WO2020230694A1 - Mobile body - Google Patents

Mobile body Download PDF

Info

Publication number
WO2020230694A1
WO2020230694A1 PCT/JP2020/018544 JP2020018544W WO2020230694A1 WO 2020230694 A1 WO2020230694 A1 WO 2020230694A1 JP 2020018544 W JP2020018544 W JP 2020018544W WO 2020230694 A1 WO2020230694 A1 WO 2020230694A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
vehicle
transmission wave
radar transmission
unit
Prior art date
Application number
PCT/JP2020/018544
Other languages
French (fr)
Japanese (ja)
Inventor
吉澤 淳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2020230694A1 publication Critical patent/WO2020230694A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present disclosure relates to a mobile body, and more particularly to a mobile body capable of improving detection sensitivity by reducing reflection and refraction with respect to radar transmitted waves.
  • in-vehicle radar is an important configuration as a sensing device that supports automatic driving due to its excellent environmental resistance in bad weather such as rainy weather and fog, or in environments where camera sensing is not good, such as tunnel entrances and exits. Expected as an element.
  • in-vehicle radar has been improved, and by more actively utilizing the information acquired by the in-vehicle radar, for example, reduction of the blind spot of the camera, motion recognition by microdoppler information, and SLAM ( It is expected to be applied to technologies such as acquisition of detailed road information by Simultaneous Localization and Mapping).
  • a radar device used for such a new motive an object is detected by arranging the transmission range of the radar transmission wave in front of the vehicle in the traveling direction so as to intersect from the left and right.
  • a method for improving the viewing angle of is proposed.
  • a radar device arranged at the left and right front ends of the vehicle so that the transmission range of the radar transmission wave is set diagonally forward so as to face the vehicle body central axis in the traveling direction.
  • a technique has been proposed in which the radar transmission wave of the radar device installed on the left side of the vehicle detects the front right side of the vehicle, and the radar transmission wave of the radar device installed on the right side of the vehicle detects the front left side of the vehicle ( See Patent Document 1).
  • the body, bumper, or other vehicle body arranged in front of the radar device causes the radar transmission device to be arranged in an oblique direction.
  • the radar transmission wave There is a concern that unintended deterioration may occur in the radar transmission wave.
  • the radar transmission wave which is an electromagnetic wave
  • the vehicle body such as a bumper or a vehicle body composed of a dielectric material
  • the radar transmission wave such as reflection or refraction is reflected or refracted at the interface.
  • the undesired phenomenon may cause deterioration of the detection sensitivity of the radar device.
  • Patent Document 2 is a solution when the transmission direction of the radar transmission wave is directed outward from the corner of the vehicle, and is toward the central axis of the vehicle with respect to the traveling direction from the left and right ends in front of the vehicle. It cannot be applied when the radar transmission wave is transmitted so that the transmission range intersects on the vehicle body center axis in front of the vehicle.
  • the present disclosure has been made in view of such a situation, and occurs at an interface with the vehicle body, particularly when the transmission direction of the radar transmission wave is transmitted so as to intersect on the vehicle body central axis in front of the vehicle. It makes it possible to suppress reflection and refraction, and improves the detection sensitivity of the radar device.
  • the moving body on one side of the present disclosure includes two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the radar transmission waves intersect with respect to the radar transmission wave transmitter.
  • a part of the vehicle body placed in front is a moving body made of a member having a relative magnetic permeability of not 1.
  • two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the respective radar transmission waves intersect are provided with respect to the radar transmission wave transmitter.
  • a part of the vehicle body placed in front is composed of a member whose relative magnetic permeability is not 1.
  • the present disclosure reduces reflections and refractions that occur at the interface with the vehicle body when the radar transmission waves are transmitted in front of the vehicle and intersect on the vehicle body central axis in a direction orthogonal to the vehicle traveling direction. It is a thing.
  • the left part of FIG. 1 shows an example in which three types of transmission waves, a short-range radar transmission wave, a medium-range radar transmission wave, and a long-range radar transmission wave, are used in combination. ..
  • the transmission range Z SL , Z SR in which the short-range radar transmission wave is transmitted from the left and right in front of the vehicle C1
  • the transmission range Z ML in which the medium-range radar transmission wave is transmitted
  • the Z MR and the transmission range Z L at which the long-range radar transmission wave is transmitted from the front center are set.
  • FIG. 1 shows an example in which two types of transmission waves, a medium-range radar transmission wave and a long-range radar transmission wave, are used in combination.
  • short-range radar transmission waves cover the widest field of view and are mainly used to sense the surrounding environment at short distances.
  • the long-range radar transmission wave is optimized to detect a distant target such as 100 to 300 m away, and normally, the radar device transmits the highest gain beam-like radar transmission wave.
  • a medium-range radar transmission wave may be adopted as a radar transmission wave having an intermediate performance between a short-range radar transmission wave and a long-range radar transmission wave.
  • the medium-range radar transmission wave is used, for example, to sense the situation several tens of meters away, and covers an intermediate distance and viewing angle.
  • a radar device that transmits a medium-range radar transmission wave or a radar transmission wave having performance equivalent to a short-range radar transmission wave is assumed.
  • the radar device that transmits the medium-range radar transmission wave is located in front of the vehicle.
  • the transmission range of the radar transmission wave is assumed to have, for example, three types of configurations shown in the left portion, the center portion, and the right portion of FIG.
  • the central directions of the transmission ranges Z ML1 and Z MR1 are set to the front front so that the radar transmission wave is transmitted from the front ends of the vehicle C21 to the front front.
  • the configuration is conceivable.
  • the transmission is performed from both front end portions of the vehicle C21 toward the vehicle body center axis of the vehicle C21 in the direction perpendicular to the traveling direction, and is transmitted in the center directions of the transmission ranges Z ML2 and Z MR2 .
  • the transmission range Z is such that the radar transmission wave is transmitted from the front end portions of the vehicle C21 to the outside from the vehicle body center axis of the vehicle C21 in the direction perpendicular to the traveling direction. It is conceivable that the center direction of the ML3 and Z MR3 is set to the outside of the vehicle body.
  • the radar transmission wave transmitted to the vehicle C22 traveling in the oncoming lane L2 is only a part of the transmission range Z MR1 . Therefore, it cannot be said that the transmission range is suitable for searching the vehicle C22.
  • the vehicle C22 in the oncoming lane L2 can be transmitted from almost the front at the substantially center positions of the transmission ranges Z ML2 and Z MR3 , respectively, and the vehicle C22 can be transmitted. It can be said that the transmission range is suitable for searching.
  • the radar transmission wave when the radar transmission wave is transmitted to the vehicle C22, the radar transmission wave is transmitted at the expected angle ⁇ 1 as shown in the left part of FIG.
  • the radar transmission wave is transmitted to the vehicle C22 within the transmission range Z MR3 , the radar transmission wave is transmitted at a viewing angle ⁇ 2 ( ⁇ 1) as shown in the right part of FIG. It will be.
  • the vehicle travels by the transmission range Z ML2 having a prospect angle ⁇ 2 wider than the prospect angle ⁇ 1, that is, from both ends in front of the vehicle C21. It can be said that it is desirable to have a configuration in which the transmission range of the radar transmission wave is set in the front inner direction toward the vehicle center axis in the direction perpendicular to the direction.
  • radar devices RL and RR are provided at the left and right ends in front of the vehicle C51, and the center line of the transmission range of the radar transmission wave transmitted from the left and right radar devices RL and RR is set.
  • radar devices RL and RR are provided so as to intersect on the vehicle center axis represented by the alternate long and short dash line in the figure in front of the vehicle C51, which is the upper part in the figure.
  • the radar device RL is arranged at the front left end and is arranged so that the center line of the transmission range of the radar transmission wave faces to the right.
  • the radar device RR is arranged at the front right end, and is arranged so that the center line of the transmission range of the radar transmission wave faces to the left.
  • the transmission ranges of the radar transmission waves of each other are configured to intersect in the space in front of the vehicle C51.
  • the transmission range of the radar transmission wave can be widened by increasing the viewing angle ⁇ 11 in the transmission range of the radar transmission wave of the radar devices RL and RR.
  • radar devices RL and RR instead of the radar devices RL and RR, radar devices ARL1 and ARR1 provided with a plurality of phase shifters and an array antenna are provided, and further, the vehicle body is further provided.
  • a member FL having a relative magnetic permeability of not 1 is arranged in a part of (or bumper) B.
  • the viewing angle ⁇ of the transmission range is narrowed by beamforming the radar transmission wave, and the radar transmission wave passing through the vehicle body (or bumper) B is reduced.
  • the radar devices ARL1 and ARR1 equipped with a phase shifter and an array antenna make the transmission range of the radar transmission wave variable, and selectively transmit the radar transmission wave in the forward and diagonal directions to transmit the optimum radar transmission wave. Realize.
  • radar devices ARL and ARR equipped with a phase shifter and an array antenna are provided so as to face the vehicle body B, and the beamforming of the radar transmission wave is performed in the front direction of the vehicle body B.
  • the transmission ranges Z MRC and Z MLC are formed with respect to the vehicle body B, and the transmission ranges Z MRS and Z MLS are formed with respect to the diagonal direction of the vehicle body B.
  • the transmission ranges Z MRC and Z MLC formed with respect to the front direction of the vehicle body B are the optimum points as the transmission direction of the radar transmission wave, the deterioration of the characteristics can be reduced.
  • phase shifters and array antennas of the radar devices ARL1 and ARR1 set the optimum points for the transmission ranges Z MRS and Z MLS formed by beamforming in the oblique direction of the vehicle body B, and the vehicle body.
  • a member FL having a relative magnetic permeability of not 1 is provided in a part of the range overlapping the transmission ranges Z MRS and Z MLS in B.
  • the radar devices ARL2 and ARR2 having the radar devices ARL1 and ARR1 provided with the array antenna facing the central axis of the vehicle C71 are provided so as to provide the optimum points with respect to the facing direction.
  • the radar devices ARL2 and ARR2 By transmitting radar transmission waves to the transmission range Z MRC and Z MLC in which is set, it may be used for searching for objects on the left and right sides.
  • the front direction of the vehicle C71 is set so that the optimum point is set in the transmission ranges Z MRS and Z MLS formed in the oblique direction of the vehicle body B by the phase shifter and the array antenna of the radar devices ARL2 and ARR2. Used to search for objects in.
  • Transmission range Z A member FL whose relative permeability is not 1 is provided in a part of the vehicle body B that overlaps with Z MRS and Z MLS, and the variation due to reflection and refraction due to radar transmission waves is small, so the deterioration of characteristics is reduced. be able to.
  • FIG. 7 is a block diagram showing a configuration example of a schematic function of the vehicle control system 100 in the vehicle 91, which is an example of a mobile control system to which the present technology can be applied.
  • a vehicle provided with the vehicle control system 100 is distinguished from other vehicles, it is referred to as a own vehicle or a own vehicle.
  • the vehicle control system 100 includes an input unit 101, a data acquisition unit 102, a communication unit 103, an in-vehicle device 104, an output control unit 105, an output unit 106, a drive system control unit 107, a drive system system 108, a body system control unit 109, and a body. It includes a system system 110, a storage unit 111, and an automatic operation control unit 112.
  • the input unit 101, the data acquisition unit 102, the communication unit 103, the output control unit 105, the drive system control unit 107, the body system control unit 109, the storage unit 111, and the automatic operation control unit 112 are connected via the communication network 121. They are interconnected.
  • the communication network 121 is, for example, from an in-vehicle communication network or bus that conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 100 may be directly connected without going through the communication network 121.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • the description of the communication network 121 shall be omitted.
  • the input unit 101 and the automatic operation control unit 112 communicate with each other via the communication network 121, it is described that the input unit 101 and the automatic operation control unit 112 simply communicate with each other.
  • the input unit 101 includes a device used by the passenger to input various data, instructions, and the like.
  • the input unit 101 includes an operation device such as a touch panel, a button, a microphone, a switch, and a lever, and an operation device capable of inputting by a method other than manual operation by voice or gesture.
  • the input unit 101 may be a remote control device using infrared rays or other radio waves, or an externally connected device such as a mobile device or a wearable device corresponding to the operation of the vehicle control system 100.
  • the input unit 101 generates an input signal based on data, instructions, and the like input by the passenger, and supplies the input signal to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors and the like that acquire data used for processing of the vehicle control system 100, and supplies the acquired data to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for detecting the state of the own vehicle and the like.
  • the data acquisition unit 102 includes a gyro sensor, an acceleration sensor, an inertial measurement unit (IMU), an accelerator pedal operation amount, a brake pedal operation amount, a steering wheel steering angle, and an engine speed. It is equipped with a sensor or the like for detecting the rotation speed of the motor or the rotation speed of the wheels.
  • IMU inertial measurement unit
  • the data acquisition unit 102 includes various sensors for detecting information outside the own vehicle.
  • the data acquisition unit 102 includes an imaging device such as a ToF (TimeOfFlight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the data acquisition unit 102 includes an environment sensor for detecting the weather or the weather, and a surrounding information detection sensor for detecting an object around the own vehicle.
  • the environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like.
  • the ambient information detection sensor includes, for example, an ultrasonic sensor, a radar, LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing), a sonar, and the like.
  • a radar device 201 corresponding to the radar devices ARL1, ARL2, ARR1, ARR2 provided with the array antennas in FIGS. 5 and 6 is provided.
  • the data acquisition unit 102 includes various sensors for detecting the current position of the own vehicle.
  • the data acquisition unit 102 includes a GNSS receiver or the like that receives a GNSS signal from a GNSS (Global Navigation Satellite System) satellite.
  • GNSS Global Navigation Satellite System
  • the data acquisition unit 102 includes various sensors for detecting information in the vehicle.
  • the data acquisition unit 102 includes an imaging device that images the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like.
  • the biosensor is provided on, for example, the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
  • the communication unit 103 communicates with the in-vehicle device 104 and various devices, servers, base stations, etc. outside the vehicle, transmits data supplied from each unit of the vehicle control system 100, and transmits the received data to the vehicle control system. It is supplied to each part of 100.
  • the communication protocol supported by the communication unit 103 is not particularly limited, and the communication unit 103 may support a plurality of types of communication protocols.
  • the communication unit 103 wirelessly communicates with the in-vehicle device 104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Further, for example, the communication unit 103 uses USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (registered trademark) via a connection terminal (and a cable if necessary) (not shown). Wired communication is performed with the in-vehicle device 104 by Mobile High-definition Link) or the like.
  • USB Universal Serial Bus
  • HDMI High-Definition Multimedia Interface
  • MHL registered trademark
  • the communication unit 103 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network or a network unique to a business operator) via a base station or an access point. Communicate. Further, for example, the communication unit 103 uses P2P (Peer To Peer) technology to connect with a terminal (for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal) existing in the vicinity of the own vehicle. Communicate.
  • a device for example, an application server or a control server
  • an external network for example, the Internet, a cloud network or a network unique to a business operator
  • P2P Peer To Peer
  • a terminal for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal
  • the communication unit 103 includes vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-house (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Pedestrian) communication. ) Perform V2X communication such as communication. Further, for example, the communication unit 103 is provided with a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and acquires information such as the current position, traffic congestion, traffic regulation, or required time. To do.
  • the in-vehicle device 104 includes, for example, a mobile device or a wearable device owned by a passenger, an information device carried in or attached to the own vehicle, a navigation device for searching a route to an arbitrary destination, and the like.
  • the output control unit 105 controls the output of various information to the passengers of the own vehicle or the outside of the vehicle.
  • the output control unit 105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data) and supplies it to the output unit 106 to supply the output unit 105.
  • the output control unit 105 synthesizes image data captured by different imaging devices of the data acquisition unit 102 to generate a bird's-eye view image, a panoramic image, or the like, and outputs an output signal including the generated image. It is supplied to the output unit 106.
  • the output control unit 105 generates voice data including a warning sound or a warning message for dangers such as collision, contact, and entry into a danger zone, and outputs an output signal including the generated voice data to the output unit 106.
  • Supply for example, the output control unit 105 generates voice data including a warning sound or a warning message for dangers such as collision,
  • the output unit 106 is provided with a device capable of outputting visual information or auditory information to the passengers of the own vehicle or the outside of the vehicle.
  • the output unit 106 includes a display device, an instrument panel, an audio speaker, headphones, a wearable device such as a spectacle-type display worn by a passenger, a projector, a lamp, and the like.
  • the display device included in the output unit 106 displays visual information in the driver's field of view, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to the device having a normal display. It may be a display device.
  • the drive system control unit 107 controls the drive system system 108 by generating various control signals and supplying them to the drive system system 108. Further, the drive system control unit 107 supplies a control signal to each unit other than the drive system system 108 as necessary, and notifies the control state of the drive system system 108.
  • the drive system system 108 includes various devices related to the drive system of the own vehicle.
  • the drive system system 108 includes a drive force generator for generating a drive force of an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle, and the like. It is equipped with a braking device that generates braking force, ABS (Antilock Brake System), ESC (Electronic Stability Control), an electric power steering device, and the like.
  • the body system control unit 109 controls the body system 110 by generating various control signals and supplying them to the body system 110. Further, the body system control unit 109 supplies control signals to each unit other than the body system 110 as necessary, and notifies the control state of the body system 110.
  • the body system 110 includes various body devices equipped on the vehicle body.
  • the body system 110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, head lamps, back lamps, brake lamps, winkers, fog lamps, etc.). Etc.
  • the storage unit 111 includes, for example, a magnetic storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, and the like. ..
  • the storage unit 111 stores various programs, data, and the like used by each unit of the vehicle control system 100.
  • the storage unit 111 contains map data such as a three-dimensional high-precision map such as a dynamic map, a global map which is less accurate than the high-precision map and covers a wide area, and a local map including information around the own vehicle.
  • map data such as a three-dimensional high-precision map such as a dynamic map, a global map which is less accurate than the high-precision map and covers a wide area, and a local map including information around the own vehicle.
  • the automatic driving control unit 112 controls automatic driving such as autonomous driving or driving support. Specifically, for example, the automatic driving control unit 112 issues collision avoidance or impact mitigation of the own vehicle, follow-up running based on the inter-vehicle distance, vehicle speed maintenance running, collision warning of the own vehicle, lane deviation warning of the own vehicle, and the like. Collision control is performed for the purpose of realizing the functions of ADAS (Advanced Driver Assistance System) including. Further, for example, the automatic driving control unit 112 performs coordinated control for the purpose of automatic driving in which the vehicle autonomously travels without depending on the operation of the driver.
  • the automatic operation control unit 112 includes a detection unit 131, a self-position estimation unit 132, a situation analysis unit 133, a planning unit 134, and an operation control unit 135.
  • the detection unit 131 detects various types of information necessary for controlling automatic operation.
  • the detection unit 131 includes an outside information detection unit 141, an inside information detection unit 142, and a vehicle state detection unit 143.
  • the vehicle outside information detection unit 141 performs detection processing of information outside the own vehicle based on data or signals from each unit of the vehicle control system 100. For example, the vehicle outside information detection unit 141 performs detection processing, recognition processing, tracking processing, and distance detection processing for an object around the own vehicle. Objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, and the like. Further, for example, the vehicle outside information detection unit 141 performs detection processing of the environment around the own vehicle. The surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition, and the like.
  • the vehicle outside information detection unit 141 outputs data indicating the result of the detection process to the self-position estimation unit 132, the map analysis unit 151 of the situation analysis unit 133, the traffic rule recognition unit 152, the situation recognition unit 153, and the operation control unit 135. It is supplied to the emergency situation avoidance unit 171 and the like.
  • the in-vehicle information detection unit 142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 100.
  • the vehicle interior information detection unit 142 performs driver authentication processing and recognition processing, driver status detection processing, passenger detection processing, vehicle interior environment detection processing, and the like.
  • the state of the driver to be detected includes, for example, physical condition, alertness, concentration, fatigue, gaze direction, and the like.
  • the environment inside the vehicle to be detected includes, for example, temperature, humidity, brightness, odor, and the like.
  • the vehicle interior information detection unit 142 supplies data indicating the result of the detection process to the situational awareness unit 153 of the situational analysis unit 133, the emergency situation avoidance unit 171 of the motion control unit 135, and the like.
  • the vehicle state detection unit 143 performs the state detection process of the own vehicle based on the data or signals from each part of the vehicle control system 100.
  • the states of the own vehicle to be detected include, for example, speed, acceleration, steering angle, presence / absence and content of abnormality, driving operation state, power seat position / tilt, door lock state, and other in-vehicle devices. The state etc. are included.
  • the vehicle state detection unit 143 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • the self-position estimation unit 132 estimates the position and attitude of the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the vehicle exterior information detection unit 141 and the situation recognition unit 153 of the situation analysis unit 133. Perform processing. In addition, the self-position estimation unit 132 generates a local map (hereinafter, referred to as a self-position estimation map) used for self-position estimation, if necessary.
  • the map for self-position estimation is, for example, a highly accurate map using a technique such as SLAM (Simultaneous Localization and Mapping).
  • the self-position estimation unit 132 supplies data indicating the result of the estimation process to the map analysis unit 151, the traffic rule recognition unit 152, the situation recognition unit 153, and the like of the situation analysis unit 133. Further, the self-position estimation unit 132 stores the self-position estimation map in the storage unit 111.
  • the situation analysis unit 133 analyzes the situation of the own vehicle and the surroundings.
  • the situation analysis unit 133 includes a map analysis unit 151, a traffic rule recognition unit 152, a situation recognition unit 153, and a situation prediction unit 154.
  • the map analysis unit 151 uses data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132 and the vehicle exterior information detection unit 141 as necessary, and the map analysis unit 151 of various maps stored in the storage unit 111. Perform analysis processing and build a map containing information necessary for automatic driving processing.
  • the map analysis unit 151 applies the constructed map to the traffic rule recognition unit 152, the situation recognition unit 153, the situation prediction unit 154, the route planning unit 161 of the planning unit 134, the action planning unit 162, the operation planning unit 163, and the like. Supply to.
  • the traffic rule recognition unit 152 determines the traffic rules around the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132, the vehicle outside information detection unit 141, and the map analysis unit 151. Perform recognition processing. By this recognition process, for example, the position and state of the signal around the own vehicle, the content of the traffic regulation around the own vehicle, the lane in which the vehicle can travel, and the like are recognized.
  • the traffic rule recognition unit 152 supplies data indicating the result of the recognition process to the situation prediction unit 154 and the like.
  • the situation recognition unit 153 can be used for data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132, the vehicle exterior information detection unit 141, the vehicle interior information detection unit 142, the vehicle condition detection unit 143, and the map analysis unit 151. Based on this, the situation recognition process related to the own vehicle is performed. For example, the situational awareness unit 153 performs recognition processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver of the own vehicle. In addition, the situational awareness unit 153 generates a local map (hereinafter, referred to as a situational awareness map) used for recognizing the situation around the own vehicle, if necessary.
  • the situational awareness map is, for example, an occupied grid map (OccupancyGridMap).
  • the status of the own vehicle to be recognized includes, for example, the position, posture, movement (for example, speed, acceleration, moving direction, etc.) of the own vehicle, and the presence / absence and contents of an abnormality.
  • the surrounding conditions of the vehicle to be recognized include, for example, the type and position of surrounding stationary objects, the type, position and movement of surrounding animals (for example, speed, acceleration, moving direction, etc.), and the surrounding roads.
  • the composition and road surface condition, as well as the surrounding weather, temperature, humidity, brightness, etc. are included.
  • the state of the driver to be recognized includes, for example, physical condition, arousal level, concentration level, fatigue level, eye movement, driving operation, and the like.
  • the situational awareness unit 153 supplies data indicating the result of the recognition process (including a situational awareness map, if necessary) to the self-position estimation unit 132, the situation prediction unit 154, and the like. Further, the situational awareness unit 153 stores the situational awareness map in the storage unit 111.
  • the situation prediction unit 154 performs a situation prediction process related to the own vehicle based on data or signals from each part of the vehicle control system 100 such as the map analysis unit 151, the traffic rule recognition unit 152, and the situation recognition unit 153. For example, the situation prediction unit 154 performs prediction processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver.
  • the situation of the own vehicle to be predicted includes, for example, the behavior of the own vehicle, the occurrence of an abnormality, the mileage, and the like.
  • the situation around the own vehicle to be predicted includes, for example, the behavior of the animal body around the own vehicle, the change in the signal state, the change in the environment such as the weather, and the like.
  • the driver's situation to be predicted includes, for example, the driver's behavior and physical condition.
  • the situation prediction unit 154 together with the data from the traffic rule recognition unit 152 and the situation recognition unit 153, provides the data indicating the result of the prediction processing to the route planning unit 161, the action planning unit 162, and the operation planning unit 163 of the planning unit 134. And so on.
  • the route planning unit 161 plans a route to the destination based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. For example, the route planning unit 161 sets a route from the current position to the specified destination based on the global map. Further, for example, the route planning unit 161 appropriately changes the route based on the conditions of traffic congestion, accidents, traffic restrictions, construction, etc., and the physical condition of the driver. The route planning unit 161 supplies data indicating the planned route to the action planning unit 162 and the like.
  • the action planning unit 162 safely routes the route planned by the route planning unit 161 within the planned time based on the data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan your vehicle's actions to drive. For example, the action planning unit 162 plans starting, stopping, traveling direction (for example, forward, backward, left turn, right turn, change of direction, etc.), traveling lane, traveling speed, and overtaking. The action planning unit 162 supplies data indicating the planned behavior of the own vehicle to the motion planning unit 163 and the like.
  • the motion planning unit 163 is the operation of the own vehicle for realizing the action planned by the action planning unit 162 based on the data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan. For example, the motion planning unit 163 plans acceleration, deceleration, traveling track, and the like. The motion planning unit 163 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 172 and the direction control unit 173 of the motion control unit 135.
  • the motion control unit 135 controls the motion of the own vehicle.
  • the operation control unit 135 includes an emergency situation avoidance unit 171, an acceleration / deceleration control unit 172, and a direction control unit 173.
  • the emergency situation avoidance unit 171 may collide, contact, enter a danger zone, have a driver abnormality, or cause a vehicle. Performs emergency detection processing such as abnormalities.
  • the emergency situation avoidance unit 171 detects the occurrence of an emergency situation, it plans the operation of the own vehicle to avoid an emergency situation such as a sudden stop or a sharp turn.
  • the emergency situation avoidance unit 171 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 172, the direction control unit 173, and the like.
  • the acceleration / deceleration control unit 172 performs acceleration / deceleration control for realizing the operation of the own vehicle planned by the motion planning unit 163 or the emergency situation avoidance unit 171.
  • the acceleration / deceleration control unit 172 calculates a control target value of a driving force generator or a braking device for realizing a planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 107.
  • the direction control unit 173 performs direction control for realizing the operation of the own vehicle planned by the motion planning unit 163 or the emergency situation avoidance unit 171. For example, the direction control unit 173 calculates the control target value of the steering mechanism for realizing the traveling track or the sharp turn planned by the motion planning unit 163 or the emergency situation avoidance unit 171 and controls to indicate the calculated control target value. The command is supplied to the drive system control unit 107.
  • the radar device 201 is provided at the front left and right ends of the vehicle 91.
  • the radar device 201 provided at the left end portion in front of the vehicle 91 is referred to as a radar device 201L
  • the radar device 201 provided at the right end portion in front of the vehicle 91 is referred to as a radar device 201R.
  • the radar devices 201L and 201R shall be simply referred to as the radar device 201, and other configurations shall be the same.
  • the radar device 201 is configured to include a phase shifter and an array antenna in combination, and adjusts the transmission direction (irradiation direction) and width (viewing angle) by adjusting the amount of phase change by the phase shifter. Then, the radar transmission wave is transmitted (irradiated).
  • the transmission range Z in the front front direction of the vehicle in which the central direction of the transmission range faces the surfaces 201fL and 201fR formed by the array antenna.
  • the MLC and Z MRC and the transmission ranges Z MLS and Z MRS that intersect on the central axis of the vehicle 91 indicated by the alternate long and short dash line are set, respectively.
  • the direction facing the surface formed by the array antenna is the optimum point of the detection accuracy of the radar device 201.
  • the transmission ranges Z MLC and Z MRC are set to the optimum points of detection accuracy.
  • the range overlapping the transmission ranges Z MLS and Z MRS is composed of members 221L and 221R having a relative magnetic permeability of not 1.
  • the transmission range Z is formed by configuring the members 221L and 221R whose relative magnetic permeability is not 1. It is possible to transmit radar transmission waves in MLS and Z MRS with high efficiency.
  • the members generally used for the vehicle body 91a which is the body and bumper portion of the vehicle 91, are made of a dielectric material such as polypropylene, and the dielectric constant is about 2.2 to 2.6.
  • the radar transmission wave is reflected or refracted according to the incident angle.
  • the radar transmission waves of the transmission ranges Z MLS and Z MRS in FIG. 8 have a large incident angle with respect to the vehicle body 91a, so that the vehicle body 91a made of a general dielectric material exists. Then, since the radar transmission wave is reflected or refracted, it is not transmitted forward from the vehicle body 91a, and there is a possibility that sufficient detection accuracy as the radar device 201 cannot be obtained.
  • the range of the vehicle body 91a that overlaps with the transmission ranges Z MLS and Z MRS is composed of the members 221L and 221R having a relative magnetic permeability of not 1, so that the radar transmission wave from the radar device 201 can be transmitted to the vehicle 91. It is configured so that it can be transmitted forward.
  • the vehicle body 91a is transparent. Even if it is not composed of members 221L and 221R having a magnetic coefficient other than 1, and is composed of a dielectric material such as polypropylene, it can pass through the vehicle body 91a, so that sufficient detection accuracy can be ensured. It is possible.
  • the surfaces 201fL'and 201fR'formed by the array antenna are configured to be directed toward the center of the vehicle 91 indicated by the alternate long and short dash line, and the vehicle is indicated by the alternate long and short dash line.
  • Radar devices 201L', 201R' may be provided in place of the radar devices 201L, 201R so that the central direction of 91 is covered by the transmission ranges Z MLC and Z MRC .
  • the radar transmission from the radar device 201 is made so that the transmission range Z MLC and Z MRC in the vehicle body 91a are composed of the members 221L'and 221R' whose relative magnetic permeability is not 1. It is possible to transmit waves in front of the vehicle 91.
  • the transmission ranges Z MLS and Z MRS are formed in the front front direction of the vehicle 91 by adjusting the phase shifter by the combination of the phase shifter provided in the radar device 201 and the array antenna. Will be done.
  • the vehicle body 91a is transparent. It is not composed of members 221L and 221R having a magnetic coefficient of not 1, and even if it is composed of a dielectric material such as polypropylene, it can pass through the vehicle body 91a, so that sufficient detection accuracy can be ensured. It is possible.
  • the radar device 201 will be described as a configuration example provided at two locations on the left and right, but if the radar transmission waves are provided so as to overlap the transmission ranges, the radar device 201 will be described.
  • the number of radar devices 201 may be provided.
  • the radar device 201 is composed of a transmission unit 231, a reception unit 232, a calibration data generation unit 233, a calibration data storage unit 234, a phase control unit 235, and a chirp signal generation unit 236.
  • the transmission unit 231 generates a radar transmission wave based on the chirp signal generated by the chirp signal generation unit 236, and transmits the transmission ranges Z MLC , Z MRC , and Z MLS described with reference to FIGS. 8 and 9. , Z Send to MRS .
  • the transmission unit 231 is composed of an amplification unit 241, a power distributor 242, phase shifters 243-1 to 243-n, and an array antenna 244.
  • the array antenna 244 is composed of element antennas 244-1 to 244-n.
  • the amplification unit 241 amplifies the chirp signal generated by the chirp signal generation unit 236 and outputs it to the power distributor 242.
  • the power distributor 242 distributes chirp signals by the number corresponding to the plurality of element antennas 244a-1 to 244an and outputs them to the phase shifters 243-1 to 243-n, respectively.
  • phase shifters 243-1 to 243-n are controlled by the phase control unit 235, control the phase of the radar transmission wave output from the element antennas 244a-1 to 244an, respectively, and transmit the radar from the array antenna 244. Send waves.
  • the phase shifter 243 may be realized by an individual phase shift circuit provided independently for each array antenna, but in order to realize an inexpensive and compact radar, the phase shifter is realized as an integrated circuit. Is desirable.
  • a High-Linearity 76-85-GHz 16-Element 8-Transmit / 8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging discloses an example of a phase shifter integrated by a semiconductor circuit.
  • FIG. 11 shows a configuration example of the integrated phase shifter 243.
  • the configuration refer to “A High-Linearity 76-85-GHz 16-Element 8-Transmit / 8- See Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging, ”IEEE Transaction on Microwave Theory and Techniques, vol. 62, no. 10, Oct. 2014.
  • phase shifter 243 can usually change the phase by 360 ° and can rotate the input signal to an arbitrary phase.
  • the phase control unit 235 uses the calibration data stored in the calibration data storage unit 234 to adjust the amount of phase change by the phase shifters 243-1 to 243-n, whereby the element antennas 244a-1 to It is possible to adjust the phase of the radar transmission wave output from 244an and set the transmission direction of the radar transmission wave transmitted from the array antenna 244.
  • the phase control unit 235 by adjusting the amount of phase change by the phase control unit 235, for example, the transmission ranges Z MLC , Z MRC , and Z MLS , Z MRS of the radar transmission wave transmitted from the surfaces 201fL, 201fR formed by the array antenna 244 are set. Set.
  • the power distributor 242 may have a configuration other than that shown in FIG. 10, and distributes the power distributor 242 to the four element antennas 244a-1 to 244a-4, for example, as shown in FIG.
  • the power distributors 242'-1 to 242'-3, which distribute 1: 2 may be used to distribute the power in two stages, and the phase shifters 243-1 to 243-4 may be used for output.
  • the power distributor 242'in FIG. 12 may be composed of a distributor known as a so-called Wilkinson distributor, for example, as shown in FIG.
  • the receiving unit 232 receives the reflected wave reflected by the object from the radar transmission wave transmitted from the transmitting unit 231 and determines the distance to the object, the speed of the object, and the direction of the object based on the received reflected wave. Detect and output the detection result.
  • the receiving unit 232 includes receiving antennas 251-1 to 251-n, amplification units 252-1 to 252-n, synthesis units 253-1 to 253-n, and amplification units 254-1 to 254-n. It is composed of AD converters 255-1 to 255-n and a signal processing unit 256.
  • the receiving antennas 251-1 to 251-n receive the reflected wave whose radar transmission wave is reflected by the object and output it as a received signal to the amplification units 252-1 to 252-n, respectively.
  • the amplification units 252-1 to 252-n amplify the reception signal supplied from the reception antennas 251-1 to 251-n and output it to the synthesis unit 253-1 to 253-n, respectively.
  • the synthesis units 253-1 to 253-n synthesize the amplified signal of the received signal supplied from the amplification units 252-1 to 252-n and the chirp signal, respectively, and use the amplification unit 254-1 as a composite signal. Output to ⁇ 254-n.
  • the amplification units 254-1 to 254-n amplify the composite signal supplied from the synthesis unit 253-1 to 253-n and output it to the AD converters 255-1 to 255-n, respectively.
  • the AD converters 255-1 to 255-n perform AD conversion of the amplified composite signal supplied from the amplification units 254-1 to 254-n and output each to the signal processing unit 256.
  • the signal processing unit 256 calculates the distance, speed, and direction of the target object by adding the combined signals supplied from the AD converters 255-1 to 255-n and multiplying them by FFT (Fast Fourier Transform). And output as a detection result.
  • FFT Fast Fourier Transform
  • the signal processing unit 256 has, for example, a configuration as shown in FIG. 14, and includes a distance FFT unit 271, a speed FFT unit 272, an azimuth FFT unit 273, and a DSP 274.
  • the distance FFT unit 271 converts a composite signal in which a chirp signal is synthesized based on the reception signal received by the reception antenna 251 into a discrete signal by applying FFT, and based on the discrete signal, reaches an object. The distance is calculated and output to DSP274.
  • the speed FFT unit 272 converts the composite signal in which the chirp signal is synthesized based on the received signal received by the reception antenna 251 into a discrete signal by applying FFT, and the speed of the object is based on the discrete signal. Is calculated and output to DSP274.
  • the azimuth FFT unit 273 converts the composite signal in which the chirp signal is synthesized based on the reception signal received by the reception antenna 251 into a discrete signal by applying the FFT, and the azimuth of the object is based on the discrete signal. Is calculated and output to DSP274.
  • the DSP (Digital Signal Processor) 274 digitally processes and outputs information on the distance supplied by the distance FFT unit 271, the speed supplied by the speed FFT unit 272, and the azimuth supplied by the azimuth FFT unit 273.
  • the calibration data generation unit 233 generates calibration data based on the detection result received by the reception unit 232 at the time of calibrating the transmission range of the radar transmission wave transmitted by the transmission unit 231, and stores the calibration data. It is stored in the part 234.
  • the phase control unit 235 controls the phase change amount of the phase shifters 243-1 to 243-n based on the calibration data stored in the calibration data storage unit 234 to serve as the array antenna 244. Controls the transmission direction of the radar transmission wave to be transmitted.
  • each of the element antennas 244a-1 to 244an that constitute the array antenna 244 as a whole will be described.
  • FIG. 15 shows a configuration example of the element antenna 244a.
  • the element antennas 244a-1 to 244an are used. It is desired that each of them is small and has high position accuracy.
  • the element antenna 244a of FIG. 15 is, for example, an antenna in which square copper foil patches 244p-1 to 244p-8 formed in a pattern on a high-frequency substrate are connected in series, and is generally referred to as a series-fed patch antenna. Will be done.
  • FIG. 15 an example in which the number of copper foil patches 244p-1 to 244p-8 is eight is shown, but the number may be other than that.
  • the element antenna 244a is relatively inexpensive, compact, and has high position accuracy, and therefore is generally adopted as an element antenna for forming an array antenna as a whole.
  • the element antenna 244a composed of a series-fed patch antenna operates so as to narrow the directivity in the vertical direction by a plurality of patches 244p arranged vertically, and improves the separation performance in the vertical direction.
  • the horizontal directivity of the element antenna 244a composed of the series-fed patch antenna obtains sharp radiation characteristics as a whole by arranging the element antennas 244a in an array.
  • element antenna 244a is not necessarily limited to the example shown in FIG. 15, and may be any other as long as it has the same characteristics.
  • the array antenna 244 as shown in FIG. 16 is configured, and the transmission range of the radar transmission wave is set.
  • FIG. 16 an example of the array antenna 244 when eight element antennas 244a-1 to 244a-8 are used is shown.
  • the interval between the element antennas 244a-1 to 244a-8 in the array antenna 244 shown in FIG. 16 is usually about half the wavelength of the radar transmission wave.
  • a plurality of element antennas 244a-1 to 244an configured in this way are arranged in a plurality of elements, and the amount of phase change of the phase shifters 243-1 to 243-n is controlled by the phase control unit 235. , So-called beamforming is realized, which sets the shape of the transmission range of the radar transmission wave.
  • FIG. 17 shows a typical distribution (waveform HW, VW) of the gain in the horizontally polarized component and the vertically polarized component according to the angle in the horizontal direction of the antenna with respect to the element antenna 244a of FIG.
  • the waveform HW of the horizontally polarized component corresponding to the angle in the horizontal direction of the antenna with respect to the element antenna 244a is a waveform having a peak centered on 0 degrees with respect to the horizontal direction. is there.
  • the waveform VW of the vertically polarized component corresponding to the angle in the horizontal direction of the antenna with respect to the element antenna 244a is a waveform that has a minimum value at 0 degrees with respect to the horizontal direction and a peak at 45 degrees symmetrically.
  • FIG. 17 shows a typical gain distribution (waveforms HW, VW) in the horizontally polarized component and the vertically polarized component according to the angle in the vertical direction of the antenna of the element antenna 244a of FIG. ..
  • the waveform HW of the horizontally polarized component corresponding to the angle in the vertical direction of the antenna with respect to the array antenna 244 is a waveform without large unevenness with respect to all angles.
  • the waveform VW of the vertically polarized component corresponding to the angle in the vertical direction of the antenna with respect to the array antenna 244 is a waveform that peaks at 0 degrees with respect to the vertical direction.
  • the gain of the vertically polarized wave component is larger than that of the horizontally polarized wave component, and it is shown that the polarized wave component is dominant.
  • the array antenna 244 is configured by using a plurality of such element antennas 244a, when the radar transmission wave is incident on the vehicle body 91a such as the body or the bumper portion with the incident angle set to be large, it is reflected at the interface. There is a risk that the radar transmission wave cannot be transmitted to the transmission range in front of the vehicle 91 because the vehicle body 91a cannot be transmitted due to refraction.
  • a typical example of the polarization dependence of the reflection characteristic of an electromagnetic wave on a dielectric is the characteristic shown in FIG. 18, for example.
  • the bumper constituting the vehicle body 91a for example, is assumed to be made of a dielectric material such as polypropylene, and its dielectric constant is about 2.2 to 2.6. Therefore, in FIG. 18, a dielectric having a dielectric constant of 2.5 The reflection characteristics at the interface of are shown.
  • the p-polarized light is a polarization component whose direction is parallel to the incoming / reflective surface of the electric field with respect to the dielectric
  • the s-polarized light is a polarized light whose direction is perpendicular to the incoming / reflected surface of the electric field with respect to the dielectric. It is an ingredient.
  • the dotted waveform SW shows the reflection characteristic of the s polarization component
  • the solid waveform PW shows the reflection characteristic of the p polarization component
  • the amount of reflection of the s-polarized light component indicated by the waveform SW increases monotonically as the incident angle of the electromagnetic wave with respect to the dielectric increases.
  • the p-polarized light component represented by the waveform PW gradually decreases as the incident angle of the electromagnetic wave with respect to the dielectric increases, the amount of reflection becomes zero at a predetermined incident angle, and increases again.
  • the incident angle BA at which the amount of reflection in the p-polarized light component is zero is known as Brewster's angle.
  • the amount of reflection of the p-polarized light component becomes zero when the angle of incidence on the dielectric is the Brewster's angle.
  • the radar device 201 provided with the array antenna 244 as shown in FIG. 16 is mounted on the vehicle 91, in order to maximize the beam directivity of the transmission range of the radar transmission wave, it is inevitable.
  • the board is erected vertically so that each of the patches 244p of the element antenna 244a is vertically connected and arranged, and mounted on the vehicle 91.
  • each of the element antennas 244a is arranged so that the patches 244p are connected in the vertical direction and arranged side by side in this way, the main polarization component radiated from each element antenna 244a is vertically polarized, so that the radar transmission wave is generated.
  • the antenna When the antenna is obliquely incident on the interface with the vehicle body 91a such as the body or bumper so as to have an incident angle of a predetermined size or more, it corresponds to the s polarization component as shown by the waveform SW in FIG.
  • the behavior has reflection characteristics.
  • Such a large reflection is a loss of the radar transmission wave and may increase a received signal which is unfavorable for the radar device 201.
  • a member having characteristics different from that of the conventional member made of a dielectric is arranged.
  • the member 221 having a relative permittivity other than 1 is arranged in the range related to the transmission range of the radar transmission wave in the vehicle body 91a.
  • the Brewster angle is configured with respect to the s polarization component.
  • the member 221 whose relative magnetic permeability is not 1 in the front stage of the radar device 201 the reflection of the radar transmission wave is suppressed.
  • the radar transmission wave is incident on the portion of the vehicle body 91a formed by the member 221 having a relative magnetic permeability of not 1, so that the incident angle near the center of the transmission range forms a Brewster angle. , It becomes possible to adjust the transmission range to a viewing angle narrower than a predetermined viewing angle.
  • the radar transmission wave is transmitted through the portion formed by the member 221 whose relative magnetic permeability is not 1 of the vehicle body 91a, the disturbance and variation of the radar transmission wave are suppressed, and the phenomenon such as reflection or refraction is suppressed. Is possible.
  • the member 221 having a relative magnetic permeability of not 1 includes, for example, as shown in FIG. 19, substrates PN1 to PN3 and PN11 to PN13 in which minute ring-shaped patterns M1 and M2 are repeatedly formed, which are called split ring resonators. It is arranged in a three-dimensional combination.
  • ring-shaped patterns M1 formed so as to surround the ring-shaped pattern M2 are arranged on the substrates PN1 to PN3 and PN11 to PN13 at substantially equal intervals in the horizontal direction and the vertical direction.
  • a material whose dielectric constant and magnetic permeability are artificially controlled as shown in FIG. 19 is called a metamaterial material.
  • Metamaterial materials are materials with electrical properties that do not exist in nature by appropriately adjusting the values of relative permittivity and relative magnetic permeability.
  • the substrates PN1 to PN3 and PN11 to PN13 are assembled in a well shape.
  • the incident direction of the radar transmission wave with respect to the member 221 made of the metamaterial material in FIG. 19 and having a relative magnetic permeability of not 1 is the direction indicated by the arrow in the drawing, and the substrates PN1 to PN3 (or PN11 to PN13). ) Is perpendicular to.
  • the dimensions per unit cell composed of the outer patterns M1 constituting the patterns M1 and M2 of the double split ring in the member 221 made of the metamaterial material shown in FIG. 19 and having a relative permittivity of not 1 are roughly the wavelengths used. It is required to be sufficiently smaller than the wavelength of the signal (approximately 0.2 ⁇ ( ⁇ is a wavelength)), and for example, 0.14 ⁇ ( ⁇ is a wavelength) is used.
  • the wavelength is about 4 mm, so 0.14 ⁇ corresponds to 0.56 mm. Therefore, when the operating frequency is 77 GHz, the diameter dimension of the pattern M1 on the outer peripheral side of the patterns M1 and M2 of the double dividing ring is about 0.56 mm.
  • the size of the repeating structure of the unit cell (the distance between the ring-shaped patterns M1 and M2) needs to be sufficiently large with respect to the wavelength, and for example, the size of 10 to 20 wavelengths is secured. .. In this case, the size of the repeating structure of the unit cell is about several cm.
  • Brewster's angle occurs when the relative permeability of a substance becomes a value other than 1.
  • the member 221 having a relative magnetic permeability of not 1 a metamaterial material having a relative magnetic permeability other than 1 is previously formed, and the member 221 made of the metamaterial material is a vehicle body 91a such as a body or a bumper portion. Therefore, it is used for the part that overlaps with the transmission range of the radar transmission wave. With such a configuration, it is possible to reduce the amount of reflection and increase the amount of transmission of the radar transmitted wave output from the radar device 201 passing through the vehicle body 91a, and the sensitivity of the radar device 201. Can be increased.
  • metamaterial material For the method of generating metamaterial materials, refer to "Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials," Physical Review B73, 193104 (2006) (hereinafter, also referred to as a reference). Further, a dimensional example (0.14 ⁇ ( ⁇ )) per unit cell composed of the outer patterns M1 constituting the patterns M1 and M2 of the double dividing ring in the member 221 made of the metamaterial material whose relative permittivity is not 1 shown in FIG. Is a wavelength)) is based on the description in the references. Further, the metamaterial material may have a structure other than the structure in which the substrates PN1 to PN3 and PN11 to PN13 are assembled in a well shape as shown in FIG. 19, for example, fixed by a resin pattern and as shown in FIG. It may be formed as a three-dimensional structure of a double split ring.
  • ⁇ 1> Provided with two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the respective radar transmission waves intersect.
  • the radar transmission wave transmitter has an array antenna and a phase shifter.
  • the array antenna is composed of a plurality of element antennas.
  • each of the plurality of element antennas is a series-fed patch antenna in which copper foil patches are vertically connected in series.
  • a part of the vehicle body in front of the array antenna, which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna, is composed of a member having a relative magnetic permeability of not 1.
  • the transmission range of the radar transmission wave is in the first direction which is front of the moving direction of the moving body and in the central axis of the moving body in the direction perpendicular to the moving direction of the moving body.
  • the moving body according to ⁇ 5> which is set in a second direction in which the centers of the transmission ranges of the radar transmission waves intersect.
  • a part of the vehicle body in front of the array antenna, which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna in the second direction, is a member whose relative magnetic permeability is not 1.
  • the moving body according to ⁇ 6> is whose relative magnetic permeability is not 1.
  • the specific reflectance of the radar transmission wave transmitted from the array antenna which is a part of the vehicle body in front of the array antenna and overlaps with the transmission range in the second direction, is not 1.
  • the relative magnetic permeability of the radar transmission wave transmitted from the array antenna, which is a part of the vehicle body placed in front of the array antenna and overlaps with the transmission range in the second direction, is not 1.
  • the moving body according to ⁇ 8> wherein the member is configured at a position where the radar transmission wave is incident at a Brewster angle with respect to the member whose relative magnetic permeability is not 1.
  • the radar transmission wave transmission unit is installed so that the transmission range of the radar transmission wave is in the first direction when the phase change amount by the phase shifter is not adjusted with respect to the array antenna.
  • the moving body according to ⁇ 6> wherein the transmission range of the radar transmission wave is set to the second direction by adjusting the amount of phase change by the phase shifter with respect to the array antenna.
  • the radar transmission wave transmission unit is installed so that the transmission range of the radar transmission wave is in the second direction when the phase change amount by the phase shifter is not adjusted with respect to the array antenna.
  • the moving body according to ⁇ 6> wherein the transmission range of the radar transmission wave is set to the first direction by adjusting the amount of phase change by the phase shifter with respect to the array antenna.
  • the moving body according to any one of ⁇ 1> to ⁇ 11>, which is a metamaterial material, is the member whose relative magnetic permeability is not 1.
  • the metamaterial material is a split ring resonator.
  • the split ring resonator is a board in which a substrate having a minute ring-shaped pattern is formed is assembled in a well shape.
  • ⁇ 15> The moving body according to ⁇ 14>, wherein the diameter of the minute ring-shaped pattern is smaller than approximately 0.2 times the wavelength of the radar transmission wave.
  • ⁇ 16> The moving body according to ⁇ 14>, wherein the arrangement interval of the minute ring-shaped pattern is approximately 10 to approximately 20 times the wavelength of the radar transmission wave.
  • the split ring resonator is a micro ring-shaped pattern made of resin formed as a three-dimensional structure.
  • 91 mobile body vehicle
  • 91a car body 201, 201L, 201R, 201L', 201R'radar device, surface formed by 201fL, 201fR array antenna, 244, 244-1 to 244-n array antenna, 244a patch

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present disclosure pertains to a mobile body in which it is possible to suppress reflection or refraction that occurs at an interface with a vehicle body when radar transmission waves are transmitted such that the transmission directions of the radar transmission waves intersect the central axis of the vehicle body in front of the vehicle. The mobile body is provided with two or more vertical polarization-type radar transmitters arranged such that the transmission directions of the radar transmission waves intersect. The portion of the vehicle body in front of the plurality of radar transmitters is composed of members not having a relative permeability of one. The present technology can be applied to mobile bodies.

Description

移動体Mobile
 本開示は、移動体に関し、特に、レーダ送信波に対する反射や屈折を低減できるようにして、検出感度を向上できるようにした移動体に関する。 The present disclosure relates to a mobile body, and more particularly to a mobile body capable of improving detection sensitivity by reducing reflection and refraction with respect to radar transmitted waves.
 自動運転に係る技術が一般に普及しつつある。この自動運転の実現には、車両に搭載される各種のセンシングデバイスが不可欠とされる。 Technology related to autonomous driving is becoming widespread. Various sensing devices mounted on vehicles are indispensable for realizing this automatic driving.
 特に、車載レーダは、雨天、霧などの悪天候、または、トンネルの出入口など、カメラによるセンシングが不得意とする環境において、その優れた耐環境性から、自動運転を支援するセンシングデバイスとして重要な構成要素として期待されている。 In particular, in-vehicle radar is an important configuration as a sensing device that supports automatic driving due to its excellent environmental resistance in bad weather such as rainy weather and fog, or in environments where camera sensing is not good, such as tunnel entrances and exits. Expected as an element.
 これに加え、近年、車載レーダの性能が改善されると共に、車載レーダの取得する情報をより積極的に活用することにより、例えば、カメラの死角の低減、マイクロドップラ情報による動体認識、およびSLAM(Simultaneous Localization and Mapping)による道路の詳細情報の取得といった技術への応用が期待されている。 In addition to this, in recent years, the performance of in-vehicle radar has been improved, and by more actively utilizing the information acquired by the in-vehicle radar, for example, reduction of the blind spot of the camera, motion recognition by microdoppler information, and SLAM ( It is expected to be applied to technologies such as acquisition of detailed road information by Simultaneous Localization and Mapping).
 このような新たな動機のために用いられるレーダ装置においては、レーダ送信波の送信範囲が車両の進行方向前方で、左右から交差するように配置されるようにすることで、物体を検出するための視野角を改善する方法が提案されている。 In a radar device used for such a new motive, an object is detected by arranging the transmission range of the radar transmission wave in front of the vehicle in the traveling direction so as to intersect from the left and right. A method for improving the viewing angle of is proposed.
 より詳細には、例えば、車両の左右前方端部であって、進行方向の車体中心軸に向かうように、斜め前方にレーダ送信波の送信範囲が設定されるように配置されるレーダ装置により、車両の左側に設置されたレーダ装置のレーダ送信波で車両の右側前方を、また、車両の右側に設置されたレーダ装置のレーダ送信波で車両の左側前方を検知する技術が提案されている(特許文献1参照)。 More specifically, for example, by a radar device arranged at the left and right front ends of the vehicle so that the transmission range of the radar transmission wave is set diagonally forward so as to face the vehicle body central axis in the traveling direction. A technique has been proposed in which the radar transmission wave of the radar device installed on the left side of the vehicle detects the front right side of the vehicle, and the radar transmission wave of the radar device installed on the right side of the vehicle detects the front left side of the vehicle ( See Patent Document 1).
 このようなレーダ送信波の送信範囲が交差するように斜めに設定されることにより、斜め前方における視野角の改善が期待される。 By setting diagonally so that the transmission ranges of such radar transmission waves intersect, it is expected that the viewing angle in the diagonally forward direction will be improved.
 しかしながら、特許文献1において提案されるようにレーダ送信波の送信範囲が交差するように斜め方向にレーダ送信装置が配置されると、レーダ装置の前段に配置されるボディやバンパ等の車体により、レーダ送信波に対して意図しない劣化が生じることが懸念される。 However, when the radar transmitting device is arranged in an oblique direction so that the transmission ranges of the radar transmitting waves intersect as proposed in Patent Document 1, the body, bumper, or other vehicle body arranged in front of the radar device causes the radar transmission device to be arranged in an oblique direction. There is a concern that unintended deterioration may occur in the radar transmission wave.
 すなわち、電磁波であるレーダ送信波は、誘電体で構成されるバンパまたは車両ボディ部等の車体との界面に対して斜めに入射することにより、その界面において、反射、または屈折等のレーダ送信波に対して望ましくない現象が生じることにより、レーダ装置の検出感度の劣化が生じる可能性がある。 That is, the radar transmission wave, which is an electromagnetic wave, is obliquely incident on the interface with the vehicle body such as a bumper or a vehicle body composed of a dielectric material, so that the radar transmission wave such as reflection or refraction is reflected or refracted at the interface. The undesired phenomenon may cause deterioration of the detection sensitivity of the radar device.
 そこで、バンパやボディ等の車体の外側斜めに放射する信号に対して、車両の両脇の湾曲部にレーダ装置を設置することで、バンパやボディ等の車体によるレーダ送信波の反射や屈折による影響を低減させる技術が提案されている(特許文献2参照)。 Therefore, by installing radar devices on the curved parts on both sides of the vehicle for signals radiated diagonally to the outside of the vehicle body such as the bumper and body, the radar transmission waves are reflected and refracted by the vehicle body such as the bumper and body. A technique for reducing the influence has been proposed (see Patent Document 2).
特開2010-018244号公報Japanese Unexamined Patent Publication No. 2010-018244 特許第4766402号公報Japanese Patent No. 4766402
 しかしながら、特許文献2の技術は、レーダ送信波の送信方向が車両の角から外側に向いている場合の解決法であって、車両前方の左右端部から走行方向に対する車両の中心軸に向かってレーダ送信波が送信されて、送信範囲が車両前方の車体中心軸上で交差するように、送信される場合に適用することはできない。 However, the technique of Patent Document 2 is a solution when the transmission direction of the radar transmission wave is directed outward from the corner of the vehicle, and is toward the central axis of the vehicle with respect to the traveling direction from the left and right ends in front of the vehicle. It cannot be applied when the radar transmission wave is transmitted so that the transmission range intersects on the vehicle body center axis in front of the vehicle.
 本開示は、このような状況に鑑みてなされたものであり、特に、レーダ送信波の送信方向が車両前方の車体中心軸上で交差するように送信される場合に、車体との界面において生じる反射や屈折を抑制できるようにし、レーダ装置の検出感度を向上するものである。 The present disclosure has been made in view of such a situation, and occurs at an interface with the vehicle body, particularly when the transmission direction of the radar transmission wave is transmitted so as to intersect on the vehicle body central axis in front of the vehicle. It makes it possible to suppress reflection and refraction, and improves the detection sensitivity of the radar device.
 本開示の一側面の移動体は、それぞれのレーダ送信波の送信方向が交差するように配置された垂直偏波型の2以上のレーダ送信波送信部を備え、前記レーダ送信波送信部に対して、前置された車体の一部が、比透磁率が1でない部材からなる移動体である。 The moving body on one side of the present disclosure includes two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the radar transmission waves intersect with respect to the radar transmission wave transmitter. A part of the vehicle body placed in front is a moving body made of a member having a relative magnetic permeability of not 1.
 本開示の一側面においては、それぞれのレーダ送信波の送信方向が交差するように配置された垂直偏波型の2以上のレーダ送信波送信部が設けられ、前記レーダ送信波送信部に対して、前置された車体の一部が、比透磁率が1でない部材から構成される。 In one aspect of the present disclosure, two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the respective radar transmission waves intersect are provided with respect to the radar transmission wave transmitter. , A part of the vehicle body placed in front is composed of a member whose relative magnetic permeability is not 1.
複数の距離を対象としたレーダ装置によるレーダ送信波の送信範囲が設定されていることを説明する図である。It is a figure explaining that the transmission range of the radar transmission wave by the radar apparatus for a plurality of distances is set. 中距離のレーダ送信波の送信範囲の設定例を説明する図である。It is a figure explaining the setting example of the transmission range of the medium-range radar transmission wave. 異なる送信範囲が設定される場合の物体を認識する際の見込角の違いを説明するブロック図である。It is a block diagram explaining the difference in the expected angle when recognizing an object when different transmission ranges are set. 左右の前方端部に設けられたレーダ装置により送信されるレーダ送信波の送信範囲が車両の中心位置で交差する例を説明する図である。It is a figure explaining the example that the transmission range of the radar transmission wave transmitted by the radar apparatus provided at the left and right front end intersects at the center position of a vehicle. 本開示の概要であるレーダ装置の設置例を説明する図である。It is a figure explaining the installation example of the radar apparatus which is the outline of this disclosure. 本開示の概要であるレーダ装置の設置例のその他の例を説明する図である。It is a figure explaining another example of the installation example of the radar apparatus which is the outline of this disclosure. 本開示の移動体である車両の構成例を説明する図である。It is a figure explaining the structural example of the vehicle which is a moving body of this disclosure. 本開示のレーダ装置の設置例を説明する図である。It is a figure explaining the installation example of the radar apparatus of this disclosure. 本開示のレーダ装置の設置例のその他の例を説明する図である。It is a figure explaining another example of the installation example of the radar apparatus of this disclosure. レーダ装置の構成例を説明する回路構成図である。It is a circuit block diagram explaining the configuration example of a radar apparatus. 移相器の構成例を説明するブロック図である。It is a block diagram explaining the configuration example of a phase shifter. パワー分配器のその他の構成例を説明する図である。It is a figure explaining other configuration example of a power distributor. 図12のパワー分配器の構成例を説明する図である。It is a figure explaining the structural example of the power distributor of FIG. 信号処理部の構成例を説明する図である。It is a figure explaining the structural example of the signal processing unit. 要素アンテナとしてのアレーアンテナの構成例を説明する図である。It is a figure explaining the configuration example of the array antenna as an element antenna. 複数の要素アンテナを備えるアレーアンテナの構成例を説明する図である。It is a figure explaining the configuration example of the array antenna including a plurality of element antennas. 複数の要素アンテナとしてのアレーアンテナの特性の例を説明する図である。It is a figure explaining the example of the characteristic of the array antenna as a plurality of element antennas. ブリュースター角を説明する図である。It is a figure explaining the Brewster angle. 比誘電率が1でない部材の構成例を説明する図である。It is a figure explaining the structural example of the member which has a relative permittivity not 1.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings below. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.本開示の概要
 2.好適な実施の形態
Hereinafter, modes for implementing the present technology will be described. The explanation will be given in the following order.
1. 1. Outline of the present disclosure 2. Suitable Embodiment
 <<1.本開示の概要>>
 本開示は、レーダ送信波が車両前方であって、車両の走行方向と直交する方向における車体中心軸上で交差するように送信される場合に、車体との界面において生じる反射や屈折を低減するものである。
<< 1. Summary of the present disclosure >>
The present disclosure reduces reflections and refractions that occur at the interface with the vehicle body when the radar transmission waves are transmitted in front of the vehicle and intersect on the vehicle body central axis in a direction orthogonal to the vehicle traveling direction. It is a thing.
 走行方向の前方へのレーダ送信波の送信方法としては、センシングする距離に応じて、異なる特性を備えた複数のレーダ送信波を組み合わせて送信することが一般的に行われてきた。 As a method of transmitting radar transmission waves in the forward direction in the traveling direction, it has been generally practiced to transmit a combination of a plurality of radar transmission waves having different characteristics according to the sensing distance.
 例えば、図1の左部は、短距用離レーダ送信波、中距離用レーダ送信波、および長距離用レーダ送信波の3種類の送信波を組み合わせて使用する場合の例が示されている。 For example, the left part of FIG. 1 shows an example in which three types of transmission waves, a short-range radar transmission wave, a medium-range radar transmission wave, and a long-range radar transmission wave, are used in combination. ..
 図1の左部においては、車両C1の前方の左右から短距用離レーダ送信波が送信される送信範囲ZSL,ZSR、および中距離用レーダ送信波が送信される送信範囲ZML,ZMR、並びに前方中央から長距離用レーダ送信波が送信される送信範囲Zが設定されている。 In the left part of FIG. 1, the transmission range Z SL , Z SR , in which the short-range radar transmission wave is transmitted from the left and right in front of the vehicle C1, and the transmission range Z ML , in which the medium-range radar transmission wave is transmitted, The Z MR and the transmission range Z L at which the long-range radar transmission wave is transmitted from the front center are set.
 また、例えば、図1の右部は、中距離用レーダ送信波、および長距離用レーダ送信波の2種類の送信波を組み合わせて使用する場合の例が示されている。 Further, for example, the right part of FIG. 1 shows an example in which two types of transmission waves, a medium-range radar transmission wave and a long-range radar transmission wave, are used in combination.
 図1の右部においては、車両C2の前方の左右から中距離用レーダ送信波が送信される送信範囲ZML,ZMR、および前方中央から長距離用レーダ送信波が送信される送信範囲ZLが設定されている。 In the right part of FIG. 1, the transmission range Z ML and Z MR in which the medium-range radar transmission wave is transmitted from the left and right in front of the vehicle C2, and the transmission range ZL in which the long-range radar transmission wave is transmitted from the front center. Is set.
 通常、短距離用レーダ送信波は、最も広い視野をカバーし、主に、近距離の周囲環境をセンシングするために用いられる。 Normally, short-range radar transmission waves cover the widest field of view and are mainly used to sense the surrounding environment at short distances.
 一方、長距離用レーダ送信波は、100乃至300m先など、遠くのターゲットを検知するように最適化され、通常、レーダ装置からは、最も高い利得のビーム状のレーダ送信波を送信する。 On the other hand, the long-range radar transmission wave is optimized to detect a distant target such as 100 to 300 m away, and normally, the radar device transmits the highest gain beam-like radar transmission wave.
 また、短距離用レーダ送信波と長距離用レーダ送信波の中間の性能を持つレーダ送信波として、中距離用レーダ送信波が採用される場合もある。 In addition, a medium-range radar transmission wave may be adopted as a radar transmission wave having an intermediate performance between a short-range radar transmission wave and a long-range radar transmission wave.
 中距離用レーダ送信波は、例えば、数10m先の状況をセンシングするために用いられ、中間的な距離と視野角をカバーする。 The medium-range radar transmission wave is used, for example, to sense the situation several tens of meters away, and covers an intermediate distance and viewing angle.
 本開示においては、中距離用レーダ送信波、または、短距離向けのレーダ送信波に相当する性能を有するレーダ送信波を送信するレーダ装置を想定する。 In the present disclosure, a radar device that transmits a medium-range radar transmission wave or a radar transmission wave having performance equivalent to a short-range radar transmission wave is assumed.
 ここで、中距離用レーダ送信波、および、短距離向けのレーダ送信波に相当する性能を有するレーダ送信波のうち、例えば、中距離用レーダ送信波を送信するレーダ装置が、車両の前方左右両端部に配置されるとき、そのレーダ送信波の送信範囲は、例えば、図2の左部、中央部、および右部で示される3種類の構成が想定される。 Here, among the medium-range radar transmission wave and the radar transmission wave having the performance equivalent to the short-range radar transmission wave, for example, the radar device that transmits the medium-range radar transmission wave is located in front of the vehicle. When arranged at both ends, the transmission range of the radar transmission wave is assumed to have, for example, three types of configurations shown in the left portion, the center portion, and the right portion of FIG.
 例えば、図2の左部で示されるように、車両C21の前方両端部より正面前方にレーダ送信波が送信されるように、送信範囲ZML1,ZMR1の中心方向が正面前方に設定される構成が考えられる。 For example, as shown on the left side of FIG. 2, the central directions of the transmission ranges Z ML1 and Z MR1 are set to the front front so that the radar transmission wave is transmitted from the front ends of the vehicle C21 to the front front. The configuration is conceivable.
 また、図2の中央部で示されるように、車両C21の前方両端部より走行方向に対して垂直方向における車両C21の車体中心軸に向けて送信され、送信範囲ZML2,ZMR2の中心方向が車体中心軸上で交差するように設定される構成が考えられる。 Further, as shown in the central portion of FIG. 2, the transmission is performed from both front end portions of the vehicle C21 toward the vehicle body center axis of the vehicle C21 in the direction perpendicular to the traveling direction, and is transmitted in the center directions of the transmission ranges Z ML2 and Z MR2 . Can be considered to be set so as to intersect on the central axis of the vehicle body.
 さらに、図2の右部で示されるように、車両C21の前方両端部より走行方向に対して垂直方向における車両C21の車体中心軸から外側にレーダ送信波が送信されるように、送信範囲ZML3,ZMR3の中心方向が車体外側方向に設定される構成が考えられる。 Further, as shown in the right part of FIG. 2, the transmission range Z is such that the radar transmission wave is transmitted from the front end portions of the vehicle C21 to the outside from the vehicle body center axis of the vehicle C21 in the direction perpendicular to the traveling direction. It is conceivable that the center direction of the ML3 and Z MR3 is set to the outside of the vehicle body.
 しかしながら、図2の左部の場合、車両C21が道路の走行車線L1を走行している場合、対向車線L2を走行する車両C22に送信されるレーダ送信波は、送信範囲ZMR1の一部のみであり、車両C22の探索に適した送信範囲とは言えない。 However, in the case of the left part of FIG. 2, when the vehicle C21 is traveling in the traveling lane L1 of the road, the radar transmission wave transmitted to the vehicle C22 traveling in the oncoming lane L2 is only a part of the transmission range Z MR1 . Therefore, it cannot be said that the transmission range is suitable for searching the vehicle C22.
 また、図2の中央部、および右部の場合、送信範囲ZML2,ZMR3のそれぞれのほぼ中心位置にいて、対向車線L2における車両C22をほぼ正面から送信することが可能となり、車両C22の探索に適した送信範囲と言える。 Further, in the case of the central portion and the right portion of FIG. 2, the vehicle C22 in the oncoming lane L2 can be transmitted from almost the front at the substantially center positions of the transmission ranges Z ML2 and Z MR3 , respectively, and the vehicle C22 can be transmitted. It can be said that the transmission range is suitable for searching.
 ところが、送信範囲ZML2内においては、レーダ送信波が車両C22に送信される場合、図3の左部で示されるように、見込角θ1でレーダ送信波が送信されることになる。 However, within the transmission range Z ML2 , when the radar transmission wave is transmitted to the vehicle C22, the radar transmission wave is transmitted at the expected angle θ1 as shown in the left part of FIG.
 これに対して、送信範囲ZMR3内において、レーダ送信波が車両C22に送信される場合、図3の右部で示されるように、見込角θ2(<θ1)でレーダ送信波が送信されることになる。 On the other hand, when the radar transmission wave is transmitted to the vehicle C22 within the transmission range Z MR3 , the radar transmission wave is transmitted at a viewing angle θ2 (<θ1) as shown in the right part of FIG. It will be.
 結果として、レーダ送信波の送信により、車両C22における特徴点をより多く検出するには、見込角θ1よりも広い見込角θ2となる送信範囲ZML2により、すなわち、車両C21の前方両端部より走行方向に対して垂直方向における車両中心軸に向かって、正面内側方向にレーダ送信波の送信範囲が設定されるような構成が望ましいと言える。 As a result, in order to detect more feature points in the vehicle C22 by transmitting the radar transmission wave, the vehicle travels by the transmission range Z ML2 having a prospect angle θ2 wider than the prospect angle θ1, that is, from both ends in front of the vehicle C21. It can be said that it is desirable to have a configuration in which the transmission range of the radar transmission wave is set in the front inner direction toward the vehicle center axis in the direction perpendicular to the direction.
 ここで、図4で示されるように、車両C51の前方の左右端部にレーダ装置RL,RRを設けて、左右のレーダ装置RL,RRより送信されるレーダ送信波の送信範囲の中心線が、車両C51の図中上方である前方における、図中の一点鎖線で表される車両中心軸上において交差するように、レーダ装置RL,RRが設けられる場合について考える。 Here, as shown in FIG. 4, radar devices RL and RR are provided at the left and right ends in front of the vehicle C51, and the center line of the transmission range of the radar transmission wave transmitted from the left and right radar devices RL and RR is set. Consider a case where radar devices RL and RR are provided so as to intersect on the vehicle center axis represented by the alternate long and short dash line in the figure in front of the vehicle C51, which is the upper part in the figure.
 すなわち、図4で示されるように、レーダ装置RLは、左前端に配置され、右向きにレーダ送信波の送信範囲の中心線が向くように配置される。 That is, as shown in FIG. 4, the radar device RL is arranged at the front left end and is arranged so that the center line of the transmission range of the radar transmission wave faces to the right.
 また、レーダ装置RRは、右前端に配置され、左向きにレーダ送信波の送信範囲の中心線が向くように配置される。 Further, the radar device RR is arranged at the front right end, and is arranged so that the center line of the transmission range of the radar transmission wave faces to the left.
 このように、左右のレーダ装置RL,RRが配置される場合、互いのレーダ送信波の送信範囲は、車両C51の前方の空間で交差する構成となる。 When the left and right radar devices RL and RR are arranged in this way, the transmission ranges of the radar transmission waves of each other are configured to intersect in the space in front of the vehicle C51.
 このとき、中距離および近距離レンジにおいて、レーダ装置RL,RRのレーダ送信波の送信範囲における視野角θ11を大きくすることによりレーダ送信波の送信範囲を広くすることが可能となる。 At this time, in the medium-range and short-range ranges, the transmission range of the radar transmission wave can be widened by increasing the viewing angle θ11 in the transmission range of the radar transmission wave of the radar devices RL and RR.
 しかしながら、図4の場合、各々のレーダ装置RL,RRにおいて送信されるレーダ送信波の視野角θ11が大きくなると、レーダ装置RL,RRに前置される車体(またはバンパ)Bなどをレーダ送信波が通過する際、レーダ送信波の送信範囲の両端における車体Bへの入射角θ31,θ32の差が大きく異なる。 However, in the case of FIG. 4, when the viewing angle θ11 of the radar transmission wave transmitted by each radar device RL, RR becomes large, the radar transmission wave of the vehicle body (or bumper) B or the like in front of the radar devices RL, RR. The difference between the angles of view θ31 and θ32 incident on the vehicle body B at both ends of the transmission range of the radar transmission wave is significantly different.
 すなわち、図中の入射角θ31,θ32との差が大きくなるため、車体(またはバンパ)Bにおけるレーダ送信波の反射および屈折は、大きくばらつくことになり、レーダ装置RL,RRの性能が劣化する。 That is, since the difference between the incident angles θ31 and θ32 in the figure becomes large, the reflection and refraction of the radar transmitted wave in the vehicle body (or bumper) B vary greatly, and the performance of the radar devices RL and RR deteriorates. ..
 そこで、本開示においては、図5で示されるように、レーダ装置RL,RRに代えて、複数の移相器とアレーアンテナとを備えたレーダ装置ARL1,ARR1を設けるようにして、さらに、車体(またはバンパ)Bの一部に比透磁率が1でない部材FLが配置されるようにした。 Therefore, in the present disclosure, as shown in FIG. 5, instead of the radar devices RL and RR, radar devices ARL1 and ARR1 provided with a plurality of phase shifters and an array antenna are provided, and further, the vehicle body is further provided. A member FL having a relative magnetic permeability of not 1 is arranged in a part of (or bumper) B.
 アレーアンテナを備えたレーダ装置ARL1,ARR1を用いることにより、レーダ送信波をビームフォーミングにより、送信範囲の視野角θを狭くして、車体(またはバンパ)Bを通過するレーダ送信波を減少させる。 By using the radar devices ARL1 and ARR1 equipped with an array antenna, the viewing angle θ of the transmission range is narrowed by beamforming the radar transmission wave, and the radar transmission wave passing through the vehicle body (or bumper) B is reduced.
 このように車体(またはバンパ)Bを通過するレーダ送信波の送信範囲の視野角θが減少することにより、車体Bとの界面におけるレーダ送信波の反射および屈折による望ましくない特性のばらつきの影響を軽減する。 By reducing the viewing angle θ of the transmission range of the radar transmission wave passing through the vehicle body (or bumper) B in this way, the influence of undesired characteristic variation due to the reflection and refraction of the radar transmission wave at the interface with the vehicle body B is affected. Reduce.
 また、移相器とアレーアンテナを備えたレーダ装置ARL1,ARR1により、レーダ送信波の送信範囲を可変とし、前方および斜め方向に選択的に送信することで、それぞれ最適なレーダ送信波の送信を実現する。 In addition, the radar devices ARL1 and ARR1 equipped with a phase shifter and an array antenna make the transmission range of the radar transmission wave variable, and selectively transmit the radar transmission wave in the forward and diagonal directions to transmit the optimum radar transmission wave. Realize.
 すなわち、図5で示されるように、移相器とアレーアンテナを備えたレーダ装置ARL,ARRを、車体Bに対して正対するように設け、レーダ送信波のビームフォーミングにより、車体Bの正面方向に対して送信範囲ZMRC,ZMLCを形成し、車体Bの斜め方向に対して送信範囲ZMRS,ZMLSを形成するようにする。 That is, as shown in FIG. 5, radar devices ARL and ARR equipped with a phase shifter and an array antenna are provided so as to face the vehicle body B, and the beamforming of the radar transmission wave is performed in the front direction of the vehicle body B. The transmission ranges Z MRC and Z MLC are formed with respect to the vehicle body B, and the transmission ranges Z MRS and Z MLS are formed with respect to the diagonal direction of the vehicle body B.
 ここで、車体Bの正面方向に対して形成される送信範囲ZMRC,ZMLCは、レーダ送信波の送信方向としての最適点となるため、特性の劣化を小さくすることができる。 Here, since the transmission ranges Z MRC and Z MLC formed with respect to the front direction of the vehicle body B are the optimum points as the transmission direction of the radar transmission wave, the deterioration of the characteristics can be reduced.
 また、レーダ装置ARL1,ARR1の移相器とアレーアンテナにより車体Bの斜め方向に対してビームフォーミングにより形成される送信範囲ZMRS,ZMLSに最適点が設定されるようにされると共に、車体Bにおける送信範囲ZMRS,ZMLSと重なる一部の範囲に比透磁率が1でない部材FLが設けられるようにする。これにより、レーダ送信波による車体Bとの界面において生じる反射や屈折によるばらつきが小さくなるため、特性の劣化を小さくすることが可能となる。 In addition, the phase shifters and array antennas of the radar devices ARL1 and ARR1 set the optimum points for the transmission ranges Z MRS and Z MLS formed by beamforming in the oblique direction of the vehicle body B, and the vehicle body. A member FL having a relative magnetic permeability of not 1 is provided in a part of the range overlapping the transmission ranges Z MRS and Z MLS in B. As a result, the variation due to reflection and refraction generated at the interface with the vehicle body B due to the radar transmission wave is reduced, so that the deterioration of the characteristics can be reduced.
 結果として、レーダ装置の水平見込角を大きくしつつ、車体Bにおける反射や屈折によるばらつきを小さくすることが可能となり、特性の劣化を小さくすることが可能となる。 As a result, it is possible to reduce the variation due to reflection and refraction in the vehicle body B while increasing the horizontal viewing angle of the radar device, and it is possible to reduce the deterioration of the characteristics.
 また、図6で示されるように、アレーアンテナを備えたレーダ装置ARL1,ARR1の正対する方向を車両C71の中心軸に向けたレーダ装置ARL2,ARR2を設けるようにして、正対方向に対する最適点が設定された送信範囲ZMRC,ZMLCにレーダ送信波を送信することで、左右側面における物体の探索に使用するようにしてもよい。 Further, as shown in FIG. 6, the radar devices ARL2 and ARR2 having the radar devices ARL1 and ARR1 provided with the array antenna facing the central axis of the vehicle C71 are provided so as to provide the optimum points with respect to the facing direction. By transmitting radar transmission waves to the transmission range Z MRC and Z MLC in which is set, it may be used for searching for objects on the left and right sides.
 このとき、レーダ装置ARL2,ARR2の移相器とアレーアンテナにより車体Bの斜め方向に対して形成される送信範囲ZMRS,ZMLSに最適点が設定されるようにして、車両C71の正面方向における物体の探索に使用する。 At this time, the front direction of the vehicle C71 is set so that the optimum point is set in the transmission ranges Z MRS and Z MLS formed in the oblique direction of the vehicle body B by the phase shifter and the array antenna of the radar devices ARL2 and ARR2. Used to search for objects in.
 送信範囲ZMRS,ZMLSと重なる車体Bの一部の範囲に比透磁率が1でない部材FLが設けられており、レーダ送信波による反射や屈折によるばらつきが小さいため、特性の劣化を小さくすることができる。 Transmission range Z A member FL whose relative permeability is not 1 is provided in a part of the vehicle body B that overlaps with Z MRS and Z MLS, and the variation due to reflection and refraction due to radar transmission waves is small, so the deterioration of characteristics is reduced. be able to.
 結果として、レーダ装置の水平見込角を大きくしつつ、車体Bにおける反射や屈折によるばらつきを小さくすることが可能となり、特性の劣化を小さくすることが可能となる。 As a result, it is possible to reduce the variation due to reflection and refraction in the vehicle body B while increasing the horizontal viewing angle of the radar device, and it is possible to reduce the deterioration of the characteristics.
 <<2.好適な実施の形態>>
 図7は、本技術が適用され得る移動体制御システムの一例である車両91における車両制御システム100の概略的な機能の構成例を示すブロック図である。
<< 2. Preferable Embodiment >>
FIG. 7 is a block diagram showing a configuration example of a schematic function of the vehicle control system 100 in the vehicle 91, which is an example of a mobile control system to which the present technology can be applied.
 なお、以下、車両制御システム100が設けられている車両を他の車両と区別する場合、自車又は自車両と称する。 Hereinafter, when a vehicle provided with the vehicle control system 100 is distinguished from other vehicles, it is referred to as a own vehicle or a own vehicle.
 車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。 The vehicle control system 100 includes an input unit 101, a data acquisition unit 102, a communication unit 103, an in-vehicle device 104, an output control unit 105, an output unit 106, a drive system control unit 107, a drive system system 108, a body system control unit 109, and a body. It includes a system system 110, a storage unit 111, and an automatic operation control unit 112. The input unit 101, the data acquisition unit 102, the communication unit 103, the output control unit 105, the drive system control unit 107, the body system control unit 109, the storage unit 111, and the automatic operation control unit 112 are connected via the communication network 121. They are interconnected. The communication network 121 is, for example, from an in-vehicle communication network or bus that conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 100 may be directly connected without going through the communication network 121.
 なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。 In the following, when each part of the vehicle control system 100 communicates via the communication network 121, the description of the communication network 121 shall be omitted. For example, when the input unit 101 and the automatic operation control unit 112 communicate with each other via the communication network 121, it is described that the input unit 101 and the automatic operation control unit 112 simply communicate with each other.
 入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。 The input unit 101 includes a device used by the passenger to input various data, instructions, and the like. For example, the input unit 101 includes an operation device such as a touch panel, a button, a microphone, a switch, and a lever, and an operation device capable of inputting by a method other than manual operation by voice or gesture. Further, for example, the input unit 101 may be a remote control device using infrared rays or other radio waves, or an externally connected device such as a mobile device or a wearable device corresponding to the operation of the vehicle control system 100. The input unit 101 generates an input signal based on data, instructions, and the like input by the passenger, and supplies the input signal to each unit of the vehicle control system 100.
 データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。 The data acquisition unit 102 includes various sensors and the like that acquire data used for processing of the vehicle control system 100, and supplies the acquired data to each unit of the vehicle control system 100.
 例えば、データ取得部102は、自車の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。 For example, the data acquisition unit 102 includes various sensors for detecting the state of the own vehicle and the like. Specifically, for example, the data acquisition unit 102 includes a gyro sensor, an acceleration sensor, an inertial measurement unit (IMU), an accelerator pedal operation amount, a brake pedal operation amount, a steering wheel steering angle, and an engine speed. It is equipped with a sensor or the like for detecting the rotation speed of the motor or the rotation speed of the wheels.
 また、例えば、データ取得部102は、自車の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、自車の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。周囲情報検出センサの一例として、図5,図6におけるアレーアンテナを備えたレーダ装置ARL1,ARL2,ARR1,ARR2に対応するレーダ装置201が設けられている。 Further, for example, the data acquisition unit 102 includes various sensors for detecting information outside the own vehicle. Specifically, for example, the data acquisition unit 102 includes an imaging device such as a ToF (TimeOfFlight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. Further, for example, the data acquisition unit 102 includes an environment sensor for detecting the weather or the weather, and a surrounding information detection sensor for detecting an object around the own vehicle. The environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like. The ambient information detection sensor includes, for example, an ultrasonic sensor, a radar, LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing), a sonar, and the like. As an example of the ambient information detection sensor, a radar device 201 corresponding to the radar devices ARL1, ARL2, ARR1, ARR2 provided with the array antennas in FIGS. 5 and 6 is provided.
 さらに、例えば、データ取得部102は、自車の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。 Further, for example, the data acquisition unit 102 includes various sensors for detecting the current position of the own vehicle. Specifically, for example, the data acquisition unit 102 includes a GNSS receiver or the like that receives a GNSS signal from a GNSS (Global Navigation Satellite System) satellite.
 また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。 Further, for example, the data acquisition unit 102 includes various sensors for detecting information in the vehicle. Specifically, for example, the data acquisition unit 102 includes an imaging device that images the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like. The biosensor is provided on, for example, the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
 通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である。 The communication unit 103 communicates with the in-vehicle device 104 and various devices, servers, base stations, etc. outside the vehicle, transmits data supplied from each unit of the vehicle control system 100, and transmits the received data to the vehicle control system. It is supplied to each part of 100. The communication protocol supported by the communication unit 103 is not particularly limited, and the communication unit 103 may support a plurality of types of communication protocols.
 例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(登録商標)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。 For example, the communication unit 103 wirelessly communicates with the in-vehicle device 104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Further, for example, the communication unit 103 uses USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (registered trademark) via a connection terminal (and a cable if necessary) (not shown). Wired communication is performed with the in-vehicle device 104 by Mobile High-definition Link) or the like.
 さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、自車と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。 Further, for example, the communication unit 103 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network or a network unique to a business operator) via a base station or an access point. Communicate. Further, for example, the communication unit 103 uses P2P (Peer To Peer) technology to connect with a terminal (for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal) existing in the vicinity of the own vehicle. Communicate. Further, for example, the communication unit 103 includes vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-house (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Pedestrian) communication. ) Perform V2X communication such as communication. Further, for example, the communication unit 103 is provided with a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and acquires information such as the current position, traffic congestion, traffic regulation, or required time. To do.
 車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、自車に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。 The in-vehicle device 104 includes, for example, a mobile device or a wearable device owned by a passenger, an information device carried in or attached to the own vehicle, a navigation device for searching a route to an arbitrary destination, and the like.
 出力制御部105は、自車の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。 The output control unit 105 controls the output of various information to the passengers of the own vehicle or the outside of the vehicle. For example, the output control unit 105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data) and supplies it to the output unit 106 to supply the output unit 105. Controls the output of visual and auditory information from 106. Specifically, for example, the output control unit 105 synthesizes image data captured by different imaging devices of the data acquisition unit 102 to generate a bird's-eye view image, a panoramic image, or the like, and outputs an output signal including the generated image. It is supplied to the output unit 106. Further, for example, the output control unit 105 generates voice data including a warning sound or a warning message for dangers such as collision, contact, and entry into a danger zone, and outputs an output signal including the generated voice data to the output unit 106. Supply.
 出力部106は、自車の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。 The output unit 106 is provided with a device capable of outputting visual information or auditory information to the passengers of the own vehicle or the outside of the vehicle. For example, the output unit 106 includes a display device, an instrument panel, an audio speaker, headphones, a wearable device such as a spectacle-type display worn by a passenger, a projector, a lamp, and the like. The display device included in the output unit 106 displays visual information in the driver's field of view, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to the device having a normal display. It may be a display device.
 駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。 The drive system control unit 107 controls the drive system system 108 by generating various control signals and supplying them to the drive system system 108. Further, the drive system control unit 107 supplies a control signal to each unit other than the drive system system 108 as necessary, and notifies the control state of the drive system system 108.
 駆動系システム108は、自車の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。 The drive system system 108 includes various devices related to the drive system of the own vehicle. For example, the drive system system 108 includes a drive force generator for generating a drive force of an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle, and the like. It is equipped with a braking device that generates braking force, ABS (Antilock Brake System), ESC (Electronic Stability Control), an electric power steering device, and the like.
 ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。 The body system control unit 109 controls the body system 110 by generating various control signals and supplying them to the body system 110. Further, the body system control unit 109 supplies control signals to each unit other than the body system 110 as necessary, and notifies the control state of the body system 110.
 ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。 The body system 110 includes various body devices equipped on the vehicle body. For example, the body system 110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, head lamps, back lamps, brake lamps, winkers, fog lamps, etc.). Etc.
 記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、自車の周囲の情報を含むローカルマップ等の地図データを記憶する。 The storage unit 111 includes, for example, a magnetic storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, and the like. .. The storage unit 111 stores various programs, data, and the like used by each unit of the vehicle control system 100. For example, the storage unit 111 contains map data such as a three-dimensional high-precision map such as a dynamic map, a global map which is less accurate than the high-precision map and covers a wide area, and a local map including information around the own vehicle. Remember.
 自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、自車の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、自車の衝突警告、又は、自車のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。 The automatic driving control unit 112 controls automatic driving such as autonomous driving or driving support. Specifically, for example, the automatic driving control unit 112 issues collision avoidance or impact mitigation of the own vehicle, follow-up running based on the inter-vehicle distance, vehicle speed maintenance running, collision warning of the own vehicle, lane deviation warning of the own vehicle, and the like. Collision control is performed for the purpose of realizing the functions of ADAS (Advanced Driver Assistance System) including. Further, for example, the automatic driving control unit 112 performs coordinated control for the purpose of automatic driving in which the vehicle autonomously travels without depending on the operation of the driver. The automatic operation control unit 112 includes a detection unit 131, a self-position estimation unit 132, a situation analysis unit 133, a planning unit 134, and an operation control unit 135.
 検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143を備える。 The detection unit 131 detects various types of information necessary for controlling automatic operation. The detection unit 131 includes an outside information detection unit 141, an inside information detection unit 142, and a vehicle state detection unit 143.
 車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の外部の情報の検出処理を行う。例えば、車外情報検出部141は、自車の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、自車の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。 The vehicle outside information detection unit 141 performs detection processing of information outside the own vehicle based on data or signals from each unit of the vehicle control system 100. For example, the vehicle outside information detection unit 141 performs detection processing, recognition processing, tracking processing, and distance detection processing for an object around the own vehicle. Objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, and the like. Further, for example, the vehicle outside information detection unit 141 performs detection processing of the environment around the own vehicle. The surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition, and the like. The vehicle outside information detection unit 141 outputs data indicating the result of the detection process to the self-position estimation unit 132, the map analysis unit 151 of the situation analysis unit 133, the traffic rule recognition unit 152, the situation recognition unit 153, and the operation control unit 135. It is supplied to the emergency situation avoidance unit 171 and the like.
 車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。 The in-vehicle information detection unit 142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 100. For example, the vehicle interior information detection unit 142 performs driver authentication processing and recognition processing, driver status detection processing, passenger detection processing, vehicle interior environment detection processing, and the like. The state of the driver to be detected includes, for example, physical condition, alertness, concentration, fatigue, gaze direction, and the like. The environment inside the vehicle to be detected includes, for example, temperature, humidity, brightness, odor, and the like. The vehicle interior information detection unit 142 supplies data indicating the result of the detection process to the situational awareness unit 153 of the situational analysis unit 133, the emergency situation avoidance unit 171 of the motion control unit 135, and the like.
 車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の状態の検出処理を行う。検出対象となる自車の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。 The vehicle state detection unit 143 performs the state detection process of the own vehicle based on the data or signals from each part of the vehicle control system 100. The states of the own vehicle to be detected include, for example, speed, acceleration, steering angle, presence / absence and content of abnormality, driving operation state, power seat position / tilt, door lock state, and other in-vehicle devices. The state etc. are included. The vehicle state detection unit 143 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
 自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。 The self-position estimation unit 132 estimates the position and attitude of the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the vehicle exterior information detection unit 141 and the situation recognition unit 153 of the situation analysis unit 133. Perform processing. In addition, the self-position estimation unit 132 generates a local map (hereinafter, referred to as a self-position estimation map) used for self-position estimation, if necessary. The map for self-position estimation is, for example, a highly accurate map using a technique such as SLAM (Simultaneous Localization and Mapping). The self-position estimation unit 132 supplies data indicating the result of the estimation process to the map analysis unit 151, the traffic rule recognition unit 152, the situation recognition unit 153, and the like of the situation analysis unit 133. Further, the self-position estimation unit 132 stores the self-position estimation map in the storage unit 111.
 状況分析部133は、自車及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。 The situation analysis unit 133 analyzes the situation of the own vehicle and the surroundings. The situation analysis unit 133 includes a map analysis unit 151, a traffic rule recognition unit 152, a situation recognition unit 153, and a situation prediction unit 154.
 マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。 The map analysis unit 151 uses data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132 and the vehicle exterior information detection unit 141 as necessary, and the map analysis unit 151 of various maps stored in the storage unit 111. Perform analysis processing and build a map containing information necessary for automatic driving processing. The map analysis unit 151 applies the constructed map to the traffic rule recognition unit 152, the situation recognition unit 153, the situation prediction unit 154, the route planning unit 161 of the planning unit 134, the action planning unit 162, the operation planning unit 163, and the like. Supply to.
 交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、自車の周囲の信号の位置及び状態、自車の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。 The traffic rule recognition unit 152 determines the traffic rules around the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132, the vehicle outside information detection unit 141, and the map analysis unit 151. Perform recognition processing. By this recognition process, for example, the position and state of the signal around the own vehicle, the content of the traffic regulation around the own vehicle, the lane in which the vehicle can travel, and the like are recognized. The traffic rule recognition unit 152 supplies data indicating the result of the recognition process to the situation prediction unit 154 and the like.
 状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の認識処理を行う。例えば、状況認識部153は、自車の状況、自車の周囲の状況、及び、自車の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、自車の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。 The situation recognition unit 153 can be used for data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132, the vehicle exterior information detection unit 141, the vehicle interior information detection unit 142, the vehicle condition detection unit 143, and the map analysis unit 151. Based on this, the situation recognition process related to the own vehicle is performed. For example, the situational awareness unit 153 performs recognition processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver of the own vehicle. In addition, the situational awareness unit 153 generates a local map (hereinafter, referred to as a situational awareness map) used for recognizing the situation around the own vehicle, if necessary. The situational awareness map is, for example, an occupied grid map (OccupancyGridMap).
 認識対象となる自車の状況には、例えば、自車の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる自車の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。 The status of the own vehicle to be recognized includes, for example, the position, posture, movement (for example, speed, acceleration, moving direction, etc.) of the own vehicle, and the presence / absence and contents of an abnormality. The surrounding conditions of the vehicle to be recognized include, for example, the type and position of surrounding stationary objects, the type, position and movement of surrounding animals (for example, speed, acceleration, moving direction, etc.), and the surrounding roads. The composition and road surface condition, as well as the surrounding weather, temperature, humidity, brightness, etc. are included. The state of the driver to be recognized includes, for example, physical condition, arousal level, concentration level, fatigue level, eye movement, driving operation, and the like.
 状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。 The situational awareness unit 153 supplies data indicating the result of the recognition process (including a situational awareness map, if necessary) to the self-position estimation unit 132, the situation prediction unit 154, and the like. Further, the situational awareness unit 153 stores the situational awareness map in the storage unit 111.
 状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の予測処理を行う。例えば、状況予測部154は、自車の状況、自車の周囲の状況、及び、運転者の状況等の予測処理を行う。 The situation prediction unit 154 performs a situation prediction process related to the own vehicle based on data or signals from each part of the vehicle control system 100 such as the map analysis unit 151, the traffic rule recognition unit 152, and the situation recognition unit 153. For example, the situation prediction unit 154 performs prediction processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver.
 予測対象となる自車の状況には、例えば、自車の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる自車の周囲の状況には、例えば、自車の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。 The situation of the own vehicle to be predicted includes, for example, the behavior of the own vehicle, the occurrence of an abnormality, the mileage, and the like. The situation around the own vehicle to be predicted includes, for example, the behavior of the animal body around the own vehicle, the change in the signal state, the change in the environment such as the weather, and the like. The driver's situation to be predicted includes, for example, the driver's behavior and physical condition.
 状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。 The situation prediction unit 154, together with the data from the traffic rule recognition unit 152 and the situation recognition unit 153, provides the data indicating the result of the prediction processing to the route planning unit 161, the action planning unit 162, and the operation planning unit 163 of the planning unit 134. And so on.
 ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。 The route planning unit 161 plans a route to the destination based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. For example, the route planning unit 161 sets a route from the current position to the specified destination based on the global map. Further, for example, the route planning unit 161 appropriately changes the route based on the conditions of traffic congestion, accidents, traffic restrictions, construction, etc., and the physical condition of the driver. The route planning unit 161 supplies data indicating the planned route to the action planning unit 162 and the like.
 行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための自車の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した自車の行動を示すデータを動作計画部163等に供給する。 The action planning unit 162 safely routes the route planned by the route planning unit 161 within the planned time based on the data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan your vehicle's actions to drive. For example, the action planning unit 162 plans starting, stopping, traveling direction (for example, forward, backward, left turn, right turn, change of direction, etc.), traveling lane, traveling speed, and overtaking. The action planning unit 162 supplies data indicating the planned behavior of the own vehicle to the motion planning unit 163 and the like.
 動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための自車の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した自車の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。 The motion planning unit 163 is the operation of the own vehicle for realizing the action planned by the action planning unit 162 based on the data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan. For example, the motion planning unit 163 plans acceleration, deceleration, traveling track, and the like. The motion planning unit 163 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 172 and the direction control unit 173 of the motion control unit 135.
 動作制御部135は、自車の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。 The motion control unit 135 controls the motion of the own vehicle. The operation control unit 135 includes an emergency situation avoidance unit 171, an acceleration / deceleration control unit 172, and a direction control unit 173.
 緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための自車の動作を計画する。緊急事態回避部171は、計画した自車の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。 Based on the detection results of the outside information detection unit 141, the inside information detection unit 142, and the vehicle condition detection unit 143, the emergency situation avoidance unit 171 may collide, contact, enter a danger zone, have a driver abnormality, or cause a vehicle. Performs emergency detection processing such as abnormalities. When the emergency situation avoidance unit 171 detects the occurrence of an emergency situation, it plans the operation of the own vehicle to avoid an emergency situation such as a sudden stop or a sharp turn. The emergency situation avoidance unit 171 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 172, the direction control unit 173, and the like.
 加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。 The acceleration / deceleration control unit 172 performs acceleration / deceleration control for realizing the operation of the own vehicle planned by the motion planning unit 163 or the emergency situation avoidance unit 171. For example, the acceleration / deceleration control unit 172 calculates a control target value of a driving force generator or a braking device for realizing a planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 107.
 方向制御部173は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。 The direction control unit 173 performs direction control for realizing the operation of the own vehicle planned by the motion planning unit 163 or the emergency situation avoidance unit 171. For example, the direction control unit 173 calculates the control target value of the steering mechanism for realizing the traveling track or the sharp turn planned by the motion planning unit 163 or the emergency situation avoidance unit 171 and controls to indicate the calculated control target value. The command is supplied to the drive system control unit 107.
 <レーダ装置の設置例>
 次に、レーダ装置201の設置例について説明する。
<Installation example of radar device>
Next, an installation example of the radar device 201 will be described.
 図8で示されるように、レーダ装置201は、車両91の前方の左右端部に設けられる。図8においては、車両91の前方の左端部に設けられレーダ装置201は、レーダ装置201Lとされ、車両91の前方の右端部に設けられレーダ装置201は、レーダ装置201Rとされている。 As shown in FIG. 8, the radar device 201 is provided at the front left and right ends of the vehicle 91. In FIG. 8, the radar device 201 provided at the left end portion in front of the vehicle 91 is referred to as a radar device 201L, and the radar device 201 provided at the right end portion in front of the vehicle 91 is referred to as a radar device 201R.
 尚、以降において、レーダ装置201L,201Rについて、特に区別する必要がない場合については、単にレーダ装置201と称するものとし、その他の構成も同様とする。 In the following, when it is not necessary to distinguish the radar devices 201L and 201R, the radar devices 201L and 201R shall be simply referred to as the radar device 201, and other configurations shall be the same.
 また、レーダ装置201は、移相器とアレーアンテナとを組み合わせて備えた構成とされており、移相器による位相変化量の調整により、送信方向(照射方向)と幅(視野角)を調整してレーダ送信波を送信(照射)する。 Further, the radar device 201 is configured to include a phase shifter and an array antenna in combination, and adjusts the transmission direction (irradiation direction) and width (viewing angle) by adjusting the amount of phase change by the phase shifter. Then, the radar transmission wave is transmitted (irradiated).
 図8においては、レーダ装置201L,201Rのレーダ送信波の送信範囲として、送信範囲の中心方向が、アレーアンテナにより形成される面201fL,201fRに対して正対する、車両前方正面方向の送信範囲ZMLC,ZMRCと、一点鎖線で示される車両91の中心軸上で交差する送信範囲ZMLS,ZMRSとがそれぞれ設定されている。 In FIG. 8, as the transmission range of the radar transmission wave of the radar devices 201L and 201R, the transmission range Z in the front front direction of the vehicle, in which the central direction of the transmission range faces the surfaces 201fL and 201fR formed by the array antenna. The MLC and Z MRC and the transmission ranges Z MLS and Z MRS that intersect on the central axis of the vehicle 91 indicated by the alternate long and short dash line are set, respectively.
 一般に、アレーアンテナを備えたレーダ装置201においては、アレーアンテナにより形成される面に対して正対する方向がレーダ装置201における検出精度の最適点とされている。 Generally, in the radar device 201 provided with the array antenna, the direction facing the surface formed by the array antenna is the optimum point of the detection accuracy of the radar device 201.
 このため、図8のレーダ装置201L,201Rにおいては、送信範囲ZMLC,ZMRCが検出精度の最適点に設定されている。 Therefore, in the radar devices 201L and 201R of FIG. 8, the transmission ranges Z MLC and Z MRC are set to the optimum points of detection accuracy.
 また、車両91のボディやバンパ部となる車体91aにおける、送信範囲ZMLS,ZMRSと重なる範囲は、比透磁率が1でない部材221L,221Rにより構成されている。 Further, in the vehicle body 91a which is the body and bumper portion of the vehicle 91, the range overlapping the transmission ranges Z MLS and Z MRS is composed of members 221L and 221R having a relative magnetic permeability of not 1.
 このように、車両91のボディやバンパ部となる車体91aにおける、送信範囲ZMLS,ZMRSと重なる範囲においては、比透磁率が1でない部材221L,221Rが構成されることにより、送信範囲ZMLS,ZMRSにおけるレーダ送信波を高効率で透過させることが可能となる。 As described above, in the range overlapping with the transmission ranges Z MLS and Z MRS in the vehicle body 91a which is the body and bumper portion of the vehicle 91, the transmission range Z is formed by configuring the members 221L and 221R whose relative magnetic permeability is not 1. It is possible to transmit radar transmission waves in MLS and Z MRS with high efficiency.
 すなわち、車両91のボディやバンパ部となる車体91aに一般に使用される部材は、例えば、ポリプロピレンのような誘電体材質で構成されることが想定され、誘電率が2.2から2.6程度であるが、レーダ送信波に対して、入射角に応じた反射または屈折を生じさせる。 That is, it is assumed that the members generally used for the vehicle body 91a, which is the body and bumper portion of the vehicle 91, are made of a dielectric material such as polypropylene, and the dielectric constant is about 2.2 to 2.6. The radar transmission wave is reflected or refracted according to the incident angle.
 このため、特に、図8における送信範囲ZMLS,ZMRSのレーダ送信波については、車体91aに対しての入射角が大きいため、一般的な誘電体材質からなる車体91aが存在するような構成では、レーダ送信波に反射または屈折が生じるため、車体91aより前方に透過されず、レーダ装置201としての十分な検出精度が得られなくなる恐れがあった。 For this reason, in particular, the radar transmission waves of the transmission ranges Z MLS and Z MRS in FIG. 8 have a large incident angle with respect to the vehicle body 91a, so that the vehicle body 91a made of a general dielectric material exists. Then, since the radar transmission wave is reflected or refracted, it is not transmitted forward from the vehicle body 91a, and there is a possibility that sufficient detection accuracy as the radar device 201 cannot be obtained.
 そこで、車体91aにおける、送信範囲ZMLS,ZMRSと重なる範囲は、比透磁率が1でない部材221L,221Rにより構成されるようにすることで、レーダ装置201からのレーダ送信波を車両91の前方に透過させることが可能な構成とされている。 Therefore, the range of the vehicle body 91a that overlaps with the transmission ranges Z MLS and Z MRS is composed of the members 221L and 221R having a relative magnetic permeability of not 1, so that the radar transmission wave from the radar device 201 can be transmitted to the vehicle 91. It is configured so that it can be transmitted forward.
 このような構成により、図8における送信範囲ZMLS,ZMRSのレーダ送信波が、車両91に対して所定の入射角よりも大きな入射角で入射しても、車体91aを透過して、車両91の前方に送信されることになるので、十分な検出精度を得ることが可能となる。 With such a configuration, even if the radar transmission waves of the transmission ranges Z MLS and Z MRS in FIG. 8 are incident on the vehicle 91 at an incident angle larger than a predetermined angle of incidence, they pass through the vehicle body 91a and the vehicle. Since it is transmitted in front of 91, it is possible to obtain sufficient detection accuracy.
 尚、比透磁率が1でない部材221L,221Rが、レーダ装置201からのレーダ送信波を透過させる原理については、詳細を後述する。 The principle of the members 221L and 221R having a relative magnetic permeability of not 1 transmitting the radar transmission wave from the radar device 201 will be described in detail later.
 また、図8の送信範囲ZMLC,ZMRCのレーダ送信波については、車体91aに対する入射角が略0度に近い状態で入射することにより、反射または屈折が小さいため、車体91aが、比透磁率が1でない部材221L,221Rで構成されておらず、例えば、ポリプロピレンのような誘電体材質で構成されていても、車体91aを透過することができるので、十分な検出精度を確保することが可能である。 Further, regarding the radar transmission waves of the transmission ranges Z MLC and Z MRC in FIG. 8, since the reflection or refraction is small because the incident angle with respect to the vehicle body 91a is close to about 0 degrees, the vehicle body 91a is transparent. Even if it is not composed of members 221L and 221R having a magnetic coefficient other than 1, and is composed of a dielectric material such as polypropylene, it can pass through the vehicle body 91a, so that sufficient detection accuracy can be ensured. It is possible.
 さらに、以上においては、図8で示されるように、レーダ装置201L,201Rのアレーアンテナにより形成される面201fL,201fRが、車両前方正面方向に対して正対する構成である例について説明してきた。 Further, in the above, as shown in FIG. 8, an example has been described in which the surfaces 201fL and 201fR formed by the array antennas of the radar devices 201L and 201R face the front direction of the front of the vehicle.
 しかしながら、例えば、図9で示されるように、アレーアンテナにより形成される面201fL’,201fR’が、一点鎖線で示される車両91の中心方向に向けられるように構成し、一点鎖線で示される車両91の中心方向が送信範囲ZMLC,ZMRCによりカバーされるように、レーダ装置201L,201Rに替えて、レーダ装置201L’,201R’が設けられるようにしてもよい。 However, for example, as shown in FIG. 9, the surfaces 201fL'and 201fR'formed by the array antenna are configured to be directed toward the center of the vehicle 91 indicated by the alternate long and short dash line, and the vehicle is indicated by the alternate long and short dash line. Radar devices 201L', 201R'may be provided in place of the radar devices 201L, 201R so that the central direction of 91 is covered by the transmission ranges Z MLC and Z MRC .
 図9の場合、車体91aにおける、送信範囲ZMLC,ZMRCに係る範囲に、比透磁率が1でない部材221L’,221R’により構成されるようにすることで、レーダ装置201からのレーダ送信波を車両91の前方に透過させることが可能となる。 In the case of FIG. 9, the radar transmission from the radar device 201 is made so that the transmission range Z MLC and Z MRC in the vehicle body 91a are composed of the members 221L'and 221R' whose relative magnetic permeability is not 1. It is possible to transmit waves in front of the vehicle 91.
 また、図9の場合、レーダ装置201に備えられた移相器とアレーアンテナとの組み合わせにより、移相器の調整で車両91の前方正面方向に対して、送信範囲ZMLS,ZMRSが形成される。 Further, in the case of FIG. 9, the transmission ranges Z MLS and Z MRS are formed in the front front direction of the vehicle 91 by adjusting the phase shifter by the combination of the phase shifter provided in the radar device 201 and the array antenna. Will be done.
 さらに、図9の送信範囲ZMLS,ZMRSのレーダ送信波についても、車体91aに対する入射角が略0度に近い状態で入射することにより、反射または屈折が小さいため、車体91aが、比透磁率が1でない部材221L,221Rで構成されておらず、例えば、ポリプロピレンのような誘電体材質で構成されていても、車体91aを透過することができるので、十分な検出精度を確保することが可能である。 Further, with respect to the radar transmission waves of the transmission ranges Z MLS and Z MRS in FIG. 9, since the reflection or refraction is small because the incident angle with respect to the vehicle body 91a is close to about 0 degrees, the vehicle body 91a is transparent. It is not composed of members 221L and 221R having a magnetic coefficient of not 1, and even if it is composed of a dielectric material such as polypropylene, it can pass through the vehicle body 91a, so that sufficient detection accuracy can be ensured. It is possible.
 尚、本実施の形態においては、レーダ装置201は、左右の2か所に設けられる構成例について説明するものとするが、レーダ送信波の送信範囲が重なるように設けられていれば、それ以上の数のレーダ装置201が設けられていてもよい。 In the present embodiment, the radar device 201 will be described as a configuration example provided at two locations on the left and right, but if the radar transmission waves are provided so as to overlap the transmission ranges, the radar device 201 will be described. The number of radar devices 201 may be provided.
 <レーダ装置の回路構成例>
 次に、図10を参照して、レーダ装置201の回路構成例について説明する。
<Circuit configuration example of radar device>
Next, a circuit configuration example of the radar device 201 will be described with reference to FIG.
 レーダ装置201は、送信部231、受信部232、キャリブレーションデータ生成部233、キャリブレーションデータ記憶部234、位相制御部235、およびチャープ信号発生部236より構成される。 The radar device 201 is composed of a transmission unit 231, a reception unit 232, a calibration data generation unit 233, a calibration data storage unit 234, a phase control unit 235, and a chirp signal generation unit 236.
 送信部231は、チャープ信号発生部236により発生されるチャープ信号に基づいて、レーダ送信波を生成して、図8,図9を参照して説明した送信範囲ZMLC,ZMRC、およびZMLS,ZMRSに対して送信する。 The transmission unit 231 generates a radar transmission wave based on the chirp signal generated by the chirp signal generation unit 236, and transmits the transmission ranges Z MLC , Z MRC , and Z MLS described with reference to FIGS. 8 and 9. , Z Send to MRS .
 より詳細には、送信部231は、増幅部241、パワー分配器242、移相器243-1乃至243-n、およびアレーアンテナ244より構成される。 More specifically, the transmission unit 231 is composed of an amplification unit 241, a power distributor 242, phase shifters 243-1 to 243-n, and an array antenna 244.
 尚、アレーアンテナ244は、要素アンテナ244-1乃至244-nより構成される。 The array antenna 244 is composed of element antennas 244-1 to 244-n.
 増幅部241は、チャープ信号発生部236により発生されるチャープ信号を増幅して、パワー分配器242に出力する。 The amplification unit 241 amplifies the chirp signal generated by the chirp signal generation unit 236 and outputs it to the power distributor 242.
 パワー分配器242は、複数に配置される要素アンテナ244a-1乃至244a-nに対応する数だけチャープ信号を分配して、それぞれ移相器243-1乃至243-nに出力する。 The power distributor 242 distributes chirp signals by the number corresponding to the plurality of element antennas 244a-1 to 244an and outputs them to the phase shifters 243-1 to 243-n, respectively.
 移相器243-1乃至243-nは、位相制御部235により制御され、それぞれ要素アンテナ244a-1乃至244a-nより出力されるレーダ送信波の位相を制御して、アレーアンテナ244よりレーダ送信波を送信させる。 The phase shifters 243-1 to 243-n are controlled by the phase control unit 235, control the phase of the radar transmission wave output from the element antennas 244a-1 to 244an, respectively, and transmit the radar from the array antenna 244. Send waves.
 移相器243は、アレーアンテナごとに独立に具備される個別の移相回路により実現されてもよいが、安価で小型なレーダの実現のためには、移相器は集積回路として実現されることが望ましい。 The phase shifter 243 may be realized by an individual phase shift circuit provided independently for each array antenna, but in order to realize an inexpensive and compact radar, the phase shifter is realized as an integrated circuit. Is desirable.
 例えば、“A High-Linearity 76-85-GHz 16-Element 8-Transmit/8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging,”IEEE Transaction on Microwave Theory and Techniques, vol. 62, no. 10, Oct. 2014では、半導体回路によって集積化された移相器の例が開示されている。 For example, “A High-Linearity 76-85-GHz 16-Element 8-Transmit / 8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging,” IEEE Transaction on Microwave Theory and Techniques, vol. 62, no. 10, Oct. 2014 discloses an example of a phase shifter integrated by a semiconductor circuit.
 図11は、集積化された移相器243の構成例を示したものであるが、詳細な構成の説明については、“A High-Linearity 76-85-GHz 16-Element 8-Transmit/8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging,”IEEE Transaction on Microwave Theory and Techniques, vol. 62, no. 10, Oct. 2014を参照されたい。 FIG. 11 shows a configuration example of the integrated phase shifter 243. For a detailed description of the configuration, refer to “A High-Linearity 76-85-GHz 16-Element 8-Transmit / 8- See Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging, ”IEEE Transaction on Microwave Theory and Techniques, vol. 62, no. 10, Oct. 2014.
 移相器243は、通常、位相を360°可変とすることができ、入力される信号を任意の位相に回転できることが望ましい。 It is desirable that the phase shifter 243 can usually change the phase by 360 ° and can rotate the input signal to an arbitrary phase.
 位相制御部235は、キャリブレーションデータ記憶部234に記憶されたキャリブレーションデータを使用して、移相器243-1乃至243-nによる位相変化量を調整することにより、要素アンテナ244a-1乃至244a-nより出力されるレーダ送信波の位相を調整し、アレーアンテナ244より送信されるレーダ送信波の送信方向を設定することが可能となる。 The phase control unit 235 uses the calibration data stored in the calibration data storage unit 234 to adjust the amount of phase change by the phase shifters 243-1 to 243-n, whereby the element antennas 244a-1 to It is possible to adjust the phase of the radar transmission wave output from 244an and set the transmission direction of the radar transmission wave transmitted from the array antenna 244.
 すなわち、位相制御部235による位相変化量の調整により、例えば、アレーアンテナ244により形成される面201fL,201fRより送信されるレーダ送信波の送信範囲ZMLC,ZMRC、およびZMLS,ZMRSが設定される。 That is, by adjusting the amount of phase change by the phase control unit 235, for example, the transmission ranges Z MLC , Z MRC , and Z MLS , Z MRS of the radar transmission wave transmitted from the surfaces 201fL, 201fR formed by the array antenna 244 are set. Set.
 また、パワー分配器242は、図10における構成のみならず、他の構成であってもよく、例えば、図12で示されるように、4本の要素アンテナ244a-1乃至244a-4に分配する場合、1:2に分配するパワー分配器242’-1乃至242’-3により2段階に分配し、移相器243-1乃至243-4を介して出力する構成としてもよい。 Further, the power distributor 242 may have a configuration other than that shown in FIG. 10, and distributes the power distributor 242 to the four element antennas 244a-1 to 244a-4, for example, as shown in FIG. In this case, the power distributors 242'-1 to 242'-3, which distribute 1: 2, may be used to distribute the power in two stages, and the phase shifters 243-1 to 243-4 may be used for output.
 図12におけるパワー分配器242’は、例えば、図13で示されるように、いわゆるウィルキンソン分配器として知られる分配器で構成されるようにしてもよい。 The power distributor 242'in FIG. 12 may be composed of a distributor known as a so-called Wilkinson distributor, for example, as shown in FIG.
 すなわち、図13においては、ポートP1-1,P1-2により入力された信号が、ポートP2-1乃至P2-2およびポートP3-1乃至P3-2に分配される。 That is, in FIG. 13, the signals input by ports P1-1 and P1-2 are distributed to ports P2-1 to P2-2 and ports P3-1 to P3-2.
 尚、要素アンテナ244aの構成については、詳細を後述する。 The details of the configuration of the element antenna 244a will be described later.
 図10の説明に戻る。 Return to the explanation of FIG.
 受信部232は、送信部231より送信されたレーダ送信波が物体により反射された反射波を受信して、受信した反射波に基づいて、物体までの距離、物体の速度、および物体の方向を検出して、検出結果を出力する。 The receiving unit 232 receives the reflected wave reflected by the object from the radar transmission wave transmitted from the transmitting unit 231 and determines the distance to the object, the speed of the object, and the direction of the object based on the received reflected wave. Detect and output the detection result.
 より詳細には、受信部232は、受信アンテナ251-1乃至251-n、増幅部252-1乃至252-n、合成部253-1乃至253-n、増幅部254-1乃至254-n、ADコンバータ255-1乃至255-n、および信号処理部256より構成される。 More specifically, the receiving unit 232 includes receiving antennas 251-1 to 251-n, amplification units 252-1 to 252-n, synthesis units 253-1 to 253-n, and amplification units 254-1 to 254-n. It is composed of AD converters 255-1 to 255-n and a signal processing unit 256.
 受信アンテナ251-1乃至251-nは、レーダ送信波が物体により反射された反射波を受信して、受信信号として、それぞれ増幅部252-1乃至252-nに出力する。 The receiving antennas 251-1 to 251-n receive the reflected wave whose radar transmission wave is reflected by the object and output it as a received signal to the amplification units 252-1 to 252-n, respectively.
 増幅部252-1乃至252-nは、受信アンテナ251-1乃至251-nより供給される受信信号を増幅して、それぞれ合成部253-1乃至253-nに出力する。 The amplification units 252-1 to 252-n amplify the reception signal supplied from the reception antennas 251-1 to 251-n and output it to the synthesis unit 253-1 to 253-n, respectively.
 合成部253-1乃至253-nは、それぞれ増幅部252-1乃至252-nより供給される受信信号の増幅信号と、チャープ信号とを合成して、合成信号として、それぞれ増幅部254-1乃至254-nに出力する。 The synthesis units 253-1 to 253-n synthesize the amplified signal of the received signal supplied from the amplification units 252-1 to 252-n and the chirp signal, respectively, and use the amplification unit 254-1 as a composite signal. Output to ~ 254-n.
 増幅部254-1乃至254-nは、合成部253-1乃至253-nより供給される合成信号を増幅して、それぞれADコンバータ255-1乃至255-nに出力する。 The amplification units 254-1 to 254-n amplify the composite signal supplied from the synthesis unit 253-1 to 253-n and output it to the AD converters 255-1 to 255-n, respectively.
 ADコンバータ255-1乃至255-nは、増幅部254-1乃至254-nより供給される増幅された合成信号をAD変換して、それぞれ信号処理部256に出力する。 The AD converters 255-1 to 255-n perform AD conversion of the amplified composite signal supplied from the amplification units 254-1 to 254-n and output each to the signal processing unit 256.
 信号処理部256は、ADコンバータ255-1乃至255-nより供給される合成信号を加算し、FFT(Fast Fourier Transform)を掛けることにより、ターゲットとなる物体の距離、速度、および方位を算出して、検出結果として出力する。 The signal processing unit 256 calculates the distance, speed, and direction of the target object by adding the combined signals supplied from the AD converters 255-1 to 255-n and multiplying them by FFT (Fast Fourier Transform). And output as a detection result.
 複数の受信アンテナ251により受信された信号が加算されることにより、特定の方位に対して受信感度を高めることが可能となる。 By adding the signals received by the plurality of receiving antennas 251 it is possible to increase the receiving sensitivity for a specific direction.
 より詳細には、信号処理部256は、例えば、図14で示されるような構成であり、距離FFT部271、速度FFT部272、方位FFT部273、およびDSP274を備えている。 More specifically, the signal processing unit 256 has, for example, a configuration as shown in FIG. 14, and includes a distance FFT unit 271, a speed FFT unit 272, an azimuth FFT unit 273, and a DSP 274.
 距離FFT部271は、受信アンテナ251により受信された受信信号に基づいて、チャープ信号が合成された合成信号に、FFTを掛けることにより離散信号に変換して、離散信号に基づいて、物体までの距離を算出し、DSP274に出力する。 The distance FFT unit 271 converts a composite signal in which a chirp signal is synthesized based on the reception signal received by the reception antenna 251 into a discrete signal by applying FFT, and based on the discrete signal, reaches an object. The distance is calculated and output to DSP274.
 速度FFT部272は、受信アンテナ251により受信された受信信号に基づいて、チャープ信号が合成された合成信号に、FFTを掛けることにより離散信号に変換して、離散信号に基づいて、物体の速度を算出し、DSP274に出力する。 The speed FFT unit 272 converts the composite signal in which the chirp signal is synthesized based on the received signal received by the reception antenna 251 into a discrete signal by applying FFT, and the speed of the object is based on the discrete signal. Is calculated and output to DSP274.
 方位FFT部273は、受信アンテナ251により受信された受信信号に基づいて、チャープ信号が合成された合成信号に、FFTを掛けることにより離散信号に変換して、離散信号に基づいて、物体の方位を算出し、DSP274に出力する。 The azimuth FFT unit 273 converts the composite signal in which the chirp signal is synthesized based on the reception signal received by the reception antenna 251 into a discrete signal by applying the FFT, and the azimuth of the object is based on the discrete signal. Is calculated and output to DSP274.
 DSP(Digital Signal Processor)274は、距離FFT部271より供給される距離、速度FFT部272より供給される速度、方位FFT部273より供給される方位の情報をデジタル信号処理して出力する。 The DSP (Digital Signal Processor) 274 digitally processes and outputs information on the distance supplied by the distance FFT unit 271, the speed supplied by the speed FFT unit 272, and the azimuth supplied by the azimuth FFT unit 273.
 キャリブレーションデータ生成部233は、送信部231により送信されるレーダ送信波の送信範囲のキャリブレーション時に受信部232により受信される検出結果に基づいて、キャリブレーションデータを生成して、キャリブレーションデータ記憶部234に記憶させる。 The calibration data generation unit 233 generates calibration data based on the detection result received by the reception unit 232 at the time of calibrating the transmission range of the radar transmission wave transmitted by the transmission unit 231, and stores the calibration data. It is stored in the part 234.
 すなわち、位相制御部235は、キャリブレーションデータ記憶部234に記憶されているキャリブレーションデータに基づいて、移相器243-1乃至243-nの位相変化量を制御することで、アレーアンテナ244として送信するレーダ送信波の送信方向を制御する。 That is, the phase control unit 235 controls the phase change amount of the phase shifters 243-1 to 243-n based on the calibration data stored in the calibration data storage unit 234 to serve as the array antenna 244. Controls the transmission direction of the radar transmission wave to be transmitted.
 <アレーアンテナの構成例>
 次に、図15を参照して、全体としてアレーアンテナ244を構成する要素アンテナ244a-1乃至244a-nのそれぞれについて説明する。尚、要素アンテナ244a-1乃至244a-nのそれぞれについて、特に区別する必要がない場合、単に要素アンテナ244aと称する。
<Configuration example of array antenna>
Next, with reference to FIG. 15, each of the element antennas 244a-1 to 244an that constitute the array antenna 244 as a whole will be described. When it is not necessary to distinguish each of the element antennas 244a-1 to 244an, it is simply referred to as an element antenna 244a.
 図15は、要素アンテナ244aの構成例を示している。 FIG. 15 shows a configuration example of the element antenna 244a.
 車両91における車体91aの前方左右端部の限られたスペースにアレーアンテナ244を構成するための要素アンテナ244a-1乃至244a-nを実装するために、要素アンテナ244a-1乃至244a-nは、それぞれが小さく、また、位置精度の高いものであることが望まれる。 In order to mount the element antennas 244a-1 to 244an for forming the array antenna 244 in the limited space at the front left and right ends of the vehicle body 91a in the vehicle 91, the element antennas 244a-1 to 244an are used. It is desired that each of them is small and has high position accuracy.
 図15の要素アンテナ244aは、例えば、高周波基板にパターンで作りつけられた方形状の銅箔パッチ244p-1乃至244p-8が直列に接続されたアンテナであり、一般に直列給電型パッチアンテナと称される。尚、図15においては、銅箔パッチ244p-1乃至244p-8が8個である例が示されているが、それ以外の数であってもよい。 The element antenna 244a of FIG. 15 is, for example, an antenna in which square copper foil patches 244p-1 to 244p-8 formed in a pattern on a high-frequency substrate are connected in series, and is generally referred to as a series-fed patch antenna. Will be done. In FIG. 15, an example in which the number of copper foil patches 244p-1 to 244p-8 is eight is shown, but the number may be other than that.
 図15で示されるような、要素アンテナ244aは、比較的に安価で、小型かつ位置精度が高いため、全体としてアレーアンテナを構成するための要素アンテナとして―般的に採用されている。 As shown in FIG. 15, the element antenna 244a is relatively inexpensive, compact, and has high position accuracy, and therefore is generally adopted as an element antenna for forming an array antenna as a whole.
 直列給電型パッチアンテナからなる要素アンテナ244aは、縦に並ぶ複数のパッチ244pにより、垂直方向の指向性を狭くするように動作し、垂直方向の分離性能を改善する。 The element antenna 244a composed of a series-fed patch antenna operates so as to narrow the directivity in the vertical direction by a plurality of patches 244p arranged vertically, and improves the separation performance in the vertical direction.
 一方、直列給電型パッチアンテナからなる要素アンテナ244aにおける水平方向の指向性は、要素アンテナ244aがアレー化して配置されることで、全体として先鋭な放射特性を得る。 On the other hand, the horizontal directivity of the element antenna 244a composed of the series-fed patch antenna obtains sharp radiation characteristics as a whole by arranging the element antennas 244a in an array.
 尚、要素アンテナ244aは、必ずしも図15で示す例に限らず、同種の特性を持つものであれば、その他でも良い。 Note that the element antenna 244a is not necessarily limited to the example shown in FIG. 15, and may be any other as long as it has the same characteristics.
 図15のような要素アンテナ244aを複数に用いて、図16のような、アレーアンテナ244を構成し、レーダ送信波の送信範囲を設定する。図16においては、要素アンテナ244a-1乃至244a-8の8本を用いた場合のアレーアンテナ244の例が示されている。 Using a plurality of element antennas 244a as shown in FIG. 15, the array antenna 244 as shown in FIG. 16 is configured, and the transmission range of the radar transmission wave is set. In FIG. 16, an example of the array antenna 244 when eight element antennas 244a-1 to 244a-8 are used is shown.
 ここで、図16で示されるアレーアンテナ244における要素アンテナ244a-1乃至244a-8のそれぞれの間隔は、通常、レーダ送信波の波長の半分程度が用いられる。このように、要素アンテナ244a-1乃至244a-8をアレー化して配置することで、レーダ送信波の送信範囲の視野角を狭くして、送信範囲を先鋭化することが可能となる。一般に、要素アンテナ244aの数が大きくなると、より先鋭なビーム状の送信範囲を構成することが可能となる。 Here, the interval between the element antennas 244a-1 to 244a-8 in the array antenna 244 shown in FIG. 16 is usually about half the wavelength of the radar transmission wave. By arranging the element antennas 244a-1 to 244a-8 in an array in this way, it is possible to narrow the viewing angle of the transmission range of the radar transmission wave and sharpen the transmission range. In general, as the number of element antennas 244a increases, it becomes possible to form a sharper beam-shaped transmission range.
 このように構成された複数の要素アンテナ244a-1乃至244a-nが複数に配置されると共に、移相器243-1乃至243-nの位相変化量が位相制御部235により制御されることにより、レーダ送信波の送信範囲の形状を設定する、いわゆるビームフォーミングが実現される。 A plurality of element antennas 244a-1 to 244an configured in this way are arranged in a plurality of elements, and the amount of phase change of the phase shifters 243-1 to 243-n is controlled by the phase control unit 235. , So-called beamforming is realized, which sets the shape of the transmission range of the radar transmission wave.
 <要素アンテナの特性>
 次に、図17を参照して、要素アンテナ244aの単体の特性について説明する。
<Characteristics of element antenna>
Next, with reference to FIG. 17, the characteristics of the element antenna 244a as a single unit will be described.
 図17の左部は、図15の要素アンテナ244aに対するアンテナ水平方向の角度に応じた水平偏波成分と垂直偏波成分におけるゲインの典型的な分布(波形HW,VW)を示している。 The left part of FIG. 17 shows a typical distribution (waveform HW, VW) of the gain in the horizontally polarized component and the vertically polarized component according to the angle in the horizontal direction of the antenna with respect to the element antenna 244a of FIG.
 すなわち、図17の左部で示されるように、要素アンテナ244aに対するアンテナ水平方向の角度に応じた水平偏波成分の波形HWは、水平方向に対して0度を中心としたピークとなる波形である。 That is, as shown in the left part of FIG. 17, the waveform HW of the horizontally polarized component corresponding to the angle in the horizontal direction of the antenna with respect to the element antenna 244a is a waveform having a peak centered on 0 degrees with respect to the horizontal direction. is there.
 また、要素アンテナ244aに対するアンテナ水平方向の角度に応じた垂直偏波成分の波形VWは、水平方向に対して0度において最小値となり、ほぼ左右対称に45度においてピークとなる波形である。 Further, the waveform VW of the vertically polarized component corresponding to the angle in the horizontal direction of the antenna with respect to the element antenna 244a is a waveform that has a minimum value at 0 degrees with respect to the horizontal direction and a peak at 45 degrees symmetrically.
 また、図17の右部は、図15の要素アンテナ244aのアンテナ垂直方向の角度に応じた水平偏波成分と垂直偏波成分における典型的なゲインの分布(波形HW,VW)を示している。 Further, the right part of FIG. 17 shows a typical gain distribution (waveforms HW, VW) in the horizontally polarized component and the vertically polarized component according to the angle in the vertical direction of the antenna of the element antenna 244a of FIG. ..
 すなわち、図17の右部で示されるように、アレーアンテナ244に対するアンテナ垂直方向の角度に応じた水平偏波成分の波形HWは、全角度に対して大きな凹凸のない波形である。 That is, as shown in the right part of FIG. 17, the waveform HW of the horizontally polarized component corresponding to the angle in the vertical direction of the antenna with respect to the array antenna 244 is a waveform without large unevenness with respect to all angles.
 また、アレーアンテナ244に対するアンテナ垂直方向の角度に応じた垂直偏波成分の波形VWは、垂直方向に対して0度においてピークとなる波形である。 Further, the waveform VW of the vertically polarized component corresponding to the angle in the vertical direction of the antenna with respect to the array antenna 244 is a waveform that peaks at 0 degrees with respect to the vertical direction.
 さらに、図17の左部、および右部のいずれにおいても、水平偏波成分よりも垂直偏波成分のゲインが大きく、支配的な偏波成分であることが示されている。 Further, in both the left part and the right part of FIG. 17, the gain of the vertically polarized wave component is larger than that of the horizontally polarized wave component, and it is shown that the polarized wave component is dominant.
 このような要素アンテナ244aを複数用いてアレーアンテナ244を構成する場合、ボディあるいはバンパ部等の車体91aに対して、入射角が大きく設定された状態でレーダ送信波が入射すると、その界面における反射や屈折により車体91aを透過できず、車両91前方の送信範囲にレーダ送信波を送信できない状態となる恐れがあった。 When the array antenna 244 is configured by using a plurality of such element antennas 244a, when the radar transmission wave is incident on the vehicle body 91a such as the body or the bumper portion with the incident angle set to be large, it is reflected at the interface. There is a risk that the radar transmission wave cannot be transmitted to the transmission range in front of the vehicle 91 because the vehicle body 91a cannot be transmitted due to refraction.
 <電磁波の誘電体界面における反射と屈折>
 誘電体に対する電磁波の反射特性の偏波依存性の典型例は、例えば、図18で示されるような特性となる。
<Reflection and refraction of electromagnetic waves at the dielectric interface>
A typical example of the polarization dependence of the reflection characteristic of an electromagnetic wave on a dielectric is the characteristic shown in FIG. 18, for example.
 車体91aを構成する、例えば、バンパは、ポリプロピレンのような誘電体材質で構成されることが想定され、その誘電率は2.2から2.6程度であるため、図18では、誘電率が2.5の誘電体の界面における反射特性が示されている。 The bumper constituting the vehicle body 91a, for example, is assumed to be made of a dielectric material such as polypropylene, and its dielectric constant is about 2.2 to 2.6. Therefore, in FIG. 18, a dielectric having a dielectric constant of 2.5 The reflection characteristics at the interface of are shown.
 いま、電磁波の誘電体界面における反射・屈折現象に関して、2つの偏波、すなわち、p偏波とs偏波に分けて現象を考える。 Now, regarding the reflection / refraction phenomenon of electromagnetic waves at the dielectric interface, we will consider the phenomenon by dividing it into two polarizations, that is, p-polarization and s-polarization.
 ここで、p偏波とは、電界の誘電体に対する入反射面と平行な方向となる偏波成分であり、s偏波は、電界の誘電体に対する入反射面と垂直な方向となる偏波成分である。 Here, the p-polarized light is a polarization component whose direction is parallel to the incoming / reflective surface of the electric field with respect to the dielectric, and the s-polarized light is a polarized light whose direction is perpendicular to the incoming / reflected surface of the electric field with respect to the dielectric. It is an ingredient.
 図17においては、点線の波形SWが、s偏波成分の反射特性を示しており、実線の波形PWが、p偏波成分の反射特性を示している。 In FIG. 17, the dotted waveform SW shows the reflection characteristic of the s polarization component, and the solid waveform PW shows the reflection characteristic of the p polarization component.
 波形SWで示されるs偏波成分は、誘電体に対して電磁波の入射角が増大するほど、反射量が単調増加する。一方、波形PWで示されるp偏波成分は、誘電体に対して電磁波の入射角が増大するほど、徐々に小さくなり、所定の入射角で反射量がゼロとなり、再び増加する。 The amount of reflection of the s-polarized light component indicated by the waveform SW increases monotonically as the incident angle of the electromagnetic wave with respect to the dielectric increases. On the other hand, the p-polarized light component represented by the waveform PW gradually decreases as the incident angle of the electromagnetic wave with respect to the dielectric increases, the amount of reflection becomes zero at a predetermined incident angle, and increases again.
 一般に、p偏波成分における反射量がゼロとなる入射角BAは、ブリュースター角として知られる。 Generally, the incident angle BA at which the amount of reflection in the p-polarized light component is zero is known as Brewster's angle.
 すなわち、p偏波成分の反射量は、誘電体に対する入射角がブリュースター角であるときゼロとなる。 That is, the amount of reflection of the p-polarized light component becomes zero when the angle of incidence on the dielectric is the Brewster's angle.
 例えば、図16で示されるようなアレーアンテナ244を備えたレーダ装置201が車両91に実装される場合、レーダ送信波の送信範囲のビーム指向性を最大限活用するためには、必然的に、要素アンテナ244aのパッチ244pのそれぞれが垂直方向に接続されて並ぶように基板を垂直に立て、車両91に実装することになる。 For example, when the radar device 201 provided with the array antenna 244 as shown in FIG. 16 is mounted on the vehicle 91, in order to maximize the beam directivity of the transmission range of the radar transmission wave, it is inevitable. The board is erected vertically so that each of the patches 244p of the element antenna 244a is vertically connected and arranged, and mounted on the vehicle 91.
 ところが、このように要素アンテナ244aのそれぞれを垂直方向にパッチ244pが接続されて並ぶように配置すると、各要素アンテナ244aから放射される主たる偏波成分が垂直偏波であるから、レーダ送信波が、ボディやバンパ等の車体91aとの界面対して、所定の大きさ以上の入射角を持つように斜めに入射するときには、図18の波形SWで示されるように、s偏波成分に相当する反射特性を備えた挙動となる。 However, when each of the element antennas 244a is arranged so that the patches 244p are connected in the vertical direction and arranged side by side in this way, the main polarization component radiated from each element antenna 244a is vertically polarized, so that the radar transmission wave is generated. , When the antenna is obliquely incident on the interface with the vehicle body 91a such as the body or bumper so as to have an incident angle of a predetermined size or more, it corresponds to the s polarization component as shown by the waveform SW in FIG. The behavior has reflection characteristics.
 すなわち、全体としてアレーアンテナを構成するレーダ装置201から送信されるレーダ送信波が、ボディまたはバンパからなる車体91aとの界面において所定の入射角よりも大きな入射角で斜めに入射すると、大きな反射が生じることになる。 That is, when the radar transmission wave transmitted from the radar device 201 constituting the array antenna as a whole is obliquely incident at the interface with the vehicle body 91a made of the body or bumper at an incident angle larger than a predetermined incident angle, a large reflection occurs. It will occur.
 このような大きな反射は、レーダ送信波のロスであり、また、レーダ装置201にとって好ましくない受信信号を増加させる可能性がある。 Such a large reflection is a loss of the radar transmission wave and may increase a received signal which is unfavorable for the radar device 201.
 そこで、車体91aにおけるレーダ送信波の送信範囲に係る範囲においては、従来の誘電体からなる部材とは、異なる特性を有する部材を配置する。 Therefore, in the range related to the transmission range of the radar transmission wave in the vehicle body 91a, a member having characteristics different from that of the conventional member made of a dielectric is arranged.
 具体的には、車体91aにおけるレーダ送信波の送信範囲に係る範囲において、比誘電率が1以外の部材221が配置されるようにする。このような構成により、s偏波成分に対してブリュースター角が構成される。 Specifically, the member 221 having a relative permittivity other than 1 is arranged in the range related to the transmission range of the radar transmission wave in the vehicle body 91a. With such a configuration, the Brewster angle is configured with respect to the s polarization component.
 一般に、p偏波成分に対しては、ブリュースター角が存在することが知られているが、同様の現象は、s偏波成分には存在しない。 Generally, it is known that the Brewster angle exists for the p-polarized component, but the same phenomenon does not exist for the s-polarized component.
 しかしながら、これは、自然界の通常の物質の比透磁率が1であることの帰結である。 However, this is a result of the relative permeability of ordinary substances in nature being 1.
 そこで、比透磁率が1でない部材221を、レーダ装置201の前段に構成することで、レーダ送信波の反射を抑制する。 Therefore, by configuring the member 221 whose relative magnetic permeability is not 1 in the front stage of the radar device 201, the reflection of the radar transmission wave is suppressed.
 すなわち、レーダ装置201R,201Lの面201fL,201fRを調整して設置した上で、移相器243とアレーアンテナ244とを用いて、レーダ送信波の送信範囲を調整することが可能となる。 That is, after adjusting and installing the surfaces 201fL and 201fR of the radar devices 201R and 201L, it is possible to adjust the transmission range of the radar transmission wave by using the phase shifter 243 and the array antenna 244.
 これにより、レーダ送信波が、車体91aにおける比透磁率が1でない部材221により形成された部位に対して、送信範囲の中央付近の入射角がブリュースター角を成して入射するように、かつ、所定の視野角よりも狭い視野角に送信範囲を調整することが可能となる。 As a result, the radar transmission wave is incident on the portion of the vehicle body 91a formed by the member 221 having a relative magnetic permeability of not 1, so that the incident angle near the center of the transmission range forms a Brewster angle. , It becomes possible to adjust the transmission range to a viewing angle narrower than a predetermined viewing angle.
 従って、車体91aの比透磁率が1でない部材221で形成された部位をレーダ送信波が透過する際、レーダ送信波の乱れやばらつきの発生を抑制すると共に、反射または屈折といった現象を抑制することが可能となる。 Therefore, when the radar transmission wave is transmitted through the portion formed by the member 221 whose relative magnetic permeability is not 1 of the vehicle body 91a, the disturbance and variation of the radar transmission wave are suppressed, and the phenomenon such as reflection or refraction is suppressed. Is possible.
 結果として、車両91の(車体91aの)前方に設定された送信範囲にレーダ送信波を高効率で送信することが可能となり、レーダ装置201の検出感度を向上させることが可能となる。 As a result, it is possible to transmit the radar transmission wave with high efficiency to the transmission range set in front of the vehicle 91 (vehicle body 91a), and it is possible to improve the detection sensitivity of the radar device 201.
 <比透磁率が1でない部材>
 比透磁率が1でない部材221は、例えば、図19で示されるように、分割リング共振器と呼ばれる、微小のリング状のパターンM1,M2が繰り返し形成された基板PN1乃至PN3およびPN11乃至PN13が3次元的に組み合わされて配置されたものである。図19においては、基板PN1乃至PN3およびPN11乃至PN13上に、リング状のパターンM2を取り囲むように形成されたリング状のパターンM1が水平方向、および垂直方向にほぼ等間隔で配置されている。
<Members whose relative permeability is not 1>
The member 221 having a relative magnetic permeability of not 1 includes, for example, as shown in FIG. 19, substrates PN1 to PN3 and PN11 to PN13 in which minute ring-shaped patterns M1 and M2 are repeatedly formed, which are called split ring resonators. It is arranged in a three-dimensional combination. In FIG. 19, ring-shaped patterns M1 formed so as to surround the ring-shaped pattern M2 are arranged on the substrates PN1 to PN3 and PN11 to PN13 at substantially equal intervals in the horizontal direction and the vertical direction.
 一般に、図19で示されるような、人工的に誘電率や透磁率を制御した材料は、メタマテリアル材料と称される。 Generally, a material whose dielectric constant and magnetic permeability are artificially controlled as shown in FIG. 19 is called a metamaterial material.
 メタマテリアル材料は、比誘電率と比透磁率の値が適切に調整されることにより、自然界では存在しない電気的特性を持つ材料である。 Metamaterial materials are materials with electrical properties that do not exist in nature by appropriately adjusting the values of relative permittivity and relative magnetic permeability.
 図19においては、基板PN1乃至PN3およびPN11乃至PN13が井形に組まれた構造とされている。 In FIG. 19, the substrates PN1 to PN3 and PN11 to PN13 are assembled in a well shape.
 また、図19におけるメタマテリアル材料からなる、比透磁率が1でない部材221に対する、レーダ送信波の入射方向は、図中の矢印で示される方向であり、基板PN1乃至PN3(または、PN11乃至PN13)に対して垂直方向となる。 Further, the incident direction of the radar transmission wave with respect to the member 221 made of the metamaterial material in FIG. 19 and having a relative magnetic permeability of not 1 is the direction indicated by the arrow in the drawing, and the substrates PN1 to PN3 (or PN11 to PN13). ) Is perpendicular to.
 図19で示されるメタマテリアル材料からなる比誘電率が1でない部材221における2重分割リングのパターンM1,M2を構成する外側のパターンM1からなる単位セルあたりの寸法は、概略、使用周波数帯の信号の波長より十分に小さいこと(略0.2λ(λは波長)程度より小さいこと)が求められ、例えば、0.14λ(λは波長)が使用される。 The dimensions per unit cell composed of the outer patterns M1 constituting the patterns M1 and M2 of the double split ring in the member 221 made of the metamaterial material shown in FIG. 19 and having a relative permittivity of not 1 are roughly the wavelengths used. It is required to be sufficiently smaller than the wavelength of the signal (approximately 0.2λ (λ is a wavelength)), and for example, 0.14λ (λ is a wavelength) is used.
 すなわち、使用周波数を77GHzとすると、その波長は、約4mmであることから、0.14λは、0.56mmに相当する。従って、使用周波数を77GHzとする場合、2重分割リングのパターンM1,M2の外周側のパターンM1の直径寸法は、約0.56mmとなる。 That is, assuming that the frequency used is 77 GHz, the wavelength is about 4 mm, so 0.14λ corresponds to 0.56 mm. Therefore, when the operating frequency is 77 GHz, the diameter dimension of the pattern M1 on the outer peripheral side of the patterns M1 and M2 of the double dividing ring is about 0.56 mm.
 これに対し、単位セルの繰り返し構造のサイズ(リング状のパターンM1およびM2のそれぞれの間隔)は、波長に対して十分に大きくとる必要があり、例えば、10乃至20波長分のサイズを確保する。この場合、単位セルの繰り返し構造のサイズは、数cm程度となる。 On the other hand, the size of the repeating structure of the unit cell (the distance between the ring-shaped patterns M1 and M2) needs to be sufficiently large with respect to the wavelength, and for example, the size of 10 to 20 wavelengths is secured. .. In this case, the size of the repeating structure of the unit cell is about several cm.
 例えば、図18で与えた比誘電率と比透磁率の値をちょうど入れ替える材料を、図19におけるメタマテリアル材料からなる、比透磁率が1でない部材221により実現したとすると、その特性は、図18における、s偏波成分の特性を示す波形SWとp偏波成分の特性を示す波形PWとを入れ替えたものとなる。 For example, suppose that a material for which the values of the relative permittivity and the relative magnetic permeability given in FIG. 18 are exactly exchanged is realized by a member 221 made of the metamaterial material in FIG. 19 and having a relative magnetic permeability of not 1, the characteristics thereof are shown in FIG. In No. 18, the waveform SW showing the characteristics of the s polarization component and the waveform PW showing the characteristics of the p polarization component are exchanged.
 従って、図18で与えた比誘電率と比透磁率の値をちょうど入れ替える材料の場合、s偏波成分の特性に対してブリュースター角が存在することになる。 Therefore, in the case of a material in which the values of the relative permittivity and the relative magnetic permeability given in FIG. 18 are exactly exchanged, there is a Brewster angle with respect to the characteristics of the s polarization component.
 理論的には、物質の比透磁率が1以外の値となったとき、ブリュースター角が生じることが分かっている。 Theoretically, it is known that Brewster's angle occurs when the relative permeability of a substance becomes a value other than 1.
 そこで、本開示においては、比透磁率が1でない部材221として、比透磁率が1以外のメタマテリアル材料を予め構成し、メタマテリアル材料からなる部材221をボディまたはバンパ部等の車体91aであって、レーダ送信波の送信範囲と重なる部位に利用する。このような構成とすることで、車体91aを透過するレーダ装置201より出力されるレーダ送信波に対して、反射量を小さくすると共に、透過量を大きくすることが可能となり、レーダ装置201の感度を高めることが可能となる。 Therefore, in the present disclosure, as the member 221 having a relative magnetic permeability of not 1, a metamaterial material having a relative magnetic permeability other than 1 is previously formed, and the member 221 made of the metamaterial material is a vehicle body 91a such as a body or a bumper portion. Therefore, it is used for the part that overlaps with the transmission range of the radar transmission wave. With such a configuration, it is possible to reduce the amount of reflection and increase the amount of transmission of the radar transmitted wave output from the radar device 201 passing through the vehicle body 91a, and the sensitivity of the radar device 201. Can be increased.
 尚、メタマテリアル材料の生成手法については、“Observation of Brewster’s effect for transverse-electric electromagnetic waves in metamaterials,” Physical Review B73, 193104(2006)(以下、参照文献とも称する)を参照されたい。また、図19で示されるメタマテリアル材料からなる比誘電率が1でない部材221における2重分割リングのパターンM1,M2を構成する外側のパターンM1からなる単位セルあたりの寸法例(0.14λ(λは波長))は、参照文献の記載に基づくものである。さらに、メタマテリアル材料は、図19で示されるような基板PN1乃至PN3およびPN11乃至PN13が井形に組まれた構造以外でもよく、例えば、樹脂のパターンにより固定されて、図19で示されるような2重分割リングの3次元構造として形成されるようにしてもよい。 For the method of generating metamaterial materials, refer to "Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials," Physical Review B73, 193104 (2006) (hereinafter, also referred to as a reference). Further, a dimensional example (0.14λ (λ)) per unit cell composed of the outer patterns M1 constituting the patterns M1 and M2 of the double dividing ring in the member 221 made of the metamaterial material whose relative permittivity is not 1 shown in FIG. Is a wavelength)) is based on the description in the references. Further, the metamaterial material may have a structure other than the structure in which the substrates PN1 to PN3 and PN11 to PN13 are assembled in a well shape as shown in FIG. 19, for example, fixed by a resin pattern and as shown in FIG. It may be formed as a three-dimensional structure of a double split ring.
 尚、本開示は、以下のような構成も取ることができる。 Note that this disclosure can also have the following structure.
<1> それぞれのレーダ送信波の送信方向が交差するように配置された垂直偏波型の2以上のレーダ送信波送信部を備え、
 前記レーダ送信波送信部に対して、前置された車体の一部が、比透磁率が1でない部材からなる
 移動体。
<2> 前記レーダ送信波送信部は、アレーアンテナと移相器とを有し、
 前記移相器は、前記アレーアンテナの位相変化量を調整して、前記アレーアンテナより送信されるレーダ送信波の送信範囲を調整する
 <1>に記載の移動体。
<3> 前記アレーアンテナは複数の要素アンテナより構成され、
 前記移相器は、前記複数の要素アンテナのそれぞれの位相変化量を調整して、前記アレーアンテナより送信されるレーダ送信波の送信範囲を調整する
 <2>に記載の移動体。
<4> 前記複数の要素アンテナのそれぞれは、銅箔パッチが垂直方向に直列接続された直列給電型パッチアンテナである
 <3>に記載の移動体。
<5> 前記アレーアンテナより送信されるレーダ送信波の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部が、前記比透磁率が1でない部材より構成される
 <2>に記載の移動体。
<6> 前記レーダ送信波の送信範囲は、前記移動体の移動方向に対して正面となる第1の方向と、前記移動体の移動方向に対して垂直方向における前記移動体の中心軸において、それぞれの前記レーダ送信波の送信範囲の中央が交差する第2の方向とに設定される
 <5>に記載の移動体。
<7> 前記アレーアンテナより送信されるレーダ送信波の、前記第2の方向の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部が、前記比透磁率が1でない部材より構成される
 <6>に記載の移動体。
<8> 前記アレーアンテナより送信されるレーダ送信波の、前記第2の方向の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部である、前記比透磁率が1でない部材は、前記レーダ送信波が、前記比透磁率が1でない部材に対する反射率が最小となる入射角で入射する位置に構成される
 <7>に記載の移動体。
<9> 前記アレーアンテナより送信されるレーダ送信波の、前記第2の方向の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部である、前記比透磁率が1でない部材は、前記レーダ送信波が、前記比透磁率が1でない部材に対してブリュースター角で入射する位置に構成される
 <8>に記載の移動体。
<10> 前記レーダ送信波送信部は、前記アレーアンテナに対して前記移相器による位相変化量が調整されないとき、前記レーダ送信波の送信範囲が前記第1の方向となるように設置され、前記アレーアンテナに対して前記移相器による位相変化量が調整されることにより、前記レーダ送信波の送信範囲が前記第2の方向とされる
 <6>に記載の移動体。
<11> 前記レーダ送信波送信部は、前記アレーアンテナに対して前記移相器による位相変化量が調整されないとき、前記レーダ送信波の送信範囲が前記第2の方向となるように設置され、前記アレーアンテナに対して前記移相器による位相変化量が調整されることにより、前記レーダ送信波の送信範囲が前記第1の方向とされる
 <6>に記載の移動体。
<12> 前記比透磁率が1でない部材は、メタマテリアル材料である
 <1>乃至<11>のいずれかに記載の移動体。
<13> 前記メタマテリアル材料は、分割リング共振器である
 <12>に記載の移動体。
<14> 前記分割リング共振器は、微小リング状のパターンが形成された基板を井形に組んだものである
 <13>に記載の移動体。
<15> 前記微小リング状のパターンの直径は、前記レーダ送信波の波長の略0.2倍より小さい
 <14>に記載の移動体。
<16> 前記微小リング状のパターンの配置間隔は、前記レーダ送信波の波長の略10乃至略20倍である
 <14>に記載の移動体。
<17> 前記分割リング共振器は、樹脂からなる微小リング状のパターンが3次元構造として形成されたものである
 <13>に記載の移動体。
<1> Provided with two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the respective radar transmission waves intersect.
A moving body in which a part of the vehicle body placed in front of the radar transmitting wave transmitting unit is a member having a relative magnetic permeability of not 1.
<2> The radar transmission wave transmitter has an array antenna and a phase shifter.
The mobile body according to <1>, wherein the phase shifter adjusts the amount of phase change of the array antenna to adjust the transmission range of the radar transmission wave transmitted from the array antenna.
<3> The array antenna is composed of a plurality of element antennas.
The mobile body according to <2>, wherein the phase shifter adjusts the phase change amount of each of the plurality of element antennas to adjust the transmission range of the radar transmission wave transmitted from the array antenna.
<4> The mobile body according to <3>, wherein each of the plurality of element antennas is a series-fed patch antenna in which copper foil patches are vertically connected in series.
<5> A part of the vehicle body in front of the array antenna, which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna, is composed of a member having a relative magnetic permeability of not 1. <2> The moving body described in.
<6> The transmission range of the radar transmission wave is in the first direction which is front of the moving direction of the moving body and in the central axis of the moving body in the direction perpendicular to the moving direction of the moving body. The moving body according to <5>, which is set in a second direction in which the centers of the transmission ranges of the radar transmission waves intersect.
<7> A part of the vehicle body in front of the array antenna, which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna in the second direction, is a member whose relative magnetic permeability is not 1. The moving body according to <6>.
<8> The specific reflectance of the radar transmission wave transmitted from the array antenna, which is a part of the vehicle body in front of the array antenna and overlaps with the transmission range in the second direction, is not 1. The moving body according to <7>, wherein the member is configured at a position where the radar transmission wave is incident at an incident angle that minimizes the reflectance to the member whose specific magnetic permeability is not 1.
<9> The relative magnetic permeability of the radar transmission wave transmitted from the array antenna, which is a part of the vehicle body placed in front of the array antenna and overlaps with the transmission range in the second direction, is not 1. The moving body according to <8>, wherein the member is configured at a position where the radar transmission wave is incident at a Brewster angle with respect to the member whose relative magnetic permeability is not 1.
<10> The radar transmission wave transmission unit is installed so that the transmission range of the radar transmission wave is in the first direction when the phase change amount by the phase shifter is not adjusted with respect to the array antenna. The moving body according to <6>, wherein the transmission range of the radar transmission wave is set to the second direction by adjusting the amount of phase change by the phase shifter with respect to the array antenna.
<11> The radar transmission wave transmission unit is installed so that the transmission range of the radar transmission wave is in the second direction when the phase change amount by the phase shifter is not adjusted with respect to the array antenna. The moving body according to <6>, wherein the transmission range of the radar transmission wave is set to the first direction by adjusting the amount of phase change by the phase shifter with respect to the array antenna.
<12> The moving body according to any one of <1> to <11>, which is a metamaterial material, is the member whose relative magnetic permeability is not 1.
<13> The moving body according to <12>, wherein the metamaterial material is a split ring resonator.
<14> The moving body according to <13>, wherein the split ring resonator is a board in which a substrate having a minute ring-shaped pattern is formed is assembled in a well shape.
<15> The moving body according to <14>, wherein the diameter of the minute ring-shaped pattern is smaller than approximately 0.2 times the wavelength of the radar transmission wave.
<16> The moving body according to <14>, wherein the arrangement interval of the minute ring-shaped pattern is approximately 10 to approximately 20 times the wavelength of the radar transmission wave.
<17> The moving body according to <13>, wherein the split ring resonator is a micro ring-shaped pattern made of resin formed as a three-dimensional structure.
 91 移動体(車両), 91a 車体, 201,201L,201R,201L’,201R’ レーダ装置, 201fL,201fR アレーアンテナにより形成される面, 244,244-1乃至244-n アレーアンテナ, 244a パッチ 91 mobile body (vehicle), 91a car body, 201, 201L, 201R, 201L', 201R'radar device, surface formed by 201fL, 201fR array antenna, 244, 244-1 to 244-n array antenna, 244a patch

Claims (17)

  1.  それぞれのレーダ送信波の送信方向が交差するように配置された垂直偏波型の2以上のレーダ送信波送信部を備え、
     前記レーダ送信波送信部に対して、前置された車体の一部が、比透磁率が1でない部材からなる
     移動体。
    It is equipped with two or more vertically polarized radar transmission wave transmitters arranged so that the transmission directions of the respective radar transmission waves intersect.
    A moving body in which a part of the vehicle body placed in front of the radar transmitting wave transmitting unit is a member having a relative magnetic permeability of not 1.
  2.  前記レーダ送信波送信部は、アレーアンテナと移相器とを有し、
     前記移相器は、前記アレーアンテナの位相変化量を調整して、前記アレーアンテナより送信されるレーダ送信波の送信範囲を調整する
     請求項1に記載の移動体。
    The radar transmission wave transmitter has an array antenna and a phase shifter.
    The mobile body according to claim 1, wherein the phase shifter adjusts the amount of phase change of the array antenna to adjust the transmission range of the radar transmission wave transmitted from the array antenna.
  3.  前記アレーアンテナは複数の要素アンテナより構成され、
     前記移相器は、前記複数の要素アンテナのそれぞれの位相変化量を調整して、前記アレーアンテナより送信されるレーダ送信波の送信範囲を調整する
     請求項2に記載の移動体。
    The array antenna is composed of a plurality of element antennas.
    The mobile body according to claim 2, wherein the phase shifter adjusts the phase change amount of each of the plurality of element antennas to adjust the transmission range of the radar transmission wave transmitted from the array antenna.
  4.  前記複数の要素アンテナのそれぞれは、銅箔パッチが垂直方向に直列接続された直列給電型パッチアンテナである
     請求項3に記載の移動体。
    The mobile body according to claim 3, wherein each of the plurality of element antennas is a series-fed patch antenna in which copper foil patches are vertically connected in series.
  5.  前記アレーアンテナより送信されるレーダ送信波の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部が、前記比透磁率が1でない部材より構成される
     請求項2に記載の移動体。
    The second aspect of claim 2, wherein a part of the vehicle body placed in front of the array antenna, which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna, is composed of a member having a relative magnetic permeability of not 1. Mobile body.
  6.  前記レーダ送信波の送信範囲は、前記移動体の移動方向に対して正面となる第1の方向と、前記移動体の移動方向に対して垂直方向における前記移動体の中心軸において、それぞれの前記レーダ送信波の送信範囲の中央が交差する第2の方向とに設定される
     請求項5に記載の移動体。
    The transmission range of the radar transmission wave is the first direction that is front of the moving direction of the moving body and the central axis of the moving body that is perpendicular to the moving direction of the moving body. The mobile body according to claim 5, which is set in a second direction in which the center of the transmission range of the radar transmission wave intersects.
  7.  前記アレーアンテナより送信されるレーダ送信波の、前記第2の方向の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部が、前記比透磁率が1でない部材より構成される
     請求項6に記載の移動体。
    A part of the vehicle body placed in front of the array antenna, which overlaps the transmission range of the radar transmission wave transmitted from the array antenna in the second direction, is composed of a member having a relative magnetic permeability of not 1. The moving body according to claim 6.
  8.  前記アレーアンテナより送信されるレーダ送信波の、前記第2の方向の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部である、前記比透磁率が1でない部材は、前記レーダ送信波が、前記比透磁率が1でない部材に対する反射率が最小となる入射角で入射する位置に構成される
     請求項7に記載の移動体。
    The member whose specific reflectance is not 1 and which is a part of the vehicle body placed in front of the array antenna, which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna in the second direction, is The moving body according to claim 7, wherein the radar transmission wave is configured at a position where the radar transmission wave is incident at an incident angle that minimizes the reflectance to the member whose specific magnetic permeability is not 1.
  9.  前記アレーアンテナより送信されるレーダ送信波の、前記第2の方向の送信範囲と重なる、前記アレーアンテナに対して前置された車体の一部である、前記比透磁率が1でない部材は、前記レーダ送信波が、前記比透磁率が1でない部材に対してブリュースター角で入射する位置に構成される
     請求項8に記載の移動体。
    The member having a relative magnetic permeability of not 1 which is a part of the vehicle body placed in front of the array antenna and which overlaps with the transmission range of the radar transmission wave transmitted from the array antenna in the second direction is The moving body according to claim 8, wherein the radar transmission wave is configured at a position where the radar transmission wave is incident at a Brewster angle with respect to the member whose relative magnetic permeability is not 1.
  10.  前記レーダ送信波送信部は、前記アレーアンテナに対して前記移相器による位相変化量が調整されないとき、前記レーダ送信波の送信範囲が前記第1の方向となるように設置され、前記アレーアンテナに対して前記移相器による位相変化量が調整されることにより、前記レーダ送信波の送信範囲が前記第2の方向とされる
     請求項6に記載の移動体。
    The radar transmission wave transmission unit is installed so that the transmission range of the radar transmission wave is in the first direction when the amount of phase change by the phase shifter is not adjusted with respect to the array antenna. The moving body according to claim 6, wherein the transmission range of the radar transmission wave is set to the second direction by adjusting the amount of phase change by the phase shifter.
  11.  前記レーダ送信波送信部は、前記アレーアンテナに対して前記移相器による位相変化量が調整されないとき、前記レーダ送信波の送信範囲が前記第2の方向となるように設置され、前記アレーアンテナに対して前記移相器による位相変化量が調整されることにより、前記レーダ送信波の送信範囲が前記第1の方向とされる
     請求項6に記載の移動体。
    The radar transmission wave transmitter is installed so that the transmission range of the radar transmission wave is in the second direction when the amount of phase change by the phase shifter is not adjusted with respect to the array antenna. The moving body according to claim 6, wherein the transmission range of the radar transmission wave is set to the first direction by adjusting the amount of phase change by the phase shifter.
  12.  前記比透磁率が1でない部材は、メタマテリアル材料である
     請求項1に記載の移動体。
    The moving body according to claim 1, wherein the member having a relative magnetic permeability of not 1 is a metamaterial material.
  13.  前記メタマテリアル材料は、分割リング共振器である
     請求項12に記載の移動体。
    The moving body according to claim 12, wherein the metamaterial material is a split ring resonator.
  14.  前記分割リング共振器は、微小リング状のパターンが形成された基板を井形に組んだものである
     請求項13に記載の移動体。
    The moving body according to claim 13, wherein the split ring resonator is formed by assembling a substrate on which a minute ring-shaped pattern is formed into a well shape.
  15.  前記微小リング状のパターンの直径は、前記レーダ送信波の波長の略0.2倍より小さい
     請求項14に記載の移動体。
    The mobile body according to claim 14, wherein the diameter of the minute ring-shaped pattern is smaller than approximately 0.2 times the wavelength of the radar transmission wave.
  16.  前記微小リング状のパターンの配置間隔は、前記レーダ送信波の波長の略10乃至略20倍である
     請求項14に記載の移動体。
    The mobile body according to claim 14, wherein the arrangement interval of the minute ring-shaped pattern is approximately 10 to approximately 20 times the wavelength of the radar transmission wave.
  17.  前記分割リング共振器は、樹脂からなる微小リング状のパターンが3次元構造として形成されたものである
     請求項13に記載の移動体。
    The moving body according to claim 13, wherein the split ring resonator is a micro ring-shaped pattern made of resin formed as a three-dimensional structure.
PCT/JP2020/018544 2019-05-16 2020-05-07 Mobile body WO2020230694A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092645 2019-05-16
JP2019-092645 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230694A1 true WO2020230694A1 (en) 2020-11-19

Family

ID=73289406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018544 WO2020230694A1 (en) 2019-05-16 2020-05-07 Mobile body

Country Status (1)

Country Link
WO (1) WO2020230694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079881A1 (en) * 2021-11-05 2023-05-11 ソニーグループ株式会社 Information processing device, information processing method, and program

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059120A (en) * 1996-06-11 1998-03-03 Toyota Motor Corp Obstruction detecting device and occupant protective device using device thereof
WO1998010484A1 (en) * 1996-09-03 1998-03-12 Hino Jidosha Kogyo Kabushiki Kaisha On-vehicle radar antenna
JP2005260965A (en) * 2004-03-10 2005-09-22 Lucent Technol Inc Media with controllable refractive properties
JP2006350232A (en) * 2005-06-20 2006-12-28 Institute Of Physical & Chemical Research Optical material, optical element using the same, and method for manufacturing the element
JP2007248167A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Radio wave transparent component
JP2010018244A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Object detection device
JP2011064724A (en) * 2009-09-15 2011-03-31 Canon Inc Method of manufacturing optical element and optical element
US20110199281A1 (en) * 2010-02-18 2011-08-18 Morton Matthew A Metamaterial radome/isolator
WO2012008551A1 (en) * 2010-07-15 2012-01-19 旭硝子株式会社 Process for producing metamaterial, and metamaterial
CN103022686A (en) * 2011-09-22 2013-04-03 深圳光启高等理工研究院 Antenna housing
WO2016136927A1 (en) * 2015-02-27 2016-09-01 古河電気工業株式会社 Antenna apparatus
WO2017204059A1 (en) * 2016-05-23 2017-11-30 株式会社デンソー Radar device
WO2018193963A1 (en) * 2017-04-18 2018-10-25 株式会社Soken Radar device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059120A (en) * 1996-06-11 1998-03-03 Toyota Motor Corp Obstruction detecting device and occupant protective device using device thereof
WO1998010484A1 (en) * 1996-09-03 1998-03-12 Hino Jidosha Kogyo Kabushiki Kaisha On-vehicle radar antenna
JP2005260965A (en) * 2004-03-10 2005-09-22 Lucent Technol Inc Media with controllable refractive properties
JP2006350232A (en) * 2005-06-20 2006-12-28 Institute Of Physical & Chemical Research Optical material, optical element using the same, and method for manufacturing the element
JP2007248167A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Radio wave transparent component
JP2010018244A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Object detection device
JP2011064724A (en) * 2009-09-15 2011-03-31 Canon Inc Method of manufacturing optical element and optical element
US20110199281A1 (en) * 2010-02-18 2011-08-18 Morton Matthew A Metamaterial radome/isolator
WO2012008551A1 (en) * 2010-07-15 2012-01-19 旭硝子株式会社 Process for producing metamaterial, and metamaterial
CN103022686A (en) * 2011-09-22 2013-04-03 深圳光启高等理工研究院 Antenna housing
WO2016136927A1 (en) * 2015-02-27 2016-09-01 古河電気工業株式会社 Antenna apparatus
WO2017204059A1 (en) * 2016-05-23 2017-11-30 株式会社デンソー Radar device
WO2018193963A1 (en) * 2017-04-18 2018-10-25 株式会社Soken Radar device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J B PENDRY , A J HOLDEN , D J ROBBINS , W J STEWARD: "Magnetism from Conductors and Enhanced Nonlinear Phenomena", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 47, no. 11, 1 November 1999 (1999-11-01), pages 2075 - 2084, XP000865104, ISSN: 0018-9480, DOI: 10.1109/22.798002 *
TAKUO TANAKA, ATSUSHI ISHIKAWA, SATOSHI KAWATA: "Unattenuated light transmission through the interface between two materials with different indices of refraction using magnetic metamaterials", PHYSICAL REVIEW B, vol. 73, no. 12, 1 March 2006 (2006-03-01), pages 1 - 6, XP055760321, ISSN: 1098-0121, DOI: 10.1103/PhysRevB.73.125423 *
TAMAYAMA Y; NAKANISHI T; SUGIYAMA K; KITANO M: "Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: Experiment and theory", PHYSICAL REVIEW B, vol. 73, no. 19, 17 May 2006 (2006-05-17), pages 1 - 4, XP080213857, DOI: 10.1103/PhysRevB.73.193104 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079881A1 (en) * 2021-11-05 2023-05-11 ソニーグループ株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
US10952243B2 (en) Method, system and device for network communications within a vehicle
US10608941B2 (en) Dual-network for fault tolerance
US10946868B2 (en) Methods and devices for autonomous vehicle operation
US11892560B2 (en) High precision multi-sensor extrinsic calibration via production line and mobile station
US11374318B2 (en) Butler matrix circuit, phased array antenna, front-end module, and wireless communication terminal
US11340354B2 (en) Methods to improve location/localization accuracy in autonomous machines with GNSS, LIDAR, RADAR, camera, and visual sensors
US20170117628A1 (en) Vehicle phased array antenna pattern generation
WO2020203657A1 (en) Information processing device, information processing method, and information processing program
EP3835823B1 (en) Information processing device, information processing method, computer program, information processing system, and moving body device
US20220390557A9 (en) Calibration apparatus, calibration method, program, and calibration system and calibration target
US20210213930A1 (en) Lane prediction and smoothing for extended motion planning horizon
CN115520198A (en) Image processing method and system and vehicle
WO2020230694A1 (en) Mobile body
CN116359943A (en) Time-of-flight camera using passive image sensor and existing light source
WO2021085048A1 (en) Information processing device, information processing system, and information processing method
WO2021106558A1 (en) Radar device, radar device manufacturing method, and transceiver
WO2024048671A1 (en) Radar device and vehicle-mounted sensing system
WO2023013405A1 (en) Antenna device, radar device and vehicle control system
US20230238708A1 (en) Antenna device
WO2022249533A1 (en) Information processing device, calibration system, and information processing method
WO2024009836A1 (en) Ranging device
WO2023162734A1 (en) Distance measurement device
WO2021039172A1 (en) Mobile body-mounted radar antenna, module for mobile body-mounted radar antenna, and mobile body-mounted radar antenna system
US20230161026A1 (en) Circuitry and method
US20240012108A1 (en) Information processing apparatus, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP