WO2020230738A1 - 熱交換器、ヒートポンプ装置および熱交換器の製造方法 - Google Patents

熱交換器、ヒートポンプ装置および熱交換器の製造方法 Download PDF

Info

Publication number
WO2020230738A1
WO2020230738A1 PCT/JP2020/018729 JP2020018729W WO2020230738A1 WO 2020230738 A1 WO2020230738 A1 WO 2020230738A1 JP 2020018729 W JP2020018729 W JP 2020018729W WO 2020230738 A1 WO2020230738 A1 WO 2020230738A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
header
clad layer
gas
refrigerant
Prior art date
Application number
PCT/JP2020/018729
Other languages
English (en)
French (fr)
Inventor
甲樹 山田
智己 廣川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20805257.1A priority Critical patent/EP3960349A4/en
Priority to US17/610,076 priority patent/US20220212278A1/en
Priority to CN202080033567.2A priority patent/CN113795718A/zh
Publication of WO2020230738A1 publication Critical patent/WO2020230738A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • This disclosure relates to a heat exchanger, a heat pump device, and a method for manufacturing a heat exchanger.
  • a heat exchanger configured by connecting a heat transfer tube through which a refrigerant flows to a header has been used.
  • a header formed by laminating a plurality of plate-shaped members is used.
  • a bare material to which a brazing material is not applied and a clad material to which a brazing material is applied to the front and back surfaces are alternately laminated, and these members are joined by brazing.
  • the brazing material located far away from the heat source is less likely to melt than the brazing material located near the heat source used for heat input, resulting in poor brazing. May occur.
  • An object of the present disclosure is to provide a method for manufacturing a heat exchanger, a heat pump device, and a heat exchanger capable of suppressing brazing defects of a header composed of a plurality of members.
  • the heat exchanger includes a header and a plurality of heat transfer tubes connected to the header.
  • the header has a plurality of members including a first member, a second member, and a third member to be brazed.
  • the ratio of the melt in the wax layer between the second member and the third member at a predetermined temperature is between the wax layer between the first member and the second member and / or between the first member and the third member. It is larger than the ratio of the melt in the wax layer at a predetermined temperature.
  • only one of the wax layer between the first member and the second member and the wax layer between the first member and the third member may be present, or both are present. You may be.
  • the predetermined temperature referred to here is not particularly limited, but for example, the temperature at which the melt is generated in any of the wax layer between the second member and the third member and the wax layer between the first member and the second member. It may be the temperature at which the melt is generated in any of the wax layer between the second member and the third member and the wax layer between the first member and the third member. The temperature at which the melt is generated in any of the wax layer between the second member and the third member, the wax layer between the first member and the second member, and the wax layer between the first member and the third member. It may be. Such a temperature may be, for example, 580 ° C. or higher, or 590 ° C. or higher.
  • the upper limit of the predetermined temperature is not particularly limited, but may be, for example, 660 ° C or lower, and may be 630 ° C or lower.
  • the ambient temperature in these furnaces is not particularly limited, but may be, for example, 1000 ° C. or higher and 1300 ° C. or lower.
  • the longitudinal direction of the header may be the vertical direction or the horizontal direction in the construction state of the heat exchanger.
  • the temperature of the wax layer between the second member and the third member at the time of brazing is the temperature of the wax layer between the first member and the second member and / or the first member and the third member. Even when the temperature of the brazing layer between the two members is lower than that of the brazing layer, it is possible to improve the brazing joint state between the second member and the third member.
  • the heat exchanger includes a header and a plurality of heat transfer tubes connected to the header.
  • the header has a plurality of members including a first member, a second member, and a third member to be brazed.
  • the silicon content in the wax layer between the second member and the third member is in the wax layer between the first member and the second member and / or in the wax layer between the first member and the third member. Higher than the silicon content.
  • the silicon content of the silicon alloy in the brazing layer between the second member and the third member is between the brazing layer between the first member and the second member and / or between the first member and the third member. It is preferably higher than the silicon content of the silicon alloy in the wax layer of.
  • the predetermined temperature referred to here is not particularly limited, but for example, the temperature at which the melt is generated in any of the wax layer between the second member and the third member and the wax layer between the first member and the second member. It may be the temperature at which the melt is generated in any of the wax layer between the second member and the third member and the wax layer between the first member and the third member. The temperature at which the melt is generated in any of the wax layer between the second member and the third member, the wax layer between the first member and the second member, and the wax layer between the first member and the third member. It may be. Such a temperature may be, for example, 580 ° C. or higher, or 590 ° C. or higher.
  • the upper limit of the predetermined temperature is not particularly limited, but may be, for example, 660 ° C or lower, and may be 630 ° C or lower.
  • the ambient temperature in these furnaces is not particularly limited, but may be, for example, 1000 ° C. or higher and 1300 ° C. or lower.
  • the temperature of the wax layer between the second member and the third member at the time of brazing is the temperature of the wax layer between the first member and the second member and / or the first member and the third member. Even when the temperature of the brazing layer between the two members is lower than that of the brazing layer, it is possible to improve the brazing joint state between the second member and the third member.
  • the heat exchanger according to the third aspect is the heat exchanger of the second aspect, and the ratio of the melt in the wax layer between the second member and the third member at a predetermined temperature is the ratio between the first member and the second member. It is larger than the ratio of the melt in the wax layer between the members and / or the wax layer between the first member and the third member at a predetermined temperature.
  • the temperature of the wax layer between the second member and the third member at the time of brazing is the temperature of the wax layer between the first member and the second member and / or the first member and the third member. Even when the temperature of the brazing layer between the two members is lower than that of the brazing layer, it is possible to improve the brazing joint state between the second member and the third member.
  • the heat exchanger according to the fourth aspect is any of the heat exchangers from the first aspect to the third aspect, and the wax layer between the second member and the third member is the first member and the second member. It is arranged inside the wax layer between and / or the wax layer between the first member and the third member.
  • the brazing layer between the second member and the third member is a brazing layer between the first member and the second member and / or a brazing layer between the first member and the third member.
  • the heat input to the wax layer between the second member and the third member at the time of brazing is the wax layer and / or the first member between the first member and the second member. Even when the number of layers is less than that between the second member and the third member, it is possible to improve the brazed joint state between the second member and the third member.
  • the heat exchanger according to the fifth aspect is any of the heat exchangers from the first aspect to the fourth aspect, and the first member has a plate-shaped first portion.
  • the first portion has a plurality of first openings into which heat transfer tubes are inserted.
  • the third member is a plate-shaped member having a plurality of second openings into which heat transfer tubes are inserted. The first portion and the third member are laminated in the plate thickness direction.
  • This heat exchanger makes it possible to join the inserted heat transfer tubes by brazing at the first opening of the first part of the first member.
  • the first member and the third member in a laminated manner in the plate thickness direction, the total thickness is secured, so that the strength of the header can be increased. Therefore, since it is possible to form the first member thinly while ensuring the strength of the header, it is possible to reduce the friction between the heat transfer tube peripheral surface and the first opening that may occur when the heat transfer tube is inserted. Becomes possible.
  • the heat exchanger according to the sixth aspect is the heat exchanger of the fifth aspect, and the contour of each first opening is located inside the contour of each second opening in the direction in which the heat transfer tube extends. ..
  • This heat exchanger makes it possible to move excess brazing material near the end of the heat transfer tube to a region outside the heat transfer tube and inside the second opening of the third member during brazing. .. Therefore, it is possible to prevent the flow path of the heat transfer tube from being blocked by the brazing material.
  • the heat exchanger according to the seventh aspect is any of the heat exchangers from the first aspect to the sixth aspect, and the first member, the second member, and the third member all contain aluminum or an aluminum alloy. There is.
  • the heat exchanger according to the eighth viewpoint is any of the heat exchangers from the first viewpoint to the seventh viewpoint, and the thickness of each of the first member, the second member, and the third member is 3 mm or less.
  • the thickness of the first member, the second member, and the third member is 3 mm or less, it is easy to process each member into a specific shape.
  • the heat pump device is equipped with any heat exchanger from the first aspect to the eighth aspect.
  • the method for manufacturing a heat exchanger according to the tenth aspect is a method for manufacturing a heat exchanger including a header and a plurality of heat transfer tubes connected to the header, which includes a step of laminating, a step of brazing, and a step of brazing. It has.
  • the header has a first member, a second member, and a third member.
  • the first member has a clad layer.
  • the third member has a clad layer.
  • the first member, the second member, and the third member are laminated with the clad layer of the first member as the second member side and the clad layer of the third member as the second member side.
  • the first member, the second member, and the third member are heated, and the second member and the third member are brazed while brazing the first member and the second member.
  • the proportion of the melt at the predetermined temperature of the clad layer of the third member is higher than the proportion of the melt at the predetermined temperature of the clad layer of the first member.
  • a clad layer may be provided not only in the first member and the third member but also in the second member.
  • the predetermined temperature referred to here is not particularly limited, but may be, for example, a temperature at which a melt is generated in both the clad layer of the first member and the clad layer of the third member, and may be, for example, 580 ° C. or higher. It may be 590 ° C. or higher.
  • the upper limit of the predetermined temperature is not particularly limited, but may be, for example, 660 ° C or lower, and may be 630 ° C or lower.
  • the ambient temperature in these furnaces is not particularly limited, but may be, for example, 1000 ° C. or higher and 1300 ° C. or lower.
  • the temperature of the clad layer of the third member when the first member, the second member, and the third member are heated and brazed is higher than the temperature of the clad layer of the first member. Even if the temperature is low, it is possible to obtain a heat exchanger in which the brazed joint state of the second member and the third member is good.
  • the method for manufacturing a heat exchanger according to the eleventh aspect is a method for manufacturing a heat exchanger including a header and a plurality of heat transfer tubes connected to the header, which includes a step of laminating, a step of brazing, and a step of brazing. It has.
  • the header has a fifth member, a sixth member, and a seventh member.
  • the seventh member has a first clad layer and a second clad layer. In the step of laminating, the fifth member, the sixth member, and the seventh member are laminated with the first clad layer on the fifth member side and the second clad layer on the sixth member side.
  • the fifth member, the sixth member, and the seventh member are heated, and while the fifth member and the seventh member are brazed, the sixth member and the seventh member are connected via the second clad layer. Braze.
  • the proportion of the melt at the predetermined temperature of the second clad layer is higher than the proportion of the melt at the predetermined temperature of the first clad layer.
  • the clad layer may be provided not only in the 7th member but also in the 5th and 6th members.
  • the predetermined temperature referred to here is not particularly limited, but may be, for example, a temperature at which a melt is generated in both the first clad layer and the second clad layer, for example, 580 ° C. or higher, and 590 ° C. or higher. It may be.
  • the upper limit of the predetermined temperature is not particularly limited, but may be, for example, 660 ° C or lower, and may be 630 ° C or lower.
  • the ambient temperature in these furnaces is not particularly limited, but may be, for example, 1000 ° C. or higher and 1300 ° C. or lower.
  • this heat exchanger when the temperature of the second clad layer is lower than the temperature of the first clad layer when the fifth member, the sixth member, and the seventh member are heated and brazed. Even if there is, it is possible to obtain a heat exchanger in which the brazed joint state of the sixth member and the seventh member is good.
  • FIG. 1 It is a schematic block diagram of an air conditioner. It is a schematic perspective view of an outdoor heat exchanger. It is a partially enlarged view of the heat exchange part of an outdoor heat exchanger. It is the schematic which shows the attachment state of the heat transfer fin to the flat tube in a heat exchange part. It is explanatory drawing which shows the state of the refrigerant flow in the outdoor heat exchanger which functions as the evaporator of the refrigerant. It is a side view external configuration view which shows the state which the main gas refrigerant pipe connection part is connected to a gas header. It is a top view sectional view of a gas header.
  • FIG. 1 shows the state which the main gas refrigerant pipe connection part and a flat pipe are connected to a gas header.
  • It is a plan view decomposition sectional view which shows the clad layer of each member of a gas header.
  • FIG. 5 is a plan sectional view showing a state in which a main gas refrigerant pipe connecting portion and a flat pipe are connected to a gas header in the modified example A. It is a projection drawing which shows the positional relationship of each opening when the 2nd member is seen from the rear side in the modification A. It is sectional drawing in plan view of the gas header in the modification B. It is a schematic exploded perspective view of the header in the modification C.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 having a heat exchanger according to an embodiment of the present disclosure as an outdoor heat exchanger 11.
  • the air conditioner 1 (an example of a heat pump device) is a device that cools and heats the air-conditioned space by performing a vapor compression refrigeration cycle.
  • the air-conditioned space is, for example, a space inside a building such as an office building, a commercial facility, or a residence.
  • the air conditioner is only an example of a refrigerant cycle device, and the heat exchanger of the present disclosure is used for other refrigerant cycle devices such as a refrigerator, a freezer, a water heater, a floor heater, and the like. You may.
  • the air conditioner 1 mainly controls the outdoor unit 2, the indoor unit 9, the liquid refrigerant connecting pipe 4 and the gas refrigerant connecting pipe 5, and the equipment constituting the outdoor unit 2 and the indoor unit 9. It has a control unit 3 and a control unit 3.
  • the liquid refrigerant connecting pipe 4 and the gas refrigerant connecting pipe 5 are refrigerant connecting pipes that connect the outdoor unit 2 and the indoor unit 9.
  • the outdoor unit 2 and the indoor unit 9 are connected to each other via the liquid refrigerant connecting pipe 4 and the gas refrigerant connecting pipe 5, thereby forming the refrigerant circuit 6.
  • the air conditioner 1 has one indoor unit 9, but the air conditioner 1 is connected to the outdoor unit 2 in parallel by the liquid refrigerant connecting pipe 4 and the gas refrigerant connecting pipe 5. It may have a plurality of indoor units 9. Further, the air conditioner 1 may have a plurality of outdoor units 2. Further, the air conditioner 1 may be an integrated air conditioner in which the outdoor unit 2 and the indoor unit 9 are integrally formed.
  • Outdoor unit 2 is installed outside the air-conditioned space, for example, on the roof of a building or near the wall surface of a building.
  • the outdoor unit 2 mainly has an accumulator 7, a compressor 8, a four-way switching valve 10, an outdoor heat exchanger 11, an expansion mechanism 12, a liquid side closing valve 13, a gas side closing valve 14, and an outdoor fan 16. (See Fig. 1).
  • the outdoor unit 2 mainly includes a suction pipe 17, a discharge pipe 18, a first gas refrigerant pipe 19, a liquid refrigerant pipe 20, and a second gas refrigerant pipe 21 as refrigerant pipes for connecting various devices constituting the refrigerant circuit 6.
  • the suction pipe 17 connects the four-way switching valve 10 and the suction side of the compressor 8.
  • the suction pipe 17 is provided with an accumulator 7.
  • the discharge pipe 18 connects the discharge side of the compressor 8 and the four-way switching valve 10.
  • the first gas refrigerant pipe 19 connects the four-way switching valve 10 and the gas side of the outdoor heat exchanger 11.
  • the liquid refrigerant pipe 20 connects the liquid side of the outdoor heat exchanger 11 and the liquid side closing valve 13.
  • the liquid refrigerant pipe 20 is provided with an expansion mechanism 12.
  • the second gas refrigerant pipe 21 connects the four-way switching valve 10 and the gas side closing valve 14.
  • the compressor 8 is a device that sucks the low-pressure refrigerant in the refrigeration cycle from the suction pipe 17, compresses the refrigerant with a compression mechanism (not shown), and discharges the compressed refrigerant to the discharge pipe 18.
  • the four-way switching valve 10 is a mechanism that changes the state of the refrigerant circuit 6 between the state of cooling operation and the state of heating operation by switching the flow direction of the refrigerant.
  • the outdoor heat exchanger 11 functions as a refrigerant radiator (condenser)
  • the indoor heat exchanger 91 functions as a refrigerant evaporator.
  • the outdoor heat exchanger 11 functions as a refrigerant evaporator
  • the indoor heat exchanger 91 functions as a refrigerant condenser.
  • the four-way switching valve 10 When the four-way switching valve 10 sets the state of the refrigerant circuit 6 to the cooling operation state, the four-way switching valve 10 communicates the suction pipe 17 with the second gas refrigerant pipe 21 and the discharge pipe 18 to the first gas. It communicates with the refrigerant pipe 19 (see the solid line in the four-way switching valve 10 in FIG. 1).
  • the four-way switching valve 10 sets the state of the refrigerant circuit 6 to the heating operation state
  • the four-way switching valve 10 When the four-way switching valve 10 sets the state of the refrigerant circuit 6 to the heating operation state, the four-way switching valve 10 communicates the suction pipe 17 with the first gas refrigerant pipe 19 and the discharge pipe 18 with the second gas. It communicates with the refrigerant pipe 21 (see the broken line in the four-way switching valve 10 in FIG. 1).
  • the outdoor heat exchanger 11 (an example of a heat exchanger) is a device that exchanges heat between the refrigerant flowing inside and the air (heat source air) at the installation location of the outdoor unit 2. Details of the outdoor heat exchanger 11 will be described later.
  • the expansion mechanism 12 is arranged between the outdoor heat exchanger 11 and the indoor heat exchanger 91 in the refrigerant circuit 6.
  • the expansion mechanism 12 is arranged in the liquid refrigerant pipe 20 between the outdoor heat exchanger 11 and the liquid side closing valve 13.
  • the expansion mechanism 12 is provided in the outdoor unit 2, but instead, the expansion mechanism 12 may be provided in the indoor unit 9, which will be described later.
  • the expansion mechanism 12 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 20.
  • the expansion mechanism 12 is an electronic expansion valve having a variable opening degree, but the expansion mechanism 12 may be a temperature-sensitive cylinder type expansion valve or a capillary tube.
  • the accumulator 7 is a container having a gas-liquid separation function that separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. Further, the accumulator 7 is a container having a function of storing excess refrigerant generated in response to fluctuations in the operating load and the like.
  • the liquid side closing valve 13 is a valve provided at a connection portion between the liquid refrigerant pipe 20 and the liquid refrigerant connecting pipe 4.
  • the gas side closing valve 14 is a valve provided at a connection portion between the second gas refrigerant pipe 21 and the gas refrigerant connecting pipe 5.
  • the liquid side closing valve 13 and the gas side closing valve 14 are open during the operation of the air conditioner 1.
  • the outdoor fan 16 sucks external heat source air into the casing of the outdoor unit 2 (not shown) and supplies it to the outdoor heat exchanger 11, and the air exchanged with the refrigerant in the outdoor heat exchanger 11 is outside the casing of the outdoor unit 2. It is a fan for discharging to.
  • the outdoor fan 16 is, for example, a propeller fan.
  • the indoor unit 9 is a unit installed in the air-conditioned space.
  • the indoor unit 9 is, for example, a ceiling-embedded unit, but may be a ceiling-suspended type, a wall-mounted type, or a floor-standing type unit. Further, the indoor unit 9 may be installed outside the air-conditioned space. For example, the indoor unit 9 may be installed in an attic, a machine room, a garage, or the like.
  • an air passage is installed to supply the air that has exchanged heat with the refrigerant in the indoor heat exchanger 91 from the indoor unit 9 to the air-conditioned space.
  • the air passage is, for example, a duct.
  • the indoor unit 9 mainly has an indoor heat exchanger 91 and an indoor fan 92 (see FIG. 1).
  • the indoor heat exchanger 91 heat is exchanged between the refrigerant flowing through the indoor heat exchanger 91 and the air in the air-conditioned space.
  • the indoor heat exchanger 91 is not limited in type, but is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and fins (not shown).
  • One end of the indoor heat exchanger 91 is connected to the liquid refrigerant connecting pipe 4 via a refrigerant pipe.
  • the other end of the indoor heat exchanger 91 is connected to the gas refrigerant connecting pipe 5 via a refrigerant pipe.
  • the indoor fan 92 sucks the air in the air-conditioned space into the casing (not shown) of the indoor unit 9 and supplies it to the indoor heat exchanger 91, and air-conditions the air that has exchanged heat with the refrigerant in the indoor heat exchanger 91. It is a mechanism that blows out into the target space.
  • the indoor fan 92 is, for example, a turbo fan. However, the type of the indoor fan 92 is not limited to the turbo fan and may be appropriately selected.
  • control unit 3 is a functional unit that controls the operation of various devices constituting the air conditioner 1.
  • control unit 3 for example, the outdoor control unit (not shown) of the outdoor unit 2 and the indoor control unit (not shown) of the indoor unit 9 are communicably connected via a transmission line (not shown). It is composed of.
  • the outdoor control unit and the indoor control unit are, for example, a microcomputer or a unit having a memory that can be executed by the microcomputer and stores various programs for controlling the air conditioner 1.
  • FIG. 1 for convenience, the control unit 3 is drawn at a position away from the outdoor unit 2 and the indoor unit 9.
  • the function of the control unit 3 does not need to be realized by the cooperation of the outdoor control unit and the indoor control unit.
  • the function of the control unit 3 may be realized by either the outdoor control unit or the indoor control unit, and a control device (not shown) different from the outdoor control unit and the indoor control unit is one of the functions of the control unit 3. Part or all may be realized.
  • the control unit 3 electrically includes various devices of the outdoor unit 2 and the indoor unit 9, including a compressor 8, a four-way switching valve 10, an expansion mechanism 12, an outdoor fan 16 and an indoor fan 92. It is connected to the. Further, the control unit 3 is electrically connected to various sensors (not shown) provided in the outdoor unit 2 and the indoor unit 9. Further, the control unit 3 is configured to be able to communicate with a remote controller (not shown) operated by the user of the air conditioner 1.
  • the control unit 3 controls the operation and stop of the air conditioner 1 and the operation of various devices constituting the air conditioner 1 based on the measurement signals of various sensors, commands received from a remote controller (not shown), and the like.
  • FIG. 2 is a schematic perspective view of the outdoor heat exchanger 11.
  • FIG. 3 is a partially enlarged view of the heat exchange section 27 described later of the outdoor heat exchanger 11.
  • FIG. 4 is a schematic view showing a state in which the fin 29, which will be described later, is attached to the flat tube 28 in the heat exchange unit 27.
  • FIG. 5 is a schematic configuration diagram of the outdoor heat exchanger 11. The arrow of the heat exchange unit 27 shown in FIG. 5 indicates the flow of the refrigerant during the heating operation (when the outdoor heat exchanger 11 functions as an evaporator).
  • the outdoor heat exchanger 11 is a device that exchanges heat between the refrigerant flowing inside and the air.
  • the outdoor heat exchanger 11 mainly includes a shunt 22, a flat tube group 28G including a plurality of flat tubes 28, a plurality of fins 29, a liquid header 40, and a gas header 70 (an example of a header). (See FIGS. 4 and 5).
  • the shunt 22, the flat tube 28, the fins 29, the liquid header 40, and the gas header 70 are all made of aluminum or an aluminum alloy.
  • the outdoor heat exchanger 11 has one row of heat exchange portions 27, and a plurality of flat tubes 28 are not arranged in the air flow direction.
  • the exchange takes place.
  • the heat exchange units 27 are arranged in the vertical direction, that is, the first heat exchange unit 27a, the second heat exchange unit 27b, the third heat exchange unit 27c, the fourth heat exchange unit 27d, and the fifth heat exchange unit 27e. And, (see FIG. 2).
  • the shunt 22 is a mechanism for shunting the refrigerant.
  • the shunt 22 is also a mechanism for merging the refrigerant.
  • a liquid refrigerant pipe 20 is connected to the shunt 22.
  • the shunt 22 has a plurality of shunt pipes 22a to 22e.
  • the shunt 22 has a function of shunting the refrigerant flowing into the shunt 22 from the liquid refrigerant pipe 20 into a plurality of shunt pipes 22a to 22e and guiding the refrigerant into a plurality of spaces formed in the liquid header 40.
  • the shunt 22 has a function of merging the refrigerant flowing from the liquid header 40 through the shunt pipes 22a to 22e and guiding the refrigerant to the liquid refrigerant pipe 20.
  • the flat tube group 28G is an example of a heat transfer tube group.
  • the flat tube group 28G includes a plurality of flat tubes 28 (an example of heat transfer tubes) as a plurality of heat transfer tubes.
  • the flat tube 28 is a flat heat transfer tube having flat surfaces 28a which are heat transfer surfaces at the top and bottom as shown in FIG.
  • a plurality of refrigerant passages 28b through which the refrigerant flows are formed in the flat pipe 28.
  • the flat pipe 28 is a flat multi-hole pipe in which a large number of refrigerant passages 28b having a small passage cross-sectional area through which the refrigerant flows are formed.
  • the maximum width of the flat pipe 28 in the cross section perpendicular to the refrigerant passage 28b may be 70% or more of the outer diameter of the main gas refrigerant pipe connecting portion 19a, or 85% or more.
  • flat pipes 28 extending in the horizontal direction between the liquid header 40 side and the gas header 70 side are arranged vertically in a plurality of stages.
  • the flat tube 28 extending between the liquid header 40 side and the gas header 70 side is bent at two points, and the heat exchange portion 27 formed by the flat tube 28 is substantially U-shaped in a plan view. It is formed in a shape (see FIG. 2).
  • the flat tube 28 extends in the front-rear direction (an example of the first direction) at the connection point with the gas header 70, and extends in the front-rear direction at the connection point with the liquid header 40.
  • the plurality of flat tubes 28 are arranged vertically at regular intervals.
  • the plurality of fins 29 are members for increasing the heat transfer area of the outdoor heat exchanger 11.
  • Each fin 29 is a plate-shaped member extending in the step direction in which the flat tubes 28 are arranged.
  • the outdoor heat exchanger 11 is used in a mode in which a plurality of horizontally extending flat tubes 28 are arranged side by side in the vertical direction. Therefore, when the outdoor heat exchanger 11 is installed in the outdoor unit 2, each fin 29 extends in the vertical direction.
  • a plurality of notches 29a extending along the insertion direction of the flat tube 28 are formed in each fin 29 so that a plurality of flat tubes 28 can be inserted.
  • the notch 29a extends in the extending direction of the fin 29 and in the direction orthogonal to the thickness direction of the fin 29.
  • the notch 29a formed in each fin 29 extends in the horizontal direction.
  • the shape of the notch 29a of the fin 29 substantially matches the shape of the outer shape of the cross section of the flat tube 28.
  • the notch 29a is formed in the fin 29 with an interval corresponding to the arrangement interval of the flat tubes 28.
  • the plurality of fins 29 are arranged side by side along the extending direction of the flat tube 28.
  • the adjacent flat tubes 28 are partitioned into a plurality of ventilation passages through which air flows.
  • Each fin 29 has a communication portion 29b that communicates vertically with respect to the flat pipe 28 on the upstream side or the downstream side in the air flow direction.
  • the communication portion 29b of the fin 29 is located on the windward side of the flat pipe 28.
  • each flat tube 28 is connected to the liquid header 40, and the other end of each flat tube 28 is connected to the gas header 70.
  • the outdoor heat exchanger 11 is arranged in a casing (not shown) of the outdoor unit 2 so that the axial directions of the substantially columnar liquid header 40 and the gas header 70 substantially coincide with the vertical direction.
  • the heat exchange portion 27 of the outdoor heat exchanger 11 is formed in a U-shape in a plan view as shown in FIG.
  • the liquid header 40 is arranged near the left front corner of the casing (not shown) of the outdoor unit 2 (see FIG. 2).
  • the gas header 70 is arranged near the right front corner of the casing (not shown) of the outdoor unit 2 (see FIG. 2).
  • the liquid side internal space 23 of the liquid header 40 is divided into a plurality of subspaces 23a to 23e by a plurality of partition plates 24 (see FIG. 5).
  • These plurality of subspaces 23a to 23e are arranged in the vertical direction.
  • the sub-spaces 23a to 23e are partitioned by the partition plate 24, so that the sub-spaces 23a to 23e are in a non-communication state in the liquid-side internal space 23 of the liquid header 40.
  • Each of the subspaces 23a to 23e is connected to each of the shunt pipes 22a to 22e of the shunt 22 on a one-to-one basis.
  • the refrigerants that have reached the subspaces 23a to 23e flow through the shunt pipes 22a to 22e and merge in the shunt 22.
  • the refrigerant shunted by the shunt 22 is supplied to the sub-spaces 23a to 23e.
  • a single space is formed inside the gas header 70.
  • the partition plate for partitioning the vertically arranged spaces as provided in the liquid header 40 is not provided in the gas side internal space 25 of the gas header 70.
  • the gas header 70 is connected to a main gas refrigerant pipe connecting portion 19a and a branch gas refrigerant pipe connecting portion 19b forming an end on the gas header 70 side of the first gas refrigerant pipe 19 (see FIG. 5).
  • the outer diameter of the main gas refrigerant pipe connecting portion 19a may be, for example, three times or more, or five times or more, the outer diameter of the branched gas refrigerant pipe connecting portion 19b.
  • One end of the main gas refrigerant pipe connecting portion 19a is connected to the gas header 70 so as to communicate with the gas side internal space 25 at an intermediate position in the height direction of the gas header 70.
  • One end of the branched gas refrigerant pipe connecting portion 19b is connected to the gas header 70 so as to communicate with the gas side internal space 25 in the vicinity of the lower end in the height direction of the gas header 70.
  • the other end of the branched gas refrigerant pipe connecting portion 19b is connected to the main gas refrigerant pipe connecting portion 19a.
  • the branched gas refrigerant pipe connecting portion 19b has an inner diameter smaller than that of the main gas refrigerant pipe connecting portion 19a, and is connected to the gas header 70 below the main gas refrigerant pipe connecting portion 19a to stay near the lower end of the gas header 70.
  • the refrigerating machine oil can be drawn into the main gas refrigerant pipe connecting portion 19a, and can be returned to the compressor 8.
  • the refrigerant flowing through the diversion pipe 22e flows into the sub space 23e.
  • the refrigerant that has flowed into the subspaces 23a to 23e of the liquid side internal space 23 flows through the flat pipes 28 connected to the subspaces 23a to 23e.
  • the refrigerant flowing through each of the flat tubes 28 evaporates by exchanging heat with air, becomes a gas phase refrigerant, and flows into the gas side internal space 25 of the gas header 70 to merge.
  • the refrigerant flows in the refrigerant circuit 6 in the opposite direction to that during the heating operation.
  • the high-temperature gas-phase refrigerant flows into the gas-side internal space 25 of the gas header 70 via the main gas refrigerant pipe connecting portion 19a and the branch gas refrigerant pipe connecting portion 19b of the first gas refrigerant pipe 19.
  • the refrigerant that has flowed into the gas-side internal space 25 of the gas header 70 is shunted and flows into each flat pipe 28.
  • the refrigerant that has flowed into the flat pipes 28 passes through the flat pipes 28 and flows into the subspaces 23a to 23e of the liquid side internal space 23 of the liquid header 40.
  • the refrigerant that has flowed into the subspaces 23a to 23e of the liquid side internal space 23 merges with the shunt 22 and flows out to the liquid refrigerant pipe 20.
  • FIG. 6 shows a side view external configuration diagram showing a state in which the main gas refrigerant pipe connecting portion 19a is connected to the gas header 70.
  • FIG. 7 shows a sectional view of the gas header 70 in a plan view.
  • FIG. 8 is a plan sectional view showing how the main gas refrigerant pipe connecting portion 19a and the flat pipe 28 are connected to the gas header 70.
  • FIG. 9 shows a schematic view of the first member 71 as viewed from the rear side.
  • FIG. 10 shows a schematic view of the third member 73 as viewed from the rear side.
  • FIG. 11 shows a schematic view of the second member 72 as viewed from the rear side.
  • FIG. 13 shows a schematic view of the fourth member 74 as viewed from the rear side.
  • FIG. 14 shows a projection drawing showing the positional relationship of each opening when the first member 71 is viewed from the rear side.
  • FIG. 15 shows a cross-sectional view in a plan view showing each clad layer of the first member 71, the third member, and the fourth member constituting the gas header 70.
  • the gas header 70 has a first member 71, a second member 72, a third member 73, a fourth member 74, and an upper end lid member and a lower end lid member (not shown).
  • the gas header 70 is configured by brazing the first member 71, the second member 72, the third member 73, the fourth member 74, the upper end lid member, and the lower end lid member to each other.
  • the gas header 70 is configured so that the outer shape in a plan view has a substantially quadrangular shape having a connection point of the flat pipe 28 as one side.
  • the first member 71 is a member that mainly constitutes the periphery of the outer shape of the gas header 70 together with the fourth member 74 described later.
  • a clad layer C1 containing a brazing material is formed on the surface (outer surface) of the core material of aluminum or an aluminum alloy on the side constituting the outer circumference of the gas header 70. Further, the first member 71 has a clad layer C2 (with the first member) containing a brazing material on the surface (inner surface) opposite to the side constituting the outer periphery of the gas header 70 with respect to the core material of aluminum or an aluminum alloy.
  • An example of a wax layer between the second member and an example of a wax layer between the first member and the third member is formed.
  • a member on which a clad layer is formed may be manufactured by joining a plate-shaped clad layer to a core material by hot rolling.
  • the first member 71 of the present embodiment can be formed, for example, by bending a sheet metal obtained by rolling with the longitudinal direction of the gas header 70 as a crease.
  • the plate thickness of each portion of the first member 71 is uniform and has the first thickness.
  • the first thickness is preferably thinner than the maximum thickness of the second member 72 and the fourth member 74, and may be the same as the thickness of the third member 73.
  • the first thickness can be, for example, 1.0 mm or more and 2.0 mm or less, and is preferably 1.5 mm.
  • the clad layer C1 constitutes the outer surface of the gas header 70, it contains a sacrificial anode material having corrosion resistance together with a brazing material.
  • a sacrificial anode material include zinc or an alloy containing zinc.
  • the silicon content in the clad layer C1 can be, for example, 6.8% by weight or more and 8.2% by weight or less.
  • the content of the Al—Si alloy in the clad layer C1 can be, for example, 6.8% by weight or more and 8.2% by weight or less.
  • a clad layer C1 for example, one having an alloy number of A4N43 specified in the JIS standard for aluminum can be used.
  • the silicon content in the clad layer C2 may be the same as or different from that in the clad layer C1, and may be, for example, 6.8% by weight or more and 8.2% by weight or less. Further, the content of the Al—Si alloy in the clad layer C2 can be, for example, 6.8% by weight or more and 8.2% by weight or less.
  • a clad layer C2 for example, one having an alloy number of A4343 specified in the JIS standard for aluminum can be used.
  • the first member 71 has a flat tube connecting plate 71a, a first outer wall 71b, a second outer wall 71c, a first claw portion 71d, and a second claw portion 71e.
  • the flat tube connecting plate 71a (an example of the first part) is a flat plate-shaped part that extends in the vertical and horizontal directions.
  • the flat tube connecting plate 71a is formed with a plurality of flat tube connecting openings 71x (an example of openings) arranged side by side in the vertical direction.
  • Each flat tube connecting opening 71x is an opening penetrating in the thickness direction of the flat tube connecting plate 71a.
  • the flat tube 28 is joined by brazing in a state where the flat tube 28 is inserted into the flat tube connection opening 71x so that one end of the flat tube 28 completely passes through. In the brazed joint state, the entire inner peripheral surface of the flat tube connection opening 71x and the entire outer peripheral surface of the flat tube 28 are in contact with each other.
  • the first thickness which is the thickness of the first member 71 including the flat tube connecting plate 71a
  • the flat tube connecting opening 71x The length of the inner peripheral surface in the plate thickness direction can be shortened. Therefore, when the flat pipe 28 is inserted into the flat pipe connection opening 71x in the stage before joining by brazing, between the inner peripheral surface of the flat pipe connection opening 71x and the outer peripheral surface of the flat pipe 28. It is possible to suppress the friction that occurs and facilitate the insertion work.
  • the first outer wall 71b extends from the front surface of the end portion on the left side (inside of the outdoor unit 2, the liquid header 40 side) of the flat pipe connecting plate 71a toward the front side along the first inner wall 72b described later. It is a planar shape part.
  • the second outer wall 71c faces the front side along the second inner wall 72c, which will be described later, from the front side surface of the end portion of the right side (outside of the outdoor unit 2, the side opposite to the liquid header 40 side) of the flat pipe connecting plate 71a. It is a flat-shaped part that extends.
  • the first claw portion 71d is a portion extending toward the right side from the front end portion of the first outer wall 71b.
  • the second claw portion 71e is a portion extending toward the left side from the front end portion of the second outer wall 71c.
  • the first claw portion 71d and the second claw portion 71e are the first outer walls, respectively, in a state before the second member 72, the third member 73, and the fourth member 74 are arranged inside the first member 71 in a plan view. It is in a state of extending on the extension of 71b and the second outer wall 71c. Then, with the second member 72, the third member 73, and the fourth member 74 arranged inside the first member 71 in a plan view, the first claw portion 71d and the second claw portion 71e are brought close to each other. By bending, the second member 72, the third member 73, and the fourth member 74 are crimped by the first member 71 to be fixed to each other. Then, in this state, brazing is performed in a furnace or the like, so that the members are joined by brazing and completely fixed.
  • the third member 73 is laminated so as to face and contact the surface of the flat pipe connecting plate 71a of the first member 71 on the side to which the first gas refrigerant pipe 19 is connected. It is a flat plate-shaped part that spreads in the direction and in the left-right direction.
  • the left-right length of the third member 73 is the same as the left-right length of the portion of the flat pipe connecting plate 71a of the first member 71 excluding both ends.
  • the third member 73 has no portion forming the outer peripheral portion of the gas header 70, but constitutes the inside of the gas header 70, and is located inside the first member 71.
  • the third member 73 is a brazing material on a surface (the surface on the second member 72 side) opposite to the surface of the first member 71 facing the flat pipe connecting plate 71a with respect to the aluminum or aluminum alloy core material.
  • Clad layer C3 (an example of a wax layer between the second member and the third member) containing the above is formed.
  • the thickness of the third member 73 is uniform and has a third thickness.
  • the third thickness is preferably thinner than the maximum thickness of the second member 72 and the fourth member 74, and may be the same as the thickness of the first member 71.
  • the third thickness can be, for example, 1.0 mm or more and 2.0 mm or less, and is preferably 1.5 mm.
  • the silicon content in the clad layer C3 can be, for example, 9.0% by weight or more and 11.0% by weight or less. Further, the content of the Al—Si alloy in the clad layer C3 can be, for example, 9.0% by weight or more and 11.0% by weight or less. As such a clad layer C3, for example, one having an alloy number of A4045 defined by the JIS standard for aluminum can be used.
  • the clad layer does not have to be formed on the surface of the third member 73 opposite to the side on which the clad layer C3 is formed, for example, in order to remove the oxide film on the surface. It is preferable that the flux layer of the above is formed.
  • the third member 73 has an inner plate 73a and a plurality of internal openings 73x.
  • the inner plate 73a has a flat plate shape that extends in the vertical direction and in the horizontal direction.
  • the plurality of internal openings 73x are arranged side by side in the vertical direction and penetrate the internal plate 73a in the plate thickness direction.
  • Each internal opening 73x of the third member 73 is a larger opening than each flat pipe connecting opening 71x formed in the flat pipe connecting plate 71a of the first member 71.
  • the outer edge of each internal opening 73x of the third member 73 is in the stacking direction of each member, more specifically in the front-rear direction. , It is configured to be located outside the outer edge of each flat pipe connecting opening 71x formed in the flat pipe connecting plate 71a of the first member 71.
  • each internal opening 73x of the third member 73 may be separated from the upper and lower portions of the outer edge of each flat pipe connection opening 71x of the flat pipe connecting plate 71a by 2 mm or more. It is preferable that they are separated.
  • the clad layer C3 included in the third member 73 is located inside the clad layer C2 included in the first member 71 in the gas header 70.
  • the second member 72 is arranged between the flat pipe connecting plate 71a of the first member 71 and the main gas refrigerant pipe connecting portion 19a in the front-rear direction.
  • the second member 72 is a member having a substantially U-shape in a plan view.
  • the gas-side internal space 25 is formed inside the second member 72, more specifically, in a space surrounded by the second member 72, the third member 73, and the end of the flat pipe 28.
  • the maximum thickness of the second member 72 is preferably larger than the thickness of the first member 71.
  • the maximum thickness of the second member 72 is preferably, for example, 4.0 mm or less, and more preferably 3.0 mm, from the viewpoint of ease of press working and punching.
  • the second member 72 is not particularly limited, but is preferably obtained through an extrusion molding step in which the longitudinal direction of the gas header 70 is the extrusion direction. According to the extrusion molding, it is possible to easily construct the portions having different thicknesses. Further, since a sheet metal having a large plate thickness is relatively expensive, it is possible to reduce the cost by forming a thick second member 72 by extrusion molding.
  • the second member 72 obtained by the extrusion molding of the present embodiment is not provided with a clad layer having a brazing material.
  • the second member 72 includes a first inner wall 72b, a second inner wall 72c, a connecting portion 72a, a first convex portion 72d, a second convex portion 72e, a first edge portion 72f, and a second edge portion 72g. ,have.
  • the connecting portion 72a is a plate-shaped portion that faces the surface of the third member 73 on the main gas refrigerant pipe connecting portion 19a side and extends in the vertical and horizontal directions.
  • the connecting portion 72a is located on the main gas refrigerant pipe connecting portion 19a side of the gas header 70.
  • the connecting portion 72a is formed with an internal gas pipe connecting opening 72x which is an opening to which the end portion of the main gas refrigerant pipe connecting portion 19a is connected and which is an opening penetrating the connecting portion 72a in the plate thickness direction.
  • the connecting portion 72a is formed with an opening (not shown) through which the end portion of the branched gas refrigerant pipe connecting portion 19b is connected and penetrates in the plate thickness direction of the connecting portion 72a.
  • the first inner wall 72b is a flat portion extending from the left end of the connecting portion 72a (inside of the outdoor unit 2, on the liquid header 40 side) toward the rear side where the flat tube 28 extends.
  • the left side surface of the first inner wall 72b is arranged so as to be in surface contact with the right side surface of the first outer wall 71b of the first member 71.
  • the second inner wall 72c has a planar shape extending from the end of the right side of the connecting portion 72a (outside of the outdoor unit 2, opposite to the liquid header 40 side) toward the rear side where the flat tube 28 extends. It is a part.
  • the right surface of the second inner wall 72c is arranged so as to be in surface contact with the left surface of the second outer wall 71c of the first member 71.
  • the first inner wall 72b and the second inner wall 72c face each other.
  • the front end of the first inner wall 72b and the front end of the second inner wall 72c are also opposed to each other.
  • the thicknesses of the connecting portion 72a, the first inner wall 72b, and the second inner wall 72c are all larger than the thickness of the first member 71, and may be 1.5 times or more, preferably 2 times or more.
  • the length in the direction in which the flat pipe 28 of the first inner wall 72b and the second inner wall 72c extends is the length in the direction in which the flat pipe 28 of the connecting portion 72a extends (front-back direction). It may be 3 times or more, preferably 5 times or more.
  • the connecting portion 72a connects the first inner wall 72b and the second inner wall 72c.
  • the connecting portion 72a is the front end portion of the first inner wall 72b (the end on the main gas refrigerant pipe connecting portion 19a side) and the front end portion of the second inner wall 72c (on the main gas refrigerant pipe connecting portion 19a side). It is connected to the end).
  • the connecting portion 72a is preferably in the left-right direction (an example of the third direction, and the third direction is orthogonal to both the first direction and the second direction in the plan view of the gas header 70, and the first direction. It is more preferable that the second direction and the third direction are orthogonal to each other.)
  • the gas side internal space 25 can be widely secured by simply extending the first inner wall 72b and the second inner wall 72c without adding other members. This makes it possible for the gas refrigerant passing through the gas side internal space 25 to be less susceptible to pressure loss when passing through.
  • the first inner wall 72b and the second inner wall 72c are formed so as to extend in the direction in which the flat pipe 28 extends in order to secure a wide gas side internal space 25, but the first inner wall 72b and the second inner wall 72c are formed. Is connected via a connecting portion 72a, and the connecting portion 72a, the first inner wall 72b, and the second inner wall 72c are integrated. This makes it possible to increase the strength of the second member 72 and increase the pressure resistance strength of the gas header 70.
  • the first edge portion 72f is provided on the rear side (flat tube 28 side) of the first inner wall 72b.
  • the left side surface of the first edge portion 72f is formed on the same surface as the left side surface of the first inner wall 72b, and is in surface contact with the right side surface of the first outer wall 71b of the first member 71.
  • the rear end of the first edge 72f is in contact with the front surface of the third member 73.
  • the thickness of the first edge portion 72f (width in the left-right direction) is smaller than the thickness of the first inner wall 72b (width in the left-right direction).
  • the contact point between the first edge portion 72f and the front surface of the third member 73 is located on the left side of the flat pipe 28 and on the left side of the left end portion of the internal opening 73x of the third member 73. ..
  • the second edge portion 72g is provided on the rear side (flat tube 28 side) of the second inner wall 72c.
  • the right side surface of the second edge portion 72g is formed on the same surface as the right side surface of the second inner wall 72c, and is in surface contact with the left side surface of the second outer wall 71c of the first member 71.
  • the rear end of the second edge 72g is in contact with the front surface of the third member 73.
  • the thickness of the second edge portion 72g (width in the left-right direction) is smaller than the thickness of the second inner wall 72c (width in the left-right direction).
  • the contact point between the second edge portion 72g and the front surface of the third member 73 is located on the right side of the flat pipe 28 and on the right side of the right end portion of the internal opening 73x of the third member 73. ..
  • the length between the first edge portion 72f and the second edge portion 72g is wider than the width of the flat pipe 28, wider than the width of the flat pipe connection opening 71x of the first member 71, and the third It is wider than the width of the internal opening 73x of the member 73.
  • Both the first edge portion 72f and the second edge portion 72g extend from the upper end to the lower end of the gas header 70.
  • the first convex portion 72d is a convex portion which is a rear end portion of the first inner wall 72b and extends from a portion in front of the first edge portion 72f toward the right side (second inner wall 72c side).
  • the first convex portion 72d extends from the upper end to the lower end of the gas header 70.
  • the right end of the first convex portion 72d is located on the right side of the left end of the internal opening 73x of the third member 73, and is located on the right side of the left end of the flat pipe 28.
  • the first convex portion 72d is located on the flat tube 28 side with respect to the center of the second member 72 in the front-rear direction.
  • the second convex portion 72e is a convex portion which is a rear end portion of the second inner wall 72c and extends from a portion in front of the second edge portion 72g toward the left side (first inner wall 72b side).
  • the second convex portion 72e extends from the upper end to the lower end of the gas header 70.
  • the left end of the second convex portion 72e is located on the left side of the right end of the internal opening 73x of the third member 73, and is located on the left side of the right end of the flat tube 28.
  • the second convex portion 72e is located on the flat tube 28 side with respect to the center of the second member 72 in the front-rear direction.
  • the shortest distance (distance in the left-right direction) between the first convex portion 72d and the second convex portion 72e is smaller than the maximum width in the cross section perpendicular to each refrigerant passage 28b of the flat pipe 28.
  • the fourth member 74 is laminated so as to face and contact the front surface of the connecting portion 72a of the second member 72, and has a flat plate shape that extends in the vertical and horizontal directions. It is a part.
  • the left and right lengths of the fourth member 74 are the same as the left and right lengths of the third member 73, and are the same as the left and right lengths of the flat pipe connecting plate 71a of the first member 71 excluding both ends. is there.
  • a clad layer C4 containing a brazing material is formed on the surface (outer surface) on the side constituting the outer circumference of the gas header 70. Further, in the fourth member 74, a clad layer C5 containing a brazing material is formed on the surface (inner surface) of the core material of aluminum or an aluminum alloy, which is opposite to the side forming the outer periphery of the gas header 70. ..
  • the thickness of the fourth member 74 is uniform and has a fourth thickness.
  • the fourth thickness is preferably thicker than the first thickness and the third thickness, and may be the same as the thickness of the first member 71.
  • the fourth thickness is preferably 4.0 mm or less from the viewpoint of ease of press working or punching, and preferably 2.0 mm or more from the viewpoint of improving pressure resistance, for example, 3.0 mm. Is more preferable.
  • the clad layer C4 constitutes the outer surface of the gas header 70, it contains a sacrificial anode material having corrosion resistance together with a brazing material.
  • a sacrificial anode material include zinc or an alloy containing zinc.
  • the silicon content in the clad layer C4 can be, for example, 6.8% by weight or more and 8.2% by weight or less.
  • the content of the Al—Si alloy in the clad layer C4 can be, for example, 6.8% by weight or more and 8.2% by weight or less.
  • a clad layer C4 for example, one having an alloy number of A4N43 specified in the JIS standard for aluminum can be used.
  • the silicon content in the clad layer C5 may be the same as or different from that in the clad layer C4, and may be, for example, 6.8% by weight or more and 8.2% by weight or less. Further, the content of the Al—Si alloy in the clad layer C5 can be, for example, 6.8% by weight or more and 8.2% by weight or less.
  • a clad layer C5 for example, one having an alloy number of A4343 specified in the JIS standard for aluminum can be used.
  • the fourth member 74 is a plate-shaped member, it is easy to provide a clad layer having a brazing material on the surface. Therefore, for example, even when the second member 72 is not provided with the clad layer having the brazing material as in the case where the second member 72 is obtained by extrusion molding, the second member 72 is provided on the fourth member 74.
  • the brazed material makes it possible to join the second member 72 to another member by brazing.
  • the fourth member 74 has an outer plate 74a and an external gas pipe connection opening 74x.
  • the outer plate 74a has a flat plate shape that extends in the vertical direction and in the horizontal direction.
  • the external gas pipe connection opening 74x is an opening to which the end portion of the main gas refrigerant pipe connection portion 19a is connected, and is an opening penetrating the outer plate 74a in the plate thickness direction.
  • an opening (not shown) is formed to which the end portion of the branched gas refrigerant pipe connecting portion 19b is connected and penetrates in the plate thickness direction of the outer plate 74a. ..
  • the main gas refrigerant pipe connecting portion 19a and the branch gas refrigerant pipe connecting portion 19b are gas sandwiched between the external gas pipe connecting opening 74x, the internal gas pipe connecting opening 72x, the first inner wall 72b, and the second inner wall 72c. It is in a state of communicating with the inner side surface of the flat pipe connecting plate 71a of the first member 71 via the side internal space 25.
  • the front surface of the fourth member 74 is in contact with the first claw portion 71d and the second claw portion 71e of the first member 71 and is crimped.
  • the outdoor heat exchanger 11 is in a furnace in a state where a plurality of flat pipes 28, a shunt 22, a first gas refrigerant pipe 19, etc. are temporarily assembled to the liquid header 40 and the gas header 70. Heated and brazed in.
  • the portion of the clad layer C2 of the first member 71 formed on the flat pipe connecting plate 71a comes into contact with the portion of the third member 73 where the clad layer C3 is not formed, and the first The portion of the clad layer C2 of the member 71 formed inside the first outer wall 71b and the second outer wall 71c is brought into contact with the first inner wall 72b and the second inner wall 72c of the second member 72. Further, the clad layer C3 of the third member 73 is brought into contact with the rear surface of the first edge portion 72f and the second edge portion 72g of the second member 72.
  • the portion of the fourth member 74 on which the clad layer C5 is formed comes into contact with the front surface of the connecting portion 72a of the second member 72, and the portion of the fourth member 74 on which the clad layer C4 is formed.
  • the left and right ends of the above are crimped by the first claw portion 71d and the second claw portion 71e, respectively, so that they are in contact with the rear surfaces of the first claw portion 71d and the second claw portion 71e.
  • the ambient temperature of the outdoor heat exchanger 11 in the furnace is, for example, 1000 ° C. or higher and 1300 ° C. or lower.
  • the third member located inside the first member 71 with respect to the silicon content of the clad layer C1 and the clad layer C2 of the first member 71 located on the outer periphery.
  • the clad layer C3 contained in 73 is configured to have a higher silicon content.
  • the temperature of the third member 73 located more inside does not become higher than the temperature of the first member 71 located further outside.
  • the clad layer possessed by the third member 73 is higher than the case where the silicon content of the clad layer C3 of the third member 73 is the same as the silicon content of the clad layer C1 and the clad layer C2 of the first member 71. It is possible to increase the amount of melt produced by melting the brazing material of C3.
  • brazing using the clad layer located inside the gas header 70 also makes it possible to obtain a good bonding state.
  • the flat pipe connecting plate 71a and the third member 73 of the first member 71 are formed in a plate shape. Then, the flat tube 28 is inserted perpendicularly to the flat tube connecting plate 71a of the first member 71 and the third member 73.
  • the first outer wall 71b and the second outer wall 71c extend vertically from the left and right ends of the flat pipe connecting plate 71a of the first member 71, and the second member 72 extends from the left and right ends of the third member 73.
  • the first inner wall 72b and the second inner wall 72c are vertically joined.
  • the first member 71 including the flat pipe connecting plate 71a is formed relatively thinly. Therefore, when the flat pipe 28 is inserted into the flat pipe connection opening 71x in the stage before joining by brazing, between the inner peripheral surface of the flat pipe connection opening 71x and the outer peripheral surface of the flat pipe 28. It is possible to suppress the friction generated and facilitate the insertion work.
  • the flat pipe connecting plate 71a is further laminated with the third member 73 in the plate thickness direction. Therefore, it is possible to increase the pressure resistance strength of the portion of the gas header 70 on the side to which the flat pipe 28 is connected.
  • each internal opening 73x of the third member 73 is configured to be located outside the outer edge of each flat pipe connecting opening 71x formed in the flat pipe connecting plate 71a of the first member 71. Therefore, at the time of brazing, even if the brazing material interposed between the flat tube connection opening 71x of the flat tube connection plate 71a and the flat tube 28 may overflow toward the end side of the flat tube 28. The overflowing brazing material is sent to the space outside the flat tube 28 and inside each internal opening 73x of the third member 73. Therefore, it is possible to prevent the refrigerant passage 28b of the flat pipe 28 from being filled with the brazing material.
  • the shortest distance (distance in the left-right direction) between the first convex portion 72d and the second convex portion 72e of the second member 72 is the refrigerant passage of the flat pipe 28. It is smaller than the maximum width in the cross section perpendicular to 28b. Therefore, it is possible to specify the degree of insertion of the flat pipe 28 in the gas header 70.
  • the first convex portion 72d and the second convex portion 72e, which define the degree of insertion of the flat tube 28, are both located on the flat tube 28 side with respect to the center of the second member 72 in the front-rear direction. Therefore, it is possible to secure a sufficiently wide internal space 25 on the gas side.
  • FIG. 16 is a plan sectional view showing how the main gas refrigerant pipe connecting portion 19a and the flat pipe 28 are connected to the gas header 70.
  • FIG. 17 is a projection drawing showing the positional relationship of each opening when the second member 172 is viewed from the rear side.
  • the second member 172 has a connecting portion 172a instead of the connecting portion 72a of the second member 72 of the above embodiment.
  • the connecting portion 172a is a portion between both ends of the first inner wall 72b in the front-rear direction (the direction in which the flat tube 28 extends) and the second inner wall 72c in the front-rear direction (direction in which the flat tube 28 extends). Connect the ends with the part between the ends.
  • the connecting portion 172a connects the first inner wall 72b and the second inner wall 72c at a position other than the end portion, it is possible to increase the structural strength of the second member 172.
  • the connecting portion 172a is a plate-shaped portion extending in the vertical direction and the horizontal direction.
  • the connecting portion 172a has a plurality of internal gas pipe connecting openings 172x arranged in the vertical direction.
  • Each internal gas pipe connection opening 172x is provided so as to correspond to each flat pipe 28.
  • the vertical size of each internal gas pipe connection opening 172x is larger than the vertical size of each flat pipe connection opening 71x of each flat pipe 28 or the first member 71, but the width of each internal gas pipe connection opening 172x.
  • the size in the direction (left-right direction) is smaller than the size in the width direction (left-right direction) of each flat pipe connection opening 71x of each flat pipe 28 and the first member 71. This makes it possible to specify the degree of insertion of the flat tube 28. Since the degree of insertion of the flat pipe 28 can be defined by the edge of the internal gas pipe connection opening 172x, the first convex portion 72d and the second convex portion 72e as in the second member 72 of the above embodiment
  • the third member 73 and / or the fourth member 74 in the above embodiment may be omitted.
  • the silicon content of the clad layer C3 of the third member 73 located inside the gas header 70 is larger than the silicon content of the clad layer C1 and the clad layer C2 of the first member 71 located outside the gas header 70.
  • An example of a form in which the content is increased has been described as an example.
  • the gas header and / or the liquid header of the heat exchanger may be, for example, the header 270 obtained by brazing and joining the members shown in FIG.
  • the header 270 has a first outer member 271, a first inner member 272, a second inner member 273, a third inner member 274, and a second outer member 275.
  • the first outer member 271, the first inner member 272, the second inner member 273, the third inner member 274, and the second outer member 275 are all plate-shaped members.
  • the first outer member 271, the first inner member 272, the second inner member 273, the third inner member 274, and the second outer member 275 are arranged in this order and joined to each other by brazing.
  • the first outer member 271 (an example of the first member and an example of the fifth member) has a plurality of heat transfer tube connection openings 271x to which a plurality of heat transfer tubes such as the flat tube 28 described in the above embodiment are connected.
  • the heat transfer tube connection opening 271x is a hole penetrating in the plate thickness direction.
  • a plurality of heat transfer tube connection openings 271x are provided side by side in the longitudinal direction of the first outer member 271.
  • the first inner member 272 (an example of the third member and an example of the seventh member) is a member that is brazed to the first outer member 271.
  • the first inner member 272 has a first inner opening 272x that opens so as to communicate with a plurality of heat transfer tube connection openings 271x.
  • the second inner member 273 (an example of the second member, an example of the sixth member) is a member in which one surface is joined to the first inner member 272 and the other surface is joined to the third inner member 274 by brazing. Is.
  • the second inner member 273 has a second inner opening 273x having a size similar to that of the first inner opening 272x of the first inner member 272.
  • the third inner member 274 (an example of the third member and an example of the seventh member) is a member that is brazed to the second outer member 275.
  • the third inner member 274 has a third inner opening 274x having a size similar to that of the second inner opening 273x of the second inner member 273.
  • the second outer member 275 (an example of the first member and an example of the fifth member) is an external refrigerant pipe connection opening to which the main gas refrigerant pipe connection portion 19a or the like described in the above embodiment or the refrigerant pipe of the liquid refrigerant pipe is connected. It has 275x.
  • the external refrigerant pipe connection opening 275x is a hole penetrating in the plate thickness direction.
  • the external refrigerant pipe connection opening 275x communicates with the third internal opening 274x of the third inner member 274.
  • clad layers are provided on at least both sides of the first inner member 272 and both sides of the third inner member 274.
  • a clad layer C6 an example of a wax layer between the first member and the second member, between the first member and the third member.
  • An example of a wax layer and an example of a first clad layer are provided on the first outer member 271 side of the first inner member 272.
  • a clad layer C7 is provided on the second inner member 273 side of the first inner member 272.
  • a clad layer C8 (an example of a wax layer between the first member and the second member, an example of a wax layer between the first member and the third member, An example of the first clad layer) is provided on the second outer member 275 side of the third inner member 274.
  • a clad layer C9 (an example of a wax layer between the second member and the third member, an example of the second clad layer) is provided on the second inner member 273 side of the third inner member 274.
  • the clad layers C6 to C9 all contain silicon, for example, an Al—Si alloy.
  • the silicon content of the clad layer C7 is higher than the silicon content of the clad layer C6.
  • the silicon content of the clad layer C9 is higher than the silicon content of the clad layer C8.
  • the first outer member 271, the first inner member 272, the second inner member 273, the third inner member 274, and the second outer member 275 laminated the first outer member 271 side and / or
  • the heating source is arranged on the second outer member 275 side and brazed and joined, heat does not easily reach the second inner member 273.
  • the silicon content of the clad layer C7 is higher than the silicon content of the clad layer C6, and the silicon content of the clad layer C9 is higher than the silicon content of the clad layer C8. Therefore, it is possible to increase the proportion of the melt in the clad layer C7 and the clad layer C9 far from the heating source, and it is possible to improve the brazing joint.
  • the melts are arranged in order so that the silicon content in the clad layer increases as the distance from the heating source increases.
  • Air conditioner heat pump device
  • Outdoor heat exchanger heat exchanger
  • Flat tube heat transfer tube
  • Gas header header
  • First member 71a Flat pipe connection plate (first part)
  • Second member 73
  • Third member 73x Internal opening (second opening)
  • C1 clad layer C2 clad layer (wax layer between the first member and the second member, wax layer between the first member and the third member, clad layer of the first member)
  • C3 clad layer wax layer between the second member and the third member, clad layer of the third member
  • C6 clad layer wax layer between the first member and the second member, wax layer between the first member and the third member, first clad layer
  • C7 clad layer (wax layer between the second member and the third member, the second clad layer)
  • C8 clad layer wax layer between the first member and the second member, wax layer between the first member and the third member, first clad layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

複数の部材で構成されるヘッダのロウ付け不良を抑制させることが可能な熱交換器、ヒートポンプ装置および熱交換器の製造方法を提供する。ガスヘッダ(70)と、ガスヘッダ(70)に接続された複数の扁平管(28)と、を備えた室外熱交換器(11)であって、ガスヘッダ(70)は、互いにロウ付けされる第1部材(71)と第2部材(72)と第3部材(73)を含む複数の部材を有しており、第2部材(72)と第3部材(73)との間のクラッド層(C3)の所定温度における融液に割合が、第1部材(71)と第2部材(72)との間のクラッド層(C2)および/または第1部材(71)と第3部材(73)との間のクラッド層(C2)の所定温度における融液の割合よりも大きい。

Description

熱交換器、ヒートポンプ装置および熱交換器の製造方法
 本開示は、熱交換器、ヒートポンプ装置および熱交換器の製造方法に関する。
 従来より、空気調和装置等の冷媒サイクル装置では、内部を冷媒が流れる伝熱管がヘッダに対して接続されることで構成された熱交換器が用いられている。
 例えば、特許文献1(国際公開第2015/004719号)に記載の熱交換器では、複数の板状部材を積層させて構成したヘッダが用いられている。このヘッダは、ロウ材が塗布されないベア材と、表裏面にロウ材が塗布されたクラッド材と、を交互に積層させた状態でこれらの各部材をロウ付けにより接合させている。
 上述のような複数の部材をロウ付け接合する場合には、例えば、入熱に用いる熱源の近くに位置するロウ材に比べて、熱源から遠く離れて位置するロウ材は融けにくく、ロウ付け不良が生じるおそれがある。
 本開示の内容は、複数の部材で構成されるヘッダのロウ付け不良を抑制させることが可能な熱交換器、ヒートポンプ装置および熱交換器の製造方法を提供することを目的とする。
 第1観点に係る熱交換器は、ヘッダと、ヘッダに接続された複数の伝熱管と、を備えている。ヘッダは、ロウ付けされる第1部材と第2部材と第3部材を含む複数の部材を有している。第2部材と第3部材との間のロウ層の所定温度における融液の割合が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の所定温度における融液の割合よりも大きい。
 なお、第1部材と第2部材との間のロウ層と、第1部材と第3部材との間のロウ層と、は、いずれかのみが存在していてもよいし、両方が存在していてもよい。
 ここでいう所定温度は、特に限定されないが、例えば、第2部材と第3部材との間のロウ層と第1部材と第2部材との間のロウ層のいずれにおいても融液が生じる温度であってもよいし、第2部材と第3部材との間のロウ層と第1部材と第3部材との間のロウ層のいずれにおいても融液が生じる温度であってもよいし、第2部材と第3部材との間のロウ層と第1部材と第2部材との間のロウ層と第1部材と第3部材との間のロウ層のいずれにおいても融液が生じる温度であってもよい。このような温度としては、例えば、580℃以上であってよく、590℃以上であってもよい。また、所定温度の上限は、特に限定されないが、例えば、660℃以下であってよく、630℃以下とすることができる。これらの炉中の雰囲気温度としては、特に限定されないが、例えば、1000℃以上1300℃以下であってよい。
 また、特に限定されないが、熱交換器の施工状態において、ヘッダの長手方向は鉛直方向であってもよいし、水平方向であってもよい。
 この熱交換器は、ロウ付け時の第2部材と第3部材との間のロウ層の温度が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の温度よりも低い場合であっても、第2部材と第3部材とのロウ付けの接合状態を良好にすることが可能になる。
 第2観点に係る熱交換器は、ヘッダと、ヘッダに接続された複数の伝熱管と、を備えている。ヘッダは、ロウ付けされる第1部材と第2部材と第3部材を含む複数の部材を有している。第2部材と第3部材との間のロウ層におけるシリコンの含有量が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層におけるシリコンの含有量よりも多い。
 なお、第2部材と第3部材との間のロウ層におけるシリコン合金のシリコン含有量が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層におけるシリコン合金のシリコン含有量よりも多いことが好ましい。
 ここでいう所定温度は、特に限定されないが、例えば、第2部材と第3部材との間のロウ層と第1部材と第2部材との間のロウ層のいずれにおいても融液が生じる温度であってもよいし、第2部材と第3部材との間のロウ層と第1部材と第3部材との間のロウ層のいずれにおいても融液が生じる温度であってもよいし、第2部材と第3部材との間のロウ層と第1部材と第2部材との間のロウ層と第1部材と第3部材との間のロウ層のいずれにおいても融液が生じる温度であってもよい。このような温度としては、例えば、580℃以上であってよく、590℃以上であってもよい。また、所定温度の上限は、特に限定されないが、例えば、660℃以下であってよく、630℃以下とすることができる。これらの炉中の雰囲気温度としては、特に限定されないが、例えば、1000℃以上1300℃以下であってよい。
 この熱交換器は、ロウ付け時の第2部材と第3部材との間のロウ層の温度が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の温度よりも低い場合であっても、第2部材と第3部材とのロウ付けの接合状態を良好にすることが可能になる。
 第3観点に係る熱交換器は、第2観点の熱交換器であって、第2部材と第3部材との間のロウ層の所定温度における融液の割合が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の所定温度における融液の割合よりも大きい。   
 この熱交換器は、ロウ付け時の第2部材と第3部材との間のロウ層の温度が、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の温度よりも低い場合であっても、第2部材と第3部材とのロウ付けの接合状態を良好にすることが可能になる。
 第4観点に係る熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、第2部材と第3部材との間のロウ層は、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の内側に配置される。
 この熱交換器は、第2部材と第3部材との間のロウ層は、第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層の内側に配置されることで、ロウ付け時の第2部材と第3部材との間のロウ層への入熱が第1部材と第2部材との間のロウ層および/または第1部材と第3部材との間のロウ層よりも少ない場合であっても、第2部材と第3部材とのロウ付けの接合状態を良好にすることが可能になる。
 第5観点に係る熱交換器は、第1観点から第4観点のいずれかの熱交換器であって、第1部材は、板状の第1部分を有している。第1部分は、伝熱管が挿入される第1開口を複数有している。第3部材は、伝熱管が挿入される第2開口を複数有する板状部材である。第1部分と第3部材とは板厚方向に積層されている。
 この熱交換器は、第1部材の第1部分が有する第1開口において、挿入された伝熱管をロウ付けにより接合することが可能になる。ここで、第1部材と第3部材が板厚方向に積層して配置されることにより、合計の厚みが確保されるため、ヘッダの強度を高めることができている。このため、ヘッダの強度を確保しつつ第1部材を薄く形成することが可能になるため、伝熱管を挿入する際に生じうる伝熱管周囲面と第1開口との間の摩擦を低減させることが可能になる。
 第6観点に係る熱交換器は、第5観点の熱交換器であって、伝熱管が延びる方向視において、各第1開口の輪郭は、各第2開口の輪郭の内側に位置している。
 この熱交換器は、ロウ付け時において、伝熱管端部近傍において余剰となりうるロウ材を、伝熱管の外側であって第3部材の第2開口の内側の領域に移動させることが可能となる。このため、伝熱管の流路がロウ材で閉塞されることを抑制できる。
 第7観点に係る熱交換器は、第1観点から第6観点のいずれかの熱交換器であって、第1部材と第2部材と第3部材は、いずれもアルミニウムまたはアルミニウム合金を含んでいる。
 第8観点に係る熱交換器は、第1観点から第7観点のいずれかの熱交換器であって、第1部材と第2部材と第3部材は、いずれも厚みが3mm以下である。
 この熱交換器は、第1部材と第2部材と第3部材の厚みが3mm以下であるため、各部材を特定の形状に加工しやすい。
 第9観点に係るヒートポンプ装置は、第1観点から第8観点のいずれかの熱交換器が搭載されている。
 第10観点に係る熱交換器の製造方法は、ヘッダと、ヘッダに接続された複数の伝熱管と、を備える熱交換器の製造方法であって、積層する工程と、ロウ付けする工程と、を備えている。ヘッダは、第1部材と、第2部材と、第3部材と、を有している。第1部材は、クラッド層を有している。第3部材は、クラッド層を有している。積層する工程では、第1部材のクラッド層を第2部材側とし、第3部材のクラッド層を第2部材側として、第1部材と第2部材と第3部材とを積層する。ロウ付けする工程では、第1部材と第2部材と第3部材を加熱し、第1部材と第2部材をロウ付けしつつ、第2部材と第3部材とをロウ付けする。第3部材のクラッド層の所定温度における融液の割合は、第1部材のクラッド層の所定温度における融液の割合よりも多い。
 なお、第1部材と第3部材だけでなく、第2部材においても、クラッド層が設けられていてもよい。
 ここでいう所定温度は、特に限定されないが、例えば、第1部材のクラッド層と第3部材のクラッド層のいずれにおいても融液が生じる温度であってよく、例えば、580℃以上であってよく、590℃以上であってもよい。また、所定温度の上限は、特に限定されないが、例えば、660℃以下であってよく、630℃以下とすることができる。これらの炉中の雰囲気温度としては、特に限定されないが、例えば、1000℃以上1300℃以下であってよい。
 この熱交換器の製造方法によれば、第1部材と第2部材と第3部材を加熱してロウ付けする際の、第3部材のクラッド層の温度が第1部材のクラッド層の温度よりも低い場合であっても、第2部材と第3部材とのロウ付けの接合状態が良好な熱交換器を得ることが可能になる。
 第11観点に係る熱交換器の製造方法は、ヘッダと、ヘッダに接続された複数の伝熱管と、を備える熱交換器の製造方法であって、積層する工程と、ロウ付けする工程と、を備えている。ヘッダは、第5部材と、第6部材と、第7部材と、を有している。第7部材は、第1クラッド層および第2クラッド層を有している。積層する工程では、第1クラッド層を第5部材側とし、第2クラッド層を第6部材側として、第5部材と第6部材と第7部材とを積層する。ロウ付けする工程では、第5部材と第6部材と第7部材を加熱し、第5部材と第7部材をロウ付けしつつ、第2クラッド層を介して第6部材と第7部材とをロウ付けする。第2クラッド層の所定温度における融液の割合は、第1クラッド層の所定温度における融液の割合よりも多い。
 なお、第7部材だけでなく、第5、6部材においても、クラッド層が設けられていてもよい。
 ここでいう所定温度は、特に限定されないが、例えば、第1クラッド層と第2クラッド層のいずれにおいても融液が生じる温度であってよく、例えば、580℃以上であってよく、590℃以上であってもよい。また、所定温度の上限は、特に限定されないが、例えば、660℃以下であってよく、630℃以下とすることができる。これらの炉中の雰囲気温度としては、特に限定されないが、例えば、1000℃以上1300℃以下であってよい。
 この熱交換器の製造方法によれば、第5部材と第6部材と第7部材を加熱してロウ付けする際の、第2クラッド層の温度が第1クラッド層の温度よりも低い場合であっても、第6部材と第7部材とのロウ付けの接合状態が良好な熱交換器を得ることが可能になる。
空気調和装置の概略構成図である。 室外熱交換器の概略斜視図である。 室外熱交換器の熱交換部の部分拡大図である。 熱交換部における伝熱フィンの扁平管に対する取付状態を示す概略図である。 冷媒の蒸発器として機能する室外熱交換器における冷媒流れの様子を示す説明図である。 ガスヘッダに対して主ガス冷媒管接続部が接続されている様子を示す側面視外観構成図である。 ガスヘッダの平面視断面図である。 ガスヘッダに対して主ガス冷媒管接続部および扁平管が接続されている様子を示す平面視断面図である。 第1部材を後ろ側から見た概略図である。 第3部材を後ろ側から見た概略図である。 第2部材を後ろ側から見た概略図である。 第2部材の外観斜視図である。 第4部材を後ろ側から見た概略図である。 第1部材を後ろ側から見た場合の各開口の位置関係を示す投影図である。 ガスヘッダの各部材のクラッド層を示す平面視分解断面図である。 変形例Aにおける、ガスヘッダに対して主ガス冷媒管接続部および扁平管が接続されている様子を示す平面視断面図である。 変形例Aにおける、第2部材を後ろ側から見た場合の各開口の位置関係を示す投影図である。 変形例Bにおけるガスヘッダの平面視断面図である。 変形例Cにおけるヘッダの概略分解斜視図である。
 以下、本開示の熱交換器が採用された空気調和装置の実施形態について説明する。
 (1)空気調和装置の構成
 空気調和装置1について図面を参照しながら説明する。
 図1は、本開示の一実施形態に係る熱交換器を室外熱交換器11として有する空気調和装置1の概略構成図である。
 空気調和装置1(ヒートポンプ装置の一例)は、蒸気圧縮式の冷凍サイクルを行うことにより、空調対象空間の冷房および暖房を行う装置である。空調対象空間は、例えば、オフィスビル、商業施設、住居等の建物内の空間である。なお、空気調和装置は、冷媒サイクル装置の一例に過ぎず、本開示の熱交換器は、他の冷媒サイクル装置、例えば、冷蔵庫、冷凍庫、給湯器、床暖房装置等に使用されるものであってもよい。
 空気調和装置1は、図1のように、主として、室外ユニット2と、室内ユニット9と、液冷媒連絡管4およびガス冷媒連絡管5と、室外ユニット2および室内ユニット9を構成する機器を制御する制御部3と、を有する。液冷媒連絡管4およびガス冷媒連絡管5は、室外ユニット2と室内ユニット9とを接続する冷媒連絡管である。空気調和装置1では、室外ユニット2と室内ユニット9とが、液冷媒連絡管4およびガス冷媒連絡管5を介して接続されることで、冷媒回路6が構成される。
 なお、図1では、空気調和装置1は室内ユニット9を1台有するが、空気調和装置1は、液冷媒連絡管4およびガス冷媒連絡管5によって室外ユニット2に対して互いに並列に接続される複数の室内ユニット9を有してもよい。また、空気調和装置1は複数の室外ユニット2を有してもよい。また、空気調和装置1は、室外ユニット2と室内ユニット9とが一体に形成されている、一体型の空気調和装置であってもよい。
 (1-1)室外ユニット
 室外ユニット2は、空調対象空間外、例えば、建物の屋上や建物の壁面近傍等に設置される。
 室外ユニット2は、主として、アキュムレータ7、圧縮機8、四路切換弁10、室外熱交換器11、膨張機構12、液側閉鎖弁13およびガス側閉鎖弁14、および室外ファン16を有している(図1参照)。
 室外ユニット2は、冷媒回路6を構成する各種機器を接続する冷媒管として、吸入管17、吐出管18、第1ガス冷媒管19、液冷媒管20、および第2ガス冷媒管21を主に有する(図1参照)。吸入管17は、四路切換弁10と圧縮機8の吸入側とを接続する。吸入管17には、アキュムレータ7が設けられている。吐出管18は、圧縮機8の吐出側と四路切換弁10とを接続する。第1ガス冷媒管19は、四路切換弁10と室外熱交換器11のガス側とを接続する。液冷媒管20は、室外熱交換器11の液側と液側閉鎖弁13とを接続する。液冷媒管20には、膨張機構12が設けられている。第2ガス冷媒管21は、四路切換弁10とガス側閉鎖弁14とを接続する。
 圧縮機8は、吸入管17から冷凍サイクルにおける低圧の冷媒を吸入し、図示しない圧縮機構で冷媒を圧縮して、圧縮した冷媒を吐出管18へと吐出する機器である。
 四路切換弁10は、冷媒の流向を切り換えることで、冷媒回路6の状態を、冷房運転の状態と、暖房運転の状態との間で変更する機構である。冷媒回路6が冷房運転の状態にある時には、室外熱交換器11が冷媒の放熱器(凝縮器)として機能し、室内熱交換器91が冷媒の蒸発器として機能する。冷媒回路6が暖房運転の状態にある時には、室外熱交換器11が冷媒の蒸発器として機能し、室内熱交換器91が冷媒の凝縮器として機能する。四路切換弁10が冷媒回路6の状態を冷房運転の状態とする場合には、四路切換弁10は、吸入管17を第2ガス冷媒管21と連通させ、吐出管18を第1ガス冷媒管19と連通させる(図1の四路切換弁10内の実線参照)。四路切換弁10が冷媒回路6の状態を暖房運転の状態とする場合には、四路切換弁10は、吸入管17を第1ガス冷媒管19と連通させ、吐出管18を第2ガス冷媒管21と連通させる(図1中の四路切換弁10内の破線参照)。
 室外熱交換器11(熱交換器の一例)は、内部を流れる冷媒と室外ユニット2の設置場所の空気(熱源空気)との間で熱交換を行わせる機器である。室外熱交換器11の詳細については後述する。
 膨張機構12は、冷媒回路6において室外熱交換器11と室内熱交換器91との間に配置される。本実施形態では、膨張機構12は、室外熱交換器11と液側閉鎖弁13との間の液冷媒管20に配置されている。なお、本空気調和装置1では、膨張機構12が室外ユニット2に設けられているが、これに代えて、膨張機構12は後述する室内ユニット9に設けられていてもよい。膨張機構12は、液冷媒管20を流れる冷媒の圧力や流量の調節を行う機構である。本実施形態では、膨張機構12は開度可変の電子膨張弁であるが、膨張機構12は感温筒式の膨張弁やキャピラリチューブであってもよい。
 アキュムレータ7は、流入する冷媒をガス冷媒と液冷媒とに分離する気液分離機能を有する容器である。また、アキュムレータ7は、運転負荷の変動等に応じて発生する余剰冷媒の貯留機能を有する容器である。
 液側閉鎖弁13は、液冷媒管20と液冷媒連絡管4との接続部に設けられている弁である。ガス側閉鎖弁14は、第2ガス冷媒管21とガス冷媒連絡管5との接続部に設けられている弁である。液側閉鎖弁13およびガス側閉鎖弁14は、空気調和装置1の運転時には開かれている。
 室外ファン16は、図示しない室外ユニット2のケーシング内に外部の熱源空気を吸入して室外熱交換器11に供給し、室外熱交換器11において冷媒と熱交換した空気を室外ユニット2のケーシング外に排出するためのファンである。室外ファン16は、例えばプロペラファンである。
 (1-2)室内ユニット
 室内ユニット9は、空調対象空間に設置されるユニットである。室内ユニット9は、例えば天井埋込式のユニットであるが、天井吊下式、壁掛式、または床置式のユニットであってもよい。また、室内ユニット9は、空調対象空間の外に設置されてもよい。例えば、室内ユニット9は、屋根裏、機械室、ガレージ等に設置されてもよい。この場合、室内熱交換器91において冷媒と熱交換した空気を、室内ユニット9から空調対象空間へと供給する空気通路が設置される。空気通路は、例えばダクトである。
 室内ユニット9は、室内熱交換器91および室内ファン92を主に有する(図1参照)。
 室内熱交換器91では、室内熱交換器91を流れる冷媒と、空調対象空間の空気との間で熱交換が行われる。室内熱交換器91は、タイプを限定するものではないが、例えば、図示しない複数の伝熱管とフィンとを有するフィン・アンド・チューブ型熱交換器である。室内熱交換器91の一端は、冷媒配管を介して液冷媒連絡管4と接続される。室内熱交換器91の他端は、冷媒配管を介してガス冷媒連絡管5と接続される。
 室内ファン92は、室内ユニット9のケーシング(図示せず)内に空調対象空間内の空気を吸入して室内熱交換器91に供給し、室内熱交換器91において冷媒と熱交換した空気を空調対象空間へと吹き出す機構である。室内ファン92は、例えばターボファンである。ただし、室内ファン92のタイプは、ターボファンに限定されるものではなく適宜選択されればよい。
 (1-3)制御部
 制御部3は、空気調和装置1を構成する各種機器の動作を制御する機能部である。
 制御部3は、例えば、室外ユニット2の室外制御ユニット(図示せず)と、室内ユニット9の室内制御ユニット(図示せず)とが、伝送線(図示せず)を介して通信可能に接続されて構成されている。室外制御ユニットおよび室内制御ユニットは、例えば、マイクロコンピュータや、マイクロコンピュータが実施可能な、空気調和装置1の制御用の各種プログラムが記憶されているメモリ等を有するユニットである。なお、図1では、便宜上、室外ユニット2および室内ユニット9とは離れた位置に制御部3を描画している。
 なお、制御部3の機能は、室外制御ユニットおよび室内制御ユニットが協働することで実現される必要はない。例えば、制御部3の機能は、室外制御ユニットおよび室内制御ユニットのいずれか一方により実現されてもよいし、室外制御ユニットおよび室内制御ユニットとは異なる図示しない制御装置が制御部3の機能の一部または全部を実現してもよい。
 制御部3は、図1に示されるように、圧縮機8、四路切換弁10、膨張機構12、室外ファン16および室内ファン92を含む、室外ユニット2および室内ユニット9の各種機器と電気的に接続されている。また、制御部3は、室外ユニット2および室内ユニット9に設けられた図示しない各種センサと電気的に接続されている。また、制御部3は、空気調和装置1のユーザが操作する図示しないリモコンと通信可能に構成されている。
 制御部3は、各種センサの計測信号や、図示しないリモコンから受信する指令等に基づいて、空気調和装置1の運転および停止や、空気調和装置1を構成する各種機器の動作を制御する。
 (2)室外熱交換器の構成
 図面を参照しながら、室外熱交換器11の構成について説明する。
 図2は、室外熱交換器11の概略斜視図である。図3は、室外熱交換器11の、後述する熱交換部27の部分拡大図である。図4は、熱交換部27における後述するフィン29の扁平管28に対する取付状態を示す概略図である。図5は、室外熱交換器11の概略構成図である。図5に示した熱交換部27の矢印は、暖房運転時(室外熱交換器11が蒸発器として機能する時)の冷媒の流れを示している。
 なお、以下の説明において、向きや位置を説明するために、「上」、「下」、「左」、「右」、「前(前面)」、「後(背面)」等の表現を用いる場合がある。これらの表現は、特に断りの無い限り、図2中に描画した矢印の方向に従う。なお、これらの方向や位置を表す表現は、説明の便宜上用いられるものであって、特記無き場合、室外熱交換器11全体や室外熱交換器11の各構成の向きや位置を記載の表現の向きや位置に特定するものではない。
 室外熱交換器11は、内部を流れる冷媒と空気との間で熱交換を行わせる機器である。
 室外熱交換器11は、分流器22と、複数の扁平管28を含む扁平管群28Gと、複数のフィン29と、液ヘッダ40と、ガスヘッダ70(ヘッダの一例)と、を主に有している(図4および図5参照)。本実施形態では、分流器22、扁平管28、フィン29、液ヘッダ40およびガスヘッダ70は、全て、アルミニウム製、または、アルミニウム合金製である。
 後述するように扁平管28と扁平管28に固定されるフィン29とは、熱交換部27を形成する(図2および図3参照)。室外熱交換器11は、1列の熱交換部27を有するものであり、空気流れ方向に複数の扁平管28が並んだものではない。室外熱交換器11では、熱交換部27の扁平管28とフィン29とにより形成される通風路を空気が流れることで、扁平管28を流れる冷媒と、通風路を流れる空気との間で熱交換が行われる。熱交換部27は、上下方向に並んだ、第1熱交換部27aと、第2熱交換部27bと、第3熱交換部27cと、第4熱交換部27dと、第5熱交換部27eと、に区画される(図2参照)。
 (2-1)分流器
 分流器22は、冷媒を分流させる機構である。また、分流器22は、冷媒を合流させる機構でもある。分流器22には、液冷媒管20が接続される。分流器22は、複数の分流管22a~22eを有する。分流器22は、液冷媒管20から分流器22流入した冷媒を複数の分流管22a~22eに分流させて、液ヘッダ40内に形成されている複数の空間に導く機能を有する。また、分流器22は、液ヘッダ40から分流管22a~22eを介して流入した冷媒を合流させて液冷媒管20へと導く機能を有する。
 (2-2)扁平管群
 扁平管群28Gは、伝熱管群の例である。扁平管群28Gは、複数の伝熱管として、複数の扁平管28(伝熱管の一例)を含む。扁平管28は、図3のように伝熱面となる扁平面28aを上下に有する扁平な伝熱管である。扁平管28には、図3のように、冷媒が流れる冷媒通路28bが複数形成されている。例えば、扁平管28は、冷媒が流れる通路断面積が小さな冷媒通路28bが多数形成されている扁平多穴管である。これらの複数の冷媒通路28bは、本実施形態では空気流れ方向に並んで設けられている。なお、扁平管28の冷媒通路28bに垂直な断面における最大幅は、主ガス冷媒管接続部19aの外径の70%以上であってよく、85%以上であってもよい。
 室外熱交換器11では、図5のように、液ヘッダ40側とガスヘッダ70側との間を水平方向に延びる扁平管28が、上下に並べて複数段配置されている。なお、本実施形態では、液ヘッダ40側とガスヘッダ70側との間を延びる扁平管28は、2箇所で曲げられて、扁平管28により構成される熱交換部27は平面視において略U字状に形成されている(図2参照)。また、扁平管28は、ガスヘッダ70との接続箇所において前後方向(第1方向の一例)に延びており、液ヘッダ40との接続箇所において前後方向に延びている。本実施形態では、複数の扁平管28は、上下に一定の間隔をあけて配置されている。
 (2-3)フィン
 複数のフィン29は、室外熱交換器11の伝熱面積を増大するための部材である。各フィン29は、扁平管28の並べられている段方向に延びる板状の部材である。室外熱交換器11は、複数の水平方向に延びる扁平管28が上下方向に並べて配置される態様で使用される。したがって、室外熱交換器11が室外ユニット2に設置された状態では、各フィン29は上下方向に延びる。
 各フィン29には、複数の扁平管28を差し込めるように、図4のように、扁平管28の差し込み方向に沿って延びる切り欠き29aが複数形成されている。切り欠き29aは、フィン29の延びる方向、および、フィン29の厚み方向と直交する方向に延びる。室外熱交換器11が室外ユニット2に設置された状態では、各フィン29に形成された切り欠き29aは水平方向に延びる。フィン29の切り欠き29aの形状は、扁平管28の断面の外形の形状にほぼ一致している。切り欠き29aは、フィン29に、扁平管28の配列間隔に対応する間隔を開けて形成されている。室外熱交換器11において、複数のフィン29は、扁平管28の延びる方向に沿って並べて配置される。複数のフィン29の、複数の切り欠き29aのそれぞれに扁平管28が差し込まれることで、隣り合う扁平管28の間が、空気が流れる複数の通風路に区画される。
 各フィン29は、扁平管28に対して空気流れ方向の上流側または下流側において、上下方向に連通した連通部29bを有している。本実施形態では、扁平管28に対して風上側にフィン29の連通部29bが位置している。
 (2-4)ガスヘッダおよび液ヘッダ
 液ヘッダ40およびガスヘッダ70は、中空の部材である。
 図5に示すように、液ヘッダ40には各扁平管28の一方側の端部が接続され、ガスヘッダ70には各扁平管28の他方側の端部が接続される。室外熱交換器11は、略円柱状の液ヘッダ40およびガスヘッダ70の軸方向が鉛直方向と概ね一致するように室外ユニット2の図示しないケーシング内に配置される。本実施形態では、室外熱交換器11の熱交換部27は、図2のように平面視U字形状に形成されている。液ヘッダ40は、室外ユニット2の図示しないケーシングの左前方角の近傍に配置される(図2参照)。ガスヘッダ70は、室外ユニット2の図示しないケーシングの右前方角の近傍に配置される(図2参照)。
 (2-4-1)液ヘッダ
 液ヘッダ40の長手方向は、上下方向である。
 液ヘッダ40の液側内部空間23は、複数の仕切板24によって、複数のサブ空間23a~23eに区画されている(図5参照)。
 これらの複数のサブ空間23a~23eは、上下方向に並んでいる。各サブ空間23a~23eは、それぞれ仕切板24によって仕切られることにより、液ヘッダ40の液側内部空間23においては非連通状態となっている。
 各サブ空間23a~23eには、分流器22が有する各分流管22a~22eが、1対1に接続されている。これにより、冷房運転状態では、各サブ空間23a~23eに到達した冷媒は、各分流管22a~22eを流れることで分流器22において合流する。また、暖房運転状態では、分流器22において分流された冷媒は、各サブ空間23a~23eに供給されることになる。
 (2-4-2)ガスヘッダ
 ガスヘッダ70の長手方向は、上下方向(第2方向の一例)である。
 ガスヘッダ70の内部には単一空間が形成される。液ヘッダ40に設けられていたような上下に並ぶ空間を仕切る仕切板は、ガスヘッダ70のガス側内部空間25には設けられていない。
 ガスヘッダ70には、第1ガス冷媒管19におけるガスヘッダ70側の端部を構成する主ガス冷媒管接続部19aおよび分岐ガス冷媒管接続部19bが接続されている(図5参照)。なお、特に限定されないが、主ガス冷媒管接続部19aの外径は、例えば、分岐ガス冷媒管接続部19bの外径の3倍以上であってよく、5倍以上であってもよい。
 主ガス冷媒管接続部19aの一端は、ガスヘッダ70の高さ方向における中間位置においてガス側内部空間25と連通するように、ガスヘッダ70に接続されている。
 分岐ガス冷媒管接続部19bの一端は、ガスヘッダ70の高さ方向における下端近傍においてガス側内部空間25と連通するように、ガスヘッダ70に接続されている。分岐ガス冷媒管接続部19bの他端は、主ガス冷媒管接続部19aに接続されている。分岐ガス冷媒管接続部19bは、主ガス冷媒管接続部19aよりも細い内径で、主ガス冷媒管接続部19aよりも下方においてガスヘッダ70に接続されることで、ガスヘッダ70の下端近傍に滞留している冷凍機油を、主ガス冷媒管接続部19aに引き込むことが可能であり、圧縮機8に戻すことが可能になっている。
 (3)室外熱交換器における冷媒の流れ
 空気調和装置1が暖房運転を行うことで室外熱交換器11が冷媒の蒸発器として機能する場合には、液冷媒管20から分流器22に到達した気液二相状態の冷媒は、分流管22a~22eを経て、液ヘッダ40の液側内部空間23を構成する各サブ空間23a~23eに流入する。具体的には、分流管22aを流れた冷媒はサブ空間23aに、分流管22b流れた冷媒はサブ空間23bに、分流管22cを流れた冷媒はサブ空間23cに、分流管22dを流れた冷媒はサブ空間23dに、分流管22eを流れた冷媒はサブ空間23eに、それぞれ流れる。液側内部空間23のサブ空間23a~23eに流入した冷媒は、各サブ空間23a~23eに接続されている各扁平管28を流れる。各扁平管28を流れる冷媒は、空気と熱交換することで蒸発し、気相の冷媒となってガスヘッダ70のガス側内部空間25に流入することで、合流する。
 空気調和装置1が冷房運転またはデフロスト運転を行う際には、冷媒回路6を暖房運転時とは逆向きに冷媒が流れる。具体的には、第1ガス冷媒管19の主ガス冷媒管接続部19aおよび分岐ガス冷媒管接続部19bを介してガスヘッダ70のガス側内部空間25に高温の気相の冷媒が流入する。ガスヘッダ70のガス側内部空間25に流入した冷媒は、分流されて各扁平管28に流入する。各扁平管28に流入した冷媒は、各扁平管28を通過して、液ヘッダ40の液側内部空間23のサブ空間23a~23eに流入する。液側内部空間23のサブ空間23a~23eに流入した冷媒は、分流器22で合流し、液冷媒管20へと流出する。
 (4)ガスヘッダの詳細
 図6に、ガスヘッダ70に対して主ガス冷媒管接続部19aが接続されている様子を示す側面視外観構成図を示す。図7に、ガスヘッダ70の平面視断面図を示す。図8に、ガスヘッダ70に対して主ガス冷媒管接続部19aおよび扁平管28が接続されている様子を示す平面視断面図を示す。
 また、図9に、第1部材71を後ろ側から見た概略図を示す。図10に、第3部材73を後ろ側から見た概略図を示す。図11に、第2部材72を後ろ側から見た概略図を示す。図13に、第4部材74を後ろ側から見た概略図を示す。図14に、第1部材71を後ろ側から見た場合の各開口の位置関係を示す投影図を示す。
 さらに、図15に、ガスヘッダ70を構成する第1部材71、第3部材、第4部材の各クラッド層を示す平面視断面図を示す。
 ガスヘッダ70は、第1部材71と、第2部材72と、第3部材73と、第4部材74と、図示しない上端蓋部材と下端蓋部材と、を有している。ガスヘッダ70は、第1部材71と第2部材72と第3部材73と第4部材74と上端蓋部材と下端蓋部材とが互いにロウ付けにより接合されて構成されている。
 ガスヘッダ70は、平面視における外形が、扁平管28の接続箇所を1つの辺として有する略四角形状となるように構成されている。
 (4-1)第1部材
 第1部材71は、主に、後述する第4部材74と共にガスヘッダ70の外形の周囲を構成する部材である。
 第1部材71は、アルミニウムまたはアルミニウム合金の心材に対して、ガスヘッダ70の外周を構成する側の表面(外表面)にロウ材を含有するクラッド層C1が形成されている。また、第1部材71は、アルミニウムまたはアルミニウム合金の心材に対して、ガスヘッダ70の外周を構成する側とは反対側の表面(内表面)にロウ材を含有するクラッド層C2(第1部材と第2部材との間のロウ層の一例、第1部材と第3部材との間のロウ層の一例)が形成されている。なお、特に限定されないが、例えば、クラッド層が形成された部材(以下同様)は、心材に対して板状のクラッド層を熱間圧延により接合して製造してもよい。なお、本実施形態の第1部材71は、例えば、圧延により得られる1枚の板金をガスヘッダ70の長手方向を折り目とした折り曲げ加工により形成することができる。この場合、第1部材71の各部分の板厚は、一様であり、第1厚みを有している。第1厚みとしては、第2部材72の最大厚みや第4部材74よりも薄いことが好ましく、第3部材73の厚みと同じであってよい。第1厚みは、例えば、1.0mm以上2.0mm以下とすることができ、1.5mmであることが好ましい。
 クラッド層C1は、ガスヘッダ70の外表面を構成するものであるため、ロウ材と共に、耐食性を有する犠牲陽極材料が含まれている。このような犠牲陽極材としては、例えば、亜鉛または亜鉛を含む合金が挙げられる。クラッド層C1におけるシリコンの含有量は、例えば、6.8重量%以上8.2重量%以下とすることができる。また、クラッド層C1におけるAl-Si合金の含有量は、例えば、6.8重量%以上8.2重量%以下とすることができる。このようなクラッド層C1としては、例えば、アルミのJIS規格にて規定された合金番号がA4N43のものを用いることができる。
 クラッド層C2は、ガスヘッダ70の内表面を構成するものであるため、耐食性は求められない。クラッド層C2におけるシリコンの含有量は、クラッド層C1と同じであっても異なっていてもよく、例えば、6.8重量%以上8.2重量%以下とすることができる。また、クラッド層C2におけるAl-Si合金の含有量は、例えば、6.8重量%以上8.2重量%以下とすることができる。このようなクラッド層C2としては、例えば、アルミのJIS規格にて規定された合金番号がA4343のものを用いることができる。
 第1部材71は、扁平管接続板71aと、第1外壁71bと、第2外壁71cと、第1爪部71dと、第2爪部71eと、を有している。
 扁平管接続板71a(第1部分の一例)は、上下方向でかつ左右方向に広がった平板形状の部分である。扁平管接続板71aには、上下方向に並んで配置された複数の扁平管接続開口71x(開口の一例)が形成されている。各扁平管接続開口71xは、扁平管接続板71aの厚み方向に貫通した開口である。この扁平管接続開口71xには、扁平管28の一端が完全に通過するように扁平管28が挿入された状態で、扁平管28がロウ付けにより接合される。ロウ付け接合された状態では、扁平管接続開口71xの内周面の全体と扁平管28の外周面の全体とは互いに接した状態となる。ここで、扁平管接続板71aを含む第1部材71の厚みである第1厚みは、例えば、1.0mm以上2.0mm以下程度に比較的薄く形成されているため、扁平管接続開口71xの内周面の板厚方向における長さを短くすることができている。このため、ロウ付けによる接合の前段階において、扁平管28を扁平管接続開口71xに挿入する作業を行う際に、扁平管接続開口71xの内周面と扁平管28の外周面との間で生じる摩擦を小さく抑え、挿入作業を容易にすることが可能となっている。
 第1外壁71bは、扁平管接続板71aの左側(室外ユニット2の内側、液ヘッダ40側)の端部の前側の面から、後述する第1内壁72bに沿って前側に向けて延び出した平面形状部分である。
 第2外壁71cは、扁平管接続板71aの右側(室外ユニット2の外側、液ヘッダ40側とは反対側)の端部の前側の面から、後述する第2内壁72cに沿って前側に向けて延び出した平面形状部分である。
 第1爪部71dは、第1外壁71bの前側端部から、右側に向けて延びだした部分である。第2爪部71eは、第2外壁71cの前側端部から、左側に向けて延びだした部分である。
 第1爪部71dと第2爪部71eとは、平面視における第1部材71の内側に第2部材72、第3部材73、第4部材74を配置させる前の状態では、それぞれ第1外壁71bと第2外壁71cの延長上に延びた状態となっている。そして、平面視における第1部材71の内側に第2部材72、第3部材73、第4部材74を配置させた状態で、第1爪部71dと第2爪部71eとを互いに近づくように折り曲げることで、第2部材72と第3部材73と第4部材74とが第1部材71によってカシメられることで、互いに固定される。そして、この状態で、炉中等でロウ付けが行われることで、互いの部材がロウ付けによる接合されて完全に固定される。
 (4-2)第3部材
 第3部材73は、第1部材71の扁平管接続板71aの第1ガス冷媒管19が接続されている側の面に面して接するように積層され、上下方向でかつ左右方向に広がった平板形状の部分である。この第3部材73の左右の長さは、第1部材71の扁平管接続板71aのうち両端部を除いた部分の左右の長さと同様である。
 第3部材73は、ガスヘッダ70の外周部を構成する部分は無く、ガスヘッダ70の内部を構成しており、第1部材71の内側に位置している。
 第3部材73は、アルミニウムまたはアルミニウム合金の心材に対して、第1部材71の扁平管接続板71aと対向する側の面とは反対側の面(第2部材72側の面)にロウ材を含有するクラッド層C3(第2部材と第3部材との間のロウ層の一例)が形成されている。
 第3部材73の厚みは一様であり、第3厚みを有している。第3厚みは、第2部材72の最大厚みや第4部材74よりも薄いことが好ましく、第1部材71の厚みと同じであってよい。第3厚みは、例えば、1.0mm以上2.0mm以下とすることができ、1.5mmであることが好ましい。
 クラッド層C3におけるシリコンの含有量は、例えば、9.0重量%以上11.0重量%以下とすることができる。また、クラッド層C3におけるAl-Si合金の含有量は、例えば、9.0重量%以上11.0重量%以下とすることができる。このようなクラッド層C3としては、例えば、アルミのJIS規格にて規定された合金番号がA4045のものを用いることができる。
 なお、特に限定されないが、第3部材73のうちクラッド層C3が形成されている側とは反対側の面には、クラッド層を形成されなくてよく、例えば、表面の酸化皮膜を除去するためのフラックス層が形成されていることが好ましい。
 第3部材73は、内部板73aと、複数の内部開口73xと、を有している。
 内部板73aは、上下方向でかつ左右方向に広がった平板形状を有している。
 複数の内部開口73x(第2開口の一例)は、上下方向に並んで配置されており、内部板73aの板厚方向に貫通した開口である。
 第3部材73の各内部開口73xは、第1部材71の扁平管接続板71aに形成された各扁平管接続開口71xよりも大きな開口である。第3部材73が第1部材71の扁平管接続板71aに積層された状態では、第3部材73の各内部開口73xの外縁は、各部材の積層方向において、より具体的には前後方向において、第1部材71の扁平管接続板71aに形成された各扁平管接続開口71xの外縁の外側に位置するように構成されている。これにより、ロウ付け接合時にロウ材が毛細管現象により移動して扁平管28の冷媒通路28bを塞いでしまうことを抑制することができている。この観点から、第3部材73の各内部開口73xの外縁の上下の部分は、扁平管接続板71aの各扁平管接続開口71xの外縁の上下の部分から、2mm以上離れていてよく、3mm以上離れていることが好ましい。
 なお、第3部材73が有するクラッド層C3は、ガスヘッダ70においては、第1部材71が有するクラッド層C2の内側に位置している。
 (4-3)第2部材
 第2部材72は、第1部材71の扁平管接続板71aと主ガス冷媒管接続部19aとの前後方向における間に配置されている。第2部材72は、平面視において略U字形状の部材である。
 第2部材72の内側において、より具体的には第2部材72と第3部材73と扁平管28の端部とで囲まれた空間において、上述のガス側内部空間25が形成される。
 第2部材72の最大厚みは、第1部材71の厚みよりも大きいことが好ましい。第2部材72の最大厚みは、プレス加工やパンチ孔あけ加工の容易性の観点から、例えば、4.0mm以下であることが好ましく、3.0mmであることがより好ましい。
 なお、第2部材72は、特に限定されないが、ガスヘッダ70の長手方向を押し出し方向とする押し出し成形の工程を経て得られるものであることが好ましい。押し出し成形によれば、厚みが異なる箇所を容易に構成することができる。また、板厚の大きな板金は比較的高価であることから、押し出し成形により分厚い第2部材72を形成することで、コストを抑えることが可能になる。なお、本実施形態の押し出し成形により得られる第2部材72は、ロウ材を有するクラッド層が設けられていないものである。
 第2部材72は、第1内壁72bと、第2内壁72cと、連結部72aと、第1凸部72dと、第2凸部72eと、第1縁部72fと、第2縁部72gと、を有している。
 連結部72aは、第3部材73の主ガス冷媒管接続部19a側の面と対向しており、上下方向かつ左右方向に広がった板状部分である。連結部72aは、ガスヘッダ70のうち主ガス冷媒管接続部19a側に位置している。連結部72aには、主ガス冷媒管接続部19aの端部が接続される開口であって、連結部72aの板厚方向に貫通した開口である内部ガス管接続開口72xが形成されている。また、連結部72aには、分岐ガス冷媒管接続部19bの端部が接続される開口であって、連結部72aの板厚方向に貫通した開口(図示せず)が形成されている。
 第1内壁72bは、連結部72aの左側(室外ユニット2の内側、液ヘッダ40側)の端部から、扁平管28が延びだしている後ろ側に向けて延び出した平面形状部分である。第1内壁72bの左側の面は、第1部材71の第1外壁71bの右側の面と、面接触するように配置される。
 第2内壁72cは、連結部72aの右側(室外ユニット2の外側、液ヘッダ40側とは反対側)の端部から、扁平管28が延びだしている後ろ側に向けて延び出した平面形状部分である。第2内壁72cの右側の面は、第1部材71の第2外壁71cの左側の面と、面接触するように配置されている。
 なお、第1内壁72bと第2内壁72cとは、互いに対向している。特に、第1内壁72bの前側端部と第2内壁72cの前側端部とも、互いに対向している。
 連結部72aと第1内壁72bと第2内壁72cの各厚みは、いずれも、第1部材71の厚みよりも大きく、1.5倍以上であってよく、2倍以上であることが好ましい。
 また、特に限定されないが、第1内壁72bと第2内壁72cの扁平管28が伸び出す方向(前後方向)の長さが、連結部72aの扁平管28が伸び出す方向(前後方向)の長さの3倍以上であってよく、5倍以上であることが好ましい。
 連結部72aは、第1内壁72bと第2内壁72cとを連結している。具体的には、連結部72aは、第1内壁72bの前側端部(主ガス冷媒管接続部19a側の端部)と第2内壁72cの前側端部(主ガス冷媒管接続部19a側の端部)とを連結している。また、連結部72aは、ガスヘッダ70の平面視において左右方向(第3方向の一例であり、第3方向は第1方向と第2方向の双方に直交する方向であることが好ましく、第1方向と第2方向と第3方向とは互いに直交する方向であることがより好ましい。)に延びている。
 なお、第2部材72では、第1内壁72bと第2内壁72cを延ばすだけで、他の部材を追加することなく、ガス側内部空間25を広く確保することが可能になっている。これにより、ガス側内部空間25を通過するガス冷媒が、通過時に圧力損失を受けにくいようにすることが可能になっている。そして、ガス側内部空間25を広く確保するために第1内壁72bと第2内壁72cが扁平管28が延びだしている方向に延ばして構成されているものの、第1内壁72bと第2内壁72cとは連結部72aを介して連結されており、連結部72aと第1内壁72bと第2内壁72cとが一体化されている。これにより、第2部材72の強度を高め、ガスヘッダ70の耐圧強度を高めることが可能になっている。
 第1縁部72fは、第1内壁72bよりも後ろ側(扁平管28側)に設けられている。第1縁部72fの左側の面は、第1内壁72bの左側の面と同一面上に形成されており、第1部材71の第1外壁71bの右側面と面接触している。第1縁部72fの後ろ側の端部は、第3部材73の前側の面に接している。第1縁部72fの厚み(左右方向の幅)は、第1内壁72bの厚み(左右方向の幅)よりも小さい。第1縁部72fと第3部材73の前側の面との接触箇所は、扁平管28よりも左側に位置し、第3部材73の内部開口73xの左側端部よりも左側に位置している。
 第2縁部72gは、第2内壁72cよりも後ろ側(扁平管28側)に設けられている。第2縁部72gの右側の面は、第2内壁72cの右側の面と同一面上に形成されており、第1部材71の第2外壁71cの左側面と面接触している。第2縁部72gの後ろ側の端部は、第3部材73の前側の面に接している。第2縁部72gの厚み(左右方向の幅)は、第2内壁72cの厚み(左右方向の幅)よりも小さい。第2縁部72gと第3部材73の前側の面との接触箇所は、扁平管28よりも右側に位置し、第3部材73の内部開口73xの右側端部よりも右側に位置している。
 平面視において、第1縁部72fと第2縁部72gとの間の長さは、扁平管28の幅よりも広く、第1部材71の扁平管接続開口71xの幅よりも広く、第3部材73の内部開口73xの幅よりも広い。なお、第1縁部72fと第2縁部72gは、いずれもガスヘッダ70の上端から下端まで延びている。
 第1凸部72dは、第1内壁72bの後ろ側端部であって第1縁部72fよりも前側の部分から右側(第2内壁72c側)に向けて伸び出した凸部である。この第1凸部72dは、ガスヘッダ70の上端から下端まで延びている。第1凸部72dの右側の端部は、第3部材73の内部開口73xの左側端部よりも右側に位置しており、扁平管28の左側端部よりも右側に位置している。なお、第1凸部72dは、第2部材72の前後方向における中心に対して、扁平管28側に位置している。
 第2凸部72eは、第2内壁72cの後ろ側端部であって第2縁部72gよりも前側の部分から左側(第1内壁72b側)に向けて伸び出した凸部である。この第2凸部72eは、ガスヘッダ70の上端から下端まで延びている。第2凸部72eの左側の端部は、第3部材73の内部開口73xの右側端部よりも左側に位置しており、扁平管28の右側端部よりも左側に位置している。なお、第2凸部72eは、第2部材72の前後方向における中心に対して、扁平管28側に位置している。
 第1凸部72dと第2凸部72eとの最短距離(左右方向の距離)は、扁平管28の各冷媒通路28bに垂直な断面における最大幅よりも小さくなっている。これにより、扁平管28をガスヘッダ70に挿入する場合において、第1凸部72dと第2凸部72eが、扁平管28の差し込み程度を規定することができる。これにより、扁平管28の差し込み程度が大きくなりすぎることでガス側内部空間25が小さくなることが抑制される。また、ガスヘッダ70内における複数の扁平管28の各端部の位置を、第1凸部72dと第2凸部72eにおいて揃えることができる。
 (4-4)第4部材
 第4部材74は、第2部材72の連結部72aの前側の面に対して面して接するように積層され、上下方向でかつ左右方向に広がった平板形状の部分である。この第4部材74の左右の長さは、第3部材73の左右の長さと同様であり、第1部材71の扁平管接続板71aのうち両端部を除いた部分の左右の長さと同様である。
 第4部材74は、ガスヘッダ70の外周を構成する側の表面(外表面)にロウ材を含有するクラッド層C4が形成されている。また、第4部材74は、アルミニウムまたはアルミニウム合金の心材に対して、ガスヘッダ70の外周を構成する側とは反対側の表面(内表面)にロウ材を含有するクラッド層C5が形成されている。
 第4部材74の厚みは一様であり、第4厚みを有している。第4厚みは、第1厚みや第3厚みよりも厚いことが好ましく、第1部材71の厚みと同じであってよい。第4厚みは、プレス加工やパンチ孔あけ加工の容易性の観点から4.0mm以下であることが好ましく、耐圧強度を向上させる観点から2.0mm以上であることが好ましく、例えば、3.0mmであることがより好ましい。
 クラッド層C4は、ガスヘッダ70の外表面を構成するものであるため、ロウ材と共に、耐食性を有する犠牲陽極材料が含まれている。このような犠牲陽極材としては、例えば、亜鉛または亜鉛を含む合金が挙げられる。クラッド層C4におけるシリコンの含有量は、例えば、6.8重量%以上8.2重量%以下とすることができる。また、クラッド層C4におけるAl-Si合金の含有量は、例えば、6.8重量%以上8.2重量%以下とすることができる。このようなクラッド層C4としては、例えば、アルミのJIS規格にて規定された合金番号がA4N43のものを用いることができる。
 クラッド層C5は、ガスヘッダ70の内表面を構成するものであるため、耐食性は求められない。クラッド層C5におけるシリコンの含有量は、クラッド層C4と同じであっても異なっていてもよく、例えば、6.8重量%以上8.2重量%以下とすることができる。また、クラッド層C5におけるAl-Si合金の含有量は、例えば、6.8重量%以上8.2重量%以下とすることがでる。このようなクラッド層C5としては、例えば、アルミのJIS規格にて規定された合金番号がA4343のものを用いることができる。
 なお、第4部材74は、板状部材であるため、ロウ材を有するクラッド層を表面に設けることは容易である。このため、例えば、上述した第2部材72が押し出し成形により得られる場合のように、第2部材72においてロウ材を有するクラッド層が設けられていない場合であっても、第4部材74に設けられたロウ材によって第2部材72を他の部材とロウ付けにより接合させることが可能となる。
 第4部材74は、外部板74aと、外部ガス管接続開口74xと、を有している。
 外部板74aは、上下方向でかつ左右方向に広がった平板形状を有している。
 外部ガス管接続開口74xは、主ガス冷媒管接続部19aの端部が接続される開口であって、外部板74aの板厚方向に貫通した開口である。
 また、外部板74aの下方には、分岐ガス冷媒管接続部19bの端部が接続される開口であって、外部板74aの板厚方向に貫通した開口(図示せず)が形成されている。
 これにより、主ガス冷媒管接続部19aおよび分岐ガス冷媒管接続部19bは、外部ガス管接続開口74xと内部ガス管接続開口72xと第1内壁72bと第2内壁72cとで挟まれているガス側内部空間25とを介して、第1部材71の扁平管接続板71aの内側面と連通した状態となっている。
 第4部材74は、前側の面が、第1部材71の第1爪部71dおよび第2爪部71eと接してカシメられている。
 (4-5)ロウ付け
 室外熱交換器11は、液ヘッダ40およびガスヘッダ70に対して複数の扁平管28と分流器22と第1ガス冷媒管19等が仮組みされた状態で、炉中において加熱され、ロウ付けされる。
 ガスヘッダ70の仮組みでは、第1部材71のクラッド層C2のうち扁平管接続板71aに形成されている部分は、第3部材73のクラッド層C3が形成されていない部分と接触し、第1部材71のクラッド層C2のうち第1外壁71bや第2外壁71cの内側に形成されている部分は、第2部材72の第1内壁72bや第2内壁72cと接触する状態にする。また、第3部材73のクラッド層C3は、第2部材72の第1縁部72fや第2縁部72gの後ろ側の面と接触する状態にする。そして、第4部材74のうちクラッド層C5が形成されている部分は、第2部材72の連結部72aの前側の面と接触し、第4部材74のうちクラッド層C4が形成されている部分の左右の両端は、それぞれ、第1爪部71dおよび第2爪部71eによりカシメられることで、第1爪部71dおよび第2爪部71eの後ろ側の面に接触する状態にする。
 以上の仮組みの状態で室外熱交換器11を炉中で加熱することで、各クラッド層C1~C5が融解し、第1部材71と第2部材72と第3部材73と第4部材74が互いにロウ付けされる。なお、炉中の室外熱交換器11の周囲温度としては、例えば、1000℃以上1300℃以下である。
 (5)実施形態の特徴
 (5-1)
 本実施形態の室外熱交換器11のガスヘッダ70では、外周に位置する第1部材71が有するクラッド層C1やクラッド層C2のシリコン含有量よりも、第1部材71の内側に位置する第3部材73が有するクラッド層C3のシリコン含有量の方が多くなるように構成されている。
 これにより、ガスヘッダ70を構成する各部材を炉中等でロウ付けする場合において、より内部に位置する第3部材73の温度が、より外側に位置する第1部材71の温度よりも高くならない場合であっても、第3部材73のクラッド層C3のシリコン含有量を第1部材71のクラッド層C1やクラッド層C2のシリコン含有量と同じにしている場合よりも、第3部材73が有するクラッド層C3のロウ材が融解して生じる融液を多くすることが可能になっている。
 これにより、ガスヘッダ70の内部に位置する部材においても、ロウ付けによる接合を良好に行わせることが可能になる。また、ガスヘッダ70の内部に位置するクラッド層を用いたロウ付けについても、良好な接合状態とすることが可能になる。
 また、特にガスヘッダ70のガス側内部空間25を広く確保して容量を大きくする場合には、ロウ付けのための加熱時に内部の部材や内部のクラッド層まで熱が届きにくい問題が顕著になるが、この場合であっても、熱が届きにくい部材や内部のクラッド層においてシリコン含有量を増大させ、融液の割合を増大させることで、ロウ付け接合を良好にすることが可能になる。
 (5-2)
 従来の円筒形状のガスヘッダでは、扁平形状の伝熱管である扁平管を挿入させる場合には、扁平管の端部の全体が円筒形状のガスヘッダの内部に位置させるために、扁平管をガスヘッダ内に大きく挿入させることが必要である。このため、円筒形状のガスヘッダ内部では、扁平管の端部の上下において、冷媒が滞留してしまう無駄なスペースが生じている。この傾向は、扁平管幅を大きくするほど顕著になってしまう。
 これに対して、本実施形態の室外熱交換器11のガスヘッダ70では、第1部材71の扁平管接続板71aや第3部材73が板状に形成されている。そして、扁平管28が第1部材71の扁平管接続板71aや第3部材73に対して垂直に挿入されている。そして、第1部材71の扁平管接続板71aの左右の両端からは第1外壁71bと第2外壁71cが垂直に伸び出しており、第3部材73の左右の両端には第2部材72の第1内壁72bと第2内壁72cが垂直に接合されている。
 これにより、本実施形態の室外熱交換器11のガスヘッダ70では、扁平管28の端部の周囲において、冷媒が滞留してしまう無駄なスペースを小さくすることが可能になっている。これにより、ガスヘッダ70内を流れるガス冷媒の圧力損失を低減させることが可能になっている。
 (5-3)
 本実施形態の室外熱交換器11のガスヘッダ70では、扁平管接続板71aを含む第1部材71が比較的薄く形成されている。このため、ロウ付けによる接合の前段階において、扁平管28を扁平管接続開口71xに挿入する作業を行う際に、扁平管接続開口71xの内周面と扁平管28の外周面との間で生じる摩擦を小さく抑え、挿入作業を容易にすることが可能となっている。
 そして、扁平管接続板71aを含む第1部材71を薄く形成した場合であっても、扁平管接続板71aには板厚方向にさらに第3部材73が積層されている。このため、ガスヘッダ70の扁平管28が接続される側の部分の耐圧強度を高めることが可能になっている。
 さらに、第3部材73の各内部開口73xの外縁が、第1部材71の扁平管接続板71aに形成された各扁平管接続開口71xの外縁の外側に位置するように構成されている。このため、ロウ付け時において、扁平管接続板71aの扁平管接続開口71xと扁平管28との間に介在するロウ材が、扁平管28の端部側に向けて溢れ出すことがあっても、溢れ出したロウ材は、扁平管28の外側であって第3部材73の各内部開口73xの内側の空間に送られる。このため、扁平管28の冷媒通路28bがロウ材によって埋められてしまうことを抑制することが可能になっている。
 (5-4)
 本実施形態の室外熱交換器11のガスヘッダ70では、第2部材72が有する第1凸部72dと第2凸部72eとの最短距離(左右方向の距離)が、扁平管28の各冷媒通路28bに垂直な断面における最大幅よりも小さくなっている。このため、ガスヘッダ70における扁平管28の差し込み程度を規定することができている。
 そして、扁平管28の差し込み程度を規定する第1凸部72dと第2凸部72eは、いずれも、第2部材72の前後方向における中心に対して扁平管28側に位置している。このため、ガス側内部空間25を十分に広く確保することが可能になっている。
 (6)変形例
 (6-1)変形例A
 上記実施形態では、室外熱交換器11のガスヘッダ70が有する第2部材72について、連結部72aが第1内壁72bの端部と第2内壁72cの端部とを連結させる形態を例に挙げて説明した。
 これに対して、室外熱交換器11のガスヘッダ70が有する第2部材としては、例えば、図16、図17に示す形態の第2部材172を用いてもよい。図16は、ガスヘッダ70に対して主ガス冷媒管接続部19aおよび扁平管28が接続されている様子を示す平面視断面図である。図17は、第2部材172を後ろ側から見た場合の各開口の位置関係を示す投影図である。
 第2部材172は、上記実施形態の第2部材72の連結部72aの代わりに、連結部172aを有している。連結部172aは、第1内壁72bの前後方向(扁平管28が延びだしている方向)における両端の間の部分と、第2内壁72cの前後方向(扁平管28が延びだしている方向)における両端の間の部分との端部と、を連結する。このように、連結部172aは、第1内壁72bと第2内壁72cとを、端部以外の箇所で連結しているため、第2部材172の構造強度を高めることが可能になっている。
 連結部172aは、上下方向および左右方向に広がった板状部分である。連結部172aには、上下方向に並んだ複数の内部ガス管接続開口172xを有している。各内部ガス管接続開口172xは、各扁平管28に対応するように設けられている。各内部ガス管接続開口172xの上下方向の大きさは、各扁平管28や第1部材71の各扁平管接続開口71xの上下方向の大きさよりも大きいが、各内部ガス管接続開口172xの幅方向(左右方向)の大きさは、各扁平管28や第1部材71の各扁平管接続開口71xの幅方向(左右方向)の大きさよりも小さい。これにより、扁平管28の挿入程度を規定することが可能になっている。なお、内部ガス管接続開口172xの縁により扁平管28の挿入程度を規定することができるため、上記実施形態の第2部材72のような第1凸部72dや第2凸部72eが不要になっている。
 (6-2)変形例B
 上記実施形態では、ガスヘッダ70が第3部材73と第4部材74を有している場合について例に挙げて説明した。
 これに対して、例えば、図18に示すガスヘッダ70のように、上記実施形態における第3部材73および/または第4部材74を省略してもよい。
 この場合には、第1部材71の扁平管接続板71aの厚みを増大させることで、耐圧強度を確保することが可能になる。
 (6-3)変形例C
 上記実施形態では、ガスヘッダ70の外側に位置する第1部材71が有するクラッド層C1やクラッド層C2のシリコン含有量よりも、ガスヘッダ70の内部に位置する第3部材73が有するクラッド層C3のシリコン含有量を多くする形態を例に挙げて説明した。
 これに対して、熱交換器のガスヘッダおよび/または液ヘッダとしては、例えば、図19に示す各部材のロウ付け接合により得られたヘッダ270であってもよい。
 ヘッダ270は、第1外側部材271、第1内側部材272、第2内側部材273、第3内側部材274、第2外側部材275を有している。
 第1外側部材271、第1内側部材272、第2内側部材273、第3内側部材274、第2外側部材275は、いずれも板状部材である。第1外側部材271、第1内側部材272、第2内側部材273、第3内側部材274、第2外側部材275は、この順に並んで互いにロウ付けにより接合される。
 第1外側部材271(第1部材の一例、第5部材の一例)は、上記実施形態で説明した扁平管28等の伝熱管が複数接続される伝熱管接続開口271xを複数有している。伝熱管接続開口271xは、板厚方向に貫通した穴である。複数の伝熱管接続開口271xは、第1外側部材271の長手方向に並んで設けられている。
 第1内側部材272(第3部材の一例、第7部材の一例)は、第1外側部材271に対してロウ付けにより接合される部材である。第1内側部材272は、複数の伝熱管接続開口271xと連通するように開口した第1内部開口272xを有している。
 第2内側部材273(第2部材の一例、第6部材の一例)は、一方の面が第1内側部材272に、他方の面が第3内側部材274に対してロウ付けにより接合される部材である。第2内側部材273は、第1内側部材272の第1内部開口272xと同程度の大きさの第2内部開口273xを有している。
 第3内側部材274(第3部材の一例、第7部材の一例)は、第2外側部材275に対してロウ付けにより接合される部材である。第3内側部材274は、第2内側部材273の第2内部開口273xと同程度の大きさの第3内部開口274xを有している。
 第2外側部材275(第1部材の一例、第5部材の一例)は、上記実施形態で説明した主ガス冷媒管接続部19a等または液冷媒管の冷媒管が接続される外部冷媒管接続開口275xを有している。外部冷媒管接続開口275xは、板厚方向に貫通した穴である。外部冷媒管接続開口275xは、第3内側部材274の第3内部開口274xと連通する。
 以上の構成において、少なくとも第1内側部材272の両面と第3内側部材274の両面には、それぞれクラッド層が設けられている。具体的には、第1内側部材272の第1外側部材271側にはクラッド層C6(第1部材と第2部材との間のロウ層の一例、第1部材と第3部材との間のロウ層の一例、第1クラッド層の一例)が設けられている。第1内側部材272の第2内側部材273側にはクラッド層C7(第2部材と第3部材との間のロウ層の一例、第2クラッド層の一例)が設けられている。第3内側部材274の第2外側部材275側にはクラッド層C8(第1部材と第2部材との間のロウ層の一例、第1部材と第3部材との間のロウ層の一例、第1クラッド層の一例)が設けられている。第3内側部材274の第2内側部材273側にはクラッド層C9(第2部材と第3部材との間のロウ層の一例、第2クラッド層の一例)が設けられている。
 クラッド層C6~C9は、いずれもシリコンを含有しており、例えば、Al-Si合金を含有している。クラッド層C7のシリコン含有量は、クラッド層C6のシリコン含有量よりも多い。クラッド層C9のシリコン含有量は、クラッド層C8のシリコン含有量よりも多い。
 以上の構成において、第1外側部材271、第1内側部材272、第2内側部材273、第3内側部材274、第2外側部材275を積層させた状態で、第1外側部材271側および/または第2外側部材275側に加熱源を配置して、ロウ付け接合する場合には、第2内側部材273には、熱が到達しにくい。しかし、クラッド層C7のシリコン含有量は、クラッド層C6のシリコン含有量よりも多く、クラッド層C9のシリコン含有量は、クラッド層C8のシリコン含有量よりも多い。このため、加熱源から遠いクラッド層C7およびクラッド層C9についても、融液の割合を増大させることが可能になり、ロウ付け接合を良好にすることが可能になる。
 (6-4)変形例D
 なお、上記実施形態および各変形例では、各部材間を接合させる2つのクラッド層について、加熱源から遠い箇所のクラッド層の方が、加熱源から近い位置のクラッド層よりも、シリコン含有量を高くし、融液の割合を高めることで、ロウ付けによる接合を良好に似行う場合を例に挙げて説明した。
 これに対して、加熱源からの距離が異なる各部材間を接合させるクラッド層が3つ以上存在し、加熱源から遠いほどクラッド層におけるシリコン含有量が高くなるように順に配置して、融液の割合を高めることで、ロウ付けによる接合を良好に行うようにしてもよい。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  1 空気調和装置(ヒートポンプ装置)
 11 室外熱交換器(熱交換器)
 28 扁平管(伝熱管)
 70 ガスヘッダ(ヘッダ)
 71 第1部材
 71a 扁平管接続板(第1部分)
 71x 扁平管接続開口(開口)
 72 第2部材
 73 第3部材
 73x 内部開口(第2開口)
 C1 クラッド層
 C2 クラッド層(第1部材と第2部材との間のロウ層、第1部材と第3部材との間のロウ層、第1部材のクラッド層)
 C3 クラッド層(第2部材と第3部材との間のロウ層、第3部材のクラッド層)
 C6 クラッド層(第1部材と第2部材との間のロウ層、第1部材と第3部材との間のロウ層、第1クラッド層)
 C7 クラッド層(第2部材と第3部材との間のロウ層、第2クラッド層)
 C8 クラッド層(第1部材と第2部材との間のロウ層、第1部材と第3部材との間のロウ層、第1クラッド層)
 C9 クラッド層(第2部材と第3部材との間のロウ層、第2クラッド層)
270 ヘッダ
271 第1外側部材(第1部材、第5部材)
272 第1内側部材(第3部材、第7部材)
273 第2内側部材(第2部材、第6部材)
274 第3内側部材(第3部材、第7部材)
275 第2外側部材(第1部材、第5部材)
271x 伝熱管接続開口(開口)
国際公開第2015/004719号

Claims (11)

  1.  ヘッダ(70、270)と、前記ヘッダに接続された複数の伝熱管(28)と、を備えた熱交換器(11)であって、
     前記ヘッダは、ロウ付けされる第1部材(71、271、275)と第2部材(72、273)と第3部材(73、272、274)を含む複数の部材を有しており、
     前記第2部材と前記第3部材との間のロウ層(C3、C7、C9)の所定温度における融液の割合が、前記第1部材と前記第2部材との間のロウ層(C2、C6、C8)および/または前記第1部材と前記第3部材との間のロウ層(C2)の前記所定温度における融液の割合よりも大きい、
    熱交換器。
  2.  ヘッダ(70、270)と、前記ヘッダに接続された複数の伝熱管(28)と、を備えた熱交換器(11)であって、
     前記ヘッダは、ロウ付けされる第1部材(71、271、275)と第2部材(72、273)と第3部材(73、272、274)を含む複数の部材を有しており、
     前記第2部材と前記第3部材との間のロウ層(C3、C7、C9)におけるシリコンの含有量が、前記第1部材と前記第2部材との間のロウ層(C2、C6、C8)および/または前記第1部材と前記第3部材との間のロウ層(C2)におけるシリコンの含有量よりも多い、
    熱交換器。
  3.  前記第2部材と前記第3部材との間のロウ層(C3、C7、C9)の所定温度における融液の割合が、前記第1部材と前記第2部材との間のロウ層(C2、C6、C8)および/または前記第1部材と前記第3部材との間のロウ層(C2)の前記所定温度における融液の割合よりも大きい、
    請求項2に記載の熱交換器。
  4.  前記第2部材と前記第3部材との間のロウ層(C3、C7、C9)は、前記第1部材と前記第2部材との間のロウ層(C2、C6、C8)および/または前記第1部材と前記第3部材との間のロウ層(C2)の内側に配置される、
    請求項1から3のいずれか1項に記載の熱交換器。
  5.  前記第1部材は、前記伝熱管が挿入される第1開口(71x)を複数有する板状の第1部分(71a)を有しており、
     前記第3部材は、前記伝熱管が挿入される第2開口(73x)を複数有する板状部材であり、
     前記第1部分と前記第3部材とは板厚方向に積層されている、
    請求項1から4のいずれか1項に記載の熱交換器。
  6.  前記伝熱管が延びる方向視において、各第1開口の輪郭は、各第2開口の輪郭の内側に位置している、
    請求項5に記載の熱交換器。
  7.  前記第1部材と前記第2部材と前記第3部材は、いずれもアルミニウムまたはアルミニウム合金を含んでいる、
    請求項1から6のいずれか1項に記載の熱交換器。
  8.  前記第1部材と前記第2部材と前記第3部材は、いずれも厚みが3mm以下である、
    請求項1から7のいずれか1項に記載の熱交換器。
  9.  請求項1から8のいずれか1項に記載の熱交換器が搭載されたヒートポンプ装置(1)。
  10.  クラッド層(C2)を有する第1部材(71)と、第2部材(72)と、クラッド層(C3)を有する第3部材(73)と、を有するヘッダ(70)と、前記ヘッダに接続された複数の伝熱管(28)と、を備える熱交換器(11)の製造方法であって、
     前記第1部材(71)の前記クラッド層(C2)を前記第2部材側とし、前記第3部材(73)の前記クラッド層(C3)を前記第2部材側として、前記第1部材と前記第2部材と前記第3部材とを積層する工程と、
     前記第1部材と前記第2部材と前記第3部材を加熱し、前記第1部材(71)と前記第2部材(72)をロウ付けしつつ、前記第2部材(72)と前記第3部材(73)とをロウ付けする工程と、
    を備え、
     前記第3部材(73)の前記クラッド層(C3)の所定温度における融液の割合が、前記第1部材(71)の前記クラッド層(C2)の前記所定温度における融液の割合よりも多い、
    熱交換器の製造方法。
  11.  第5部材(271、275)と、第6部材(273)と、第1クラッド層(C6、C8)および第2クラッド層(C7、C9)を有する第7部材(272、274)と、を有するヘッダ(270)と、前記ヘッダに接続された複数の伝熱管(28)と、を備える熱交換器(11)の製造方法であって、
     前記第1クラッド層(C6、C8)を前記第5部材側とし、前記第2クラッド層(C7、C9)を前記第6部材側として、前記第5部材と前記第6部材と前記第7部材とを積層する工程と、
     前記第5部材と前記第6部材と前記第7部材を加熱し、前記第5部材(271、275)と前記第7部材(272、274)をロウ付けしつつ、前記第2クラッド層(C7、C9)を介して前記第6部材(273)と前記第7部材(272、274)とをロウ付けする工程と、
    を備え、
     前記第2クラッド層(C7、C9)の所定温度における融液の割合が、前記第1クラッド層(C6、C8)の前記所定温度における融液の割合よりも多い、
    熱交換器の製造方法。
PCT/JP2020/018729 2019-05-10 2020-05-08 熱交換器、ヒートポンプ装置および熱交換器の製造方法 WO2020230738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20805257.1A EP3960349A4 (en) 2019-05-10 2020-05-08 HEAT EXCHANGER, HEAT PUMP DEVICE AND METHOD FOR MAKING HEAT EXCHANGER
US17/610,076 US20220212278A1 (en) 2019-05-10 2020-05-08 Heat exchanger, heat pump device, and method of manufacturing heat exchanger
CN202080033567.2A CN113795718A (zh) 2019-05-10 2020-05-08 热交换器、热泵装置和热交换器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-090093 2019-05-10
JP2019090093A JP7037076B2 (ja) 2019-05-10 2019-05-10 熱交換器、ヒートポンプ装置および熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2020230738A1 true WO2020230738A1 (ja) 2020-11-19

Family

ID=73222421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018729 WO2020230738A1 (ja) 2019-05-10 2020-05-08 熱交換器、ヒートポンプ装置および熱交換器の製造方法

Country Status (5)

Country Link
US (1) US20220212278A1 (ja)
EP (1) EP3960349A4 (ja)
JP (1) JP7037076B2 (ja)
CN (1) CN113795718A (ja)
WO (1) WO2020230738A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078936A (ko) * 2018-12-24 2020-07-02 삼성전자주식회사 열 교환기

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122644A (en) * 1975-04-21 1976-10-26 Nihon Radiator Co Manufacturing method of products made of aluminium or aluminium alloy
JPH02127992A (ja) * 1988-11-07 1990-05-16 Calsonic Corp アルミニウム製熱交換器
JPH07305994A (ja) * 1994-05-12 1995-11-21 Zexel Corp 熱交換器
JPH08276262A (ja) * 1995-04-03 1996-10-22 Mitsubishi Alum Co Ltd 熱交換器
JP2005345043A (ja) * 2004-06-04 2005-12-15 Calsonic Kansei Corp 熱交換器
JP2007144470A (ja) * 2005-11-29 2007-06-14 Showa Denko Kk 熱交換器の製造方法
FR2947330A1 (fr) * 2009-06-25 2010-12-31 Valeo Systemes Thermiques Echangeur de chaleur comprenant un faisceau de tubes avec un tube inactif
JP2013137183A (ja) * 2011-11-30 2013-07-11 Denso Corp 熱交換器
WO2015004719A1 (ja) 2013-07-08 2015-01-15 三菱電機株式会社 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038378A (ja) * 2008-07-31 2010-02-18 Denso Corp 熱交換器
US20130126127A1 (en) * 2010-08-05 2013-05-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air-conditioning apparatus
JP4983998B2 (ja) * 2010-09-29 2012-07-25 ダイキン工業株式会社 熱交換器
CN201926203U (zh) * 2011-01-18 2011-08-10 三花丹佛斯(杭州)微通道换热器有限公司 一种换热器
CN103722260A (zh) * 2013-12-12 2014-04-16 成都赛英科技有限公司 锡焊微封装管芯工艺
JP2016017666A (ja) * 2014-07-07 2016-02-01 株式会社ケーヒン・サーマル・テクノロジー 熱交換器およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122644A (en) * 1975-04-21 1976-10-26 Nihon Radiator Co Manufacturing method of products made of aluminium or aluminium alloy
JPH02127992A (ja) * 1988-11-07 1990-05-16 Calsonic Corp アルミニウム製熱交換器
JPH07305994A (ja) * 1994-05-12 1995-11-21 Zexel Corp 熱交換器
JPH08276262A (ja) * 1995-04-03 1996-10-22 Mitsubishi Alum Co Ltd 熱交換器
JP2005345043A (ja) * 2004-06-04 2005-12-15 Calsonic Kansei Corp 熱交換器
JP2007144470A (ja) * 2005-11-29 2007-06-14 Showa Denko Kk 熱交換器の製造方法
FR2947330A1 (fr) * 2009-06-25 2010-12-31 Valeo Systemes Thermiques Echangeur de chaleur comprenant un faisceau de tubes avec un tube inactif
JP2013137183A (ja) * 2011-11-30 2013-07-11 Denso Corp 熱交換器
WO2015004719A1 (ja) 2013-07-08 2015-01-15 三菱電機株式会社 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960349A4

Also Published As

Publication number Publication date
EP3960349A4 (en) 2022-08-03
CN113795718A (zh) 2021-12-14
JP2020186831A (ja) 2020-11-19
EP3960349A1 (en) 2022-03-02
US20220212278A1 (en) 2022-07-07
JP7037076B2 (ja) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020230737A1 (ja) 熱交換器およびヒートポンプ装置
WO2020262378A1 (ja) 熱交換器およびヒートポンプ装置
WO2021025156A1 (ja) 熱交換器およびヒートポンプ装置
US20240159434A1 (en) Heat exchanger and heat pump device
US11549733B2 (en) Heat exchanger and heat pump device
WO2020230738A1 (ja) 熱交換器、ヒートポンプ装置および熱交換器の製造方法
CN112567192A (zh) 热交换器、热交换器单元及制冷循环装置
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2019151217A1 (ja) 熱交換器
WO2016098204A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020805257

Country of ref document: EP

Effective date: 20211124