WO2020230249A1 - ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム - Google Patents

ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム Download PDF

Info

Publication number
WO2020230249A1
WO2020230249A1 PCT/JP2019/018989 JP2019018989W WO2020230249A1 WO 2020230249 A1 WO2020230249 A1 WO 2020230249A1 JP 2019018989 W JP2019018989 W JP 2019018989W WO 2020230249 A1 WO2020230249 A1 WO 2020230249A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
viewpoint
route
walk
group
Prior art date
Application number
PCT/JP2019/018989
Other languages
English (en)
French (fr)
Inventor
充 望月
恭太 堤田
治 松田
瀬下 仁志
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021519086A priority Critical patent/JP7302655B2/ja
Priority to US17/610,648 priority patent/US20220205801A1/en
Priority to PCT/JP2019/018989 priority patent/WO2020230249A1/ja
Publication of WO2020230249A1 publication Critical patent/WO2020230249A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/3617Destination input or retrieval using user history, behaviour, conditions or preferences, e.g. predicted or inferred from previous use or current movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3635Guidance using 3D or perspective road maps
    • G01C21/3638Guidance using 3D or perspective road maps including 3D objects and buildings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3476Special cost functions, i.e. other than distance or default speed limit of road segments using point of interest [POI] information, e.g. a route passing visible POIs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the disclosed technology relates to a walk-through display device, a walk-through display method, and a walk-through display program.
  • a walk-through display that navigates by moving the position on the virtual space where the same scenery as when actually moving can be displayed using a three-dimensional map or video It is done.
  • the method of Patent Document 1 provides a position on the route at the same time and at the same interval without giving the user a degree of freedom.
  • the walk-through display is performed while changing the height and direction (viewpoint to the route beyond the current point) that the user should see.
  • Pedestrians are less likely to get lost when their field of vision is open, so their walking speed increases, and conversely, they are more likely to get lost just before a corner that is not open, so by lowering their walking speed, they understand the current situation. Is.
  • the disclosed technology was made in view of the above points, and is a walk-through display device, a walk-through display device that can easily display the state of the current route even when the change in the field of view is large. It is an object of the present invention to provide a display method and a walk-through display program.
  • the first aspect of the present disclosure is a walk-through display device, in which a node acquisition unit that acquires a plurality of nodes included in a route on a diagram and a change in the line-of-sight of the plurality of nodes in the order of travel direction of the route.
  • a node acquisition unit that acquires a plurality of nodes included in a route on a diagram and a change in the line-of-sight of the plurality of nodes in the order of travel direction of the route.
  • a point generation unit that is generated so as to be divided into smaller parts toward, and a viewpoint determination unit that determines a viewpoint according to the conditions of the points for each of the plurality of points generated by the point generation unit, and a route is moved.
  • a second aspect of the present disclosure is a walk-through display device, wherein the route grouping unit is a viewpoint of a node of interest from a node immediately preceding the node of interest to the node of interest among the plurality of nodes.
  • the route grouping unit is a viewpoint of a node of interest from a node immediately preceding the node of interest to the node of interest among the plurality of nodes.
  • a third aspect of the present disclosure is a walk-through display device, wherein the viewpoint determining unit refers to each of the groups grouped by the route grouping unit to a point other than the point corresponding to the end point of the group. For each point, the viewpoint is the next point of each point, and for the point corresponding to the end point of the group, the viewpoint from the point immediately before the point corresponding to the end point to the point corresponding to the end point. It may include determining the viewpoint according to the angle at which the viewpoint rotates in the direction from the point corresponding to the end point to the next point of the point corresponding to the end point with respect to the direction.
  • a fourth aspect of the present disclosure is a walk-through display method, in which a node acquisition unit acquires a plurality of nodes included in a route on a map, and a route grouping unit obtains the plurality of nodes of the route.
  • groups are grouped in groups with no change in line of sight
  • the point generation unit sets a plurality of points included in the route of the group for each of the groups grouped by the route grouping unit. It is generated so as to be finely divided from the start point toward the end point of the group, and the viewpoint determination unit determines the viewpoint for each of the plurality of points generated by the point generation unit according to the conditions of the points.
  • the walk-through display unit is a walk-through display that displays the scenery when moving along the route, and is a walk-through display that displays the scenery according to the viewpoint determined by the viewpoint determination unit at each of the plurality of points. I do.
  • a fifth aspect of the present disclosure is a walk-through display program in which a node acquisition unit acquires a plurality of nodes included in a route on a map, and a route grouping unit acquires the plurality of nodes of the route.
  • groups are grouped in groups with no change in line of sight
  • the point generation unit sets a plurality of points included in the route of the group for each of the groups grouped by the route grouping unit. It is generated so as to be finely divided from the start point toward the end point of the group, and the viewpoint determination unit determines the viewpoint for each of the plurality of points generated by the point generation unit according to the conditions of the points.
  • the walk-through display unit is a walk-through display that displays the scenery when moving along the route, and is a walk-through display that displays the scenery according to the viewpoint determined by the viewpoint determination unit at each of the plurality of points. It is a walk-through display program for making a computer execute the above.
  • FIG. 3 is a block diagram showing a hardware configuration of the walk-through display device 10 according to the present embodiment.
  • the walk-through display device 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and communication. It has an interface (I / F) 17. Each configuration is communicably connected to each other via a bus 19.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 14 an input unit 15, a display unit 16, and communication. It has an interface (I / F) 17.
  • I / F interface
  • the CPU 11 is a central arithmetic processing unit that executes various programs and controls each part. That is, the CPU 11 reads the program from the ROM 12 or the storage 14, and executes the program using the RAM 13 as a work area. The CPU 11 controls each of the above configurations and performs various arithmetic processes according to the program stored in the ROM 12 or the storage 14. In the present embodiment, the ROM 12 or the storage 14 stores a walk-through display program for executing the walk-through display process.
  • the ROM 12 stores various programs and various data.
  • the RAM 13 temporarily stores a program or data as a work area.
  • the storage 14 is composed of an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for performing various inputs.
  • the display unit 16 is, for example, a liquid crystal display and displays various types of information.
  • the display unit 16 may adopt a touch panel method and function as an input unit 15.
  • the communication interface 17 is an interface for communicating with other devices, and for example, standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark) are used.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the walk-through display device 10.
  • the walk-through display device 10 includes a node acquisition unit 101, a route grouping unit 102, a point generation unit 103, a viewpoint determination unit 104, and a walk-through display unit 105 as functional configurations.
  • Each functional configuration is realized by the CPU 11 reading the walk-through display program stored in the ROM 12 or the storage 14, deploying it in the RAM 13, and executing it.
  • the node acquisition unit 101 acquires a plurality of nodes included in the route on the map.
  • the node acquisition unit 101 acquires eight nodes having node IDs A to H shown in FIG. 5 as nodes for the route.
  • a node whose node ID is i i is an arbitrary symbol
  • the route shown in FIG. 5 is a route starting from node A, passing through nodes B, C, D, E, F, and G in order, and ending at node H.
  • the route shown in FIG. 5 corresponds to, for example, a route in which nodes A to E are indoors and nodes F to H are outdoors. Then, the node acquisition unit 101 passes the acquired plurality of nodes to the route grouping unit 102.
  • the route grouping unit 102 groups a plurality of nodes in the order of travel direction of the route in group units in which the line of sight does not change. Specifically, in the route grouping unit 102, the angle formed by the node, the node immediately before the node, and the node next to the node among the plurality of nodes is equal to or greater than a predetermined first threshold value. If it is large, assuming that there is a change in the line of sight at the node, by dividing the route before and after the node so as to create a group with the node as the end point and a group with the node as the start point. Group.
  • the outlook of the node will be explained.
  • the human visual field is in the range of 45 ° with respect to the direction of the viewpoint (left in FIG. 6)
  • 22.5 ° which is half of that angle
  • a new one at a node is created.
  • the field of view in the direction of the viewpoint there is a field of view in the range of 22.5 ° that overlaps with the field of view in the direction of the viewpoint in the node in front of the node (in the case of 22.5 ° on the right of FIG. 6).
  • the field of view is continuous and the change in the field of view is small.
  • the node where the viewpoint rotation of less than 22.5 ° occurs has a good line-of-sight, not a corner.
  • the viewpoint rotation exceeding 22.5 ° is required, the overlapping visual field gradually decreases, and when it exceeds 45 °, the overlapping region disappears and the visual field becomes uncontinuous and the change in the visual field becomes large. ..
  • the viewpoint rotation of 70 ° there is no region overlapping the field of view in the direction of the viewpoint in the node in front of the node (in the case of 70 ° on the right side of FIG. 6). Therefore, it can be said that the node where the viewpoint rotation exceeding 22.5 ° has a turning angle or the like and the visibility is poor.
  • the starting point is the node at the timing when the viewpoint rotation exceeding 22.5 ° is required (the timing when the field of view loses continuity) as the ending point.
  • the angle of viewpoint rotation in the attention node for example, in the attention node, with respect to the direction of the viewpoint from the node immediately before the attention node to the attention node, and from the attention node to the next node of the attention node. It can be calculated by calculating the angle at which the viewpoint rotates in the direction of the viewpoint.
  • FIG. 7 shows an example of route grouping when 22.5 ° is set as a threshold value.
  • the circled nodes C, E, and F are nodes that require a viewpoint rotation of more than 22.5 °. Therefore, the route grouping unit 102 divides the route into four groups [A, B, C], [C, D, E], [E, F], and [F, G, H]. Then, the route grouping unit 102 passes the grouped plurality of nodes to the point generation unit 103.
  • the point generation unit 103 finely divides a plurality of points included in the route of the group for each of the groups grouped by the route grouping unit 102 from the start point of the group toward the end point of the group. Generate. Specifically, the point generation unit 103 sets the points corresponding to the start point and end point of the group as the start point and end point nodes of each of the groups grouped by the route grouping unit 102 in the route of the group. Generate at position. Further, the point generation unit 103 generates a point at a position between the start point of the group and the end point of the group, which is finely divided from the start point of the group toward the end point of the group. Here, the movement times between the points generated by the point generation unit 103 are generated to be the same.
  • the point generation unit 103 generates a point in which the movement interval becomes smaller from the start point to the end point with respect to the route of the group, so that the distance traveled at the same time is lengthened at the stage of good visibility, and the outlook If it gets worse, shorten it.
  • the point generation unit 103 generates a point at the start point of the group only for the first group, and for the second and subsequent groups, a point corresponding to the end point of the immediately preceding group is a point corresponding to the start point of the group. And.
  • the point generation unit 103 sets a point number at each point for the purpose of making the point unique. For the point number, 1 is added to the end of the node ID of the node at the same position for the start point of each group, and 0 is added to the end of the node ID of the node at the same position for the end point of each group. And. Next, the point generation unit 103 determines whether or not the distance of the route from the start point to the end point is equal to or less than a predetermined second threshold value, and if the distance is equal to or less than the second threshold value, the point generation unit 103 generates points in the group. To finish.
  • the point generation unit 103 when the distance exceeds the second threshold value, the point generation unit 103 generates a new point at the midpoint of the distance between the start point and the end point, and the distance between the generated new point and the end point is the distance between the route and the end point. It is determined whether or not it is equal to or less than the second threshold value. If the distance between the new point and the end point is less than or equal to the second threshold, the generation of points in the group is finished, and if the distance between the new point and the end point exceeds the second threshold, the new point is newly generated. A new point is generated again at the midpoint of the distance between the above point and the end point, and the same process is repeated. The point generation unit 103 performs the above-mentioned point generation process for all groups.
  • a unique serial number shall be added to the node ID immediately before the position of the points.
  • the point of the point number j (j is an arbitrary symbol) is referred to as "point j" or simply "j".
  • FIG. 8 shows Group 1 [A, B, C], Group 2 [C, D, E], Group 3 [E, F], and Group 4 [F, G, H] grouped by the route grouping unit 102. ],
  • An example of the result of generating a point by the point generation unit 103 is shown.
  • the case where the second threshold value is 5 m will be described as an example.
  • the point A1 is generated at the position of the node A which is the start point
  • C0 is generated at the position of the node C which is the end point.
  • the point B1 is generated at the midpoint of the distance between the routes A1 and C0.
  • the point B2 is generated at the midpoint of the distance between the routes B1 and C0.
  • the point B3 is generated at the midpoint of the distance between the routes B2 and C0. Since the distance between the routes B3 and C0 is within 5 m, the point generation process in group 1 is completed, and the process is repeated for the next group. After that, the process is repeated until the processing for each group is completed.
  • this point generation can be similarly solved not only for the plane but also for the height (Z-axis). Then, the point generation unit 103 passes a plurality of points included in the route for each of the generated groups to the viewpoint determination unit 104.
  • the viewpoint determination unit 104 determines the viewpoint for each of the plurality of points generated by the point generation unit 103 according to the conditions of the points. Specifically, the viewpoint determination unit 104 refers to each of the groups grouped by the route grouping unit 102 by the route grouping unit 102, and each point of the group other than the point corresponding to the end point of the group. With the point next to each point as the viewpoint, the point corresponding to the end point of the group is the end point in the direction of the viewpoint from the point immediately before the point corresponding to the end point to the point corresponding to the end point. The viewpoint is determined according to the angle at which the viewpoint rotates in the direction from the point corresponding to the point corresponding to the point corresponding to the end point to the next point. In the present embodiment, the above condition is determined based on whether or not the end of the point number is 0. The method of determination is not limited to this, and may be determined according to the relationship between the positions of the nodes and the points.
  • Fig. 9 shows an example of the viewpoint determination rule according to the conditions of the point.
  • the viewpoint determination unit 104 uses the point one point ahead in the traveling direction as the viewpoint, and the end point of each group is the middle point of the route. Since the change in the field of view is large, the viewpoint is determined according to the angle between the end point of the group, the point immediately before the point, and the point one point ahead of the point, and the end point of each group is determined. If is the end point of the route, the viewpoint determination process ends.
  • FIG. 10 shows an example of determining the viewpoint of a point other than the end point of each group.
  • the viewpoint of the point A1 is B1
  • the viewpoint of the point B1 is B2.
  • FIG. 11 shows an example of determining the viewpoint of the end point of each group.
  • the viewpoint in C1 is directed to D1, which is one point ahead in the walk-through display, the entire field of view is switched to the area that was previously out of the field of view. I can't understand the current state of moving to.
  • the viewpoint determining unit 104 generates a circle centered on C0 and having a radius as the distance between C0 and D1, divides the range in which the viewpoint moves in units of 22.5 °, and refers to the point on the generated circle as the viewpoint. Generate as. At that time, if the angle of the range in which the viewpoint moves is less than 22.5 °, D1 which is one point ahead may be used as the viewpoint without dividing. The angle at which the field of view is divided is not limited to this, and may be changed according to the actual appearance. In the case of a point located at the end point of the route (here, point number H0), the viewpoint determination unit 104 does not determine the viewpoint because it does not proceed beyond that point.
  • the field of view in the walk-through display an overlapping area before and after the rotation of the viewpoint.
  • the recognizable visual field range is 45 ° and the viewpoint movement angle is 22.5 °
  • the 22.5 ° ranges overlap.
  • this viewpoint determination can be solved not only for the plane but also for the movement of the height (Z axis). For example, stairs, escalators, etc. are accompanied by movement of height (Z axis), but similarly, overlapping regions can be provided before and after rotation of the viewpoint according to the movement angle of the viewpoint.
  • a viewpoint number is set for the purpose of making the viewpoint unique.
  • the viewpoint number shall be the point number at the center of the circle with a serial number added. The serial number is incremented from the viewpoint far from the position of D1.
  • the viewpoint of the viewpoint number k (k is an arbitrary symbol) is referred to as “viewpoint k”.
  • the viewpoint determination unit 104 passes the viewpoint determined at each of the plurality of points to the walk-through display unit 105.
  • the walk-through display unit 105 is a walk-through display that displays the scenery when moving along the route, and is a walk-through display that displays the scenery according to the viewpoint determined by the viewpoint determination unit 104 at each of the plurality of points. I do. Specifically, the walk-through display unit 105 performs walk-through display based on the point where the viewpoint is determined. By performing a walk-through display based on the determined viewpoint, the distance traveled at the same time can be lengthened at the stage of good visibility and shortened at the stage of poor visibility, and the visibility can be shortened even at a corner where the change in visibility is large. By giving the continuity of, it is possible to display the current state in an easy-to-understand manner for the user.
  • FIG. 12 shows an example of the difference in appearance between the case where the viewpoint at the corner is switched to the next point in the walk-through display and the case where the viewpoint is sequentially switched within the range of the field of view by the walk-through display device 10. Is shown.
  • FIG. 12 The upper figure shows an example in which the viewpoint at the corner is switched to the next point.
  • the display becomes difficult to understand the current state.
  • the continuous view can be provided, so that the current state can be easily understood.
  • FIG. 13 is a flowchart showing the flow of the walk-through display processing routine by the walk-through display device 10.
  • the walk-through display processing routine is performed by the CPU 11 reading the walk-through display program from the ROM 12 or the storage 14, expanding the program into the RAM 13 and executing the program.
  • step S101 the CPU 11 acquires a plurality of nodes included in the route on the map as the node acquisition unit 101.
  • step S102 the CPU 11 groups a plurality of nodes as the route grouping unit 102 in the order of the traveling direction of the route in group units in which the line of sight does not change.
  • step S103 as the point generation unit 103, for each of the groups grouped by step S102, the CPU 11 moves a plurality of points included in the route of the group from the start point of the group to the end point of the group.
  • the point generation process which is the process of generating finely divided parts, is executed.
  • step S104 the CPU 11 selects the first point as the viewpoint determination unit 104.
  • step S105 the CPU 11 determines the selected point as the viewpoint determination unit 104 according to, for example, the viewpoint determination rule shown in FIG.
  • step S106 the CPU 11 determines, as the viewpoint determination unit 104, whether or not the determination result in step S105 is the end of the viewpoint determination.
  • step S107 the CPU 11 performs the viewpoint determination process of determining the viewpoint of the selected point according to the determination result in step S105 as the viewpoint determination unit 104. ..
  • step S108 the CPU 11 selects the next point as the viewpoint determination unit 104, and returns to step S105.
  • step S109 the CPU 11 is a walk-through display for displaying the scenery when moving the route as the walk-through display unit 105, and a plurality of walk-through displays are displayed. At each of the points, a walk-through display is performed to display the scenery according to the viewpoint determined in step S107.
  • FIG. 14 is a flowchart showing the flow of the point generation processing routine by the walk-through display device 10.
  • step S131 the CPU 11 selects the first group as the point generation unit 103.
  • step S132 the CPU 11 generates a point at the start point of the selected group as the point generation unit 103.
  • step S133 the CPU 11 generates a point at the end point of the selected group as the point generation unit 103.
  • step S134 the CPU 11 determines, as the point generation unit 103, whether or not the distance between the start point generated in step S132 and the path of the end point generated in step S133 is equal to or less than a predetermined second threshold value.
  • step S135 the CPU 11 is used as the point generation unit 103. A new point is generated at the midpoint of the distance between the start point generated in step S132 and the path of the end point generated in step S133.
  • step S136 the CPU 11 determines, as the point generation unit 103, whether or not the distance between the new point generated in step S135 and the end point generated in step S133 is equal to or less than the second threshold value. ..
  • step S137 the CPU 11 is used as the point generation unit 103.
  • a new point is generated again at the midpoint of the distance of the path between the new point generated by the step S135 and the end point generated by the step S133, and the process returns to step S136 to return to the new point generated by the step S136. It is determined whether or not the distance of the route between the point and the end point generated in step S133 is equal to or less than the second threshold value.
  • step S132 when the distance between the start point generated in step S132 and the path of the end point generated in step S133 is equal to or less than the second threshold value (YES in step S134), or when a new point is generated in step S133.
  • the CPU 11 determines whether or not the points have been generated for all the groups as the point generation unit 103. To do.
  • step S139 the CPU 11 selects the next group as the point generation unit 103, returns to step S132, and again in steps S132 to S138. Perform processing.
  • FIG. 15 is a flowchart showing the flow of the viewpoint determination processing routine by the walk-through display device 10.
  • step S171 the CPU 11 determines, as the viewpoint determining unit 104, whether or not the point currently selected by step S104 or step S108 (hereinafter referred to as the selected point) is the end point of the group to which the selected point belongs.
  • step S172 the CPU 11 determines the viewpoint of the selected point to the next point in the traveling direction as the viewpoint determining unit 104, and returns.
  • step S173 the CPU 11 acquires the point of the next group of the group to which the selected point belongs as the viewpoint determination unit 104.
  • step S174 the CPU 11 generates, as the viewpoint determination unit 104, a circle centered on the start point of the next group acquired in step S173 and having the distance between the start point and the point next to the start point as the radius.
  • t is a counter for counting the viewpoint number of the viewpoint at the selected point.
  • step S176 the CPU 11 generates a straight line connecting the center of the circle generated in step S174 and a point immediately before the selected point as the viewpoint determination unit 104, and among the intersections of the circle and the straight line, the said The intersection of the center of the circle in the direction opposite to the point immediately before the selected point is generated as the viewpoint t.
  • step S177 the CPU 11 uses the viewpoint determination unit 104 to rotate the viewpoint of a line segment connecting the center of the circle and the viewpoint t and a line segment connecting the center of the circle and the point next to the start point of the next group. Calculate the angle to make in the direction.
  • step S178 the CPU 11 determines whether or not the angle calculated in step S177 is equal to or greater than a predetermined first threshold value as the viewpoint determination unit 104.
  • step S179 the CPU 11 adds 1 to t as the viewpoint determination unit 104.
  • step S180 the CPU 11 sets the same angle as the first threshold value with respect to the line segment connecting the center of the circle and the viewpoint t-1 toward the next point of the start point of the next group as the viewpoint determination unit 104.
  • the viewpoint on the circle to be formed is generated as the viewpoint t, and the process returns to step S177.
  • step S181 the CPU 11 determines the viewpoint of the selected point as the viewpoints 1 to t as the viewpoint determining unit 104. Return. At the selected point, the viewpoints 1 to t are sequentially displayed as walk-throughs.
  • a plurality of nodes included in the route on the map are grouped and grouped in the order of the traveling direction of the route in groups with no change in the field of view.
  • a plurality of points included in the route of the group are generated so as to be subdivided from the start point of the group toward the end point of the group, and for each of the plurality of points, the points of the point are generated. Since the viewpoint is determined according to the conditions and the walk-through display is performed to display the landscape according to the determined viewpoint, it is possible to have continuity of the field of view even at a corner where the change in the field of view is large, and the change in the field of view is large. Even in this case, it is possible to display the current route state in an easy-to-understand manner.
  • the angle that becomes the first threshold value has been described by taking 22.5 ° as an example, but the present invention is not limited to this, and it may be changed according to the actual appearance.
  • the first threshold value may be set according to the viewing angle and visual acuity of a pedestrian. Further, for example, depending on the state of the route on the map, if the route on the map is a wide field with few buildings, the first threshold value is increased, and if the route on the map is a dense area of high-rise buildings, etc.
  • the first threshold value may be changed, such as reducing the first threshold value. Further, for example, the threshold value may be changed according to the weather.
  • the node acquisition unit 101 further acquires the state of the route on the map, and the first threshold value changing unit (not shown) is configured to change the first threshold value according to the state of the route on the map. You may.
  • various processors other than the CPU may execute the walk-through display program executed by the CPU reading the software (program) in the above embodiment.
  • the processors include PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) for executing ASIC (Application Special Integrated Circuit).
  • PLD Programmable Logic Device
  • ASIC Application Specific Integrated Circuit
  • An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for it.
  • the walk-through display program may be executed on one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs, and a CPU and an FPGA). It may be executed by combination etc.).
  • the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the program is a non-temporary storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital entirely Disk Online Memory), and a USB (Universal Serial Bus) memory. It may be provided in the form. Further, the program may be downloaded from an external device via a network.
  • the plurality of nodes are grouped in the order of travel direction of the route in group units in which the line of sight does not change.
  • a plurality of points included in the route of the group are generated so as to be finely divided from the start point of the group toward the end point of the group.
  • a viewpoint is determined according to the conditions of the points. It is a walk-through display that displays the scenery when moving along the route, and the computer is provided with a walk-through display that displays the scenery according to the viewpoint determined by the viewpoint determination unit at each of the plurality of points.
  • a non-temporary storage medium that stores the walkthrough display program to be executed.
  • Walk-through display device 11
  • CPU 12 ROM 13 RAM 14
  • Storage 15 Input unit 16
  • Display unit 17 Communication interface 19
  • Node acquisition unit 102
  • Route grouping unit 103
  • Point generation unit 104
  • Viewpoint determination unit 105 Walk-through display unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Navigation (AREA)

Abstract

視界の変化が大きい場合であっても、現在の経路の状態を理解しやすい表示を行うことができるようにする。 グループ化部(102)は、地図上の経路に含まれる複数のノードを、経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、地点生成部(103)は、グループ化されたグループの各々について、当該グループの経路に含まれる複数の地点を、当該グループの始点から当該グループの終点に向かうにつれて細かく分割するように生成し、視点決定部(104)は、当該複数の地点の各々について、当該地点の条件に応じて視点を決定し、ウォークスルー表示部(105)は、決定された視点に応じた風景を表示するウォークスルー表示を行う。

Description

ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム
 開示の技術は、ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラムに関する。
 人間に対するナビゲーションを行う際に、3次元地図や動画を用いて、実際に移動した場合と同様の風景が表示可能な仮想空間上の位置を移動していくことにより、ナビゲーションを行うウォークスルー表示が行われている。予め決められた経路又は経路探索を行って得られた経路に対してナビゲーションを行う場合、特許文献1の手法では、利用者に自由度を与えずに、同じ時間、同じ間隔で経路上の位置を移動し、利用者が見るべき高さ・方向(現在の地点より先の経路への視点)を変えながらウォークスルー表示を行っている。
特開2019-016099号公報
 しかしながら、特許文献1の手法では、図1上部に示すような経路についてナビゲーションを行う場合、図1下部に示すように経路を同じ間隔の地点に分割し、地点間を同じ時間で移動する。このため、AC間やFH間(図1中の破線楕円部分)のような視界が開けている場合でも変化の少ない経路を長時間かけて進み、逆に、C周辺やDF間等(図1中実線楕円部分)の視界が開けていない場合は変化の多い状況を短い時間で通り過ぎてしまう、という問題があった。歩行者は、視界が開けている場合は迷いづらいため歩行速度は上がり、逆に、開けていない曲がり角の直前は迷いやすいため歩行速度を下げることで、現在の状況の理解を把握しているためである。
 また、特許文献1の手法では、図2に示すように、経路上を移動する際に、ある地点の視点の先を経路上先に位置する地点に向けるため、曲がり角においては、視界外の風景に切り替わってしまい、現在の状況が理解しにくい、という問題があった。
 開示の技術は、上記の点に鑑みてなされたものであり、視界の変化が大きい場合であっても、現在の経路の状態を理解しやすい表示を行うことができるウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラムを提供することを目的とする。
 本開示の第1態様は、ウォークスルー表示装置であって、図上の経路に含まれる複数のノードを取得するノード取得部と、前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化する経路グループ化部と、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成する地点生成部と、前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定する視点決定部と、経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行うウォークスルー表示部と、を含む。
 本開示の第2態様は、ウォークスルー表示装置であって、前記経路グループ化部は、前記複数のノードのうち、注目ノードにおいて、前記注目ノードの1つ前のノードから前記注目ノードに対する視点の方向に対し、前記注目ノードから前記注目ノードの次のノードに対する視点の方向に視点回転する角度が、所定の第1閾値より大きい場合に、前記注目ノードにおいて見通しの変化があるものとして、前記注目ノードを終点とするグループと、前記注目ノードを始点とするグループとを作成することを含み得る。
 本開示の第3態様は、ウォークスルー表示装置であって、前記視点決定部は、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの終点に相当する地点以外の前記グループの各地点については、各地点の各々の次の地点を視点とし、前記グループの終点に相当する地点については、前記終点に相当する地点の1つ前の地点から前記終点に相当する地点に対する視点の方向に対し、前記終点に相当する地点から前記終点に相当する地点の次の地点に対する方向に視点回転する角度に応じて視点を決定することを含み得る。
 本開示の第4態様は、ウォークスルー表示方法であって、ノード取得部が、地図上の経路に含まれる複数のノードを取得し、経路グループ化部が、前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、地点生成部が、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成し、視点決定部が、前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定し、ウォークスルー表示部が、経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行う。
 本開示の第5態様は、ウォークスルー表示プログラムであって、ノード取得部が、地図上の経路に含まれる複数のノードを取得し、経路グループ化部が、前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、地点生成部が、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成し、視点決定部が、前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定し、ウォークスルー表示部が、経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行うことをコンピュータに実行させるためのウォークスルー表示プログラムである。
 開示の技術によれば、視界の変化が大きい場合であっても、現在の経路の状態を理解しやすい表示を行うことができる。
従来のウォークスルー表示における変化が多い経路と少ない経路の例を示す図である。 従来のウォークスルー表示における曲がり角における視点の例を示す図である。 本実施形態に係るウォークスルー表示装置として機能するコンピュータの概略構成を示すブロック図である。 本実施形態に係るウォークスルー表示装置の機能構成の例を示すブロック図である。 経路の例を示す図である。 ノードの見通しの例を示す図である。 経路のグループ化の例を示す図である。 地点生成の例を示す図である。 視点の決定ルールの例を示す図である。 グループの終点以外の地点の視点決定の例を示す図である。 グループの終点の地点の視点決定の例を示す図である。 本実施形態に係るウォークスルー表示装置による曲がり角における視界の従来技術との差異の例を示す図である。 本実施形態に係るウォークスルー表示装置のウォークスルー表示処理ルーチンを示すフローチャートである。 本実施形態に係るウォークスルー表示装置の地点生成処理ルーチンを示すフローチャートである。 本実施形態に係るウォークスルー表示装置の視点決定処理ルーチンを示すフローチャートである。
<本開示の技術の実施形態に係るウォークスルー表示装置の構成>
 以下、開示の技術の実施形態の例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図3は、本実施形態に係るウォークスルー表示装置10のハードウェア構成を示すブロック図である。
 図3に示すように、ウォークスルー表示装置10は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。
 CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、ウォークスルー表示処理を実行するためのウォークスルー表示プログラムが記憶されている。
 ROM12は、各種プログラム及び各種データを記憶する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを記憶する。
 入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。
 表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能しても良い。
 通信インタフェース17は、他の機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。
 次に、ウォークスルー表示装置10の機能構成について説明する。図4は、ウォークスルー表示装置10の機能構成の例を示すブロック図である。
 図4に示すように、ウォークスルー表示装置10は、機能構成として、ノード取得部101と、経路グループ化部102と、地点生成部103と、視点決定部104と、ウォークスルー表示部105とを有する。各機能構成は、CPU11がROM12又はストレージ14に記憶されたウォークスルー表示プログラムを読み出し、RAM13に展開して実行することにより実現される。
 ノード取得部101は、地図上の経路に含まれる複数のノードを取得する。本実施形態では、ノード取得部101は、図5に示すような経路に含まれる複数のノードを取得する場合を例に説明する。具体的には、ノード取得部101は、経路に対するノードとして、図5に示すノードIDをA~Hとする8個のノードを取得する。以下では、ノードIDがi(iは任意の記号)のノードを「ノードi」と表記する。図5に示す経路は、ノードAを始点とし、ノードB,C,D,E,F,Gを順に経由して、ノードHを終点とする経路である。また、図5に示す経路は、例えばノードA~Eまでを屋内とし、ノードF~Hを屋外とするような経路に相当する。そして、ノード取得部101は、取得した複数のノードを、経路グループ化部102に渡す。
 経路グループ化部102は、複数のノードを、経路の進行方向順に、見通しの変化の無いグループ単位でグループ化する。具体的には、経路グループ化部102は、複数のノードのうち、当該ノードと、当該ノードの1つ前のノードと、当該ノードの次のノードとのなす角度が、所定の第1閾値より大きい場合に、当該ノードにおいて見通しの変化があるものとして、当該ノードを終点とするグループと、当該ノードを始点とするグループとを作成するように、当該ノードの前後で経路を分割することにより、グループ化を行う。
 ここで、ノードの見通しについて説明する。図6に示すように、人の視界が、視点の方向を中心として45°の範囲であるとすると(図6左)、その角度の半分の22.5°視点回転すると、あるノードにおける新たな視点の方向における視界には、当該ノードの前のノードにおける視点の方向における視界と重複する22.5°の範囲の視界が存在することになり(図6右の22.5°の場合)、当該ノードにおける視点回転においては視界に連続性があり視界の変化が小さい。従って、22.5°未満の視点回転が生じるノードに関しては、曲がり角ではなく、見通しが良い状態と言える。一方、22.5°を超えた視点回転が必要な場合は、重複する視界が徐々に少なくなり、45°を超えた時点で重複する領域がなくなり視界に連続性がなくなり視界の変化が大きくなる。例えば、70°の視点回転に関しては、当該ノードの前のノードにおける視点の方向における視界と重複する領域が存在しない(図6右の70°の場合)。従って、22.5°を超える視点回転が生じるノードに関しては、曲がり角等であり、見通しが悪い状態と言える。
 従って、経路グループ化部102は、あるノードに注目すると、当該注目ノードを始点として、22.5°を超える視点回転が必要なタイミング(視界に連続性が無くなるタイミング)のノードを終点とした、視界に連続性があるノードのグループを作成する。当該注目ノードにおける視点回転の角度については、例えば、当該注目ノードにおいて、当該注目ノードの1つ前のノードから当該注目ノードに対する視点の方向に対し、当該注目ノードから当該注目ノードの次のノードに対する視点の方向に視点回転する角度を計算することにより算出することができる。
 図7に、22.5°を閾値とした場合の経路のグループ化の例を示す。図7に示すように、丸で囲ったノードC,E,Fが、22.5°を超える視点回転が必要なノードである。このため、経路グループ化部102は、[A,B,C]、[C,D,E]、[E,F]、[F,G,H]の4つのグループに経路を分割する。そして、経路グループ化部102は、グループ化した複数のノードを、地点生成部103に渡す。
 地点生成部103は、経路グループ化部102によりグループ化されたグループの各々について、当該グループの経路に含まれる複数の地点を、当該グループの始点から当該グループの終点に向かうにつれて細かく分割するように生成する。具体的には、地点生成部103は、経路グループ化部102によりグループ化されたグループの各々について、当該グループの経路において、当該グループの始点及び終点に相当する地点を始点及び終点の各ノードの位置に生成する。更に、地点生成部103は、当該グループの始点と当該グループの終点との間の位置であって、当該グループの始点から当該グループの終点に向かうにつれて細かく分割される位置に地点を生成する。ここで、地点生成部103により生成される地点間の移動時間は同一になるように生成される。すなわち、地点生成部103では、グループの経路に対して、始点から終点に向かうにつれて、移動間隔を細かくする地点を生成することで、同じ時間に進む距離を、見通しの良い段階では長くし、見通しが悪くなると短くする。なお、地点生成部103は、最初のグループについてのみ当該グループの始点に地点を生成し、2番目以降のグループについては、直前のグループの終点に相当する地点を、当該グループの始点に相当する地点とする。
 ここで、地点生成部103は、地点を一意とする目的として、各地点に地点番号を設定する。地点番号は、各グループの始点に対しては同じ位置のノードのノードIDの末尾に1を付加するものとし、各グループの終点に関しては同じ位置のノードのノードIDの末尾に0を付加するものとする。次に、地点生成部103は、始点から終点までの経路の距離が所定の第2閾値以下であるか否かを判定し、当該距離が第2閾値以下である場合、当該グループにおける地点の生成を終了する。一方、当該距離が第2閾値を超える場合、地点生成部103は、始点と終点の経路の距離の中点に、新たな地点を生成し、生成した新たな地点と終点との経路の距離が第2閾値以下であるか否かを判定する。新たな地点と終点との経路の距離が第2閾値以下である場合は、当該グループにおける地点の生成を終了し、新たな地点と終点との経路の距離が第2閾値を超える場合は、新たな地点と終点との経路の距離の中点に再度新たな地点を生成し、同様の処理を繰り返す。地点生成部103は、全てのグループについて上記地点の生成処理を行う。なお、各グループの始点と終点の間の地点に関しては、地点の位置の直前のノードIDに一意の連番を付加していくものとする。以下では、地点番号j(jは任意の記号)の地点を「地点j」又は単に「j」と表記する。
 図8に、経路グループ化部102にてグループ化したグループ1[A,B,C]、グループ2[C,D,E]、グループ3[E,F]、グループ4[F,G,H]の各々に対して、地点生成部103により地点を生成した結果の例を示す。この例では、第2閾値を5mとした場合を例に説明する。例えば、グループ1については、始点となるノードAの位置に地点A1を生成し、また、終点となるノードCの位置にC0を生成する。この時、A1からC0の経路の距離が5mを超えているため、A1とC0の経路の距離の中点に地点B1を生成する。更に、B1とC0の経路の距離が5mを超えているため、B1とC0の経路の距離の中点に地点B2を生成する。更に、B2とC0の経路の距離が5mを超えているため、B2とC0の経路の距離の中点に地点B3を生成する。B3とC0の経路の距離が5m以内となるため、グループ1における地点の生成処理を終了し、次のグループに対して処理を繰り返す。以降、同様に各グループに対する処理が終了するまで繰り返す。このように地点の生成を繰り返すことにより、同じ時間に進む距離を、見通しの良い段階では長くし、見通しが悪くなると短くできる。なお、この地点生成に関しては、平面のみではなく、高さ(Z軸)に関しても同様に解決することができる。そして、地点生成部103は、生成したグループの各々についての経路に含まれる複数の地点を、視点決定部104に渡す。
 視点決定部104は、地点生成部103により生成された複数の地点の各々について、当該地点の条件に応じて視点を決定する。具体的には、視点決定部104は、経路グループ化部102により経路グループ化部によりグループ化されたグループの各々について、当該グループの終点に相当する地点以外の当該グループの各地点については、各地点の各々の次の地点を視点とし、当該グループの終点に相当する地点については、当該終点に相当する地点の1つ前の地点から当該終点に相当する地点に対する視点の方向に対し、当該終点に相当する地点から当該終点に相当する地点の次の地点に対する方向に視点回転する角度に応じて視点を決定する。本実施形態では、地点番号の末尾が0であるか否かで上記の条件を判定することとする。判定の仕方はこれに限るものではなく、ノードと地点の位置の関係に応じて決定してもよい。
 図9に、地点の条件に応じた視点の決定ルールの例を示す。この場合、視点決定部104は、各グループの終点以外の各地点については、視界の変化が小さいため、進行方向の1つ先の地点を視点とし、各グループの終点が経路の中間点の場合は、視界の変化が大きいため、グループの終点の地点と、当該地点の1つ前の地点と、当該地点の1つ先の地点とのなす角度に応じて視点を決定し、各グループの終点が経路の終点の場合は、視点決定の処理を終了する。
 図10に、各グループの終点以外の地点の視点の決定例を示す。この例では、地点A1の視点はB1となり、地点B1の視点はB2となる。また、図11に、各グループの終点の地点の視点の決定例を示す。この例では、グループの終点の地点と、1つ前の地点と、1つ先のグループの始点の地点の1つ先の地点とのなす角度に応じて視点を決定する。例えば、歩行者が、B3からC0へ進行してきて次にC1(=C0)からD1へ進む場合、視点は扇形の範囲を矢印の方向に移動する。その際、人が認識できる視界の範囲を45°であると仮定する。一方、ウォークスルー表示にて、C1における視点を1つ先の地点であるD1に向けてしまうと、視界の全てがこれまで視界外であった領域に切り替わってしまうため、利用者は、どのように移動しているのかという現在の状態が理解できなくなる。
 従って、視点決定部104は、C0を中心とし、半径をC0とD1の距離とする円を生成し、視点が移動する範囲を22.5°単位に分割し、生成した円上の点を視点として生成する。その際、視点が移動する範囲の角度が22.5°未満であった場合は、分割せずに1つ先の地点であるD1を視点とすればよい。視界を分割する角度に関してはこれに限るものではなく、実際の見え方に応じて変更してもかまわない。なお、視点決定部104は、経路の終点に位置する地点(ここでは地点番号H0)の場合、その先に進行しないため、視点決定は行わない。
 このように、新たに視点を生成し、順次視点を変更していくことで、ウォークスルー表示における視界に、視点の回転の前後で重複する領域を持たせることができる。例えば、認識できる視界の範囲を45°、視点の移動角度を22.5°とした場合、22.5°の範囲が重複することになる。なお、この視点決定に関しては、平面のみではなく、高さ(Z軸)の移動に関しても同様に解決できる。例えば、階段やエスカレータなどは、高さ(Z軸)の移動を伴うが、同様に、視点の移動角度に応じて視点の回転の前後で重複する領域を持たせることができる。但し、例外として、エレベータのように進行方向がほぼ垂直である場合、視点を進行方向に向けてしまうと真上、もしくは、真下に視点が向いてしまうため、視点の向きの移動をしない方がよい場合もある。その場合は、進行方向への視点の向きの移動をせずに、単純に視点の高さのみを移動すればよい。視点を一意とする目的として、視点番号を設定する。視点番号は、円の中心とした地点番号に連番を付加したものとする。連番は、D1の位置から遠い視点からインクリメントする。以下では、視点番号k(kは任意の記号)の視点を「視点k」と表記する。ここで生成した視点C01,C02,C03,C04,C05の順に視点を切り替えることで、利用者がウォークスルー表示の曲がり角にて現在の状態が理解できなくなることを解決することができる。そして、視点決定部104は、複数の地点の各々において決定した視点を、ウォークスルー表示部105に渡す。
 ウォークスルー表示部105は、経路を移動する際の風景を表示するウォークスルー表示であって、複数の地点の各々において、視点決定部104によって決定された視点に応じた風景を表示するウォークスルー表示を行う。具体的には、ウォークスルー表示部105では、視点が決定された地点をもとに、ウォークスルー表示を行う。決定された視点に基づいてウォークスルー表示を行うことにより、同じ時間に進む距離を、見通しの良い段階では長くし、見通しが悪くなると短くすることができ、更に、視界の変化が大きい曲がり角でも視界の連続性を持たせることで、利用者にとって、現在の状態を理解しやすい表示を行うことができる。
 図12に、ウォークスルー表示にて、曲がり角における視点を1つ先の地点に切り替えた場合と、ウォークスルー表示装置10による視界内の範囲で順次、視点を切り替えた場合の見え方の違いの例を示す。図12上図では、曲がり角における視点を1つ先の地点に切り替えた場合の例である。このように、従来の手法では、曲がり角等では急に視界が変わるため、現在の状態を理解しにくい表示となってしまう。これに対し、図12下図のように、ウォークスルー表示装置10による表示では、視界の連続性を持たせることができるため、現在の状態を理解しやすい表示を行うことができる。
<本開示の技術の実施形態に係るウォークスルー表示装置の作用>
 次に、ウォークスルー表示装置10の作用について説明する。
 図13は、ウォークスルー表示装置10によるウォークスルー表示処理ルーチンの流れを示すフローチャートである。CPU11がROM12又はストレージ14からウォークスルー表示プログラムを読み出して、RAM13に展開して実行することにより、ウォークスルー表示処理ルーチンが行なわれる。
 ステップS101において、CPU11は、ノード取得部101として、地図上の経路に含まれる複数のノードを取得する。
 ステップS102において、CPU11は、経路グループ化部102として、複数のノードを、経路の進行方向順に、見通しの変化の無いグループ単位でグループ化する。
 ステップS103において、CPU11は、地点生成部103として、上記ステップS102によりグループ化されたグループの各々について、当該グループの経路に含まれる複数の地点を、当該グループの始点から当該グループの終点に向かうにつれて細かく分割するように生成する処理である地点生成処理を実行する。
 ステップS104において、CPU11は、視点決定部104として、1番目の地点を選択する。
 ステップS105において、CPU11は、視点決定部104として、選択した地点について、例えば図9に示す視点決定ルールに従って、ルール判定を行う。
 ステップS106において、CPU11は、視点決定部104として、上記ステップS105による判定結果が、視点決定の終了か否かを判定する。
 視点決定の終了でない場合(上記ステップS106のNO)、ステップS107において、CPU11は、視点決定部104として、選択した地点の視点を、上記ステップS105による判定結果に応じて決定する視点決定処理を行う。
 ステップS108において、CPU11は、視点決定部104として、次の地点を選択し、ステップS105に戻る。
 一方、視点決定の終了である場合(上記ステップS106のYES)、ステップS109において、CPU11は、ウォークスルー表示部105として、経路を移動する際の風景を表示するウォークスルー表示であって、複数の地点の各々において、上記ステップS107により決定された視点に応じた風景を表示するウォークスルー表示を行う。
 ここで、上記ステップS103における地点生成処理について詳述する。図14は、ウォークスルー表示装置10による地点生成処理ルーチンの流れを示すフローチャートである。
 ステップS131において、CPU11は、地点生成部103として、1番目のグループを選択する。
 ステップS132において、CPU11は、地点生成部103として、選択したグループの始点に地点を生成する。
 ステップS133において、CPU11は、地点生成部103として、選択したグループの終点に地点を生成する。
 ステップS134において、CPU11は、地点生成部103として、上記ステップS132により生成された始点と上記ステップS133により生成された終点の経路の距離が所定の第2閾値以下であるか否かを判定する。
 上記ステップS132により生成された始点と上記ステップS133により生成された終点の経路の距離が第2閾値以下でない場合(上記ステップS134のNO)、ステップS135において、CPU11は、地点生成部103として、上記ステップS132により生成された始点と上記ステップS133により生成された終点の経路の距離の中点に、新たな地点を生成する。
 ステップS136において、CPU11は、地点生成部103として、上記ステップS135により生成された新たな地点と上記ステップS133により生成された終点との経路の距離が第2閾値以下であるか否かを判定する。
 上記ステップS135により生成した新たな地点と上記ステップS133により生成された終点との経路の距離が第2閾値以下でない場合(上記ステップS136のNO)、ステップS137において、CPU11は、地点生成部103として、上記ステップS135により生成された新たな地点と上記ステップS133により生成された終点との経路の距離の中点に再度新たな地点を生成し、ステップS136に戻り、当該ステップS136により生成した新たな地点と上記ステップS133により生成された終点との経路の距離が第2閾値以下であるか否かを判定する。
 一方、上記ステップS132により生成された始点と上記ステップS133により生成された終点の経路の距離が第2閾値以下である場合(上記ステップS134のYES)、又は、新たな地点と上記ステップS133により生成された終点との経路の距離が第2閾値以下である場合(上記ステップS136のYES)、ステップS138において、CPU11は、地点生成部103として、全てのグループについて地点を生成したか否かを判定する。
 全てのグループについて地点を生成していない場合(上記ステップS138のNO)、ステップS139において、CPU11は、地点生成部103として、次のグループを選択し、ステップS132に戻り、再度ステップS132~S138の処理を行う。
 一方、全てのグループについて地点を生成した場合(上記ステップS138のYES)、CPU11は、リターンする。
 ここで、上記ステップS107における視点決定処理について詳述する。図15は、ウォークスルー表示装置10による視点決定処理ルーチンの流れを示すフローチャートである。
 ステップS171において、CPU11は、視点決定部104として、上記ステップS104又はステップS108により現在選択されている地点(以下、選択地点)が、選択地点の属するグループの終点か否かを判定する。
 選択地点が終点でない場合(上記ステップS171のNO)、ステップS172において、CPU11は、視点決定部104として、選択地点の視点を、進行方向の次の地点に決定し、リターンする。
 一方、選択地点が終点である場合(上記ステップS171のYES)、ステップS173において、CPU11は、視点決定部104として、選択地点の属するグループの次のグループの地点を取得する。
 ステップS174において、CPU11は、視点決定部104として、上記ステップS173により取得した次のグループの始点を中心、当該始点と当該始点の次の地点の距離を半径とする円を生成する。
 ステップS175において、CPU11は、視点決定部104として、t=1とする。ここで、tは、選択地点における視点の視点番号を数えるためのカウンタである。
 ステップS176において、CPU11は、視点決定部104として、上記ステップS174により生成した円の中心と選択地点の1つ前の地点を結ぶ直線を生成し、当該円と当該直線との交点のうち、当該円の中心に対し、選択地点の1つ前の地点と反対方向の交点を視点tとして生成する。
 ステップS177において、CPU11は、視点決定部104として、当該円の中心と視点tとを結ぶ線分、及び当該円の中心と次のグループの始点の次の地点とを結ぶ線分の、視点回転方向になす角度を算出する。
 ステップS178において、CPU11は、視点決定部104として、上記ステップS177により算出された角度が所定の第1閾値以上であるか否かを判定する。
 算出された角度が所定の第1閾値以上である場合(上記ステップS178のYES)、ステップS179において、CPU11は、視点決定部104として、tに1を加算する。
 ステップS180において、CPU11は、視点決定部104として、当該円の中心と視点t-1とを結ぶ線分に対し、次のグループの始点の次の地点に向かって、第1閾値と同じ角度をなす当該円上の視点を、視点tとして生成し、ステップS177に戻る。
 一方、算出された角度が所定の第1閾値以上でない場合(上記ステップS178のNO)、ステップS181において、CPU11は、視点決定部104として、選択地点の視点を、視点1~tに決定し、リターンする。当該選択地点において、視点1~tが順次ウォークスルー表示されることとなる。
 以上説明したように、本実施形態に係るウォークスルー表示装置によれば、地図上の経路に含まれる複数のノードを、経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、グループ化されたグループの各々について、当該グループの経路に含まれる複数の地点を、当該グループの始点から当該グループの終点に向かうにつれて細かく分割するように生成し、当該複数の地点の各々について、当該地点の条件に応じて視点を決定し、決定された視点に応じた風景を表示するウォークスルー表示を行うため、視界の変化が大きい曲がり角でも視界の連続性を持たせることができ、視界の変化が大きい場合であっても、現在の経路の状態を理解しやすい表示を行うことができる。
 なお、本開示は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば、第1閾値となる角度について、22.5°を例に説明したが、これに限定されるものではなく、実際の見え方に応じて変更してもかまわない。例えば、歩行者の視野角や視力に応じた第1閾値を設定するようにしてもよい。また、例えば、地図上の経路の状態に応じて、地図上の経路が建築物の少ない広野である場合には第1閾値を大きくし、地図上の経路が高層ビルの密集地帯等であれば第1閾値を小さくするというように、第1閾値を変更してもよい。また、例えば、天候に応じて閾値を変更してもよい。この場合、ノード取得部101が、地図上の経路の状態を更に取得し、第1閾値変更部(図示しない)が、地図上の経路の状態に応じて第1閾値を変更するように構成してもよい。
 なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行したウォークスルー表示プログラムを、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、ウォークスルー表示プログラムを、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 また、上記各実施形態では、ウォークスルー表示プログラムがROM12又はストレージ14に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 以上の実施形態に関し、更に以下の付記を開示する。
 (付記項1)
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 地図上の経路に含まれる複数のノードを取得し、
 前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、
 前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成し、
 前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定し、
 経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行う
 ように構成されているウォークスルー表示装置。
 (付記項2)
 地図上の経路に含まれる複数のノードを取得し、
 前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、
 前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成し、
 前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定し、
 経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行う
 ことをコンピュータに実行させるウォークスルー表示プログラムを記憶した非一時的記憶媒体。
10   ウォークスルー表示装置
11   CPU
12   ROM
13   RAM
14   ストレージ
15   入力部
16   表示部
17   通信インタフェース
19   バス
101 ノード取得部
102 経路グループ化部
103 地点生成部
104 視点決定部
105 ウォークスルー表示部

Claims (5)

  1.  地図上の経路に含まれる複数のノードを取得するノード取得部と、
     前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化する経路グループ化部と、
     前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成する地点生成部と、
     前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定する視点決定部と、
     経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行うウォークスルー表示部と、
     を含むウォークスルー表示装置。
  2.  前記経路グループ化部は、前記複数のノードのうち、注目ノードにおいて、前記注目ノードの1つ前のノードから前記注目ノードに対する視点の方向に対し、前記注目ノードから前記注目ノードの次のノードに対する視点の方向に視点回転する角度が、所定の第1閾値より大きい場合に、前記注目ノードにおいて見通しの変化があるものとして、前記注目ノードを終点とするグループと、前記注目ノードを始点とするグループとを作成する
     請求項1記載のウォークスルー表示装置。
  3.  前記視点決定部は、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの終点に相当する地点以外の前記グループの各地点については、各地点の各々の次の地点を視点とし、前記グループの終点に相当する地点については、前記終点に相当する地点の1つ前の地点から前記終点に相当する地点に対する視点の方向に対し、前記終点に相当する地点から前記終点に相当する地点の次の地点に対する方向に視点回転する角度に応じて視点を決定する
     請求項1又は請求項2記載のウォークスルー表示装置。
  4.  ノード取得部が、地図上の経路に含まれる複数のノードを取得し、
     経路グループ化部が、前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、
     地点生成部が、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成し、
     視点決定部が、前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定し、
     ウォークスルー表示部が、経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行う
     ウォークスルー表示方法。
  5.  ノード取得部が、地図上の経路に含まれる複数のノードを取得し、
     経路グループ化部が、前記複数のノードを、前記経路の進行方向順に、見通しの変化の無いグループ単位でグループ化し、
     地点生成部が、前記経路グループ化部によりグループ化されたグループの各々について、前記グループの経路に含まれる複数の地点を、前記グループの始点から前記グループの終点に向かうにつれて細かく分割するように生成し、
     視点決定部が、前記地点生成部により生成された前記複数の地点の各々について、前記地点の条件に応じて視点を決定し、
     ウォークスルー表示部が、経路を移動する際の風景を表示するウォークスルー表示であって、前記複数の地点の各々において、前記視点決定部によって決定された視点に応じた風景を表示するウォークスルー表示を行う
     ことをコンピュータに実行させるウォークスルー表示プログラム。
PCT/JP2019/018989 2019-05-13 2019-05-13 ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム WO2020230249A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021519086A JP7302655B2 (ja) 2019-05-13 2019-05-13 ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム
US17/610,648 US20220205801A1 (en) 2019-05-13 2019-05-13 Walk through display device, walk through display method, and walk through display program
PCT/JP2019/018989 WO2020230249A1 (ja) 2019-05-13 2019-05-13 ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018989 WO2020230249A1 (ja) 2019-05-13 2019-05-13 ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム

Publications (1)

Publication Number Publication Date
WO2020230249A1 true WO2020230249A1 (ja) 2020-11-19

Family

ID=73288966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018989 WO2020230249A1 (ja) 2019-05-13 2019-05-13 ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム

Country Status (3)

Country Link
US (1) US20220205801A1 (ja)
JP (1) JP7302655B2 (ja)
WO (1) WO2020230249A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519085A (ja) * 2008-04-14 2011-06-30 グーグル インコーポレイテッド 急降下ナビゲーション
JP2014222446A (ja) * 2013-05-14 2014-11-27 大日本印刷株式会社 映像出力装置、映像出力方法、及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659491B2 (en) * 2015-03-19 2017-05-23 Here Global B.V. Dynamic location referencing strands

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519085A (ja) * 2008-04-14 2011-06-30 グーグル インコーポレイテッド 急降下ナビゲーション
JP2014222446A (ja) * 2013-05-14 2014-11-27 大日本印刷株式会社 映像出力装置、映像出力方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2020230249A1 (ja) 2020-11-19
JP7302655B2 (ja) 2023-07-04
US20220205801A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
CN104077326B (zh) 一种道路数据的处理方法及装置
CN108830897B (zh) 一种道路中心线提取方法
CN109974725B (zh) 一种路网拓扑构建方法、导航路径计算方法及装置
EP3623759B1 (en) A computer-implemented method and a system for defining a path for a vehicle within an environment with obstacles
CN110694271B (zh) 游戏场景中的相机姿态控制方法、装置及电子设备
US11235241B2 (en) Route navigation system within a game application environment
CN107980108A (zh) 机器人运动轨迹规划方法及相关装置
US20070276709A1 (en) Pathfinding System
CN104866500A (zh) 图片分类展示方法和装置
CN107980109A (zh) 机器人运动轨迹规划方法及相关装置
CN110220521A (zh) 一种高精地图的生成方法和装置
CN104751733B (zh) 地图的区域绘制方法及装置、路径距离分类方法及系统
CN111840989B (zh) 虚拟对象移动路线的处理方法、装置及电子设备
JP7233805B2 (ja) 複数のデバイスの協働によりホログラフィ・オブジェクト経路及びオブジェクトの移動を決定及び投影するための方法、コンピュータ・システム及びコンピュータ・プログラム
CN107952243A (zh) 路径确定方法及装置
CN116036604B (zh) 数据处理方法、装置、计算机及可读存储介质
JP2002304641A (ja) 都市景観表示装置
CN109773780A (zh) 机械臂的过渡路径的位姿同步方法及装置
US11361127B2 (en) Simulation device, simulation method, and storage medium
WO2020230249A1 (ja) ウォークスルー表示装置、ウォークスルー表示方法、及びウォークスルー表示プログラム
CN105426380B (zh) 道路网络的区域裁剪方法及装置
Smogavec et al. A fast algorithm for constructing approximate medial axis of polygons, using Steiner points
CN116009552A (zh) 一种路径规划方法、装置、设备及存储介质
CN115779424A (zh) 一种导航网格寻路方法、装置、设备及介质
CN114518771B (zh) 一种多无人机路径规划方法、装置及相关组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928395

Country of ref document: EP

Kind code of ref document: A1