is preferably a compound represented by the following formulas (A1) to (A3), and from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. The compound represented by the following formula (A1) or (A3) is more preferable, and the compound represented by the following formula (A3) is further preferable.
Figure JPOXMLDOC01-appb-C000037
 上記式(A1)~(A3)中の各記号の定義及び好ましい態様は、上記と同じである。 The definitions and preferred embodiments of the symbols in the above formulas (A1) to (A3) are the same as above.
 本開示の硬化性組成物において成分(A)は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 In the curable composition of the present disclosure, one type of component (A) may be used alone, or two or more types may be used in combination.
 成分(A)は、公知の方法で製造することができ、市販品を使用することもできる。成分(A)の市販品として、商品名「YX4000」(ビフェニル型エポキシ樹脂;三菱化学(株)製)などが挙げられる。 The component (A) can be produced by a known method, and a commercially available product can also be used. Examples of commercially available products of the component (A) include the trade name "YX4000" (biphenyl type epoxy resin; manufactured by Mitsubishi Chemical Corporation).
 本開示の硬化性組成物における成分(A)の含有量(配合量)は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、溶媒を除く硬化性組成物(100重量%)に対して、40~99重量%が好ましく、より好ましくは50~95重量%、さらに好ましくは60~90重量%である。 The content (blending amount) of the component (A) in the curable composition of the present disclosure is not particularly limited, but the solvent is excluded from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. It is preferably 40 to 99% by weight, more preferably 50 to 95% by weight, still more preferably 60 to 90% by weight, based on the curable composition (100% by weight).
[エポキシ基を有するポリオルガノシルセスキオキサン(B)]
 本開示の硬化性組成物の必須成分である成分(B)は、分子内に少なくとも1個のエポキシ基を有し、[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)を有する化合物である。すなわち、成分(B)は、T単位により構成される三次元構造のポリオルガノシルセスキオキサンが少なくとも1個のエポキシ基を有する構造を有する硬化性化合物(重合性化合物)である。上記式中のRは、水素原子又は一価の有機基を示し、以下においても同じである。上記式で表されるシルセスキオキサン構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(a)~(c)で表される化合物等)の加水分解及び縮合反応により形成される。
[Polyorganosylsesquioxane having an epoxy group (B)]
The component (B), which is an essential component of the curable composition of the present disclosure, has at least one epoxy group in the molecule and is a silsesquioxane structural unit (so-called T) represented by [RSiO 3/2 ]. A compound having a unit). That is, the component (B) is a curable compound (polymerizable compound) having a structure in which polyorganosylsesquioxane having a three-dimensional structure composed of T units has at least one epoxy group. R in the above formula indicates a hydrogen atom or a monovalent organic group, and the same applies to the following. The silsesquioxane constituent unit represented by the above formula is the hydrolyzed of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compounds represented by the formulas (a) to (c) described later). It is formed by decomposition and condensation reactions.
 本開示の硬化性組成物が、成分(A)に加えて成分(B)を含むことにより、本開示の硬化物の耐熱性、機械的特性(例えば、靭性)が向上し、さらに表面硬度も向上する。これは、成分(B)が有するシルセスキオキサンが形成する3次元構造が導入されることにより、成分(A)が有するメソゲン基が形成するネットワークの運動性が拘束される結果、耐熱性が向上すると考えられる。また、シルセスキオキサン構造が導入されることにより、メソゲン基のネットワーク密度が疎になる結果、機械的特性(例えば、靭性)が向上すると考えられる。さらに、硬い無機骨格であるシルセスキオキサン構造が導入されることにより、表面硬度が上昇すると考えられる。なお、これらのメカニズムは推定に過ぎず、これらメカニズムにより本開示の発明が限定されると解釈するべきではない。 When the curable composition of the present disclosure contains the component (B) in addition to the component (A), the heat resistance and mechanical properties (for example, toughness) of the cured product of the present disclosure are improved, and the surface hardness is also increased. improves. This is because the introduction of the three-dimensional structure formed by silsesquioxane contained in the component (B) constrains the motility of the network formed by the mesogen group contained in the component (A), resulting in heat resistance. It is thought that it will improve. Further, it is considered that the introduction of the silsesquioxane structure makes the network density of the mesogen groups sparse, resulting in improvement in mechanical properties (for example, toughness). Further, it is considered that the surface hardness is increased by introducing the silsesquioxane structure which is a hard inorganic skeleton. It should be noted that these mechanisms are merely estimates and should not be construed as limiting the invention of the present disclosure by these mechanisms.
 成分(B)が有する「エポキシ基」としては、特に限定されず、例えば、エポキシ基(オキシラニル基)、グリシジル基(2,3-エポキシプロピル基)、脂環式エポキシ基(脂環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)などが挙げられる。上記脂環式エポキシ基としては、シクロヘキサン環を構成する隣接する2つの炭素原子と酸素原子とで構成される基(シクロヘキセンオキシド基)が好ましい。 The "epoxide group" contained in the component (B) is not particularly limited, and for example, an epoxy group (oxylanyl group), a glycidyl group (2,3-epoxypropyl group), and an alicyclic epoxy group (constituting an alicyclic). (Epoxide group composed of two adjacent carbon atoms and oxygen atoms) and the like. As the alicyclic epoxy group, a group (cyclohexene oxide group) composed of two adjacent carbon atoms and oxygen atoms constituting the cyclohexane ring is preferable.
 上記グリシジル基を含む基としては、例えば、グリシジルオキシメチル基、2-グリシジルオキシエチル基、3-グリシジルオキシプロピル基等のグリシジルオキシC1-10アルキル基(例えば、グリシジルオキシC1-4アルキル基)等を挙げることができる。 Examples of the group containing a glycidyl group include a glycidyloxy C 1-10 alkyl group (for example, a glycidyloxy C 1-4 alkyl group) such as a glycidyloxymethyl group, a 2-glycidyloxyethyl group, and a 3-glycidyloxypropyl group. ) Etc. can be mentioned.
 上記脂環式エポキシ基を含む基としては、特に制限されないが、エポキシC5-12シクロアルキル-直鎖状又は分岐鎖状C1-10アルキル基、例えば、2,3-エポキシシクロペンチルメチル基、2-(2,3-エポキシシクロペンチル)エチル基、2-(3,4-エポキシシクロペンチル)エチル基、3-(2,3-エポキシシクロペンチル)プロピル基等のエポキシシクロペンチルC1-10アルキル基、4,5-エポキシシクロオクチルメチル基、2-(4,5-エポキシシクロオクチル)エチル基、3-(4,5-エポキシシクロオクチル)プロピル基等のエポキシシクロオクチルC1-10アルキル基等を挙げることができる。 The group containing the alicyclic epoxy group is not particularly limited, but is an epoxy C 5-12 cycloalkyl-linear or branched C 1-10 alkyl group, for example, a 2,3-epoxycyclopentylmethyl group. Epoxycyclopentyl C 1-10 alkyl groups such as 2- (2,3-epoxycyclopentyl) ethyl group, 2- (3,4-epoxycyclopentyl) ethyl group, 3- (2,3-epoxycyclopentyl) propyl group, 4 , 5-Epoxycyclooctylmethyl group, 2- (4,5-epoxycyclooctyl) ethyl group, 3- (4,5-epoxycyclooctyl) propyl group and other epoxycyclooctyl C 1-10 alkyl groups. be able to.
 これらの脂環式エポキシ基を含む基は、C5-12シクロアルカン環に置換基としてメチル基、エチル基などのC1-6アルキル基を有していてもよい。置換基を有する脂環式エポキシ基を含む基としては、例えば、4-メチル-3,4-エポキシシクロヘキシルメチル基、2-(3-メチル-3,4-エポキシシクロヘキシル)エチル基、2-(4-メチル-3,4-エポキシシクロヘキシル)エチル基、3-(4-メチル-3,4-エポキシシクロヘキシル)プロピル基、4-(4-メチル-3,4-エポキシシクロヘキシル)ブチル基等のC1-4アルキル-エポキシC5-12シクロアルキル-直鎖状又は分岐鎖状C1-10アルキル基等を挙げることができる。 These groups containing an alicyclic epoxy group may have a C 1-6 alkyl group such as a methyl group or an ethyl group as a substituent on the C 5-12 cycloalkane ring. Examples of the group containing an alicyclic epoxy group having a substituent include 4-methyl-3,4-epoxycyclohexylmethyl group, 2- (3-methyl-3,4-epoxycyclohexyl) ethyl group, 2-( C such as 4-methyl-3,4-epoxycyclohexyl) ethyl group, 3- (4-methyl-3,4-epoxycyclohexyl) propyl group, 4- (4-methyl-3,4-epoxycyclohexyl) butyl group 1-4 Alkyl-epoxy C 5-12 Cycloalkyl-Linear or branched C 1-10 Alkyl groups and the like can be mentioned.
 成分(B)が一分子中に有するエポキシ基の数は、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、2個以上が好ましく、好ましくは2~50個、より好ましくは2~30個、さらに好ましくは2~15個である。成分(B)が一分子中に2個以上のエポキシ基を有する場合、複数のエポキシ基は、同一であっても異なっていてもよい。 The number of epoxy groups contained in one molecule of the component (B) is not particularly limited, but two or more are preferable and preferably two or more from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. The number is 2 to 50, more preferably 2 to 30, and even more preferably 2 to 15. When the component (B) has two or more epoxy groups in one molecule, the plurality of epoxy groups may be the same or different.
 成分(B)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量]に対する、エポキシ基を有する単量体単位の割合は、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、50モル%以上(50~100モル%)であり、好ましくは55~100モル%であり、より好ましくは65~100モル%であり、さらに好ましくは80~100モル%であり、さらにより好ましくは90~100モル%である。 The ratio of the monomer unit having an epoxy group to the total amount of the siloxane structural unit in the component (B) [total siloxane structural unit; total amount of M unit, D unit, T unit, and Q unit] is the cured product of the present disclosure. From the viewpoint of providing excellent heat resistance, mechanical properties, and high surface hardness, the content is 50 mol% or more (50 to 100 mol%), preferably 55 to 100 mol%, and more preferably 65 to 100. It is mol%, more preferably 80 to 100 mol%, and even more preferably 90 to 100 mol%.
 成分(B)は、シルセスキオキサン単位として、下記式(1)で表される構成単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000038
[式(1)中、R1は、エポキシ基を含有する基を示す。]
The component (B) preferably has a structural unit represented by the following formula (1) as a silsesquioxane unit.
Figure JPOXMLDOC01-appb-C000038
[In formula (1), R 1 represents a group containing an epoxy group. ]
 また、成分(B)は、下記式(I)で表される構成単位(「T3体」と称する場合がある)と、下記式(II)で表される構成単位(「T2体」と称する場合がある)を有することが好ましい。
 さらに、成分(B)は、後述の式(4)で表される構成単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
The component (B) is a structural unit represented by the following formula (I) (sometimes referred to as "T3 body") and a structural unit represented by the following formula (II) (referred to as "T2 body"). It may be preferable to have).
Further, the component (B) preferably has a structural unit represented by the formula (4) described later.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 上記式(1)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)である。上記式(1)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(a)で表される化合物)の加水分解及び縮合反応により形成される。 The structural unit represented by the above formula (1) is a silsesquioxane structural unit (so-called T unit) generally represented by [RSiO 3/2 ]. The structural unit represented by the above formula (1) is formed by a hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (a) described later). Will be done.
 式(1)中のR1は、エポキシ基を含有する基(一価の基)を示す。上記エポキシ基を含有する基としては、オキシラン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、下記式(1a)で表される基、下記式(1b)で表される基、下記式(1c)で表される基、下記式(1d)で表される基が好ましく、より好ましくは下記式(1a)で表される基、下記式(1c)で表される基、さらに好ましくは下記式(1c)で表される基である。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
R 1 in the formula (1) represents a group containing an epoxy group (monovalent group). Examples of the group containing an epoxy group include known and commonly used groups having an oxylan ring, and the cured product of the present disclosure is not particularly limited, but can impart excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. From the viewpoint, a group represented by the following formula (1a), a group represented by the following formula (1b), a group represented by the following formula (1c), and a group represented by the following formula (1d) are preferable. It is preferably a group represented by the following formula (1a), a group represented by the following formula (1c), and more preferably a group represented by the following formula (1c).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 上記式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等の炭素数1~10の直鎖又は分岐鎖状のアルキレン基が挙げられる。中でも、R1aとしては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。 In the above formula (1a), R 1a represents a linear or branched alkylene group. Examples of the linear or branched alkylene group include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, decamethylene group and the like. Examples thereof include a linear or branched alkylene group having 1 to 10 carbon atoms. Among them, R 1a is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. The branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
 上記式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1bとしては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。 In the above formula (1b), R 1b represents a linear or branched alkylene group, and a group similar to R 1a is exemplified. Among them, R 1b is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. The branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
 上記式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1cとしては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。 In the above formula (1c), R 1c represents a linear or branched alkylene group, and a group similar to R 1a is exemplified. Among them, R 1c is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. The branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
 上記式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1dとしては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。 In the above formula (1d), R 1d represents a linear or branched alkylene group, and a group similar to R 1a is exemplified. Among them, R 1d is a linear alkylene group having 1 to 4 carbon atoms, 3 or 4 carbon atoms, from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. The branched alkylene group is preferably an ethylene group, a trimethylene group, a propylene group, and more preferably an ethylene group or a trimethylene group.
 式(1)中のR1としては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、上記式(1c)で表される基であって、R1cがトリメチレン基である基[中でも、3-(グリシジルオキシ)プロピル基]が好ましい。 R 1 in the formula (1) is a group represented by the above formula (1c) from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. A group in which R 1c is a trimethylene group [among others, a 3- (glycidyloxy) propyl group] is preferable.
 成分(B)は、上記式(1)で表される構成単位を1種のみ有するものであってもよいし、上記式(1)で表される構成単位を2種以上有するものであってもよい。 The component (B) may have only one type of structural unit represented by the above formula (1), or may have two or more types of structural units represented by the above formula (1). May be good.
 成分(B)は、シルセスキオキサン構成単位[RSiO3/2]として、上記式(1)で表される構成単位以外にも、下記式(2)で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000045
The component (B) has a structural unit represented by the following formula (2) in addition to the structural unit represented by the above formula (1) as the silsesquioxane structural unit [RSiO 3/2 ]. You may.
Figure JPOXMLDOC01-appb-C000045
 上記式(2)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(T単位)である。即ち、上記式(2)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(b)で表される化合物)の加水分解及び縮合反応により形成される。 The structural unit represented by the above formula (2) is a silsesquioxane structural unit (T unit) generally represented by [RSiO 3/2 ]. That is, the structural unit represented by the above formula (2) is the hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compound (specifically, for example, the compound represented by the formula (b) described later). Is formed by.
 上記式(2)中のR2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。上記アリール基としては、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。上記アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。上記シクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等の直鎖又は分岐鎖状のアルケニル基が挙げられる。 R 2 in the above formula (2) is a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkyl group. Indicates an alkenyl group of. Examples of the aryl group include a phenyl group, a tolyl group, a naphthyl group and the like. Examples of the aralkyl group include a benzyl group and a phenethyl group. Examples of the cycloalkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like. Examples of the alkyl group include linear or branched alkyl such as methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group and isopentyl group. Group is mentioned. Examples of the alkenyl group include a linear or branched alkenyl group such as a vinyl group, an allyl group, and an isopropenyl group.
 上述の置換アリール基、置換アラルキル基、置換シクロアルキル基、置換アルキル基、置換アルケニル基としては、上述のアリール基、アラルキル基、シクロアルキル基、アルキル基、アルケニル基のそれぞれにおける水素原子又は主鎖骨格の一部若しくは全部が、エーテル基、エステル基、カルボニル基、シロキサン基、ハロゲン原子(フッ素原子等)、アクリル基、メタクリル基、メルカプト基、アミノ基、及びヒドロキシ基(水酸基)からなる群より選択された少なくとも1種で置換された基が挙げられる。 Examples of the above-mentioned substituted aryl group, substituted aralkyl group, substituted cycloalkyl group, substituted alkyl group, and substituted alkenyl group include hydrogen atoms or main ribs in each of the above-mentioned aryl group, aralkyl group, cycloalkyl group, alkyl group and alkenyl group. Part or all of the case consists of a group consisting of an ether group, an ester group, a carbonyl group, a siloxane group, a halogen atom (fluorine atom, etc.), an acrylic group, a methacryl group, a mercapto group, an amino group, and a hydroxy group (hydroxyl group). Examples include groups substituted with at least one selected.
 中でも、R2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。 Among them, R 2 is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, and further preferably a phenyl group. is there.
 成分(B)における上述の各シルセスキオキサン構成単位(式(1)で表される構成単位、式(2)で表される構成単位)の割合は、これらの構成単位を形成するための原料(加水分解性三官能シラン)の組成により適宜調整することが可能である。 The ratio of each of the above-mentioned silsesquioxane structural units (the structural unit represented by the formula (1) and the structural unit represented by the formula (2)) in the component (B) is for forming these structural units. It can be appropriately adjusted depending on the composition of the raw material (hydrolyzable trifunctional silane).
 成分(B)は、上記式(1)で表される構成単位及び式(2)で表される構成単位以外にも、さらに、上記式(1)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位[RSiO3/2]、[R3SiO1/2]で表される構成単位(いわゆるM単位)、[R2SiO2/2]で表される構成単位(いわゆるD単位)、及び[SiO4/2]で表される構成単位(いわゆるQ単位)からなる群より選択される少なくとも1種のシロキサン構成単位を有していてもよい。なお、上記式(1)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位としては、例えば、下記式(3)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000046
The component (B) is not only the structural unit represented by the above formula (1) and the structural unit represented by the formula (2), but also the structural unit represented by the above formula (1) and the structural unit (2). in in represented by other than structural units silsesquioxane structural units [RSiO 3/2], [R 3 SiO 1/2] structural units represented by (so-called M units), [R 2 SiO 2/2] It may have at least one siloxane structural unit selected from the group consisting of the structural unit represented (so-called D unit) and the structural unit represented by [SiO 4/2 ] (so-called Q unit). .. As the silsesquioxane structural unit other than the structural unit represented by the above formula (1) and the structural unit represented by the formula (2), for example, the structural unit represented by the following formula (3) and the like are used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000046
 成分(B)が、上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)とを有する場合、その割合[T3体/T2体]は、特に限定されないが、例えば、5以上(例えば、5以上、500以下)の範囲から適宜選択可能である。上記割合[T3体/T2体]の下限値は、好ましくは20、より好ましくは21、より好ましくは23、さらに好ましくは25(例えば、好ましくは5、より好ましくは6、さらに好ましくは7)である。上記割合[T3体/T2体]を5以上とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度が向上する傾向がある。一方、上記割合[T3体/T2体]の上限値は、好ましくは500、より好ましくは100、より好ましくは50、さらに好ましくは40(例えば、好ましくは20未満、より好ましくは18、より好ましくは16、さらに好ましくは14)である。上記割合[T3体/T2体]を500以下(例えば、好ましくは20未満、より好ましくは18以下)とすることにより、硬化性組成物における他の成分との相溶性が向上し、粘度も抑制もされるため、取扱いが容易となる。 When the component (B) has a structural unit (T3 body) represented by the above formula (I) and a structural unit (T2 body) represented by the above formula (II), the ratio [T3 body / T2]. The body] is not particularly limited, but can be appropriately selected from a range of, for example, 5 or more (for example, 5 or more, 500 or less). The lower limit of the ratio [T3 / T2] is preferably 20, more preferably 21, more preferably 23, still more preferably 25 (for example, preferably 5, more preferably 6, still more preferably 7). is there. By setting the above ratio [T3 body / T2 body] to 5 or more, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be improved. On the other hand, the upper limit of the ratio [T3 / T2] is preferably 500, more preferably 100, more preferably 50, still more preferably 40 (for example, preferably less than 20, more preferably 18, more preferably. 16, more preferably 14). By setting the above ratio [T3 / T2] to 500 or less (for example, preferably less than 20, more preferably 18 or less), the compatibility with other components in the curable composition is improved, and the viscosity is also suppressed. It is also easy to handle.
 なお、上記式(I)で表される構成単位をより詳細に記載すると、下記式(I')で表される。また、上記式(II)で表される構成単位をより詳細に記載すると、下記式(II')で表される。下記式(I')で表される構造中に示されるケイ素原子に結合した3つの酸素原子はそれぞれ、他のケイ素原子(式(I')に示されていないケイ素原子)と結合している。一方、下記式(II')で表される構造中に示されるケイ素原子の上と下に位置する2つの酸素原子はそれぞれ、他のケイ素原子(式(II')に示されていないケイ素原子)に結合している。即ち、上記T3体及びT2体は、いずれも対応する加水分解性三官能シラン化合物の加水分解及び縮合反応により形成される構成単位(T単位)である。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
If the structural unit represented by the above formula (I) is described in more detail, it is represented by the following formula (I'). Further, when the structural unit represented by the above formula (II) is described in more detail, it is represented by the following formula (II'). Each of the three oxygen atoms bonded to the silicon atom represented in the structure represented by the following formula (I') is bonded to another silicon atom (silicon atom not represented by the formula (I')). .. On the other hand, the two oxygen atoms located above and below the silicon atom shown in the structure represented by the following formula (II') become other silicon atoms (silicon atoms not shown in the formula (II')). It is combined. That is, both the T3 body and the T2 body are structural units (T units) formed by the hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compounds.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 上記式(I)中のRa(式(I')中のRaも同じ)及び式(II)中のRb(式(II')中のRbも同じ)は、それぞれ、エポキシ基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Ra及びRbの具体例としては、上記式(1)におけるR1、上記式(2)におけるR2と同様のものが例示される。なお、式(I)中のRa及び式(II)中のRbは、それぞれ、成分(B)の原料として使用した加水分解性三官能シラン化合物におけるケイ素原子に結合した基(アルコキシ基及びハロゲン原子以外の基;例えば、後述の式(a)~(c)におけるR1、R2、水素原子等)に由来する。 R a in the above formula (I) (formula (I ') in the R a same) and formula (II) in the R b (wherein (II') in the R b versa), respectively, an epoxy group A group containing, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom. Shown. Specific examples of R a and R b include those similar to R 1 in the above formula (1) and R 2 in the above formula (2). In addition, R a in the formula (I) and R b in the formula (II) are groups (alkoxy group and alkoxy group) bonded to a silicon atom in the hydrolyzable trifunctional silane compound used as a raw material of the component (B), respectively. It is derived from a group other than a halogen atom; for example, R 1 , R 2 , hydrogen atom, etc. in the formulas (a) to (c) described later.
 上記式(II)中のRc(式(II')中のRcも同じ)は、水素原子又は炭素数1~4のアルキル基を示す。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素数1~4の直鎖又は分岐鎖状のアルキル基が挙げられる。式(II)中のRcにおけるアルキル基は、一般的には、成分(B)の原料として使用した加水分解性シラン化合物におけるアルコキシ基(例えば、後述のXa~Xcとしてのアルコキシ基等)を形成するアルキル基に由来する。 R c in the formula (II) (Formula (II ') in the R c versa) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group and an isobutyl group. .. The alkyl group in R c in the formula (II) is generally an alkoxy group in the hydrolyzable silane compound used as a raw material for the component (B) (for example, an alkoxy group as X a to X c described later). ) Is derived from the alkyl group forming.
 成分(B)における上記割合[T3体/T2体]は、例えば、29Si-NMRスペクトル測定により求めることができる。29Si-NMRスペクトルにおいて、上記式(I)で表される構成単位(T3体)におけるケイ素原子と、上記式(II)で表される構成単位(T2体)におけるケイ素原子とは、異なる位置(化学シフト)にシグナル(ピーク)を示すため、これらそれぞれのピークの積分比を算出することにより、上記割合[T3体/T2体]が求められる。具体的には、例えば、成分(B)が、上記式(1)で表され、R1が3-(グリシジルオキシ)プロピル基である構成単位を有する場合には、上記式(I)で表される構造(T3体)におけるケイ素原子のシグナルは-62~-70ppmに現れ、上記式(II)で表される構造(T2体)におけるケイ素原子のシグナルは-54~-60ppmに現れる。従って、この場合、-62~-70ppmのシグナル(T3体)と-54~-60ppmのシグナル(T2体)の積分比を算出することによって、上記割合[T3体/T2体]を求めることができる。R1が3-(グリシジルオキシ)プロピル基以外のエポキシ基を含む基である場合も、同様にして[T3体/T2体]を求めることができる。 The ratio [T3 body / T2 body] in the component (B) can be determined by, for example, 29 Si-NMR spectrum measurement. 29 In the Si-NMR spectrum, the silicon atom in the structural unit (T3 body) represented by the above formula (I) and the silicon atom in the structural unit (T2 body) represented by the above formula (II) are at different positions. Since a signal (peak) is shown in (chemical shift), the above ratio [T3 / T2] can be obtained by calculating the integration ratio of each of these peaks. Specifically, for example, when the component (B) is represented by the above formula (1) and R 1 has a structural unit which is a 3- (glycidyloxy) propyl group, it is represented by the above formula (I). The signal of the silicon atom in the structure (T3 body) to be formed appears at -62 to -70 ppm, and the signal of the silicon atom in the structure (T2 body) represented by the above formula (II) appears at -54 to -60 ppm. Therefore, in this case, the above ratio [T3 body / T2 body] can be obtained by calculating the integral ratio of the signal (T3 body) of -62 to -70 ppm and the signal (T2 body) of -54 to -60 ppm. it can. When R 1 is a group containing an epoxy group other than a 3- (glycidyloxy) propyl group, [T3 body / T2 body] can be obtained in the same manner.
 成分(B)の29Si-NMRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「JNM-ECA500NMR」(日本電子(株)製)
 溶媒:重クロロホルム
 積算回数:1800回
 測定温度:25℃
The 29 Si-NMR spectrum of component (B) can be measured by, for example, the following equipment and conditions.
Measuring device: Product name "JNM-ECA500NMR" (manufactured by JEOL Ltd.)
Solvent: Deuterated chloroform Number of integrations: 1800 Measurement temperature: 25 ° C
 成分(B)の上記割合[T3体/T2体]が上記範囲(例えば、5以上、500以下)である場合は、成分(B)においてT3体に対して一定量のT2体存在していることを意味する。このようなT2体としては、例えば、下記式(4)で表される構成単位、下記式(5)で表される構成単位、下記式(6)で表される構成単位等が挙げられる。下記式(4)におけるR1及び下記式(5)におけるR2は、それぞれ上記式(1)におけるR1及び上記式(2)におけるR2と同じである。下記式(4)~(6)におけるRcは、式(II)におけるRcと同じく、水素原子又は炭素数1~4のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
When the ratio [T3 / T2] of the component (B) is within the above range (for example, 5 or more and 500 or less), a certain amount of T2 is present with respect to the T3 in the component (B). Means that. Examples of such a T2 body include a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), a structural unit represented by the following formula (6), and the like. R 2 in R 1 and the following formula (5) in the following equation (4) is the same as R 2 in R 1 and the formula in the formula (1) (2). R c in the following formulas (4) to (6) represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, like R c in the formula (II).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 成分(B)におけるポリオルガノシルセスキオキサンは、完全カゴ型、不完全カゴ型、ラダー型、ランダム型のいずれのシルセスキオキサン構造を有していてもよく、これらシルセスキオキサン構造の2以上を組み合わせて有していてもよい。 The polyorganosilsesquioxane in the component (B) may have any of a complete cage type, an incomplete cage type, a ladder type, and a random type silsesquioxane structure, and these silsesquioxane structures may have a structure. You may have two or more in combination.
 本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、成分(B)は、完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造を有していることが好ましい。成分(B)が完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造に起因する3次元構造を有することにより、成分(A)が有するメソゲン基が形成するネットワークの運動性がより拘束され、耐熱性がより向上しやすくなる。また、カゴ型及び/又は不完全カゴ型シルセスキオキサン構造が導入されることにより、メソゲン基のネットワーク密度がより低下し、機械的特性(例えば、靭性)がより向上する傾向がある。 From the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure, the component (B) has a complete cage type and / or an incomplete cage type silsesquioxane structure. It is preferable to have. Since the component (B) has a three-dimensional structure resulting from a complete cage type and / or an incomplete cage type silsesquioxane structure, the mobility of the network formed by the mesogen group of the component (A) is more constrained. , Heat resistance is more likely to be improved. In addition, the introduction of cage-type and / or incomplete cage-type silsesquioxane structures tends to further reduce the network density of mesogen groups and further improve mechanical properties (eg, toughness).
 成分(B)が完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造を有することは、成分(B)が、FT-IRスペクトルにおいて1050cm-1付近と1150cm-1付近にそれぞれ固有吸収ピークを有せず、1100cm-1付近に一つの固有吸収ピークを有することから確認される[参考文献:R.H.Raney, M.Itoh, A.Sakakibara and T.Suzuki, Chem. Rev. 95, 1409(1995)]。これに対して、一般に、FT-IRスペクトルにおいて1050cm-1付近と1150cm-1付近にそれぞれ固有吸収ピークを有する場合には、ラダー型シルセスキオキサン構造を有すると同定される。なお、成分(B)のFT-IRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「FT-720」((株)堀場製作所製)
 測定方法:透過法
 分解能:4cm-1
 測定波数域:400~4000cm-1
 積算回数:16回
Component (B) to have a full cage and / or incomplete cage silsesquioxane structure, component (B), respectively intrinsic absorption peak near 1050 cm -1 and near 1150 cm -1 in the FT-IR spectrum It is confirmed by having one intrinsic absorption peak in the vicinity of 1100 cm -1 [Reference: R. H. Laney, M.R. Itoh, A. Sakakibara and T.M. Suzuki, Chem. Rev. 95, 1409 (1995)]. On the other hand, in general, when the FT-IR spectrum has an intrinsic absorption peak near 1050 cm -1 and 1150 cm -1 , respectively, it is identified as having a ladder type silsesquioxane structure. The FT-IR spectrum of the component (B) can be measured by, for example, the following devices and conditions.
Measuring device: Product name "FT-720" (manufactured by HORIBA, Ltd.)
Measurement method: Transmission method Resolution: 4 cm -1
Wavenumber range: 400-4000 cm -1
Accumulation number: 16 times
 成分(B)が上記式(4)で表される構成単位を有する場合、シロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位及び上記式(4)で表される構成単位の割合(総量)は、特に限定されないが、好ましくは55~100モル%であり、より好ましくは65~100モル%、さらに好ましくは80~99モル%である。上記割合を55モル%以上とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度が著しく高くなる。なお、成分(B)における各シロキサン構成単位の割合は、例えば、原料の組成やNMRスペクトル測定等により算出できる。 When the component (B) has a structural unit represented by the above formula (4), the total amount of the siloxane structural unit [total siloxane structural unit; total amount of M unit, D unit, T unit, and Q unit] (100 mol%). The ratio (total amount) of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4) to) is not particularly limited, but is preferably 55 to 100 mol%, more preferably. Is 65 to 100 mol%, more preferably 80 to 99 mol%. By setting the above ratio to 55 mol% or more, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure are remarkably increased. The ratio of each siloxane constituent unit in the component (B) can be calculated by, for example, the composition of the raw material, the NMR spectrum measurement, or the like.
 成分(B)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(2)で表される構成単位及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、さらにより好ましくは1~15モル%である。上記割合を70モル%以下とすることにより、相対的に式(1)で表される構成単位及び式(4)で表される構成単位の割合を多くすることができるため、本開示の硬化物の耐熱性、機械的特性、表面硬度がより高くなる傾向がある。 The structural unit represented by the above formula (2) and the total amount of the siloxane structural unit in the component (B) [total siloxane structural unit; total amount of M unit, D unit, T unit, and Q unit] (100 mol%). The ratio (total amount) of the structural units represented by the above formula (5) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 60 mol%, still more preferably 0 to 40 mol%, and further. More preferably, it is 1 to 15 mol%. By setting the above ratio to 70 mol% or less, the ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (4) can be relatively increased, and thus the curing of the present disclosure The heat resistance, mechanical properties, and surface hardness of objects tend to be higher.
 成分(B)におけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位、上記式(2)で表される構成単位、上記式(4)で表される構成単位、及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。上記割合を60モル%以上とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がより高くなる傾向がある。 The structural unit represented by the above formula (1) with respect to the total amount of the siloxane structural unit in the component (B) [total siloxane structural unit; total amount of M unit, D unit, T unit, and Q unit] (100 mol%). The ratio (total amount) of the structural unit represented by the above formula (2), the structural unit represented by the above formula (4), and the structural unit represented by the above formula (5) is not particularly limited, but is 60 to 60. It is preferably 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%. By setting the above ratio to 60 mol% or more, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be higher.
 成分(B)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は、特に限定されないが、例えば、1000~50000の範囲から適宜選択することができる。数平均分子量の下限値は、好ましくは1200、より好ましくは1500である。数平均分子量を1000以上とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がより向上する傾向がある。一方、数平均分子量の上限値は、好ましくは50000、より好ましくは10000、さらに好ましくは8000(例えば、好ましくは3000、より好ましくは2800、さらに好ましくは2600)である。数平均分子量を50000以下(例えば、3000以下)とすることにより、硬化性組成物における他の成分との相溶性が向上し、本開示の硬化物の耐熱性、機械的特性、表面硬度がより向上する傾向がある。 The standard polystyrene-equivalent number average molecular weight (Mn) of the component (B) by gel permeation chromatography is not particularly limited, but can be appropriately selected from the range of 1000 to 50,000, for example. The lower limit of the number average molecular weight is preferably 1200, more preferably 1500. By setting the number average molecular weight to 1000 or more, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be further improved. On the other hand, the upper limit of the number average molecular weight is preferably 50,000, more preferably 10000, and even more preferably 8000 (for example, preferably 3000, more preferably 2800, still more preferably 2600). By setting the number average molecular weight to 50,000 or less (for example, 3000 or less), the compatibility with other components in the curable composition is improved, and the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure are further improved. Tends to improve.
 成分(B)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、特に限定されないが、1.0~4.0の範囲から適宜選択することができる。分子量分散度の下限値は、好ましくは1.0、より好ましくは1.1、さらに好ましくは1.2である。分子量分散度を1.1以上とすることにより、硬化性組成物が液状となりやすく、取り扱い性が向上する傾向がある。一方、分子量分散度の上限値は、好ましくは4.0、より好ましくは3.0、さらに好ましくは2.5(例えば、好ましくは3.0、より好ましくは2.0、さらに好ましくは1.9)である。分子量分散度を4.0以下(例えば、3.0以下)とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がより高くなる傾向がある。 The molecular weight dispersion (Mw / Mn) of the component (B) in terms of standard polystyrene by gel permeation chromatography is not particularly limited, but can be appropriately selected from the range of 1.0 to 4.0. The lower limit of the molecular weight dispersion is preferably 1.0, more preferably 1.1, and even more preferably 1.2. By setting the molecular weight dispersion to 1.1 or more, the curable composition tends to be liquid and the handleability tends to be improved. On the other hand, the upper limit of the molecular weight dispersion is preferably 4.0, more preferably 3.0, still more preferably 2.5 (for example, preferably 3.0, more preferably 2.0, still more preferably 1. 9). By setting the molecular weight dispersion to 4.0 or less (for example, 3.0 or less), the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be higher.
 なお、成分(B)の数平均分子量、分子量分散度は、下記の装置及び条件により測定することができる。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
The number average molecular weight and the degree of molecular weight dispersion of the component (B) can be measured by the following devices and conditions.
Measuring device: Product name "LC-20AD" (manufactured by Shimadzu Corporation)
Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK)
Measurement temperature: 40 ° C
Eluent: THF, sample concentration 0.1-0.2 wt%
Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation)
Molecular weight: Standard polystyrene conversion
 成分(B)は、公知乃至慣用のポリシロキサンの製造方法により製造することができ、特に限定されないが、例えば、1種又は2種以上の加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。但し、上記加水分解性シラン化合物としては、上述の式(1)で表される構成単位を形成するための加水分解性三官能シラン化合物(下記式(a)で表される化合物)を必須の加水分解性シラン化合物として使用する必要がある。 The component (B) can be produced by a known or conventional method for producing a polysiloxane, and is not particularly limited, but is produced, for example, by a method of hydrolyzing and condensing one or more hydrolyzable silane compounds. it can. However, as the hydrolyzable silane compound, a hydrolyzable trifunctional silane compound (a compound represented by the following formula (a)) for forming a structural unit represented by the above formula (1) is indispensable. Must be used as a hydrolyzable silane compound.
 より具体的には、例えば、成分(B)におけるシルセスキオキサン構成単位(T単位)を形成するための加水分解性シラン化合物である下記式(a)で表される化合物、必要に応じてさらに、下記式(b)で表される化合物、下記式(c)で表される化合物を、加水分解及び縮合させる方法により、成分(B)を製造できる。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
More specifically, for example, a compound represented by the following formula (a), which is a hydrolyzable silane compound for forming a silsesquioxane structural unit (T unit) in the component (B), if necessary. Further, the component (B) can be produced by a method of hydrolyzing and condensing the compound represented by the following formula (b) and the compound represented by the following formula (c).
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 上記式(a)で表される化合物は、成分(B)における式(1)で表される構成単位を形成する化合物である。式(a)中のR1は、上記式(1)におけるR1と同じく、エポキシ基を含有する基を示す。即ち、式(a)中のR1としては、上記式(1a)で表される基、上記式(1b)で表される基、上記式(1c)で表される基、上記式(1d)で表される基が好ましく、より好ましくは上記式(1a)で表される基、上記式(1c)で表される基、さらに好ましくは上記式(1c)で表される基、さらにより好ましくは上記式(1c)で表される基であって、R1cがトリメチレン基である基[中でも、3-(グリシジルオキシ)プロピル基]である。 The compound represented by the above formula (a) is a compound forming a structural unit represented by the formula (1) in the component (B). R 1 in the formula (a), like that of R 1 in the formula (1), a group containing an epoxy group. That is, as R 1 in the formula (a), the group represented by the above formula (1a), the group represented by the above formula (1b), the group represented by the above formula (1c), and the above formula (1d). ) Is preferred, more preferably the group represented by the above formula (1a), the group represented by the above formula (1c), still more preferably the group represented by the above formula (1c), and even more. It is preferably a group represented by the above formula (1c), wherein R 1c is a trimethylene group [among others, a 3- (glycidyloxy) propyl group].
 上記式(a)中のXaは、アルコキシ基又はハロゲン原子を示す。Xaにおけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。また、Xaにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でもXaとしては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのXaは、それぞれ同一であってもよいし、異なっていてもよい。 X a in the above formula (a) represents an alkoxy group or a halogen atom. The alkoxy group in X a, for example, a methoxy group, an ethoxy group, a propoxy group, isopropyloxy group, a butoxy group, an alkoxy group having 1 to 4 carbon atoms such as isobutyl group and the like. As the halogen atom of X a, for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, X a is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group. Incidentally, the three X a may each be the same or may be different.
 上記式(b)で表される化合物は、成分(B)における式(2)で表される構成単位を形成する化合物である。式(b)中のR2は、上記式(2)におけるR2と同じく、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。即ち、式(b)中のR2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。 The compound represented by the above formula (b) is a compound forming a structural unit represented by the formula (2) in the component (B). R 2 in formula (b), like the R 2 in the formula (2), a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted Indicates an alkyl group of, or a substituted or unsubstituted alkenyl group. That is, as R 2 in the formula (b), a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group is preferable, and a substituted or unsubstituted aryl group is more preferable. More preferably, it is a phenyl group.
 上記式(b)中のXbは、アルコキシ基又はハロゲン原子を示す。Xbの具体例としては、Xaとして例示したものが挙げられる。中でも、Xbとしては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのXbは、それぞれ同一であってもよいし、異なっていてもよい。 X b in the above formula (b) represents an alkoxy group or a halogen atom. Specific examples of X b include those exemplified as X a . Among them, as X b , an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable. The three X bs may be the same or different.
 上記式(c)で表される化合物は、成分(B)における式(3)で表される構成単位を形成する化合物である。上記式(c)中のXcは、アルコキシ基又はハロゲン原子を示す。Xcの具体例としては、Xaとして例示したものが挙げられる。中でも、Xcとしては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのXcは、それぞれ同一であってもよいし、異なっていてもよい。 The compound represented by the above formula (c) is a compound forming a structural unit represented by the formula (3) in the component (B). X c in the formula (c) is an alkoxy group or a halogen atom. Specific examples of X c include those exemplified as X a . Among them, as X c , an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable. The three Xc may be the same or different.
 上記加水分解性シラン化合物としては、上記式(a)~(c)で表される化合物以外の加水分解性シラン化合物を併用してもよい。例えば、上記式(a)~(c)で表される化合物以外の加水分解性三官能シラン化合物、M単位を形成する加水分解性単官能シラン化合物、D単位を形成する加水分解性二官能シラン化合物、Q単位を形成する加水分解性四官能シラン化合物等が挙げられる。 As the hydrolyzable silane compound, a hydrolyzable silane compound other than the compounds represented by the above formulas (a) to (c) may be used in combination. For example, hydrolyzable trifunctional silane compounds other than the compounds represented by the above formulas (a) to (c), hydrolyzable monofunctional silane compounds forming M units, and hydrolyzable bifunctional silanes forming D units. Examples thereof include compounds, hydrolyzable tetrafunctional silane compounds forming Q units, and the like.
 上記加水分解性シラン化合物の使用量や組成は、所望する成分(B)の構造に応じて適宜調整できる。例えば、上記式(a)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、55~100モル%が好ましく、より好ましくは65~100モル%、さらに好ましくは80~100モル%である。 The amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the structure of the desired component (B). For example, the amount of the compound represented by the above formula (a) is not particularly limited, but is preferably 55 to 100 mol%, more preferably 55 to 100 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 65 to 100 mol%, more preferably 80 to 100 mol%.
 また、上記式(b)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、さらにより好ましくは1~15モル%である。 The amount of the compound represented by the above formula (b) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 70 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 0 to 60 mol%, more preferably 0 to 40 mol%, and even more preferably 1 to 15 mol%.
 さらに、使用する加水分解性シラン化合物の全量(100モル%)に対する式(a)で表される化合物と式(b)で表される化合物の割合(総量の割合)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。 Further, the ratio (ratio of the total amount) of the compound represented by the formula (a) and the compound represented by the formula (b) to the total amount (100 mol%) of the hydrolyzable silane compound used is not particularly limited. It is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
 また、上記加水分解性シラン化合物として2種以上を併用する場合、これらの加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うこともできるし、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。 Further, when two or more kinds of the hydrolyzable silane compounds are used in combination, the hydrolysis and condensation reactions of these hydrolyzable silane compounds can be carried out simultaneously or sequentially. When the above reactions are carried out sequentially, the order in which the reactions are carried out is not particularly limited.
 上記加水分解性シラン化合物の加水分解及び縮合反応は、1段階で行ってもよいし、2段階以上に分けて行ってもよい。例えば、上記割合[T3体/T2体]が20未満及び/又は数平均分子量が2500未満の成分(B)(以下、「低分子量ポリオルガノシルセスキオキサン」と称する場合がある)を効率よく製造するためには、加水分解及び縮合反応を1段階で行うことが好ましい。また、上記割合[T3体/T2体]が20以上及び/又は数平均分子量が2500以上の成分(B)(以下、「高分子量ポリオルガノシルセスキオキサン」と称する場合がある)を効率よく製造するためには、加水分解及び縮合反応を2段階以上(好ましくは、2段階)で加水分解及び縮合反応を行うこと、即ち、上記低分子量ポリオルガノシルセスキオキサンを原料としてさらに1回以上加水分解及び縮合反応を行うことが好ましい。以下に、加水分解性シラン化合物の加水分解及び縮合反応を1段階で行って低分子量ポリオルガノシルセスキオキサンを得て、さらに低分子量ポリオルガノシルセスキオキサンを加水分解及び縮合反応に付すことにより高分子量ポリオルガノシルセスキオキサンを得る実施形態について説明するが、成分(B)の製造方法はこれに限定されない。 The hydrolysis and condensation reaction of the hydrolyzable silane compound may be carried out in one step or may be carried out in two or more steps. For example, the component (B) having the above ratio [T3 / T2] of less than 20 and / or the number average molecular weight of less than 2500 (hereinafter, may be referred to as "low molecular weight polyorganosylsesquioxane") is efficiently used. In order to produce it, it is preferable to carry out the hydrolysis and condensation reaction in one step. Further, the component (B) having the above ratio [T3 / T2] of 20 or more and / or the number average molecular weight of 2500 or more (hereinafter, may be referred to as “high molecular weight polyorganosylsesquioxane”) is efficiently used. In order to produce the product, the hydrolysis and condensation reactions are carried out in two or more steps (preferably two steps), that is, one or more times using the low molecular weight polyorganosylsesquioxane as a raw material. It is preferable to carry out hydrolysis and condensation reactions. Hereinafter, the hydrolysis and condensation reaction of the hydrolyzable silane compound is carried out in one step to obtain a low molecular weight polyorganosyl sesquioxane, and the low molecular weight polyorganosyl sesquioxane is further subjected to the hydrolysis and condensation reaction. The embodiment for obtaining a high molecular weight polyorganosylsesquioxane will be described, but the method for producing the component (B) is not limited to this.
 本開示の加水分解及び縮合反応を2段階で行う場合、好ましくは、第1段目の加水分解及び縮合反応で、上記割合[T3体/T2体]が5以上20未満であり、数平均分子量が1000以上2500未満である低分子量ポリオルガノシルセスキオキサンを得、第2段目で、該低分子量ポリオルガノシルセスキオキサンを、さらに加水分解及び縮合反応に付すことにより、上記割合[T3体/T2体]が20以上500以下であり、数平均分子量が2500以上50000以下である高分子量ポリオルガノシルセスキオキサンを得ることができる。 When the hydrolysis and condensation reaction of the present disclosure is carried out in two steps, preferably, in the first step of the hydrolysis and condensation reaction, the above ratio [T3 / T2] is 5 or more and less than 20, and the number average molecular weight. A low molecular weight polyorganosylsesquioxane having a value of 1000 or more and less than 2500 is obtained, and in the second stage, the low molecular weight polyorganosylsesquioxane is further subjected to a hydrolysis and condensation reaction to obtain the above ratio [T3]. A high molecular weight polyorganosylsesquioxane having a [body / T2 body] of 20 or more and 500 or less and a number average molecular weight of 2500 or more and 50,000 or less can be obtained.
 第1段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。中でも溶媒の存在下で行うことが好ましい。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。上記溶媒としては、中でも、ケトン、エーテルが好ましい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The first-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent. Above all, it is preferable to carry out in the presence of a solvent. Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate. , Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on. Of these, ketones and ethers are preferable as the solvent. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
 第1段目の加水分解及び縮合反応における溶媒の使用量は、特に限定されず、加水分解性シラン化合物の全量100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。 The amount of the solvent used in the first-stage hydrolysis and condensation reaction is not particularly limited, and the desired reaction time is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of the hydrolyzable silane compound. It can be adjusted as appropriate according to the above.
 第1段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよいが、エポキシ基の分解を抑制するためにはアルカリ触媒が好ましい。上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。上記アルカリ触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2'-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。 The first stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water. The catalyst may be an acid catalyst or an alkaline catalyst, but an alkaline catalyst is preferable in order to suppress the decomposition of the epoxy group. Examples of the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitrate, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid and p. -Sulfonic acids such as toluene sulfonic acid; solid acids such as active white clay; Lewis acids such as iron chloride can be mentioned. Examples of the alkali catalyst include hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; and alkaline earth metals such as magnesium hydroxide, calcium hydroxide and barium hydroxide. Hydroxides; Alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; Alkali earth metal carbonates such as magnesium carbonate; Lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate Alkali metal hydrogen carbonates such as: Lithium acetate, sodium acetate, potassium acetate, cesium acetate and other alkali metal organic acid salts (eg acetates); alkaline earth metal organic acid salts such as magnesium acetate (eg) Acetate); Alkali metal alkoxides such as lithium methoxydo, sodium methoxydo, sodium ethoxide, sodium isopropoxide, potassium ethoxide, potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; triethylamine, N-methyl Amines such as piperidine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] nona-5-ene (tertiary amines, etc.); pyridine , 2,2'-bipyridyl, 1,10-phenanthroline and other nitrogen-containing aromatic heterocyclic compounds and the like. It should be noted that one type of catalyst may be used alone, or two or more types may be used in combination. The catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
 第1段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。 The amount of the catalyst used in the first-stage hydrolysis and condensation reaction is not particularly limited, and is appropriately within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. Can be adjusted.
 第1段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.5~20モルの範囲内で、適宜調整することができる。 The amount of water used in the first-stage hydrolysis and condensation reactions is not particularly limited, and is appropriately adjusted within the range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. be able to.
 第1段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。 The method of adding water in the first-stage hydrolysis and condensation reaction is not particularly limited, and the total amount of water used (total amount used) may be added all at once, or may be added sequentially. Good. When added sequentially, it may be added continuously or intermittently.
 第1段目の加水分解及び縮合反応の反応条件としては、低分子量ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が5以上20未満となるような反応条件を選択することが重要である。第1段目の加水分解及び縮合反応の反応温度は、特に限定されないが、40~100℃が好ましく、より好ましくは45~80℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]をより効率的に5以上20未満に制御できる傾向がある。また、第1段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.1~10時間が好ましく、より好ましくは1.5~8時間である。また、第1段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第1段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気雰囲気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。 As the reaction conditions for the first-stage hydrolysis and condensation reactions, it is possible to select reaction conditions such that the above ratio [T3 / T2] in the low molecular weight polyorganosylsesquioxane is 5 or more and less than 20. is important. The reaction temperature of the first-stage hydrolysis and condensation reaction is not particularly limited, but is preferably 40 to 100 ° C, more preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the above ratio [T3 / T2] tends to be more efficiently controlled to 5 or more and less than 20. The reaction time of the first-stage hydrolysis and condensation reaction is not particularly limited, but is preferably 0.1 to 10 hours, more preferably 1.5 to 8 hours. Further, the first-stage hydrolysis and condensation reaction can be carried out under normal pressure, or under pressure or reduced pressure. The atmosphere at which the first stage hydrolysis and condensation reaction is carried out is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as an air atmosphere. However, it is preferable to use an inert gas atmosphere.
 上記第1段目の加水分解及び縮合反応により、低分子量ポリオルガノシルセスキオキサンが得られる。上記第1段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の分解を抑制するために触媒を中和することが好ましい。また、低分子量ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。 Low molecular weight polyorganosylsesquioxane can be obtained by the hydrolysis and condensation reaction of the first stage. After the completion of the first-stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition such as ring opening of the epoxy group. In addition, separation means for low molecular weight polyorganosylsesquioxane, for example, washing with water, washing with acid, washing with alkali, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., and separation by combining these. It may be separated and purified by means or the like.
 第1段目の加水分解及び縮合反応により得られた低分子量ポリオルガノシルセスキオキサンを、第2段目の加水分解及び縮合反応に付すことにより、高分子量ポリオルガノシルセスキオキサンを製造することができる。
 第2段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。第2段目の加水分解及び縮合反応を溶媒の存在下で行う場合、第1段目の加水分解及び縮合反応で挙げられた溶媒を用いることができる。第2段目の加水分解及び縮合反応の溶媒としては、第1段目の加水分解及び縮合反応の反応溶媒、抽出溶媒等を含む低分子量ポリオルガノシルセスキオキサンをそのまま、又は一部留去したものを用いてもよい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
A high molecular weight polyorganosylsesquioxane is produced by subjecting the low molecular weight polyorganosylsesquioxane obtained by the first-stage hydrolysis and condensation reaction to the second-stage hydrolysis and condensation reaction. be able to.
The second-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent. When the second-stage hydrolysis and condensation reaction is carried out in the presence of a solvent, the solvent mentioned in the first-stage hydrolysis and condensation reaction can be used. As the solvent for the hydrolysis and condensation reaction in the second stage, the low molecular weight polyorganosylsesquioxane containing the reaction solvent for the hydrolysis and condensation reaction in the first stage, the extraction solvent, etc. is distilled off as it is or partially. You may use the solvent. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
 第2段目の加水分解及び縮合反応において溶媒を使用する場合、その使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。 When the solvent is used in the second-stage hydrolysis and condensation reaction, the amount used is not particularly limited and is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the low molecular weight polyorganosylsesquioxane. Therefore, it can be appropriately adjusted according to the desired reaction time and the like.
 第2段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、第1段目の加水分解及び縮合反応で挙げられた触媒を用いることができ、エポキシ基の分解を抑制するためには、好ましくはアルカリ触媒であり、さらに好ましくは水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩である。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。 The second stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water. As the above-mentioned catalyst, the catalyst mentioned in the first-stage hydrolysis and condensation reaction can be used, and in order to suppress the decomposition of the epoxy group, an alkaline catalyst is preferable, and sodium hydroxide is more preferable. Alkali metal hydroxides such as potassium hydroxide and cesium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate. One type of catalyst may be used alone, or two or more types may be used in combination. The catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
 第2段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは0.01~10000ppm、より好ましくは0.1~1000ppmの範囲内で、適宜調整することができる。 The amount of the catalyst used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 0.01 to 10000 ppm, more preferably 0, based on the low molecular weight polyorganosylsesquioxane (1000000 ppm). It can be appropriately adjusted within the range of 1 to 1000 ppm.
 第2段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは10~100000ppm、より好ましくは100~20000ppmの範囲内で、適宜調整することができる。水の使用量が100000ppmよりも大きいと、高分子量ポリオルガノシルセスキオキサンの割合[T3体/T2体]や数平均分子量が、所定の範囲に制御しにくくなる傾向がある。 The amount of water used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 10 to 100,000 ppm, more preferably 100 to 20,000 ppm, based on the low molecular weight polyorganosylsesquioxane (1,000,000 ppm). It can be adjusted as appropriate within the range of. When the amount of water used is larger than 100,000 ppm, it tends to be difficult to control the ratio [T3 / T2] of high molecular weight polyorganosylsesquioxane and the number average molecular weight within a predetermined range.
 第2段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。 The method of adding water in the second-stage hydrolysis and condensation reaction is not particularly limited, and the total amount of water used (total amount used) may be added all at once, or may be added sequentially. Good. When added sequentially, it may be added continuously or intermittently.
 第2段目の加水分解及び縮合反応の反応条件としては、高分子量ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が20以上500以下、数平均分子量が2500~50000となるような反応条件を選択することが好ましい。第2段目の加水分解及び縮合反応の反応温度は、使用する触媒により変動し、特に限定されないが、5~200℃が好ましく、より好ましくは30~100℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]、数平均分子量をより効率的に所望の範囲に制御できる傾向がある。また、第2段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.5~1000時間が好ましく、より好ましくは1~500時間である。
 また、上記反応温度の範囲内にて加水分解及び縮合反応を行いながら適時サンプリングを行って、上記割合[T3体/T2体]、数平均分子量をモニターしながら反応を行うことによって、所望の割合[T3体/T2体]、数平均分子量を有する高分子量ポリオルガノシルセスキオキサンを得ることもできる。
The reaction conditions for the second-stage hydrolysis and condensation reactions are such that the ratio [T3 / T2] in the high molecular weight polyorganosylsesquioxane is 20 or more and 500 or less, and the number average molecular weight is 2500 to 50,000. It is preferable to select various reaction conditions. The reaction temperature of the hydrolysis and condensation reactions in the second stage varies depending on the catalyst used and is not particularly limited, but is preferably 5 to 200 ° C, more preferably 30 to 100 ° C. By controlling the reaction temperature within the above range, the ratio [T3 body / T2 body] and the number average molecular weight tend to be controlled more efficiently within the desired range. The reaction time of the hydrolysis and condensation reactions in the second stage is not particularly limited, but is preferably 0.5 to 1000 hours, more preferably 1 to 500 hours.
Further, a desired ratio is obtained by performing timely sampling while performing hydrolysis and condensation reactions within the above reaction temperature range, and performing the reaction while monitoring the above ratio [T3 / T2] and the number average molecular weight. [T3 / T2], high molecular weight polyorganosylsesquioxane having a number average molecular weight can also be obtained.
 第2段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第2段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気雰囲気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。 The second-stage hydrolysis and condensation reaction can be carried out under normal pressure, under pressure or under reduced pressure. The atmosphere for performing the hydrolysis and condensation reactions in the second stage is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as an air atmosphere. However, it is preferable to use an inert gas atmosphere.
 上記第2段目の加水分解及び縮合反応により、高分子量ポリオルガノシルセスキオキサンが得られる。上記第2段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の分解を抑制するために触媒を中和することが好ましい。また、高分子量ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。 High molecular weight polyorganosylsesquioxane can be obtained by the hydrolysis and condensation reaction in the second stage. After completion of the second-stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition such as ring opening of the epoxy group. In addition, separation means for high-molecular-weight polyorganosylsesquioxane, for example, washing with water, washing with acid, washing with alkali, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., and separation by combining these. It may be separated and purified by means or the like.
 成分(B)は上述の構成を有するため、成分(A)と成分(B)を必須成分として含む硬化性組成物を硬化させることにより、優れた耐熱性、機械的特性、表面硬度を有する硬化物を形成できる。 Since the component (B) has the above-mentioned structure, by curing the curable composition containing the component (A) and the component (B) as essential components, the curing has excellent heat resistance, mechanical properties, and surface hardness. Can form things.
 本開示の硬化性組成物において成分(B)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In the curable composition of the present disclosure, one type of component (B) may be used alone, or two or more types may be used in combination.
 本開示の硬化性組成物における成分(B)の含有量(配合量)は、特に限定されないが、溶媒を除く硬化性組成物の全量(100重量%)に対して、好ましくは1~50重量%、より好ましくは5~30重量%、さらに好ましくは10~20重量%である。成分(B)の含有量をこの範囲とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がバランスよく向上する傾向がある。 The content (blending amount) of the component (B) in the curable composition of the present disclosure is not particularly limited, but is preferably 1 to 50% by weight with respect to the total amount (100% by weight) of the curable composition excluding the solvent. %, More preferably 5 to 30% by weight, still more preferably 10 to 20% by weight. By setting the content of the component (B) in this range, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be improved in a well-balanced manner.
 本開示の硬化性組成物における成分(B)の含有量(配合量)は、特に限定されないが、成分(A)と成分(B)の全量(100重量%)に対して、好ましくは1~50重量%、より好ましくは3~40重量%、さらに好ましくは5~35重量%である。成分(B)の含有量をこの範囲とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がバランスよく向上する傾向がある。 The content (blending amount) of the component (B) in the curable composition of the present disclosure is not particularly limited, but is preferably 1 to 1 to the total amount (100% by weight) of the component (A) and the component (B). It is 50% by weight, more preferably 3 to 40% by weight, still more preferably 5 to 35% by weight. By setting the content of the component (B) in this range, the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be improved in a well-balanced manner.
[硬化剤(C)]
 本開示の硬化性組成物は、さらに硬化剤(C)を含んでいてもよい。硬化剤(C)は、成分(A)、成分(B)等の硬化性化合物と反応することにより、本開示の硬化性組成物を硬化させる働きを有する化合物である。硬化剤(C)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができ、特に限定されないが、例えば、アミン系硬化剤(C1)、酸無水物系硬化剤(C2)、ポリアミド系硬化剤(C3)、ポリメルカプタン系硬化剤(C4)、フェノール系硬化剤(C5)、ポリカルボン酸系硬化剤(C6)等が挙げられる。
[Curing agent (C)]
The curable composition of the present disclosure may further contain a curing agent (C). The curing agent (C) is a compound having a function of curing the curable composition of the present disclosure by reacting with a curable compound such as the component (A) and the component (B). As the curing agent (C), a known or conventional curing agent can be used as a curing agent for epoxy resins, and the curing agent is not particularly limited, but for example, an amine-based curing agent (C1) and an acid anhydride-based curing agent (C2) can be used. ), Polyamide-based curing agent (C3), Polymercaptan-based curing agent (C4), Phenol-based curing agent (C5), Polycarboxylic acid-based curing agent (C6) and the like.
 アミン系硬化剤(C1)としては、公知乃至慣用のアミン系硬化剤を使用でき、特に限定されないが、例えば、脂肪族ポリアミン、脂環式ポリアミン、芳香族ポリアミン、変性ポリアミン、第二級アミン、第三級アミン等が挙げられる。 As the amine-based curing agent (C1), a known or commonly used amine-based curing agent can be used, and the present invention is not particularly limited, and examples thereof include aliphatic polyamines, alicyclic polyamines, aromatic polyamines, modified polyamines, and secondary amines. Examples thereof include tertiary amines.
 上記脂肪族ポリアミンとしては、例えば、ポリエチレンポリアミン類(例、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等)、ヘキサメチレンジアミン、1,3-ペンタンジアミン、2-メチルペンタメチレンジアミン、ジプロピレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン等が挙げられる。上記脂環式ポリアミンとしては、例えば、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、N-アミノエチルピペラジン、メンセンジアミン、4,4'-メチレンビスシクロヘキシル、4,4'-メチレンビス(2-メチルシクロヘキシルアミン)、ビス(アミノメチル)ノルボルナン、ラロミンC-260等が挙げられる。上記芳香族ポリアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノジフェニルスルホン(例えば、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン等)、m-キシリレンジアミン、ジアミノジフェニルメタン類(例、4,4'-メチレンジアニリン(4,4'-ジアミノジフェニルメタン)、4,4'-メチレンビス(2-メチルアニリン)、4,4'-メチレンビス(2-エチルアニリン)、4,4'-メチレンビス(2-イソプロピルアニリン)、4,4'-メチレンビス(2-クロロアニリン)、4,4'-メチレンビス(2,6-ジメチルアニリン)、4,4'-メチレンビス(2,6-ジエチルアニリン)、4,4'-メチレンビス(2-イソプロピル-6-メチルアニリン)、4,4'-メチレンビス(2-エチル-6-メチルアニリン)、4,4'-メチレンビス(2-ブロモ-6-エチルアニリン)、4,4'-メチレンビス(N-メチルアニリン)、4,4'-メチレンビス(N-エチルアニリン)、4,4'-メチレンビス(N-sec-ブチルアニリン)等)、4,4'-シクロヘキシリデンジアニリン、4,4'-(9-フルオレニリデン)ジアニリン、4,4'-(9-フルオレニリデン)ビス(N-メチルアニリン)、4,4'-ジアミノベンズアニリド、4,4'-オキシジアニリン、2,4-ビス(4-アミノフェニルメチル)アニリン、4-メチル-m-フェニレンジアミン、2-メチル-m-フェニレンジアミン、N,N'-ジ-sec-ブチル-p-フェニレンジアミン、2-クロロ-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ジエチルトルエンジアミン[2,4-ジエチル-6-メチル-m-フェニレンジアミンと4,6-ジエチル-2-メチル-m-フェニレンジアミンの混合物等]、ビス(メチルチオ)トルエンジアミン[6-メチル-2,4-ビス(メチルチオ)-m-フェニレンジアミンと2-メチル-4,6-ビス(メチルチオ)-m-フェニレンジアミンの混合物等]、4,6-ジメチル-m-フェニレンジアミン、トリメチレンビス(4-アミノベンゾエート)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、α,α'-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(m-アミノフェニル)ベンゼン等が挙げられる。 Examples of the aliphatic polyamine include polyethylene polyamines (eg, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.), hexamethylenediamine, 1,3-pentanediamine, 2-methylpentamethylenediamine, and the like. Examples thereof include dipropylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine and diethylaminopropylamine. Examples of the alicyclic polyamine include isophoronediamine, 1,3-bisaminomethylcyclohexylamine, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazin, and mensendiamine. , 4,4'-Methylenebiscyclohexyl, 4,4'-methylenebis (2-methylcyclohexylamine), bis (aminomethyl) norbornan, laromin C-260 and the like. Examples of the aromatic polyamine include m-phenylenediamine, p-phenylenediamine, diaminodiphenylsulfone (for example, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, etc.), m-xylenediamine. , Diaminodiphenylmethanes (eg, 4,4'-methylenedianiline (4,4'-diaminodiphenylmethane), 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline) , 4,4'-methylenebis (2-isopropylaniline), 4,4'-methylenebis (2-chloroaniline), 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-methylenebis (2) , 6-Diethylaniline), 4,4'-methylenebis (2-isopropyl-6-methylaniline), 4,4'-methylenebis (2-ethyl-6-methylaniline), 4,4'-methylenebis (2- Bromo-6-ethylaniline), 4,4'-methylenebis (N-methylaniline), 4,4'-methylenebis (N-ethylaniline), 4,4'-methylenebis (N-sec-butylaniline), etc.) , 4,4'-cyclohexylenedianiline, 4,4'-(9-fluorenilidene) dianiline, 4,4'-(9-fluorenilidene) bis (N-methylaniline), 4,4'-diaminobenzanilide, 4,4'-oxydianiline, 2,4-bis (4-aminophenylmethyl) aniline, 4-methyl-m-phenylenediamine, 2-methyl-m-phenylenediamine, N, N'-di-sec- Butyl-p-phenylenediamine, 2-chloro-p-phenylenediamine, 2,4,6-trimethyl-m-phenylenediamine, diethyltoluenediamine [2,4-diethyl-6-methyl-m-phenylenediamine and 4, 6-Diethyl-2-methyl-m-phenylenediamine mixture, etc.], Bis (methylthio) toluenediamine [6-methyl-2,4-bis (methylthio) -m-phenylenediamine and 2-methyl-4,6- Bis (methylthio) -m-phenylenediamine mixture, etc.], 4,6-dimethyl-m-phenylenediamine, trimethylenebis (4-aminobenzoate), 1,3-bis (4-aminophenoxy) benzene, 1, 3-Bis (3-aminophenoxy) benzene, α, α'-bis (4-aminophenyl) -p-diisopropylbenzene, 1,3-bis ( m-aminophenyl) benzene and the like can be mentioned.
 上記変性ポリアミンとしては、例えば、カルボン酸による変性アミン(ポリアミノアミド、アミノアミド)、エポキシ化合物による変性アミン(アミン-エポキシアダクト)、マイケル反応による変性アミン(マイケル付加ポリアミン)、マンニッヒ反応による変性アミン、尿素又はチオ尿素との反応による変性アミン、ケトンとの反応による変性アミン(ケチミン、シッフ塩基)、エピクロルヒドリンとの反応による変性アミン、ベンジルクロライドとの反応による変性アミン、リン化合物との反応による変性アミン、ベンゾキノンとの反応による変性アミン、トリアルキルシリル化アミン、アミノ基とイソシアネート化合物との反応による変性アミン、水酸基を有するアミン化合物とイソシアネート化合物との反応による変性アミン、カーボネートとの反応による変性アミン等が挙げられる。 Examples of the modified polyamine include modified amines with carboxylic acids (polyaminoamides and aminoamides), modified amines with epoxy compounds (amine-epoxyadducts), modified amines with Michael reaction (Michael-added polyamines), modified amines with Mannig reaction, and ureas. Alternatively, modified amines by reaction with thiourea, modified amines by reaction with ketones (ketimine, Schiff base), modified amines by reaction with epichlorohydrin, modified amines by reaction with benzyl chloride, modified amines by reaction with phosphorus compounds, Modified amines by reaction with benzoquinone, trialkylsilylated amines, modified amines by reaction between amino groups and isocyanate compounds, modified amines by reaction between amine compounds with hydroxyl groups and isocyanate compounds, modified amines by reaction with carbonates, etc. Can be mentioned.
 その他、ポリオキシプロピレンジアミン(例えば、ジェファーミンD230等)、ポリオキシプロピレントリアミン(例えば、ジェファーミンT403等)、ポリシクロヘキシルポリアミン混合物、N-アミノエチルピペラジン等を用いてもよい。 In addition, polyoxypropylene diamine (for example, Jeffamine D230, etc.), polyoxypropylene triamine (for example, Jeffamine T403, etc.), polycyclohexylpolyamine mixture, N-aminoethylpiperazine, etc. may be used.
 上記第二級アミン又は第三級アミンとしては、例えば、イミダゾール類[例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-メチルイミダゾリウムイソシアヌレート、2-フェニルイミダゾリウムイソシアヌレート、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2-エチル-4-メチルイミダゾリル-(1)]-エチル-s-トリアジン等]、ピペリジン、モルホリン、N-メチルピペラジン、ジシアンジアミド、有機酸ジヒドラジド、N,N'-ジメチル尿素誘導体、テトラメチルエチレンジアミン等の直鎖状ジアミン、ジメチルエチルアミン等の直鎖第三級アミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン等のエタノールアミン、トリエチルアミン等のアルキル第三級モノアミン、ベンジルジメチルアミン等の脂肪族第三級アミンや2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)等のフェノール性水酸基を少なくとも1つ持つ芳香環を有する脂肪族第三級アミン、N,N'-ジメチルピペラジン、1,4-ジアザジシクロ[2.2.2]オクタン、トリエチレンジアミン(TEDA)、ピリジン、ピコリン、1.8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等の複素環式第三級アミン等が挙げられる。 Examples of the secondary amine or tertiary amine include imidazoles [for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 2-phenyl imidazole. , 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecyl Imidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2-methylimidazolium isocyanurate, 2-phenylimidazolium isocyanurate, 2,4-diamino-6- [2-methylimidazolyl- ( 1)]-Ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)]-ethyl-s-triazine, etc.], piperidine, morpholine, N-methylpiperazin, Diciandiamide, organic acid dihydrazide, N, N'-dimethylurea derivative, linear diamine such as tetramethylethylenediamine, linear tertiary amine such as dimethylethylamine, triethanolamine, N, N-dimethylethanolamine, N, Ethanolamines such as N-diethylethanolamine, N, N-dibutylethanolamine, alkyl tertiary monoamines such as triethylamine, aliphatic tertiary amines such as benzyldimethylamine and 2- (dimethylaminomethyl) phenols, 2, An aliphatic tertiary amine having an aromatic ring having at least one phenolic hydroxyl group such as 4,6-tris (dimethylaminomethyl) phenol (DMP-30), N, N'-dimethylpiperazine, 1,4-diazazicyclo. [2.2.2] Heterocyclic tertiary amines such as octane, triethylenediamine (TEDA), pyridine, picolin, 1.8-diazabicyclo [5.4.0] -7-undecene (DBU) and the like can be mentioned. Be done.
 酸無水物系硬化剤(C2)としては、公知乃至慣用の酸無水物系硬化剤を使用することができ、特に限定されないが、例えば、メチルテトラヒドロ無水フタル酸(4-メチルテトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4-(4-メチル-3-ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル-無水マレイン酸共重合体、アルキルスチレン無水マレイン酸共重合体などが挙げられる。 As the acid anhydride-based curing agent (C2), a known or commonly used acid anhydride-based curing agent can be used, and is not particularly limited, and for example, methyltetrahydrophthalic anhydride (4-methyltetrahydrophthalic anhydride, 3-Methyltetrahydrophthalic anhydride, etc.), Methylhexahydrophthalic anhydride (4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, etc.), Dodecenyl succinic anhydride, Methylendomethylenetetrahydrophthalic anhydride, Phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexendicarboxylic acid anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride, nagicic anhydride, methylnadic anhydride Phthalic anhydride, 4- (4-methyl-3-pentenyl) tetrahydrophthalic anhydride, succinic anhydride, adipic anhydride, sebacic anhydride, dodecanoic anhydride, methylcyclohexenetetracarboxylic anhydride, Examples thereof include vinyl ether-phthalic anhydride copolymer and alkylstyrene phthalic anhydride copolymer.
ポリアミド系硬化剤(C3)としては、例えば、分子内に第1級アミノ基及び第2級アミノ基のいずれか一方又は両方を有するポリアミド樹脂等が挙げられる。 Examples of the polyamide-based curing agent (C3) include a polyamide resin having either or both of a primary amino group and a secondary amino group in the molecule.
 ポリメルカプタン系硬化剤(C4)としては、例えば、液状のポリメルカプタン、ポリスルフィド樹脂等が挙げられる。 Examples of the polymercaptan-based curing agent (C4) include liquid polymercaptan and polysulfide resin.
 フェノール系硬化剤(C5)としては、公知乃至慣用のフェノール系硬化剤を使用することができ、特に限定されないが、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、パラキシリレン変性フェノール樹脂、パラキシリレン・メタキシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパンなどが挙げられる。 As the phenolic curing agent (C5), a known or commonly used phenolic curing agent can be used, and is not particularly limited. For example, novolak type phenol resin, novolac type cresol resin, paraxylylene-modified phenol resin, paraxylylene / metaxylylene. Examples thereof include aralkyl resins such as modified phenol resins, terpen-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
 ポリカルボン酸系硬化剤(C6)としては、例えば、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸、カルボキシル基含有ポリエステル等が挙げられる。 Examples of the polycarboxylic acid-based curing agent (C6) include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and carboxyl group-containing polyester.
 硬化剤(C)としては、本開示の硬化物に優れた耐熱性と機械的特性、高い表面硬度を付与できるという観点から、アミン系硬化剤(C1)が好ましい。中でも、アミン系硬化剤(C1)としては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、芳香族ポリアミン、脂肪族ポリアミンが好ましい。 As the curing agent (C), an amine-based curing agent (C1) is preferable from the viewpoint of imparting excellent heat resistance, mechanical properties, and high surface hardness to the cured product of the present disclosure. Among them, as the amine-based curing agent (C1), aromatic polyamines and aliphatic polyamines are preferable from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure.
 アミン系硬化剤(C1)としては、下記式(C1a)で表される化合物、下記式(C1b)で表される化合物がより好ましく、下記式(C1a)で表される化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000055
As the amine-based curing agent (C1), a compound represented by the following formula (C1a) and a compound represented by the following formula (C1b) are more preferable, and a compound represented by the following formula (C1a) is further preferable.
Figure JPOXMLDOC01-appb-C000055
 式(C1a)中、Rv及びRwは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。m1及びm2は、それぞれ独立に、0~4の整数を示す。m1が2以上の場合、複数のRvは、同一であっても異なっていてもよい。m2が2以上の場合、複数のRwは、同一であっても異なっていてもよい。Zは、単結合又は連結基(1以上の原子を有する二価の基)を示す。
Figure JPOXMLDOC01-appb-C000056
 式(C1b)中、m3は、それぞれ独立に、0~6の整数を示し、2~5の整数が好ましく、3又は4がより好ましい。
In the formula (C1a), R v and R w each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. m1 and m2 each independently represent an integer of 0 to 4. When m1 is 2 or more, a plurality of R vs may be the same or different. When m2 is 2 or more, a plurality of R ws may be the same or different. Z represents a single bond or a linking group (a divalent group having one or more atoms).
Figure JPOXMLDOC01-appb-C000056
In the formula (C1b), m3 independently represents an integer of 0 to 6, preferably an integer of 2 to 5, and more preferably 3 or 4.
 Rv及びRwで示される炭素数1~6の直鎖又は分岐鎖状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられ、メチル基、エチル基が好ましい。Rv及びRwで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、塩素原子が好ましい。 The linear or branched alkyl group having 1 to 6 carbon atoms represented by R v and R w includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert. -Butyl group, pentyl group, hexyl group and the like can be mentioned, with methyl group and ethyl group being preferable. Examples of the halogen atom represented by R v and R w include a fluorine atom, a chlorine atom, a bromine atom and the like, and a chlorine atom is preferable.
 Zで示される連結基としては、上述のX1及びX2で示される連結基と同様な基が挙げられる。Zで示される連結基としては、本開示の硬化物に優れた耐熱性と機械的特性を付与できるという観点から、炭素数1~6の直鎖又は分岐鎖状のアルキレン基、エーテル結合(-O-)、スルフェニル基(-S-)、スルフィニル基(-SO-)、スルホニル基(-SO2-)等が好ましく、メチレン基(-CH2-)、エーテル結合(-O-)、スルホニル基(-SO2-)がより好ましく、さらにメチレン基が好ましい。 Examples of the linking group represented by Z include groups similar to the linking groups represented by X 1 and X 2 described above. The linking group represented by Z includes a linear or branched alkylene group having 1 to 6 carbon atoms and an ether bond (-) from the viewpoint of imparting excellent heat resistance and mechanical properties to the cured product of the present disclosure. O-), sulphenyl group (-S-), sulfinyl group (-SO-), sulfonyl group (-SO 2- ) and the like are preferable, and methylene group (-CH 2- ), ether bond (-O-), A sulfonyl group (-SO 2- ) is more preferred, and a methylene group is more preferred.
 アミン系硬化剤(C1)の好適な具体的としては、ジアミノジフェニルメタン類、ポリエチレンポリアミン類がより好ましく、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、4,4'-メチレンジアニリン等からなる群より選択される少なくとも1つがさらに好ましい。 As a preferable specific of the amine-based curing agent (C1), diaminodiphenylmethanes and polyethylene polyamines are more preferable, and the amine-based curing agent (C1) is composed of triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4,4'-methylenedianiline and the like. At least one selected from the group is more preferred.
 本開示の硬化性組成物において硬化剤(C)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化剤(C)としては、市販の試薬類を使用することもできる。 In the curable composition of the present disclosure, one type of curing agent (C) may be used alone, or two or more types may be used in combination. Further, as the curing agent (C), commercially available reagents can also be used.
 本開示の硬化性組成物における硬化剤(C)の含有量(配合量)は、特に限定されないが、溶媒を除く硬化性組成物に含まれる硬化性化合物の全量100重量部に対して、1~50重量部が好ましく、より好ましくは5~30重量部である。硬化剤(C)の含有量を上記範囲とすることにより、十分に硬化させることができ、本開示の硬化物の耐熱性、機械的特性がより向上する傾向がある。 The content (blending amount) of the curing agent (C) in the curable composition of the present disclosure is not particularly limited, but is 1 with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition excluding the solvent. It is preferably up to 50 parts by weight, more preferably 5 to 30 parts by weight. By setting the content of the curing agent (C) in the above range, it can be sufficiently cured, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved.
 また、硬化剤(C)としてアミン系硬化剤(C1)を使用する場合、アミン系硬化剤(C1)の含有量(配合量)は、特に限定されないが、本開示の硬化性組成物に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、アミン系硬化剤(C1)が有するアミノ基の活性水素が0.1~10当量となる割合で使用することが好ましく、0.3~5当量となる割合で使用することがより好ましい。硬化剤(C)の含有量を上記範囲とすることにより、十分に硬化させることができ、本開示の硬化物の耐熱性、機械的特性がより向上する傾向がある。 When an amine-based curing agent (C1) is used as the curing agent (C), the content (blending amount) of the amine-based curing agent (C1) is not particularly limited, but is included in the curable composition of the present disclosure. It is preferable to use the active hydrogen of the amino group of the amine-based curing agent (C1) at a ratio of 0.1 to 10 equivalents per 1 equivalent of the epoxy group in all the compounds having an epoxy group, preferably 0.3 to 10 equivalents. It is more preferable to use it in a ratio of 5 equivalents. By setting the content of the curing agent (C) in the above range, it can be sufficiently cured, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved.
[硬化促進剤(D)]
 本開示の硬化性組成物が硬化剤(C)を含む場合には、さらに硬化促進剤(D)を含んでいてもよい。硬化促進剤(D)は、硬化性化合物(例えば、エポキシ基を有する化合物)が硬化剤(C)と反応する際に、その反応速度を促進する機能を有する化合物である。硬化促進剤(D)としては、公知乃至慣用の硬化促進剤を使用することができ、特に限定されないが、例えば、第三級アミン[例えば、ラウリルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、(N,N-ジメチルアミノメチル)フェノール、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)等];第三級アミン塩[例えば、上記第三級アミンのカルボン酸塩、スルホン酸塩、無機酸塩等];イミダゾール類[例えば、2-メチルイミダゾール、2-エチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール等];有機リン系化合物[例えば、トリフェニルホスフィン、亜リン酸トリフェニル等];第四級アンモニウム塩[例えば、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミド等]、第四級ホスホニウム塩[例えば、テトラブチルホスホニウムデカン酸塩、テトラブチルホスホニウムラウリン酸塩、テトラブチルホスホニウムミリスチン酸塩、テトラブチルホスホニウムパルミチン酸塩、テトラブチルホスホニウムカチオンとビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸及び/又はメチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸のアニオンとの塩、テトラブチルホスホニウムカチオンと1,2,4,5-シクロヘキサンテトラカルボン酸のアニオンとの塩等]、第四級アルソニウム塩、第三級スルホニウム塩、第三級セレノニウム塩、第二級ヨードニウム塩、ジアゾニウム塩等のオニウム塩;強酸エステル[例えば、硫酸エステル、スルホン酸エステル、りん酸エステル、ホスフィン酸エステル、ホスホン酸エステル等];ルイス酸と塩基との錯体[例えば、三フッ化ホウ素・アニリン錯体、三フッ化ホウ素・p-クロロアニリン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・イソプロピルアミン錯体、三フッ化ホウ素・ベンジルアミン錯体、三フッ化ホウ素・ジメチルアミン錯体、三フッ化ホウ素・ジエチルアミン錯体、三フッ化ホウ素・ジブチルアミン錯体、三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・ジベンジルアミン錯体、三塩化ホウ素・ジメチルオクチルアミン錯体等];有機金属塩[オクチル酸スズ、オクチル酸亜鉛、ジラウリン酸ジブチルスズ、アルミニウムアセチルアセトン錯体等]等などが挙げられる。
[Curing accelerator (D)]
When the curable composition of the present disclosure contains a curing agent (C), it may further contain a curing accelerator (D). The curing accelerator (D) is a compound having a function of accelerating the reaction rate of a curing compound (for example, a compound having an epoxy group) when it reacts with the curing agent (C). As the curing accelerator (D), a known or commonly used curing accelerator can be used, and is not particularly limited, but for example, a tertiary amine [for example, lauryldimethylamine, N, N-dimethylcyclohexylamine, N. , N-dimethylbenzylamine, N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4,6-tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5 .4.0] Undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] Nonen-5 (DBN), etc.]; Tertiary amine salt [For example, carboxylate of the above tertiary amine , Ssulfonates, Inorganic Acidates, etc.]; imidazoles [eg 2-methylimidazole, 2-ethylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl -4-Methylimidazole, 1-benzyl-2-methylimidazole, etc.]; Organic phosphorus compounds [eg, triphenylphosphine, triphenyl phosphite, etc.]; Tertiary ammonium salts [eg, tetraethylammonium bromide, tetrabutyl Ammonium bromide, etc.], quaternary phosphonium salts [eg, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, tetrabutylphosphonium myristate, tetrabutylphosphonium palmitate, tetrabutylphosphonium cation and bicyclo [2. 2.1] Heptane-2,3-dicarboxylic acid and / or methylbicyclo [2.2.1] Heptane-2,3-dicarboxylic acid salt with anion, tetrabutylphosphonium cation and 1,2,4,5 -Salts of cyclohexanetetracarboxylic acids with anions, etc.], quaternary arsonium salts, tertiary sulfonium salts, tertiary selenonium salts, secondary iodonium salts, onium salts such as diazonium salts; strong acid esters [eg, sulfuric acid] Esters, sulfonic acid esters, phosphoric acid esters, phosphinic acid esters, phosphonic acid esters, etc.]; Complexes of Lewis acid and base [for example, boron trifluoride / aniline complex, boron trifluoride / p-chloroaniline complex, tri. Boron fluoride / monoethylamine complex, boron trifluoride / isopropylamine complex, boron trifluoride / benzylamine complex, boron trifluoride / dimethylamine complex, boron trifluoride / diethylamine complex, boron trifluoride / dibutylamine Complex, Sanfu Boron trifluoride / piperidine complex, boron trifluoride / dibenzylamine complex, boron trichloride / dimethyloctylamine complex, etc.]; Organic metal salts [tin octylate, zinc octylate, dibutyltin dilaurate, aluminum acetylacetone complex, etc.], etc. And so on.
 なお、本開示の硬化性組成物において硬化促進剤(D)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化促進剤(D)としては、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「U-CAT 12XD」(以上、サンアプロ(株)製);商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製);商品名「PX-4ET」(日本化学工業(株)製)などの市販品を使用することもできる。 In the curable composition of the present disclosure, one type of curing accelerator (D) may be used alone, or two or more types may be used in combination. The curing accelerators (D) include the product names "U-CAT SA 506", "U-CAT SA 102", "U-CAT 5003", "U-CAT 18X", and "U-CAT 12XD" ( (Manufactured by Sun Appro Co., Ltd.); Product names "TPP-K" and "TPP-MK" (manufactured by Hokuko Kagaku Kogyo Co., Ltd.); Commercial products such as can also be used.
 本開示の硬化性組成物における硬化促進剤(D)の含有量(配合量)は、特に限定されないが、硬化性組成物に含まれる硬化性化合物の全量100重量部に対して、0.01~5重量部が好ましく、より好ましくは0.03~3重量部、さらに好ましくは0.03~2重量部である。硬化促進剤(D)の含有量を0.01重量部以上とすることにより、いっそう効率的な硬化促進効果が得られる傾向がある。一方、硬化促進剤(D)の含有量を5重量部以下とすることにより、着色が抑制され、色相に優れた硬化物が得られる傾向がある。 The content (blending amount) of the curing accelerator (D) in the curable composition of the present disclosure is not particularly limited, but is 0.01 with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition. It is preferably from 5 parts by weight, more preferably 0.03 to 3 parts by weight, and even more preferably 0.03 to 2 parts by weight. By setting the content of the curing accelerator (D) to 0.01 parts by weight or more, a more efficient curing promoting effect tends to be obtained. On the other hand, when the content of the curing accelerator (D) is 5 parts by weight or less, coloring is suppressed and a cured product having an excellent hue tends to be obtained.
 本開示の硬化性組成物は、さらに(例えば、硬化剤(C)の代わりに)、硬化触媒を含んでいてもよい。上記硬化触媒は、成分(A)、成分(B)等の硬化性化合物の重合反応を開始乃至促進することができる化合物である。上記硬化触媒としては、特に限定されないが、例えば、光カチオン重合開始剤(光酸発生剤)、熱カチオン重合開始剤(熱酸発生剤)等の重合開始剤が挙げられる。 The curable composition of the present disclosure may further contain a curing catalyst (for example, instead of the curing agent (C)). The curing catalyst is a compound capable of initiating or accelerating the polymerization reaction of a curable compound such as the component (A) and the component (B). The curing catalyst is not particularly limited, and examples thereof include polymerization initiators such as a photocationic polymerization initiator (photoacid generator) and a thermocationic polymerization initiator (thermoacid generator).
 上記光カチオン重合開始剤としては、公知乃至慣用の光カチオン重合開始剤を使用することができ、例えば、スルホニウム塩(スルホニウムイオンとアニオンとの塩)、ヨードニウム塩(ヨードニウムイオンとアニオンとの塩)、セレニウム塩(セレニウムイオンとアニオンとの塩)、アンモニウム塩(アンモニウムイオンとアニオンとの塩)、ホスホニウム塩(ホスホニウムイオンとアニオンとの塩)、遷移金属錯体イオンとアニオンとの塩等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。 As the photocationic polymerization initiator, a known or commonly used photocationic polymerization initiator can be used. For example, a sulfonium salt (a salt of a sulfonium ion and an anion) and an iodonium salt (a salt of an iodonium ion and an anion) can be used. , Selenium salt (salt of selenium ion and anion), ammonium salt (salt of ammonium ion and anion), phosphonium salt (salt of phosphonium ion and anion), salt of transition metal complex ion and anion, etc. .. These can be used alone or in combination of two or more.
 上記スルホニウム塩としては、例えば、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、トリフェニルスルホニウム塩、トリ-p-トリルスルホニウム塩、トリ-o-トリルスルホニウム塩、トリス(4-メトキシフェニル)スルホニウム塩、1-ナフチルジフェニルスルホニウム塩、2-ナフチルジフェニルスルホニウム塩、トリス(4-フルオロフェニル)スルホニウム塩、トリ-1-ナフチルスルホニウム塩、トリ-2-ナフチルスルホニウム塩、トリス(4-ヒドロキシフェニル)スルホニウム塩、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩、4-(p-トリルチオ)フェニルジ-(p-フェニル)スルホニウム塩等のトリアリールスルホニウム塩;ジフェニルフェナシルスルホニウム塩、ジフェニル4-ニトロフェナシルスルホニウム塩、ジフェニルベンジルスルホニウム塩、ジフェニルメチルスルホニウム塩等のジアリールスルホニウム塩;フェニルメチルベンジルスルホニウム塩、4-ヒドロキシフェニルメチルベンジルスルホニウム塩、4-メトキシフェニルメチルベンジルスルホニウム塩等のモノアリールスルホニウム塩;ジメチルフェナシルスルホニウム塩、フェナシルテトラヒドロチオフェニウム塩、ジメチルベンジルスルホニウム塩等のトリアルキルスルホニウム塩等が挙げられる。 Examples of the sulfonium salt include [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium salt, and tri-p-tolylsulfonium salt. Tri-o-tolyl sulfonium salt, tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenyl sulfonium salt, 2-naphthyldiphenyl sulfonium salt, tris (4-fluorophenyl) sulfonium salt, tri-1-naphthyl sulfonium salt, Triaryl such as tri-2-naphthyl sulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] sulfonium salt, 4- (p-tolylthio) phenyldi- (p-phenyl) sulfonium salt, etc. Sulfonium salt; Diarylsulfonium salt such as diphenylphenacil sulfonium salt, diphenyl4-nitrophenacil sulfonium salt, diphenylbenzylsulfonium salt, diphenylmethylsulfonium salt; phenylmethylbenzylsulfonium salt, 4-hydroxyphenylmethylbenzylsulfonium salt, 4- Monoaryl sulfonium salts such as methoxyphenyl methyl benzyl sulfonium salt; trialkyl sulfonium salts such as dimethyl phenacyl sulfonium salt, phenacyl tetrahydrothiophenyl salt, dimethyl benzyl sulfonium salt and the like can be mentioned.
 上記ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩としては、例えば、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスファート等を使用できる。 As the diphenyl [4- (phenylthio) phenyl] sulfonium salt, for example, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate and the like can be used. ..
 上記ヨードニウム塩としては、例えば、商品名「UV9380C」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、ビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート45%アルキルグリシジルエーテル溶液)、商品名「RHODORSIL PHOTOINITIATOR 2074」(ローディア・ジャパン(株)製、テトラキス(ペンタフルオロフェニル)ボレート=[(1-メチルエチル)フェニル](メチルフェニル)ヨードニウム)、商品名「WPI-124」(和光純薬工業(株)製)、ジフェニルヨードニウム塩、ジ-p-トリルヨードニウム塩、ビス(4-ドデシルフェニル)ヨードニウム塩、ビス(4-メトキシフェニル)ヨードニウム塩等が挙げられる。 Examples of the iodonium salt include the trade name "UV9380C" (manufactured by Momentive Performance Materials Japan GK, bis (4-dodecylphenyl) iodonium = hexafluoroantimonate 45% alkylglycidyl ether solution), and the trade name " RHODORSIL PHOTOINITIATOR 2074 "(manufactured by Rhodia Japan Co., Ltd., tetrakis (pentafluorophenyl) borate = [(1-methylethyl) phenyl] (methylphenyl) iodonium), trade name" WPI-124 "(Wako Pure Chemical Industries, Ltd. Co., Ltd.), diphenyl iodonium salt, di-p-tolyl iodonium salt, bis (4-dodecylphenyl) iodonium salt, bis (4-methoxyphenyl) iodonium salt and the like.
 上記セレニウム塩としては、例えば、トリフェニルセレニウム塩、トリ-p-トリルセレニウム塩、トリ-o-トリルセレニウム塩、トリス(4-メトキシフェニル)セレニウム塩、1-ナフチルジフェニルセレニウム塩等のトリアリールセレニウム塩;ジフェニルフェナシルセレニウム塩、ジフェニルベンジルセレニウム塩、ジフェニルメチルセレニウム塩等のジアリールセレニウム塩;フェニルメチルベンジルセレニウム塩等のモノアリールセレニウム塩;ジメチルフェナシルセレニウム塩等のトリアルキルセレニウム塩等が挙げられる。 Examples of the selenium salt include triaryl selenium salts such as triphenyl selenium salt, tri-p-tolyl selenium salt, tri-o-tolyl selenium salt, tris (4-methoxyphenyl) selenium salt, and 1-naphthyldiphenyl selenium salt. Salts; Diarylselenium salts such as diphenylphenacyl selenium salt, diphenylbenzyl selenium salt, diphenylmethyl selenium salt; Monoaryl selenium salts such as phenyl methyl benzyl selenium salt; Trialkyl selenium salts such as dimethyl phenacyl selenium salt and the like. ..
 上記アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラエチルアンモニウム塩、トリメチル-n-プロピルアンモニウム塩、トリメチル-n-ブチルアンモニウム塩等のテトラアルキルアンモニウム塩;N,N-ジメチルピロリジウム塩、N-エチル-N-メチルピロリジウム塩等のピロリジウム塩;N,N'-ジメチルイミダゾリニウム塩、N,N'-ジエチルイミダゾリニウム塩等のイミダゾリニウム塩;N,N'-ジメチルテトラヒドロピリミジウム塩、N,N'-ジエチルテトラヒドロピリミジウム塩等のテトラヒドロピリミジウム塩;N,N-ジメチルモルホリニウム塩、N,N-ジエチルモルホリニウム塩等のモルホリニウム塩;N,N-ジメチルピペリジニウム塩、N,N-ジエチルピペリジニウム塩等のピペリジニウム塩;N-メチルピリジニウム塩、N-エチルピリジニウム塩等のピリジニウム塩;N,N'-ジメチルイミダゾリウム塩等のイミダゾリウム塩;N-メチルキノリウム塩等のキノリウム塩;N-メチルイソキノリウム塩等のイソキノリウム塩;ベンジルベンゾチアゾニウム塩等のチアゾニウム塩;ベンジルアクリジウム塩等のアクリジウム塩等が挙げられる。 Examples of the ammonium salt include tetra, such as tetramethylammonium salt, ethyltrimethylammonium salt, diethyldimethylammonium salt, triethylmethylammonium salt, tetraethylammonium salt, trimethyl-n-propylammonium salt, and trimethyl-n-butylammonium salt. Alkylammonium salt; Pyrrolidium salt such as N, N-dimethylpyrrolidium salt, N-ethyl-N-methylpyrrolidium salt; N, N'-dimethylimidazolinium salt, N, N'-diethylimidazolinium salt, etc. Imidazolinium salt; tetrahydropyrimidium salt such as N, N'-dimethyltetrahydropyrimidium salt, N, N'-diethyltetrahydropyrimidium salt; N, N-dimethylmorpholinium salt, N, N -Morholinium salts such as diethylmorpholinium salt; piperidinium salts such as N, N-dimethylpiperidinium salt, N, N-diethylpiperidinium salt; pyridinium salts such as N-methylpyridinium salt and N-ethylpyridinium salt. Imidazolium salts such as N, N'-dimethylimidazolium salt; quinolium salts such as N-methylquinolium salt; isoquinolium salts such as N-methylisoquinolium salt; thiazonium salts such as benzylbenzothiazonium salt; Examples thereof include acridium salts such as benzylacrydium salts.
 上記ホスホニウム塩としては、例えば、テトラフェニルホスホニウム塩、テトラ-p-トリルホスホニウム塩、テトラキス(2-メトキシフェニル)ホスホニウム塩等のテトラアリールホスホニウム塩;トリフェニルベンジルホスホニウム塩等のトリアリールホスホニウム塩;トリエチルベンジルホスホニウム塩、トリブチルベンジルホスホニウム塩、テトラエチルホスホニウム塩、テトラブチルホスホニウム塩、トリエチルフェナシルホスホニウム塩等のテトラアルキルホスホニウム塩等が挙げられる。 Examples of the phosphonium salt include tetraarylphosphonium salts such as tetraphenylphosphonium salt, tetra-p-tolylphosphonium salt and tetrakis (2-methoxyphenyl) phosphonium salt; triarylphosphonium salt such as triphenylbenzylphosphonium salt; triethyl. Examples thereof include tetraalkylphosphonium salts such as benzylphosphonium salt, tributylbenzylphosphonium salt, tetraethylphosphonium salt, tetrabutylphosphonium salt and triethylphenacylphosphonium salt.
 上記遷移金属錯体イオンの塩としては、例えば、(η5-シクロペンタジエニル)(η6-トルエン)Cr+、(η5-シクロペンタジエニル)(η6-キシレン)Cr+等のクロム錯体カチオンの塩;(η5-シクロペンタジエニル)(η6-トルエン)Fe+、(η5-シクロペンタジエニル)(η6-キシレン)Fe+等の鉄錯体カチオンの塩等が挙げられる。 Examples of the salt of the transition metal complex ion include salts of chromium complex cations such as (η5-cyclopentadienyl) (η6-toluene) Cr + and (η5-cyclopentadienyl) (η6-xylene) Cr +. Examples thereof include salts of iron complex cations such as (η5-cyclopentadienyl) (η6-toluene) Fe + and (η5-cyclopentadienyl) (η6-xylene) Fe + .
 上述の塩を構成するアニオンとしては、例えば、SbF6 -、PF6 -、BF4 -、(CF3CF23PF3 -、(CF3CF2CF23PF3 -、(C654-、(C654Ga-、スルホン酸アニオン(トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン等)、(CF3SO23-、(CF3SO22-、過ハロゲン酸イオン、ハロゲン化スルホン酸イオン、硫酸イオン、炭酸イオン、アルミン酸イオン、ヘキサフルオロビスマス酸イオン、カルボン酸イオン、アリールホウ酸イオン、チオシアン酸イオン、硝酸イオン等が挙げられる。 The anion constituting the salt described above, for example, SbF 6 -, PF 6 - , BF 4 -, (CF 3 CF 2) 3 PF 3 -, (CF 3 CF 2 CF 2) 3 PF 3 -, (C 6 F 5) 4 B -, (C 6 F 5) 4 Ga -, a sulfonate anion (trifluoromethanesulfonic acid anion, pentafluoroethanesulfonate anion, nonafluorobutanesulfonic acid anion, methanesulfonic acid anion, benzenesulfonic acid anion, p- toluenesulfonate anion, etc.), (CF 3 SO 2) 3 C -, (CF 3 SO 2) 2 N -, perhalogenated acid ion, a halogenated sulfonic acid ion, carbonate ion, aluminate Examples thereof include an ion, a hexafluorobismasic acid ion, a carboxylic acid ion, an arylborate ion, a thiocyanate ion, and a nitrate ion.
 上記熱カチオン重合開始剤としては、例えば、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体等が挙げられる。 Examples of the thermal cationic polymerization initiator include aryl sulfonium salts, aryl iodonium salts, allen-ion complexes, quaternary ammonium salts, aluminum chelates, boron trifluoride amine complexes and the like.
 上記アリールスルホニウム塩としては、例えば、ヘキサフルオロアンチモネート塩等が挙げられる。本開示の硬化性組成物においては、例えば、商品名「SP-66」、「SP-77」(以上、(株)ADEKA製);商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-150L」(以上、三新化学工業(株)製)等の市販品を使用することができる。上記アルミニウムキレートとしては、例えば、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。また、上記三フッ化ホウ素アミン錯体としては、例えば、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素イミダゾール錯体、三フッ化ホウ素ピペリジン錯体等が挙げられる。 Examples of the aryl sulfonium salt include hexafluoroantimonate salt and the like. In the curable composition of the present disclosure, for example, trade names "SP-66" and "SP-77" (all manufactured by ADEKA Corporation); trade names "Sun Aid SI-60L" and "Sun Aid SI-80L". , "Sun Aid SI-100L", "Sun Aid SI-150L" (all manufactured by Sanshin Chemical Industry Co., Ltd.) and other commercially available products can be used. Examples of the aluminum chelate include ethyl acetoacetate aluminum diisopropyrate and aluminum tris (ethyl acetoacetate). Examples of the boron trifluoride amine complex include a boron trifluoride monoethylamine complex, a boron trifluoride imidazole complex, and a boron trifluoride piperidine complex.
 なお、本開示の硬化性組成物において硬化触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In the curable composition of the present disclosure, one type of curing catalyst may be used alone, or two or more types may be used in combination.
 本開示の硬化性組成物における上記硬化触媒の含有量(配合量)は、特に限定されないが、成分(A)と成分(B)の合計100重量部に対して、0.01~3.0重量部が好ましく、より好ましくは0.05~3.0重量部、さらに好ましくは0.1~1.0重量部(例えば、0.3~1.0重量部)である。硬化触媒の含有量を0.01重量部以上とすることにより、硬化反応を効率的に十分に進行させることができ、本開示の硬化物の耐熱性、機械的特性がより向上する傾向がある。一方、硬化触媒の含有量を3.0重量部以下とすることにより、硬化性組成物の保存性がいっそう向上したり、硬化物の着色が抑制される傾向がある。 The content (blending amount) of the curing catalyst in the curable composition of the present disclosure is not particularly limited, but is 0.01 to 3.0 with respect to 100 parts by weight of the total of the component (A) and the component (B). It is preferably parts by weight, more preferably 0.05 to 3.0 parts by weight, and even more preferably 0.1 to 1.0 parts by weight (for example, 0.3 to 1.0 parts by weight). By setting the content of the curing catalyst to 0.01 parts by weight or more, the curing reaction can proceed efficiently and sufficiently, and the heat resistance and mechanical properties of the cured product of the present disclosure tend to be further improved. .. On the other hand, when the content of the curing catalyst is 3.0 parts by weight or less, the storage stability of the curable composition tends to be further improved, and the coloring of the cured product tends to be suppressed.
 本開示の硬化性組成物は、さらに、成分(A)、成分(B)以外の硬化性化合物(「その他の硬化性化合物」と称する場合がある)を、本開示の効果を損なわない範囲で含んでいてもよい。その他の硬化性化合物としては、公知乃至慣用の硬化性化合物を使用することができ、特に限定されないが、例えば、成分(A)、成分(B)以外のエポキシ化合物(「その他のエポキシ化合物」と称する場合がある)、オキセタン化合物、ビニルエーテル化合物等が挙げられる。なお、本開示の硬化性組成物においてその他の硬化性化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The curable composition of the present disclosure further comprises curable compounds other than the component (A) and the component (B) (sometimes referred to as "other curable compounds") as long as the effects of the present disclosure are not impaired. It may be included. As the other curable compound, a known or commonly used curable compound can be used, and is not particularly limited, but for example, an epoxy compound other than the component (A) and the component (B) (“other epoxy compound”). (Sometimes referred to as), oxetane compounds, vinyl ether compounds and the like. In the curable composition of the present disclosure, one type of other curable compound may be used alone, or two or more types may be used in combination.
 上記その他のエポキシ化合物としては、分子内に1以上のエポキシ基(オキシラン環)を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、脂環式エポキシ化合物(脂環式エポキシ樹脂)、芳香族エポキシ化合物(芳香族エポキシ樹脂)、脂肪族エポキシ化合物(脂肪族エポキシ樹脂)等が挙げられる。 As the other epoxy compound, a known or commonly used compound having one or more epoxy groups (oxylan rings) in the molecule can be used, and the present invention is not particularly limited, but for example, an alicyclic epoxy compound (alicyclic ring type). (Epoxy resin), aromatic epoxy compound (aromatic epoxy resin), aliphatic epoxy compound (aliphatic epoxy resin) and the like can be mentioned.
 上記脂環式エポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、(1)分子内に脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する)を有する化合物;(2)脂環にエポキシ基が直接単結合で結合している化合物;(3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)等が挙げられる。 Examples of the alicyclic epoxy compound include known and commonly used compounds having one or more alicyclics and one or more epoxy groups in the molecule, and are not particularly limited, but for example, (1) in the molecule. A compound having an epoxy group (referred to as "alicyclic epoxy group") composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic; (2) The epoxy group is directly bonded to the alicyclic by a single bond. Compounds; (3) Compounds having an alicyclic and a glycidyl ether group in the molecule (glycidyl ether type epoxy compound) and the like can be mentioned.
 上記(1)分子内に脂環エポキシ基を有する化合物としては、下記式(i)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000057
Examples of the compound (1) having an alicyclic epoxy group in the molecule include a compound represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000057
 上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。 In the above formula (i), Y represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. Examples thereof include a group in which a plurality of groups are linked.
 上記二価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group and the like. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group and a trimethylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group and 1,3-. Examples thereof include a divalent cycloalkylene group (including a cycloalkylidene group) such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。 Examples of the alkenylene group in the alkenylene group in which a part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as "epoxidized alkenylene group") include a vinylene group, a propenylene group, and a 1-butenylene group. , 2-Butenylene group, butazienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like, such as a linear or branched alkenylene group having 2 to 8 carbon atoms. As the epoxidized alkenylene group, an alkenylene group in which the entire carbon-carbon double bond is epoxidized is preferable, and more preferably, an alkenylene group having 2 to 4 carbon atoms in which the entire carbon-carbon double bond is epoxidized. Is.
 上記式(i)で表される脂環式エポキシ化合物の代表的な例としては、3,4,3',4'-ジエポキシビシクロヘキサン、下記式(i-1)~(i-10)で表される化合物等が挙げられる。なお、下記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。下記式(i-5)中のR'は炭素数1~8のアルキレン基であり、中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。また、上記式(i)で表される脂環式エポキシ化合物としては、その他、例えば、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Typical examples of the alicyclic epoxy compound represented by the above formula (i) are 3,4,3', 4'-diepoxybicyclohexane, and the following formulas (i-1) to (i-10). Examples thereof include compounds represented by. In addition, l and m in the following formulas (i-5) and (i-7) represent integers of 1 to 30, respectively. R'in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a linear or branched chain having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group and an isopropylene group. The shape of the alkylene group is preferable. N1 to n6 in the following formulas (i-9) and (i-10) represent integers of 1 to 30, respectively. Examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl). ) Ethane, 2,3-bis (3,4-epoxycyclohexyl) oxylane, bis (3,4-epoxycyclohexylmethyl) ether and the like.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 上述の(2)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(ii)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000060
Examples of the compound in which the epoxy group is directly bonded to the alicyclic (2) by a single bond include a compound represented by the following formula (ii).
Figure JPOXMLDOC01-appb-C000060
 式(ii)中、R”は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R”(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。 In the formula (ii), R "is a group (p-valent organic group) obtained by removing p hydroxyl groups (-OH) from the structural formula of the p-valent alcohol, and p and n each represent a natural number. Examples of the valent alcohol [R "(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms) and the like. p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each group in () (inside the outer parentheses) may be the same or different. Specific examples of the compound represented by the above formula (ii) include 1,2-epoxy-4- (2-oxylanyl) cyclohexane adducts of 2,2-bis (hydroxymethyl) -1-butanol [for example. , Product name "EHPE3150" (manufactured by Daicel Corporation), etc.] and the like.
 上述の(3)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(例えば、脂環式多価アルコール)のグリシジルエーテルが挙げられる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパンなどのビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタンなどのビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水素化エポキシ化合物;下記芳香族エポキシ化合物の水素化エポキシ化合物等が挙げられる。 Examples of the compound having an alicyclic and glycidyl ether group in the above-mentioned (3) molecule include glycidyl ether of an alicyclic alcohol (for example, an alicyclic polyhydric alcohol). More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy)). Cyclohexyl] A compound obtained by hydrogenating a bisphenol A type epoxy compound such as propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2,5-dimethylpropoxy) 3-Epoxypropoxy) Cyclohexyl] A compound obtained by hydrogenating a bisphenol F-type epoxy compound such as methane (hydrogenated bisphenol F-type epoxy compound); a hydrogenated biphenol-type epoxy compound; a hydrogenated phenol novolac-type epoxy compound; Novolak type epoxy compound; bisphenol A hydride cresol novolak type epoxy compound; hydride naphthalene type epoxy compound; hydride epoxy compound of epoxy compound obtained from trisphenol methane; hydride epoxy compound of the following aromatic epoxy compound, etc. Be done.
 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]とを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。 Examples of the aromatic epoxy compound include epibis-type glycidyl ether-type epoxy resins obtained by a condensation reaction between bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, etc.] and epihalohydrin; High molecular weight epibis-type glycidyl ether-type epoxy resin obtained by further addition-reacting a bis-type glycidyl ether-type epoxy resin with the above bisphenols; phenols [for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehydes [for example, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicylaldehyde, etc.] and polyhydric alcohols obtained by condensing reaction with epihalohydrin. Alkyl type glycidyl ether type epoxy resin; Two phenol skeletons are bonded to the 9-position of the fluorene ring, and glycidyl is attached to the oxygen atom obtained by removing the hydrogen atom from the hydroxy group of these phenol skeletons, either directly or via an alkyleneoxy group. Examples thereof include an epoxy compound to which a group is bonded.
 上記脂肪族エポキシ化合物としては、例えば、q価の環状構造を有しないアルコール(qは自然数である)のグリシジルエーテル;一価又は多価カルボン酸[例えば、酢酸、プロピオン酸、酪酸、ステアリン酸、アジピン酸、セバシン酸、マレイン酸、イタコン酸等]のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等が挙げられる。なお、上記q価の環状構造を有しないアルコールとしては、例えば、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール等の一価のアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の二価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の三価以上の多価アルコール等が挙げられる。また、q価のアルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。 Examples of the aliphatic epoxy compound include glycidyl ethers of alcohols having no q-valent cyclic structure (q is a natural number); monovalent or polyvalent carboxylic acids [eg, acetic acid, propionic acid, butyric acid, stearic acid, etc. Glycidyl ester of adipic acid, sebacic acid, maleic acid, itaconic acid, etc.; epoxidized fats and oils with double bonds such as epoxidized flaxseed oil, epoxidized soybean oil, epoxidized castor oil; polyolefin (poly) such as epoxidized polybutadiene Examples thereof include epoxidized compounds (including alkadiene). Examples of the alcohol having no q-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol and 1-butanol; ethylene glycol, 1,2-propanediol, 1 , 3-Propanediol, 1,4-Butanediol, Neopentyl glycol, 1,6-hexanediol, Diethylene glycol, Triethylene glycol, Tetraethylene glycol, Dipropylene glycol, Polyethylene glycol, Polypropylene glycol and other dihydric alcohols; Examples thereof include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol and sorbitol. Further, the q-valent alcohol may be a polyether polyol, a polyester polyol, a polycarbonate polyol, a polyolefin polyol or the like.
 上記オキセタン化合物としては、分子内に1以上のオキセタン環を有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、1,4-ビス{〔(3-エチル-3-オキセタニル)メトキシ〕メチル}ベンゼン、3-エチル-3-{〔(3-エチルオキセタン-3-イル)メトキシ〕メチル)}オキセタン、キシリレンビスオキセタン、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン等が挙げられる。 Examples of the oxetane compound include known and commonly used compounds having one or more oxetane rings in the molecule, and are not particularly limited, but for example, 3,3-bis (vinyloxymethyl) oxetane and 3-ethyl-3-. (Hydroxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3- Ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis {[1-ethyl (3-ethyl (3-ethyl) Oxetane)] methyl} ether, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane, 1 , 4-Bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, 3-ethyl-3-{[(3-ethyloxetane-3-yl) methoxy] methyl)} oxetane, xylylene bisoxetane , 3-Ethyl-3-{[3- (triethoxysilyl) propoxy] methyl} oxetane, oxetanylsilsesquioxane, phenol novolac oxetane and the like.
 上記ビニルエーテル化合物としては、分子内に1以上のビニルエーテル基を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、2-ヒドロキシエチルビニルエーテル(エチレングリコールモノビニルエーテル)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールジビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールジビニルエーテル、p-キシレングリコールモノビニルエーテル、p-キシレングリコールジビニルエーテル、m-キシレングリコールモノビニルエーテル、m-キシレングリコールジビニルエーテル、o-キシレングリコールモノビニルエーテル、o-キシレングリコールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールモノビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエチレングリコールモノビニルエーテル、ペンタエチレングリコールジビニルエーテル、オリゴエチレングリコールモノビニルエーテル、オリゴエチレングリコールジビニルエーテル、ポリエチレングリコールモノビニルエーテル、ポリエチレングリコールジビニルエーテル、ジプロピレングリコールモノビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールモノビニルエーテル、トリプロピレングリコールジビニルエーテル、テトラプロピレングリコールモノビニルエーテル、テトラプロピレングリコールジビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールジビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールジビニルエーテル、ポリプロピレングリコールモノビニルエーテル、ポリプロピレングリコールジビニルエーテル、イソソルバイドジビニルエーテル、オキサノルボルネンジビニルエーテル、フェニルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクチルビニルエーテル、シクロヘキシルビニルエーテル、ハイドロキノンジビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパントリビニルエーテル、ビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、ヒドロキシオキサノルボルナンメタノールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル等が挙げられる。 As the vinyl ether compound, a known or commonly used compound having one or more vinyl ether groups in the molecule can be used, and is not particularly limited, but for example, 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxy. Propyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutylvinyl ether, 2-hydroxyisobutylvinyl ether, 1-methyl-3 -Hydroxypropyl vinyl ether, 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4-hydroxycyclohexylvinyl ether, 1,6-hexanediol monovinyl ether, 1,6-hexanediol divinyl ether, 1,8- Octanediol divinyl ether, 1,4-cyclohexanedimethanol monovinyl ether, 1,4-cyclohexanedimethanol divinyl ether, 1,3-cyclohexanedimethanol monovinyl ether, 1,3-cyclohexanedimethanol divinyl ether, 1,2-cyclohexane Dimethanol monovinyl ether, 1,2-cyclohexanedimethanol divinyl ether, p-xylene glycol monovinyl ether, p-xylene glycol divinyl ether, m-xylene glycol monovinyl ether, m-xylene glycol divinyl ether, o-xylene glycol monovinyl ether, o-xylene glycol divinyl ether, ethylene glycol divinyl ether, diethylene glycol monovinyl ether, diethylene glycol divinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, tetraethylene glycol monovinyl ether, tetraethylene glycol divinyl ether, pentaethylene glycol monovinyl ether, Pentaethylene glycol divinyl ether, oligoethylene glycol monovinyl ether, oligoethylene glycol divinyl ether, polyethylene glycol monovinyl ether, polyethylene glycol divinyl ether, dipropylene glycol monovinyl ether, dipropylene Recall divinyl ether, tripropylene glycol monovinyl ether, tripropylene glycol divinyl ether, tetrapropylene glycol monovinyl ether, tetrapropylene glycol divinyl ether, pentapropylene glycol monovinyl ether, pentapropylene glycol divinyl ether, oligopropylene glycol monovinyl ether, oligopropylene glycol di Vinyl ether, polypropylene glycol monovinyl ether, polypropylene glycol divinyl ether, isosorbide divinyl ether, oxanorbornene divinyl ether, phenyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octyl vinyl ether, cyclohexyl vinyl ether, hydroquinone divinyl ether, 1,4-butanediol Divinyl Ether, Cyclohexanedimethanol Divinyl Ether, Trimethylol Propane Divinyl Ether, Trimethylol Propane Trivinyl Ether, Bisphenol A Divinyl Ether, Bisphenol F Divinyl Ether, Hydroxyoxanorbornane Methanol Divinyl Ether, 1,4-Cyclohexanediol Divinyl Ether, Pentaerythritol Tri Examples thereof include vinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether and the like.
 分子内に1個以上の水酸基を有するビニルエーテル化合物としては、例えば、2-ヒドロキシエチルビニルエーテル(エチレングリコールモノビニルエーテル)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールペンタビニルエーテル等が挙げられる。 Examples of the vinyl ether compound having one or more hydroxyl groups in the molecule include 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, and 4-hydroxy. Butyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutylvinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxy Methylpropyl vinyl ether, 4-hydroxycyclohexylvinyl ether, 1,6-hexanediol monovinyl ether, 1,8-octanediol divinyl ether, 1,4-cyclohexanedimethanol monovinyl ether, 1,3-cyclohexanedimethanol monovinyl ether, 1, 2-Cyclohexanedimethanol monovinyl ether, p-xylene glycol monovinyl ether, m-xylene glycol monovinyl ether, o-xylene glycol monovinyl ether, diethylene glycol monovinyl ether, triethylene glycol monovinyl ether, tetraethylene glycol monovinyl ether, pentaethylene glycol monovinyl ether , Oligoethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, tripropylene glycol monovinyl ether, tetrapropylene glycol monovinyl ether, pentapropylene glycol monovinyl ether, oligopropylene glycol monovinyl ether, polypropylene glycol monovinyl ether, pentaerythritol trivinyl ether, dipentaerythritol penta Examples include vinyl ether.
 本開示の硬化性組成物におけるその他の硬化性化合物の含有量(配合量)は、特に限定されないが、成分(A)、成分(B)とその他の硬化性化合物の総量(100重量%;硬化性化合物の全量)に対して、50重量%以下(例えば、0~50重量%)が好ましく、より好ましくは30重量%以下(例えば、0~30重量%)、さらに好ましくは10重量%以下である。その他の硬化性化合物の含有量を50重量%以下(好ましくは10重量%以下)とすることにより、本開示の硬化物の耐熱性、機械的特性、表面硬度がより向上する傾向がある。一方、その他の硬化性化合物の含有量を10重量%以上とすることにより、硬化性組成物や硬化物に対して所望の性能(例えば、硬化性組成物に対する速硬化性や粘度調整等)を付与することができる場合がある。 The content (blending amount) of the other curable compound in the curable composition of the present disclosure is not particularly limited, but is the total amount (100% by weight; curing) of the component (A), the component (B) and the other curable compound. 50% by weight or less (for example, 0 to 50% by weight), more preferably 30% by weight or less (for example, 0 to 30% by weight), still more preferably 10% by weight or less, based on the total amount of the sex compound. is there. By setting the content of the other curable compound to 50% by weight or less (preferably 10% by weight or less), the heat resistance, mechanical properties, and surface hardness of the cured product of the present disclosure tend to be further improved. On the other hand, by setting the content of other curable compounds to 10% by weight or more, desired performance (for example, quick curability and viscosity adjustment for the curable composition) can be obtained with respect to the curable composition and the cured product. It may be possible to grant.
 本開示の硬化性組成物は、さらに、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、硬化助剤、溶剤(有機溶剤等)、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤、重金属不活性化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材(他の充填剤など)、核剤、カップリング剤(シランカップリング剤等)、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、透明化剤、レオロジー調整剤(流動性改良剤など)、加工性改良剤、着色剤(染料、顔料など)、帯電防止剤、分散剤、表面調整剤(消泡剤、レベリング剤、ワキ防止剤など)、表面改質剤(スリップ剤など)、艶消し剤、抑泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、光増感剤、発泡剤などの慣用の添加剤を含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。 The curable compositions of the present disclosure further include precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, as any other components. , Carbon black, silicon carbide, silicon nitride, boron nitride and other inorganic fillers, and these fillers treated with organic silicon compounds such as organohalosilane, organoalkoxysilane and organosilazane; silicone resin, epoxy resin , Fluororesin and other organic resin fine powders; fillers such as conductive metal powders such as silver and copper, curing aids, solvents (organic solvents, etc.), stabilizers (antioxidants, ultraviolet absorbers, light resistance stabilizers) , Heat stabilizers, heavy metal defoamers, etc.), flame retardants (phosphorus flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardants, reinforcing materials (other fillers, etc.), nuclei Agents, coupling agents (silane coupling agents, etc.), lubricants, waxes, plasticizers, mold release agents, impact resistance improvers, hue improvers, clearing agents, rheology adjusters (fluidity improvers, etc.), processability Improvement agents, colorants (dye, pigment, etc.), antistatic agents, dispersants, surface conditioners (defoamers, leveling agents, armpit inhibitors, etc.), surface modifiers (slip agents, etc.), matting agents, It may contain conventional additives such as defoaming agents, defoaming agents, antibacterial agents, preservatives, viscosity modifiers, thickeners, photosensitizers, foaming agents and the like. These additives may be used alone or in combination of two or more.
 本開示の硬化性組成物は、特に限定されないが、上記の各成分を室温で又は必要に応じて加熱しながら攪拌・混合することにより調製することができる。なお、本開示の硬化性組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。 The curable composition of the present disclosure is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature or, if necessary, while heating. The curable composition of the present disclosure can be used as a one-component composition in which each component is mixed in advance and used as it is, or for example, two or more components stored separately. Can also be used as a multi-component (for example, two-component) composition which is used by mixing in a predetermined ratio before use.
 本開示の硬化性組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本開示の硬化性組成物は、溶媒20%に希釈した液[例えば、メチルイソブチルケトンの割合が20重量%である硬化性組成物(溶液)]の25℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。上記粘度を300mPa・s以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記粘度を20000mPa・s以下とすることにより、硬化性組成物の調製や取り扱いが容易となり、また、硬化物中に気泡が残存しにくくなる傾向がある。なお、本開示の硬化性組成物の粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1~100(1/s)、温度:25℃の条件で測定される。 The curable composition of the present disclosure is not particularly limited, but is preferably a liquid at room temperature (about 25 ° C.). More specifically, the curable composition of the present disclosure has a viscosity at 25 ° C. of a solution diluted in a solvent of 20% [for example, a curable composition (solution) in which the proportion of methyl isobutyl ketone is 20% by weight]. , 300 to 20000 mPa · s, more preferably 500 to 10000 mPa · s, still more preferably 1000 to 8000 mPa · s. By setting the viscosity to 300 mPa · s or more, the heat resistance of the cured product tends to be further improved. On the other hand, when the viscosity is 20000 mPa · s or less, the curable composition is easily prepared and handled, and bubbles tend to be less likely to remain in the cured product. The viscosity of the curable composition of the present disclosure is determined by using a viscometer (trade name "MCR301", manufactured by Anton Pearl Co., Ltd.), a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature: Measured under the condition of 25 ° C.
[硬化物]
 本開示の硬化性組成物における硬化性化合物(成分(A)、成分(B)等)の重合反応を進行させることにより、該硬化性組成物を硬化させることができ、本開示の硬化物を得ることができる。硬化の方法は、周知の方法より適宜選択でき、特に限定されないが、例えば、活性エネルギー線の照射、及び/又は、加熱する方法が挙げられる。上記活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等のいずれを使用することもできる。中でも、取り扱い性に優れる点で、紫外線が好ましい。
[Cured product]
By advancing the polymerization reaction of the curable compound (component (A), component (B), etc.) in the curable composition of the present disclosure, the curable composition can be cured, and the cured product of the present disclosure can be obtained. Obtainable. The curing method can be appropriately selected from well-known methods, and is not particularly limited, and examples thereof include a method of irradiating with active energy rays and / or heating. As the active energy ray, for example, any of infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, α rays, β rays, γ rays and the like can be used. Of these, ultraviolet rays are preferable because they are easy to handle.
 本開示の硬化性組成物を活性エネルギー線の照射により硬化させる際の条件(活性エネルギー線の照射条件等)は、照射する活性エネルギー線の種類やエネルギー、硬化物の形状やサイズ等に応じて適宜調整することができ、特に限定されないが、紫外線を照射する場合には、例えば1~1000mJ/cm2程度とすることが好ましい。なお、活性エネルギー線の照射には、例えば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光、LEDランプ、レーザー等を使用することができる。活性エネルギー線の照射後には、さらに加熱処理(アニール、エージング)を施してさらに硬化反応を進行させることができる。 The conditions for curing the curable composition of the present disclosure by irradiation with active energy rays (irradiation conditions for active energy rays, etc.) depend on the type and energy of the active energy rays to be irradiated, the shape and size of the cured product, and the like. It can be adjusted as appropriate, and is not particularly limited, but when irradiating with ultraviolet rays, it is preferably about 1 to 1000 mJ / cm 2 for example. For irradiation of the active energy ray, for example, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser or the like can be used. After the irradiation with the active energy rays, further heat treatment (annealing, aging) can be performed to further proceed the curing reaction.
 一方、本開示の硬化性組成物を加熱により硬化させる際の条件は、特に限定されないが、例えば、30~250℃が好ましく、より好ましくは50~200℃である。硬化時間は適宜設定可能である。 On the other hand, the conditions for curing the curable composition of the present disclosure by heating are not particularly limited, but are preferably, for example, 30 to 250 ° C, more preferably 50 to 200 ° C. The curing time can be set as appropriate.
 本開示の硬化性組成物は上述のように、硬化させることによって、耐熱性及び機械的特性(例えば、靭性)に優れ、表面硬度が高い硬化物を形成できる。従って、本開示の硬化性組成物は、電子機器、接着剤、塗料などの様々な産業用途で有用であり、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料としての好適に利用することができる。 As described above, the curable composition of the present disclosure can be cured to form a cured product having excellent heat resistance and mechanical properties (for example, toughness) and high surface hardness. Therefore, the curable compositions of the present disclosure are useful in various industrial applications such as electronic devices, adhesives, paints, etc., and electronic such as insulating materials, printed wiring boards, encapsulants, laminates, prepregs, underfills, etc. It can be suitably used as an advanced material in the field of equipment.
 本開示の硬化物は優れた耐熱性を有し、ガラス転移点が高いか、ガラス転移点が明りょうに観測されない。本開示の硬化物の動的粘弾性測定を行った場合のtanδのピークで特定されるガラス転移点は、好ましくは150℃以上、より好ましくは160℃以上、より好ましくは170℃以上、より好ましくは180℃以上、より好ましくは190℃以上、さらに好ましくは200℃以上、さらにより好ましくはtanδの明瞭なピークは観察されず、すなわち、ガラス転移点が明りょうに観測されないことが好ましい。本開示の硬化物の動的粘弾性測定は、後掲の実施例に記載の方法で実施することができる。 The cured product of the present disclosure has excellent heat resistance, and the glass transition point is high or the glass transition point is not clearly observed. The glass transition point specified by the peak of tan δ when the dynamic viscoelasticity of the cured product of the present disclosure is measured is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, more preferably 170 ° C. or higher, more preferably. Is 180 ° C. or higher, more preferably 190 ° C. or higher, even more preferably 200 ° C. or higher, and even more preferably no clear peak of tan δ is observed, that is, the glass transition point is not clearly observed. The dynamic viscoelasticity measurement of the cured product of the present disclosure can be carried out by the method described in Examples described later.
 本開示の硬化物は優れた機械的特性を有する。本開示の硬化物の動的粘弾性測定を行った場合の250℃における貯蔵弾性率は、好ましくは100MPa以上、より好ましくは150MPa以上である。本開示の硬化物の動的粘弾性測定は、後掲の実施例に記載の方法で実施することができる。 The cured product of the present disclosure has excellent mechanical properties. The storage elastic modulus at 250 ° C. when the dynamic viscoelasticity of the cured product of the present disclosure is measured is preferably 100 MPa or more, more preferably 150 MPa or more. The dynamic viscoelasticity measurement of the cured product of the present disclosure can be carried out by the method described in Examples described later.
 また、本開示の硬化物は優れた機械的特性(例えば、靭性)を有する。本開示の硬化物の曲げ試験を行った場合の曲げ歪みは、好ましくは9.0%以上、より好ましくは9.1%以上、より好ましくは9.2%MPa以上、より好ましくは9.3%以上、より好ましくは9.4%以上、さらに好ましくは9.5%以上である。本開示の硬化物の曲げ試験は、後掲の実施例に記載の方法で実施することができる。 In addition, the cured product of the present disclosure has excellent mechanical properties (for example, toughness). When the bending test of the cured product of the present disclosure is carried out, the bending strain is preferably 9.0% or more, more preferably 9.1% or more, more preferably 9.2% MPa or more, and more preferably 9.3. % Or more, more preferably 9.4% or more, still more preferably 9.5% or more. The bending test of the cured product of the present disclosure can be carried out by the method described in Examples described later.
 本開示の硬化物の鉛筆硬度は、特に限定されないが、2H以上が好ましく、より好ましくは3H以上、さらに好ましくは4H以上である。なお、鉛筆硬度は、ISO15184に記載の方法に準じて評価することができる。 The pencil hardness of the cured product of the present disclosure is not particularly limited, but is preferably 2H or more, more preferably 3H or more, still more preferably 4H or more. The pencil hardness can be evaluated according to the method described in ISO15184.
 以下に、実施例に基づいて本開示をより詳細に説明するが、本開示はこれらの実施例により限定されるものではない。 The present disclosure will be described in more detail below based on examples, but the present disclosure is not limited to these examples.
 なお、生成物の分子量の測定は、以下の条件により行った。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
The molecular weight of the product was measured under the following conditions.
Measuring device: Product name "LC-20AD" (manufactured by Shimadzu Corporation)
Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK)
Measurement temperature: 40 ° C
Eluent: THF, sample concentration 0.1-0.2 wt%
Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation)
Molecular weight: Standard polystyrene conversion
 また、FT-IRは以下の条件により測定した。
 測定装置:フーリエ変換赤外分光光度計IR Affinity-1、(株)島津製作所製
 測定範囲:4000~650cm-1
 積算回数:16回
 分解能:4cm-1
 測定方法:NaCl板、透過法
In addition, FT-IR was measured under the following conditions.
Measuring device: Fourier transform infrared spectrophotometer IR Infinity-1, manufactured by Shimadzu Corporation Measuring range: 4000 to 650 cm -1
Number of integrations: 16 times Resolution: 4 cm -1
Measurement method: NaCl plate, permeation method
製造例1:1-(4-グリシジルオキシ-3-メチルフェニル)-4-(4-グリシジルオキシフェニル)-シクロヘキセンの製造
 500mLのセパラブルフラスコに、4,4'-ジヒドロキシ-3-メチル-1,4-ジフェニルシクロヘキセン15.00g(5.36×10-2mol)、フェノール水酸基1つに対して12倍当量のエピクロロヒドリン119.64g(1.29mol)、溶媒としてDMSO90mLを加え室温で完全に溶解させた。次に触媒としてテトラブチルアンモニウムクロリド0.90×10-2g(3.24×10-5mol)を加え、60℃のオイルバスで1時間加熱撹拌した。その後、フェノール性水酸基1つに対して1.2倍当量の水酸化ナトリウム5.15g(1.29×10-1mol)を用いて調製した50wt%の水酸化ナトリウム水溶液を30分かけて滴下し、更に60℃で1.5時間加熱撹拌した。撹拌後、無機塩を濾過により取り除き、ろ液に貧溶媒であるメタノール(750mL)を加えたところ白色固体が析出した。その後、冷蔵庫(8℃)で13時間冷却した。冷却後、析出物を吸引濾過により取り出し、メタノール(20mL)で5回洗浄した。得られた固体を減圧恒温槽で60℃・2.5時間乾燥させ、白色固体を15.69g(3.99×10-2mol、収率75%)得た。
1H-NMR(CDCl3)δ:1.9(q,2H,CH2),2.1(d,2H,CH2),2.3(s,3H,CH3),2.5(t,2H,CH2),2.8(m,1H,CH),2.9(d,4H,CH2,epoxy),3.4(m,2H,CH,epoxy),3.9(d,2H,CH2,epoxy),4.1(d,2H,CH2,epoxy),6.1(s,1H,CH),6.7(d,2H,CH,aromatic),6.9(d,2H,CH,aromatic),7.1(d,2H,CH,aromatic),7.2(d,2H,CH,aromatic),7.3(d,2H,CH,aromatic)
 上記合成に用いた試料を以下に示す。
 ・4,4'-ジヒドロキシ-3-メチル-1,4-ジフェニルシクロヘキセン(Mw280,m.p.202℃,純度97.9%,本州化学工業(株)製)
 ・エピクロロヒドリン(Mw=93,b.p.118℃,純度99%,和光純薬工業(株)製)
 ・DMSO(b.p.189℃,純度98%,富士フイルム和光純薬(株)製)
 ・テトラブチルアンモニウムクロライド(m.p.83-86℃,純度98%,東京化成工業(株))
 ・水酸化ナトリウム(Mw=40,純度97%,富士フイルム和光純薬(株)製)
 ・メタノール(b.p.65℃,純度99%,富士フイルム和光純薬(株)製)
Production Example 1: Production of 1- (4-glycidyloxy-3-methylphenyl) -4- (4-glycidyloxyphenyl) -cyclohexene In a 500 mL separable flask, 4,4'-dihydroxy-3-methyl-1 , 4-diphenyl cyclohexene 15.00g (5.36 × 10 -2 mol) , 12 times for one phenolic hydroxyl group equivalents of epichlorohydrin 119.64g (1.29mol), DMSO90mL was added at room temperature as a solvent It was completely dissolved. Next, 0.90 × 10-2 g (3.24 × 10 -5 mol) of tetrabutylammonium chloride was added as a catalyst, and the mixture was heated and stirred in an oil bath at 60 ° C. for 1 hour. Then, a 50 wt% sodium hydroxide aqueous solution prepared using 5.15 g (1.29 × 10 -1 mol) of sodium hydroxide equivalent to 1.2 times the amount of one phenolic hydroxyl group was added dropwise over 30 minutes. Then, the mixture was further heated and stirred at 60 ° C. for 1.5 hours. After stirring, the inorganic salt was removed by filtration, and methanol (750 mL), which is a poor solvent, was added to the filtrate to precipitate a white solid. Then, it cooled in a refrigerator (8 ° C.) for 13 hours. After cooling, the precipitate was removed by suction filtration and washed 5 times with methanol (20 mL). The resulting solid was dried 60 ° C. · 2.5 hours under reduced pressure a constant temperature bath, a white solid 15.69g (3.99 × 10 -2 mol, 75% yield).
1 H-NMR (CDCl 3 ) δ: 1.9 (q, 2H, CH 2 ), 2.1 (d, 2H, CH 2 ), 2.3 (s, 3H, CH 3 ), 2.5 ( t, 2H, CH 2 ), 2.8 (m, 1H, CH), 2.9 (d, 4H, CH 2 , epoxy), 3.4 (m, 2H, CH, epoxy), 3.9 ( d, 2H, CH 2 , epoxy), 4.1 (d, 2H, CH 2 , epoxy), 6.1 (s, 1H, CH), 6.7 (d, 2H, CH, aromatic), 6. 9 (d, 2H, CH, aromatic), 7.1 (d, 2H, CH, aromatic), 7.2 (d, 2H, CH, aromatic), 7.3 (d, 2H, CH, aromatic)
The samples used for the above synthesis are shown below.
4,4'-Dihydroxy-3-methyl-1,4-diphenylcyclohexene (Mw280, mp 202 ° C., purity 97.9%, manufactured by Honshu Chemical Industry Co., Ltd.)
-Epichlorohydrin (Mw = 93, bp 118 ° C, purity 99%, manufactured by Wako Pure Chemical Industries, Ltd.)
-DMSO (bp 189 ° C., purity 98%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
-Tetrabutylammonium chloride (mp 83-86 ° C, purity 98%, Tokyo Chemical Industry Co., Ltd.)
-Sodium hydroxide (Mw = 40, purity 97%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
-Methanol (bp 65 ° C, purity 99%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
製造例2:エポキシ基含有ポリオルガノシルセスキオキサンの製造
 3-グリシジルオキシプロピルトリメトキシシラン(東京化成工業(株)製)94.5重量部(0.4モル部)、アセトン378.0重量部、およびイオン交換水105.1重量部(5.8モル部)を窒素気流下で1Lのフラスコに仕込み、撹拌しながら50℃まで加温した。5.0重量%の炭酸カリウム水溶液11.1重量部(0.4ミリモル部)を5分間かけて滴下した。50℃で5時間撹拌したのち、反応液を室温まで冷却した。メチルイソブチルケトン(MIBK)100重量部で希釈後、イオン交換水で7回洗浄し、水層のpHが7以下であることを確認した。有機層を分離後、減圧下溶媒を留去し、18.8%のMIBKを含むエポキシ基含有ポリオルガノシルセスキオキサンを無色透明の液体として76.2重量部得た。数平均分子量1719、重量平均分子量2058であった。製造例1で得られたエポキシ基含有ポリオルガノシルセスキオキサンのFT-IRスペクトルを上述の方法で測定したところ、1050cm-1付近と1150cm-1付近にそれぞれ固有吸収ピークを有せず、1100cm-1付近に一つの固有吸収ピークを有することが確認された。FT-IRスペクトルを図1に示す。
Production Example 2: Production of epoxy group-containing polyorganosylsesquioxane 3-glycidyloxypropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) 94.5 parts by weight (0.4 mol parts), 378.0 parts by weight of acetone 105.1 parts by weight (5.8 mol parts) of ion-exchanged water was placed in a 1 L flask under a nitrogen stream and heated to 50 ° C. with stirring. 11.1 parts by weight (0.4 mmol part) of a 5.0% by weight aqueous potassium carbonate solution was added dropwise over 5 minutes. After stirring at 50 ° C. for 5 hours, the reaction solution was cooled to room temperature. After diluting with 100 parts by weight of methyl isobutyl ketone (MIBK), it was washed 7 times with ion-exchanged water, and it was confirmed that the pH of the aqueous layer was 7 or less. After separating the organic layer, the solvent was distilled off under reduced pressure to obtain 76.2 parts by weight of an epoxy group-containing polyorganosylsesquioxane containing 18.8% MIBK as a colorless and transparent liquid. The number average molecular weight was 1719 and the weight average molecular weight was 2058. When the FT-IR spectrum of the epoxy group-containing polyorganosylsesquioxane obtained in Production Example 1 was measured by the above method, it had no inherent absorption peaks near 1050 cm -1 and 1150 cm -1 , respectively, and was 1100 cm. It was confirmed that it had one intrinsic absorption peak near -1 . The FT-IR spectrum is shown in FIG.
実施例1
 ビフェニル型エポキシ樹脂(商品名「YX4000」、4,4'-ビス(3-グリシジルオキシ)-3,3',5,5'-テトラメチルビフェニル、三菱化学(株)製)1.00g(エポキシ基:5.64mmol)をアルミカップ(3.0×3.0×2.0cm3)に入れ、製造例2で得られたエポキシ基含有ポリオルガノシルセスキオキサンをMIBKを除いた正味量にして0.262g(エポキシ基:1.57mmol)を加え、120℃のホットプレートで10分間溶解させた。その後、減圧恒温槽で120℃で30分間加熱してMIBKを除去した。その後、0.357g(アミノ基の活性水素:7.20mmol)の4,4'-ジアミノジフェニルメタンを130℃のホットプレート上で融解させてから加え、120℃のホットプレート上で1分間撹拌した。その後、190℃で3時間硬化させた。なお、昇温速度は5℃/minとし、撹拌はアルミカップを大気雰囲気下で行った。
Example 1
Biphenyl type epoxy resin (trade name "YX4000", 4,4'-bis (3-glycidyloxy) -3,3', 5,5'-tetramethylbiphenyl, manufactured by Mitsubishi Chemical Corporation) 1.00 g (epoxy) Group: 5.64 mmol) was placed in an aluminum cup (3.0 × 3.0 × 2.0 cm 3 ), and the epoxy group-containing polyorganosylsesquioxane obtained in Production Example 2 was added to the net amount excluding MIBK. 0.262 g (epoxy group: 1.57 mmol) was added, and the mixture was dissolved on a hot plate at 120 ° C. for 10 minutes. Then, MIBK was removed by heating at 120 ° C. for 30 minutes in a decompression constant temperature bath. Then, 0.357 g (active hydrogen of amino group: 7.20 mmol) of 4,4'-diaminodiphenylmethane was melted on a hot plate at 130 ° C. and then added, and the mixture was stirred on a hot plate at 120 ° C. for 1 minute. Then, it was cured at 190 ° C. for 3 hours. The rate of temperature rise was 5 ° C./min, and stirring was performed using an aluminum cup in an air atmosphere.
実施例2~3、比較例1~7
 組成を表1、2に示す組成に変更したこと以外は実施例1と同様にして、硬化物を調製した。
Examples 2 to 3, Comparative Examples 1 to 7
A cured product was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Tables 1 and 2.
<評価>
 実施例及び比較例で得られた硬化物について、下記の評価試験を実施した。結果を表1、2に示す。
<Evaluation>
The following evaluation tests were carried out on the cured products obtained in Examples and Comparative Examples. The results are shown in Tables 1 and 2.
・動的粘弾性測定
測定装置   :非共振強制振動型粘弾性測定装置(Rpheogel-E4000 UBM(株)製)
測定治具   :引張
測定温度範囲 :25℃~300℃
測定モード  :温度依存性
波形     :正弦波
昇温速度   :2.0℃/min
周波数    :10Hz
変位振動   :5μm
試験片のサイズ:長さ30mm×幅4.0mm×厚さ0.40mm
-Dynamic viscoelasticity measuring device: Non-resonant forced vibration type viscoelasticity measuring device (manufactured by Rphysel-E4000 UBM Co., Ltd.)
Measuring jig: Tensile measurement temperature range: 25 ° C to 300 ° C
Measurement mode: Temperature-dependent waveform: Sine wave heating rate: 2.0 ° C / min
Frequency: 10Hz
Displacement vibration: 5 μm
Specimen size: length 30 mm x width 4.0 mm x thickness 0.40 mm
・曲げ試験
測定装置   :インストロン型引張試験(AGS-J,島津製作所(株)製)
規格     :ISO178
試料サイズ  :厚さ1.0mm×幅4.0mm×長さ30.0mm
支点間距離  :17.8mm
試験速度   :2mm/min
・ Bending test measuring device: Instron type tensile test (AGS-J, manufactured by Shimadzu Corporation)
Standard: ISO178
Sample size: Thickness 1.0 mm x Width 4.0 mm x Length 30.0 mm
Distance between fulcrums: 17.8 mm
Test speed: 2 mm / min
曲げ応力  σ(MPa)=3FL/2bh2
曲げひずみ ε=6sh/L2
曲げ弾性率 Ef(MPa)=(σ2-σ1)/(ε2-ε1
F :力(N)
L :支点間距離(mm)
b :試験片の平均幅(mm)
h :試験片の平均厚さ(mm)
s :たわみ(mm)
Bending stress σ (MPa) = 3FL / 2bh 2
Bending strain ε = 6sh / L 2
Flexural modulus Ef (MPa) = (σ 2- σ 1 ) / (ε 2- ε 1 )
F: Force (N)
L: Distance between fulcrums (mm)
b: Mean width (mm) of test piece
h: Average thickness of test piece (mm)
s: Deflection (mm)
・鉛筆硬度試験
規格     :ISO 15184
鉛筆     :HB~6H(Hi-uni MITSU-BISHI社製)
試験速度   :0.5~1.0mm/s
角度     :45度
試料サイズ  :厚さ1.5mm×幅1.5mm×長さ30.0mm
-Pencil hardness test standard: ISO 15184
Pencil: HB-6H (manufactured by Hi-uni MITSU-BISHI)
Test speed: 0.5-1.0 mm / s
Angle: 45 degrees Sample size: Thickness 1.5 mm x Width 1.5 mm x Length 30.0 mm
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 実施例1、比較例1、2、3の動的粘弾性測定におけるガラス転移温度に起因するtanδ、および貯蔵弾性率を示すグラフを図2、曲げ試験における曲げ弾性率と曲げ歪みの関係を示すグラフを図3に示す。 The graph showing the tan δ caused by the glass transition temperature in the dynamic viscoelasticity measurement of Example 1, Comparative Examples 1, 2 and 3 and the storage elastic modulus is shown in FIG. 2, showing the relationship between the flexural modulus and the flexural modulus in the bending test. The graph is shown in FIG.
 メソゲン基を有しないビスフェノールA系エポキシ化合物を配合した比較例1、2、及びメソゲン基を有する成分(A)を含むが成分(B)を配合していない比較例3と比較して、成分(A)及び成分(B)を配合した実施例1では200℃~250℃の領域での貯蔵弾性率低下が抑制され、tanδのピークの最大値、面積の減少が観察された(図2、表1参照)。実施例2、比較例4においても同様な傾向が観察された(表1参照)。また、実施例3、比較例5~6においても、150℃付近で同様な傾向が観察された(表2参照)。
 これは、剛直なシルセスキオキサンの添加によるメソゲン基のネットワーク鎖の運動性の低下に起因して、耐熱性が向上したものと考えられる。
Compared with Comparative Examples 1 and 2 containing a bisphenol A epoxy compound having no mesogen group, and Comparative Example 3 containing a component (A) having a mesogen group but not containing a component (B), the components ( In Example 1 in which A) and the component (B) were blended, the decrease in storage elastic modulus was suppressed in the region of 200 ° C. to 250 ° C., and the maximum value of the peak of tan δ and the decrease in area were observed (FIG. 2, Table). 1). A similar tendency was observed in Example 2 and Comparative Example 4 (see Table 1). Further, in Example 3 and Comparative Examples 5 to 6, a similar tendency was observed at around 150 ° C. (see Table 2).
It is considered that this is because the heat resistance was improved due to the decrease in the motility of the network chain of the mesogen group due to the addition of the rigid silsesquioxane.
 メソゲン基を有しないビスフェノールA系エポキシ化合物を配合した比較例1、2、及びメソゲン基を有する成分(A)を含むが成分(B)を配合していない比較例3と比較して、成分(A)及び成分(B)を配合した実施例1では、より高い曲げ歪みを示した(表1、図3参照)。実施例2、比較例4においても同様な傾向が観察された(表1参照)。
 これは、導入されたシルセスキオキサン側鎖によって、周辺のネットワーク構造が部分的に疎になることで、系内にナノ空孔が形成され、空孔が応力集中点として作用し、周辺部の網目鎖の塑性変形を誘起して、靭性が向上したものと考えられる。この効果は、メソゲン基を有する成分(A)でより顕著に生じるため、大きな歪みが得られたものと考えられる。
Compared with Comparative Examples 1 and 2 containing a bisphenol A epoxy compound having no mesogen group, and Comparative Example 3 containing a component (A) having a mesogen group but not containing a component (B), the components ( In Example 1 in which A) and the component (B) were blended, higher bending strain was exhibited (see Tables 1 and 3). A similar tendency was observed in Example 2 and Comparative Example 4 (see Table 1).
This is because the introduced silsesquioxane side chain partially loosens the peripheral network structure, forming nanopores in the system, and the pores act as stress concentration points in the peripheral part. It is considered that the toughness was improved by inducing the plastic deformation of the network chain. Since this effect occurs more prominently in the component (A) having a mesogen group, it is considered that a large distortion is obtained.
 メソゲン基を有しないビスフェノールA系エポキシ化合物を配合した比較例1、2、及びメソゲン基を有する成分(A)を含むが、成分(B)を配合していない比較例3と比較して、成分(A)及び成分(B)を配合した実施例1では、より高い表面硬度を示した(表1参照)。実施例2、比較例4においても同様な傾向が観察された(表1参照)。
 これは、無機骨格として硬いシルセスキオキサン構造の導入により、硬度が向上したためと考えられる。
Compared with Comparative Examples 1 and 2 containing a bisphenol A epoxy compound having no mesogen group, and Comparative Example 3 containing a component (A) having a mesogen group but not containing a component (B). In Example 1 in which (A) and the component (B) were blended, higher surface hardness was exhibited (see Table 1). A similar tendency was observed in Example 2 and Comparative Example 4 (see Table 1).
It is considered that this is because the hardness was improved by introducing the silsesquioxane structure which is hard as an inorganic skeleton.
 表1、表2に示す各成分は、以下の通りである。
[成分(A)]
・JER 828 EL:商品名「JER 828 EL」、ビスフェノールA型エポキシ樹脂、三菱化学(株)製、下記式で表される化合物(n=0.1)
Figure JPOXMLDOC01-appb-C000063
The components shown in Tables 1 and 2 are as follows.
[Component (A)]
-JER 828 EL: Product name "JER 828 EL", bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, compound represented by the following formula (n = 0.1)
Figure JPOXMLDOC01-appb-C000063
・YX4000:商品名「YX4000」、ビフェニル型エポキシ樹脂、三菱化学(株製)、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000064
-YX4000: Product name "YX4000", biphenyl type epoxy resin, Mitsubishi Chemical Corporation, compound represented by the following formula
Figure JPOXMLDOC01-appb-C000064
・製造例1:製造例1で得られる化合物、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000065
-Production Example 1: The compound obtained in Production Example 1, the compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000065
[成分(B)]
・製造例2:製造例2で得られるエポキシ基含有ポリオルガノシルセスキオキサン
[Component (B)]
Production Example 2: Epoxy group-containing polyorganosylsesquioxane obtained in Production Example 2.
[成分(C)]
・DDM:4,4'-ジアミノジフェニルメタン、東京化成工業(株)製、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000066
[Component (C)]
-DDM: 4,4'-diaminodiphenylmethane, manufactured by Tokyo Chemical Industry Co., Ltd., compound represented by the following formula
Figure JPOXMLDOC01-appb-C000066
・TEPA:テトラエチレンペンタミン、東京化成工業(株)製、下記式で表される化合物
Figure JPOXMLDOC01-appb-C000067
-TEPA: Tetraethylenepentamine, manufactured by Tokyo Chemical Industry Co., Ltd., a compound represented by the following formula
Figure JPOXMLDOC01-appb-C000067
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
Each aspect disclosed herein can be combined with any other feature disclosed herein.
Each configuration and a combination thereof in each embodiment is an example, and the configurations can be added, omitted, replaced, and other changes as appropriate without departing from the gist of the present disclosure. The present disclosure is not limited by embodiment, but only by the scope of the claims.
 上記で説明した本開示のバリエーションを以下に付記する。
[1]メソゲン基を有するエポキシ化合物(A)と、エポキシ基を有するポリオルガノシルセスキオキサン(B)とを含む硬化性組成物。
[2]前記メソゲン基が、下記式で表される基である、上記[1]に記載の硬化性組成物。
 -(-M1-X-)n-M2
(上記式中、Xは、単結合、-CH=N-、-CH=CH-、-CH=C(Me)-、-CH=C(CN)-、-C≡C-、-CH=N(→O)-、-CH=CH-CO-、-N=N-、-N=N(→O)-、-COO-、-CONH-、又は-CO-である。M1およびM2は、それぞれ独立して、芳香族基(例えば、フェニル基(ベンゼン環)、ビフェニル基、ターフェニル基、ベンジル基、ピリミジン基、ピリジン基など);飽和又は不飽和シクロアルキル基(例えば、シクロヘキシル基、シクロヘキセニル基など);又は飽和ヘテロ六員環基(例えば、ピペリジン基、テトラヒドロピラン基など)である。M1およびM2の少なくとも一方は、1つ以上のベンゼン環を含んでいる。nは1~3の整数である。)
[3]前記メソゲン基が、上記式(a1)~(a7)で表される2価の基からなる群から選ばれる少なくとも1種である、上記[1]又は[2]に記載の硬化性組成物。
[4]前記メソゲン基が、上記式(a1)~(a3)で表される2価の基からなる群から選ばれる少なくとも1種(好ましくは上記式(a1)又は(a3)で表される2価の基、より好ましくは上記式(a3)で表される2価の基)である、上記[3]に記載の硬化性組成物。
[5]メソゲン基を有するエポキシ化合物(A)が一分子中に有するメソゲン基の数が1~3個(好ましくは1又は2個、より好ましくは1個)である、上記[1]~[4]のいずれか1つに記載の硬化性組成物。
[6]メソゲン基を有するエポキシ化合物(A)が有するエポキシ基が、エポキシ基(オキシラニル基)、グリシジル基、又は脂環式エポキシ基(好ましくはシクロヘキセンオキシド基)である、上記[1]~[5]のいずれか1つに記載の硬化性組成物。
[7]メソゲン基を有するエポキシ化合物(A)が一分子中に有するエポキシ基の数が、2個以上(好ましくは2~10個、より好ましくは2~5個、さらに好ましくは2個)である、上記[1]~[6]のいずれか1つに記載の硬化性組成物。
[8]メソゲン基を有するエポキシ化合物(A)が、下記式(A)
Figure JPOXMLDOC01-appb-C000068
(式(A)中、Mはメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基を示す。)
で表される化合物を含む、上記[1]~[7]のいずれか1つに記載の硬化性組成物。
[9]前記E1及びE2が、それぞれ独立して、上記式(E1)で表される基又は上記式(E2)で表される基(好ましくは上記式(E1)で表される基)である、上記[8]に記載の硬化性組成物。
[10]前記X1及びX2で示される連結基が、それぞれ独立して、エーテル結合(-O-)、又はエーテル結合の1又は2以上とアルキレン基の1又は2以上とが連結した基(好ましくはエーテル結合(-O-))である、上記[8]又は[9]に記載の硬化性組成物。
[11]前記Mが、上記式(a1)~(a7)で表される2価の基からなる群から選ばれる少なくとも1種である、上記[8]~[10]のいずれか1つに記載の硬化性組成物。
[12]メソゲン基を有するエポキシ化合物(A)が、上記式(A1)~(A3)で表される化合物からなる群から選ばれる少なくとも1種(好ましくは上記式(A1)又は(A3)で表される化合物、より好ましくは上記式(A3)で表される化合物)である、上記[1]~[11]のいずれか1つに記載の硬化性組成物。
[13]メソゲン基を有するエポキシ化合物(A)の含有量(配合量)が、溶媒を除く硬化性組成物(100重量%)に対して、40~99重量%(好ましくは50~95重量%、より好ましくは60~90重量%)である、上記[1]~[12]のいずれか1つに記載の硬化性組成物。
The variations of the present disclosure described above are added below.
[1] A curable composition containing an epoxy compound (A) having a mesogen group and polyorganosylsesquioxane (B) having an epoxy group.
[2] The curable composition according to the above [1], wherein the mesogen group is a group represented by the following formula.
-(-M 1 -X-) n -M 2-
(In the above formula, X is a single bond, -CH = N-, -CH = CH-, -CH = C (Me)-, -CH = C (CN)-, -C≡C-, -CH = N (→ O)-, -CH = CH-CO-, -N = N-, -N = N (→ O)-, -COO-, -CONH-, or -CO-. M 1 and M. 2 are independently aromatic groups (eg, phenyl group (benzene ring), biphenyl group, terphenyl group, benzyl group, pyrimidine group, pyridine group, etc.); saturated or unsaturated cycloalkyl group (eg, cyclohexyl). A group, a cyclohexenyl group, etc.); or a saturated hetero6-membered ring group (eg, a piperidine group, a tetrahydropyran group, etc.); at least one of M 1 and M 2 contains one or more benzene rings. n is an integer of 1 to 3.)
[3] The curability according to the above [1] or [2], wherein the mesogen group is at least one selected from the group consisting of divalent groups represented by the above formulas (a1) to (a7). Composition.
[4] The mesogen group is represented by at least one selected from the group consisting of divalent groups represented by the above formulas (a1) to (a3) (preferably represented by the above formula (a1) or (a3). The curable composition according to the above [3], which is a divalent group, more preferably a divalent group represented by the above formula (a3).
[5] The epoxy compound (A) having a mesogen group has 1 to 3 (preferably 1 or 2, more preferably 1) mesogen groups in one molecule. 4] The curable composition according to any one of.
[6] The epoxy group of the epoxy compound (A) having a mesogen group is an epoxy group (oxylanyl group), a glycidyl group, or an alicyclic epoxy group (preferably a cyclohexene oxide group). 5] The curable composition according to any one of.
[7] The number of epoxy groups contained in one molecule of the epoxy compound (A) having a mesogen group is 2 or more (preferably 2 to 10, more preferably 2 to 5, still more preferably 2). The curable composition according to any one of the above [1] to [6].
[8] The epoxy compound (A) having a mesogen group is represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000068
(In the formula (A), M represents a mesogen group. E 1 and E 2 each independently represent an epoxy group-containing group. X 1 and X 2 each independently represent a single bond or linking group. Shows.)
The curable composition according to any one of the above [1] to [7], which comprises the compound represented by.
[9] The groups E 1 and E 2 are independently represented by the above formula (E1) or the above formula (E2) (preferably the group represented by the above formula (E1)). ), The curable composition according to the above [8].
[10] The linking groups represented by X 1 and X 2 are independently linked with an ether bond (-O-) or one or two or more ether bonds and one or two or more alkylene groups. The curable composition according to the above [8] or [9], which is (preferably an ether bond (—O—)).
[11] The M is any one of the above [8] to [10], which is at least one selected from the group consisting of divalent groups represented by the above formulas (a1) to (a7). The curable composition according to description.
[12] The epoxy compound (A) having a mesogen group is at least one selected from the group consisting of the compounds represented by the above formulas (A1) to (A3) (preferably by the above formula (A1) or (A3). The curable composition according to any one of the above [1] to [11], which is a compound represented by the above, more preferably a compound represented by the above formula (A3)).
[13] The content (blending amount) of the epoxy compound (A) having a mesogen group is 40 to 99% by weight (preferably 50 to 95% by weight) with respect to the curable composition (100% by weight) excluding the solvent. , More preferably 60 to 90% by weight), the curable composition according to any one of the above [1] to [12].
[14]エポキシ基を有するポリオルガノシルセスキオキサン(B)が一分子中に有するエポキシ基の数が、2個以上(好ましくは2~50個、より好ましくは2~30個、さらに好ましくは2~15個)である、上記[1]~[13]のいずれか1つに記載の硬化性組成物。
[15]エポキシ基を有するポリオルガノシルセスキオキサン(B)におけるシロキサン構成単位の全量に対する、エポキシ基を有する単量体単位の割合が、50モル%以上(好ましくは55~100モル%であり、より好ましくは65~100モル%であり、さらに好ましくは80~100モル%であり、さらにより好ましくは90~100モル%)である、上記[1]~[14]のいずれか1つに記載の硬化性組成物。
[16]エポキシ基を有するポリオルガノシルセスキオキサン(B)が、下記式(1)で表される構成単位を有するポリオルガノシルセスキオキサンである、上記[1]~[15]のいずれか1つに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000069
[式(1)中、R1は、エポキシ基を含有する基を示す。]
[17]前記R1が、上記式(1a)で表される基、上記式(1b)で表される基、上記式(1c)で表される基、又は、上記式(1d)で表される基(好ましくは上記式(1a)で表される基、上記式(1b)で表される基、上記式(1c)で表される基、又は上記式(1d)で表される基、より好ましくは上記式(1a)で表される基、又は上記式(1c)で表される基、さらに好ましくは上記式(1c)で表される基)である、上記[16]に記載の硬化性組成物。
[18]エポキシ基を有するポリオルガノシルセスキオキサン(B)が、完全カゴ型及び/又は不完全カゴ型シルセスキオキサン構造を有する、上記[1]~[17]のいずれか1つに記載の硬化性組成物。
[19]エポキシ基を有するポリオルガノシルセスキオキサン(B)の数平均分子量(Mn)が、1000~50000(下限値は、好ましくは1200、より好ましくは1500であり、上限値は、好ましくは10000、より好ましくは8000、さらにより好ましくは3000、さらにより好ましくは2800、さらにより好ましくは2600)である、上記[1]~[18]のいずれか1つに記載の硬化性組成物。
[20]エポキシ基を有するポリオルガノシルセスキオキサン(B)の分子量分散度(Mw/Mn)が、1.0~4.0(下限値は、好ましくは1.0、より好ましくは1.1、さらに好ましくは1.2であり、上限値は、好ましくは4.0、より好ましくは3.0、さらに好ましくは2.5、さらにより好ましくは2.0、さらにより好ましくは1.9)である、上記[1]~[19]のいずれか1つに記載の硬化性組成物。
[21]エポキシ基を有するポリオルガノシルセスキオキサン(B)の含有量(配合量)が、溶媒を除く硬化性組成物の全量(100重量%)に対して、1~50重量%(好ましくは5~30重量%、より好ましくは10~20重量%)である、上記[1]~[20]のいずれか1つに記載の硬化性組成物。
[22]エポキシ基を有するポリオルガノシルセスキオキサン(B)の含有量が、メソゲン基を有するエポキシ化合物(A)及びエポキシ基を有するポリオルガノシルセスキオキサン(B)の全量(100重量%)に対して1~50重量%(好ましくは3~40重量%、より好ましくは5~35重量%)である、上記[1]~[21]のいずれか1つに記載の硬化性組成物。
[14] The number of epoxy groups contained in one molecule of polyorganosylsesquioxane (B) having an epoxy group is 2 or more (preferably 2 to 50, more preferably 2 to 30, and even more preferably. The curable composition according to any one of the above [1] to [13], which is 2 to 15).
[15] The ratio of the monomer unit having an epoxy group to the total amount of the siloxane constituent units in the polyorganosylsesquioxane (B) having an epoxy group is 50 mol% or more (preferably 55 to 100 mol%). , More preferably 65 to 100 mol%, further preferably 80 to 100 mol%, even more preferably 90 to 100 mol%), to any one of the above [1] to [14]. The curable composition according to description.
[16] Any of the above [1] to [15], wherein the polyorganosylsesquioxane (B) having an epoxy group is a polyorganosylsesquioxane having a structural unit represented by the following formula (1). The curable composition according to one.
Figure JPOXMLDOC01-appb-C000069
[In formula (1), R 1 represents a group containing an epoxy group. ]
[17] The R 1 is represented by the group represented by the above formula (1a), the group represented by the above formula (1b), the group represented by the above formula (1c), or the above formula (1d). (Preferably a group represented by the above formula (1a), a group represented by the above formula (1b), a group represented by the above formula (1c), or a group represented by the above formula (1d). , More preferably a group represented by the above formula (1a), or a group represented by the above formula (1c), more preferably a group represented by the above formula (1c)). Curable composition.
[18] The polyorganosilsesquioxane (B) having an epoxy group has a complete cage type and / or an incomplete cage type silsesquioxane structure in any one of the above [1] to [17]. The curable composition according to description.
[19] The number average molecular weight (Mn) of the polyorganosylsesquioxane (B) having an epoxy group is 1000 to 50,000 (the lower limit is preferably 1200, more preferably 1500, and the upper limit is preferably 1500. The curable composition according to any one of the above [1] to [18], which is 10000, more preferably 8000, even more preferably 3000, even more preferably 2800, and even more preferably 2600).
[20] The molecular weight dispersion (Mw / Mn) of the polyorganosylsesquioxane (B) having an epoxy group is 1.0 to 4.0 (the lower limit is preferably 1.0, more preferably 1. 1, more preferably 1.2, and the upper limit is preferably 4.0, more preferably 3.0, even more preferably 2.5, even more preferably 2.0, even more preferably 1.9. ), The curable composition according to any one of the above [1] to [19].
[21] The content (blending amount) of the polyorganosylsesquioxane (B) having an epoxy group is 1 to 50% by weight (preferably) based on the total amount (100% by weight) of the curable composition excluding the solvent. The curable composition according to any one of the above [1] to [20], wherein is 5 to 30% by weight, more preferably 10 to 20% by weight).
[22] The content of the polyorganosylsesquioxane (B) having an epoxy group is the total amount (100% by weight) of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group. The curable composition according to any one of the above [1] to [21], which is 1 to 50% by weight (preferably 3 to 40% by weight, more preferably 5 to 35% by weight). ..
[23]さらに、硬化剤(C)を含む、上記[1]~[22]のいずれか1つに記載の硬化性組成物。
[24]硬化剤(C)が、アミン系硬化剤(C1)、酸無水物系硬化剤(C2)、ポリアミド系硬化剤(C3)、ポリメルカプタン系硬化剤(C4)、フェノール系硬化剤(C5)、及びポリカルボン酸系硬化剤(C6)からなる群から選ばれる少なくとも1種である、上記[23]に記載の硬化性組成物。
[25]硬化剤(C)が、アミン系硬化剤(C1)である、上記[24]に記載の硬化性組成物。
[26]アミン系硬化剤(C1)が、上記式(C1a)で表される化合物、又は上記式(C1b)で表される化合物(好ましくは上記式(C1a)で表される化合物)である、上記[24]又は[25]に記載の硬化性組成物。
[27]硬化剤(C)の含有量(配合量)が、溶媒を除く硬化性組成物に含まれる硬化性化合物の全量100重量部に対して、1~50重量部(好ましくは5~30重量部)である、上記[23]~[26]のいずれか1つに記載の硬化性組成物。
[28]アミン系硬化剤(C1)の含有量が、硬化性組成物に含まれるエポキシ基1当量当たり、アミン系硬化剤(C1)が有するアミノ基の活性水素が0.1~10当量(好ましくは0.3~5当量)となる量である、上記[25]~[27]のいずれか1つに記載の硬化性組成物。
[29]さらに、硬化促進剤(D)を含む、上記[23]~[28]のいずれか1つに記載の硬化性組成物。
[30]硬化促進剤(D)の含有量(配合量)が、硬化性組成物に含まれる硬化性化合物の全量100重量部に対して、0.01~5重量部(好ましくは0.03~3重量部、より好ましくは0.03~2重量部)である、上記[29]に記載の硬化性組成物。
[31]さらに、硬化触媒を含む、上記[1]~[22]のいずれか1つに記載の硬化性組成物。
[32]硬化触媒の含有量(配合量)が、メソゲン基を有するエポキシ化合物(A)とエポキシ基を有するポリオルガノシルセスキオキサン(B)の合計100重量部に対して、0.01~3.0重量部(好ましくは0.05~3.0重量部、より好ましくは0.1~1.0重量部、さらに好ましくは0.3~1.0重量)である、上記[31]に記載の硬化性組成物。
[23] The curable composition according to any one of the above [1] to [22], further comprising a curing agent (C).
[24] The curing agent (C) is an amine-based curing agent (C1), an acid anhydride-based curing agent (C2), a polyamide-based curing agent (C3), a polymercaptan-based curing agent (C4), and a phenol-based curing agent (C). The curable composition according to the above [23], which is at least one selected from the group consisting of C5) and a polycarboxylic acid-based curing agent (C6).
[25] The curable composition according to the above [24], wherein the curing agent (C) is an amine-based curing agent (C1).
[26] The amine-based curing agent (C1) is a compound represented by the above formula (C1a) or a compound represented by the above formula (C1b) (preferably a compound represented by the above formula (C1a)). , The curable composition according to the above [24] or [25].
[27] The content (blending amount) of the curing agent (C) is 1 to 50 parts by weight (preferably 5 to 30 parts by weight) with respect to 100 parts by weight of the total amount of the curing compound contained in the curable composition excluding the solvent. The curable composition according to any one of the above [23] to [26], which is (part by weight).
[28] The content of the amine-based curing agent (C1) is 0.1 to 10 equivalents of the active hydrogen of the amino group contained in the amine-based curing agent (C1) per 1 equivalent of the epoxy group contained in the curable composition (C1). The curable composition according to any one of the above [25] to [27], which is preferably an amount (preferably 0.3 to 5 equivalents).
[29] The curable composition according to any one of the above [23] to [28], which further comprises a curing accelerator (D).
[30] The content (blending amount) of the curing accelerator (D) is 0.01 to 5 parts by weight (preferably 0.03) with respect to 100 parts by weight of the total amount of the curable compound contained in the curable composition. The curable composition according to the above [29], which is ~ 3 parts by weight, more preferably 0.03 to 2 parts by weight).
[31] The curable composition according to any one of the above [1] to [22], further comprising a curing catalyst.
[32] The content (blending amount) of the curing catalyst is 0.01 to 100 parts by weight in total of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group. 3.0 parts by weight (preferably 0.05 to 3.0 parts by weight, more preferably 0.1 to 1.0 parts by weight, still more preferably 0.3 to 1.0 weight), the above [31]. The curable composition according to.
[33]上記[1]~[32]のいずれか1つに記載の硬化性組成物の硬化物。
[34]動的粘弾性測定を行った場合のtanδのピークで特定されるガラス転移点が、150℃以上(好ましくは160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上、さらにより好ましくは190℃以上、さらにより好ましくは200℃以上、さらにより好ましくはtanδの明瞭なピークは観察されない)である、上記[33]に記載の硬化物。
[35]曲げ試験を行った場合の曲げ歪みが、9.0%以上(好ましくは9.1%以上、より好ましくは9.2%MPa以上、さらにより好ましくは9.3%以上、さらにより好ましくは9.4%以上、さらにより好ましくは9.5%以上)である、上記[33]又は[34]に記載の硬化物。
[36]上記[33]~[35]のいずれか1つに記載の硬化物を備える電子機器。
[33] The cured product of the curable composition according to any one of the above [1] to [32].
[34] The glass transition point specified by the peak of tan δ when dynamic viscoelasticity measurement is performed is 150 ° C. or higher (preferably 160 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, further. The cured product according to the above [33], more preferably 190 ° C. or higher, even more preferably 200 ° C. or higher, and even more preferably no clear peak of tan δ is observed).
[35] The bending strain when the bending test is performed is 9.0% or more (preferably 9.1% or more, more preferably 9.2% MPa or more, still more preferably 9.3% or more, still more. The cured product according to the above [33] or [34], which is preferably 9.4% or more, and even more preferably 9.5% or more).
[36] An electronic device comprising the cured product according to any one of the above [33] to [35].
 本開示の硬化性組成物は、電子機器、接着剤、塗料などの様々な産業用途で有用であり、特に、絶縁材料、プリント配線基板、封止材、積層板、プリプレグ、アンダーフィルなどの電子機器分野の先端材料としての好適に利用することができる。 The curable compositions of the present disclosure are useful in a variety of industrial applications such as electronic devices, adhesives, paints and the like, especially electronic materials such as insulating materials, printed wiring boards, encapsulants, laminates, prepregs and underfills. It can be suitably used as an advanced material in the field of equipment.

Claims (11)

  1.  メソゲン基を有するエポキシ化合物(A)と、エポキシ基を有するポリオルガノシルセスキオキサン(B)とを含む硬化性組成物。 A curable composition containing an epoxy compound (A) having a mesogen group and polyorganosylsesquioxane (B) having an epoxy group.
  2.  エポキシ基を有するポリオルガノシルセスキオキサン(B)の含有量が、メソゲン基を有するエポキシ化合物(A)及びエポキシ基を有するポリオルガノシルセスキオキサン(B)の全量(100重量%)に対して1~50重量%である請求項1に記載の硬化性組成物。 The content of the polyorganosylsesquioxane (B) having an epoxy group is based on the total amount (100% by weight) of the epoxy compound (A) having a mesogen group and the polyorganosylsesquioxane (B) having an epoxy group. The curable composition according to claim 1, which is 1 to 50% by weight.
  3.  さらに、硬化剤(C)を含む請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, further comprising a curing agent (C).
  4.  前記硬化剤(C)が、アミン系硬化剤(C1)である請求項3に記載の硬化性組成物。 The curable composition according to claim 3, wherein the curing agent (C) is an amine-based curing agent (C1).
  5.  アミン系硬化剤(C1)の含有量が、硬化性組成物に含まれるエポキシ基1当量当たり、アミン系硬化剤(C1)が有するアミノ基の活性水素が0.1~10当量となる量である請求項4に記載の硬化性組成物。 The content of the amine-based curing agent (C1) is such that the active hydrogen of the amino group contained in the amine-based curing agent (C1) is 0.1 to 10 equivalents per 1 equivalent of the epoxy group contained in the curable composition. The curable composition according to claim 4.
  6.  メソゲン基を有するエポキシ化合物(A)が、下記式(A)
    Figure JPOXMLDOC01-appb-C000001
    (式(A)中、Mはメソゲン基を示す。E1及びE2は、それぞれ独立に、エポキシ基を含有する基を示す。X1及びX2は、それぞれ独立に、単結合又は連結基を示す。)
    で表される化合物を含む請求項1~5のいずれか1項に記載の硬化性組成物。
    The epoxy compound (A) having a mesogen group has the following formula (A).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (A), M represents a mesogen group. E 1 and E 2 each independently represent an epoxy group-containing group. X 1 and X 2 each independently represent a single bond or linking group. Shows.)
    The curable composition according to any one of claims 1 to 5, which comprises the compound represented by.
  7.  前記Mが、下記式(a1)~(a7)で表される2価の基からなる群から選ばれる少なくとも1種である請求項6に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(a1)中、Ra及びRbは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n1及びn2は、それぞれ独立に、0~4の整数を示す。n1が2以上の場合、複数のRaは、同一であっても異なっていてもよい。n2が2以上の場合、複数のRbは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(a2)中、Rc、Rd及びReは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n3、n4及びn5は、それぞれ独立に、0~4の整数を示す。n3が2以上の場合、複数のRcは、同一であっても異なっていてもよい。n4が2以上の場合、複数のRdは、同一であっても異なっていてもよい。n5が2以上の場合、複数のReは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(a3)中、Rf、Rg及びRhは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n6、n7及びn8は、それぞれ独立に、0~4の整数を示す。n6が2以上の場合、複数のRfは、同一であっても異なっていてもよい。n7が2以上の場合、複数のRgは、同一であっても異なっていてもよい。n8が2以上の場合、複数のRhは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(a4)中、Ri及びRjは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n9及びn10は、それぞれ独立に、0~4の整数を示す。n9が2以上の場合、複数のRiは、同一であっても異なっていてもよい。n10が2以上の場合、複数のRjは、同一であっても異なっていてもよい。Rkは、水素原子、メチル基、又はシアノ基である。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(a5)中、Rl及びRmは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n11及びn12は、それぞれ独立に、0~4の整数を示す。n11が2以上の場合、複数のRlは、同一であっても異なっていてもよい。n12が2以上の場合、複数のRmは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(a6)中、Rn及びRoは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n13及びn14は、それぞれ独立に、0~4の整数を示す。n13が2以上の場合、複数のRnは、同一であっても異なっていてもよい。n14が2以上の場合、複数のRoは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(a7)中、Rp及びRqは、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖状のアルキル基又はハロゲン原子を示す。n15及びn16は、それぞれ独立に、0~4の整数を示す。n15が2以上の場合、複数のRpは、同一であっても異なっていてもよい。n16が2以上の場合、複数のRqは、同一であっても異なっていてもよい。波線は、-X1-E1又は-X2-E2で表される基との結合部位を示す。)
    The curable composition according to claim 6, wherein M is at least one selected from the group consisting of divalent groups represented by the following formulas (a1) to (a7).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (a1), R a and R b each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n1 and n2 independently represent 0 to 0 to n2, respectively. If .n1 showing 4 of the integer is 2 or more, plural R a, if may be the same or different .n2 is 2 or more, plural R b, optionally substituted by one or more identical The wavy line may indicate the binding site with the group represented by -X 1- E 1 or -X 2- E 2. )
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (a2), R c , R d and R e independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. N3, n4 and n5 are n3, n4 and n5, respectively. independently, when the .n3 represents an integer of 0 to 4 is 2 or more, the plurality of R c, if may be the same or different .n4 is 2 or more, plural R d, the same If may be different even .n5 is 2 or more, plural R e, may be the same or different. wavy line is a -X 1 -E 1 or -X 2 -E 2 Indicates the binding site with the represented group.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (a3), R f , R g and R h independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms. N6, n7 and n8 are n6, n7 and n8, respectively. Independently, it indicates an integer of 0 to 4. When n6 is 2 or more, a plurality of R fs may be the same or different. When n7 is 2 or more, a plurality of R g are the same. It may be different. If n8 is 2 or more, a plurality of R h may be the same or different. The wavy line is -X 1- E 1 or -X 2- E 2 . Indicates the binding site with the represented group.)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (a4), R i and R j each independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n9 and n10 independently represent 0 to 0 to n10, respectively. If .n9 showing 4 of the integer is 2 or more, plural R i, if may be the same or different .n10 is 2 or more, plural R j, are be the same or different R k may be a hydrogen atom, a methyl group, or a cyano group. A wavy line indicates a bond site with a group represented by -X 1- E 1 or -X 2- E 2. )
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (a5), R l and R m independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n11 and n12 independently represent 0 to 0 to n12, respectively. Indicates an integer of 4. If n11 is 2 or more, the plurality of R l may be the same or different. If n12 is 2 or more, the plurality of R m may be the same or different. The wavy line may indicate the binding site with the group represented by -X 1- E 1 or -X 2- E 2. )
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (a6), R n and R o are each independently .N13 and n14 represents a straight-chain or branched alkyl group or a halogen atom having 1 to 6 carbon atoms are each independently 0 to If .n13 showing 4 of the integer is 2 or more, plural R n, if may be the same or different .n14 is 2 or more, plural R o, not be the same or different Wavy lines may indicate binding sites with groups represented by -X 1- E 1 or -X 2- E 2. )
    Figure JPOXMLDOC01-appb-C000008
    (In the formula (a7), R p and R q independently represent a linear or branched alkyl group or halogen atom having 1 to 6 carbon atoms, and n15 and n16 independently represent 0 to 0 to n16, respectively. If .n15 showing 4 of the integer is 2 or more, plural R p, if may be the same or different .n16 is 2 or more, plural R q, optionally substituted by one or more identical Wavy lines may indicate binding sites with groups represented by -X 1- E 1 or -X 2- E 2. )
  8.  前記エポキシ基を有するポリオルガノシルセスキオキサン(B)が、下記式(1)で表される構成単位を有するポリオルガノシルセスキオキサンである、請求項1~7のいずれか1項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000009
    [式(1)中、R1は、エポキシ基を含有する基を示す。]
    The method according to any one of claims 1 to 7, wherein the polyorganosylsesquioxane (B) having an epoxy group is a polyorganosylsesquioxane having a structural unit represented by the following formula (1). Curable composition.
    Figure JPOXMLDOC01-appb-C000009
    [In formula (1), R 1 represents a group containing an epoxy group. ]
  9.  前記R1が、下記式(1a)
    Figure JPOXMLDOC01-appb-C000010
    [式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、下記式(1b)
    Figure JPOXMLDOC01-appb-C000011
    [式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、下記式(1c)
    Figure JPOXMLDOC01-appb-C000012
    [式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、又は、下記式(1d)
    Figure JPOXMLDOC01-appb-C000013
    [式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基である請求項8に記載の硬化性組成物。
    The R 1 is the following formula (1a).
    Figure JPOXMLDOC01-appb-C000010
    [In formula (1a), R 1a represents a linear or branched alkylene group. ]
    The group represented by, the following formula (1b)
    Figure JPOXMLDOC01-appb-C000011
    [In formula (1b), R 1b represents a linear or branched alkylene group. ]
    The group represented by the following formula (1c)
    Figure JPOXMLDOC01-appb-C000012
    [In formula (1c), R 1c represents a linear or branched alkylene group. ]
    The group represented by or the following formula (1d)
    Figure JPOXMLDOC01-appb-C000013
    [In formula (1d), R 1d represents a linear or branched alkylene group. ]
    The curable composition according to claim 8, which is a group represented by.
  10.  請求項1~9のいずれか1項に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to any one of claims 1 to 9.
  11.  請求項10記載の硬化物を備える電子機器。 An electronic device including the cured product according to claim 10.
PCT/JP2020/018978 2019-05-13 2020-05-12 Curable composition and cured product of same WO2020230786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021519441A JPWO2020230786A1 (en) 2019-05-13 2020-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019090991 2019-05-13
JP2019-090991 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230786A1 true WO2020230786A1 (en) 2020-11-19

Family

ID=73289462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018978 WO2020230786A1 (en) 2019-05-13 2020-05-12 Curable composition and cured product of same

Country Status (2)

Country Link
JP (1) JPWO2020230786A1 (en)
WO (1) WO2020230786A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230152A1 (en) * 2020-05-11 2021-11-18 学校法人関西大学 Polyorganosilsesquioxane, curable composition containing same, and cured product thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302771A (en) * 2006-05-10 2007-11-22 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing
JP2014152306A (en) * 2013-02-13 2014-08-25 Ajinomoto Co Inc Resin composition
JP2015209529A (en) * 2014-04-30 2015-11-24 日東電工株式会社 Heat-conductive polymer composition and heat-conductive molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302771A (en) * 2006-05-10 2007-11-22 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing
JP2014152306A (en) * 2013-02-13 2014-08-25 Ajinomoto Co Inc Resin composition
JP2015209529A (en) * 2014-04-30 2015-11-24 日東電工株式会社 Heat-conductive polymer composition and heat-conductive molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230152A1 (en) * 2020-05-11 2021-11-18 学校法人関西大学 Polyorganosilsesquioxane, curable composition containing same, and cured product thereof

Also Published As

Publication number Publication date
JPWO2020230786A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN107709401B (en) Curable composition and molded article
CN107683299B (en) Curable composition, adhesive sheet, cured product, laminate, and method and device for producing adhesive sheet
JP6595813B2 (en) Polyorganosilsesquioxane
WO2016204115A1 (en) Process for producing cured object, cured object, and layered product including said cured object
WO2021230152A1 (en) Polyorganosilsesquioxane, curable composition containing same, and cured product thereof
CN110637074B (en) Curable composition for adhesive, adhesive sheet, cured product, laminate, and device
JP6957132B2 (en) Silsesquioxane
WO2014181787A1 (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
JP2017008147A (en) Polyorganosilsesquioxane, curable composition, adhesive sheet, laminate and device
JP6580878B2 (en) Polyorganosilsesquioxane, curable composition, hard coat film, and cured product
US11149118B2 (en) Insulating film forming composition, insulating film, and semiconductor device provided with insulating film
JP7161013B2 (en) Curable composition, adhesive sheet, cured product, laminate, method for producing adhesive sheet, and apparatus
JP6740226B2 (en) Curable composition
JP6847597B2 (en) Silsesquioxane
JP2017008145A (en) Curable composition, adhesive sheet, laminate and device
WO2020230786A1 (en) Curable composition and cured product of same
JP7069449B2 (en) Curable compositions, adhesive sheets, cured products, laminates, and equipment
JP6752096B2 (en) Silsesquioxane, curable compositions, cured products, and hard coat films
JP6595812B2 (en) Polyorganosilsesquioxane, curable composition, hard coat film, and cured product
WO2022044967A1 (en) Polyorgano silsesquioxane, curable composition, cured product, hard coat film, adhesive sheet, and laminate
TW202402865A (en) Tetramethylbiphenol epoxy resin and method for preparing the same, tetramethylbiphenol epoxy resin composition, and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20804909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20804909

Country of ref document: EP

Kind code of ref document: A1