WO2022249533A1 - Information processing device, calibration system, and information processing method - Google Patents

Information processing device, calibration system, and information processing method Download PDF

Info

Publication number
WO2022249533A1
WO2022249533A1 PCT/JP2022/000829 JP2022000829W WO2022249533A1 WO 2022249533 A1 WO2022249533 A1 WO 2022249533A1 JP 2022000829 W JP2022000829 W JP 2022000829W WO 2022249533 A1 WO2022249533 A1 WO 2022249533A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
rangefinder
calibration
wave
phase change
Prior art date
Application number
PCT/JP2022/000829
Other languages
French (fr)
Japanese (ja)
Inventor
利裕 松元
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022249533A1 publication Critical patent/WO2022249533A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • the present technology relates to an information processing device, a calibration system, and an information processing method that perform calibration processing for a plurality of distance measuring devices mounted on a housing.
  • Patent Document 1 describes a calibration device that performs calibration of each sensor based on map data as prior information. Further, Patent Literature 2 describes a calibration system for calibrating each sensor based on the interval between point targets.
  • the purpose of the present technology is to provide an information processing device, a calibration system, and an information processing method that can perform calibration with high accuracy without requiring prior information.
  • an information processing apparatus includes a first distance information calculation unit, a first phase change calculation unit, a second distance information calculation unit, and a second phase change calculation unit. and a calibration processing unit.
  • the first distance information calculation unit is provided in the first distance measuring device and is received by the first reception unit installed in the housing, based on the first received wave reflected by the object, the first to calculate first distance information including the phase information of .
  • the first phase change calculator calculates a phase change of the first phase information that occurs in accordance with movement of one of the object and the housing.
  • the second distance information calculation unit is provided in the second distance measuring device and is based on the second received wave reflected by the object, which is received by the second reception unit installed in the housing.
  • the second phase change calculator calculates a phase change of the second phase information that occurs in accordance with movement of the one of the object and the housing.
  • the calibration processing unit performs calibration processing of the first rangefinder and the second rangefinder according to the phase change of the first phase information and the phase change of the second phase information. do.
  • the calibration processing unit specifies a relative position of the first receiving unit with respect to the object and a relative position of the second receiving unit with respect to the object, and a relative position of the first receiving unit with respect to the object.
  • the calibration process may be performed based on the position and the relative position of the second receiver with respect to the object.
  • the calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object.
  • the relative positions of the distance measuring devices may be specified, and the calibration process may be performed based on the relative positions of the first distance measuring device and the second distance measuring device.
  • the calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object.
  • a relative angle of the rangefinder may be specified, and the calibration process may be performed based on the relative angle of the first rangefinder and the second rangefinder.
  • the first phase change calculation unit calculates a phase change of the first phase information that occurs in accordance with movement of the housing
  • the second phase change calculator may calculate a phase change of the second phase information that occurs in accordance with movement of the housing.
  • the calibration processing unit specifies a relative position of the first receiving unit with respect to the object by executing synthetic aperture processing on the first received wave, and synthesizes with the second received wave.
  • An aperture process may be performed to identify the relative position of the second receiver with respect to the object.
  • the first phase change calculation unit calculates a phase change of the first phase information that occurs in response to movement of the object
  • the second phase change calculator may calculate a phase change of the second phase information that occurs according to movement of the object.
  • the calibration processing unit specifies a relative position of the first receiving unit with respect to the object by performing inverse synthetic aperture processing on the first received wave, and performs An inverse synthetic aperture process may be performed to identify the relative position of the second receiver with respect to the object.
  • the first received wave is a wave reflected by the object from the first transmitted wave
  • the second received wave is a wave reflected by the object from the second transmitted wave
  • the first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave
  • the second distance information calculation section may calculate the second distance information based on the second transmission wave and the second reception wave.
  • a calibration system includes a first rangefinder, a second rangefinder, and a calibration processing device.
  • the first distance measuring device includes a first receiving unit installed in a housing for receiving a first received wave reflected by an object, and first phase information based on the first received wave. and calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing and a first phase change calculator.
  • the second distance measuring device includes a second receiving unit installed in the housing for receiving a second received wave reflected by the object, and a second receiving unit based on the second received wave.
  • a second distance information calculator that calculates second distance information including phase information; and a phase change in the second phase information that occurs in response to movement of the one of the object and the housing.
  • a second phase change calculator that calculates The calibration processing device executes calibration processing of the first distance measuring device and the second distance measuring device according to the phase change of the first phase information and the phase change of the second phase information. do.
  • the first distance measuring device further comprises a first transmission unit installed in the housing for transmitting a first transmission wave to the object, The first receiving unit receives the first received wave, which is a wave in which the first transmitted wave is reflected by the object, The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
  • the second distance measuring device further comprises a second transmission unit installed in the housing for transmitting a second transmission wave to the object, The second receiving unit receives the second received wave, the second transmitted wave being a wave reflected by the object, The second distance information calculation section may calculate the second distance information based on the second transmission wave and the second reception wave.
  • the calibration system further includes an imaging device that generates a captured image of the object,
  • the calibration processing device performs the first distance measuring device, the second distance measuring device, and the A calibration process of the imaging device may be executed.
  • the first received wave and the second received wave are millimeter waves
  • An antenna may be sufficient as a said 1st receiving part and a said 2nd receiving part.
  • the above housing may be an automobile.
  • the calibration system is First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing to calculate calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
  • a second rangefinder includes second phase information based on a second received wave reflected by the object and received by a second receiver installed in the housing. Calculate the distance information, calculating a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
  • Calibration processing of the first distance measuring device and the second distance measuring device is executed according to the phase change of the first phase information and the phase change of the second phase information.
  • FIG. 1 is a block diagram of a calibration system according to a first embodiment of the present technology
  • FIG. 1 is a schematic diagram of an automobile equipped with the calibration system
  • FIG. It is a graph of the 1st transmission wave and the 1st reception wave of the 1st ranging device with which the above-mentioned calibration system is provided. It is a graph which shows the difference of a said 1st transmission wave and a said 1st reception wave.
  • FIG. 4 is a schematic diagram showing an axis to be calibrated by the calibration system; It is a schematic diagram which shows the calibration process by the said calibration system.
  • FIG. 10 is a schematic diagram showing a processing result of synthetic aperture processing for the first received wave by the calibration processing section included in the calibration system;
  • 10 is a schematic diagram showing a processing result of synthetic aperture processing for a second received wave by a calibration processing unit included in the calibration system; It is a schematic diagram which shows the specific method of the relative position of a 1st ranging device and a 2nd ranging device by the said calibration process part. It is a schematic diagram which shows the specific method of the relative angle of a 1st ranging device and a 2nd ranging device by the said calibration process part.
  • 4 is a flow chart of calibration processing by the calibration system; It is a schematic diagram which shows the calibration process of the 1st ranging device, the 2nd ranging device, and another sensor by the said calibration system. It is a block diagram of a calibration system according to a second embodiment of the present technology.
  • FIG. 1 is a schematic diagram of an automobile equipped with the calibration system;
  • FIG. It is a schematic diagram which shows the calibration process by the said calibration system.
  • It is a schematic diagram which shows the movement of the target object in the said calibration system.
  • FIG. 4 is a schematic diagram showing the position of the target object, the phase change of the first received wave, and the phase change of the second received wave in the calibration system;
  • It is a schematic diagram which shows the processing result of the inverse synthetic aperture process with respect to the 1st received wave and the 2nd received wave by the calibration process part with which the said calibration system is provided.
  • 4 is a flow chart of calibration processing by the calibration system;
  • It is a schematic diagram which shows the calibration process of the 1st ranging device, the 2nd ranging device, and another sensor by the said calibration system.
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an
  • FIG. 1 is a block diagram showing the configuration of a calibration system 100 according to this embodiment.
  • the calibration system 100 comprises a first distance measuring device 110, a second distance measuring device 120 and a calibration processing device .
  • the calibration system 100 is mounted on a housing.
  • the housing may be any movable one, such as an automobile. In the following description, it is assumed that the housing is an automobile.
  • FIG. 2 is a schematic diagram showing the calibration system 100 mounted on the automobile 150. As shown in FIG. FIG. 2 also shows an object P located near the automobile 150 and being an object to be measured by the first rangefinder 110 and the second rangefinder 120 .
  • Object P is preferably an object having a reflection area that can be approximated as a point target (point-like object).
  • the first rangefinder 110 includes a first transmitter 111, a first receiver 112, a first distance information calculator 113, and a first phase change calculator 114. to measure.
  • the first transmission unit 111 is installed in the automobile 150 and transmits transmission waves.
  • the transmission wave transmitted from the first transmitter 111 is referred to as a first transmission wave T1.
  • the first transmission unit 111 transmits the first transmission wave T1 and supplies the signal of the first transmission wave T1 to the first distance information calculation unit 113 .
  • the first receiving unit 112 is installed in the automobile 150 and receives a received wave that is the first transmission wave T1 reflected by the target object P.
  • the first transmission wave T1 is reflected by the object P and the reception wave received by the first receiver 112 is referred to as the first reception wave R1.
  • the first receiver 112 supplies the signal of the first received wave R1 to the first distance information calculator 113 .
  • the first rangefinder 110 may include a plurality of first receivers 112 .
  • the first distance information calculator 113 calculates first distance information including first phase information based on the first received wave R1.
  • the first distance information including the first phase information will be described later.
  • the first distance information calculator 113 may calculate the first distance information including the first phase information based on the first received wave R1 and the first transmitted wave T1.
  • the first distance information calculator 113 supplies first distance information including the calculated first phase information to the first phase change calculator 114 .
  • the first phase change calculator 114 calculates the phase change of the first phase information that occurs as the automobile 150 moves. A phase change of the first phase information will be described later.
  • the first phase change calculator 114 supplies the calculated phase change of the first phase information to the calibration processing device 130 .
  • the first rangefinder 110 has such a configuration.
  • the first rangefinder 110 can be a millimeter wave radar, the first transmission wave T1 and the first reception wave R1 can be millimeter waves, and the first transmission unit 111 and the first reception unit 112 can be millimeter waveband antennas.
  • the first rangefinder 110 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the first rangefinder 110 described above.
  • the first rangefinder 110 may be a rangefinder using ultrasonic waves or a LIDAR (Light Detection and Ranging).
  • the second rangefinder 120 includes a second transmitter 121, a second receiver 122, a second distance information calculator 123, and a second phase change calculator 124. to measure.
  • the second transmission unit 121 is installed in the automobile 150 and transmits transmission waves.
  • the transmission wave transmitted from the second transmitter 121 is referred to as a second transmission wave T2.
  • the second transmission unit 121 supplies the signal of the second transmission wave T1 to the second distance information calculation unit 123 together with the transmission of the second transmission wave T2.
  • the second receiving unit 122 is installed in the automobile 150 and receives the received wave that is the second transmitted wave T2 reflected by the target object P.
  • the second transmitted wave T2 is reflected by the object P and the received wave received by the second receiver 122 is referred to as a second received wave R2.
  • the second receiver 122 supplies the signal of the second received wave R2 to the second distance information calculator 123 .
  • the second range finder 120 may have a plurality of second receivers 122 .
  • the second distance information calculator 123 calculates second distance information including second phase information based on the second received wave R2.
  • the second distance information including the second phase information will be described later.
  • the second distance information calculator 123 may calculate the second distance information including the second phase information based on the second received wave R2 and the second transmitted wave T2.
  • the second distance information calculator 123 supplies the second distance information including the calculated second phase information to the second phase change calculator 124 .
  • the second phase change calculator 124 calculates the phase change of the second phase information that occurs as the automobile 150 moves. A phase change of the second phase information will be described later.
  • the second phase change calculator 124 supplies the calculated phase change of the second phase information to the calibration processing device 130 .
  • the second rangefinder 120 has such a configuration.
  • the second rangefinder 120 can be a millimeter wave radar, the second transmission wave T2 and the second reception wave R2 can be millimeter waves, and the second transmission unit 121 and the second reception unit 122 can be millimeter wave band antennas.
  • the second rangefinder 120 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the second rangefinder 120 described above.
  • the second range finder 120 may be a range finder using ultrasonic waves or a LIDAR.
  • the calibration processing device 130 includes a calibration processing section 131 .
  • the calibration processing unit 131 performs calibration processing between the first rangefinder 110 and the second rangefinder 120 according to the phase change of the first phase information and the phase change of the second phase information. Specifically, the calibration processing unit 131 identifies the relative position of the first receiving unit 112 with respect to the object P and the relative position of the second receiving unit 122 with respect to the object P. FIG. Furthermore, the calibration processing unit 131 uses these relative positions to identify the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 . The calibration processing unit 131 can perform calibration processing of the first rangefinder 110 and the second rangefinder 120 using the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 . .
  • the calibration system 100 has the configuration as described above. Note that, of the configuration of the calibration system 100, the configuration excluding the first transmission unit 111, the first reception unit 112, the second transmission unit 121, and the second reception unit 122 is a functional unit that can be realized by an information processing device. Configuration.
  • This information processing device 161 is shown in FIG. As shown in the figure, the information processing device 161 includes a first distance information calculator 113, a first phase change calculator 114, a second distance information calculator 123, a second phase change calculator 124, and a calibration processor 131. Prepare.
  • FIG. 3 is a graph showing the relationship between the time and frequency of the first transmission wave T1 and the first reception wave R1.
  • the first transmission wave T1 is a wave whose frequency varies with time, and is a wave called a frequency modulated continuous wave (FMCW).
  • the first received wave R1 is a wave in which the first transmitted wave T1 is reflected by the object P, so as shown in FIG. 3, it is delayed from the first transmitted wave T1 by a certain time t.
  • the first distance information calculation unit 113 acquires the first transmission wave T1 from the first transmission unit 111 and acquires the first reception wave R1 from the first reception unit 112. Then, the first transmission wave T1 and the first reception wave R1 are obtained.
  • Calculate the difference between FIG. 4 is a graph showing the difference between the first transmission wave T1 and the first reception wave R1.
  • a difference between the first transmission wave T1 and the first reception wave R1 is called an intermediate frequency (IF) signal, which is a sinusoidal wave having a constant frequency. Since this frequency (hereinafter referred to as IF frequency) corresponds to the distance between the first rangefinder 110 and the object P, the distance between the first rangefinder 110 and the object P can be calculated from the IF frequency.
  • this IF frequency will be referred to as "first phase information”
  • the distance between the first distance measuring device 110 and the object P calculated from the IF frequency will be referred to as "first distance information”.
  • the second distance information calculator 123 calculates the difference (IF signal), and the distance between the second rangefinder 120 and the object P is calculated from the IF frequency.
  • this IF frequency will be referred to as “second phase information”
  • second distance information the distance between the second distance measuring device 120 and the object P calculated from the IF frequency
  • the calibration system 100 can identify the angle of the object P with respect to each of the first rangefinder 110 and the second rangefinder 120 based on the first distance information and the second distance information. Thereby, the position of the object P with respect to the first rangefinder 110 and the second rangefinder 120 is detected, that is, the position of the object P with respect to the vehicle 150 is detected.
  • position detection of the object P is executed as described above. Based on the measurement principle described above, in order to accurately detect the position of the object P, the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 must be specified accurately. Identification and calibration of the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 will be described below.
  • the first distance information calculation unit 113 calculates the first distance information including the first phase information based on the first transmission wave T1 and the first reception wave R1. It is also possible to calculate the first distance information including the first phase information based only on the first received wave R1, if the information can be obtained by transmitting the signal. Similarly, the second distance information calculator 123 can also calculate the second distance information including the second phase information based only on the second received wave R2.
  • the calibration system 100 can perform calibration processing on the first rangefinder 110 and the second rangefinder 120 with respect to six axes.
  • FIG. 5 is a schematic diagram showing these six axes, relative positions (X-axis/Y-axis/Z-axis) and relative angles (pitch/yaw/roll) of the first rangefinder 110 and the second rangefinder 120. indicates
  • FIG. 6 is a schematic diagram showing movement of the automobile 150, and the movement of the automobile 150 is indicated by an arrow M. As shown in FIG. The movement of the automobile 150 is assumed to be uniform linear motion.
  • the moving direction of the automobile 150 is defined as the Y-axis direction
  • the direction orthogonal to the Y-axis direction is defined as the X-axis direction.
  • the X-axis direction and the Y-axis direction are parallel to the mounting surface of the automobile 150, and the direction perpendicular to the mounting surface is the Z-axis direction.
  • the first transmission unit 111 transmits the first transmission wave T1 to the object P while the automobile 150 is moving, and the first reception unit 112 receives the first reception wave R1. Also, the second transmitter 121 transmits the second transmitted wave T2 to the object P, and the second receiver 122 receives the second received wave R2.
  • FIG. 7 is a schematic diagram showing the positional relationship between the first transmitter 111, the first receiver 112, the second transmitter 121, the second receiver 122, and the target object P. As shown in FIG.
  • the positions of the first transmitter 111 and the first receiver 112 are shown as position S1 (S1 1 , S1 2 , S1 3 . . . ), and the positions of the second transmitter 121 and the second receiver 122 are shown as position S2. (S2 1 , S2 2 , S2 3 . . . ).
  • the positions of the first transmitter 111 and the first receiver 112 when the automobile 150 starts to move are assumed to be the positions S1-1
  • the positions of the second transmitter 121 and the second receiver 122 when the automobile 150 starts to move are assumed to be the positions S2-1 .
  • the first transmitter 111 and the first receiver 112 move to positions S12 due to the movement of the automobile 150, and the second transmitter 121 and the second receiver 122 move to the positions S2. Move to 2 . Thereafter, similarly , the first transmitter 111 and the first receiver 112 move to positions S1 3 , S1 4 , S1 5 . . . 5 ... and move.
  • the first transmitter 111 transmits the first transmission wave T1 at each position of the position S1
  • the second transmitter 121 transmits the second transmission wave T1 at each position of the position S2.
  • the distance between the positions S1 and the distance between the positions S2 are preferably 1/4 or less of the wavelengths of the first transmission wave T1 and the second transmission wave T2. By setting this distance, a virtual image is not generated in the first received wave R1 and the second received wave R2, and the relative positions of the first rangefinder 110 and the second rangefinder 120 with respect to the object P are uniquely determined. is. However, depending on the wavelengths of the first transmission wave T1 and the second transmission wave T2 and the moving speed of the automobile 150, it may be difficult to satisfy the above conditions. It is also possible to set the distance between the positions S1 and the distance between the positions S2 to exceed the quarter wavelength.
  • the first distance information calculation unit 113 calculates first distance information including first phase information based on the first transmission wave T1 and the first reception wave R1 at each position S1.
  • the first phase information is the IF frequency which is the difference between the first transmission wave T1 and the first reception wave R1 (see FIG. 4), and the first distance information is the distance between the first distance measuring device 110 and the object P. Distance.
  • the second distance information calculator 123 also calculates second distance information including second phase information based on the second transmission wave T2 and the second reception wave R2 at each position S2.
  • the second phase information is the IF frequency which is the difference between the second transmission wave T2 and the second reception wave R2 (see FIG. 4), and the second distance information is the difference between the second rangefinder 120 and the object P. Distance.
  • the first phase change calculator 114 calculates the phase change of the first phase information calculated by the first distance information calculator 113 .
  • FIG. 8 is a schematic diagram showing the positional relationship between the first transmitting section 111 and the first receiving section 112 and the object P, and a phase change image of the first phase information.
  • the phase change image when the first transmitter 111 and the first receiver 112 are located near the predetermined position S1 n , the phase change is small, and the first transmitter 111 and the first receiver 112 are located from the position S1 n. It shows that the phase change increases as the distance increases.
  • the second phase change calculator 124 calculates the phase change of the second phase information calculated by the second distance information calculator 123 .
  • FIG. 9 is a schematic diagram showing the positional relationship between the second transmitting section 121 and the second receiving section 122 and the object P, and a phase change image of the second phase information.
  • the phase change image when the second transmitter 121 and the second receiver 122 are located near the predetermined position S2n , the phase change is small, and the second transmitter 121 and the second receiver 122 are located near the position S2n . It shows that the phase change increases as the distance increases.
  • the calibration processing unit 131 identifies the relative position of the first receiving unit 112 with respect to the object P according to the phase change of the first phase information.
  • the calibration processing unit 131 convolves the phase change of the first phase information with the ideal value of the phase change when the object P is positioned at an arbitrary distance and angle with respect to the first receiving unit 112, thereby obtaining the first received wave.
  • Synthetic aperture processing is performed on R1. This synthetic aperture processing is calculation processing similar to synthetic aperture radar (SAR) that treats the moving first receiving unit 112 as a virtual large-diameter radar.
  • FIG. 10 is a schematic diagram showing the processing result of the synthetic aperture processing. As shown in the figure, the relative position L A 1 of the first receiver 112 with respect to the position of the object P is calculated as the peak of the synthetic aperture processing result.
  • the calibration processing unit 131 can acquire the moving speed of the vehicle 150 from the vehicle 150 and correct the Doppler component of the first received wave R1 due to the movement of the vehicle 150 in the synthetic aperture processing.
  • the calibration processing unit 131 calculates the relative positions of the object P and the first receiving unit 112 for each of the first receiving units 112 included in the first ranging device 110, so that the first ranging device 110 relative to the object P , the relative position L S 1 (see FIG. 12) and the relative angle A S 1 (see FIG. 13) can be calculated.
  • the relative position L S 1 can be calculated even when the first rangefinder 110 includes one first receiver 112 .
  • the relative angle A S 1 can be calculated using the distance between each first receiver 112 and the object P when the first ranging device 110 includes a plurality of first receivers 112 .
  • the calibration processing unit 131 identifies the relative position of the second receiving unit 112 with respect to the object P according to the phase change of the second phase information.
  • the calibration processing unit 131 convolves the phase change of the second phase information with the ideal value of the phase change when the object P is positioned at an arbitrary distance and angle with respect to the second receiving unit 122, thereby obtaining the second received wave.
  • This synthetic aperture processing is computational processing similar to synthetic aperture radar (SAR) that treats the moving first receiving unit 122 as a virtual large-diameter radar.
  • FIG. 11 is a schematic diagram showing the processing result of the synthetic aperture processing. As shown in the figure, the relative position L A 2 of the second receiver 112 with respect to the position of the object P is calculated as the peak of the synthetic aperture processing result. Note that the calibration processing unit 131 can acquire the moving speed of the vehicle 150 from the vehicle 150 and correct the Doppler component of the second received wave R2 due to the movement of the vehicle 150 in synthetic aperture processing.
  • the calibration processing unit 131 calculates the relative positions of the object P and the second receiving unit 122 for each of the second receiving units 122 included in the second ranging device 120, so that the second ranging device 120 with respect to the object P , the relative position L S 2 (see FIG. 12) and the relative angle A S 2 (see FIG. 13) can be calculated.
  • the relative position L S 2 can be calculated even when the second rangefinder 120 includes one second receiver 122 .
  • the relative angle A S 2 can be calculated using the distance between each second receiver 122 and the object P when the second rangefinder 120 includes a plurality of second receivers 122 .
  • the calibration processing unit 131 Based on the relative position of the first rangefinder 110 with respect to the target P and the relative position of the second rangefinder 120 with respect to the target P, the calibration processing unit 131 performs calibration of the first rangefinder 110 and the second rangefinder.
  • a relative position of the device 120 can be identified.
  • 12A and 12B are schematic diagrams showing a method of specifying the relative positions of the first rangefinder 110 and the second rangefinder 120.
  • FIG. As shown in the figure, the calibration processing unit 131 converts the relative position L S 1 of the first rangefinder 110 with respect to the target P and the relative position L S 2 of the second rangefinder 120 with respect to the target P to the target. By converting the position of the object P as a reference, the relative position L S 3 between the first rangefinder 110 and the second rangefinder 120 can be calculated.
  • the calibration processing unit 131 A relative angle of the rangefinder 120 can be identified.
  • 13A and 13B are schematic diagrams showing a method of specifying the relative angle between the first rangefinder 110 and the second rangefinder 120.
  • the calibration processing unit 131 calculates the relative angle A S 1 of the first rangefinder 110 to the object P and the relative angle A S 2 of the second rangefinder 120 to the object P as follows: By converting the direction of the object P as a reference, the relative angle A S 3 between the first rangefinder 110 and the second rangefinder 120 can be calculated.
  • the calibration processing unit 131 calculates the relative positions (X-axis/Y-axis/Z-axis (see FIG. 5)) and relative angles (pitch/yaw/ role (see FIG. 5)) can be specified.
  • the calibration processing unit 131 performs calibration processing on the measurement results of the first rangefinder 110 and the second rangefinder 120 using the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 . can be executed.
  • FIG. 14 is a flowchart showing calibration processing by the calibration system 100.
  • FIG. When the calibration process is started, movement of the automobile 150 is started as shown in FIG. 6 (St101). Subsequently, the calibration processing unit 131 selects the target object P (St102). The calibration processing unit 131 can select the target object P based on the reception results of the first reception unit 112 and the second reception unit 122, and is within the receivable range of the first reception unit 112 and the second reception unit 122 Among existing objects, an object having a reflection area that can be approximated as a point target can be selected as the object P.
  • the first transmitter 111 transmits the first transmission wave T1
  • the second transmitter 121 transmits the second transmission wave T2.
  • the first receiving unit 112 receives the first received wave R1 that is the first transmitted wave T1 reflected by the object P
  • the second receiving unit 122 receives the second transmitted wave T2 that is reflected by the object P. 2
  • a received wave R2 is received (St103).
  • the calibration processing unit 131 calculates the theoretical value of the phase change (see FIGS. 8 and 9) for each distance and each angle of the X-, Y-, and Z-axes. (St105).
  • the calibration processing unit 131 acquires the moving speed from the automobile 150 and calculates a correction value for the phase change caused by the movement of the automobile 150 (St106). Subsequently, when the moving distance of the automobile 150 is equal to or greater than the designated value (St107; Yes), the first distance information calculation unit 113 calculates the first distance information from the first received wave R1, and the second distance information calculation unit 123 Second distance information is calculated from the second received wave R2 (St108). Further, the first phase change calculator 114 calculates the phase change (see FIG. 8) of the first phase information included in the first distance information, and the second phase change calculator 124 calculates the phase change of the second phase information included in the second distance information. A phase change of the phase information (see FIG.
  • the calibration processing unit 131 executes synthetic aperture processing (St110). Through this process, the calibration processing unit 131 identifies the relative position of the first receiving unit 112 with respect to the object P and the relative position of the second receiving unit 122 with respect to the object P. FIG. In this process, the calibration processing unit 131 can use the correction value calculated in the phase change correction value calculation step (St106).
  • the calibration processing unit 131 calculates the relative position and relative angle of the first distance measuring device 110 with respect to the object P based on the relative position of the first receiving unit 112 with respect to the object P (St111). Also, the calibration processing unit 131 calculates the relative position and the relative angle of the second distance measuring device 120 with respect to the object P based on the relative position of the second receiving unit 122 with respect to the object P (St111).
  • the calibration processing unit 131 performs the first measurement based on the relative position and relative angle of the first rangefinder 110 with respect to the object P and the relative position and relative angle of the second rangefinder 110 with respect to the object P.
  • a relative position and a relative angle between the rangefinder 110 and the second rangefinder 120 are calculated (St112).
  • the calibration system 100 performs calibration processing of the first rangefinder 110 and the second rangefinder 120 using the relative position and relative angle between the first rangefinder 110 and the second rangefinder 120. It is possible.
  • the calibration processing unit 131 calculates the phase change correction value due to the movement of the automobile 150 (St106). This is for correcting the components. If the automobile 150 stops every time it moves a fixed distance and transmits the first transmission wave T1 and the second transmission wave T2 while stopped, this step (St106) can be omitted because the Doppler component does not occur.
  • the first rangefinder 110 and the second rangefinder 120 are measured based on the measurement results of the first rangefinder 110 and the second rangefinder 120. It is possible to specify the relative position and relative angle of the rangefinder 120 with high accuracy. Accordingly, by combining the measurement results of the first rangefinder 110 and the second rangefinder 120, highly accurate object detection is possible.
  • the calibration system 100 does not require prior information such as the position of the object P and map data to specify the relative position and relative angle between the first rangefinder 110 and the second rangefinder 120 . Therefore, even if it is not a predetermined place such as a manufacturing factory of the automobile 150, the calibration can be performed at any place. Even if the position of the distance device 120 deviates, the accuracy can be recovered by calibration at any place.
  • the calibration system 100 can also calibrate the first rangefinder 110 and the second rangefinder 120 as well as other sensors.
  • FIG. 15 is a schematic diagram showing a method of calibrating the first rangefinder 110, the second rangefinder 120, and other sensors.
  • An imaging device 140 is shown as an example of another sensor. In the case of a sensor such as the imaging device 140 that cannot detect the phase change that accompanies the movement of the automobile 150, calibration using the phase change cannot be executed.
  • the imaging device 140 images the object P and generates a captured image. It is preferable that the object P has a predetermined display Q such as a checkered pattern. In FIG. 15, the direction of the object P viewed from the imaging device 140 is indicated by a line G. As shown in FIG. The calibration processing unit 131 performs image processing on the captured image captured by the imaging device 140, and calculates the relative position and relative angle of the imaging device 140 with respect to the object P based on the display Q and the like included in the captured image. .
  • the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 with respect to the object P can be specified using phase changes as described above. Therefore, the calibration processing unit 131 can specify the relative positions and relative angles of the imaging device 140, the first rangefinder 110, and the second rangefinder 120 with respect to the object P, and the paired positions and angles between them. It is possible to perform a calibration process based on relative angles.
  • the display Q of the object P is not a two-dimensional planar display like a two-dimensional checkerboard generally used for calibration of an imaging device, but like a striped pole in the moving direction of the automobile 150.
  • Sensors for which the calibration system 100 can perform calibration processing for the first rangefinder 110 and the second rangefinder 120 are not limited to imaging devices. Any sensor that can specify the relative angle may be used.
  • the movement of the automobile 150 during calibration is a uniform linear motion, but it is not limited to this.
  • an angle difference occurs between the direction of the object P with respect to the first rangefinder 110 and the direction of the object P with respect to the second rangefinder 120. Any distance difference between the distance of the object P and the distance between the second distance measuring device 120 and the object P may be generated.
  • the calibration system 100 has two ranging devices, the first ranging device 110 and the second ranging device 120, it may have three or more ranging devices. In this case as well, it is possible to perform calibration between the distance measuring devices provided in the calibration system 100 by the above method.
  • the location of the distance measuring device in the vehicle 150 is not particularly limited as long as the above method can be implemented.
  • FIG. 16 is a block diagram showing the configuration of the calibration system 200 according to this embodiment. As shown in the figure, the calibration system 200 comprises a first distance measuring device 210, a second distance measuring device 220 and a calibration processing device 230. FIG.
  • the calibration system 200 is mounted on a housing.
  • the housing is not particularly limited, and may or may not be movable. In the following description, it is assumed that the housing is an automobile.
  • FIG. 17 is a schematic diagram showing a calibration system 200 mounted on an automobile 250. As shown in FIG. FIG. 17 also shows an object P which is located near the automobile 250 and which is the object to be measured by the first rangefinder 210 and the second rangefinder 220 .
  • the object P is preferably an object having a reflecting area that can be approximated as a point target (a point-like object), such as a triangular corner.
  • the first rangefinder 210 includes a first transmitter 211, a first receiver 212, a first distance information calculator 213, and a first phase change calculator 214. to measure.
  • the first transmission unit 211 is installed in the automobile 250 and transmits transmission waves.
  • the transmission wave transmitted from the first transmitter 111 is referred to as a first transmission wave T1.
  • the first transmission unit 211 transmits the first transmission wave T1 and supplies the signal of the first transmission wave T1 to the first distance information calculation unit 213 .
  • the first receiving unit 212 is installed in the automobile 250 and receives the reception wave that is the first transmission wave T1 reflected by the target object P.
  • the first transmitted wave T1 is reflected by the object P and the received wave received by the first receiver 212 is referred to as the first received wave R1.
  • the first receiver 212 supplies the signal of the first received wave R1 to the first distance information calculator 213 .
  • the first rangefinder 210 may include a plurality of first receivers 212 .
  • the first distance information calculator 213 calculates first distance information including first phase information based on the first received wave R1.
  • the first distance information including the first phase information will be described later.
  • the first distance information calculator 213 may calculate the first distance information including the first phase information based on the first received wave R1 and the first transmitted wave T1.
  • the first distance information calculator 213 supplies the first distance information including the calculated first phase information to the first phase change calculator 214 .
  • the first phase change calculator 214 calculates the phase change of the first phase information that occurs as the object P moves. A phase change of the first phase information will be described later.
  • the first phase change calculator 214 supplies the calculated phase change of the first phase information to the calibration processing device 230 .
  • the first rangefinder 210 has such a configuration.
  • the first rangefinder 210 can be a millimeter wave radar, the first transmission wave T1 and the first reception wave R1 can be millimeter waves, and the first transmission unit 211 and the first reception unit 212 can be millimeter wave band antennas.
  • the first rangefinder 210 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the first rangefinder 210 described above.
  • the first rangefinder 210 may be a rangefinder using ultrasonic waves or a LIDAR (Light Detection and Ranging).
  • the second rangefinder 220 includes a second transmitter 221, a second receiver 222, a first distance information calculator 223, and a first phase change calculator 224. to measure.
  • the second transmission unit 221 is installed in the automobile 250 and transmits transmission waves.
  • the transmission wave transmitted from the second transmitter 221 is referred to as a second transmission wave T2.
  • the second transmission unit 221 transmits the second transmission wave T2 and supplies the signal of the second transmission wave T2 to the second distance information calculation unit 223 .
  • the second receiving unit 222 is installed in the automobile 250 and receives the received wave that is the second transmitted wave T2 reflected by the target object P.
  • the second transmitted wave T2 is reflected by the object P and the received wave received by the second receiver 222 is referred to as a second received wave R2.
  • the second receiver 222 supplies the signal of the second received wave R2 to the second distance information calculator 223 .
  • the second range finder 220 may have a plurality of second receivers 222 .
  • the second distance information calculator 223 calculates second distance information including second phase information based on the second received wave R2.
  • the second distance information including the second phase information will be described later.
  • the second distance information calculator 223 may calculate the second distance information including the second phase information based on the second received wave R2 and the second transmitted wave T2.
  • the second distance information calculator 223 supplies the second distance information including the calculated second phase information to the second phase change calculator 224 .
  • the second phase change calculator 224 calculates the phase change of the second phase information that occurs as the object P moves. A phase change of the second phase information will be described later.
  • the second phase change calculator 224 supplies the calculated phase change of the second phase information to the calibration processing device 230 .
  • the second rangefinder 220 has such a configuration.
  • the second rangefinder 220 can be a millimeter wave radar, the second transmission wave T2 and the second reception wave R2 can be millimeter waves, and the second transmission unit 221 and the second reception unit 222 can be millimeter waveband antennas.
  • the second rangefinder 220 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the second rangefinder 220 described above.
  • the second range finder 220 may be a range finder using ultrasonic waves or a LIDAR.
  • the calibration processing device 230 includes a calibration processing section 231 .
  • the calibration processing unit 231 performs calibration processing between the first rangefinder 210 and the second rangefinder 220 according to the phase change of the first phase information and the phase change of the second phase information. Specifically, the calibration processing unit 231 identifies the relative position of the first receiving unit 212 with respect to the object P and the relative position of the second receiving unit 222 with respect to the object P. FIG. Furthermore, the calibration processing unit 231 uses these relative positions to specify the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220 . The calibration processing unit 231 can perform calibration processing of the first rangefinder 210 and the second rangefinder 220 using the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220. .
  • the calibration system 200 has the configuration as described above. Note that, of the configuration of the calibration system 200, the configuration excluding the first transmission unit 211, the first reception unit 212, the second transmission unit 221, and the second reception unit 222 is a functional unit that can be realized by an information processing device. Configuration. FIG. 16 shows this information processing device 261 . As shown in the figure, the information processing device 261 includes a first distance information calculator 213, a first phase change calculator 214, a second distance information calculator 223, a second phase change calculator 224, and a calibration processor 231. Prepare.
  • the first transmitter 211 transmits the first transmitted wave T1 to the target P
  • the first receiver 212 receives the first received wave R1.
  • the first transmission wave T1 is a wave whose frequency varies with time, and is a wave called a frequency modulated continuous wave (FMCW) (see FIG. 3).
  • the first received wave R1 is a wave in which the first transmitted wave T1 is reflected by the object P, so as shown in FIG. 3, it is delayed from the first transmitted wave T1 by a certain time t.
  • the first distance information calculation unit 213 After acquiring the first transmission wave T1 from the first transmission unit 211 and the first reception wave R1 from the first reception unit 212, the first distance information calculation unit 213 obtains the first transmission wave T1 and the first reception wave R1. (IF signal) is calculated (see FIG. 4). Since the frequency of the IF signal (hereinafter referred to as IF frequency) corresponds to the distance between the first distance measuring device 210 and the object P, the distance between the first distance measuring device 210 and the object P can be calculated from the IF frequency. be. Hereinafter, this IF frequency will be referred to as "first phase information", and the distance between the first distance measuring device 210 and the object P calculated from the IF frequency will be referred to as "first distance information".
  • the second distance information calculator 223 calculates the difference (IF signal), and the distance between the second rangefinder 220 and the object P is calculated from the IF frequency.
  • this IF frequency will be referred to as “second phase information”
  • second distance information the distance between the second distance measuring device 220 and the object P calculated from the IF frequency
  • the calibration system 200 can identify the angle of the object P with respect to each of the first rangefinder 210 and the second rangefinder 220 based on the first distance information and the second distance information. Thereby, the position of the object P with respect to the first rangefinder 210 and the second rangefinder 220 is detected, that is, the position of the object P with respect to the automobile 250 is detected.
  • position detection of the object P is executed as described above. Based on the measurement principle described above, in order to accurately detect the position of the object P, the relative distance and relative angle between the first rangefinder 210 and the second rangefinder 220 must be specified accurately. Identification and calibration of the relative distance and relative angle between the first rangefinder 210 and the second rangefinder 220 will be described below.
  • the first distance information calculation unit 213 calculates the first distance information including the first phase information based on the first transmission wave T1 and the first reception wave R1. It is also possible to calculate the first distance information including the first phase information based only on the first received wave R1, if the information can be obtained by transmitting the signal. Similarly, the second distance information calculator 223 can also calculate the second distance information including the second phase information based only on the second received wave R2.
  • the calibration system 200 can perform calibration processing on six axes for the first rangefinder 210 and the second rangefinder 220 (see FIG. 5). As shown in FIG. 5, the six axes include relative position (X-axis/Y-axis/Z-axis) and relative angle (pitch/yaw/roll) for the rangefinder.
  • FIG. 18 is a schematic diagram showing the movement of the object P, and the movement of the object P is indicated by an arrow M.
  • the object P is engaged with the rail F and is movable along the rail F.
  • the method of moving the object P is to repeat moving by a fixed distance and then stopping.
  • the moving direction of the object P (that is, the extending direction of the rail F) is defined as the Y-axis direction
  • the direction orthogonal to the Y-axis direction is defined as the X-axis direction.
  • the X-axis direction and the Y-axis direction are parallel to the mounting surface of the automobile 250, and the direction perpendicular to the mounting surface is the Z-axis direction.
  • the first transmission unit 211 transmits the first transmission wave T1 to the object P while moving the object P, and the first reception unit 212 receives the first reception wave R1. Also, the second transmitter 221 transmits the second transmitted wave T2 to the object P, and the second receiver 222 receives the second received wave R2.
  • FIG. 19 is a schematic diagram showing the positional relationship between the first transmitter 211, the first receiver 212, the second transmitter 221, the second receiver 222, and the object P. As shown in FIG.
  • first receivers 212 are shown, designated as a first receiver 212a, a first receiver 212b, a first receiver 212c, and a first receiver 212d.
  • 19 shows four second receivers 222, which are referred to as a second receiver 222a, a second receiver 222b, a second receiver 222c, and a second receiver 222d, respectively.
  • the position of the object P is indicated as position S (S 1 , S 2 , S 3 . . . ).
  • the position at which the object P starts to move is assumed to be position S1 , and after a certain period of time has passed since the object particle P started to move, the object P moves to position S2 . Thereafter, the object P similarly moves to positions S 3 , S 4 , S 5 . . .
  • the first transmitter 111 transmits the first transmission wave T1 to the target P at each position S
  • the second transmitter 121 transmits the second transmission wave T2 to the target P at each position S.
  • the object P remains stationary at each position S for a short time and moves again when the first transmission wave T1 and the second transmission wave T1 are transmitted.
  • the distance between each position S is preferably 1/4 or less of the wavelengths of the first transmission wave T1 and the second transmission wave T2.
  • a virtual image is not generated in the first received wave R1 and the second received wave R2, and the relative positions of the first rangefinder 210 and the second rangefinder 220 with respect to the object P are uniquely determined.
  • it may be difficult to satisfy the above conditions. can be set to a distance exceeding the quarter wavelength.
  • the first distance information calculation unit 213 calculates first distance information including first phase information based on the first transmission wave T1 and the first reception wave R1 at each position S.
  • the first phase information is the IF frequency which is the difference between the first transmission wave T1 and the first reception wave R1 (see FIG. 4), and the first distance information is the distance between the first distance measuring device 210 and the object P. Distance.
  • the second distance information calculator 223 calculates second distance information including second phase information based on the second transmitted wave T2 and the second received wave R2 at each position S.
  • the second phase information is the IF frequency which is the difference between the second transmission wave T2 and the second reception wave R2 (see FIG. 4), and the second distance information is the difference between the second distance measuring device 220 and the object P. Distance.
  • the first phase change calculator 214 calculates the phase change of the first phase information calculated by the first distance information calculator 213 .
  • FIG. 20 shows the positional relationship between the first transmitter 211, the first receiver 212, the second transmitter 221 and the second receiver 222 and the object P, and the phase change image of the first phase information and the second phase information. It is a schematic diagram showing. In the figure, the transmission/reception ranges of the first transmission section 211 and the first reception section 212 are indicated by the range H1, and the transmission/reception ranges of the second transmission section 221 and the second reception section 222 are indicated by the range H2.
  • the phase change image of the first phase information has a small phase change when the object P is located near the predetermined position Sm , and the phase changes as the object P moves away from the position Sm . It indicates that the change is large. This is because the position Sm is close to the first transmitting unit 111 and the first receiving unit 112, so that the movement of the object P in the vicinity of the position Sm has little effect on the phase. This means that the movement of the object P has a greater influence on the phase.
  • the second phase change calculator 224 calculates the phase change of the second phase information calculated by the second distance information calculator 223 .
  • the phase change image of the second phase information has a small phase change when the object P is located near the predetermined position Sn , and the phase changes as the object P moves away from the position Sn . It indicates that the change is large. This is because the position Sn is close to the second transmitting unit 221 and the second receiving unit 222 , so that the movement of the object P in the vicinity of the position Sn has little effect on the phase. This means that the movement of the object P has a greater influence on the phase.
  • the calibration processing unit 231 specifies the relative position of the first receiving unit 212 with respect to the object P according to the phase change of the first phase information, and the position of the first reception unit 212 with respect to the object P according to the phase change of the second phase information. 2 Identify the relative position of the receiver 222 .
  • the calibration processing unit 231 determines the phase change of the first phase information, each distance calculated in advance, and each position on the rail F when the object P moves on the rail F.
  • Inverse synthetic aperture processing is performed on the first received wave R1 by convolving the theoretical value of the phase change amount.
  • This inverse synthetic aperture processing is the same calculation processing as inverse synthetic aperture radar (ISAR), which treats the first receiving unit 212 as a virtual large-diameter radar for the moving object P.
  • ISR inverse synthetic aperture radar
  • the calibration processing unit 231 calculates the phase change of the second phase information and the amount of phase change that occurs when the object P moves on the rail F for each distance calculated in advance and each position on the rail F.
  • Inverse synthetic aperture processing is performed on the second received wave R2 by convolving the theoretical value of .
  • This inverse synthetic aperture processing is the same calculation processing as inverse synthetic aperture radar that treats the second receiving unit 222 as a virtual large-diameter radar with respect to the moving target P.
  • FIG. 21 is a schematic diagram showing the processing result of the inverse synthetic aperture processing. As shown in the figure, by inverse synthetic aperture processing, the relative position of the first receiver 212 with respect to the position of the object P is obtained as a peak E1, and the relative position of the second receiver 222 with respect to the position of the object P is obtained as a peak E1. obtained as E2.
  • the calibration processing unit 231 calculates the relative position between the object P and the first receiving unit 212 for each first receiving unit 212 included in the first ranging device 210, thereby adjusting the first ranging device 210 with respect to the object P. can be calculated. Note that the relative position of the first rangefinder 210 with respect to the object P can be calculated even when the first rangefinder 210 includes one first receiver 212 . On the other hand, the relative angle of the first rangefinder 210 with respect to the object P is obtained by using the distance between each first receiver 212 and the object P when the first rangefinder 210 includes a plurality of first receivers 212. can be calculated by
  • the calibration processing unit 231 calculates the relative positions of the object P and the second receiving unit 222 for each of the second receiving units 222 included in the second distance measuring device 220, thereby performing the second ranging with respect to the object P.
  • the relative position and relative angle of device 220 can be calculated. Note that the relative position of the second rangefinder 220 with respect to the object P can be calculated even when the second rangefinder 220 includes one second receiver 222 .
  • the relative angle of the second rangefinder 220 with respect to the object P is obtained by using the distance between each of the second receivers 222 and the object P when the second rangefinder 220 includes a plurality of second receivers 222. can be calculated by
  • the calibration processing unit 231 calculates the first distance using the same method as in the first embodiment.
  • the relative positions of the first rangefinder 210 and the second rangefinder 220 can be identified (see FIG. 12). Further, the calibration processing unit 231 performs the same method as in the first embodiment based on the relative angle of the first rangefinder 210 with respect to the object P and the relative angle of the second rangefinder 220 with respect to the object P. can identify the relative angle between the first rangefinder 210 and the second rangefinder 220 (see FIG. 13).
  • the calibration processing unit 231 calculates the relative positions (X-axis/Y-axis/Z-axis (see FIG. 5)) and relative angles (pitch/yaw/ role (see FIG. 5)) can be specified.
  • the calibration processing unit 231 performs calibration processing on the measurement results of the first rangefinder 210 and the second rangefinder 220 using the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220 . can be executed. Note that in the calibration system 200, the accuracy of calibration can be improved by performing the above operation with a plurality of rails F and with the extending direction parallel (Y-axis direction) or perpendicular (X-axis direction). .
  • FIG. 22 is a flowchart showing calibration processing by the calibration system 200.
  • the object P is set on the rail F as shown in FIG. 18 (St201).
  • the first transmitter 211 transmits the first transmission wave T1
  • the second transmitter 221 transmits the second transmission wave T2.
  • the first receiving unit 212 receives the first received wave R1 that is the first transmitted wave T1 reflected by the object P
  • the second receiving unit 222 receives the second transmitted wave T2 that is reflected by the object P. 2 Receiving wave R2 is received (St202).
  • the calibration processing unit 231 calculates the theoretical value of the phase change (see FIG. 20) for each distance and each angle of the X-, Y-, and Z-axes ( St204).
  • the first distance information calculation unit 213 calculates the first distance information from the first received wave R1
  • the second distance information calculation unit 223 calculates the first distance information from the first received wave R1.
  • the first phase change calculator 214 calculates the phase change (see FIG. 20) of the first phase information included in the first distance information
  • the second phase change calculator 224 calculates the phase change of the second phase information included in the second distance information.
  • a phase change of the phase information is calculated (St207). If the moving distance of the object P is less than the designated value (St205; No), the step of receiving the first received wave R1 and the second received wave R2 (St202) to the step of calculating the theoretical value (St204) are repeatedly executed. be.
  • the calibration processing unit 231 executes inverse synthetic aperture processing (St208). Through this process, the calibration processing unit 231 identifies the relative position of the first receiving unit 212 with respect to the object P and the relative position of the second receiving unit 222 with respect to the object P. FIG. Subsequently, the calibration processing unit 231 calculates the relative position and relative angle of the first distance measuring device 210 with respect to the object P based on the relative position of the first receiving unit 212 with respect to the object P (St209). Also, the calibration processing unit 131 calculates the relative position and the relative angle of the second distance measuring device 220 with respect to the object P based on the relative position of the second receiving unit 222 with respect to the object P (St209).
  • the calibration processing unit 231 performs the first measurement based on the relative position and relative angle of the first rangefinder 210 with respect to the object P and the relative position and relative angle of the second rangefinder 210 with respect to the object P.
  • a relative position and a relative angle between the rangefinder 210 and the second rangefinder 220 are calculated (St210).
  • the calibration system 200 can calibrate the first rangefinder 210 and the second rangefinder 220 .
  • the calibration processing unit 231 acquires the moving speed of the object P, and based on the moving speed of the object P It is necessary to correct the Doppler component due to the movement of the object P by using
  • the calibration system 200 even when the relative positions of the first rangefinder 210 and the second rangefinder 220 and the object P are unknown, the angle estimation accuracy of the first rangefinder 210 and the second rangefinder 220 is It is possible to perform calibration with the above accuracy. Furthermore, the calibration system 200 can perform calibration even when the distance between the first rangefinder 210 and the second rangefinder 220 and the object P is short.
  • the calibration system 200 can also calibrate the first rangefinder 210 and the second rangefinder 220 as well as other sensors.
  • FIG. 23 is a schematic diagram showing a method of calibrating the first rangefinder 210, the second rangefinder 220, and other sensors.
  • An imaging device 240 is shown as an example of another sensor. In the case of a sensor such as the imaging device 240 that cannot detect a phase change accompanying movement of the object P, calibration using the phase change cannot be performed.
  • the imaging device 240 images the object P while moving the object P to generate a captured image. It is preferable that the object P has a predetermined display Q such as a checkered pattern. In FIG. 23, the direction of the object P viewed from the imaging device 240 is indicated by a line G. As shown in FIG. The calibration processing unit 231 performs image processing on the captured image captured by the imaging device 240, and calculates the relative position and relative angle of the imaging device 240 with respect to the object P based on the display Q and the like included in the captured image. .
  • the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220 with respect to the object P can be identified using phase changes as described above. Therefore, the calibration processing unit 231 can specify the relative positions and relative angles of the imaging device 240, the first rangefinder 210, and the second rangefinder 220 with respect to the object P, and the relative positions and angles between them. It is possible to perform a calibration process based on relative angles.
  • the display Q of the object P is not a two-dimensional planar display such as a two-dimensional checkerboard generally used for calibration of an imaging device, but a one-dimensional distance difference can be detected. It is enough. This is because the display Q moves in conjunction with the object P, so that the same data as in the two-dimensional planar display can be obtained.
  • Sensors that the calibration system 200 can perform calibration processing on the first rangefinder 210 and the second rangefinder 220 are not limited to imaging devices. Any sensor that can specify the relative angle may be used.
  • the calibration system 200 includes two ranging devices, the first ranging device 210 and the second ranging device 220, it may include three or more ranging devices. In this case as well, it is possible to perform calibration between the distance measuring devices provided in the calibration system 200 by the above method.
  • the location of the distance measuring device in the vehicle 250 is not particularly limited as long as the above method can be implemented.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
  • FIG. 24 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010 .
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600.
  • the communication network 7010 that connects these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various calculations, and a drive circuit that drives various devices to be controlled. Prepare.
  • Each control unit has a network I/F for communicating with other control units via a communication network 7010, and communicates with devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I/F for communication is provided.
  • the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle equipment I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are shown.
  • Other control units are similarly provided with microcomputers, communication I/Fs, storage units, and the like.
  • the drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 7100 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection section 7110 is connected to the drive system control unit 7100 .
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the axial rotational motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, and a steering wheel steering. At least one of sensors for detecting angle, engine speed or wheel rotation speed is included.
  • Drive system control unit 7100 performs arithmetic processing using signals input from vehicle state detection unit 7110, and controls the internal combustion engine, drive motor, electric power steering device, brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 7200 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • Body system control unit 7200 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source for the driving motor, according to various programs. For example, the battery control unit 7300 receives information such as battery temperature, battery output voltage, or remaining battery capacity from a battery device including a secondary battery 7310 . The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device provided in the battery device.
  • the vehicle exterior information detection unit 7400 detects information outside the vehicle in which the vehicle control system 7000 is installed.
  • the imaging section 7410 and the vehicle exterior information detection section 7420 is connected to the vehicle exterior information detection unit 7400 .
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle exterior information detection unit 7420 includes, for example, an environment sensor for detecting the current weather or weather, or a sensor for detecting other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. ambient information detection sensor.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • These imaging unit 7410 and vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 25 shows an example of the installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420.
  • the imaging units 7910 , 7912 , 7914 , 7916 , and 7918 are provided, for example, at least one of the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 7900 .
  • An image pickup unit 7910 provided in the front nose and an image pickup unit 7918 provided above the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900 .
  • Imaging units 7912 and 7914 provided in the side mirrors mainly acquire side images of the vehicle 7900 .
  • An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900 .
  • An imaging unit 7918 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 25 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively
  • the imaging range d is The imaging range of an imaging unit 7916 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
  • the vehicle exterior information detectors 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners, and above the windshield of the vehicle interior of the vehicle 7900 may be, for example, ultrasonic sensors or radar devices.
  • the exterior information detectors 7920, 7926, and 7930 provided above the front nose, rear bumper, back door, and windshield of the vehicle 7900 may be LIDAR devices, for example.
  • These vehicle exterior information detection units 7920 to 7930 are mainly used to detect preceding vehicles, pedestrians, obstacles, and the like.
  • the vehicle exterior information detection unit 7400 causes the imaging section 7410 to capture an image of the exterior of the vehicle, and receives the captured image data.
  • the vehicle exterior information detection unit 7400 also receives detection information from the vehicle exterior information detection unit 7420 connected thereto.
  • the vehicle exterior information detection unit 7420 is an ultrasonic sensor, radar device, or LIDAR device
  • the vehicle exterior information detection unit 7400 emits ultrasonic waves, electromagnetic waves, or the like, and receives reflected wave information.
  • the vehicle exterior information detection unit 7400 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, etc., based on the received information.
  • the vehicle exterior information detection unit 7400 may calculate the distance to the vehicle exterior object based on the received information.
  • the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing people, vehicles, obstacles, signs, characters on the road surface, etc., based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. good too.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410 .
  • the in-vehicle information detection unit 7500 detects in-vehicle information.
  • the in-vehicle information detection unit 7500 is connected to, for example, a driver state detection section 7510 that detects the state of the driver.
  • the driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects the biometric information of the driver, a microphone that collects sounds in the vehicle interior, or the like.
  • a biosensor is provided, for example, on a seat surface, a steering wheel, or the like, and detects biometric information of a passenger sitting on a seat or a driver holding a steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determine whether the driver is dozing off. You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected sound signal.
  • the integrated control unit 7600 controls overall operations within the vehicle control system 7000 according to various programs.
  • An input section 7800 is connected to the integrated control unit 7600 .
  • the input unit 7800 is realized by a device that can be input-operated by the passenger, such as a touch panel, button, microphone, switch or lever.
  • the integrated control unit 7600 may be input with data obtained by recognizing voice input by a microphone.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an externally connected device such as a mobile phone or PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000.
  • PDA Personal Digital Assistant
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information through gestures.
  • the input section 7800 may include an input control circuit that generates an input signal based on information input by the passenger or the like using the input section 7800 and outputs the signal to the integrated control unit 7600, for example.
  • a passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. Also, the storage unit 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication between various devices existing in the external environment 7750.
  • the general-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced) , or other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi®), Bluetooth®, and the like.
  • General-purpose communication I / F 7620 for example, via a base station or access point, external network (e.g., Internet, cloud network or operator-specific network) equipment (e.g., application server or control server) connected to You may
  • external network e.g., Internet, cloud network or operator-specific network
  • equipment e.g., application server or control server
  • the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology to connect terminals (for example, terminals of drivers, pedestrians, stores, or MTC (Machine Type Communication) terminals) near the vehicle. may be connected with P2P (Peer To Peer) technology to connect terminals (for example, terminals of drivers, pedestrians, stores, or MTC (Machine Type Communication) terminals) near the vehicle.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I/F 7630 is a communication I/F that supports a communication protocol designed for use in vehicles.
  • the dedicated communication I/F 7630 uses standard protocols such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of lower layer IEEE 802.11p and higher layer IEEE 1609, or cellular communication protocol. May be implemented.
  • the dedicated communication I/F 7630 is typically used for vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) perform V2X communication, which is a concept involving one or more of the communications.
  • the positioning unit 7640 receives GNSS signals from GNSS (Global Navigation Satellite System) satellites (for example, GPS signals from GPS (Global Positioning System) satellites), performs positioning, and obtains the latitude, longitude, and altitude of the vehicle. Generate location information containing Note that the positioning unit 7640 may specify the current position by exchanging signals with a wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smart phone having a positioning function.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from wireless stations installed on the road, and acquires information such as the current position, traffic jams, road closures, or required time. Note that the function of the beacon reception unit 7650 may be included in the dedicated communication I/F 7630 described above.
  • the in-vehicle device I/F 7660 is a communication interface that mediates connections between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle.
  • the in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • the in-vehicle device I/F 7660 is connected via a connection terminal (and cable if necessary) not shown, USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High -definition Link), etc.
  • In-vehicle equipment 7760 includes, for example, at least one of mobile equipment or wearable equipment possessed by passengers, or information equipment carried in or attached to the vehicle. In-vehicle equipment 7760 may also include a navigation device that searches for a route to an arbitrary destination. or exchange data signals.
  • the in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. In-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by communication network 7010 .
  • the microcomputer 7610 of the integrated control unit 7600 uses at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680.
  • the vehicle control system 7000 is controlled according to various programs on the basis of the information acquired by. For example, the microcomputer 7610 calculates control target values for the driving force generator, steering mechanism, or braking device based on acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. good too.
  • the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control may be performed for the purpose of In addition, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, etc. based on the acquired information about the surroundings of the vehicle, thereby autonomously traveling without depending on the operation of the driver. Cooperative control may be performed for the purpose of driving or the like.
  • ADAS Advanced Driver Assistance System
  • Microcomputer 7610 receives information obtained through at least one of general-purpose communication I/F 7620, dedicated communication I/F 7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I/F 7660, and in-vehicle network I/F 7680. Based on this, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including the surrounding information of the current position of the vehicle may be created. Further, based on the acquired information, the microcomputer 7610 may predict dangers such as vehicle collisions, pedestrians approaching or entering closed roads, and generate warning signals.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio/image output unit 7670 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 7710, a display section 7720, and an instrument panel 7730 are illustrated as output devices.
  • Display 7720 may include, for example, at least one of an on-board display and a head-up display.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be headphones, a wearable device such as an eyeglass-type display worn by a passenger, or other devices such as a projector or a lamp.
  • the display device displays the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually.
  • the voice output device converts an audio signal including reproduced voice data or acoustic data into an analog signal and outputs the analog signal audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • an individual control unit may be composed of multiple control units.
  • vehicle control system 7000 may comprise other control units not shown.
  • some or all of the functions that any control unit has may be provided to another control unit. In other words, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units.
  • sensors or devices connected to any control unit may be connected to other control units, and multiple control units may send and receive detection information to and from each other via communication network 7010. .
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed, for example, via a network without using a recording medium.
  • the information processing device 161 and the information processing device 261 can be applied to the integrated control unit 7600 of the application example shown in FIG.
  • the first distance information calculation unit 113, the first phase change calculation unit 114, the second distance information calculation unit 123, the second phase change calculation unit 124, and the calibration processing unit 131 of the information processing device 161 are integrated control unit 7600. It corresponds to a microcomputer 7610, a storage unit 7690, and an in-vehicle network I/F 7680.
  • the first distance information calculation unit 213, the first phase change calculation unit 214, the second distance information calculation unit 223, the second phase change calculation unit 224, and the calibration processing unit 231 of the information processing device 261 are integrated control units. 7600 microcomputer 7610 , storage unit 7690 , and in-vehicle network I/F 7680 .
  • At least part of the components of the information processing device 161 and the information processing device 261 are realized in a module (for example, an integrated circuit module configured with one die) for the integrated control unit 7600 shown in FIG. may Alternatively, information processing device 161 and information processing device 261 may be realized by a plurality of control units of vehicle control system 7000 shown in FIG.
  • First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing a first distance information calculator that calculates a first phase change calculator that calculates a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
  • a second rangefinder includes second phase information based on a second received wave reflected by the object and received by a second receiver installed in the housing.
  • a second distance information calculator that calculates distance information
  • a second phase change calculator that calculates a phase change of the second phase information that occurs in response to movement of the one of the object or the housing
  • a calibration processing unit that performs calibration processing of the first distance measuring device and the second distance measuring device according to the phase change of the first phase information and the phase change of the second phase information; information processing device; (2) The information processing device according to (1) above, The calibration processing unit specifies a relative position of the first receiving unit with respect to the object and a relative position of the second receiving unit with respect to the object, and a relative position of the first receiving unit with respect to the object.
  • An information processing apparatus that performs the calibration process based on the position and the relative position of the second receiving unit with respect to the object.
  • the calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object.
  • An information processing device that identifies relative positions of rangefinders and executes the calibration process based on the relative positions of the first rangefinder and the second rangefinder.
  • the calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object.
  • a calibration system that identifies a relative angle of a rangefinder and performs the calibration process based on the relative angles of the first rangefinder and the second rangefinder.
  • the first phase change calculation unit calculates a phase change of the first phase information that occurs in accordance with movement of the housing
  • the information processing apparatus wherein the second phase change calculation unit calculates a phase change of the second phase information that occurs according to movement of the housing.
  • the calibration processing unit specifies a relative position of the first receiving unit with respect to the object by executing synthetic aperture processing on the first received wave, and synthesizes with the second received wave.
  • An information processing apparatus that performs opening processing to identify the relative position of the second receiving unit with respect to the object.
  • the information processing device according to any one of (1) to (4) above,
  • the first phase change calculation unit calculates a phase change of the first phase information that occurs in response to movement of the object
  • the second phase change calculator calculates a phase change of the second phase information that occurs in accordance with movement of the object.
  • Information processing apparatus (8)
  • the information processing device specifies a relative position of the first receiving unit with respect to the object by performing inverse synthetic aperture processing on the first received wave, and performs An information processing apparatus that performs inverse synthetic aperture processing to identify the relative position of the second receiver with respect to the object.
  • the first received wave is a wave reflected by the object from the first transmitted wave
  • the second received wave is a wave reflected by the object from the second transmitted wave
  • the first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave
  • the information processing apparatus wherein the second distance information calculation unit calculates the second distance information based on the second transmission wave and the second reception wave.
  • a first receiving unit installed in a housing for receiving a first received wave reflected by an object; a first distance information calculator that calculates first distance information including first phase information based on the first received wave; a first distance measuring device comprising: a first phase change calculator that calculates a phase change of the first phase information that occurs in response to movement of one of the object or the housing; a second receiving unit installed in the housing for receiving a second received wave reflected by the object; a second distance information calculator that calculates second distance information including second phase information based on the second received wave; a second distance measuring device comprising: a second phase change calculator that calculates a phase change of the second phase information that occurs in response to movement of the one of the object or the housing; a calibration processing device that performs calibration processing of the first rangefinder and the second rangefinder according to the phase change of the first phase information and the phase change of the second phase information; calibration system.
  • the first distance measuring device further comprises a first transmission unit installed in the housing for transmitting a first transmission wave to the object, The first receiving unit receives the first received wave, which is a wave in which the first transmitted wave is reflected by the object, The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave, The second distance measuring device further comprises a second transmission unit installed in the housing for transmitting a second transmission wave to the object, The second receiving unit receives the second received wave, the second transmitted wave being a wave reflected by the object, The calibration system, wherein the second distance information calculation unit calculates the second distance information based on the second transmission wave and the second reception wave.
  • the calibration system according to any one of (10) to (13) above, The enclosure is an automotive calibration system.
  • First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing to calculate calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
  • a second rangefinder includes second phase information based on a second received wave reflected by the object, which is received by a second receiver installed in the housing. Calculate the distance information, calculating a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;

Abstract

[Problem] To provide an information processing device, a calibration system, and an information processing method with which it is possible to perform calibration in a highly accurate manner without requiring prior information. [Solution] The information processing device according to the present technology is provided with a distance information calculation unit, a phase change calculation unit, and a calibration processing unit. The distance information calculation unit: calculates first distance information including first phase information on the basis of first received waves reflected by an object and received by a first ranging device; and calculates second distance information including second phase information on the basis of second received waves reflected by the object and received by a second ranging device. The phase change calculation unit calculates the phase change of the first phase information and the second phase information, produced in response to movement of the object and/or a casing. The calibration processing unit performs a calibration process on the first ranging device and the second ranging device in accordance with the phase change of the first phase information and the second phase information.

Description

情報処理装置、キャリブレーションシステム及び情報処理方法Information processing device, calibration system, and information processing method
 本技術は、筐体に搭載された複数の測距装置のキャリブレーション処理を行う情報処理装置、キャリブレーションシステム及び情報処理方法に関する。 The present technology relates to an information processing device, a calibration system, and an information processing method that perform calibration processing for a plurality of distance measuring devices mounted on a housing.
 近年、複数の車載ミリ波レーダを設置して情報を含み合わせることで、単体のミリ波レーダより高い精度を実現する技術が検討されている。正確なレーダ間の距離、方位の情報を元に、レーダの情報を組み合わせることで高い精度を実現するが、複数のレーダ間の距離及び方位が正確でないと精度低下が生じてしまうため、複数のレーダ間のキャリブレーションが重要となる。 In recent years, technology has been studied to achieve higher accuracy than a single millimeter-wave radar by installing multiple in-vehicle millimeter-wave radars and combining information. High accuracy is achieved by combining radar information based on accurate information on the distance and direction between radars. Calibration between radars is important.
 複数のレーダ間のキャリブレーションに関して、例えば特許文献1には、事前情報としての地図データを基準として、各センサのキャリブレーションを行うキャリブレーション装置が記載されている。また、特許文献2にはポイントターゲットの間隔を基準として、各センサのキャリブレーションを行うキャリブレーションシステムが記載されている。 Regarding calibration between multiple radars, Patent Document 1, for example, describes a calibration device that performs calibration of each sensor based on map data as prior information. Further, Patent Literature 2 describes a calibration system for calibrating each sensor based on the interval between point targets.
特開2018-96715号公報JP 2018-96715 A 特開2020-26955号公報JP 2020-26955 A
 しかしながら、特許文献1に記載のキャリブレーション装置では、事前情報としての地図データが無ければキャリブレーションを実施することができない。また、特許文献2に記載のキャリブレーションシステムでは、事前情報として位置が既知のポイントターゲットが無ければキャリブレーションを実施することができない。 However, with the calibration device described in Patent Document 1, calibration cannot be performed without map data as prior information. Further, in the calibration system described in Patent Document 2, calibration cannot be performed without a point target whose position is known as prior information.
 以上のような事情に鑑み、本技術の目的は、事前情報を必要とせず、高精度にキャリブレーションを行うことが可能な情報処理装置、キャリブレーションシステム及び情報処理方法を提供することにある。 In view of the circumstances as described above, the purpose of the present technology is to provide an information processing device, a calibration system, and an information processing method that can perform calibration with high accuracy without requiring prior information.
 上記目的を達成するため、本技術に係る情報処理装置は、第1の距離情報算出部と、第1の位相変化算出部と、第2の距離情報算出部と、第2の位相変化算出部と、キャリブレーション処理部とを具備する。
 上記第1の距離情報算出部は、第1の測距装置が備え、筐体に設置された第1の受信部が受信した、対象物で反射された第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出する。
 上記第1の位相変化算出部は、上記対象物または上記筐体のうちの一方の移動に応じて発生する、上記第1の位相情報の位相変化を算出する。
 上記第2の距離情報算出部は、第2の測距装置が備え、上記筐体に設置された第2の受信部が受信した、上記対象物で反射された第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出する。
 上記第2の位相変化算出部は、上記対象物または上記筐体のうちの上記一方の移動に応じて発生する、上記第2の位相情報の位相変化を算出する。
 上記キャリブレーション処理部は、上記第1の位相情報の位相変化及び上記第2の位相情報の位相変化に応じて上記第1の測距装置と上記第2の測距装置のキャリブレーション処理を実行する。
To achieve the above object, an information processing apparatus according to the present technology includes a first distance information calculation unit, a first phase change calculation unit, a second distance information calculation unit, and a second phase change calculation unit. and a calibration processing unit.
The first distance information calculation unit is provided in the first distance measuring device and is received by the first reception unit installed in the housing, based on the first received wave reflected by the object, the first to calculate first distance information including the phase information of .
The first phase change calculator calculates a phase change of the first phase information that occurs in accordance with movement of one of the object and the housing.
The second distance information calculation unit is provided in the second distance measuring device and is based on the second received wave reflected by the object, which is received by the second reception unit installed in the housing. Calculate second distance information including the second phase information.
The second phase change calculator calculates a phase change of the second phase information that occurs in accordance with movement of the one of the object and the housing.
The calibration processing unit performs calibration processing of the first rangefinder and the second rangefinder according to the phase change of the first phase information and the phase change of the second phase information. do.
 上記キャリブレーション処理部は、上記対象物に対する上記第1の受信部の相対位置と上記対象物に対する上記第2の受信部の相対位置を特定し、上記対象物に対する上記第1の受信部の相対位置と上記対象物に対する上記第2の受信部の相対位置に基づいて上記キャリブレーション処理を実行してもよい。 The calibration processing unit specifies a relative position of the first receiving unit with respect to the object and a relative position of the second receiving unit with respect to the object, and a relative position of the first receiving unit with respect to the object. The calibration process may be performed based on the position and the relative position of the second receiver with respect to the object.
 上記キャリブレーション処理部は、上記対象物に対する上記第1の受信部の相対位置と、上記対象物に対する上記第2の受信部の相対位置に基づいて上記第1の測距装置と上記第2の測距装置の相対位置を特定し、上記第1の測距装置と上記第2の測距装置の相対位置に基づいて上記キャリブレーション処理を実行してもよい。 The calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object. The relative positions of the distance measuring devices may be specified, and the calibration process may be performed based on the relative positions of the first distance measuring device and the second distance measuring device.
 上記キャリブレーション処理部は、上記対象物に対する上記第1の受信部の相対位置と上記対象物に対する上記第2の受信部の相対位置に基づいて上記第1の測距装置と上記第2の測距装置の相対角度を特定し、上記第1の測距装置と上記第2の測距装置の相対角度に基づいて上記キャリブレーション処理を実行してもよい。 The calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object. A relative angle of the rangefinder may be specified, and the calibration process may be performed based on the relative angle of the first rangefinder and the second rangefinder.
 上記第1の位相変化算出部は、上記筐体の移動に応じて発生する上記第1の位相情報の位相変化を算出し、
 上記第2の位相変化算出部は、上記筐体の移動に応じて発生する上記第2の位相情報の位相変化を算出してもよい。
The first phase change calculation unit calculates a phase change of the first phase information that occurs in accordance with movement of the housing,
The second phase change calculator may calculate a phase change of the second phase information that occurs in accordance with movement of the housing.
 上記キャリブレーション処理部は、上記第1の受信波に対して合成開口処理を実行して上記対象物に対する上記第1の受信部の相対位置を特定し、上記第2の受信波に対して合成開口処理を実行して上記対象物に対する上記第2の受信部の相対位置を特定してもよい。 The calibration processing unit specifies a relative position of the first receiving unit with respect to the object by executing synthetic aperture processing on the first received wave, and synthesizes with the second received wave. An aperture process may be performed to identify the relative position of the second receiver with respect to the object.
 上記第1の位相変化算出部は、上記対象物の移動に応じて発生する上記第1の位相情報の位相変化を算出し、
 上記第2の位相変化算出部は、上記対象物の移動に応じて発生する上記第2の位相情報の位相変化を算出してもよい。
The first phase change calculation unit calculates a phase change of the first phase information that occurs in response to movement of the object,
The second phase change calculator may calculate a phase change of the second phase information that occurs according to movement of the object.
 上記キャリブレーション処理部は、上記第1の受信波に対して逆合成開口処理を実行して上記対象物に対する上記第1の受信部の相対位置を特定し、上記第2の受信波に対して逆合成開口処理を実行して上記対象物に対する上記第2の受信部の相対位置を特定してもよい。 The calibration processing unit specifies a relative position of the first receiving unit with respect to the object by performing inverse synthetic aperture processing on the first received wave, and performs An inverse synthetic aperture process may be performed to identify the relative position of the second receiver with respect to the object.
 上記第1の受信波は第1の送信波が上記対象物によって反射された波であり、
 上記第2の受信波は第2の送信波が上記対象物によって反射された波であり、
 上記第1の距離情報算出部は、上記第1の送信波と上記第1の受信波に基づいて上記第1の距離情報を算出し、
 上記第2の距離情報算出部は、上記第2の送信波と上記第2の受信波に基づいて上記第2の距離情報を算出してもよい。
the first received wave is a wave reflected by the object from the first transmitted wave;
the second received wave is a wave reflected by the object from the second transmitted wave;
The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
The second distance information calculation section may calculate the second distance information based on the second transmission wave and the second reception wave.
 上記目的を達成するため、本技術に係るキャリブレーションシステムは、第1の測距装置と、第2の測距装置とキャリブレーション処理装置とを具備する。
 上記第1の測距装置は、筐体に設置され、対象物で反射された第1の受信波を受信する第1の受信部と、上記第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出する第1の距離情報算出部と、上記対象物または上記筐体のうちの一方の移動に応じて発生する、上記第1の位相情報の位相変化を算出する第1の位相変化算出部とを備える。
 上記第2の測距装置は、上記筐体に設置され、上記対象物で反射された第2の受信波を受信する第2の受信部と、上記第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出する第2の距離情報算出部と、上記対象物または上記筐体のうちの上記一方の移動に応じて発生する、上記第2の位相情報の位相変化を算出する第2の位相変化算出部とを備える。
 上記キャリブレーション処理装置は、上記第1の位相情報の位相変化及び上記第2の位相情報の位相変化に応じて上記第1の測距装置と上記第2の測距装置のキャリブレーション処理を実行する。
To achieve the above object, a calibration system according to the present technology includes a first rangefinder, a second rangefinder, and a calibration processing device.
The first distance measuring device includes a first receiving unit installed in a housing for receiving a first received wave reflected by an object, and first phase information based on the first received wave. and calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing and a first phase change calculator.
The second distance measuring device includes a second receiving unit installed in the housing for receiving a second received wave reflected by the object, and a second receiving unit based on the second received wave. a second distance information calculator that calculates second distance information including phase information; and a phase change in the second phase information that occurs in response to movement of the one of the object and the housing. and a second phase change calculator that calculates
The calibration processing device executes calibration processing of the first distance measuring device and the second distance measuring device according to the phase change of the first phase information and the phase change of the second phase information. do.
 上記第1の測距装置は、上記筐体に設置され、上記対象物に第1の送信波を送信する第1の送信部をさらに具備し、
 上記第1の受信部は、上記第1の送信波が上記対象物によって反射された波である上記第1の受信波を受信し、
 上記第1の距離情報算出部は、上記第1の送信波と上記第1の受信波に基づいて上記第1の距離情報を算出し、
 上記第2の測距装置は、上記筐体に設置され、上記対象物に第2の送信波を送信する第2の送信部をさらに具備し、
 上記第2の受信部は、上記第2の送信波が上記対象物によって反射された波である上記第2の受信波を受信し、
 上記第2の距離情報算出部は、上記第2の送信波と上記第2の受信波に基づいて上記第2の距離情報を算出してもよい。
The first distance measuring device further comprises a first transmission unit installed in the housing for transmitting a first transmission wave to the object,
The first receiving unit receives the first received wave, which is a wave in which the first transmitted wave is reflected by the object,
The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
The second distance measuring device further comprises a second transmission unit installed in the housing for transmitting a second transmission wave to the object,
The second receiving unit receives the second received wave, the second transmitted wave being a wave reflected by the object,
The second distance information calculation section may calculate the second distance information based on the second transmission wave and the second reception wave.
 上記キャリブレーションシステムは、上記対象物を撮像した撮像画像を生成する撮像装置をさらに具備し、
 上記キャリブレーション処理装置は、上記第1の位相情報の位相変化、上記第2の位相情報の位相変化及び上記撮像画像に応じて、上記第1の測距装置、上記第2の測距装置及び上記撮像装置のキャリブレーション処理を実行してもよい。
The calibration system further includes an imaging device that generates a captured image of the object,
The calibration processing device performs the first distance measuring device, the second distance measuring device, and the A calibration process of the imaging device may be executed.
 上記第1の受信波及び上記第2の受信波はミリ波であり、
 上記第1の受信部及び上記第2の受信部はアンテナであってもよい。
The first received wave and the second received wave are millimeter waves,
An antenna may be sufficient as a said 1st receiving part and a said 2nd receiving part.
 上記筐体は自動車であってもよい。 The above housing may be an automobile.
 上記目的を達成するため、本技術に係るキャリブレーションシステムは、
 第1の測距装置が備え、筐体に設置された第1の受信部が受信した、対象物で反射された第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出し、
 上記対象物または上記筐体のうちの一方の移動に応じて発生する、上記第1の位相情報の位相変化を算出し、
 第2の測距装置が備え、上記筐体に設置された第2の受信部が受信した、上記対象物で反射された第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出し、
 上記対象物または上記筐体のうちの上記一方の移動に応じて発生する、上記第2の位相情報の位相変化を算出し、
 上記第1の位相情報の位相変化及び上記第2の位相情報の位相変化に応じて上記第1の測距装置と上記第2の測距装置のキャリブレーション処理を実行する。
In order to achieve the above purpose, the calibration system according to the present technology is
First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing to calculate
calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
A second rangefinder includes second phase information based on a second received wave reflected by the object and received by a second receiver installed in the housing. Calculate the distance information,
calculating a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
Calibration processing of the first distance measuring device and the second distance measuring device is executed according to the phase change of the first phase information and the phase change of the second phase information.
本技術の第1の実施形態に係るキャリブレーションシステムのブロック図である。1 is a block diagram of a calibration system according to a first embodiment of the present technology; FIG. 上記キャリブレーションシステムが搭載された自動車の模式図である。1 is a schematic diagram of an automobile equipped with the calibration system; FIG. 上記キャリブレーションシステムが備える第1測距装置の第1送信波と第1受信波のグラフである。It is a graph of the 1st transmission wave and the 1st reception wave of the 1st ranging device with which the above-mentioned calibration system is provided. 上記第1送信波及び上記第1受信波の差分を示すグラフである。It is a graph which shows the difference of a said 1st transmission wave and a said 1st reception wave. 上記キャリブレーションシステムによるキャリブレーション対象の軸を示す模式図である。FIG. 4 is a schematic diagram showing an axis to be calibrated by the calibration system; 上記キャリブレーションシステムによるキャリブレーション処理を示す模式図である。It is a schematic diagram which shows the calibration process by the said calibration system. 上記キャリブレーションシステムにおける、第1送信部、第1受信部、第2送信部及び第2受信部の移動を示す模式図である。It is a schematic diagram which shows the movement of a 1st transmission part, a 1st reception part, a 2nd transmission part, and a 2nd reception part in the said calibration system. 上記キャリブレーションシステムにおける、第1送信部及び第1受信部の位置と第1受信波の位相変化を示す模式図である。It is a schematic diagram which shows the position of a 1st transmission part and a 1st reception part, and the phase change of a 1st received wave in the said calibration system. 上記キャリブレーションシステムにおける、第2送信部及び第2受信部の位置と第2受信波の位相変化を示す模式図である。It is a schematic diagram which shows the position of a 2nd transmission part and a 2nd reception part, and the phase change of a 2nd received wave in the said calibration system. 上記キャリブレーションシステムが備えるキャリブレーション処理部による、第1受信波に対する合成開口処理の処理結果を示す模式図である。FIG. 10 is a schematic diagram showing a processing result of synthetic aperture processing for the first received wave by the calibration processing section included in the calibration system; 上記キャリブレーションシステムが備えるキャリブレーション処理部による、第2受信波に対する合成開口処理の処理結果を示す模式図である。FIG. 10 is a schematic diagram showing a processing result of synthetic aperture processing for a second received wave by a calibration processing unit included in the calibration system; 上記キャリブレーション処理部による、第1測距装置と第2測距装置の相対位置の特定方法を示す模式図である。It is a schematic diagram which shows the specific method of the relative position of a 1st ranging device and a 2nd ranging device by the said calibration process part. 上記キャリブレーション処理部による、第1測距装置と第2測距装置の相対角度の特定方法を示す模式図である。It is a schematic diagram which shows the specific method of the relative angle of a 1st ranging device and a 2nd ranging device by the said calibration process part. 上記キャリブレーションシステムによるキャリブレーション処理のフローチャートである。4 is a flow chart of calibration processing by the calibration system; 上記キャリブレーションシステムによる第1測距装置及び第2測距装置と他のセンサのキャリブレーション処理を示す模式図である。It is a schematic diagram which shows the calibration process of the 1st ranging device, the 2nd ranging device, and another sensor by the said calibration system. 本技術の第2の実施形態に係るキャリブレーションシステムのブロック図である。It is a block diagram of a calibration system according to a second embodiment of the present technology. 上記キャリブレーションシステムが搭載された自動車の模式図である。1 is a schematic diagram of an automobile equipped with the calibration system; FIG. 上記キャリブレーションシステムによるキャリブレーション処理を示す模式図である。It is a schematic diagram which shows the calibration process by the said calibration system. 上記キャリブレーションシステムにおける対象物の移動を示す模式図である。It is a schematic diagram which shows the movement of the target object in the said calibration system. 上記キャリブレーションシステムにおける、対象物の位置と第1受信波の位相変化及び第2受信波の位相変化を示す模式図である。FIG. 4 is a schematic diagram showing the position of the target object, the phase change of the first received wave, and the phase change of the second received wave in the calibration system; 上記キャリブレーションシステムが備えるキャリブレーション処理部による、第1受信波及び第2受信波に対する逆合成開口処理の処理結果を示す模式図である。It is a schematic diagram which shows the processing result of the inverse synthetic aperture process with respect to the 1st received wave and the 2nd received wave by the calibration process part with which the said calibration system is provided. 上記キャリブレーションシステムによるキャリブレーション処理のフローチャートである。4 is a flow chart of calibration processing by the calibration system; 上記キャリブレーションシステムによる第1測距装置及び第2測距装置と他のセンサのキャリブレーション処理を示す模式図である。It is a schematic diagram which shows the calibration process of the 1st ranging device, the 2nd ranging device, and another sensor by the said calibration system. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
 (第1の実施形態)
 本技術の第1の実施形態に係るキャリブレーションシステムについて説明する。
(First embodiment)
A calibration system according to a first embodiment of the present technology will be described.
 [キャリブレーションシステムの構成]
 図1は、本実施形態に係るキャリブレーションシステム100の構成を示すブロック図である。同図に示すように、キャリブレーションシステム100は第1測距装置110、第2測距装置120及びキャリブレーション処理装置130を備える。
[Configuration of calibration system]
FIG. 1 is a block diagram showing the configuration of a calibration system 100 according to this embodiment. As shown in the figure, the calibration system 100 comprises a first distance measuring device 110, a second distance measuring device 120 and a calibration processing device .
 キャリブレーションシステム100は、筐体に搭載される。筐体は移動可能なものであればよく、例えば自動車である。以下、筐体は自動車であるものとして説明する。図2は自動車150に搭載されたキャリブレーションシステム100を示す模式図である。また、図2には、自動車150の近傍に位置し、第1測距装置110及び第2測距装置120の測定対象物である対象物Pを示す。対象物Pはポイントターゲット(点状の物体)として近似できる反射面積を持つ物体が好適である。 The calibration system 100 is mounted on a housing. The housing may be any movable one, such as an automobile. In the following description, it is assumed that the housing is an automobile. FIG. 2 is a schematic diagram showing the calibration system 100 mounted on the automobile 150. As shown in FIG. FIG. 2 also shows an object P located near the automobile 150 and being an object to be measured by the first rangefinder 110 and the second rangefinder 120 . Object P is preferably an object having a reflection area that can be approximated as a point target (point-like object).
 第1測距装置110は、第1送信部111、第1受信部112、第1距離情報算出部113及び第1位相変化算出部114を備え、第1測距装置110に対する対象物Pの距離を測定する。 The first rangefinder 110 includes a first transmitter 111, a first receiver 112, a first distance information calculator 113, and a first phase change calculator 114. to measure.
 第1送信部111は、自動車150に設置され、送信波を送信する。以下、図1及び図2に示すように、第1送信部111から送信される送信波を第1送信波T1とする。第1送信部111は第1送信波T1の送信と共に第1送信波T1の信号を第1距離情報算出部113に供給する。 The first transmission unit 111 is installed in the automobile 150 and transmits transmission waves. Hereinafter, as shown in FIGS. 1 and 2, the transmission wave transmitted from the first transmitter 111 is referred to as a first transmission wave T1. The first transmission unit 111 transmits the first transmission wave T1 and supplies the signal of the first transmission wave T1 to the first distance information calculation unit 113 .
 第1受信部112は、自動車150に設置され、第1送信波T1が対象物Pによって反射された受信波を受信する。以下、図2に示すように、第1送信波T1が対象物Pによって反射され、第1受信部112によって受信される受信波を第1受信波R1とする。第1受信部112は第1受信波R1の信号を第1距離情報算出部113に供給する。第1測距装置110は複数の第1受信部112を備えるものであってもよい。 The first receiving unit 112 is installed in the automobile 150 and receives a received wave that is the first transmission wave T1 reflected by the target object P. Hereinafter, as shown in FIG. 2, the first transmission wave T1 is reflected by the object P and the reception wave received by the first receiver 112 is referred to as the first reception wave R1. The first receiver 112 supplies the signal of the first received wave R1 to the first distance information calculator 113 . The first rangefinder 110 may include a plurality of first receivers 112 .
 第1距離情報算出部113は、第1受信波R1に基づいて第1位相情報を含む第1距離情報を算出する。第1位相情報を含む第1距離情報については後述する。第1距離情報算出部113は第1受信波R1及び第1送信波T1に基づいて第1位相情報を含む第1距離情報を算出してもよい。第1距離情報算出部113は、算出した第1位相情報を含む第1距離情報を第1位相変化算出部114に供給する。 The first distance information calculator 113 calculates first distance information including first phase information based on the first received wave R1. The first distance information including the first phase information will be described later. The first distance information calculator 113 may calculate the first distance information including the first phase information based on the first received wave R1 and the first transmitted wave T1. The first distance information calculator 113 supplies first distance information including the calculated first phase information to the first phase change calculator 114 .
 第1位相変化算出部114は、自動車150の移動に応じて発生する、第1位相情報の位相変化を算出する。第1位相情報の位相変化については後述する。第1位相変化算出部114は、算出した第1位相情報の位相変化をキャリブレーション処理装置130に供給する。 The first phase change calculator 114 calculates the phase change of the first phase information that occurs as the automobile 150 moves. A phase change of the first phase information will be described later. The first phase change calculator 114 supplies the calculated phase change of the first phase information to the calibration processing device 130 .
 第1測距装置110はこのような構成を有する。第1測距装置110はミリ波レーダであり、第1送信波T1及び第1受信波R1はミリ波、第1送信部111及び第1受信部112はミリ波帯アンテナとすることができる。また、第1測距装置110はミリ波レーダに限られず、上記第1測距装置110の構成を実現できるものであればよい。具体的には第1測距装置110は、超音波を用いる測距装置やLIDAR(Light Detection and Ranging)であってもよい。 The first rangefinder 110 has such a configuration. The first rangefinder 110 can be a millimeter wave radar, the first transmission wave T1 and the first reception wave R1 can be millimeter waves, and the first transmission unit 111 and the first reception unit 112 can be millimeter waveband antennas. Further, the first rangefinder 110 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the first rangefinder 110 described above. Specifically, the first rangefinder 110 may be a rangefinder using ultrasonic waves or a LIDAR (Light Detection and Ranging).
 第2測距装置120は、第2送信部121、第2受信部122、第2距離情報算出部123及び第2位相変化算出部124を備え、第2測距装置120に対する対象物Pの距離を測定する。 The second rangefinder 120 includes a second transmitter 121, a second receiver 122, a second distance information calculator 123, and a second phase change calculator 124. to measure.
 第2送信部121は、自動車150に設置され、送信波を送信する。以下、図1及び図2に示すように、第2送信部121から送信される送信波を第2送信波T2とする。第2送信部121は第2送信波T2の送信と共に第2送信波T1の信号を第2距離情報算出部123に供給する。 The second transmission unit 121 is installed in the automobile 150 and transmits transmission waves. Hereinafter, as shown in FIGS. 1 and 2, the transmission wave transmitted from the second transmitter 121 is referred to as a second transmission wave T2. The second transmission unit 121 supplies the signal of the second transmission wave T1 to the second distance information calculation unit 123 together with the transmission of the second transmission wave T2.
 第2受信部122は、自動車150に設置され、第2送信波T2が対象物Pによって反射された受信波を受信する。以下、図2に示すように、第2送信波T2が対象物Pによって反射され、第2受信部122によって受信される受信波を第2受信波R2とする。第2受信部122は第2受信波R2の信号を第2距離情報算出部123に供給する。第2測距装置120は複数の第2受信部122を備えるものであってもよい。 The second receiving unit 122 is installed in the automobile 150 and receives the received wave that is the second transmitted wave T2 reflected by the target object P. Hereinafter, as shown in FIG. 2, the second transmitted wave T2 is reflected by the object P and the received wave received by the second receiver 122 is referred to as a second received wave R2. The second receiver 122 supplies the signal of the second received wave R2 to the second distance information calculator 123 . The second range finder 120 may have a plurality of second receivers 122 .
 第2距離情報算出部123は、第2受信波R2に基づいて第2位相情報を含む第2距離情報を算出する。第2位相情報を含む第2距離情報については後述する。第2距離情報算出部123は第2受信波R2及び第2送信波T2に基づいて第2位相情報を含む第2距離情報を算出してもよい。第2距離情報算出部123は、算出した第2位相情報を含む第2距離情報を第2位相変化算出部124に供給する。 The second distance information calculator 123 calculates second distance information including second phase information based on the second received wave R2. The second distance information including the second phase information will be described later. The second distance information calculator 123 may calculate the second distance information including the second phase information based on the second received wave R2 and the second transmitted wave T2. The second distance information calculator 123 supplies the second distance information including the calculated second phase information to the second phase change calculator 124 .
 第2位相変化算出部124は、自動車150の移動に応じて発生する、第2位相情報の位相変化を算出する。第2位相情報の位相変化については後述する。第2位相変化算出部124は、算出した第2位相情報の位相変化をキャリブレーション処理装置130に供給する。 The second phase change calculator 124 calculates the phase change of the second phase information that occurs as the automobile 150 moves. A phase change of the second phase information will be described later. The second phase change calculator 124 supplies the calculated phase change of the second phase information to the calibration processing device 130 .
 第2測距装置120はこのような構成を有する。第2測距装置120はミリ波レーダであり、第2送信波T2及び第2受信波R2はミリ波、第2送信部121及び第2受信部122はミリ波帯アンテナとすることができる。また、第2測距装置120はミリ波レーダに限られず、上記第2測距装置120の構成を実現できるものであればよい。具体的には第2測距装置120は、超音波を用いる測距装置やLIDARであってもよい。 The second rangefinder 120 has such a configuration. The second rangefinder 120 can be a millimeter wave radar, the second transmission wave T2 and the second reception wave R2 can be millimeter waves, and the second transmission unit 121 and the second reception unit 122 can be millimeter wave band antennas. Further, the second rangefinder 120 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the second rangefinder 120 described above. Specifically, the second range finder 120 may be a range finder using ultrasonic waves or a LIDAR.
 キャリブレーション処理装置130はキャリブレーション処理部131を備える。キャリブレーション処理部131は、第1位相情報の位相変化と第2の位相情報の位相変化に応じて、第1測距装置110と第2測距装置120の間のキャリブレーション処理を実行する。具体的にはキャリブレーション処理部131は、対象物Pに対する第1受信部112の相対位置と対象物Pに対する第2受信部122の相対位置を特定する。さらに、キャリブレーション処理部131はこれらの相対位置を用いて第1測距装置110と第2測距装置120の相対位置及び相対角度を特定する。キャリブレーション処理部131は第1測距装置110と第2測距装置120の相対位置及び相対角度を用いて第1測距装置110と第2測距装置120のキャリブレーション処理を行うことができる。 The calibration processing device 130 includes a calibration processing section 131 . The calibration processing unit 131 performs calibration processing between the first rangefinder 110 and the second rangefinder 120 according to the phase change of the first phase information and the phase change of the second phase information. Specifically, the calibration processing unit 131 identifies the relative position of the first receiving unit 112 with respect to the object P and the relative position of the second receiving unit 122 with respect to the object P. FIG. Furthermore, the calibration processing unit 131 uses these relative positions to identify the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 . The calibration processing unit 131 can perform calibration processing of the first rangefinder 110 and the second rangefinder 120 using the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 . .
 キャリブレーションシステム100は以上のような構成を有する。なお、キャリブレーションシステム100の構成のうち、第1送信部111、第1受信部112、第2送信部121及び第2受信部122を除く構成は情報処理装置によって実現することが可能な機能的構成である。図1において、この情報処理装置161を示す。同図に示すように、情報処理装置161は、第1距離情報算出部113、第1位相変化算出部114、第2距離情報算出部123、第2位相変化算出部124及びキャリブレーション処理部131を備える。 The calibration system 100 has the configuration as described above. Note that, of the configuration of the calibration system 100, the configuration excluding the first transmission unit 111, the first reception unit 112, the second transmission unit 121, and the second reception unit 122 is a functional unit that can be realized by an information processing device. Configuration. This information processing device 161 is shown in FIG. As shown in the figure, the information processing device 161 includes a first distance information calculator 113, a first phase change calculator 114, a second distance information calculator 123, a second phase change calculator 124, and a calibration processor 131. Prepare.
 [キャリブレーションシステムによる位置検出について]
 キャリブレーションシステム100による対象物Pの位置検出について説明する。図2に示すように、第1測距装置110では第1送信部111が対象物Pに対して第1送信波T1を送信し、第1受信部112が第1受信波R1を受信する。図3は、第1送信波T1と第1受信波R1の時刻と周波数の関係を示すグラフである。同図に示すように、第1送信波T1は時刻によって周波数が異なる波であり、周波数連続変調波(FMCW:Frequency Modulated Continuous Wave)と呼ばれる波である。第1受信波R1は、第1送信波T1が対象物Pによって反射された波であるので、図3に示すように、第1送信波T1から一定の時間tだけ遅延した波である。
[Position detection by calibration system]
Position detection of the target object P by the calibration system 100 will be described. As shown in FIG. 2, in the first rangefinder 110, the first transmitter 111 transmits the first transmitted wave T1 to the target P, and the first receiver 112 receives the first received wave R1. FIG. 3 is a graph showing the relationship between the time and frequency of the first transmission wave T1 and the first reception wave R1. As shown in the figure, the first transmission wave T1 is a wave whose frequency varies with time, and is a wave called a frequency modulated continuous wave (FMCW). The first received wave R1 is a wave in which the first transmitted wave T1 is reflected by the object P, so as shown in FIG. 3, it is delayed from the first transmitted wave T1 by a certain time t.
 第1距離情報算出部113は、第1送信部111から第1送信波T1を取得し、第1受信部112から第1受信波R1を取得すると、第1送信波T1と第1受信波R1の差分を算出する。図4は、第1送信波T1と第1受信波R1の差分を示すグラフである。第1送信波T1と第1受信波R1の差分は中間周波数(IF:Intermediate Frequency)信号と呼ばれ、一定の周波数を有する正弦波となる。この周波数(以下、IF周波数)は第1測距装置110と対象物Pの距離に応じた周波数となるため、IF周波数から第1測距装置110と対象物Pの距離を算出可能である。以下このIF周波数を「第1位相情報」とし、IF周波数から算出される第1測距装置110と対象物Pの距離を「第1距離情報」とする。 The first distance information calculation unit 113 acquires the first transmission wave T1 from the first transmission unit 111 and acquires the first reception wave R1 from the first reception unit 112. Then, the first transmission wave T1 and the first reception wave R1 are obtained. Calculate the difference between FIG. 4 is a graph showing the difference between the first transmission wave T1 and the first reception wave R1. A difference between the first transmission wave T1 and the first reception wave R1 is called an intermediate frequency (IF) signal, which is a sinusoidal wave having a constant frequency. Since this frequency (hereinafter referred to as IF frequency) corresponds to the distance between the first rangefinder 110 and the object P, the distance between the first rangefinder 110 and the object P can be calculated from the IF frequency. Hereinafter, this IF frequency will be referred to as "first phase information", and the distance between the first distance measuring device 110 and the object P calculated from the IF frequency will be referred to as "first distance information".
 第2測距装置120においても同様に、第2距離情報算出部123は、第2送信部121から取得した第2送信波T2と第2受信部122から取得した第2受信波R2の差分(IF信号)を算出し、IF周波数から第2測距装置120と対象物Pの距離を算出する。以下このIF周波数を「第2位相情報」とし、IF周波数から算出される第2測距装置120と対象物Pの距離を「第2距離情報」とする。 Similarly, in the second rangefinder 120, the second distance information calculator 123 calculates the difference ( IF signal), and the distance between the second rangefinder 120 and the object P is calculated from the IF frequency. Hereinafter, this IF frequency will be referred to as "second phase information", and the distance between the second distance measuring device 120 and the object P calculated from the IF frequency will be referred to as "second distance information".
 さらに、キャリブレーションシステム100では第1距離情報と第2距離情報に基づいて、第1測距装置110及び第2測距装置120のそれぞれに対する対象物Pの角度を特定することができる。これにより、第1測距装置110及び第2測距装置120に対する対象物Pの位置が検出され、即ち自動車150に対する対象物Pの位置が検出される。 Furthermore, the calibration system 100 can identify the angle of the object P with respect to each of the first rangefinder 110 and the second rangefinder 120 based on the first distance information and the second distance information. Thereby, the position of the object P with respect to the first rangefinder 110 and the second rangefinder 120 is detected, that is, the position of the object P with respect to the vehicle 150 is detected.
 キャリブレーションシステム100では、以上のようにして対象物Pの位置検出が実行される。上記の測定原理から、対象物Pの位置を正確に検出するためには、第1測距装置110と第2測距装置120の相対位置及び相対角度が正確に特定されている必要がある。以下、第1測距装置110と第2測距装置120の相対位置及び相対角度の特定及びキャリブレーションについて説明する。 In the calibration system 100, position detection of the object P is executed as described above. Based on the measurement principle described above, in order to accurately detect the position of the object P, the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 must be specified accurately. Identification and calibration of the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 will be described below.
 なお、上記説明において第1距離情報算出部113は、第1送信波T1と第1受信波R1に基づいて第1位相情報を含む第1距離情報を算出するとしたが、対象物Pが電波を発信し、その情報を取得可能な場合等には、第1受信波R1のみに基づいて第1位相情報を含む第1距離情報を算出することも可能である。第2距離情報算出部123も同様に、第2受信波R2のみに基づいて第2位相情報を含む第2距離情報を算出することが可能である。 In the above description, the first distance information calculation unit 113 calculates the first distance information including the first phase information based on the first transmission wave T1 and the first reception wave R1. It is also possible to calculate the first distance information including the first phase information based only on the first received wave R1, if the information can be obtained by transmitting the signal. Similarly, the second distance information calculator 123 can also calculate the second distance information including the second phase information based only on the second received wave R2.
 [キャリブレーションシステムによるキャリブレーション処理]
 キャリブレーションシステム100による、第1測距装置110と第2測距装置120のキャリブレーション処理について説明する。
[Calibration processing by the calibration system]
A calibration process of the first rangefinder 110 and the second rangefinder 120 by the calibration system 100 will be described.
 キャリブレーションシステム100は第1測距装置110と第2測距装置120に対して、6軸を対象としてキャリブレーション処理を行うことができる。図5はこの6軸を示す模式図であり、第1測距装置110及び第2測距装置120についての相対位置(X軸/Y軸/Z軸)と相対角度(ピッチ/ヨー/ロール)を示す。 The calibration system 100 can perform calibration processing on the first rangefinder 110 and the second rangefinder 120 with respect to six axes. FIG. 5 is a schematic diagram showing these six axes, relative positions (X-axis/Y-axis/Z-axis) and relative angles (pitch/yaw/roll) of the first rangefinder 110 and the second rangefinder 120. indicates
 キャリブレーションシステム100では、自動車150が移動することによる第1受信波R1と第2受信波R2の位相変化を用いてキャリブレーション処理を実行する。図6は、自動車150の移動を示す模式図であり、自動車150の移動を矢印Mで示す。自動車150の移動は等速直線運動とする。以下、自動車150の移動方向をY軸方向とし、Y軸方向に直交する方向をX軸方向とする。X軸方向及びY軸方向は自動車150の載置面に平行な方向であり、この載置面に垂直な方向をZ軸方向とする。 In the calibration system 100, calibration processing is performed using the phase change of the first received wave R1 and the second received wave R2 caused by the movement of the automobile 150. FIG. 6 is a schematic diagram showing movement of the automobile 150, and the movement of the automobile 150 is indicated by an arrow M. As shown in FIG. The movement of the automobile 150 is assumed to be uniform linear motion. Hereinafter, the moving direction of the automobile 150 is defined as the Y-axis direction, and the direction orthogonal to the Y-axis direction is defined as the X-axis direction. The X-axis direction and the Y-axis direction are parallel to the mounting surface of the automobile 150, and the direction perpendicular to the mounting surface is the Z-axis direction.
 キャリブレーションシステム100では、自動車150を移動させながら第1送信部111が第1送信波T1を対象物Pに送信し、第1受信部112が第1受信波R1を受信する。また、第2送信部121が第2送信波T2を対象物Pに送信し、第2受信部122が第2受信波R2を受信する。図7は、第1送信部111、第1受信部112、第2送信部121及び第2受信部122と対象物Pの位置関係を示す模式図である。 In the calibration system 100, the first transmission unit 111 transmits the first transmission wave T1 to the object P while the automobile 150 is moving, and the first reception unit 112 receives the first reception wave R1. Also, the second transmitter 121 transmits the second transmitted wave T2 to the object P, and the second receiver 122 receives the second received wave R2. FIG. 7 is a schematic diagram showing the positional relationship between the first transmitter 111, the first receiver 112, the second transmitter 121, the second receiver 122, and the target object P. As shown in FIG.
 同図において、第1送信部111及び第1受信部112の位置を位置S1(S1、S1、S1…)として示し、第2送信部121及び第2受信部122の位置を位置S2(S2、S2、S2…)として示す。自動車150の移動開始時の第1送信部111及び第1受信部112の位置を位置S1とし、自動車150の移動開始時の第2送信部121及び第2受信部122の位置を位置S2とする。 In the figure, the positions of the first transmitter 111 and the first receiver 112 are shown as position S1 (S1 1 , S1 2 , S1 3 . . . ), and the positions of the second transmitter 121 and the second receiver 122 are shown as position S2. (S2 1 , S2 2 , S2 3 . . . ). The positions of the first transmitter 111 and the first receiver 112 when the automobile 150 starts to move are assumed to be the positions S1-1 , and the positions of the second transmitter 121 and the second receiver 122 when the automobile 150 starts to move are assumed to be the positions S2-1 . and
 自動車150の移動開始から一定時間が経過すると、自動車150の移動により第1送信部111及び第1受信部112は位置S1に移動し、第2送信部121及び第2受信部122は位置S2に移動する。以下、同様に第1送信部111及び第1受信部112は位置S1、S1、S1…と移動し、第2送信部121及び第2受信部122は位置S21、S2、S2…と移動する。第1送信部111は位置S1の各位置で第1送信波T1を送信し、第2送信部121は位置S2の各位置で第2送信波T1を送信する。 After a certain period of time has passed since the automobile 150 started to move, the first transmitter 111 and the first receiver 112 move to positions S12 due to the movement of the automobile 150, and the second transmitter 121 and the second receiver 122 move to the positions S2. Move to 2 . Thereafter, similarly , the first transmitter 111 and the first receiver 112 move to positions S1 3 , S1 4 , S1 5 . . . 5 … and move. The first transmitter 111 transmits the first transmission wave T1 at each position of the position S1, and the second transmitter 121 transmits the second transmission wave T1 at each position of the position S2.
 なお、各位置S1間の距離と各位置S2間の距離は、第1送信波T1及び第2送信波T2の波長の1/4以下が好適である。この距離とすることにより、第1受信波R1及び第2受信波R2に虚像が発生せず、対象物Pに対する第1測距装置110及び第2測距装置120の相対位置が一意に定まるためである。ただし、第1送信波T1及び第2送信波T2の波長や自動車150の移動速度によっては上記条件を満たすことが難しい場合もあるため、条件付けや計算による虚像の抑制、または除去が可能であれば位置S1間及び位置S2間の距離を上記1/4波長を超える距離とすることも可能である。 The distance between the positions S1 and the distance between the positions S2 are preferably 1/4 or less of the wavelengths of the first transmission wave T1 and the second transmission wave T2. By setting this distance, a virtual image is not generated in the first received wave R1 and the second received wave R2, and the relative positions of the first rangefinder 110 and the second rangefinder 120 with respect to the object P are uniquely determined. is. However, depending on the wavelengths of the first transmission wave T1 and the second transmission wave T2 and the moving speed of the automobile 150, it may be difficult to satisfy the above conditions. It is also possible to set the distance between the positions S1 and the distance between the positions S2 to exceed the quarter wavelength.
 第1距離情報算出部113は、各位置S1における第1送信波T1及び第1受信波R1に基づいて、第1位相情報を含む第1距離情報を算出する。上述のように第1位相情報は第1送信波T1と第1受信波R1の差分であるIF周波数であり(図4参照)、第1距離情報は第1測距装置110と対象物Pの距離である。また、第2距離情報算出部123は、各位置S2における第2送信波T2及び第2受信波R2に基づいて、第2位相情報を含む第2距離情報を算出する。上述のように第2位相情報は第2送信波T2と第2受信波R2の差分であるIF周波数であり(図4参照)、第2距離情報は第2測距装置120と対象物Pの距離である。 The first distance information calculation unit 113 calculates first distance information including first phase information based on the first transmission wave T1 and the first reception wave R1 at each position S1. As described above, the first phase information is the IF frequency which is the difference between the first transmission wave T1 and the first reception wave R1 (see FIG. 4), and the first distance information is the distance between the first distance measuring device 110 and the object P. Distance. The second distance information calculator 123 also calculates second distance information including second phase information based on the second transmission wave T2 and the second reception wave R2 at each position S2. As described above, the second phase information is the IF frequency which is the difference between the second transmission wave T2 and the second reception wave R2 (see FIG. 4), and the second distance information is the difference between the second rangefinder 120 and the object P. Distance.
 第1位相変化算出部114は、第1距離情報算出部113によって算出された第1位相情報の位相変化を算出する。図8は、第1送信部111及び第1受信部112と対象物Pの位置関係と、第1位相情報の位相変化イメージを示す模式図である。位相変化イメージは、第1送信部111及び第1受信部112が所定の位置S1の近傍に位置する場合、位相変化が小さく、第1送信部111及び第1受信部112が位置S1から離間するにしたがって位相変化が大きくなることを示している。これは、位置S1は対象物Pに近接しているため、位置S1の近傍における自動車150の移動による位相への影響が小さく、位置S1から離間すると自動車150の移動による位相への影響が大きくなることを意味する。 The first phase change calculator 114 calculates the phase change of the first phase information calculated by the first distance information calculator 113 . FIG. 8 is a schematic diagram showing the positional relationship between the first transmitting section 111 and the first receiving section 112 and the object P, and a phase change image of the first phase information. In the phase change image, when the first transmitter 111 and the first receiver 112 are located near the predetermined position S1 n , the phase change is small, and the first transmitter 111 and the first receiver 112 are located from the position S1 n. It shows that the phase change increases as the distance increases. This is because the position S1 n is close to the target object P, so that the movement of the car 150 in the vicinity of the position S1 n has little effect on the phase, and the movement of the car 150 away from the position S1 n has a phase effect means that will grow.
 第2位相変化算出部124は、第2距離情報算出部123によって算出された第2位相情報の位相変化を算出する。図9は、第2送信部121及び第2受信部122と対象物Pの位置関係と、第2位相情報の位相変化イメージを示す模式図である。位相変化イメージは、第2送信部121及び第2受信部122が所定の位置S2の近傍に位置する場合、位相変化が小さく、第2送信部121及び第2受信部122が位置S2から離間するにしたがって位相変化が大きくなることを示している。これは、位置S2は対象物Pに近接しているため、位置S2の近傍における自動車150の移動による位相への影響が小さく、位置S2から離間すると自動車150の移動による位相への影響が大きくなることを意味する。 The second phase change calculator 124 calculates the phase change of the second phase information calculated by the second distance information calculator 123 . FIG. 9 is a schematic diagram showing the positional relationship between the second transmitting section 121 and the second receiving section 122 and the object P, and a phase change image of the second phase information. In the phase change image, when the second transmitter 121 and the second receiver 122 are located near the predetermined position S2n , the phase change is small, and the second transmitter 121 and the second receiver 122 are located near the position S2n . It shows that the phase change increases as the distance increases. This is because the position S2 n is close to the object P, so the movement of the car 150 in the vicinity of the position S2 n has little effect on the phase, and the movement of the car 150 away from the position S2 n has a phase effect means that will grow.
 キャリブレーション処理部131は、第1位相情報の位相変化に応じて、対象物Pに対する第1受信部112の相対位置を特定する。キャリブレーション処理部131は第1位相情報の位相変化と、第1受信部112に対して任意の距離及び角度に対象物Pが位置する場合の位相変化の理想値を畳み込むことで第1受信波R1に対して合成開口処理を実行する。この合成開口処理は、移動する第1受信部112を仮想的な大径レーダとして扱う合成開口レーダ(SAR:Synthetic Aperture Radar)と同様の計算処理である。 The calibration processing unit 131 identifies the relative position of the first receiving unit 112 with respect to the object P according to the phase change of the first phase information. The calibration processing unit 131 convolves the phase change of the first phase information with the ideal value of the phase change when the object P is positioned at an arbitrary distance and angle with respect to the first receiving unit 112, thereby obtaining the first received wave. Synthetic aperture processing is performed on R1. This synthetic aperture processing is calculation processing similar to synthetic aperture radar (SAR) that treats the moving first receiving unit 112 as a virtual large-diameter radar.
 図10は合成開口処理の処理結果を示す模式図である。同図に示すように、対象物Pの位置に対する第1受信部112の相対位置L1が合成開口処理結果のピークとして算出される。なお、キャリブレーション処理部131は自動車150の移動速度を自動車150から取得し、合成開口処理において自動車150の移動による第1受信波R1のドップラー成分を補正することができる。 FIG. 10 is a schematic diagram showing the processing result of the synthetic aperture processing. As shown in the figure, the relative position L A 1 of the first receiver 112 with respect to the position of the object P is calculated as the peak of the synthetic aperture processing result. The calibration processing unit 131 can acquire the moving speed of the vehicle 150 from the vehicle 150 and correct the Doppler component of the first received wave R1 due to the movement of the vehicle 150 in the synthetic aperture processing.
 キャリブレーション処理部131は、第1測距装置110が備える第1受信部112毎に対象物Pと第1受信部112の相対位置を算出することにより、対象物Pに対する第1測距装置110の相対位置L1(図12参照)及び相対角度A1(図13参照)を算出することができる。なお、相対位置L1は、第1測距装置110が1つの第1受信部112を備える場合でも算出可能である。一方、相対角度A1は、第1測距装置110が複数の第1受信部112を備える場合に、各第1受信部112と対象物Pの距離を用いて算出可能である。 The calibration processing unit 131 calculates the relative positions of the object P and the first receiving unit 112 for each of the first receiving units 112 included in the first ranging device 110, so that the first ranging device 110 relative to the object P , the relative position L S 1 (see FIG. 12) and the relative angle A S 1 (see FIG. 13) can be calculated. Note that the relative position L S 1 can be calculated even when the first rangefinder 110 includes one first receiver 112 . On the other hand, the relative angle A S 1 can be calculated using the distance between each first receiver 112 and the object P when the first ranging device 110 includes a plurality of first receivers 112 .
 また、キャリブレーション処理部131は、第2位相情報の位相変化に応じて、対象物Pに対する第2受信部112の相対位置を特定する。キャリブレーション処理部131は第2位相情報の位相変化と、第2受信部122に対して任意の距離及び角度に対象物Pが位置する場合の位相変化の理想値を畳み込むことで第2受信波R2に対して合成開口処理を実行する。この合成開口処理は、移動する第1受信部122を仮想的な大径レーダとして扱う合成開口レーダ(SAR)と同様の計算処理である。 Also, the calibration processing unit 131 identifies the relative position of the second receiving unit 112 with respect to the object P according to the phase change of the second phase information. The calibration processing unit 131 convolves the phase change of the second phase information with the ideal value of the phase change when the object P is positioned at an arbitrary distance and angle with respect to the second receiving unit 122, thereby obtaining the second received wave. Perform synthetic aperture processing on R2. This synthetic aperture processing is computational processing similar to synthetic aperture radar (SAR) that treats the moving first receiving unit 122 as a virtual large-diameter radar.
 図11は合成開口処理の処理結果を示す模式図である。同図に示すように、対象物Pの位置に対する第2受信部112の相対位置L2が合成開口処理結果のピークとして算出される。なお、キャリブレーション処理部131は自動車150の移動速度を自動車150から取得し、合成開口処理において自動車150の移動による第2受信波R2のドップラー成分を補正することができる。 FIG. 11 is a schematic diagram showing the processing result of the synthetic aperture processing. As shown in the figure, the relative position L A 2 of the second receiver 112 with respect to the position of the object P is calculated as the peak of the synthetic aperture processing result. Note that the calibration processing unit 131 can acquire the moving speed of the vehicle 150 from the vehicle 150 and correct the Doppler component of the second received wave R2 due to the movement of the vehicle 150 in synthetic aperture processing.
 キャリブレーション処理部131は、第2測距装置120が備える第2受信部122毎に対象物Pと第2受信部122の相対位置を算出することにより、対象物Pに対する第2測距装置120の相対位置L2(図12参照)及び相対角度A2(図13参照)を算出することができる。なお、相対位置L2は、第2測距装置120が1つの第2受信部122を備える場合でも算出可能である。一方、相対角度A2は、第2測距装置120が複数の第2受信部122を備える場合に、各第2受信部122と対象物Pの距離を用いて算出可能である。 The calibration processing unit 131 calculates the relative positions of the object P and the second receiving unit 122 for each of the second receiving units 122 included in the second ranging device 120, so that the second ranging device 120 with respect to the object P , the relative position L S 2 (see FIG. 12) and the relative angle A S 2 (see FIG. 13) can be calculated. Note that the relative position L S 2 can be calculated even when the second rangefinder 120 includes one second receiver 122 . On the other hand, the relative angle A S 2 can be calculated using the distance between each second receiver 122 and the object P when the second rangefinder 120 includes a plurality of second receivers 122 .
 キャリブレーション処理部131は、対象物Pに対する第1測距装置110の相対位置と、対象物Pに対する第2測距装置120の相対位置に基づいて、第1測距装置110と第2測距装置120の相対位置を特定することができる。図12は、第1測距装置110と第2測距装置120の相対位置の特定方法を示す模式図である。同図に示すように、キャリブレーション処理部131は、対象物Pに対する第1測距装置110の相対位置L1と対象物Pに対する第2測距装置120の相対位置L2を、対象物Pの位置を基準として変換し、第1測距装置110と第2測距装置120の相対位置L3を算出することができる。 Based on the relative position of the first rangefinder 110 with respect to the target P and the relative position of the second rangefinder 120 with respect to the target P, the calibration processing unit 131 performs calibration of the first rangefinder 110 and the second rangefinder. A relative position of the device 120 can be identified. 12A and 12B are schematic diagrams showing a method of specifying the relative positions of the first rangefinder 110 and the second rangefinder 120. FIG. As shown in the figure, the calibration processing unit 131 converts the relative position L S 1 of the first rangefinder 110 with respect to the target P and the relative position L S 2 of the second rangefinder 120 with respect to the target P to the target. By converting the position of the object P as a reference, the relative position L S 3 between the first rangefinder 110 and the second rangefinder 120 can be calculated.
 さらに、キャリブレーション処理部131は、対象物Pに対する第1測距装置110の相対角度と、対象物Pに対する第2測距装置120の相対角度に基づいて、第1測距装置110と第2測距装置120の相対角度を特定することができる。図13は、第1測距装置110と第2測距装置120の相対角度の特定方法を示す模式図である。同図に示すように、キャリブレーション処理部131は、対象物Pに対する第1測距装置110の相対角度A1と、対象物Pに対する第2測距装置120の相対角度A2を、対象物Pの方向を基準として変換し、第1測距装置110と第2測距装置120の相対角度A3を算出することができる。 Furthermore, based on the relative angle of the first rangefinder 110 with respect to the object P and the relative angle of the second rangefinder 120 with respect to the object P, the calibration processing unit 131 A relative angle of the rangefinder 120 can be identified. 13A and 13B are schematic diagrams showing a method of specifying the relative angle between the first rangefinder 110 and the second rangefinder 120. FIG. As shown in the figure, the calibration processing unit 131 calculates the relative angle A S 1 of the first rangefinder 110 to the object P and the relative angle A S 2 of the second rangefinder 120 to the object P as follows: By converting the direction of the object P as a reference, the relative angle A S 3 between the first rangefinder 110 and the second rangefinder 120 can be calculated.
 このようにしてキャリブレーション処理部131は、第1測距装置110と第2測距装置120の相対位置(X軸/Y軸/Z軸(図5参照))と相対角度(ピッチ/ヨー/ロール(図5参照))を特定することができる。キャリブレーション処理部131は第1測距装置110と第2測距装置120の相対位置及び相対角度を用いて、第1測距装置110及び第2測距装置120の測定結果にキャリブレーション処理を実行することができる。 In this way, the calibration processing unit 131 calculates the relative positions (X-axis/Y-axis/Z-axis (see FIG. 5)) and relative angles (pitch/yaw/ role (see FIG. 5)) can be specified. The calibration processing unit 131 performs calibration processing on the measurement results of the first rangefinder 110 and the second rangefinder 120 using the relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 . can be executed.
 図14は、キャリブレーションシステム100によるキャリブレーション処理を示すフローチャートである。キャリブレーション処理が開始されると、図6に示すように自動車150の移動が開始される(St101)。続いて、キャリブレーション処理部131は対象物Pを選定する(St102)。キャリブレーション処理部131は、第1受信部112及び第2受信部122の受信結果に基づいて対象物Pを選定することができ、第1受信部112及び第2受信部122の受信可能範囲に存在する物体のうち、ポイントターゲットとして近似できる反射面積を持つ物体を対象物Pとして選定することができる。 FIG. 14 is a flowchart showing calibration processing by the calibration system 100. FIG. When the calibration process is started, movement of the automobile 150 is started as shown in FIG. 6 (St101). Subsequently, the calibration processing unit 131 selects the target object P (St102). The calibration processing unit 131 can select the target object P based on the reception results of the first reception unit 112 and the second reception unit 122, and is within the receivable range of the first reception unit 112 and the second reception unit 122 Among existing objects, an object having a reflection area that can be approximated as a point target can be selected as the object P. FIG.
 続いて、第1送信部111は第1送信波T1を送信し、第2送信部121は第2送信波T2を送信する。第1受信部112は、第1送信波T1が対象物Pで反射された第1受信波R1を受信し、第2受信部122は、第2送信波T2が対象物Pで反射された第2受信波R2を受信する(St103)。さらに、自動車150が移動する(St104)と、キャリブレーション処理部131は、X軸、Y軸及びZ軸の各距離及び各角度毎に位相変化(図8及び図9参照)の理論値を算出する(St105)。 Subsequently, the first transmitter 111 transmits the first transmission wave T1, and the second transmitter 121 transmits the second transmission wave T2. The first receiving unit 112 receives the first received wave R1 that is the first transmitted wave T1 reflected by the object P, and the second receiving unit 122 receives the second transmitted wave T2 that is reflected by the object P. 2 A received wave R2 is received (St103). Further, when the automobile 150 moves (St104), the calibration processing unit 131 calculates the theoretical value of the phase change (see FIGS. 8 and 9) for each distance and each angle of the X-, Y-, and Z-axes. (St105).
 また、キャリブレーション処理部131は、自動車150から移動速度を取得し、自動車150の移動による位相変化の補正値を算出する(St106)。続いて、自動車150の移動距離が指定値以上の場合(St107;Yes)、第1距離情報算出部113が第1受信波R1から第1距離情報を算出し、第2距離情報算出部123が第2受信波R2から第2距離情報を算出する(St108)。さらに、第1位相変化算出部114が第1距離情報に含まれる第1位相情報の位相変化(図8参照)を算出し、第2位相変化算出部124が第2距離情報に含まれる第2位相情報の位相変化(図9参照)を算出する(St109)。なお、自動車150の移動距離が指定値未満の場合(St107;No)、第1受信波R1及び第2受信波R2の受信ステップ(St103)から位相変化の補正値算出ステップ(St106)が繰り返し実行される。 Also, the calibration processing unit 131 acquires the moving speed from the automobile 150 and calculates a correction value for the phase change caused by the movement of the automobile 150 (St106). Subsequently, when the moving distance of the automobile 150 is equal to or greater than the designated value (St107; Yes), the first distance information calculation unit 113 calculates the first distance information from the first received wave R1, and the second distance information calculation unit 123 Second distance information is calculated from the second received wave R2 (St108). Further, the first phase change calculator 114 calculates the phase change (see FIG. 8) of the first phase information included in the first distance information, and the second phase change calculator 124 calculates the phase change of the second phase information included in the second distance information. A phase change of the phase information (see FIG. 9) is calculated (St109). When the moving distance of the automobile 150 is less than the specified value (St107; No), the steps from the step of receiving the first received wave R1 and the second received wave R2 (St103) to the step of calculating the phase change correction value (St106) are repeatedly executed. be done.
 続いて、キャリブレーション処理部131は、合成開口処理を実行(St110)する。本処理によりキャリブレーション処理部131は、対象物Pに対する第1受信部112の相対位置と対象物Pに対する第2受信部122の相対位置を特定する。本処理においてキャリブレーション処理部131は、位相変化の補正値算出ステップ(St106)において算出した補正値を利用することができる。 Subsequently, the calibration processing unit 131 executes synthetic aperture processing (St110). Through this process, the calibration processing unit 131 identifies the relative position of the first receiving unit 112 with respect to the object P and the relative position of the second receiving unit 122 with respect to the object P. FIG. In this process, the calibration processing unit 131 can use the correction value calculated in the phase change correction value calculation step (St106).
 続いて、キャリブレーション処理部131は、対象物Pに対する第1受信部112の相対位置に基づいて、対象物Pに対する第1測距装置110の相対位置及び相対角度を算出する(St111)。また、キャリブレーション処理部131は、対象物Pに対する第2受信部122の相対位置に基づいて、対象物Pに対する第2測距装置120の相対位置及び相対角度を算出する(St111)。 Subsequently, the calibration processing unit 131 calculates the relative position and relative angle of the first distance measuring device 110 with respect to the object P based on the relative position of the first receiving unit 112 with respect to the object P (St111). Also, the calibration processing unit 131 calculates the relative position and the relative angle of the second distance measuring device 120 with respect to the object P based on the relative position of the second receiving unit 122 with respect to the object P (St111).
 続いて、キャリブレーション処理部131は、対象物Pに対する第1測距装置110の相対位置及び相対角度と対象物Pに対する第2測距装置110の相対位置及び相対角度に基づいて、第1測距装置110と第2測距装置120の間の相対位置及び相対角度を算出する(St112)。キャリブレーションシステム100は、第1測距装置110と第2測距装置120の間の相対位置及び相対角度を用いて第1測距装置110と第2測距装置120のキャリブレーション処理を実行することが可能である。 Subsequently, the calibration processing unit 131 performs the first measurement based on the relative position and relative angle of the first rangefinder 110 with respect to the object P and the relative position and relative angle of the second rangefinder 110 with respect to the object P. A relative position and a relative angle between the rangefinder 110 and the second rangefinder 120 are calculated (St112). The calibration system 100 performs calibration processing of the first rangefinder 110 and the second rangefinder 120 using the relative position and relative angle between the first rangefinder 110 and the second rangefinder 120. It is possible.
 なお、上記説明において、キャリブレーション処理部131は、自動車150の移動による位相変化の補正値を算出する(St106)としたが、これは自動車150が一定速度で移動を継続している場合にドップラー成分を補正するためである。自動車150が一定距離移動毎に停止し、停止中に第1送信波T1及び第2送信波T2の送信を行う場合、ドップラー成分が生じないため、本ステップ(St106)は省略することができる。 In the above description, the calibration processing unit 131 calculates the phase change correction value due to the movement of the automobile 150 (St106). This is for correcting the components. If the automobile 150 stops every time it moves a fixed distance and transmits the first transmission wave T1 and the second transmission wave T2 while stopped, this step (St106) can be omitted because the Doppler component does not occur.
 [キャリブレーションシステムによる効果]
 キャリブレーションシステム100では、上記のように対象物Pに対して移動する自動車150において、第1測距装置110及び第2測距装置120の測定結果に基づいて第1測距装置110と第2測距装置120の相対位置及び相対角度を高精度に特定することが可能である。これにより、第1測距装置110及び第2測距装置120の測定結果を組み合わせることで高精度の物体検出が可能となる。
[Effect of calibration system]
In the calibration system 100, in the automobile 150 moving with respect to the object P as described above, the first rangefinder 110 and the second rangefinder 120 are measured based on the measurement results of the first rangefinder 110 and the second rangefinder 120. It is possible to specify the relative position and relative angle of the rangefinder 120 with high accuracy. Accordingly, by combining the measurement results of the first rangefinder 110 and the second rangefinder 120, highly accurate object detection is possible.
 また、キャリブレーションシステム100では第1測距装置110と第2測距装置120の相対位置及び相対角度の特定に対象物Pの位置や地図データといった事前情報を必要としない。したがって、自動車150の製造工場等の決められた場所でなくても、任意の場所でキャリブレーションの実施が可能であり、自動車150の振動や経年劣化により、第1測距装置110と第2測距装置120の位置にずれが生じても、任意の場所でキャリブレーションによる精度の回復が可能である。 In addition, the calibration system 100 does not require prior information such as the position of the object P and map data to specify the relative position and relative angle between the first rangefinder 110 and the second rangefinder 120 . Therefore, even if it is not a predetermined place such as a manufacturing factory of the automobile 150, the calibration can be performed at any place. Even if the position of the distance device 120 deviates, the accuracy can be recovered by calibration at any place.
 [他のセンサとのキャリブレーションについて]
 キャリブレーションシステム100では、第1測距装置110及び第2測距装置120と他のセンサのキャリブレーションを実行することも可能である。図15は第1測距装置110及び第2測距装置120と他のセンサのキャリブレーション方法を示す模式図である。他のセンサの例として撮像装置140を示す。撮像装置140のように、自動車150の移動に伴う位相変化を検出できないセンサの場合、位相変化を利用したキャリブレーションは実行できない。
[About calibration with other sensors]
The calibration system 100 can also calibrate the first rangefinder 110 and the second rangefinder 120 as well as other sensors. FIG. 15 is a schematic diagram showing a method of calibrating the first rangefinder 110, the second rangefinder 120, and other sensors. An imaging device 140 is shown as an example of another sensor. In the case of a sensor such as the imaging device 140 that cannot detect the phase change that accompanies the movement of the automobile 150, calibration using the phase change cannot be executed.
 図15に示すように、自動車150を移動させながら、撮像装置140が対象物Pを撮像し、撮像画像を生成する。対象物Pはチェッカー模様等の既定の表示Qが施されているものが好適である。図15において、撮像装置140から見た対象物Pの方向を線Gで示す。キャリブレーション処理部131は撮像装置140が撮像した撮像画像に対して画像処理を実行し、撮像画像に含まれる表示Q等に基づいて対象物Pに対する撮像装置140の相対位置及び相対角度を算出する。 As shown in FIG. 15, while moving the automobile 150, the imaging device 140 images the object P and generates a captured image. It is preferable that the object P has a predetermined display Q such as a checkered pattern. In FIG. 15, the direction of the object P viewed from the imaging device 140 is indicated by a line G. As shown in FIG. The calibration processing unit 131 performs image processing on the captured image captured by the imaging device 140, and calculates the relative position and relative angle of the imaging device 140 with respect to the object P based on the display Q and the like included in the captured image. .
 対象物Pに対する第1測距装置110及び第2測距装置120の相対位置及び相対角度は上記のように位相変化を利用して特定可能である。したがって、キャリブレーション処理部131は、対象物Pに対する撮像装置140、第1測距装置110及び第2測距装置120の相対位置及び相対角度を特定することができ、これら相互間の対位置及び相対角度に基づいてキャリブレーション処理を実行することが可能である。 The relative positions and relative angles of the first rangefinder 110 and the second rangefinder 120 with respect to the object P can be specified using phase changes as described above. Therefore, the calibration processing unit 131 can specify the relative positions and relative angles of the imaging device 140, the first rangefinder 110, and the second rangefinder 120 with respect to the object P, and the paired positions and angles between them. It is possible to perform a calibration process based on relative angles.
 なお、対象物Pの表示Qは一般的に撮像装置のキャリブレーションに使用される2次元のチェッカーボードのように2次元の平面表示ではなく、縞模様のポールのように自動車150の移動方向に対し垂直な方位の距離差分が検出可能なものであれば十分である。これは、撮像装置140を第1測距装置110及び第2測距装置120のような位相変化を検知するセンサと連動して移動させるため、対象物Pとの視差により、2次元の平面表示と同様のデータを得られるためである。 It should be noted that the display Q of the object P is not a two-dimensional planar display like a two-dimensional checkerboard generally used for calibration of an imaging device, but like a striped pole in the moving direction of the automobile 150. On the other hand, it is sufficient if the distance difference in the direction perpendicular to the direction can be detected. Since the imaging device 140 is moved in conjunction with a sensor that detects a phase change such as the first distance measuring device 110 and the second distance measuring device 120, the parallax with respect to the object P allows two-dimensional planar display. This is because similar data can be obtained.
 キャリブレーションシステム100が第1測距装置110及び第2測距装置120に対してキャリブレーション処理を実行可能なセンサは撮像装置に限られず、何らかの手法により対象物Pに対して自己の相対位置及び相対角度を特定可能なセンサであればよい。 Sensors for which the calibration system 100 can perform calibration processing for the first rangefinder 110 and the second rangefinder 120 are not limited to imaging devices. Any sensor that can specify the relative angle may be used.
 [変形例]
 キャリブレーションシステム100の変形例について説明する。上述したキャリブレーションシステム100の構成では単体でX軸、Y軸及びZ軸についての検出が可能な測距装置を例にとっているが、検出可能な座標軸が少ない測距装置間でもキャリブレーションは可能である。その場合にはキャリブレーション対象の軸を測距装置に合わせて減らすことが必要となる。
[Modification]
A modification of the calibration system 100 will be described. In the configuration of the calibration system 100 described above, a distance measuring device capable of detecting the X, Y, and Z axes by itself is taken as an example. be. In that case, it is necessary to reduce the number of axes to be calibrated in accordance with the distance measuring device.
 また、上記説明においてキャリブレーション時の自動車150の移動は等速直線運動としたが、これに限られない。キャリブレーション時の自動車150の移動は第1測距装置110に対する対象物Pの方向と第2測距装置120に対する対象物Pの方向に角度差分が発生し、かつ、第1測距装置110と対象物Pの距離と第2測距装置120と対象物Pの距離に距離差分が発生するものであればよい。 Also, in the above description, the movement of the automobile 150 during calibration is a uniform linear motion, but it is not limited to this. When the automobile 150 moves during calibration, an angle difference occurs between the direction of the object P with respect to the first rangefinder 110 and the direction of the object P with respect to the second rangefinder 120. Any distance difference between the distance of the object P and the distance between the second distance measuring device 120 and the object P may be generated.
 さらに、キャリブレーションシステム100は第1測距装置110と第2測距装置120の2つの測距装置を備えるとしたが、3つ以上の測距装置を備えるものであってもよい。この場合も上記手法により、キャリブレーションシステム100が備える各測距装置の間でキャリブレーションを実行することが可能である。自動車150における測距装置の配置場所も特に限定されず、上記手法が実行可能な配置であればよい。 Furthermore, although the calibration system 100 has two ranging devices, the first ranging device 110 and the second ranging device 120, it may have three or more ranging devices. In this case as well, it is possible to perform calibration between the distance measuring devices provided in the calibration system 100 by the above method. The location of the distance measuring device in the vehicle 150 is not particularly limited as long as the above method can be implemented.
 (第2の実施形態)
 本技術の第2の実施形態に係るキャリブレーションシステムについて説明する。
(Second embodiment)
A calibration system according to a second embodiment of the present technology will be described.
 [キャリブレーションシステムの構成]
 図16は、本実施形態に係るキャリブレーションシステム200の構成を示すブロック図である。同図に示すように、キャリブレーションシステム200は第1測距装置210、第2測距装置220及びキャリブレーション処理装置230を備える。
[Configuration of calibration system]
FIG. 16 is a block diagram showing the configuration of the calibration system 200 according to this embodiment. As shown in the figure, the calibration system 200 comprises a first distance measuring device 210, a second distance measuring device 220 and a calibration processing device 230. FIG.
 キャリブレーションシステム200は、筐体に搭載される。筐体は特に限定されず、移動可能なものであってもよく、移動可能なものでなくてもよい。以下、筐体は自動車であるものとして説明する。図17は自動車250に搭載されたキャリブレーションシステム200を示す模式図である。また、図17には、自動車250の近傍に位置し、第1測距装置210及び第2測距装置220の測定対象物である対象物Pを示す。対象物Pはポイントターゲット(点状の物体)として近似できる反射面積を持つ物体が好適であり、例えば三角コーナーである。 The calibration system 200 is mounted on a housing. The housing is not particularly limited, and may or may not be movable. In the following description, it is assumed that the housing is an automobile. FIG. 17 is a schematic diagram showing a calibration system 200 mounted on an automobile 250. As shown in FIG. FIG. 17 also shows an object P which is located near the automobile 250 and which is the object to be measured by the first rangefinder 210 and the second rangefinder 220 . The object P is preferably an object having a reflecting area that can be approximated as a point target (a point-like object), such as a triangular corner.
 第1測距装置210は、第1送信部211、第1受信部212、第1距離情報算出部213及び第1位相変化算出部214を備え、第1測距装置210に対する対象物Pの距離を測定する。 The first rangefinder 210 includes a first transmitter 211, a first receiver 212, a first distance information calculator 213, and a first phase change calculator 214. to measure.
 第1送信部211は、自動車250に設置され、送信波を送信する。以下、図16及び図17に示すように、第1送信部111から送信される送信波を第1送信波T1とする。第1送信部211は第1送信波T1の送信と共に第1送信波T1の信号を第1距離情報算出部213に供給する。 The first transmission unit 211 is installed in the automobile 250 and transmits transmission waves. Hereinafter, as shown in FIGS. 16 and 17, the transmission wave transmitted from the first transmitter 111 is referred to as a first transmission wave T1. The first transmission unit 211 transmits the first transmission wave T1 and supplies the signal of the first transmission wave T1 to the first distance information calculation unit 213 .
 第1受信部212は、自動車250に設置され、第1送信波T1が対象物Pによって反射された受信波を受信する。以下、図17に示すように、第1送信波T1が対象物Pによって反射され、第1受信部212によって受信される受信波を第1受信波R1とする。第1受信部212は第1受信波R1の信号を第1距離情報算出部213に供給する。第1測距装置210は複数の第1受信部212を備えるものであってもよい。 The first receiving unit 212 is installed in the automobile 250 and receives the reception wave that is the first transmission wave T1 reflected by the target object P. Hereinafter, as shown in FIG. 17, the first transmitted wave T1 is reflected by the object P and the received wave received by the first receiver 212 is referred to as the first received wave R1. The first receiver 212 supplies the signal of the first received wave R1 to the first distance information calculator 213 . The first rangefinder 210 may include a plurality of first receivers 212 .
 第1距離情報算出部213は、第1受信波R1に基づいて第1位相情報を含む第1距離情報を算出する。第1位相情報を含む第1距離情報については後述する。第1距離情報算出部213は第1受信波R1及び第1送信波T1に基づいて第1位相情報を含む第1距離情報を算出してもよい。第1距離情報算出部213は、算出した第1位相情報を含む第1距離情報を第1位相変化算出部214に供給する。 The first distance information calculator 213 calculates first distance information including first phase information based on the first received wave R1. The first distance information including the first phase information will be described later. The first distance information calculator 213 may calculate the first distance information including the first phase information based on the first received wave R1 and the first transmitted wave T1. The first distance information calculator 213 supplies the first distance information including the calculated first phase information to the first phase change calculator 214 .
 第1位相変化算出部214は、対象物Pの移動に応じて発生する、第1位相情報の位相変化を算出する。第1位相情報の位相変化については後述する。第1位相変化算出部214は、算出した第1位相情報の位相変化をキャリブレーション処理装置230に供給する。 The first phase change calculator 214 calculates the phase change of the first phase information that occurs as the object P moves. A phase change of the first phase information will be described later. The first phase change calculator 214 supplies the calculated phase change of the first phase information to the calibration processing device 230 .
 第1測距装置210はこのような構成を有する。第1測距装置210はミリ波レーダであり、第1送信波T1及び第1受信波R1はミリ波、第1送信部211及び第1受信部212はミリ波帯アンテナとすることができる。また、第1測距装置210はミリ波レーダに限られず、上記第1測距装置210の構成を実現できるものであればよい。具体的には第1測距装置210は、超音波を用いる測距装置やLIDAR(Light Detection and Ranging)であってもよい。 The first rangefinder 210 has such a configuration. The first rangefinder 210 can be a millimeter wave radar, the first transmission wave T1 and the first reception wave R1 can be millimeter waves, and the first transmission unit 211 and the first reception unit 212 can be millimeter wave band antennas. Further, the first rangefinder 210 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the first rangefinder 210 described above. Specifically, the first rangefinder 210 may be a rangefinder using ultrasonic waves or a LIDAR (Light Detection and Ranging).
 第2測距装置220は、第2送信部221、第2受信部222、第1距離情報算出部223及び第1位相変化算出部224を備え、第2測距装置220に対する対象物Pの距離を測定する。 The second rangefinder 220 includes a second transmitter 221, a second receiver 222, a first distance information calculator 223, and a first phase change calculator 224. to measure.
 第2送信部221は、自動車250に設置され、送信波を送信する。以下、図16及び図17に示すように、第2送信部221から送信される送信波を第2送信波T2とする。第2送信部221は第2送信波T2の送信と共に第2送信波T2の信号を第2距離情報算出部223に供給する。 The second transmission unit 221 is installed in the automobile 250 and transmits transmission waves. Hereinafter, as shown in FIGS. 16 and 17, the transmission wave transmitted from the second transmitter 221 is referred to as a second transmission wave T2. The second transmission unit 221 transmits the second transmission wave T2 and supplies the signal of the second transmission wave T2 to the second distance information calculation unit 223 .
 第2受信部222は、自動車250に設置され、第2送信波T2が対象物Pによって反射された受信波を受信する。以下、図17に示すように、第2送信波T2が対象物Pによって反射され、第2受信部222によって受信される受信波を第2受信波R2とする。第2受信部222は第2受信波R2の信号を第2距離情報算出部223に供給する。第2測距装置220は複数の第2受信部222を備えるものであってもよい。 The second receiving unit 222 is installed in the automobile 250 and receives the received wave that is the second transmitted wave T2 reflected by the target object P. Hereinafter, as shown in FIG. 17, the second transmitted wave T2 is reflected by the object P and the received wave received by the second receiver 222 is referred to as a second received wave R2. The second receiver 222 supplies the signal of the second received wave R2 to the second distance information calculator 223 . The second range finder 220 may have a plurality of second receivers 222 .
 第2距離情報算出部223は、第2受信波R2に基づいて第2位相情報を含む第2距離情報を算出する。第2位相情報を含む第2距離情報については後述する。第2距離情報算出部223は第2受信波R2及び第2送信波T2に基づいて第2位相情報を含む第2距離情報を算出してもよい。第2距離情報算出部223は、算出した第2位相情報を含む第2距離情報を第2位相変化算出部224に供給する。 The second distance information calculator 223 calculates second distance information including second phase information based on the second received wave R2. The second distance information including the second phase information will be described later. The second distance information calculator 223 may calculate the second distance information including the second phase information based on the second received wave R2 and the second transmitted wave T2. The second distance information calculator 223 supplies the second distance information including the calculated second phase information to the second phase change calculator 224 .
 第2位相変化算出部224は、対象物Pの移動に応じて発生する、第2位相情報の位相変化を算出する。第2位相情報の位相変化については後述する。第2位相変化算出部224は、算出した第2位相情報の位相変化をキャリブレーション処理装置230に供給する。 The second phase change calculator 224 calculates the phase change of the second phase information that occurs as the object P moves. A phase change of the second phase information will be described later. The second phase change calculator 224 supplies the calculated phase change of the second phase information to the calibration processing device 230 .
 第2測距装置220はこのような構成を有する。第2測距装置220はミリ波レーダであり、第2送信波T2及び第2受信波R2はミリ波、第2送信部221及び第2受信部222はミリ波帯アンテナとすることができる。また、第2測距装置220はミリ波レーダに限られず、上記第2測距装置220の構成を実現できるものであればよい。具体的には第2測距装置220は、超音波を用いる測距装置やLIDARであってもよい。 The second rangefinder 220 has such a configuration. The second rangefinder 220 can be a millimeter wave radar, the second transmission wave T2 and the second reception wave R2 can be millimeter waves, and the second transmission unit 221 and the second reception unit 222 can be millimeter waveband antennas. Further, the second rangefinder 220 is not limited to a millimeter wave radar, and may be any device that can implement the configuration of the second rangefinder 220 described above. Specifically, the second range finder 220 may be a range finder using ultrasonic waves or a LIDAR.
 キャリブレーション処理装置230はキャリブレーション処理部231を備える。キャリブレーション処理部231は、第1位相情報の位相変化と第2の位相情報の位相変化に応じて、第1測距装置210と第2測距装置220の間のキャリブレーション処理を実行する。具体的にはキャリブレーション処理部231は、対象物Pに対する第1受信部212の相対位置と対象物Pに対する第2受信部222の相対位置を特定する。さらに、キャリブレーション処理部231はこれらの相対位置を用いて第1測距装置210と第2測距装置220の相対位置及び相対角度を特定する。キャリブレーション処理部231は第1測距装置210と第2測距装置220の相対位置及び相対角度を用いて第1測距装置210と第2測距装置220のキャリブレーション処理を行うことができる。 The calibration processing device 230 includes a calibration processing section 231 . The calibration processing unit 231 performs calibration processing between the first rangefinder 210 and the second rangefinder 220 according to the phase change of the first phase information and the phase change of the second phase information. Specifically, the calibration processing unit 231 identifies the relative position of the first receiving unit 212 with respect to the object P and the relative position of the second receiving unit 222 with respect to the object P. FIG. Furthermore, the calibration processing unit 231 uses these relative positions to specify the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220 . The calibration processing unit 231 can perform calibration processing of the first rangefinder 210 and the second rangefinder 220 using the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220. .
 キャリブレーションシステム200は以上のような構成を有する。なお、キャリブレーションシステム200の構成のうち、第1送信部211、第1受信部212、第2送信部221及び第2受信部222を除く構成は情報処理装置によって実現することが可能な機能的構成である。図16において、この情報処理装置261を示す。同図に示すように、情報処理装置261は、第1距離情報算出部213、第1位相変化算出部214、第2距離情報算出部223、第2位相変化算出部224及びキャリブレーション処理部231を備える。 The calibration system 200 has the configuration as described above. Note that, of the configuration of the calibration system 200, the configuration excluding the first transmission unit 211, the first reception unit 212, the second transmission unit 221, and the second reception unit 222 is a functional unit that can be realized by an information processing device. Configuration. FIG. 16 shows this information processing device 261 . As shown in the figure, the information processing device 261 includes a first distance information calculator 213, a first phase change calculator 214, a second distance information calculator 223, a second phase change calculator 224, and a calibration processor 231. Prepare.
 [キャリブレーションシステムによる位置検出について]
 キャリブレーションシステム200による対象物Pの位置検出について説明する。図17に示すように、第1測距装置210では第1送信部211が対象物Pに対して第1送信波T1を送信し、第1受信部212が第1受信波R1を受信する。第1の実施形態と同様に第1送信波T1は時刻によって周波数が異なる波であり、周波数連続変調波(FMCW:Frequency Modulated Continuous Wave)と呼ばれる波である(図3参照)。第1受信波R1は、第1送信波T1が対象物Pによって反射された波であるので、図3に示すように、第1送信波T1から一定の時間tだけ遅延した波である。
[Position detection by calibration system]
Position detection of the target object P by the calibration system 200 will be described. As shown in FIG. 17, in the first rangefinder 210, the first transmitter 211 transmits the first transmitted wave T1 to the target P, and the first receiver 212 receives the first received wave R1. As in the first embodiment, the first transmission wave T1 is a wave whose frequency varies with time, and is a wave called a frequency modulated continuous wave (FMCW) (see FIG. 3). The first received wave R1 is a wave in which the first transmitted wave T1 is reflected by the object P, so as shown in FIG. 3, it is delayed from the first transmitted wave T1 by a certain time t.
 第1距離情報算出部213は、第1送信部211から第1送信波T1を取得し、第1受信部212から第1受信波R1を取得すると、第1送信波T1と第1受信波R1の差分(IF信号)を算出する(図4参照)。IF信号の周波数(以下、IF周波数)は第1測距装置210と対象物Pの距離に応じた周波数となるため、IF周波数から第1測距装置210と対象物Pの距離を算出可能である。以下このIF周波数を「第1位相情報」とし、IF周波数から算出される第1測距装置210と対象物Pの距離を「第1距離情報」とする。 After acquiring the first transmission wave T1 from the first transmission unit 211 and the first reception wave R1 from the first reception unit 212, the first distance information calculation unit 213 obtains the first transmission wave T1 and the first reception wave R1. (IF signal) is calculated (see FIG. 4). Since the frequency of the IF signal (hereinafter referred to as IF frequency) corresponds to the distance between the first distance measuring device 210 and the object P, the distance between the first distance measuring device 210 and the object P can be calculated from the IF frequency. be. Hereinafter, this IF frequency will be referred to as "first phase information", and the distance between the first distance measuring device 210 and the object P calculated from the IF frequency will be referred to as "first distance information".
 第2測距装置220においても同様に、第2距離情報算出部223は、第2送信部221から取得した第2送信波T2と第2受信部222から取得した第2受信波R2の差分(IF信号)を算出し、IF周波数から第2測距装置220と対象物Pの距離を算出する。以下このIF周波数を「第2位相情報」とし、IF周波数から算出される第2測距装置220と対象物Pの距離を「第2距離情報」とする。 Similarly, in the second rangefinder 220, the second distance information calculator 223 calculates the difference ( IF signal), and the distance between the second rangefinder 220 and the object P is calculated from the IF frequency. Hereinafter, this IF frequency will be referred to as "second phase information", and the distance between the second distance measuring device 220 and the object P calculated from the IF frequency will be referred to as "second distance information".
 さらに、キャリブレーションシステム200では第1距離情報と第2距離情報に基づいて、第1測距装置210及び第2測距装置220のそれぞれに対する対象物Pの角度を特定することができる。これにより、第1測距装置210及び第2測距装置220に対する対象物Pの位置が検出され、即ち自動車250に対する対象物Pの位置が検出される。 Furthermore, the calibration system 200 can identify the angle of the object P with respect to each of the first rangefinder 210 and the second rangefinder 220 based on the first distance information and the second distance information. Thereby, the position of the object P with respect to the first rangefinder 210 and the second rangefinder 220 is detected, that is, the position of the object P with respect to the automobile 250 is detected.
 キャリブレーションシステム200では、以上のようにして対象物Pの位置検出が実行される。上記の測定原理から、対象物Pの位置を正確に検出するためには、第1測距装置210と第2測距装置220の相対距離及び相対角度が正確に特定されている必要がある。以下、第1測距装置210と第2測距装置220の相対距離及び相対角度の特定及びキャリブレーションについて説明する。 In the calibration system 200, position detection of the object P is executed as described above. Based on the measurement principle described above, in order to accurately detect the position of the object P, the relative distance and relative angle between the first rangefinder 210 and the second rangefinder 220 must be specified accurately. Identification and calibration of the relative distance and relative angle between the first rangefinder 210 and the second rangefinder 220 will be described below.
 なお、上記説明において第1距離情報算出部213は、第1送信波T1と第1受信波R1に基づいて第1位相情報を含む第1距離情報を算出するとしたが、対象物Pが電波を発信し、その情報を取得可能な場合等には、第1受信波R1のみに基づいて第1位相情報を含む第1距離情報を算出することも可能である。第2距離情報算出部223も同様に、第2受信波R2のみに基づいて第2位相情報を含む第2距離情報を算出することが可能である。 In the above description, the first distance information calculation unit 213 calculates the first distance information including the first phase information based on the first transmission wave T1 and the first reception wave R1. It is also possible to calculate the first distance information including the first phase information based only on the first received wave R1, if the information can be obtained by transmitting the signal. Similarly, the second distance information calculator 223 can also calculate the second distance information including the second phase information based only on the second received wave R2.
 [キャリブレーションシステムによるキャリブレーション処理]
 キャリブレーションシステム200による、第1測距装置210と第2測距装置220のキャリブレーション処理について説明する。
[Calibration processing by the calibration system]
A calibration process of the first rangefinder 210 and the second rangefinder 220 by the calibration system 200 will be described.
 キャリブレーションシステム200は第1測距装置210と第2測距装置220に対して、6軸を対象としてキャリブレーション処理を行うことができる(図5参照)。図5に示すように6軸は測距装置についての相対位置(X軸/Y軸/Z軸)と相対角度(ピッチ/ヨー/ロール)を含む。 The calibration system 200 can perform calibration processing on six axes for the first rangefinder 210 and the second rangefinder 220 (see FIG. 5). As shown in FIG. 5, the six axes include relative position (X-axis/Y-axis/Z-axis) and relative angle (pitch/yaw/roll) for the rangefinder.
 キャリブレーションシステム200では、対象物Pが移動することによる第1受信波R1と第2受信波R2の位相変化を用いてキャリブレーション処理を実行する。図18は、対象物Pの移動を示す模式図であり、対象物Pの移動を矢印Mで示す。同図に示すように対象物PはレールFに係合し、レールFに沿って移動可能である。対象物Pの移動方法は一定距離移動した後、静止することを繰り返すものとする。以下、対象物Pの移動方向(即ち、レールFの延伸方向)をY軸方向とし、Y軸方向に直交する方向をX軸方向とする。X軸方向及びY軸方向は自動車250の載置面に平行な方向であり、この載置面に垂直な方向をZ軸方向とする。 In the calibration system 200, calibration processing is performed using the phase change of the first received wave R1 and the second received wave R2 caused by the movement of the object P. FIG. 18 is a schematic diagram showing the movement of the object P, and the movement of the object P is indicated by an arrow M. As shown in FIG. As shown in the figure, the object P is engaged with the rail F and is movable along the rail F. As shown in FIG. The method of moving the object P is to repeat moving by a fixed distance and then stopping. Hereinafter, the moving direction of the object P (that is, the extending direction of the rail F) is defined as the Y-axis direction, and the direction orthogonal to the Y-axis direction is defined as the X-axis direction. The X-axis direction and the Y-axis direction are parallel to the mounting surface of the automobile 250, and the direction perpendicular to the mounting surface is the Z-axis direction.
 キャリブレーションシステム200では、対象物Pを移動させながら第1送信部211が第1送信波T1を対象物Pに送信し、第1受信部212が第1受信波R1を受信する。また、第2送信部221が第2送信波T2を対象物Pに送信し、第2受信部222が第2受信波R2を受信する。図19は、第1送信部211、第1受信部212、第2送信部221及び第2受信部222と対象物Pの位置関係を示す模式図である。 In the calibration system 200, the first transmission unit 211 transmits the first transmission wave T1 to the object P while moving the object P, and the first reception unit 212 receives the first reception wave R1. Also, the second transmitter 221 transmits the second transmitted wave T2 to the object P, and the second receiver 222 receives the second received wave R2. FIG. 19 is a schematic diagram showing the positional relationship between the first transmitter 211, the first receiver 212, the second transmitter 221, the second receiver 222, and the object P. As shown in FIG.
 図19において、4つの第1受信部212を示し、それぞれ第1受信部212a、第1受信部212b、第1受信部212c及び第1受信部212dとする。また、図19において4つの第2受信部222を示し、それぞれ第2受信部222a、第2受信部222b、第2受信部222c及び第2受信部222dとする。 In FIG. 19, four first receivers 212 are shown, designated as a first receiver 212a, a first receiver 212b, a first receiver 212c, and a first receiver 212d. 19 shows four second receivers 222, which are referred to as a second receiver 222a, a second receiver 222b, a second receiver 222c, and a second receiver 222d, respectively.
 図19において、対象物Pの位置を位置S(S、S、S…)として示す。対象物Pの移動開始時の位置を位置Sとし、対象粒Pの移動開始から一定時間が経過すると、対象物Pは位置Sに移動する。以下、同様に対象物Pは位置S、S、S…と移動する。第1送信部111は各位置Sにおいて対象物Pに第1送信波T1を送信し、第2送信部121は各位置Sにおいて対象物Pに第2送信波T2送信する。対象物Pは各位置Sにおいて短時間静止し、第1送信波T1及び第2送信波T1が送信されると再度移動する。 In FIG. 19, the position of the object P is indicated as position S (S 1 , S 2 , S 3 . . . ). The position at which the object P starts to move is assumed to be position S1 , and after a certain period of time has passed since the object particle P started to move, the object P moves to position S2 . Thereafter, the object P similarly moves to positions S 3 , S 4 , S 5 . . . The first transmitter 111 transmits the first transmission wave T1 to the target P at each position S, and the second transmitter 121 transmits the second transmission wave T2 to the target P at each position S. The object P remains stationary at each position S for a short time and moves again when the first transmission wave T1 and the second transmission wave T1 are transmitted.
 なお、各位置S間の距離は、第1送信波T1及び第2送信波T2の波長の1/4以下が好適である。この距離とすることにより、第1受信波R1及び第2受信波R2に虚像が発生せず、対象物Pに対する第1測距装置210及び第2測距装置220の相対位置が一意に定まるためでる。ただし、第1送信波T1及び第2送信波T2の波長によっては上記条件を満たすことが難しい場合もあるため、条件付けや計算による虚像の抑制、または除去が可能であれば各位置S間の距離を、上記1/4波長を超える距離とすることも可能である。 The distance between each position S is preferably 1/4 or less of the wavelengths of the first transmission wave T1 and the second transmission wave T2. By setting this distance, a virtual image is not generated in the first received wave R1 and the second received wave R2, and the relative positions of the first rangefinder 210 and the second rangefinder 220 with respect to the object P are uniquely determined. Out. However, depending on the wavelengths of the first transmission wave T1 and the second transmission wave T2, it may be difficult to satisfy the above conditions. can be set to a distance exceeding the quarter wavelength.
 第1距離情報算出部213は、各位置Sにおける第1送信波T1及び第1受信波R1に基づいて、第1位相情報を含む第1距離情報を算出する。上述のように第1位相情報は第1送信波T1と第1受信波R1の差分であるIF周波数であり(図4参照)、第1距離情報は第1測距装置210と対象物Pの距離である。また、第2距離情報算出部223は、各位置Sにおける第2送信波T2及び第2受信波R2に基づいて、第2位相情報を含む第2距離情報を算出する。上述のように第2位相情報は第2送信波T2と第2受信波R2の差分であるIF周波数であり(図4参照)、第2距離情報は第2測距装置220と対象物Pの距離である。 The first distance information calculation unit 213 calculates first distance information including first phase information based on the first transmission wave T1 and the first reception wave R1 at each position S. As described above, the first phase information is the IF frequency which is the difference between the first transmission wave T1 and the first reception wave R1 (see FIG. 4), and the first distance information is the distance between the first distance measuring device 210 and the object P. Distance. Also, the second distance information calculator 223 calculates second distance information including second phase information based on the second transmitted wave T2 and the second received wave R2 at each position S. FIG. As described above, the second phase information is the IF frequency which is the difference between the second transmission wave T2 and the second reception wave R2 (see FIG. 4), and the second distance information is the difference between the second distance measuring device 220 and the object P. Distance.
 第1位相変化算出部214は、第1距離情報算出部213によって算出された第1位相情報の位相変化を算出する。図20は、第1送信部211、第1受信部212、第2送信部221及び第2受信部222と対象物Pの位置関係と、第1位相情報及び第2位相情報の位相変化イメージを示す模式図である。同図において、第1送信部211及び第1受信部212の送受信範囲を範囲H1で示し、第2送信部221及び第2受信部222の送受信範囲を範囲H2で示す。 The first phase change calculator 214 calculates the phase change of the first phase information calculated by the first distance information calculator 213 . FIG. 20 shows the positional relationship between the first transmitter 211, the first receiver 212, the second transmitter 221 and the second receiver 222 and the object P, and the phase change image of the first phase information and the second phase information. It is a schematic diagram showing. In the figure, the transmission/reception ranges of the first transmission section 211 and the first reception section 212 are indicated by the range H1, and the transmission/reception ranges of the second transmission section 221 and the second reception section 222 are indicated by the range H2.
 図20に示すように第1位相情報の位相変化イメージは、対象物Pが所定の位置Sの近傍に位置する場合、位相変化が小さく、対象物Pが位置Sから離間するにしたがって位相変化が大きくなることを示している。これは、位置Sは第1送信部111及び第1受信部112に近接しているため、位置Sの近傍における対象物Pの移動による位相への影響が小さく、位置Sから離間すると対象物Pの移動による位相への影響が大きくなることを意味する。 As shown in FIG. 20, the phase change image of the first phase information has a small phase change when the object P is located near the predetermined position Sm , and the phase changes as the object P moves away from the position Sm . It indicates that the change is large. This is because the position Sm is close to the first transmitting unit 111 and the first receiving unit 112, so that the movement of the object P in the vicinity of the position Sm has little effect on the phase. This means that the movement of the object P has a greater influence on the phase.
 第2位相変化算出部224は、第2距離情報算出部223によって算出された第2位相情報の位相変化を算出する。図20に示すように第2位相情報の位相変化イメージは、対象物Pが所定の位置Sの近傍に位置する場合、位相変化が小さく、対象物Pが位置Sから離間するにしたがって位相変化が大きくなることを示している。これは、位置Sは第2送信部221及び第2受信部222に近接しているため、位置Sの近傍における対象物Pの移動による位相への影響が小さく、位置Sから離間すると対象物Pの移動による位相への影響が大きくなることを意味する。 The second phase change calculator 224 calculates the phase change of the second phase information calculated by the second distance information calculator 223 . As shown in FIG. 20, the phase change image of the second phase information has a small phase change when the object P is located near the predetermined position Sn , and the phase changes as the object P moves away from the position Sn . It indicates that the change is large. This is because the position Sn is close to the second transmitting unit 221 and the second receiving unit 222 , so that the movement of the object P in the vicinity of the position Sn has little effect on the phase. This means that the movement of the object P has a greater influence on the phase.
 キャリブレーション処理部231は、第1位相情報の位相変化に応じて、対象物Pに対する第1受信部212の相対位置を特定し、第2位相情報の位相変化に応じて、対象物Pに対する第2受信部222の相対位置を特定する。 The calibration processing unit 231 specifies the relative position of the first receiving unit 212 with respect to the object P according to the phase change of the first phase information, and the position of the first reception unit 212 with respect to the object P according to the phase change of the second phase information. 2 Identify the relative position of the receiver 222 .
 具体的にはキャリブレーション処理部231は、第1位相情報の位相変化と、事前に算出した各距離及びレールF上の各位置毎に、レールF上を対象物Pが移動した場合に発生する位相変化量の理論値を畳み込むことで第1受信波R1に対して逆合成開口処理を実行する。この逆合成開口処理は、移動する対象物Pに対して第1受信部212を仮想的な大径レーダとして扱う逆合成開口レーダ(ISAR:Inverse Synthetic Aperture Radar)と同様の計算処理である。 Specifically, the calibration processing unit 231 determines the phase change of the first phase information, each distance calculated in advance, and each position on the rail F when the object P moves on the rail F. Inverse synthetic aperture processing is performed on the first received wave R1 by convolving the theoretical value of the phase change amount. This inverse synthetic aperture processing is the same calculation processing as inverse synthetic aperture radar (ISAR), which treats the first receiving unit 212 as a virtual large-diameter radar for the moving object P.
 また、キャリブレーション処理部231は第2位相情報の位相変化と、事前に算出した各距離及びレールF上の各位置毎に、レールF上を対象物Pが移動した場合に発生する位相変化量の理論値を畳み込むことで第2受信波R2に対して逆合成開口処理を実行する。この逆合成開口処理は、移動する対象物Pに対して第2受信部222を仮想的な大径レーダとして扱う逆合成開口レーダと同様の計算処理である。 In addition, the calibration processing unit 231 calculates the phase change of the second phase information and the amount of phase change that occurs when the object P moves on the rail F for each distance calculated in advance and each position on the rail F. Inverse synthetic aperture processing is performed on the second received wave R2 by convolving the theoretical value of . This inverse synthetic aperture processing is the same calculation processing as inverse synthetic aperture radar that treats the second receiving unit 222 as a virtual large-diameter radar with respect to the moving target P.
 図21は逆合成開口処理の処理結果を示す模式図である。同図に示すように、逆合成開口処理によって、対象物Pの位置に対する第1受信部212の相対位置をピークE1として得られ、象物Pの位置に対する第2受信部222の相対位置をピークE2として得られる。 FIG. 21 is a schematic diagram showing the processing result of the inverse synthetic aperture processing. As shown in the figure, by inverse synthetic aperture processing, the relative position of the first receiver 212 with respect to the position of the object P is obtained as a peak E1, and the relative position of the second receiver 222 with respect to the position of the object P is obtained as a peak E1. obtained as E2.
 キャリブレーション処理部231は、第1測距装置210が備える第1受信部212毎に対象物Pと第1受信部212の相対位置を算出することにより、対象物Pに対する第1測距装置210の相対位置及び相対角度を算出することができる。なお、対象物Pに対する第1測距装置210の相対位置は、第1測距装置210が1つの第1受信部212を備える場合でも算出可能である。一方、対象物Pに対する第1測距装置210の相対角度は、第1測距装置210が複数の第1受信部212を備える場合に、各第1受信部212と対象物Pの距離を用いて算出可能である。 The calibration processing unit 231 calculates the relative position between the object P and the first receiving unit 212 for each first receiving unit 212 included in the first ranging device 210, thereby adjusting the first ranging device 210 with respect to the object P. can be calculated. Note that the relative position of the first rangefinder 210 with respect to the object P can be calculated even when the first rangefinder 210 includes one first receiver 212 . On the other hand, the relative angle of the first rangefinder 210 with respect to the object P is obtained by using the distance between each first receiver 212 and the object P when the first rangefinder 210 includes a plurality of first receivers 212. can be calculated by
 また、キャリブレーション処理部231は、第2測距装置220が備える第2受信部222毎に対象物Pと第2受信部222の相対位置を算出することにより、対象物Pに対する第2測距装置220の相対位置及び相対角度を算出することができる。なお、対象物Pに対する第2測距装置220の相対位置は、第2測距装置220が1つの第2受信部222を備える場合でも算出可能である。一方、対象物Pに対する第2測距装置220の相対角度は、第2測距装置220が複数の第2受信部222を備える場合に、各第2受信部222と対象物Pの距離を用いて算出可能である。 Further, the calibration processing unit 231 calculates the relative positions of the object P and the second receiving unit 222 for each of the second receiving units 222 included in the second distance measuring device 220, thereby performing the second ranging with respect to the object P. The relative position and relative angle of device 220 can be calculated. Note that the relative position of the second rangefinder 220 with respect to the object P can be calculated even when the second rangefinder 220 includes one second receiver 222 . On the other hand, the relative angle of the second rangefinder 220 with respect to the object P is obtained by using the distance between each of the second receivers 222 and the object P when the second rangefinder 220 includes a plurality of second receivers 222. can be calculated by
 キャリブレーション処理部231は、対象物Pに対する第1測距装置210の相対位置と、対象物Pに対する第2測距装置220の相対位置に基づいて、第1の実施形態と同様の手法で第1測距装置210と第2測距装置220の相対位置を特定することができる(図12参照)。また、キャリブレーション処理部231は、対象物Pに対する第1測距装置210の相対角度と、対象物Pに対する第2測距装置220の相対角度に基づいて、第1の実施形態と同様の手法で第1測距装置210と第2測距装置220の相対角度を特定することができる(図13参照)。 Based on the relative position of the first rangefinder 210 with respect to the object P and the relative position of the second rangefinder 220 with respect to the object P, the calibration processing unit 231 calculates the first distance using the same method as in the first embodiment. The relative positions of the first rangefinder 210 and the second rangefinder 220 can be identified (see FIG. 12). Further, the calibration processing unit 231 performs the same method as in the first embodiment based on the relative angle of the first rangefinder 210 with respect to the object P and the relative angle of the second rangefinder 220 with respect to the object P. can identify the relative angle between the first rangefinder 210 and the second rangefinder 220 (see FIG. 13).
 このようにしてキャリブレーション処理部231は、第1測距装置210と第2測距装置220の相対位置(X軸/Y軸/Z軸(図5参照))と相対角度(ピッチ/ヨー/ロール(図5参照))を特定することができる。キャリブレーション処理部231は第1測距装置210と第2測距装置220の相対位置及び相対角度を用いて、第1測距装置210及び第2測距装置220の測定結果にキャリブレーション処理を実行することができる。なお、キャリブレーションシステム200では、レールFの数を複数とし、延伸方向を平行(Y軸方向)または垂直(X軸方向)等として上記動作を行うことにより、キャリブレーションの精度向上が可能である。 In this way, the calibration processing unit 231 calculates the relative positions (X-axis/Y-axis/Z-axis (see FIG. 5)) and relative angles (pitch/yaw/ role (see FIG. 5)) can be specified. The calibration processing unit 231 performs calibration processing on the measurement results of the first rangefinder 210 and the second rangefinder 220 using the relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220 . can be executed. Note that in the calibration system 200, the accuracy of calibration can be improved by performing the above operation with a plurality of rails F and with the extending direction parallel (Y-axis direction) or perpendicular (X-axis direction). .
 図22は、キャリブレーションシステム200によるキャリブレーション処理を示すフローチャートである。キャリブレーション処理が開始されると、図18に示すように対象物PがレールFにセットされる(St201)。続いて第1送信部211は第1送信波T1を送信し、第2送信部221は第2送信波T2を送信する。第1受信部212は、第1送信波T1が対象物Pで反射された第1受信波R1を受信し、第2受信部222は、第2送信波T2が対象物Pで反射された第2受信波R2を受信する(St202)。さらに、対象物Pが移動する(St203)と、キャリブレーション処理部231は、X軸、Y軸及びZ軸の各距離及び各角度毎に位相変化(図20参照)の理論値を算出する(St204)。 FIG. 22 is a flowchart showing calibration processing by the calibration system 200. FIG. When the calibration process is started, the object P is set on the rail F as shown in FIG. 18 (St201). Subsequently, the first transmitter 211 transmits the first transmission wave T1, and the second transmitter 221 transmits the second transmission wave T2. The first receiving unit 212 receives the first received wave R1 that is the first transmitted wave T1 reflected by the object P, and the second receiving unit 222 receives the second transmitted wave T2 that is reflected by the object P. 2 Receiving wave R2 is received (St202). Further, when the object P moves (St203), the calibration processing unit 231 calculates the theoretical value of the phase change (see FIG. 20) for each distance and each angle of the X-, Y-, and Z-axes ( St204).
 続いて、対象物Pの移動距離が指定値以上の場合(St205;Yes)、第1距離情報算出部213が第1受信波R1から第1距離情報を算出し、第2距離情報算出部223が第2受信波R2から第2距離情報を算出する(St206)。さらに、第1位相変化算出部214が第1距離情報に含まれる第1位相情報の位相変化(図20参照)を算出し、第2位相変化算出部224が第2距離情報に含まれる第2位相情報の位相変化(図20参照)を算出する(St207)。なお、対象物Pの移動距離が指定値未満の場合(St205;No)、第1受信波R1及び第2受信波R2の受信ステップ(St202)から理論値の算出ステップ(St204)が繰り返し実行される。 Subsequently, when the movement distance of the object P is equal to or greater than the specified value (St205; Yes), the first distance information calculation unit 213 calculates the first distance information from the first received wave R1, and the second distance information calculation unit 223 calculates the first distance information from the first received wave R1. calculates the second distance information from the second received wave R2 (St206). Furthermore, the first phase change calculator 214 calculates the phase change (see FIG. 20) of the first phase information included in the first distance information, and the second phase change calculator 224 calculates the phase change of the second phase information included in the second distance information. A phase change of the phase information (see FIG. 20) is calculated (St207). If the moving distance of the object P is less than the designated value (St205; No), the step of receiving the first received wave R1 and the second received wave R2 (St202) to the step of calculating the theoretical value (St204) are repeatedly executed. be.
 続いて、キャリブレーション処理部231は、逆合成開口処理を実行(St208)する。本処理によりキャリブレーション処理部231は、対象物Pに対する第1受信部212の相対位置と対象物Pに対する第2受信部222の相対位置を特定する。続いて、キャリブレーション処理部231は、対象物Pに対する第1受信部212の相対位置に基づいて、対象物Pに対する第1測距装置210の相対位置及び相対角度を算出する(St209)。また、キャリブレーション処理部131は、対象物Pに対する第2受信部222の相対位置に基づいて、対象物Pに対する第2測距装置220の相対位置及び相対角度を算出する(St209)。 Subsequently, the calibration processing unit 231 executes inverse synthetic aperture processing (St208). Through this process, the calibration processing unit 231 identifies the relative position of the first receiving unit 212 with respect to the object P and the relative position of the second receiving unit 222 with respect to the object P. FIG. Subsequently, the calibration processing unit 231 calculates the relative position and relative angle of the first distance measuring device 210 with respect to the object P based on the relative position of the first receiving unit 212 with respect to the object P (St209). Also, the calibration processing unit 131 calculates the relative position and the relative angle of the second distance measuring device 220 with respect to the object P based on the relative position of the second receiving unit 222 with respect to the object P (St209).
 続いて、キャリブレーション処理部231は、対象物Pに対する第1測距装置210の相対位置及び相対角度と対象物Pに対する第2測距装置210の相対位置及び相対角度に基づいて、第1測距装置210と第2測距装置220の間の相対位置及び相対角度を算出する(St210)。以上のようにしてキャリブレーションシステム200は、第1測距装置210と第2測距装置220のキャリブレーションを実行することが可能である。 Subsequently, the calibration processing unit 231 performs the first measurement based on the relative position and relative angle of the first rangefinder 210 with respect to the object P and the relative position and relative angle of the second rangefinder 210 with respect to the object P. A relative position and a relative angle between the rangefinder 210 and the second rangefinder 220 are calculated (St210). As described above, the calibration system 200 can calibrate the first rangefinder 210 and the second rangefinder 220 .
 なお、上記フローでは、対象物PがレールF上で一定距離移動毎に停止し、停止中に第1送信波T1及び第2送信波T2の送信を行う場合を想定している。対象物PがレールF上において等速直線運動をし、連続的に移動している場合には、キャリブレーション処理部231は対象物Pの移動速度を取得し、対象物Pの移動速度に基づいて対象物Pの移動によるドップラー成分を補正する必要がある。 In addition, in the above flow, it is assumed that the object P stops on the rail F every time it moves a certain distance, and the first transmission wave T1 and the second transmission wave T2 are transmitted while the object P is stopped. When the object P performs a uniform linear motion on the rail F and is continuously moving, the calibration processing unit 231 acquires the moving speed of the object P, and based on the moving speed of the object P It is necessary to correct the Doppler component due to the movement of the object P by using
 [キャリブレーションシステムによる効果]
 キャリブレーションシステム200では、上記のように自動車150に対して移動する対象物Pに対して、第1測距装置210及び第2測距装置220の測定結果に基づいて第1測距装置210と第2測距装置220の相対位置及び相対角度を高精度に特定することが可能である。これにより、第1測距装置210及び第2測距装置220の測定結果を組み合わせることで高精度の物体検出が可能となる。
[Effect of calibration system]
In the calibration system 200, based on the measurement results of the first rangefinder 210 and the second rangefinder 220, the first rangefinder 210 and It is possible to specify the relative position and relative angle of the second rangefinder 220 with high accuracy. Accordingly, by combining the measurement results of the first rangefinder 210 and the second rangefinder 220, highly accurate object detection becomes possible.
 また、キャリブレーションシステム200では第1測距装置210及び第2測距装置220と対象物Pの相対位置が未知の場合でも、第1測距装置210及び第2測距装置220の角度推定精度以上の精度でキャリブレーションを実施することが可能である。さらに、キャリブレーションシステム200では第1測距装置210及び第2測距装置220と対象物Pの距離が短い場合でもキャリブレーションを実施することが可能である。 Further, in the calibration system 200, even when the relative positions of the first rangefinder 210 and the second rangefinder 220 and the object P are unknown, the angle estimation accuracy of the first rangefinder 210 and the second rangefinder 220 is It is possible to perform calibration with the above accuracy. Furthermore, the calibration system 200 can perform calibration even when the distance between the first rangefinder 210 and the second rangefinder 220 and the object P is short.
 [他のセンサとのキャリブレーションについて]
 キャリブレーションシステム200では、第1測距装置210及び第2測距装置220と他のセンサのキャリブレーションを実行することも可能である。図23は第1測距装置210及び第2測距装置220と他のセンサのキャリブレーション方法を示す模式図である。他のセンサの例として撮像装置240を示す。撮像装置240のように、対象物Pの移動に伴う位相変化を検出できないセンサの場合、位相変化を利用したキャリブレーションは実行できない。
[About calibration with other sensors]
The calibration system 200 can also calibrate the first rangefinder 210 and the second rangefinder 220 as well as other sensors. FIG. 23 is a schematic diagram showing a method of calibrating the first rangefinder 210, the second rangefinder 220, and other sensors. An imaging device 240 is shown as an example of another sensor. In the case of a sensor such as the imaging device 240 that cannot detect a phase change accompanying movement of the object P, calibration using the phase change cannot be performed.
 図23に示すように、対象物Pを移動させながら、撮像装置240が対象物Pを撮像し、撮像画像を生成する。対象物Pはチェッカー模様等の既定の表示Qが施されているものが好適である。図23において、撮像装置240から見た対象物Pの方向を線Gで示す。キャリブレーション処理部231は撮像装置240が撮像した撮像画像に対して画像処理を実行し、撮像画像に含まれる表示Q等に基づいて対象物Pに対する撮像装置240の相対位置及び相対角度を算出する。 As shown in FIG. 23, the imaging device 240 images the object P while moving the object P to generate a captured image. It is preferable that the object P has a predetermined display Q such as a checkered pattern. In FIG. 23, the direction of the object P viewed from the imaging device 240 is indicated by a line G. As shown in FIG. The calibration processing unit 231 performs image processing on the captured image captured by the imaging device 240, and calculates the relative position and relative angle of the imaging device 240 with respect to the object P based on the display Q and the like included in the captured image. .
 対象物Pに対する第1測距装置210及び第2測距装置220の相対位置及び相対角度は上記のように位相変化を利用して特定可能である。したがって、キャリブレーション処理部231は、対象物Pに対する撮像装置240、第1測距装置210及び第2測距装置220の相対位置及び相対角度を特定することができ、これら相互間の対位置及び相対角度に基づいてキャリブレーション処理を実行することが可能である。 The relative positions and relative angles of the first rangefinder 210 and the second rangefinder 220 with respect to the object P can be identified using phase changes as described above. Therefore, the calibration processing unit 231 can specify the relative positions and relative angles of the imaging device 240, the first rangefinder 210, and the second rangefinder 220 with respect to the object P, and the relative positions and angles between them. It is possible to perform a calibration process based on relative angles.
 なお、対象物Pの表示Qは一般的に撮像装置のキャリブレーションに使用される2次元のチェッカーボードのように2次元の平面表示ではなく、1次元の距離差分が検出可能なものであれば十分である。これは、表示Qは対象物Pと連動して移動するため、2次元の平面表示と同様のデータを得られるためである。 It should be noted that the display Q of the object P is not a two-dimensional planar display such as a two-dimensional checkerboard generally used for calibration of an imaging device, but a one-dimensional distance difference can be detected. It is enough. This is because the display Q moves in conjunction with the object P, so that the same data as in the two-dimensional planar display can be obtained.
 キャリブレーションシステム200が第1測距装置210及び第2測距装置220に対してキャリブレーション処理を実行可能なセンサは撮像装置に限られず、何らかの手法により対象物Pに対して自己の相対位置及び相対角度を特定可能なセンサであればよい。 Sensors that the calibration system 200 can perform calibration processing on the first rangefinder 210 and the second rangefinder 220 are not limited to imaging devices. Any sensor that can specify the relative angle may be used.
 [変形例]
 キャリブレーションシステム200の変形例について説明する。上述したキャリブレーションシステム200の構成では単体でX軸、Y軸及びZ軸についての検出が可能な測距装置を例にとっているが、検出可能な座標軸が少ない測距装置間でもキャリブレーションは可能である。その場合にはキャリブレーション対象の軸を測距装置に合わせて減らすか、レールを複数に増やし、取得可能なデータの次元数を増やすことが必要となる。
[Modification]
A modification of the calibration system 200 will be described. In the configuration of the calibration system 200 described above, a distance measuring device capable of detecting the X-, Y-, and Z-axes by itself is taken as an example. be. In that case, it is necessary to reduce the number of axes to be calibrated according to the rangefinder, or to increase the number of rails to increase the number of dimensions of data that can be acquired.
 また、キャリブレーションシステム200は第1測距装置210と第2測距装置220の2つの測距装置を備えるとしたが、3つ以上の測距装置を備えるものであってもよい。この場合も上記手法により、キャリブレーションシステム200が備える各測距装置の間でキャリブレーションを実行することが可能である。自動車250における測距装置の配置場所も特に限定されず、上記手法が実行可能な配置であればよい。 Also, although the calibration system 200 includes two ranging devices, the first ranging device 210 and the second ranging device 220, it may include three or more ranging devices. In this case as well, it is possible to perform calibration between the distance measuring devices provided in the calibration system 200 by the above method. The location of the distance measuring device in the vehicle 250 is not particularly limited as long as the above method can be implemented.
 (応用例)
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
(Application example)
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
 図24は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図24に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 24 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technology according to the present disclosure can be applied. Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010 . In the example shown in FIG. 24, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600. . The communication network 7010 that connects these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図24では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various calculations, and a drive circuit that drives various devices to be controlled. Prepare. Each control unit has a network I/F for communicating with other control units via a communication network 7010, and communicates with devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I/F for communication is provided. 24, the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle equipment I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are shown. Other control units are similarly provided with microcomputers, communication I/Fs, storage units, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 7100 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 A vehicle state detection section 7110 is connected to the drive system control unit 7100 . The vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the axial rotational motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, and a steering wheel steering. At least one of sensors for detecting angle, engine speed or wheel rotation speed is included. Drive system control unit 7100 performs arithmetic processing using signals input from vehicle state detection unit 7110, and controls the internal combustion engine, drive motor, electric power steering device, brake device, and the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, body system control unit 7200 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. Body system control unit 7200 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310, which is the power supply source for the driving motor, according to various programs. For example, the battery control unit 7300 receives information such as battery temperature, battery output voltage, or remaining battery capacity from a battery device including a secondary battery 7310 . The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The vehicle exterior information detection unit 7400 detects information outside the vehicle in which the vehicle control system 7000 is installed. For example, at least one of the imaging section 7410 and the vehicle exterior information detection section 7420 is connected to the vehicle exterior information detection unit 7400 . The imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The vehicle exterior information detection unit 7420 includes, for example, an environment sensor for detecting the current weather or weather, or a sensor for detecting other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. ambient information detection sensor.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. These imaging unit 7410 and vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図25は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 25 shows an example of the installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420. FIG. The imaging units 7910 , 7912 , 7914 , 7916 , and 7918 are provided, for example, at least one of the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 7900 . An image pickup unit 7910 provided in the front nose and an image pickup unit 7918 provided above the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900 . Imaging units 7912 and 7914 provided in the side mirrors mainly acquire side images of the vehicle 7900 . An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900 . An imaging unit 7918 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図25には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 25 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose, the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively, and the imaging range d is The imaging range of an imaging unit 7916 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle exterior information detectors 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners, and above the windshield of the vehicle interior of the vehicle 7900 may be, for example, ultrasonic sensors or radar devices. The exterior information detectors 7920, 7926, and 7930 provided above the front nose, rear bumper, back door, and windshield of the vehicle 7900 may be LIDAR devices, for example. These vehicle exterior information detection units 7920 to 7930 are mainly used to detect preceding vehicles, pedestrians, obstacles, and the like.
 図24に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Return to Fig. 24 to continue the explanation. The vehicle exterior information detection unit 7400 causes the imaging section 7410 to capture an image of the exterior of the vehicle, and receives the captured image data. The vehicle exterior information detection unit 7400 also receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, radar device, or LIDAR device, the vehicle exterior information detection unit 7400 emits ultrasonic waves, electromagnetic waves, or the like, and receives reflected wave information. The vehicle exterior information detection unit 7400 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received information. The vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, etc., based on the received information. The vehicle exterior information detection unit 7400 may calculate the distance to the vehicle exterior object based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 In addition, the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing people, vehicles, obstacles, signs, characters on the road surface, etc., based on the received image data. The vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. good too. The vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410 .
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The in-vehicle information detection unit 7500 detects in-vehicle information. The in-vehicle information detection unit 7500 is connected to, for example, a driver state detection section 7510 that detects the state of the driver. The driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects the biometric information of the driver, a microphone that collects sounds in the vehicle interior, or the like. A biosensor is provided, for example, on a seat surface, a steering wheel, or the like, and detects biometric information of a passenger sitting on a seat or a driver holding a steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determine whether the driver is dozing off. You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected sound signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls overall operations within the vehicle control system 7000 according to various programs. An input section 7800 is connected to the integrated control unit 7600 . The input unit 7800 is realized by a device that can be input-operated by the passenger, such as a touch panel, button, microphone, switch or lever. The integrated control unit 7600 may be input with data obtained by recognizing voice input by a microphone. The input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an externally connected device such as a mobile phone or PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. may The input unit 7800 may be, for example, a camera, in which case the passenger can input information through gestures. Alternatively, data obtained by detecting movement of a wearable device worn by a passenger may be input. Further, the input section 7800 may include an input control circuit that generates an input signal based on information input by the passenger or the like using the input section 7800 and outputs the signal to the integrated control unit 7600, for example. A passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. Also, the storage unit 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication between various devices existing in the external environment 7750. The general-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced) , or other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi®), Bluetooth®, and the like. General-purpose communication I / F 7620, for example, via a base station or access point, external network (e.g., Internet, cloud network or operator-specific network) equipment (e.g., application server or control server) connected to You may In addition, the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology to connect terminals (for example, terminals of drivers, pedestrians, stores, or MTC (Machine Type Communication) terminals) near the vehicle. may be connected with
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I/F 7630 is a communication I/F that supports a communication protocol designed for use in vehicles. The dedicated communication I/F 7630 uses standard protocols such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of lower layer IEEE 802.11p and higher layer IEEE 1609, or cellular communication protocol. May be implemented. The dedicated communication I/F 7630 is typically used for vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) perform V2X communication, which is a concept involving one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640, for example, receives GNSS signals from GNSS (Global Navigation Satellite System) satellites (for example, GPS signals from GPS (Global Positioning System) satellites), performs positioning, and obtains the latitude, longitude, and altitude of the vehicle. Generate location information containing Note that the positioning unit 7640 may specify the current position by exchanging signals with a wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smart phone having a positioning function.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from wireless stations installed on the road, and acquires information such as the current position, traffic jams, road closures, or required time. Note that the function of the beacon reception unit 7650 may be included in the dedicated communication I/F 7630 described above.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I/F 7660 is a communication interface that mediates connections between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle. The in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB). In addition, the in-vehicle device I/F 7660 is connected via a connection terminal (and cable if necessary) not shown, USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High -definition Link), etc. In-vehicle equipment 7760 includes, for example, at least one of mobile equipment or wearable equipment possessed by passengers, or information equipment carried in or attached to the vehicle. In-vehicle equipment 7760 may also include a navigation device that searches for a route to an arbitrary destination. or exchange data signals.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. In-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by communication network 7010 .
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 uses at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680. The vehicle control system 7000 is controlled according to various programs on the basis of the information acquired by. For example, the microcomputer 7610 calculates control target values for the driving force generator, steering mechanism, or braking device based on acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. good too. For example, the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control may be performed for the purpose of In addition, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, etc. based on the acquired information about the surroundings of the vehicle, thereby autonomously traveling without depending on the operation of the driver. Cooperative control may be performed for the purpose of driving or the like.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 Microcomputer 7610 receives information obtained through at least one of general-purpose communication I/F 7620, dedicated communication I/F 7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I/F 7660, and in-vehicle network I/F 7680. Based on this, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including the surrounding information of the current position of the vehicle may be created. Further, based on the acquired information, the microcomputer 7610 may predict dangers such as vehicle collisions, pedestrians approaching or entering closed roads, and generate warning signals. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図24の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The audio/image output unit 7670 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 24, an audio speaker 7710, a display section 7720, and an instrument panel 7730 are illustrated as output devices. Display 7720 may include, for example, at least one of an on-board display and a head-up display. The display unit 7720 may have an AR (Augmented Reality) display function. Other than these devices, the output device may be headphones, a wearable device such as an eyeglass-type display worn by a passenger, or other devices such as a projector or a lamp. When the output device is a display device, the display device displays the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually. When the output device is a voice output device, the voice output device converts an audio signal including reproduced voice data or acoustic data into an analog signal and outputs the analog signal audibly.
 なお、図24示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 In the example shown in FIG. 24, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, an individual control unit may be composed of multiple control units. Furthermore, vehicle control system 7000 may comprise other control units not shown. Also, in the above description, some or all of the functions that any control unit has may be provided to another control unit. In other words, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units. Similarly, sensors or devices connected to any control unit may be connected to other control units, and multiple control units may send and receive detection information to and from each other via communication network 7010. .
 なお、図1を用いて説明した第1の実施形態に係る情報処理装置161及び図16を用いて説明した第2の実施形態に係る情報処理装置261の各機能を実現するためのコンピュータプログラムを、いずれかの制御ユニット等に実装することができる。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体を提供することもできる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A computer program for realizing each function of the information processing apparatus 161 according to the first embodiment described using FIG. 1 and the information processing apparatus 261 according to the second embodiment described using FIG. , any control unit or the like. It is also possible to provide a computer-readable recording medium storing such a computer program. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
 以上説明した車両制御システム7000において、情報処理装置161及び情報処理装置261は、図24に示した応用例の統合制御ユニット7600に適用することができる。例えば、情報処理装置161の第1距離情報算出部113、第1位相変化算出部114、第2距離情報算出部123、第2位相変化算出部124、キャリブレーション処理部131は統合制御ユニット7600のマイクロコンピュータ7610、記憶部7690、車載ネットワークI/F7680に相当する。また、例えば、情報処理装置261の第1距離情報算出部213、第1位相変化算出部214、第2距離情報算出部223、第2位相変化算出部224、キャリブレーション処理部231は統合制御ユニット7600のマイクロコンピュータ7610、記憶部7690、車載ネットワークI/F7680に相当する。 In the vehicle control system 7000 described above, the information processing device 161 and the information processing device 261 can be applied to the integrated control unit 7600 of the application example shown in FIG. For example, the first distance information calculation unit 113, the first phase change calculation unit 114, the second distance information calculation unit 123, the second phase change calculation unit 124, and the calibration processing unit 131 of the information processing device 161 are integrated control unit 7600. It corresponds to a microcomputer 7610, a storage unit 7690, and an in-vehicle network I/F 7680. Further, for example, the first distance information calculation unit 213, the first phase change calculation unit 214, the second distance information calculation unit 223, the second phase change calculation unit 224, and the calibration processing unit 231 of the information processing device 261 are integrated control units. 7600 microcomputer 7610 , storage unit 7690 , and in-vehicle network I/F 7680 .
 また、情報処理装置161及び情報処理装置261の少なくとも一部の構成要素は、図24に示した統合制御ユニット7600のためのモジュール(例えば、一つのダイで構成される集積回路モジュール)において実現されてもよい。あるいは、情報処理装置161及び情報処理装置261が、図24に示した車両制御システム7000の複数の制御ユニットによって実現されてもよい。 At least part of the components of the information processing device 161 and the information processing device 261 are realized in a module (for example, an integrated circuit module configured with one die) for the integrated control unit 7600 shown in FIG. may Alternatively, information processing device 161 and information processing device 261 may be realized by a plurality of control units of vehicle control system 7000 shown in FIG.
 (本開示について)
 本開示中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。上記の複数の効果の記載は、それらの効果が必ずしも同時に発揮されるということを意味しているのではない。条件等により、少なくとも上記した効果のいずれかが得られることを意味しており、本開示中に記載されていない効果が発揮される可能性もある。また、本開示において説明した特徴部分のうち、少なくとも2つの特徴部分を任意に組み合わせることも可能である。
(About this disclosure)
The effects described in this disclosure are merely exemplary and not limiting, and other effects may also occur. The above description of multiple effects does not necessarily mean that those effects are exhibited simultaneously. It means that at least one of the effects described above can be obtained depending on the conditions and the like, and effects not described in the present disclosure may be exhibited. It is also possible to arbitrarily combine at least two of the features described in this disclosure.
 なお、本技術は以下のような構成もとることができる。
 (1)
 第1の測距装置が備え、筐体に設置された第1の受信部が受信した、対象物で反射された第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出する第1の距離情報算出部と、
 上記対象物または上記筐体のうちの一方の移動に応じて発生する、上記第1の位相情報の位相変化を算出する第1の位相変化算出部と、
 第2の測距装置が備え、上記筐体に設置された第2の受信部が受信した、上記対象物で反射された第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出する第2の距離情報算出部と、
 上記対象物または上記筐体のうちの上記一方の移動に応じて発生する、上記第2の位相情報の位相変化を算出する第2の位相変化算出部と、
 上記第1の位相情報の位相変化及び上記第2の位相情報の位相変化に応じて上記第1の測距装置と上記第2の測距装置のキャリブレーション処理を実行するキャリブレーション処理部と
 を具備する情報処理装置。
 (2)
 上記(1)に記載の情報処理装置であって、
 上記キャリブレーション処理部は、上記対象物に対する上記第1の受信部の相対位置と上記対象物に対する上記第2の受信部の相対位置を特定し、上記対象物に対する上記第1の受信部の相対位置と上記対象物に対する上記第2の受信部の相対位置に基づいて上記キャリブレーション処理を実行する
 情報処理装置。
 (3)
 上記(2)に記載の情報処理装置であって、
 上記キャリブレーション処理部は、上記対象物に対する上記第1の受信部の相対位置と、上記対象物に対する上記第2の受信部の相対位置に基づいて上記第1の測距装置と上記第2の測距装置の相対位置を特定し、上記第1の測距装置と上記第2の測距装置の相対位置に基づいて上記キャリブレーション処理を実行する
 情報処理装置。
 (4)
 上記(2)又は(3)に記載の情報処理装置であって、
 上記キャリブレーション処理部は、上記対象物に対する上記第1の受信部の相対位置と上記対象物に対する上記第2の受信部の相対位置に基づいて上記第1の測距装置と上記第2の測距装置の相対角度を特定し、上記第1の測距装置と上記第2の測距装置の相対角度に基づいて上記キャリブレーション処理を実行する
 キャリブレーションシステム。
 (5)
 上記(1)から(4)のうちいずれか1つに記載の情報処理装置であって、

 上記第1の位相変化算出部は、上記筐体の移動に応じて発生する上記第1の位相情報の位相変化を算出し、
 上記第2の位相変化算出部は、上記筐体の移動に応じて発生する上記第2の位相情報の位相変化を算出する
 情報処理装置。
 (6)
 上記(5)に記載の情報処理装置であって、
 上記キャリブレーション処理部は、上記第1の受信波に対して合成開口処理を実行して上記対象物に対する上記第1の受信部の相対位置を特定し、上記第2の受信波に対して合成開口処理を実行して上記対象物に対する上記第2の受信部の相対位置を特定する
 情報処理装置。
 (7)
 上記(1)から(4)のうちいずれか1つに記載の情報処理装置であって、
 上記第1の位相変化算出部は、上記対象物の移動に応じて発生する上記第1の位相情報の位相変化を算出し、
 上記第2の位相変化算出部は、上記対象物の移動に応じて発生する上記第2の位相情報の位相変化を算出する
 情報処理装置。
 (8)
 上記(7)に記載の情報処理装置であって、
 上記キャリブレーション処理部は、上記第1の受信波に対して逆合成開口処理を実行して上記対象物に対する上記第1の受信部の相対位置を特定し、上記第2の受信波に対して逆合成開口処理を実行して上記対象物に対する上記第2の受信部の相対位置を特定する
 情報処理装置。
 (9)
 上記(1)から(8)のうちいずれか1つに記載の情報処理装置であって、
 上記第1の受信波は第1の送信波が上記対象物によって反射された波であり、
 上記第2の受信波は第2の送信波が上記対象物によって反射された波であり、
 上記第1の距離情報算出部は、上記第1の送信波と上記第1の受信波に基づいて上記第1の距離情報を算出し、
 上記第2の距離情報算出部は、上記第2の送信波と上記第2の受信波に基づいて上記第2の距離情報を算出する
 情報処理装置。
 (10)
  筐体に設置され、対象物で反射された第1の受信波を受信する第1の受信部と、
  上記第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出する第1の距離情報算出部と、
  上記対象物または上記筐体のうちの一方の移動に応じて発生する、上記第1の位相情報の位相変化を算出する第1の位相変化算出部と
 を備える第1の測距装置と、
  上記筐体に設置され、上記対象物で反射された第2の受信波を受信する第2の受信部と、
  上記第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出する第2の距離情報算出部と、
  上記対象物または上記筐体のうちの上記一方の移動に応じて発生する、上記第2の位相情報の位相変化を算出する第2の位相変化算出部と
 を備える第2の測距装置と、
 上記第1の位相情報の位相変化及び上記第2の位相情報の位相変化に応じて上記第1の測距装置と上記第2の測距装置のキャリブレーション処理を実行するキャリブレーション処理装置と
 を具備するキャリブレーションシステム。
 (11)
 上記(10)に記載のキャリブレーションシステムであって、
 上記第1の測距装置は、上記筐体に設置され、上記対象物に第1の送信波を送信する第1の送信部をさらに具備し、
 上記第1の受信部は、上記第1の送信波が上記対象物によって反射された波である上記第1の受信波を受信し、
 上記第1の距離情報算出部は、上記第1の送信波と上記第1の受信波に基づいて上記第1の距離情報を算出し、
 上記第2の測距装置は、上記筐体に設置され、上記対象物に第2の送信波を送信する第2の送信部をさらに具備し、
 上記第2の受信部は、上記第2の送信波が上記対象物によって反射された波である上記第2の受信波を受信し、
 上記第2の距離情報算出部は、上記第2の送信波と上記第2の受信波に基づいて上記第2の距離情報を算出する
 キャリブレーションシステム。
 (12)
 上記(10)又は(11)に記載のキャリブレーションシステムであって、
 上記対象物を撮像した撮像画像を生成する撮像装置をさらに具備し、
 上記キャリブレーション処理装置は、上記第1の位相情報の位相変化、上記第2の位相情報の位相変化及び上記撮像画像に応じて、上記第1の測距装置、上記第2の測距装置及び上記撮像装置のキャリブレーション処理を実行する
 キャリブレーションシステム。
 (13)
 上記(10)から(12)のうちいずれか1つに記載のキャリブレーションシステムであって、
 上記第1の受信波及び上記第2の受信波はミリ波であり、
 上記第1の受信部及び上記第2の受信部はアンテナである
 キャリブレーションシステム。
 (14)
 上記(10)から(13)のうちいずれか1つに記載のキャリブレーションシステムであって、
 上記筐体は自動車である
 キャリブレーションシステム。
 (15)
 第1の測距装置が備え、筐体に設置された第1の受信部が受信した、対象物で反射された第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出し、
 上記対象物または上記筐体のうちの一方の移動に応じて発生する、上記第1の位相情報の位相変化を算出し、
 第2の測距装置が備え、上記筐体に設置された第2の受信部が受信した、上記対象物で反射された第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出し、
 上記対象物または上記筐体のうちの上記一方の移動に応じて発生する、上記第2の位相情報の位相変化を算出し、
 上記第1の位相情報の位相変化及び上記第2の位相情報の位相変化に応じて上記第1の測距装置と上記第2の測距装置のキャリブレーション処理を実行する
 情報処理方法。
Note that the present technology can also have the following configuration.
(1)
First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing a first distance information calculator that calculates
a first phase change calculator that calculates a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
A second rangefinder includes second phase information based on a second received wave reflected by the object and received by a second receiver installed in the housing. a second distance information calculator that calculates distance information;
a second phase change calculator that calculates a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
a calibration processing unit that performs calibration processing of the first distance measuring device and the second distance measuring device according to the phase change of the first phase information and the phase change of the second phase information; information processing device;
(2)
The information processing device according to (1) above,
The calibration processing unit specifies a relative position of the first receiving unit with respect to the object and a relative position of the second receiving unit with respect to the object, and a relative position of the first receiving unit with respect to the object. An information processing apparatus that performs the calibration process based on the position and the relative position of the second receiving unit with respect to the object.
(3)
The information processing device according to (2) above,
The calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object. An information processing device that identifies relative positions of rangefinders and executes the calibration process based on the relative positions of the first rangefinder and the second rangefinder.
(4)
The information processing device according to (2) or (3) above,
The calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object. A calibration system that identifies a relative angle of a rangefinder and performs the calibration process based on the relative angles of the first rangefinder and the second rangefinder.
(5)
The information processing device according to any one of (1) to (4) above,

The first phase change calculation unit calculates a phase change of the first phase information that occurs in accordance with movement of the housing,
The information processing apparatus, wherein the second phase change calculation unit calculates a phase change of the second phase information that occurs according to movement of the housing.
(6)
The information processing device according to (5) above,
The calibration processing unit specifies a relative position of the first receiving unit with respect to the object by executing synthetic aperture processing on the first received wave, and synthesizes with the second received wave. An information processing apparatus that performs opening processing to identify the relative position of the second receiving unit with respect to the object.
(7)
The information processing device according to any one of (1) to (4) above,
The first phase change calculation unit calculates a phase change of the first phase information that occurs in response to movement of the object,
The second phase change calculator calculates a phase change of the second phase information that occurs in accordance with movement of the object. Information processing apparatus.
(8)
The information processing device according to (7) above,
The calibration processing unit specifies a relative position of the first receiving unit with respect to the object by performing inverse synthetic aperture processing on the first received wave, and performs An information processing apparatus that performs inverse synthetic aperture processing to identify the relative position of the second receiver with respect to the object.
(9)
The information processing device according to any one of (1) to (8) above,
the first received wave is a wave reflected by the object from the first transmitted wave;
the second received wave is a wave reflected by the object from the second transmitted wave;
The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
The information processing apparatus, wherein the second distance information calculation unit calculates the second distance information based on the second transmission wave and the second reception wave.
(10)
a first receiving unit installed in a housing for receiving a first received wave reflected by an object;
a first distance information calculator that calculates first distance information including first phase information based on the first received wave;
a first distance measuring device comprising: a first phase change calculator that calculates a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
a second receiving unit installed in the housing for receiving a second received wave reflected by the object;
a second distance information calculator that calculates second distance information including second phase information based on the second received wave;
a second distance measuring device comprising: a second phase change calculator that calculates a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
a calibration processing device that performs calibration processing of the first rangefinder and the second rangefinder according to the phase change of the first phase information and the phase change of the second phase information; calibration system.
(11)
The calibration system according to (10) above,
The first distance measuring device further comprises a first transmission unit installed in the housing for transmitting a first transmission wave to the object,
The first receiving unit receives the first received wave, which is a wave in which the first transmitted wave is reflected by the object,
The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
The second distance measuring device further comprises a second transmission unit installed in the housing for transmitting a second transmission wave to the object,
The second receiving unit receives the second received wave, the second transmitted wave being a wave reflected by the object,
The calibration system, wherein the second distance information calculation unit calculates the second distance information based on the second transmission wave and the second reception wave.
(12)
The calibration system according to (10) or (11) above,
further comprising an imaging device that generates a captured image of the object,
The calibration processing device performs the first distance measuring device, the second distance measuring device, and the A calibration system that performs calibration processing of the imaging device.
(13)
The calibration system according to any one of (10) to (12) above,
The first received wave and the second received wave are millimeter waves,
The calibration system, wherein the first receiver and the second receiver are antennas.
(14)
The calibration system according to any one of (10) to (13) above,
The enclosure is an automotive calibration system.
(15)
First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing to calculate
calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
A second rangefinder includes second phase information based on a second received wave reflected by the object, which is received by a second receiver installed in the housing. Calculate the distance information,
calculating a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
An information processing method for performing calibration processing of the first distance measuring device and the second distance measuring device according to a phase change of the first phase information and a phase change of the second phase information.
 100、200…キャリブレーションシステム
 110、210…第1測距装置
 111、211…第1送信部
 112、212…第1受信部
 113、213…第1距離情報算出部
 114、214…第1位相変化算出部
 120、220…第2測距装置
 121、221…第2送信部
 122、222…第2受信部
 123、223…第2距離情報算出部
 124、224…第2位相変化算出部
 130、230…キャリブレーション処理装置
 131、231…キャリブレーション処理部
 140、240…撮像装置
 150、250…自動車
 161、261…情報処理装置
100, 200... Calibration system 110, 210... First rangefinder 111, 211... First transmitter 112, 212... First receiver 113, 213... First distance information calculator 114, 214... First phase change Calculation units 120, 220... Second distance measuring device 121, 221... Second transmission unit 122, 222... Second reception unit 123, 223... Second distance information calculation unit 124, 224... Second phase change calculation unit 130, 230 ... Calibration processing device 131, 231 ... Calibration processing unit 140, 240 ... Imaging device 150, 250 ... Automobile 161, 261 ... Information processing device

Claims (15)

  1.  第1の測距装置が備え、筐体に設置された第1の受信部が受信した、対象物で反射された第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出する第1の距離情報算出部と、
     前記対象物または前記筐体のうちの一方の移動に応じて発生する、前記第1の位相情報の位相変化を算出する第1の位相変化算出部と、
     第2の測距装置が備え、前記筐体に設置された第2の受信部が受信した、前記対象物で反射された第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出する第2の距離情報算出部と、
     前記対象物または前記筐体のうちの前記一方の移動に応じて発生する、前記第2の位相情報の位相変化を算出する第2の位相変化算出部と、
     前記第1の位相情報の位相変化及び前記第2の位相情報の位相変化に応じて前記第1の測距装置と前記第2の測距装置のキャリブレーション処理を実行するキャリブレーション処理部と
     を具備する情報処理装置。
    First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing a first distance information calculator that calculates
    a first phase change calculator that calculates a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
    A second range finder includes second phase information based on a second received wave reflected by the object, which is received by a second receiver installed in the housing. a second distance information calculator that calculates distance information;
    a second phase change calculator that calculates a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
    a calibration processing unit that performs calibration processing of the first rangefinder and the second rangefinder according to the phase change of the first phase information and the phase change of the second phase information; information processing device;
  2.  請求項1に記載の情報処理装置であって、
     前記キャリブレーション処理部は、前記対象物に対する前記第1の受信部の相対位置と前記対象物に対する前記第2の受信部の相対位置を特定し、前記対象物に対する前記第1の受信部の相対位置と前記対象物に対する前記第2の受信部の相対位置に基づいて前記キャリブレーション処理を実行する
     情報処理装置。
    The information processing device according to claim 1,
    The calibration processing unit specifies a relative position of the first receiving unit with respect to the object and a relative position of the second receiving unit with respect to the object, and a relative position of the first receiving unit with respect to the object. An information processing apparatus that performs the calibration process based on a position and a relative position of the second receiver with respect to the object.
  3.  請求項2に記載の情報処理装置であって、
     前記キャリブレーション処理部は、前記対象物に対する前記第1の受信部の相対位置と、前記対象物に対する前記第2の受信部の相対位置に基づいて前記第1の測距装置と前記第2の測距装置の相対位置を特定し、前記第1の測距装置と前記第2の測距装置の相対位置に基づいて前記キャリブレーション処理を実行する
     情報処理装置。
    The information processing device according to claim 2,
    The calibration processing unit performs calibration of the first distance measuring device and the second distance measuring device based on the relative position of the first receiving unit with respect to the object and the relative position of the second receiving unit with respect to the object. An information processing device that identifies relative positions of rangefinders and performs the calibration process based on the relative positions of the first rangefinder and the second rangefinder.
  4.  請求項2に記載の情報処理装置であって、
     前記キャリブレーション処理部は、前記対象物に対する前記第1の受信部の相対位置と前記対象物に対する前記第2の受信部の相対位置に基づいて前記第1の測距装置と前記第2の測距装置の相対角度を特定し、前記第1の測距装置と前記第2の測距装置の相対角度に基づいて前記キャリブレーション処理を実行する
     キャリブレーションシステム。
    The information processing device according to claim 2,
    The calibration processing unit performs calibration of the first rangefinder and the second rangefinder on the basis of the relative position of the first receiver with respect to the object and the relative position of the second receiver with respect to the object. A calibration system that identifies a relative angle of a rangefinder and performs the calibration process based on the relative angle of the first rangefinder and the second rangefinder.
  5.  請求項1に記載の情報処理装置であって、
     前記第1の位相変化算出部は、前記筐体の移動に応じて発生する前記第1の位相情報の位相変化を算出し、
     前記第2の位相変化算出部は、前記筐体の移動に応じて発生する前記第2の位相情報の位相変化を算出する
     情報処理装置。
    The information processing device according to claim 1,
    The first phase change calculation unit calculates a phase change of the first phase information that occurs in accordance with movement of the housing,
    The information processing apparatus, wherein the second phase change calculation unit calculates a phase change of the second phase information that occurs according to movement of the housing.
  6.  請求項5に記載の情報処理装置であって、
     前記キャリブレーション処理部は、前記第1の受信波に対して合成開口処理を実行して前記対象物に対する前記第1の受信部の相対位置を特定し、前記第2の受信波に対して合成開口処理を実行して前記対象物に対する前記第2の受信部の相対位置を特定する
     情報処理装置。
    The information processing device according to claim 5,
    The calibration processing unit specifies a relative position of the first receiving unit with respect to the object by executing synthetic aperture processing on the first received wave, and synthesizes the position of the first receiving unit on the second received wave. An information processing apparatus that performs aperture processing to identify the relative position of the second receiver with respect to the object.
  7.  請求項1に記載の情報処理装置であって、
     前記第1の位相変化算出部は、前記対象物の移動に応じて発生する前記第1の位相情報の位相変化を算出し、
     前記第2の位相変化算出部は、前記対象物の移動に応じて発生する前記第2の位相情報の位相変化を算出する
     情報処理装置。
    The information processing device according to claim 1,
    The first phase change calculator calculates a phase change of the first phase information that occurs in response to movement of the object,
    Information processing apparatus, wherein the second phase change calculation unit calculates a phase change of the second phase information that occurs according to movement of the object.
  8.  請求項7に記載の情報処理装置であって、
     前記キャリブレーション処理部は、前記第1の受信波に対して逆合成開口処理を実行して前記対象物に対する前記第1の受信部の相対位置を特定し、前記第2の受信波に対して逆合成開口処理を実行して前記対象物に対する前記第2の受信部の相対位置を特定する
     情報処理装置。
    The information processing device according to claim 7,
    The calibration processing unit specifies a relative position of the first receiving unit with respect to the object by performing inverse synthetic aperture processing on the first received wave, and performs An information processing apparatus that performs inverse synthetic aperture processing to identify the relative position of the second receiver with respect to the object.
  9.  請求項1に記載の情報処理装置であって、
     前記第1の受信波は第1の送信波が前記対象物によって反射された波であり、
     前記第2の受信波は第2の送信波が前記対象物によって反射された波であり、
     前記第1の距離情報算出部は、前記第1の送信波と前記第1の受信波に基づいて前記第1の距離情報を算出し、
     前記第2の距離情報算出部は、前記第2の送信波と前記第2の受信波に基づいて前記第2の距離情報を算出する
     情報処理装置。
    The information processing device according to claim 1,
    the first received wave is a wave reflected by the object from the first transmitted wave;
    the second received wave is a wave reflected by the object from the second transmitted wave;
    The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
    The information processing apparatus, wherein the second distance information calculation unit calculates the second distance information based on the second transmission wave and the second reception wave.
  10.   筐体に設置され、対象物で反射された第1の受信波を受信する第1の受信部と、
      前記第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出する第1の距離情報算出部と、
      前記対象物または前記筐体のうちの一方の移動に応じて発生する、前記第1の位相情報の位相変化を算出する第1の位相変化算出部と
     を備える第1の測距装置と、
      前記筐体に設置され、前記対象物で反射された第2の受信波を受信する第2の受信部と、
      前記第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出する第2の距離情報算出部と、
      前記対象物または前記筐体のうちの前記一方の移動に応じて発生する、前記第2の位相情報の位相変化を算出する第2の位相変化算出部と
     を備える第2の測距装置と、
     前記第1の位相情報の位相変化及び前記第2の位相情報の位相変化に応じて前記第1の測距装置と前記第2の測距装置のキャリブレーション処理を実行するキャリブレーション処理装置と
     を具備するキャリブレーションシステム。
    a first receiving unit installed in a housing for receiving a first received wave reflected by an object;
    a first distance information calculator that calculates first distance information including first phase information based on the first received wave;
    a first distance measuring device comprising: a first phase change calculator that calculates a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
    a second receiving unit installed in the housing for receiving a second received wave reflected by the object;
    a second distance information calculator that calculates second distance information including second phase information based on the second received wave;
    a second distance measuring device comprising: a second phase change calculator that calculates a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
    a calibration processing device that performs calibration processing of the first rangefinder and the second rangefinder according to the phase change of the first phase information and the phase change of the second phase information; calibration system.
  11.  請求項10に記載のキャリブレーションシステムであって、
     前記第1の測距装置は、前記筐体に設置され、前記対象物に第1の送信波を送信する第1の送信部をさらに具備し、
     前記第1の受信部は、前記第1の送信波が前記対象物によって反射された波である前記第1の受信波を受信し、
     前記第1の距離情報算出部は、前記第1の送信波と前記第1の受信波に基づいて前記第1の距離情報を算出し、
     前記第2の測距装置は、前記筐体に設置され、前記対象物に第2の送信波を送信する第2の送信部をさらに具備し、
     前記第2の受信部は、前記第2の送信波が前記対象物によって反射された波である前記第2の受信波を受信し、
     前記第2の距離情報算出部は、前記第2の送信波と前記第2の受信波に基づいて前記第2の距離情報を算出する
     キャリブレーションシステム。
    A calibration system according to claim 10, wherein
    The first rangefinder further comprises a first transmission unit installed in the housing for transmitting a first transmission wave to the object,
    the first receiving unit receives the first received wave, which is the wave reflected by the object, the first transmitted wave;
    The first distance information calculation unit calculates the first distance information based on the first transmission wave and the first reception wave,
    The second rangefinder further comprises a second transmitter installed in the housing and configured to transmit a second transmission wave to the target,
    the second receiving unit receives the second received wave, which is the wave reflected by the object, the second transmitted wave;
    The calibration system, wherein the second distance information calculation unit calculates the second distance information based on the second transmission wave and the second reception wave.
  12.  請求項10に記載のキャリブレーションシステムであって、
     前記対象物を撮像した撮像画像を生成する撮像装置をさらに具備し、
     前記キャリブレーション処理装置は、前記第1の位相情報の位相変化、前記第2の位相情報の位相変化及び前記撮像画像に応じて、前記第1の測距装置、前記第2の測距装置及び前記撮像装置のキャリブレーション処理を実行する
     キャリブレーションシステム。
    A calibration system according to claim 10, wherein
    further comprising an imaging device that generates a captured image of the object,
    The calibration processing device performs the first rangefinder, the second rangefinder, and the A calibration system that performs calibration processing of the imaging device.
  13.  請求項10に記載のキャリブレーションシステムであって、
     前記第1の受信波及び前記第2の受信波はミリ波であり、
     前記第1の受信部及び前記第2の受信部はアンテナである
     キャリブレーションシステム。
    A calibration system according to claim 10, wherein
    The first received wave and the second received wave are millimeter waves,
    The calibration system, wherein the first receiver and the second receiver are antennas.
  14.  請求項10に記載のキャリブレーションシステムであって、
     前記筐体は自動車である
     キャリブレーションシステム。
    A calibration system according to claim 10, wherein
    The enclosure is an automobile calibration system.
  15.  第1の測距装置が備え、筐体に設置された第1の受信部が受信した、対象物で反射された第1の受信波に基づいて第1の位相情報を含む第1の距離情報を算出し、
     前記対象物または前記筐体のうちの一方の移動に応じて発生する、前記第1の位相情報の位相変化を算出し、
     第2の測距装置が備え、前記筐体に設置された第2の受信部が受信した、前記対象物で反射された第2の受信波に基づいて第2の位相情報を含む第2の距離情報を算出し、
     前記対象物または前記筐体のうちの前記一方の移動に応じて発生する、前記第2の位相情報の位相変化を算出し、
     前記第1の位相情報の位相変化及び前記第2の位相情報の位相変化に応じて前記第1の測距装置と前記第2の測距装置のキャリブレーション処理を実行する
     情報処理方法。
    First distance information including first phase information based on a first received wave reflected by an object and received by a first receiver provided in a first rangefinder and installed in a housing to calculate
    calculating a phase change of the first phase information that occurs in response to movement of one of the object or the housing;
    A second range finder includes second phase information based on a second received wave reflected by the object, which is received by a second receiver installed in the housing. Calculate the distance information,
    calculating a phase change of the second phase information that occurs in response to movement of the one of the object or the housing;
    An information processing method for performing calibration processing of the first rangefinder and the second rangefinder according to a phase change of the first phase information and a phase change of the second phase information.
PCT/JP2022/000829 2021-05-25 2022-01-13 Information processing device, calibration system, and information processing method WO2022249533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-087977 2021-05-25
JP2021087977A JP2022181125A (en) 2021-05-25 2021-05-25 Information processing device, calibration system, and information processing method

Publications (1)

Publication Number Publication Date
WO2022249533A1 true WO2022249533A1 (en) 2022-12-01

Family

ID=84229757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000829 WO2022249533A1 (en) 2021-05-25 2022-01-13 Information processing device, calibration system, and information processing method

Country Status (2)

Country Link
JP (1) JP2022181125A (en)
WO (1) WO2022249533A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623676A (en) * 1985-06-28 1987-01-09 Toshiba Corp Synthetic aperture radar
JP2010249613A (en) * 2009-04-14 2010-11-04 Toyota Motor Corp Obstacle recognition device and vehicle control unit
WO2011036721A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 In-vehicle radar device
JP2020507767A (en) * 2017-02-23 2020-03-12 ヴィオニア スウェーデン エービー Inverse synthetic aperture radar for vehicle radar systems
WO2020048649A1 (en) * 2018-09-04 2020-03-12 Robert Bosch Gmbh Method for detecting angle measuring errors in a radar sensor
WO2020203657A1 (en) * 2019-04-04 2020-10-08 ソニー株式会社 Information processing device, information processing method, and information processing program
JP2021032640A (en) * 2019-08-21 2021-03-01 トヨタ自動車株式会社 Radar device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623676A (en) * 1985-06-28 1987-01-09 Toshiba Corp Synthetic aperture radar
JP2010249613A (en) * 2009-04-14 2010-11-04 Toyota Motor Corp Obstacle recognition device and vehicle control unit
WO2011036721A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 In-vehicle radar device
JP2020507767A (en) * 2017-02-23 2020-03-12 ヴィオニア スウェーデン エービー Inverse synthetic aperture radar for vehicle radar systems
WO2020048649A1 (en) * 2018-09-04 2020-03-12 Robert Bosch Gmbh Method for detecting angle measuring errors in a radar sensor
WO2020203657A1 (en) * 2019-04-04 2020-10-08 ソニー株式会社 Information processing device, information processing method, and information processing program
JP2021032640A (en) * 2019-08-21 2021-03-01 トヨタ自動車株式会社 Radar device

Also Published As

Publication number Publication date
JP2022181125A (en) 2022-12-07

Similar Documents

Publication Publication Date Title
JP6834964B2 (en) Image processing equipment, image processing methods, and programs
US11076141B2 (en) Image processing device, image processing method, and vehicle
WO2017057044A1 (en) Information processing device and information processing method
JP6764573B2 (en) Image processing equipment, image processing methods, and programs
JP7294148B2 (en) CALIBRATION DEVICE, CALIBRATION METHOD AND PROGRAM
JP7196063B2 (en) IMAGING CONTROL DEVICE, CONTROL METHOD OF IMAGING CONTROL DEVICE, AND MOVING OBJECT
WO2020100569A1 (en) Control device, control method, and sensor control system
CN113692521A (en) Information processing apparatus, information processing method, and information processing program
US11585898B2 (en) Signal processing device, signal processing method, and program
JP2018032986A (en) Information processing device and method, vehicle, and information processing system
WO2022044830A1 (en) Information processing device and information processing method
WO2022249533A1 (en) Information processing device, calibration system, and information processing method
JP7160085B2 (en) Image processing device, image processing method and program
US20230161026A1 (en) Circuitry and method
WO2022196316A1 (en) Information processing device, information processing method, and program
WO2020255589A1 (en) Information processing device, information processing method, and program
WO2023162733A1 (en) Distance measuring device and distance measuring method
WO2022075062A1 (en) Object position detection device, object position detection system, and object position detection method
WO2023162734A1 (en) Distance measurement device
WO2023013139A1 (en) Negative voltage monitoring circuit, and light receiving device
WO2020195969A1 (en) Information processing device, information processing method, and program
US20220146647A1 (en) Light receiving device, method of evaluating the same, and method of driving the same
JP2023068867A (en) Radar apparatus, information processing apparatus and information processing method
JP2024065130A (en) Information processing device, information processing method, and program
JP2021085748A (en) Radar device and manufacturing method thereof, and transceiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE