WO2020230707A1 - Microwave absorbing composition, microwave absorbing body and microwave heating body - Google Patents
Microwave absorbing composition, microwave absorbing body and microwave heating body Download PDFInfo
- Publication number
- WO2020230707A1 WO2020230707A1 PCT/JP2020/018607 JP2020018607W WO2020230707A1 WO 2020230707 A1 WO2020230707 A1 WO 2020230707A1 JP 2020018607 W JP2020018607 W JP 2020018607W WO 2020230707 A1 WO2020230707 A1 WO 2020230707A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- powder
- sic
- average particle
- sintered body
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/74—Mode transformers or mode stirrers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Definitions
- this microwave heated body is a molded body or a sintered body.
- the relative density of the sintered body is 60% or more. This relative density is obtained as the ratio of the measured density to the theoretical density of the sintered body.
- the microwave absorber which is a powder, can be obtained by adjusting the microwave absorbing composition to a predetermined particle size.
- the particle size adjusting method is not particularly limited, and a known adjusting method such as pulverization is used.
- the microwave absorbing composition is obtained as a powder having an appropriate particle size depending on the production conditions and the like, the microwave absorbing composition may be used as it is as a microwave absorber.
- the relative density of the molded body and the sintered body is obtained as the ratio (%) of the measured density to the theoretical density.
- the theoretical density is calculated from the composition of the molded body and the sintered body.
- the measured densities of the molded body and the sintered body are measured by the Archimedes method.
- the relative density is preferably 60% or more, more preferably 80% or more, and particularly preferably 85% or more from the viewpoint of heat generation characteristics and strength due to microwave absorption.
- metallic Si a silicon compound such as silicon dioxide, or the like can be used.
- a preferred silicon source from the viewpoint of purity is metallic Si.
- composition formula of the powder of Example 1-5 was specified by powder X-ray diffraction analysis with CuK ⁇ ray.
- a powder X-ray diffractometer (MiniFlex 600 manufactured by Rigaku Co., Ltd.) was used for the powder X-ray diffraction analysis.
- the measured diffraction intensity is plotted on a graph in which the horizontal axis is the X-ray incident angle 2 ⁇ (unit: °) and the vertical axis is the diffraction intensity (unit: cps), and the specific incident angle and the peak height of the diffraction intensity are calculated. I read it.
- the microwave absorption composition described above can be suitably used in various fields utilizing the microwave absorption characteristics and the heat generation characteristics due to the absorption of microwaves.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Products (AREA)
Abstract
This microwave absorbing composition contains a compound that is mainly composed of Al, Si and C. Preferably, this compound is expressed by AlxSiyCz, wherein x is from 1 to 8 (inclusive), y is from 1 to 4 (inclusive), and z is from 1 to 8 (inclusive). Preferably, this compound is Al4SiC4. A microwave absorbing body and a microwave heating body according to the present invention are configured of this microwave absorbing composition. Preferably, this microwave absorbing body and this microwave heating body are powders, molded bodies or sintered bodies. A microwave heating device is configured so as to comprise this microwave heating body.
Description
本発明は、マイクロ波吸収組成物に関する。さらには、本発明は、マイクロ波吸収組成物を用いて得られるマイクロ波吸収体及びマイクロ波加熱体に関する。
The present invention relates to a microwave absorption composition. Furthermore, the present invention relates to a microwave absorber and a microwave heater obtained by using the microwave absorption composition.
マイクロ波は、通信、レーダー、電力伝送システム等種々の分野で利用されている。また、従来、マイクロ波を照射して、物質を加熱・乾燥する技術が知られている。マイクロ波加熱は、高速加熱、内部加熱及び選択加熱が可能であり、従来の加熱方法よりも効率的に優れている。そのため、近年、工業分野における加熱・乾燥プロセスへの適用も検討されている。
Microwaves are used in various fields such as communications, radar, and power transmission systems. Further, conventionally, a technique of irradiating a substance with microwaves to heat and dry a substance is known. Microwave heating is capable of high-speed heating, internal heating, and selective heating, and is more efficient than conventional heating methods. Therefore, in recent years, application to heating / drying processes in the industrial field has also been studied.
マイクロ波の利用分野が拡大するなかで、マイクロ波を吸収しやすい材料やマイクロ波を吸収して発熱する材料が種々提案されている。特開2005-244160号公報(特許文献1)には、TiO2を主成分とする泡構造のセラミックス多孔体で形成された誘電体層を含む電波吸収体が開示されている。
As the fields of use of microwaves expand, various materials that easily absorb microwaves and materials that absorb microwaves and generate heat have been proposed. Japanese Unexamined Patent Publication No. 2005-244160 (Patent Document 1) discloses a radio wave absorber containing a dielectric layer formed of a ceramic porous body having a foam structure containing TiO 2 as a main component.
特許第5574368号公報(特許文献2)には、三次元網目構造をもち嵩密度が0.2g/cm3以下の炭素質多孔質構造とセラミックス被覆層とからなる多孔質マイクロ波発熱体が記載されている。このセラミックス被覆層は、炭化ケイ素等から選択される。特許第4690845号公報(特許文献3)では、炭化ケイ素粉末からなるマイクロ波吸収材と、水和性の珪酸塩ガラスからなる結合材とを含有するマイクロ波発熱複合材が提案されている。特開2010-053010号公報(特許文献4)には、マイクロ波加熱炉内において、SiCとAl2O3とMgOからなるマイクロ波加熱用治具を用いてセラミック焼結体を製造する技術が開示されている。
Japanese Patent No. 5574368 (Patent Document 2) describes a porous microwave heating element having a three-dimensional network structure and a bulk density of 0.2 g / cm 3 or less, which is composed of a carbonaceous porous structure and a ceramic coating layer. Has been done. This ceramic coating layer is selected from silicon carbide and the like. Japanese Patent No. 4690845 (Patent Document 3) proposes a microwave heat-generating composite material containing a microwave absorber made of silicon carbide powder and a binder made of hydrated silicate glass. Japanese Unexamined Patent Publication No. 2010-053010 (Patent Document 4) describes a technique for producing a ceramic sintered body in a microwave heating furnace using a microwave heating jig composed of SiC, Al 2 O 3 and Mg O. It is disclosed.
特開2006-147201号公報(特許文献5)では、Si、Zr、C及びOの元素で構成される炭化ケイ素系複合酸化物を含むマイクロ波吸収発熱材が提案されている。特開2000-169234号公報(特許文献6)には、炭化珪素焼結体をマイクロ波の吸収に利用するマイクロ波吸収体が開示されている。この炭化珪素焼結体は、アルミニウムを固溶した炭化珪素粉末に、所定量の炭化硼素及び炭化可能な有機物を添加混合して整形した成形体を焼成してなり、所定のかさ密度及び電気抵抗率を有している。
Japanese Unexamined Patent Publication No. 2006-147201 (Patent Document 5) proposes a microwave absorbing exothermic material containing a silicon carbide-based composite oxide composed of elements of Si, Zr, C and O. Japanese Unexamined Patent Publication No. 2000-169234 (Patent Document 6) discloses a microwave absorber that utilizes a silicon carbide sintered body for absorbing microwaves. This silicon carbide sintered body is formed by firing a molded body formed by adding and mixing a predetermined amount of boron carbide and a carbonizable organic substance to silicon carbide powder in which aluminum is solid-dissolved, and has a predetermined bulk density and electrical resistivity. Have a rate.
特開平10-050473号公報(特許文献7)には、粒状炭化珪素SiCと低誘電損失を有する粒状セラミックスが混合されてなる発熱体が開示されている。特開平05-270941号公報(特許文献8)では、炭化珪素粉末及び無機バインダーを用いて製造された炭化珪素含有多孔体よりなるマイクロ波吸収発熱体が提案されている。
Japanese Unexamined Patent Publication No. 10-054073 (Patent Document 7) discloses a heating element in which granular silicon carbide SiC and granular ceramics having a low dielectric loss are mixed. Japanese Patent Application Laid-Open No. 05-27941 (Patent Document 8) proposes a microwave absorbing heating element made of a silicon carbide-containing porous body produced by using silicon carbide powder and an inorganic binder.
従来、マイクロ波吸収体及びマイクロ波発熱体の材料として、SiC(炭化ケイ素)やアルミナ(Al2O3)が使用されている。SiCは、誘電損失が高く、マイクロ波を吸収して発熱する特性を有している。しかし、SiCの場合、その形状によってはマイクロ波を反射しやすくなり、吸収性能が低下するという問題がある。また、SiCの発熱特性には温度依存性があり、所定温度以上では発熱性能が低下する傾向にある。温度、形状等の影響を受けることなく、優れたマイクロ波吸収特性及び発熱特性が発揮される材料が求められている。
Conventionally, SiC (silicon carbide) and alumina (Al 2 O 3 ) have been used as materials for microwave absorbers and microwave heating elements. SiC has a high dielectric loss and has a property of absorbing microwaves to generate heat. However, in the case of SiC, there is a problem that microwaves are easily reflected depending on the shape and the absorption performance is lowered. In addition, the heat generation characteristics of SiC are temperature-dependent, and the heat generation performance tends to decrease above a predetermined temperature. There is a demand for a material that exhibits excellent microwave absorption characteristics and heat generation characteristics without being affected by temperature, shape, and the like.
本発明の目的は、マイクロ波の吸収特性及び発熱特性に優れたマイクロ波吸収組成物の提供であり、このマイクロ波吸収組成物から構成されるマイクロ波吸収体及びマイクロ波加熱体並びにマイクロ波加熱装置の提供にある。
An object of the present invention is to provide a microwave absorption composition having excellent microwave absorption characteristics and heat generation characteristics, and a microwave absorber, a microwave heater, and a microwave heating composed of the microwave absorption composition. It is in the provision of equipment.
本発明者等は、鋭意検討の結果、Al、Si及びCを主成分とする化合物によるマイクロ波の吸収特性及び発熱特性が、アルミナ等と比較して優れていることを見出すことにより、本発明を完成するに至った。
As a result of diligent studies, the present inventors have found that the microwave absorption characteristics and heat generation characteristics of the compounds containing Al, Si and C as main components are superior to those of alumina and the like. Has been completed.
即ち、本発明に係るマイクロ波吸収組成物は、Al、Si及びCを主要構成元素とする化合物を含んでいる。好ましくは、この化合物はAlxSiyCzとして示される三元化合物であって、xは1以上8以下、yは1以上4以下、zは1以上8以下である。
That is, the microwave absorption composition according to the present invention contains a compound containing Al, Si and C as main constituent elements. Preferably, this compound is a ternary compound represented as Al x S y C z , where x is 1 or more and 8 or less, y is 1 or more and 4 or less, and z is 1 or more and 8 or less.
好ましくは、この化合物は、Al4SiC4、Al8SiC7、Al4Si2C5、Al4Si3C6、Al4Si4C7からなる群より選択される少なくとも1種である。好ましくは、この化合物は、Al4SiC4である。
Preferably, the compound is at least one selected from the group consisting of Al 4 SiC 4 , Al 8 SiC 7 , Al 4 Si 2 C 5 , Al 4 Si 3 C 6 , and Al 4 Si 4 C 7 . Preferably, the compound is Al 4 SiC 4 .
本発明に係るマイクロ波吸収体は、このマイクロ波吸収組成物から構成される。
The microwave absorber according to the present invention is composed of this microwave absorption composition.
好ましくは、このマイクロ波吸収体は粉体である。好ましくは、この粉体の、画像解析法により測定される平均粒子径は、10.0μm以上である。又は、この粉体のレーザー回折散乱法により測定される平均粒子径は、10.0μm以上である。
Preferably, this microwave absorber is a powder. Preferably, the average particle size of this powder measured by an image analysis method is 10.0 μm or more. Alternatively, the average particle size of this powder measured by the laser diffraction / scattering method is 10.0 μm or more.
また、好ましくは、このマイクロ波吸収体は成形体又は焼結体である。好ましくは、この焼結体の相対密度は60%以上である。この相対密度は、焼結体の理論密度に対する測定密度の割合として求められる。
Also, preferably, this microwave absorber is a molded product or a sintered body. Preferably, the relative density of the sintered body is 60% or more. This relative density is obtained as the ratio of the measured density to the theoretical density of the sintered body.
本発明に係るマイクロ波加熱体は、このマイクロ波吸収組成物から構成される。
The microwave heater according to the present invention is composed of this microwave absorption composition.
好ましくは、このマイクロ波加熱体は粉体である。好ましくは、この粉体の、画像解析法により測定される平均粒子径は、10.0μm以上である。又は、この粉体のレーザー回折散乱法により測定される平均粒子径は、10.0μm以上である。
Preferably, this microwave heater is a powder. Preferably, the average particle size of this powder measured by an image analysis method is 10.0 μm or more. Alternatively, the average particle size of this powder measured by the laser diffraction / scattering method is 10.0 μm or more.
また、好ましくは、このマイクロ波加熱体は成形体又は焼結体である。好ましくは、この焼結体の相対密度は60%以上である。この相対密度は、焼結体の理論密度に対する測定密度の割合として求められる。
Also, preferably, this microwave heated body is a molded body or a sintered body. Preferably, the relative density of the sintered body is 60% or more. This relative density is obtained as the ratio of the measured density to the theoretical density of the sintered body.
本発明に係るマイクロ波加熱装置は、このマイクロ波加熱体を含んで構成される。
The microwave heating device according to the present invention is configured to include this microwave heating body.
本発明に係るマイクロ波吸収組成物は、従来よりも顕著に優れたマイクロ波吸収特性及び発熱特性を有している。このマイクロ波吸収組成物から構成されるマイクロ波吸収体は、マイクロ波帯の電磁波を効率的に吸収する。このマイクロ波吸収組成物から構成されるマイクロ波加熱体は、マイクロ波を吸収して速やかに発熱する。このマイクロ波加熱体を用いたマイクロ波加熱装置によれば、被加熱物の温度を、速やかに昇温させることが可能である。
The microwave absorption composition according to the present invention has significantly superior microwave absorption characteristics and heat generation characteristics as compared with the conventional one. The microwave absorber composed of this microwave absorption composition efficiently absorbs electromagnetic waves in the microwave band. The microwave heating body composed of this microwave absorbing composition absorbs microwaves and rapidly generates heat. According to the microwave heating device using this microwave heating body, it is possible to quickly raise the temperature of the object to be heated.
以下、好ましい実施形態に基づいて本発明が詳細に説明される。
Hereinafter, the present invention will be described in detail based on preferred embodiments.
(マイクロ波吸収組成物)
本発明に係るマイクロ波吸収組成物は、Al、Si及びCを主要構成元素とする化合物を含んでいる。Al、Si及びCを主要構成元素とする化合物は、特に、周波数20GHz以下の電磁波の吸収特性に優れている。さらに、この化合物は、周波数20GHz以下の電磁波を吸収して発熱する特性を有している。この化合物の吸収特性及び発熱特性の温度依存性は、比較的小さい。この化合物を含むマイクロ波吸収組成物によれば、従来のアルミナによる材料よりも、顕著に優れた吸収特性及び発熱特性が発揮される。このマイクロ波吸収組成物は、その特性を利用して、後述するマイクロ波吸収体及びマイクロ波加熱体として使用することができる。 (Microwave absorption composition)
The microwave absorption composition according to the present invention contains a compound containing Al, Si and C as major constituent elements. Compounds containing Al, Si and C as the main constituent elements are particularly excellent in absorption characteristics of electromagnetic waves having a frequency of 20 GHz or less. Further, this compound has a property of absorbing electromagnetic waves having a frequency of 20 GHz or less and generating heat. The temperature dependence of the absorption characteristics and heat generation characteristics of this compound is relatively small. According to the microwave absorption composition containing this compound, significantly superior absorption characteristics and heat generation characteristics are exhibited as compared with the conventional material made of alumina. This microwave absorption composition can be used as a microwave absorber and a microwave heater, which will be described later, by utilizing its characteristics.
本発明に係るマイクロ波吸収組成物は、Al、Si及びCを主要構成元素とする化合物を含んでいる。Al、Si及びCを主要構成元素とする化合物は、特に、周波数20GHz以下の電磁波の吸収特性に優れている。さらに、この化合物は、周波数20GHz以下の電磁波を吸収して発熱する特性を有している。この化合物の吸収特性及び発熱特性の温度依存性は、比較的小さい。この化合物を含むマイクロ波吸収組成物によれば、従来のアルミナによる材料よりも、顕著に優れた吸収特性及び発熱特性が発揮される。このマイクロ波吸収組成物は、その特性を利用して、後述するマイクロ波吸収体及びマイクロ波加熱体として使用することができる。 (Microwave absorption composition)
The microwave absorption composition according to the present invention contains a compound containing Al, Si and C as major constituent elements. Compounds containing Al, Si and C as the main constituent elements are particularly excellent in absorption characteristics of electromagnetic waves having a frequency of 20 GHz or less. Further, this compound has a property of absorbing electromagnetic waves having a frequency of 20 GHz or less and generating heat. The temperature dependence of the absorption characteristics and heat generation characteristics of this compound is relatively small. According to the microwave absorption composition containing this compound, significantly superior absorption characteristics and heat generation characteristics are exhibited as compared with the conventional material made of alumina. This microwave absorption composition can be used as a microwave absorber and a microwave heater, which will be described later, by utilizing its characteristics.
なお、本願明細書において、「Al、Si及びCを主要構成元素とする化合物」とは、この化合物を構成する全元素に対して、Al、Si及びCの合計が90モル%以上、好ましくは95モル%以上である。本発明の効果が阻害されない範囲で、この化合物は、他の元素を含みうる。
In the specification of the present application, the "compound containing Al, Si and C as major constituent elements" means that the total of Al, Si and C is 90 mol% or more, preferably 90 mol% or more, based on all the constituent elements of this compound. It is 95 mol% or more. The compound may contain other elements as long as the effects of the present invention are not impaired.
本発明の効果が得られる限り、「Al、Si及びCを主要構成元素とする化合物」の種類は特に限定されない。好ましくは、この化合物はAlxSiyCzの組成式で示される三元化合物であって、xが1以上8以下、yが1以上4以下、zが1以上8以下である。より好ましくは、xが3以上5以下、yが1以上2以下、zが3以上5以下である。例えば、この化合物として、Al4SiC4、Al8SiC7、Al4Si2C5、Al4Si3C6、Al4Si4C7が挙げられる。マイクロ波の吸収特性及びマイクロ波の吸収による発熱特性の観点から、Al4SiC4が好ましい。
As long as the effects of the present invention can be obtained, the type of "compound containing Al, Si and C as major constituent elements" is not particularly limited. Preferably, this compound is a ternary compound represented by the composition formula of Al x S y C z , and x is 1 or more and 8 or less, y is 1 or more and 4 or less, and z is 1 or more and 8 or less. More preferably, x is 3 or more and 5 or less, y is 1 or more and 2 or less, and z is 3 or more and 5 or less. For example, examples of this compound include Al 4 SiC 4 , Al 8 SiC 7 , Al 4 Si 2 C 5 , Al 4 Si 3 C 6 , and Al 4 Si 4 C 7 . Al 4 SiC 4 is preferable from the viewpoint of microwave absorption characteristics and heat generation characteristics due to microwave absorption.
Al、Si及びCを主要構成元素とする化合物を含んでいるマイクロ波吸収組成物が好ましい。マイクロ波吸収組成物中の、Al、Si及びCを主要構成元素とする化合物の含有量は、その種類や用途、使用方法等に応じて適宜選択される。マイクロ波吸収組成物の全量が、Al、Si及びCを主要構成元素とする化合物から構成されてもよく、補強剤等との混合物として構成されてもよい。
A microwave absorption composition containing a compound containing Al, Si and C as major constituent elements is preferable. The content of the compound containing Al, Si and C as the main constituent elements in the microwave absorption composition is appropriately selected according to the type, use, usage and the like. The entire amount of the microwave absorption composition may be composed of a compound containing Al, Si and C as main constituent elements, or may be composed as a mixture with a reinforcing agent or the like.
(マイクロ波吸収体)
本発明に係るマイクロ波吸収体は、前述のマイクロ波吸収組成物から構成される。このマイクロ波吸収体は、特に、周波数20GHz以下の領域で、マイクロ波を効率的に吸収することができる。このマイクロ波吸収体は、例えば、マイクロ波による通信や電力伝送システムの分野の電磁波吸収材料、化学反応種として、好適に用いられ得る。 (Microwave absorber)
The microwave absorber according to the present invention is composed of the above-mentioned microwave absorption composition. This microwave absorber can efficiently absorb microwaves, especially in a region having a frequency of 20 GHz or less. This microwave absorber can be suitably used, for example, as an electromagnetic wave absorbing material or a chemical reaction species in the fields of microwave communication and power transmission systems.
本発明に係るマイクロ波吸収体は、前述のマイクロ波吸収組成物から構成される。このマイクロ波吸収体は、特に、周波数20GHz以下の領域で、マイクロ波を効率的に吸収することができる。このマイクロ波吸収体は、例えば、マイクロ波による通信や電力伝送システムの分野の電磁波吸収材料、化学反応種として、好適に用いられ得る。 (Microwave absorber)
The microwave absorber according to the present invention is composed of the above-mentioned microwave absorption composition. This microwave absorber can efficiently absorb microwaves, especially in a region having a frequency of 20 GHz or less. This microwave absorber can be suitably used, for example, as an electromagnetic wave absorbing material or a chemical reaction species in the fields of microwave communication and power transmission systems.
マイクロ波吸収体は、その用途に応じて、粉体、成形体又は焼結体として使用することができる。本願明細書において、粉体とは、多数の粒子からなる集合体を意味する。成形体とは、粉体を成形して所定の形状を付与したものであり、焼結していないものを意味する。焼結体とは、成形体を焼結したものである。
The microwave absorber can be used as a powder, a molded product or a sintered body depending on its application. In the present specification, the powder means an aggregate composed of a large number of particles. The molded product means a product obtained by molding powder to give a predetermined shape and is not sintered. The sintered body is a sintered body.
マイクロ波吸収体を粉体として使用する場合、その平均粒子径は、10.0μm以上が好ましく、15.0μm以上5.0mm以下がより好ましい。平均粒子径が10.0μm未満の場合、粉体の飛散によりマイクロ波の吸収性能が低下する場合がある。この粉体の平均粒子径は、画像解析法により測定される。画像解析法により求められる平均粒子径は、JIS Z8827-1に規定されるフェレー径の算術平均径である。なお、測定方法の詳細は、実施例にて後述する。
When the microwave absorber is used as a powder, the average particle size thereof is preferably 10.0 μm or more, more preferably 15.0 μm or more and 5.0 mm or less. If the average particle size is less than 10.0 μm, the microwave absorption performance may deteriorate due to powder scattering. The average particle size of this powder is measured by an image analysis method. The average particle size obtained by the image analysis method is the arithmetic mean diameter of the ferret diameter defined in JIS Z8827-1. The details of the measurement method will be described later in Examples.
マイクロ波吸収体を粉体として使用する場合、同様の観点から、この粉体の、レーザー回折散乱法で得られる体積基準の累積50%粒子径は、10.0μm以上が好ましく、15.0μm以上200μm以下がより好ましい。本願明細書において、この体積基準の累積50%粒子径を平均粒子径と称する場合がある。なお、測定方法の詳細は、実施例にて後述する。
When the microwave absorber is used as a powder, the cumulative 50% particle diameter of this powder based on the volume obtained by the laser diffraction / scattering method is preferably 10.0 μm or more, preferably 15.0 μm or more, from the same viewpoint. More preferably, it is 200 μm or less. In the specification of the present application, the cumulative 50% particle diameter based on this volume may be referred to as an average particle diameter. The details of the measurement method will be described later in Examples.
粉体であるマイクロ波吸収体は、マイクロ波吸収組成物を所定の粒度に調整することにより得られる。本発明の効果が阻害されない限り、粒度調整方法は特に限定されず、粉砕等既知の調整方法が用いられる。製造条件等により、マイクロ波吸収組成物が適度な粒度の粉体として得られる場合、マイクロ波吸収組成物をそのままマイクロ波吸収体としてもよい。
The microwave absorber, which is a powder, can be obtained by adjusting the microwave absorbing composition to a predetermined particle size. As long as the effect of the present invention is not impaired, the particle size adjusting method is not particularly limited, and a known adjusting method such as pulverization is used. When the microwave absorbing composition is obtained as a powder having an appropriate particle size depending on the production conditions and the like, the microwave absorbing composition may be used as it is as a microwave absorber.
粉体であるマイクロ波吸収体の使用方法は特に限定されない、この粉体をそのまま、マイクロ波吸収体として使用してもよいし、樹脂等に配合してもよいし、水等の溶媒に混合・分散して、スラリーとして使用してもよい。このスラリーを、所定の部材の表面にコーティングしたり、吹きつけたりして、マイクロ波吸収部材とすることも可能である。
The method of using the microwave absorber as a powder is not particularly limited. This powder may be used as it is as a microwave absorber, may be blended with a resin or the like, or mixed with a solvent such as water. -It may be dispersed and used as a slurry. It is also possible to coat or spray the surface of a predetermined member with this slurry to obtain a microwave absorbing member.
マイクロ波吸収体を成形体として使用する場合、マイクロ波の吸収性能及び強度の観点から、その相対密度は、40%以上が好ましく、50%以上がより好ましく、55%以上が特に好ましい。
When a microwave absorber is used as a molded product, the relative density thereof is preferably 40% or more, more preferably 50% or more, and particularly preferably 55% or more from the viewpoint of microwave absorption performance and strength.
マイクロ波吸収体を焼結体として使用する場合、マイクロ波の吸収性能及び強度の観点から、その相対密度は、60%以上が好ましく、80%以上がより好ましく、85%以上が特に好ましい。
When the microwave absorber is used as a sintered body, the relative density thereof is preferably 60% or more, more preferably 80% or more, and particularly preferably 85% or more from the viewpoint of microwave absorption performance and strength.
本願明細書において、成形体及び焼結体の相対密度は、理論密度に対する測定密度の割合(%)として求められる。理論密度は、成形体及び焼結体の組成から算出される。成形体及び焼結体の測定密度は、アルキメデス法により測定される。
In the specification of the present application, the relative density of the molded body and the sintered body is obtained as the ratio (%) of the measured density to the theoretical density. The theoretical density is calculated from the composition of the molded body and the sintered body. The measured densities of the molded body and the sintered body are measured by the Archimedes method.
(マイクロ波加熱体)
本発明に係るマイクロ波加熱体は、前述のマイクロ波吸収組成物から構成される。このマイクロ波加熱体は、特に、周波数20GHz以下の領域で、マイクロ波を吸収して効率的に発熱する。このマイクロ波加熱体は、マイクロ波加熱・乾燥分野の加熱体、化学反応種として、好適に用いられる。 (Microwave heater)
The microwave heater according to the present invention is composed of the above-mentioned microwave absorption composition. This microwave heater absorbs microwaves and efficiently generates heat, especially in a region having a frequency of 20 GHz or less. This microwave heater is suitably used as a heater and a chemical reaction species in the field of microwave heating / drying.
本発明に係るマイクロ波加熱体は、前述のマイクロ波吸収組成物から構成される。このマイクロ波加熱体は、特に、周波数20GHz以下の領域で、マイクロ波を吸収して効率的に発熱する。このマイクロ波加熱体は、マイクロ波加熱・乾燥分野の加熱体、化学反応種として、好適に用いられる。 (Microwave heater)
The microwave heater according to the present invention is composed of the above-mentioned microwave absorption composition. This microwave heater absorbs microwaves and efficiently generates heat, especially in a region having a frequency of 20 GHz or less. This microwave heater is suitably used as a heater and a chemical reaction species in the field of microwave heating / drying.
マイクロ波加熱体は、その用途に応じて、粉体、成形体又は焼結体として使用することができる。
The microwave heater can be used as a powder, a molded product or a sintered body depending on its application.
マイクロ波加熱体を粉体として使用する場合、その平均粒子径は、10.0μm以上が好ましく、15.0μm以上5.0mm以下がより好ましい。平均粒子径が10.0μm未満の場合、粉体の飛散によりマイクロ波の吸収・発熱性能が低下する場合がある。この平均粒子径は、マイクロ波吸収体について前述した方法にて測定される。
When the microwave heater is used as a powder, the average particle size thereof is preferably 10.0 μm or more, more preferably 15.0 μm or more and 5.0 mm or less. If the average particle size is less than 10.0 μm, the microwave absorption / heat generation performance may deteriorate due to powder scattering. This average particle size is measured for the microwave absorber by the method described above.
マイクロ波加熱体を粉体として使用する場合、この粉体の、レーザー回折散乱法で得られる体積基準の累積50%粒子径は、10.0μm以上が好ましく、15.0μm以上200μm以下がより好ましい。この体積基準の累積50%粒子径は、マイクロ波吸収体について前述した方法にて測定される。
When the microwave heater is used as a powder, the cumulative 50% particle diameter of this powder based on the volume obtained by the laser diffraction / scattering method is preferably 10.0 μm or more, more preferably 15.0 μm or more and 200 μm or less. .. This volume-based cumulative 50% particle size is measured for the microwave absorber by the method described above.
粉体であるマイクロ波加熱体の製造方法及び使用方法は、前述した粉体であるマイクロ波吸収体の製造方法及び使用方法と同様である。
The method for producing and using the microwave heater, which is a powder, is the same as the method for producing and using the microwave absorber, which is a powder described above.
前記粉体は、周波数2.45GHzのマイクロ波の照射により、25℃から600℃に昇温する。加えて、照射前25℃の粉体が600℃に到達するまでの到達時間は、300秒以内である。この到達時間は、粉体の平均粒子径等により調整される。
The powder is heated from 25 ° C. to 600 ° C. by irradiation with microwaves having a frequency of 2.45 GHz. In addition, the arrival time for the powder at 25 ° C. before irradiation to reach 600 ° C. is within 300 seconds. This arrival time is adjusted by the average particle size of the powder and the like.
マイクロ波加熱体を成形体として使用する場合、マイクロ波吸収による発熱特性及び強度の観点から、その相対密度は、40%以上が好ましく、50%以上がより好ましく、55%以上が特に好ましい。
When the microwave heated body is used as a molded body, the relative density is preferably 40% or more, more preferably 50% or more, and particularly preferably 55% or more from the viewpoint of heat generation characteristics and strength due to microwave absorption.
マイクロ波吸収体を焼結体として使用する場合、マイクロ波吸収による発熱特性及び強度の観点から、その相対密度は、60%以上が好ましく、80%以上がより好ましく、85%以上が特に好ましい。
When the microwave absorber is used as a sintered body, the relative density is preferably 60% or more, more preferably 80% or more, and particularly preferably 85% or more from the viewpoint of heat generation characteristics and strength due to microwave absorption.
マイクロ波加熱体である成形体及び焼結体の相対密度は、マイクロ波吸収体について前述した方法により求められる。
The relative densities of the molded body and the sintered body, which are microwave heating bodies, are determined by the method described above for the microwave absorber.
(マイクロ波加熱装置)
本発明に係るマイクロ波加熱装置は、前述したマイクロ波加熱体を含んで構成される。ここで、マイクロ波加熱装置とは、マイクロ波を利用して、被加熱物を加熱、焼成又は乾燥する装置を意味する。被加熱物としては、金属、合金、セラミックス、耐火物、ガラス、ゴム、有機物、木材、土砂等が例示される。 (Microwave heating device)
The microwave heating device according to the present invention includes the above-mentioned microwave heating body. Here, the microwave heating device means a device that heats, fires, or dries an object to be heated by using microwaves. Examples of the object to be heated include metals, alloys, ceramics, refractories, glass, rubber, organic substances, wood, earth and sand, and the like.
本発明に係るマイクロ波加熱装置は、前述したマイクロ波加熱体を含んで構成される。ここで、マイクロ波加熱装置とは、マイクロ波を利用して、被加熱物を加熱、焼成又は乾燥する装置を意味する。被加熱物としては、金属、合金、セラミックス、耐火物、ガラス、ゴム、有機物、木材、土砂等が例示される。 (Microwave heating device)
The microwave heating device according to the present invention includes the above-mentioned microwave heating body. Here, the microwave heating device means a device that heats, fires, or dries an object to be heated by using microwaves. Examples of the object to be heated include metals, alloys, ceramics, refractories, glass, rubber, organic substances, wood, earth and sand, and the like.
例えば、マイクロ波加熱体は、マイクロ波加熱装置の焼成治具に用いられる。この焼成治具の例として、匣鉢、坩堝、セッター、サセプタ、補助材等が挙げられる。
For example, the microwave heater is used as a firing jig for a microwave heater. Examples of this firing jig include a sack, a crucible, a setter, a susceptor, an auxiliary material, and the like.
(製造方法)
以下、本発明の好適な実施形態であるAl4SiC4を含むマイクロ波吸収組成物について、このマイクロ波吸収組成物から構成されるマイクロ波吸収体又はマイクロ波加熱体の粉体、成形体、焼結体の製造方法を説明する。 (Production method)
Hereinafter, with respect to the microwave absorption composition containing Al 4 SiC 4 , which is a preferred embodiment of the present invention, a powder, a molded product of a microwave absorber or a microwave heating body composed of this microwave absorption composition, A method for producing a sintered body will be described.
以下、本発明の好適な実施形態であるAl4SiC4を含むマイクロ波吸収組成物について、このマイクロ波吸収組成物から構成されるマイクロ波吸収体又はマイクロ波加熱体の粉体、成形体、焼結体の製造方法を説明する。 (Production method)
Hereinafter, with respect to the microwave absorption composition containing Al 4 SiC 4 , which is a preferred embodiment of the present invention, a powder, a molded product of a microwave absorber or a microwave heating body composed of this microwave absorption composition, A method for producing a sintered body will be described.
Al4SiC4粉体は、アルミニウム源、ケイ素源、炭素源及び炭化ケイ素を、それぞれ秤量した後、十分に混合して、得られた混合物を焼成し、粉砕することにより製造することができる。
The Al 4 SiC 4 powder can be produced by weighing each of the aluminum source, the silicon source, the carbon source and the silicon carbide, mixing them sufficiently, and calcining and pulverizing the obtained mixture.
アルミニウム源としては、金属Al、酸化アルミニウム、水酸化アルミニウム等のアルミニウム化合物等を使用することができる。純度の面から好ましいアルミニウム源は、金属Alである。
As the aluminum source, an aluminum compound such as metal Al, aluminum oxide, or aluminum hydroxide can be used. A preferred aluminum source from the viewpoint of purity is metal Al.
ケイ素源としては、金属Siや、二酸化ケイ素等のケイ素化合物等を使用することができる。純度の面から好ましいケイ素源は、金属Siである。
As the silicon source, metallic Si, a silicon compound such as silicon dioxide, or the like can be used. A preferred silicon source from the viewpoint of purity is metallic Si.
炭素源としては、鱗状黒鉛、合成黒鉛、カーボンブラック等を使用することができる。コスト及び入手しやすさの面から、好ましい炭素源は、鱗状黒鉛である。
As the carbon source, scaly graphite, synthetic graphite, carbon black, etc. can be used. In terms of cost and availability, a preferred carbon source is scaly graphite.
これらアルミニウム源、ケイ素源、炭素源は、それぞれに含まれるアルミニウム、ケイ素及び炭素のモル比Al:Si:Cが、4:1:4となるように秤量する。
These aluminum source, silicon source, and carbon source are weighed so that the molar ratios of aluminum, silicon, and carbon contained in each of them are Al: Si: C, which is 4: 1: 4.
炭化ケイ素(SiC)は、得られるAl4SiC4粉末の耐水性を悪化させるAl4C3の生成を抑制するために添加される。炭化ケイ素の添加により、原料全体におけるアルミニウムとケイ素とのモル比Al/Siは、前述した4.0よりも低い値となる。具体的には、アルミニウム源に含まれるアルミニウムと、ケイ素源及び炭化ケイ素に含まれるケイ素の総量とのモル比Al/Siが、3.76以上3.94以下の範囲となるように、炭化ケイ素の添加量を調整する。
Silicon carbide (SiC) is added to suppress the formation of Al 4 C 3 , which deteriorates the water resistance of the resulting Al 4 SiC 4 powder. Due to the addition of silicon carbide, the molar ratio Al / Si of aluminum to silicon in the entire raw material becomes a value lower than 4.0 described above. Specifically, silicon carbide so that the molar ratio Al / Si of aluminum contained in the aluminum source and the total amount of silicon contained in the silicon source and silicon carbide is in the range of 3.76 or more and 3.94 or less. Adjust the amount of addition.
秤量したアルミニウム源、ケイ素源、炭素源及び炭化ケイ素を混合する。混合方法は、均一に混合することができる方法であればよく、特に限定されない。V型混合機等の容器回転型混合機、リボンミキサー、ヘンシェルミキサー、プロシェアミキサー、スーパーミキサー、乾式ボールミル等既知の混合装置を用いることができる。混合条件は、使用する混合装置に応じて適宜選択される。
Mix the weighed aluminum source, silicon source, carbon source and silicon carbide. The mixing method is not particularly limited as long as it can be mixed uniformly. A known mixer such as a container rotary mixer such as a V-type mixer, a ribbon mixer, a Henschel mixer, a Proshare mixer, a super mixer, and a dry ball mill can be used. The mixing conditions are appropriately selected according to the mixing device to be used.
次に、得られた混合原料を焼成してAl4SiC4を合成する。焼成に使用する装置は、不活性雰囲気中で1650℃~1900℃で焼成できるものであればよく、特に限定されない。箱型炉、坩堝炉、管状炉、トンネル炉、真空炉、炉底昇降炉、抵抗加熱炉、誘導加熱炉、直通電型電気炉等既知の焼成炉を用いることができる。
Next, the obtained mixed raw material is calcined to synthesize Al 4 SiC 4 . The apparatus used for firing is not particularly limited as long as it can be fired at 1650 ° C. to 1900 ° C. in an inert atmosphere. Known firing furnaces such as a box-type furnace, a stove furnace, a tubular furnace, a tunnel furnace, a vacuum furnace, a bottom elevating furnace, a resistance heating furnace, an induction heating furnace, and a direct energization type electric furnace can be used.
焼成によるAl4SiC4の合成反応は、二段階で進行する。先ず、Al、Si及びCが反応して、Al4C3とSiCとが生成する。次に、1300℃以上の温度領域で、Al4C3とSiCとが反応して、Al4SiC4が合成される。焼成温度が1650℃未満では、二段階目の反応の進行が遅いため、反応後にAl4C3が残存しやすい。そのため、焼成温度は1650℃以上とすることが好ましい。
The synthesis reaction of Al 4 SiC 4 by calcination proceeds in two steps. First, Al, Si and C react to form Al 4 C 3 and SiC. Next, in the temperature range of 1300 ° C. or higher, Al 4 C 3 reacts with SiC to synthesize Al 4 SiC 4 . If the calcination temperature is less than 1650 ° C., the progress of the reaction in the second step is slow, so that Al 4 C 3 tends to remain after the reaction. Therefore, the firing temperature is preferably 1650 ° C. or higher.
一方、焼成温度が1900℃を超えるとAl4SiC4の一部が熱分解する。このため、焼成温度は1900℃以下が好ましく、1800℃以下がより好ましく、1750℃以下がさらに好ましい。焼成時間は、焼成温度に応じて適宜調整すればよいが、1時間~10時間程度が好ましい。
On the other hand, when the firing temperature exceeds 1900 ° C., a part of Al 4 SiC 4 is thermally decomposed. Therefore, the firing temperature is preferably 1900 ° C. or lower, more preferably 1800 ° C. or lower, and even more preferably 1750 ° C. or lower. The firing time may be appropriately adjusted according to the firing temperature, but is preferably about 1 hour to 10 hours.
焼成炉内の雰囲気中に窒素が存在すると、この窒素が金属Alと反応し、窒化アルミニウム(AlN)が副産物として生成する場合がある。窒化アルミニウムの生成抑制のため、焼成は、アルゴン等の不活性ガス雰囲気下で行なうことが好ましく、アルゴン等の不活性ガスを焼成炉内に流しながら焼成を行なうことがより好ましい。また、焼成前に、使用する焼成炉内にあらかじめ不活性ガスを充填して、残存する窒素及び炭素を除去しておくことが好ましい。
If nitrogen is present in the atmosphere inside the firing furnace, this nitrogen may react with the metal Al and aluminum nitride (AlN) may be produced as a by-product. In order to suppress the formation of aluminum nitride, the firing is preferably performed in an atmosphere of an inert gas such as argon, and more preferably the firing is performed while flowing an inert gas such as argon into the firing furnace. Further, before firing, it is preferable to fill the firing furnace to be used with an inert gas in advance to remove residual nitrogen and carbon.
焼成により得られたAl4SiC4は、既知の粉砕手段を用いて粉末化される。前述した平均粒子径が得られるように、粉砕装置及び粉砕条件を調整することにより、Al4SiC4粉体が得られる。
Al 4 SiC 4 obtained by calcination is pulverized using a known pulverizing means. Al 4 SiC 4 powder can be obtained by adjusting the crushing apparatus and crushing conditions so that the above-mentioned average particle size can be obtained.
粉砕装置は、前述した平均粒子径が得られるように粉砕することができればよく、特に限定されない。ジョークラッシャー、コーンクラッシャー、インパクトクラッシャー、ロールクラッシャー、カッターミル、スタンプミル、リングミル、ジェットミル、ハンマーミル、ピンミル、乾式ボールミル、振動ミル、ビーズミル、サイクロンミル等既知の粉砕装置を用いることができる。
The crushing device is not particularly limited as long as it can crush so as to obtain the above-mentioned average particle size. Known crushers such as jaw crushers, cone crushers, impact crushers, roll crushers, cutter mills, stamp mills, ring mills, jet mills, hammer mills, pin mills, dry ball mills, vibration mills, bead mills, and cyclone mills can be used.
粉砕条件は、特に限定されず、使用する粉砕装置の種類等に応じて、粉砕時の回転数、処理時間等を適宜調整することで、所望の平均粒子径を達成することができる。所望の平均粒子径となるように、平均粒子径の異なる複数のAl4SiC4粉体を混合して調整することも可能である。複数のAl4SiC4粉体を混合する場合、その混合方法は特に限定されない。V型混合機等の容器回転型混合機、リボンミキサー、ヘンシェルミキサー、プロシェアミキサー、スーパーミキサー、乾式ボールミル等既知の混合装置を用いることができる。
The crushing conditions are not particularly limited, and a desired average particle size can be achieved by appropriately adjusting the number of revolutions during crushing, the processing time, and the like according to the type of crushing device to be used. It is also possible to mix and adjust a plurality of Al 4 SiC 4 powders having different average particle diameters so as to obtain a desired average particle diameter. When a plurality of Al 4 SiC 4 powders are mixed, the mixing method is not particularly limited. A known mixer such as a container rotary mixer such as a V-type mixer, a ribbon mixer, a Henschel mixer, a Proshare mixer, a super mixer, and a dry ball mill can be used.
以上の工程により得られたAl4SiC4粉体は、Al、Si及びCを主要構成元素とする化合物であるAl4SiC4を含むマイクロ波吸収組成物である。用途に応じて、Al4SiC4粉体を、そのまま、マイクロ波吸収体又はマイクロ波加熱体として使用してもよい。
The Al 4 SiC 4 powder obtained by the above steps is a microwave absorption composition containing Al 4 SiC 4 , which is a compound containing Al, Si and C as main constituent elements. Depending on the application, Al 4 SiC 4 powder may be used as it is as a microwave absorber or a microwave heater.
Al4SiC4成形体は、Al4SiC4粉体を成形することにより得られる。Al4SiC4粉体の成形方法は特に限定されず、加圧プレス成形、冷間静水圧加圧成形(CIP)、押出成形、射出成形、泥しょう鋳込み成形(スリップキャスト)、テープ成形、ドクターブレード等を適宜選択して用いることができる。
The Al 4 SiC 4 molded product is obtained by molding Al 4 SiC 4 powder. The molding method of Al 4 SiC 4 powder is not particularly limited, and pressure press molding, cold hydrostatic pressure molding (CIP), extrusion molding, injection molding, mud casting molding (slip casting), tape molding, doctor A blade or the like can be appropriately selected and used.
なお、成形前にAl4SiC4粉体を造粒してもよい。Al4SiC4粉体の造粒により、成形時のAl4SiC4粉体の充填性や成形密度が向上する。本発明の効果が阻害されない範囲で、Al4SiC4粉体の造粒時に、溶媒やバインダーを使用することも可能である。
In addition, Al 4 SiC 4 powder may be granulated before molding. The granulation of Al 4 SiC 4 powder filling property and molding density of Al 4 SiC 4 powder at the time of molding is improved. It is also possible to use a solvent or a binder when granulating the Al 4 SiC 4 powder as long as the effect of the present invention is not impaired.
Al4SiC4焼結体は、Al4SiC4成形体を焼結することにより得られる。Al4SiC4成形体の焼結方法は特に限定されず、常圧焼結、真空焼結、ホットプレス焼結、熱間等方圧加圧焼結(HIP)、放電プラズマ焼結(SPS)、フラッシュ焼結(FS)、マイクロ波焼結等を適宜選択して用いることができる。Al4SiC4成形体の焼結は、アルゴン等不活性雰囲気下でおこなうことが好ましい。
The Al 4 SiC 4 sintered body is obtained by sintering the Al 4 SiC 4 molded product. The sintering method of the Al 4 SiC 4 molded body is not particularly limited, and is normal pressure sintering, vacuum sintering, hot press sintering, hot isotropic pressure sintering (HIP), discharge plasma sintering (SPS). , Flash sintering (FS), microwave sintering and the like can be appropriately selected and used. The Al 4 SiC 4 molded product is preferably sintered in an inert atmosphere such as argon.
以上の工程により、Al4SiC4粉体、成形体及び焼結体を製造することができるが、本発明に係るマイクロ波吸収組成物、並びにこれを用いて構成されるマイクロ波吸収体及びマイクロ波加熱体の製造方法は、前記製造方法に限定されるものではない。
Al 4 SiC 4 powder, molded body and sintered body can be produced by the above steps, and the microwave absorbing composition according to the present invention, and the microwave absorbing body and micro formed by using the microwave absorbing composition. The method for producing the wave heater is not limited to the above-mentioned production method.
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。なお、後述する実施例及び比較例の各物性は、以下の方法に従って測定した。
Hereinafter, the effects of the present invention will be clarified by Examples, but the present invention should not be construed in a limited manner based on the description of these Examples. The physical properties of Examples and Comparative Examples described later were measured according to the following methods.
[粉体の平均粒子径]
実施例1及び3-5の粉体について、それぞれ、メタノールに投入した後、超音波ホモジナイザー(株式会社日本精機製作所製の商品名「US-300T」)にて、120Wで3分間分散処理して、測定試料とした。この測定試料を、レーザー回折散乱式粒度分布測定装置(日機装株式会社製の商品名「MT3300」)を用いて測定し、各粉体の体積基準の累積50%粒子径を求めた。得られた結果が、平均粒子径として下表1に示されている。 [Average particle size of powder]
The powders of Examples 1 and 3-5 were put into methanol, respectively, and then dispersed at 120 W for 3 minutes with an ultrasonic homogenizer (trade name "US-300T" manufactured by Nippon Seiki Seisakusho Co., Ltd.). , As a measurement sample. This measurement sample was measured using a laser diffraction / scattering type particle size distribution measuring device (trade name “MT3300” manufactured by Nikkiso Co., Ltd.), and the cumulative 50% particle size based on the volume of each powder was determined. The obtained results are shown in Table 1 below as the average particle size.
実施例1及び3-5の粉体について、それぞれ、メタノールに投入した後、超音波ホモジナイザー(株式会社日本精機製作所製の商品名「US-300T」)にて、120Wで3分間分散処理して、測定試料とした。この測定試料を、レーザー回折散乱式粒度分布測定装置(日機装株式会社製の商品名「MT3300」)を用いて測定し、各粉体の体積基準の累積50%粒子径を求めた。得られた結果が、平均粒子径として下表1に示されている。 [Average particle size of powder]
The powders of Examples 1 and 3-5 were put into methanol, respectively, and then dispersed at 120 W for 3 minutes with an ultrasonic homogenizer (trade name "US-300T" manufactured by Nippon Seiki Seisakusho Co., Ltd.). , As a measurement sample. This measurement sample was measured using a laser diffraction / scattering type particle size distribution measuring device (trade name “MT3300” manufactured by Nikkiso Co., Ltd.), and the cumulative 50% particle size based on the volume of each powder was determined. The obtained results are shown in Table 1 below as the average particle size.
実施例2の粉体について、JIS Z8827-1(粒子径解析-画像解析法-第1部:静的画像解析法)に規定されるフェレー径を測定し、一次粒子100個の測定値の算術平均値を算出した。測定には、走査型電子顕微鏡(SEM)(日本電子株式会社製JSM6510LA)又は光学顕微鏡(株式会社ニコン製ECLIPSE LV150N)を使用した。得られた結果が、平均粒子径として下表1に示されている。
For the powder of Example 2, the ferret diameter specified in JIS Z8827-1 (particle size analysis-image analysis method-Part 1: static image analysis method) was measured, and the arithmetic measurement of the measured values of 100 primary particles was performed. The average value was calculated. For the measurement, a scanning electron microscope (SEM) (JSM6510LA manufactured by JEOL Ltd.) or an optical microscope (ECLIPSE LV150N manufactured by Nikon Corporation) was used. The obtained results are shown in Table 1 below as the average particle size.
[粉体の組成式]
実施例1-5の粉体の組成式を、CuKα線による粉末X線回折分析によって特定した。粉末X線回折分析には、粉末X線回折装置(株式会社リガク製 MiniFlex600)を使用した。横軸をX線入射角2θ(単位:°)、縦軸を回折強度(単位:cps)としたグラフに、測定した回折強度をプロットし、特定の入射角とその回折強度のピーク高さを読み取った。測定はX線源CuKα線(0.154nm)、走査速度2°/分、走査範囲2θ=3~90°、サンプリング間隔0.02°の条件で行った。得られた結果が、下表1に示されている。 [Powder composition formula]
The composition formula of the powder of Example 1-5 was specified by powder X-ray diffraction analysis with CuKα ray. A powder X-ray diffractometer (MiniFlex 600 manufactured by Rigaku Co., Ltd.) was used for the powder X-ray diffraction analysis. The measured diffraction intensity is plotted on a graph in which the horizontal axis is the X-ray incident angle 2θ (unit: °) and the vertical axis is the diffraction intensity (unit: cps), and the specific incident angle and the peak height of the diffraction intensity are calculated. I read it. The measurement was performed under the conditions of an X-ray source CuKα ray (0.154 nm), a scanning speed of 2 ° / min, a scanning range of 2θ = 3 to 90 °, and a sampling interval of 0.02 °. The results obtained are shown in Table 1 below.
実施例1-5の粉体の組成式を、CuKα線による粉末X線回折分析によって特定した。粉末X線回折分析には、粉末X線回折装置(株式会社リガク製 MiniFlex600)を使用した。横軸をX線入射角2θ(単位:°)、縦軸を回折強度(単位:cps)としたグラフに、測定した回折強度をプロットし、特定の入射角とその回折強度のピーク高さを読み取った。測定はX線源CuKα線(0.154nm)、走査速度2°/分、走査範囲2θ=3~90°、サンプリング間隔0.02°の条件で行った。得られた結果が、下表1に示されている。 [Powder composition formula]
The composition formula of the powder of Example 1-5 was specified by powder X-ray diffraction analysis with CuKα ray. A powder X-ray diffractometer (MiniFlex 600 manufactured by Rigaku Co., Ltd.) was used for the powder X-ray diffraction analysis. The measured diffraction intensity is plotted on a graph in which the horizontal axis is the X-ray incident angle 2θ (unit: °) and the vertical axis is the diffraction intensity (unit: cps), and the specific incident angle and the peak height of the diffraction intensity are calculated. I read it. The measurement was performed under the conditions of an X-ray source CuKα ray (0.154 nm), a scanning speed of 2 ° / min, a scanning range of 2θ = 3 to 90 °, and a sampling interval of 0.02 °. The results obtained are shown in Table 1 below.
[焼結体の相対密度]
実施例6-9の焼結体の密度を、アルキメデス法により測定した。得られた密度を、それぞれ理論密度で除すことにより、相対密度(%)を算出した。なお、Al4SiC4の理論密度を3.04g/cm3とした。得られた結果が、相対密度として下表2に示されている。 [Relative density of sintered body]
The density of the sintered body of Example 6-9 was measured by the Archimedes method. The relative density (%) was calculated by dividing each of the obtained densities by the theoretical density. The theoretical density of Al 4 SiC 4 was set to 3.04 g / cm 3 . The obtained results are shown in Table 2 below as relative densities.
実施例6-9の焼結体の密度を、アルキメデス法により測定した。得られた密度を、それぞれ理論密度で除すことにより、相対密度(%)を算出した。なお、Al4SiC4の理論密度を3.04g/cm3とした。得られた結果が、相対密度として下表2に示されている。 [Relative density of sintered body]
The density of the sintered body of Example 6-9 was measured by the Archimedes method. The relative density (%) was calculated by dividing each of the obtained densities by the theoretical density. The theoretical density of Al 4 SiC 4 was set to 3.04 g / cm 3 . The obtained results are shown in Table 2 below as relative densities.
[実施例1]
金属Al(純度99%、平均粒子径35μm)、金属Si(純度98%、平均粒子径20μm)及び鱗状黒鉛(純度98%、平均粒子径50μm)からなる原料をモル換算でAl:Si:C=44.44mol%:11.11mol%:44.44mol%となるように秤量した。さらに、原料全体におけるAl/Siモル比が3.76以上3.94以下となるように、SiC(純度99%、平均粒子径40μm)を秤量した。 [Example 1]
Raw materials composed of metal Al (purity 99%, average particle diameter 35 μm), metal Si (purity 98%, average particle diameter 20 μm) and scaly graphite (purity 98%, average particle diameter 50 μm) are converted into moles of Al: Si: C. Weighed so as to be 44.44 mol%: 11.11 mol%: 44.44 mol%. Further, SiC (purity 99%, average particle diameter 40 μm) was weighed so that the Al / Si molar ratio in the whole raw material was 3.76 or more and 3.94 or less.
金属Al(純度99%、平均粒子径35μm)、金属Si(純度98%、平均粒子径20μm)及び鱗状黒鉛(純度98%、平均粒子径50μm)からなる原料をモル換算でAl:Si:C=44.44mol%:11.11mol%:44.44mol%となるように秤量した。さらに、原料全体におけるAl/Siモル比が3.76以上3.94以下となるように、SiC(純度99%、平均粒子径40μm)を秤量した。 [Example 1]
Raw materials composed of metal Al (purity 99%, average particle diameter 35 μm), metal Si (purity 98%, average particle diameter 20 μm) and scaly graphite (purity 98%, average particle diameter 50 μm) are converted into moles of Al: Si: C. Weighed so as to be 44.44 mol%: 11.11 mol%: 44.44 mol%. Further, SiC (purity 99%, average particle diameter 40 μm) was weighed so that the Al / Si molar ratio in the whole raw material was 3.76 or more and 3.94 or less.
秤量した各原料を、スーパーミキサーを用いて0.5時間乾式混合した。得られた混合原料を焼成炉に投入し、アルゴンガスを流しながら、1750℃で5時間焼成した。得られた焼成物を、乾式ボールミルを用いて2時間粉砕することにより、平均粒子径16.0μmのAl4SiC4粉体(PE1)を得た。粉末X線回折分析の結果、得られた粉体(PE1)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE1)を、そのまま実施例1のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。
Each of the weighed raw materials was dry-mixed for 0.5 hours using a super mixer. The obtained mixed raw material was put into a firing furnace and fired at 1750 ° C. for 5 hours while flowing argon gas. The obtained baked product, by 2 hours pulverized by a dry ball mill to obtain Al 4 SiC 4 powder having an average particle diameter 16.0μm and (P E1). As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE1 ) was Al 4 SiC 4 , and no peaks other than Al 4 SiC 4 were observed. This Al 4 SiC 4 powder ( PE1 ) was used as it was as the microwave absorption composition of Example 1 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
[実施例2]
焼成物の粉砕にジョークラッシャーを使用した以外は、実施例1と同様にして、平均粒子径1.6mmのAl4SiC4粉体(PE2)を得た。粉末X線回折分析の結果、得られた粉体(PE2)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE2)を、そのまま実施例2のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 2]
Al 4 SiC 4 powder ( PE2 ) having an average particle diameter of 1.6 mm was obtained in the same manner as in Example 1 except that a jaw crusher was used to pulverize the fired product. As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE2 ) was Al 4 SiC 4 , and no peaks other than Al 4 SiC 4 were observed. This Al 4 SiC 4 powder ( PE2 ) was used as it was as the microwave absorption composition of Example 2 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
焼成物の粉砕にジョークラッシャーを使用した以外は、実施例1と同様にして、平均粒子径1.6mmのAl4SiC4粉体(PE2)を得た。粉末X線回折分析の結果、得られた粉体(PE2)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE2)を、そのまま実施例2のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 2]
Al 4 SiC 4 powder ( PE2 ) having an average particle diameter of 1.6 mm was obtained in the same manner as in Example 1 except that a jaw crusher was used to pulverize the fired product. As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE2 ) was Al 4 SiC 4 , and no peaks other than Al 4 SiC 4 were observed. This Al 4 SiC 4 powder ( PE2 ) was used as it was as the microwave absorption composition of Example 2 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
[実施例3]
乾式ボールミルによる焼成物の粉砕時間を24時間とした以外は、実施例1と同様にして、平均粒子径3.0μmのAl4SiC4粉体(PE3)を得た。粉末X線回折分析の結果、得られた粉体(PE3)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE3)を、そのまま実施例3のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 3]
Al 4 SiC 4 powder ( PE3 ) having an average particle diameter of 3.0 μm was obtained in the same manner as in Example 1 except that the crushing time of the fired product by the dry ball mill was set to 24 hours. As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE3 ) was Al 4 SiC 4 , and no peaks other than Al 4 SiC 4 were observed. This Al 4 SiC 4 powder ( PE3 ) was used as it was as the microwave absorption composition of Example 3 for the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
乾式ボールミルによる焼成物の粉砕時間を24時間とした以外は、実施例1と同様にして、平均粒子径3.0μmのAl4SiC4粉体(PE3)を得た。粉末X線回折分析の結果、得られた粉体(PE3)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE3)を、そのまま実施例3のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 3]
Al 4 SiC 4 powder ( PE3 ) having an average particle diameter of 3.0 μm was obtained in the same manner as in Example 1 except that the crushing time of the fired product by the dry ball mill was set to 24 hours. As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE3 ) was Al 4 SiC 4 , and no peaks other than Al 4 SiC 4 were observed. This Al 4 SiC 4 powder ( PE3 ) was used as it was as the microwave absorption composition of Example 3 for the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
[実施例4]
乾式ボールミルによる焼成物の粉砕時間を5時間とした以外は、実施例1と同様にして、平均粒子径10.4μmのAl4SiC4粉体(PE4)を得た。粉末X線回折分析の結果、得られた粉体(PE4)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE4)を、そのまま実施例4のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 4]
Except that the grinding time of the fired product by a dry ball mill was 5 hours in the same manner as in Example 1 to obtain Al 4 SiC 4 powder having an average particle diameter 10.4μm and (P E4). As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE4 ) was Al 4 SiC 4 , and no peak other than Al 4 SiC 4 was observed. This Al 4 SiC 4 powder ( PE4 ) was used as it was as the microwave absorption composition of Example 4 for the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
乾式ボールミルによる焼成物の粉砕時間を5時間とした以外は、実施例1と同様にして、平均粒子径10.4μmのAl4SiC4粉体(PE4)を得た。粉末X線回折分析の結果、得られた粉体(PE4)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE4)を、そのまま実施例4のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 4]
Except that the grinding time of the fired product by a dry ball mill was 5 hours in the same manner as in Example 1 to obtain Al 4 SiC 4 powder having an average particle diameter 10.4μm and (P E4). As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE4 ) was Al 4 SiC 4 , and no peak other than Al 4 SiC 4 was observed. This Al 4 SiC 4 powder ( PE4 ) was used as it was as the microwave absorption composition of Example 4 for the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
[実施例5]
乾式ボールミルによる焼成物の粉砕時間を0.5時間とした以外は、実施例1と同様にして、平均粒子径126.0μmのAl4SiC4粉体(PE5)を得た。粉末X線回折分析の結果、得られた粉体(PE5)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE5)を、そのまま実施例5のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 5]
Except that the grinding time of the fired product by a dry ball mill was 0.5 hours in the same manner as in Example 1 to obtain Al 4 SiC 4 powder having an average particle diameter of 126.0μm the (P E5). As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE5 ) was Al 4 SiC 4 , and no peak other than Al 4 SiC 4 was observed. This Al 4 SiC 4 powder ( PE5 ) was used as it was as the microwave absorption composition of Example 5 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
乾式ボールミルによる焼成物の粉砕時間を0.5時間とした以外は、実施例1と同様にして、平均粒子径126.0μmのAl4SiC4粉体(PE5)を得た。粉末X線回折分析の結果、得られた粉体(PE5)の組成式がAl4SiC4であり、Al4SiC4以外のピークが見られないことを確認した。このAl4SiC4粉体(PE5)を、そのまま実施例5のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Example 5]
Except that the grinding time of the fired product by a dry ball mill was 0.5 hours in the same manner as in Example 1 to obtain Al 4 SiC 4 powder having an average particle diameter of 126.0μm the (P E5). As a result of powder X-ray diffraction analysis, it was confirmed that the composition formula of the obtained powder ( PE5 ) was Al 4 SiC 4 , and no peak other than Al 4 SiC 4 was observed. This Al 4 SiC 4 powder ( PE5 ) was used as it was as the microwave absorption composition of Example 5 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
[実施例6]
実施例1で得られたAl4SiC4粉体(PE1)をφ30mmのカーボン治具に装填し、1700℃×10分の加熱条件の下、アルゴン雰囲気下でパルス通電加圧焼結を行い、φ30mm×5mmのサイズで、相対密度91.23%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例6のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 6]
Load the Al 4 SiC 4 powder obtained in Example 1 (P E1) in carbon jig .phi.30 mm, under the heating conditions of 1700 ° C. × 10 minutes, subjected to pulse current pressure sintering under an argon atmosphere , An Al 4 SiC 4 sintered body having a size of φ30 mm × 5 mm and a relative density of 91.23% was obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 6 for the heating characteristic evaluation test described later.
実施例1で得られたAl4SiC4粉体(PE1)をφ30mmのカーボン治具に装填し、1700℃×10分の加熱条件の下、アルゴン雰囲気下でパルス通電加圧焼結を行い、φ30mm×5mmのサイズで、相対密度91.23%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例6のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 6]
Load the Al 4 SiC 4 powder obtained in Example 1 (P E1) in carbon jig .phi.30 mm, under the heating conditions of 1700 ° C. × 10 minutes, subjected to pulse current pressure sintering under an argon atmosphere , An Al 4 SiC 4 sintered body having a size of φ30 mm × 5 mm and a relative density of 91.23% was obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 6 for the heating characteristic evaluation test described later.
[実施例7]
パルス通電加圧焼結における加熱条件を1650℃×10分とした以外は、実施例6と同様にして、φ30mm×5mmのサイズで、相対密度85.98%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例7のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 7]
An Al 4 SiC 4 sintered body having a size of φ30 mm × 5 mm and a relative density of 85.98% was prepared in the same manner as in Example 6 except that the heating conditions in the pulse energization pressure sintering were set to 1650 ° C. × 10 minutes. Obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 7 for the heating characteristic evaluation test described later.
パルス通電加圧焼結における加熱条件を1650℃×10分とした以外は、実施例6と同様にして、φ30mm×5mmのサイズで、相対密度85.98%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例7のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 7]
An Al 4 SiC 4 sintered body having a size of φ30 mm × 5 mm and a relative density of 85.98% was prepared in the same manner as in Example 6 except that the heating conditions in the pulse energization pressure sintering were set to 1650 ° C. × 10 minutes. Obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 7 for the heating characteristic evaluation test described later.
[実施例8]
パルス通電加圧焼結における加熱条件を1500℃×10分とした以外は、実施例6と同様にして、φ30mm×5mmのサイズで、相対密度62.00%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例8のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 8]
An Al 4 SiC 4 sintered body having a size of φ30 mm × 5 mm and a relative density of 62.00% was prepared in the same manner as in Example 6 except that the heating conditions in the pulse energization pressure sintering were set to 1500 ° C. × 10 minutes. Obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 8 for the heating characteristic evaluation test described later.
パルス通電加圧焼結における加熱条件を1500℃×10分とした以外は、実施例6と同様にして、φ30mm×5mmのサイズで、相対密度62.00%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例8のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 8]
An Al 4 SiC 4 sintered body having a size of φ30 mm × 5 mm and a relative density of 62.00% was prepared in the same manner as in Example 6 except that the heating conditions in the pulse energization pressure sintering were set to 1500 ° C. × 10 minutes. Obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 8 for the heating characteristic evaluation test described later.
[実施例9]
実施例1で得られたAl4SiC4粉体(PE1)を加圧成形により成形し、アルゴン雰囲気下で1400℃×1時間の焼成を行い、φ30mm×5mmのサイズで、相対密度49.1%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例9のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 9]
Molded by Al 4 SiC 4 powder (P E1) pressure molding obtained in Example 1 and fired in 1400 ° C. × 1 hour in an argon atmosphere, the size of .phi.30 mm × 5 mm, a relative density of 49. A 1% Al 4 SiC 4 sintered body was obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 9 for the heating characteristic evaluation test described later.
実施例1で得られたAl4SiC4粉体(PE1)を加圧成形により成形し、アルゴン雰囲気下で1400℃×1時間の焼成を行い、φ30mm×5mmのサイズで、相対密度49.1%のAl4SiC4焼結体を得た。このAl4SiC4焼結体を、そのまま実施例9のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Example 9]
Molded by Al 4 SiC 4 powder (P E1) pressure molding obtained in Example 1 and fired in 1400 ° C. × 1 hour in an argon atmosphere, the size of .phi.30 mm × 5 mm, a relative density of 49. A 1% Al 4 SiC 4 sintered body was obtained. This Al 4 SiC 4 sintered body was used as it was as the microwave absorption composition of Example 9 for the heating characteristic evaluation test described later.
[比較例1]
平均粒子径22.0μmのアルミナ粉体(純度99.7%)を比較例1のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 1]
Alumina powder (purity 99.7%) having an average particle diameter of 22.0 μm was used as a microwave absorption composition of Comparative Example 1 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
平均粒子径22.0μmのアルミナ粉体(純度99.7%)を比較例1のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 1]
Alumina powder (purity 99.7%) having an average particle diameter of 22.0 μm was used as a microwave absorption composition of Comparative Example 1 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
[比較例2]
平均粒子径56.6μmのアルミナ粉体(純度99.7%)を比較例2のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 2]
Alumina powder (purity 99.7%) having an average particle diameter of 56.6 μm was used as a microwave absorption composition of Comparative Example 2 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
平均粒子径56.6μmのアルミナ粉体(純度99.7%)を比較例2のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 2]
Alumina powder (purity 99.7%) having an average particle diameter of 56.6 μm was used as a microwave absorption composition of Comparative Example 2 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
[比較例3]
平均粒子径113.8μmのアルミナ粉体(純度99.7%)を比較例3のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 3]
Alumina powder (purity 99.7%) having an average particle diameter of 113.8 μm was used as a microwave absorption composition of Comparative Example 3 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
平均粒子径113.8μmのアルミナ粉体(純度99.7%)を比較例3のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 3]
Alumina powder (purity 99.7%) having an average particle diameter of 113.8 μm was used as a microwave absorption composition of Comparative Example 3 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
[比較例4]
平均粒子径1.4mmのアルミナ粉体(純度99.7%)を比較例4のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 4]
Alumina powder (purity 99.7%) having an average particle diameter of 1.4 mm was used as the microwave absorption composition of Comparative Example 4 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
平均粒子径1.4mmのアルミナ粉体(純度99.7%)を比較例4のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 4]
Alumina powder (purity 99.7%) having an average particle diameter of 1.4 mm was used as the microwave absorption composition of Comparative Example 4 in the absorption characteristic evaluation test and the heating characteristic evaluation test described later.
[比較例5]
平均粒子径1.3mmのSiC粉体(純度99.0%)を比較例5のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 5]
A SiC powder (purity 99.0%) having an average particle diameter of 1.3 mm was used as a microwave absorption composition of Comparative Example 5 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
平均粒子径1.3mmのSiC粉体(純度99.0%)を比較例5のマイクロ波吸収組成物として、後述の吸収特性評価試験及び加熱特性評価試験に供した。 [Comparative Example 5]
A SiC powder (purity 99.0%) having an average particle diameter of 1.3 mm was used as a microwave absorption composition of Comparative Example 5 in an absorption characteristic evaluation test and a heating characteristic evaluation test described later.
[比較例6]
φ30×5mmのサイズで、相対密度98.88%のAl2O3焼結体(純度99.7%)を比較例6のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Comparative Example 6]
An Al 2 O 3 sintered body (purity 99.7%) having a size of φ30 × 5 mm and a relative density of 98.88% was used as a microwave absorption composition of Comparative Example 6 in a heating characteristic evaluation test described later.
φ30×5mmのサイズで、相対密度98.88%のAl2O3焼結体(純度99.7%)を比較例6のマイクロ波吸収組成物として、後述の加熱特性評価試験に供した。 [Comparative Example 6]
An Al 2 O 3 sintered body (purity 99.7%) having a size of φ30 × 5 mm and a relative density of 98.88% was used as a microwave absorption composition of Comparative Example 6 in a heating characteristic evaluation test described later.
[粉体の吸収特性評価試験]
マイクロ波の吸収特性として、JIS R1641(ファインセラミックス基板のマイクロ波誘電特性の測定保法)に基づいて、空洞共振器摂動法により誘電損率(ε’’)を確認した。粉体0.1gを測定用ガラス管に詰めた後、この測定用ガラス管を円筒空洞共振器(TM010モード)内に挿入し、ネットワークアナライザー(Agilent社製のE5071C)を用いて、周波数2.5GHz、25℃における共振周波数及びQ値の変化量を測定し、誘電損率(ε’’)を算出した。この結果が下表1に示されている。誘電損率(ε’’)が大きい程、評価が高い。なお、誘電損率が測定できなかったものはNDと記載する。 [Powder absorption characteristic evaluation test]
As the microwave absorption characteristic, the dielectric loss rate (ε'') was confirmed by the cavity resonator perturbation method based on JIS R1641 (measurement method for measuring microwave dielectric characteristic of fine ceramics substrate). After packing 0.1 g of the powder into a glass tube for measurement, the glass tube for measurement is inserted into a cylindrical cavity resonator (TM010 mode), and a network analyzer (E5071C manufactured by Agent) is used to perform frequency 2. The change in resonance frequency and Q value at 5 GHz and 25 ° C. was measured, and the dielectric loss rate (ε'') was calculated. The results are shown in Table 1 below. The larger the dielectric loss ratio (ε''), the higher the evaluation. If the dielectric loss rate cannot be measured, it is described as ND.
マイクロ波の吸収特性として、JIS R1641(ファインセラミックス基板のマイクロ波誘電特性の測定保法)に基づいて、空洞共振器摂動法により誘電損率(ε’’)を確認した。粉体0.1gを測定用ガラス管に詰めた後、この測定用ガラス管を円筒空洞共振器(TM010モード)内に挿入し、ネットワークアナライザー(Agilent社製のE5071C)を用いて、周波数2.5GHz、25℃における共振周波数及びQ値の変化量を測定し、誘電損率(ε’’)を算出した。この結果が下表1に示されている。誘電損率(ε’’)が大きい程、評価が高い。なお、誘電損率が測定できなかったものはNDと記載する。 [Powder absorption characteristic evaluation test]
As the microwave absorption characteristic, the dielectric loss rate (ε'') was confirmed by the cavity resonator perturbation method based on JIS R1641 (measurement method for measuring microwave dielectric characteristic of fine ceramics substrate). After packing 0.1 g of the powder into a glass tube for measurement, the glass tube for measurement is inserted into a cylindrical cavity resonator (TM010 mode), and a network analyzer (E5071C manufactured by Agent) is used to perform frequency 2. The change in resonance frequency and Q value at 5 GHz and 25 ° C. was measured, and the dielectric loss rate (ε'') was calculated. The results are shown in Table 1 below. The larger the dielectric loss ratio (ε''), the higher the evaluation. If the dielectric loss rate cannot be measured, it is described as ND.
[粉体の加熱特性評価試験]
粉体1.0gを秤量して測定試料とし、容器に空洞共振器を採用した。TE103モードにおける電界最大点に試料を設置し、周波数2.45GHz、出力200Wのマイクロ波を照射して、試料温度が25℃から600℃まで上昇するのに要する時間(到達時間)を測定した。試料温度は放射温度計(株式会社チノー製のIR-FAQINL又はIR-FL5NN02)によって測定した。この結果が下表1に示されている。なお、試料温度が600℃に到達しなかったものは未到達と記載する。 [Powder heating characteristic evaluation test]
1.0 g of powder was weighed and used as a measurement sample, and a cavity resonator was adopted for the container. The sample was placed at the maximum electric field point in the TE103 mode, irradiated with microwaves having a frequency of 2.45 GHz and an output of 200 W, and the time (reaching time) required for the sample temperature to rise from 25 ° C. to 600 ° C. was measured. The sample temperature was measured with a radiation thermometer (IR-FAQINL or IR-FL5NN02 manufactured by Chino Corporation). The results are shown in Table 1 below. If the sample temperature does not reach 600 ° C, it is described as not reached.
粉体1.0gを秤量して測定試料とし、容器に空洞共振器を採用した。TE103モードにおける電界最大点に試料を設置し、周波数2.45GHz、出力200Wのマイクロ波を照射して、試料温度が25℃から600℃まで上昇するのに要する時間(到達時間)を測定した。試料温度は放射温度計(株式会社チノー製のIR-FAQINL又はIR-FL5NN02)によって測定した。この結果が下表1に示されている。なお、試料温度が600℃に到達しなかったものは未到達と記載する。 [Powder heating characteristic evaluation test]
1.0 g of powder was weighed and used as a measurement sample, and a cavity resonator was adopted for the container. The sample was placed at the maximum electric field point in the TE103 mode, irradiated with microwaves having a frequency of 2.45 GHz and an output of 200 W, and the time (reaching time) required for the sample temperature to rise from 25 ° C. to 600 ° C. was measured. The sample temperature was measured with a radiation thermometer (IR-FAQINL or IR-FL5NN02 manufactured by Chino Corporation). The results are shown in Table 1 below. If the sample temperature does not reach 600 ° C, it is described as not reached.
[焼結体の加熱特性評価試験]
マイクロ波炉(テクノフュージョン株式会社製TCSM-4P80H1)に、試料として焼結体を設置し、大気中においてマルチモードで周波数2.45GHz、出力2000Wのマイクロ波を照射して、試料温度が25℃から50℃に上昇するのに要する時間(到達時間)を測定した。試料温度は、ファイバ温度計(安立計器株式会社製のFL-2000)によって測定した。この結果が下表2に示されている。なお、試料温度が50℃に到達しなかったものは未到達と記載する。 [Sintered body heating characteristic evaluation test]
A sintered body is installed as a sample in a microwave furnace (TCSM-4P80H1 manufactured by Technofusion Co., Ltd.), and a microwave with a frequency of 2.45 GHz and an output of 2000 W is irradiated in the atmosphere in multimode, and the sample temperature is 25 ° C. The time required for the temperature to rise to 50 ° C. (arrival time) was measured. The sample temperature was measured with a fiber thermometer (FL-2000 manufactured by Anritsu Meter Co., Ltd.). The results are shown in Table 2 below. If the sample temperature does not reach 50 ° C, it is described as not reached.
マイクロ波炉(テクノフュージョン株式会社製TCSM-4P80H1)に、試料として焼結体を設置し、大気中においてマルチモードで周波数2.45GHz、出力2000Wのマイクロ波を照射して、試料温度が25℃から50℃に上昇するのに要する時間(到達時間)を測定した。試料温度は、ファイバ温度計(安立計器株式会社製のFL-2000)によって測定した。この結果が下表2に示されている。なお、試料温度が50℃に到達しなかったものは未到達と記載する。 [Sintered body heating characteristic evaluation test]
A sintered body is installed as a sample in a microwave furnace (TCSM-4P80H1 manufactured by Technofusion Co., Ltd.), and a microwave with a frequency of 2.45 GHz and an output of 2000 W is irradiated in the atmosphere in multimode, and the sample temperature is 25 ° C. The time required for the temperature to rise to 50 ° C. (arrival time) was measured. The sample temperature was measured with a fiber thermometer (FL-2000 manufactured by Anritsu Meter Co., Ltd.). The results are shown in Table 2 below. If the sample temperature does not reach 50 ° C, it is described as not reached.
表1に示されるように、実施例のマイクロ波吸収組成物は、吸収特性及び加熱特性に優れている。この評価結果から、本発明の優位性は明らかである。
As shown in Table 1, the microwave absorption composition of the example is excellent in absorption characteristics and heating characteristics. From this evaluation result, the superiority of the present invention is clear.
表2に示されるように、実施例のマイクロ波吸収組成物は、加熱特性に優れている。この評価結果から、本発明の優位性は明らかである。
As shown in Table 2, the microwave absorption composition of the example is excellent in heating characteristics. From this evaluation result, the superiority of the present invention is clear.
以上説明されたマイクロ波吸収組成物は、マイクロ波の吸収特性及びマイクロ波の吸収による発熱特性を利用する種々の分野で、好適に用いられ得る。
The microwave absorption composition described above can be suitably used in various fields utilizing the microwave absorption characteristics and the heat generation characteristics due to the absorption of microwaves.
Claims (17)
- Al、Si及びCを主要構成元素とする化合物を含むマイクロ波吸収組成物。 A microwave absorption composition containing a compound containing Al, Si and C as major constituent elements.
- 前記化合物がAlxSiyCzとして示される三元化合物であって、xが1以上8以下、yが1以上4以下、zが1以上8以下である請求項1に記載のマイクロ波吸収組成物。 The microwave absorption according to claim 1, wherein the compound is a ternary compound represented as Al x S y C z , and x is 1 or more and 8 or less, y is 1 or more and 4 or less, and z is 1 or more and 8 or less. Composition.
- 前記化合物がAl4SiC4、Al8SiC7、Al4Si2C5、Al4Si3C6、Al4Si4C7からなる群より選択される少なくとも1種である請求項1又は2に記載のマイクロ波吸収組成物。 Claim 1 or 2 in which the compound is at least one selected from the group consisting of Al 4 SiC 4 , Al 8 SiC 7 , Al 4 Si 2 C 5 , Al 4 Si 3 C 6 , and Al 4 Si 4 C 7. The microwave absorption composition according to.
- 前記化合物がAl4SiC4である請求項1から3のいずれかに記載のマイクロ波吸収組成物。 The microwave absorption composition according to any one of claims 1 to 3, wherein the compound is Al 4 SiC 4 .
- 請求項1から4のいずれかに記載のマイクロ波吸収組成物から構成されるマイクロ波吸収体。 A microwave absorber composed of the microwave absorbing composition according to any one of claims 1 to 4.
- 前記マイクロ波吸収体が、粉体である請求項5に記載のマイクロ波吸収体。 The microwave absorber according to claim 5, wherein the microwave absorber is a powder.
- 前記粉体の、画像解析法により測定される平均粒子径が、10.0μm以上である請求項6に記載のマイクロ波吸収体。 The microwave absorber according to claim 6, wherein the average particle size of the powder measured by an image analysis method is 10.0 μm or more.
- 前記粉体の、レーザー回折散乱法により測定される平均粒子径が、10.0μm以上である請求項6に記載のマイクロ波吸収体。 The microwave absorber according to claim 6, wherein the average particle size of the powder measured by a laser diffraction / scattering method is 10.0 μm or more.
- 前記マイクロ波吸収体が、成形体又は焼結体である請求項5に記載のマイクロ波吸収体。 The microwave absorber according to claim 5, wherein the microwave absorber is a molded body or a sintered body.
- 前記焼結体の、理論密度に対する測定密度の割合として求められる相対密度が60%以上である請求項9に記載のマイクロ波吸収体。 The microwave absorber according to claim 9, wherein the relative density obtained as the ratio of the measured density to the theoretical density of the sintered body is 60% or more.
- 請求項1から4のいずれかに記載のマイクロ波吸収組成物から構成されるマイクロ波加熱体。 A microwave heating body composed of the microwave absorbing composition according to any one of claims 1 to 4.
- 前記マイクロ波加熱体が、粉体である請求項11に記載のマイクロ波加熱体。 The microwave heater according to claim 11, wherein the microwave heater is a powder.
- 前記粉体の、画像解析法により測定される平均粒子径が、10.0μm以上である請求項12に記載のマイクロ波加熱体。 The microwave heater according to claim 12, wherein the average particle size of the powder measured by an image analysis method is 10.0 μm or more.
- 前記粉体の、レーザー回折散乱法により測定される平均粒子径が、10.0μm以上である請求項12に記載のマイクロ波吸収体。 The microwave absorber according to claim 12, wherein the average particle size of the powder measured by a laser diffraction / scattering method is 10.0 μm or more.
- 前記マイクロ波加熱体が、成形体又は焼結体である請求項11に記載のマイクロ波加熱体。 The microwave heating body according to claim 11, wherein the microwave heating body is a molded body or a sintered body.
- 前記焼結体の、理論密度に対する測定密度の割合として求められる相対密度が60%以上である請求項15に記載のマイクロ波加熱体。 The microwave heater according to claim 15, wherein the relative density obtained as the ratio of the measured density to the theoretical density of the sintered body is 60% or more.
- 請求項11から16のいずれかに記載のマイクロ波加熱体を含んで構成されるマイクロ波加熱装置。 A microwave heating device including the microwave heating body according to any one of claims 11 to 16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021519404A JPWO2020230707A1 (en) | 2019-05-13 | 2020-05-08 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019090345 | 2019-05-13 | ||
JP2019-090345 | 2019-05-13 | ||
JP2020045400 | 2020-03-16 | ||
JP2020-045400 | 2020-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230707A1 true WO2020230707A1 (en) | 2020-11-19 |
Family
ID=73290190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018607 WO2020230707A1 (en) | 2019-05-13 | 2020-05-08 | Microwave absorbing composition, microwave absorbing body and microwave heating body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020230707A1 (en) |
WO (1) | WO2020230707A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113135757A (en) * | 2021-04-29 | 2021-07-20 | 华中科技大学 | Ceramic primary blank forming method based on microwave in-situ sintering and product |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006501050A (en) * | 2002-09-05 | 2006-01-12 | ミラリ バイオサイエンシズ,インコーポレーテッド | Directed microwave chemistry |
JP2007008793A (en) * | 2005-07-01 | 2007-01-18 | Okayama Ceramics Gijutsu Shinko Zaidan | Carbon-containing conductive ceramic comprising al-si-c based compound as main constituent |
JP2010228219A (en) * | 2009-03-26 | 2010-10-14 | Ngk Insulators Ltd | Method of drying honeycomb molded product |
JP2011207113A (en) * | 2010-03-30 | 2011-10-20 | Ngk Insulators Ltd | Drying apparatus and drying method for honeycomb formed body |
JP2013238426A (en) * | 2012-05-11 | 2013-11-28 | National Institute Of Advanced Industrial & Technology | Water quality analyzer and water quality analyzing method |
JP2014156366A (en) * | 2013-02-14 | 2014-08-28 | Nippon Steel & Sumitomo Metal | METHOD FOR MANUFACTURING AN Al4SiC4 POWDER, METHOD FOR MANUFACTURING AN MgO-C BRICK, AND MgO-C BRICK |
JP2016201358A (en) * | 2015-04-10 | 2016-12-01 | Jfeケミカル株式会社 | Microwave absorption heating powder and microwave absorption heating element |
WO2018131579A1 (en) * | 2017-01-13 | 2018-07-19 | パナソニック株式会社 | Catalyst heating device and heating device |
JP2019077570A (en) * | 2017-10-20 | 2019-05-23 | タテホ化学工業株式会社 | POWDERED Al4SiC4 AND ANTIOXIDANT |
-
2020
- 2020-05-08 JP JP2021519404A patent/JPWO2020230707A1/ja active Pending
- 2020-05-08 WO PCT/JP2020/018607 patent/WO2020230707A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006501050A (en) * | 2002-09-05 | 2006-01-12 | ミラリ バイオサイエンシズ,インコーポレーテッド | Directed microwave chemistry |
JP2007008793A (en) * | 2005-07-01 | 2007-01-18 | Okayama Ceramics Gijutsu Shinko Zaidan | Carbon-containing conductive ceramic comprising al-si-c based compound as main constituent |
JP2010228219A (en) * | 2009-03-26 | 2010-10-14 | Ngk Insulators Ltd | Method of drying honeycomb molded product |
JP2011207113A (en) * | 2010-03-30 | 2011-10-20 | Ngk Insulators Ltd | Drying apparatus and drying method for honeycomb formed body |
JP2013238426A (en) * | 2012-05-11 | 2013-11-28 | National Institute Of Advanced Industrial & Technology | Water quality analyzer and water quality analyzing method |
JP2014156366A (en) * | 2013-02-14 | 2014-08-28 | Nippon Steel & Sumitomo Metal | METHOD FOR MANUFACTURING AN Al4SiC4 POWDER, METHOD FOR MANUFACTURING AN MgO-C BRICK, AND MgO-C BRICK |
JP2016201358A (en) * | 2015-04-10 | 2016-12-01 | Jfeケミカル株式会社 | Microwave absorption heating powder and microwave absorption heating element |
WO2018131579A1 (en) * | 2017-01-13 | 2018-07-19 | パナソニック株式会社 | Catalyst heating device and heating device |
JP2019077570A (en) * | 2017-10-20 | 2019-05-23 | タテホ化学工業株式会社 | POWDERED Al4SiC4 AND ANTIOXIDANT |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113135757A (en) * | 2021-04-29 | 2021-07-20 | 华中科技大学 | Ceramic primary blank forming method based on microwave in-situ sintering and product |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020230707A1 (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602480B2 (en) | Method for producing alumina particles provided with AlN modified layer | |
KR102643831B1 (en) | Method for producing silicon nitride powder | |
Kume et al. | High‐thermal‐conductivity AlN filler for polymer/ceramics composites | |
US7803733B2 (en) | Aluminum nitride sintered body and semiconductor manufacturing apparatus member | |
WO2018110565A1 (en) | Method for producing high-purity silicon nitride powder | |
Lara et al. | Densification of additive-free polycrystalline β-SiC by spark-plasma sintering | |
EP0327401B1 (en) | Apparatus and method for producing uniform, fine ceramic powders | |
Lanfant et al. | Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nanostructured SiC ceramics | |
US20070138706A1 (en) | Method for preparing metal ceramic composite using microwave radiation | |
KR100307646B1 (en) | Aluminum nitride, aluminum nitride-containing solids and aluminum nitride composites produced by the combustion synthesis method | |
JP6690734B2 (en) | Method for producing silicon nitride powder and silicon nitride sintered body | |
JPWO2013146713A1 (en) | Method for producing silicon nitride powder, silicon nitride powder, silicon nitride sintered body, and circuit board using the same | |
Obeid | Crystallization of synthetic wollastonite prepared from local raw materials | |
Li et al. | Microwave dielectric properties of Ti3SiC2 powders synthesized by solid state reaction | |
WO2014050900A1 (en) | Method for producing conductive mayenite compound having high-electron-density | |
Tang et al. | Preparation and characterization of cordierite powders by water-based sol-gel method | |
WO2021210507A1 (en) | Silicon nitride powder for sintering | |
CN104512893A (en) | Spherical crystalline silicon carbide powder and method for manufacturing same | |
US5194234A (en) | Method for producing uniform, fine boron-containing ceramic powders | |
WO2020230707A1 (en) | Microwave absorbing composition, microwave absorbing body and microwave heating body | |
CN104446496B (en) | Preparation method of AlON powder and transparent ceramics prepared from AlON powder | |
JP5618302B2 (en) | Production method and production apparatus for fine silicon carbide powder | |
Miao et al. | A novel in situ synthesis of SiBCN-Zr composites prepared by a sol–gel process and spark plasma sintering | |
JPWO2018110560A1 (en) | Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot | |
Mathew et al. | Enhanced infrared transmittance properties in ultrafine MgAl2O4 nanoparticles synthesised by a single step combustion method, followed by hybrid microwave sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20805057 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021519404 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20805057 Country of ref document: EP Kind code of ref document: A1 |