WO2020230231A1 - Obstacle detection device - Google Patents

Obstacle detection device Download PDF

Info

Publication number
WO2020230231A1
WO2020230231A1 PCT/JP2019/018917 JP2019018917W WO2020230231A1 WO 2020230231 A1 WO2020230231 A1 WO 2020230231A1 JP 2019018917 W JP2019018917 W JP 2019018917W WO 2020230231 A1 WO2020230231 A1 WO 2020230231A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
pedestrian
unit
echoes
discrimination
Prior art date
Application number
PCT/JP2019/018917
Other languages
French (fr)
Japanese (ja)
Inventor
侑己 浦川
井上 悟
裕 小野寺
亘 辻田
努 朝比奈
元気 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021514438A priority Critical patent/JP6918272B2/en
Priority to PCT/JP2019/018917 priority patent/WO2020230231A1/en
Publication of WO2020230231A1 publication Critical patent/WO2020230231A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals

Definitions

  • the present invention relates to an obstacle detection device.
  • Patent Document 1 describes a technique for determining whether an object is a person or an object based on the waveform of a portion (hereinafter referred to as "echo") corresponding to a reflected wave by the object in the signal received by the distance measuring sensor. Is disclosed.
  • Fig. of Patent Document 1 By detecting the forest-like echo of No. 3, it is determined that the object is a person. This utilizes the fact that when the object is a human being, the surface shape of the reflective surface such as the torso, hands, and feet is complicated, so that it is highly probable that a forest echo will be detected.
  • the forest-like echo indicates a state in which a plurality of echoes are randomly generated at a certain distance.
  • the plate when the object is a pedestrian, the plate depends on the timing of irradiating the pedestrian with the exploration wave, the direction of irradiating the pedestrian with the exploration wave, the direction of reflection of the exploration wave by the pedestrian, and the like. Symptom echo may be detected. Therefore, for example, when it is determined whether the object is a pedestrian or a stationary object only based on the echo corresponding to the reflected wave in one direction by the object, the object walks based on the plate-shaped echo. Despite being a person, there was a problem that the object was misidentified as a stationary object.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the accuracy of determining whether or not an object is a pedestrian.
  • the obstacle detection device of the present invention has a first received signal corresponding to a first reflected wave reflected by an object existing around the vehicle and a second reflected wave reflected by the object in a direction different from the first reflected wave. Detects an echo group including a reception control unit that acquires a reception signal including a second reception signal corresponding to the above, a first echo group in the first reception signal, and a second echo group in the second reception signal. Based on the detection results of the echo detection unit and the echo detection unit, when a plurality of echoes exist in a window having a width corresponding to a pedestrian, it is determined that the object is a pedestrian, and the determination result is obtained. It is provided with a first pedestrian discrimination unit for output.
  • the present invention since it is configured as described above, it is possible to improve the accuracy of determining whether or not the object is a pedestrian.
  • FIG. It is a block diagram which shows the main part of the obstacle detection system including the obstacle detection device which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the content of the processing executed by the transmission control unit, the reception control unit, and the echo detection unit. It is explanatory drawing which shows the example of the 1st echo group and the 2nd echo group when the exploration wave is reflected by one pole. It is explanatory drawing which shows the other example such as the 1st echo group and the 2nd echo group when the exploration wave is reflected by one pole. It is explanatory drawing which shows the example of the irradiation range of the exploration wave to a pedestrian, and the example of the reflection range of the exploration wave by a pedestrian.
  • FIG. It is a flowchart which shows other operation of the control apparatus including the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows another example of the irradiation range of the exploration wave to a pedestrian, and another example of the reflection range of the exploration wave by a pedestrian.
  • FIG. It is a flowchart which shows the operation of the control device including the obstacle detection device which concerns on Embodiment 2.
  • FIG. 1 is a block diagram showing a main part of an obstacle detection system including an obstacle detection device according to the first embodiment. An obstacle detection system including the obstacle detection device according to the first embodiment will be described with reference to FIG.
  • Vehicle 1 has N sonars 2 (N is an integer of 2 or more). Specifically, for example, four sonars 2_OR, 2_IR, 2_IL, and 2_OL are provided at the rear end of the vehicle 1.
  • the rear sonar 3 is composed of these sonars 2_OR, 2_IR, 2_IL, and 2_OL.
  • Each sonar 2 is capable of transmitting ultrasonic waves (hereinafter referred to as "exploration waves") TW behind the vehicle 1. Further, each sonar 2 is capable of receiving the reflected exploration wave (that is, the reflected wave) RW when the exploration wave is reflected by the object O existing behind the vehicle 1.
  • Vehicle 1 has a control device 4.
  • the control device 4 is composed of, for example, an ECU (Electronic Control Unit).
  • the vehicle 1 has sensors 5.
  • the sensors 5 include, for example, a wheel speed sensor, a GPS (Global Positioning System) receiver, a yaw rate sensor, and a gyro sensor.
  • the vehicle 1 has an output device 6.
  • the output device 6 is composed of, for example, at least one of a display and a speaker.
  • the display in the output device 6 is, for example, a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the control device 4 has a transmission control unit 11.
  • the control device 4 includes a reception control unit 21, an echo detection unit 22, a first pedestrian discrimination unit 23, and a body discrimination unit 24.
  • the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, and the body discrimination unit 24 constitute the main part of the obstacle detection device 100.
  • the control device 4 includes a vehicle information acquisition unit 12, a position calculation unit 13, a warning necessity determination unit 14, and a warning signal output unit 15.
  • the main part of the obstacle detection system 200 is configured.
  • the transmission control unit 11 sequentially supplies an electric signal (hereinafter referred to as “transmission signal”) TS to N sonars 2 to sequentially transmit exploration wave TW to N sonars 2 (hereinafter referred to as “exploration wave”). "Transmission control”) is executed. Specifically, for example, when the vehicle 1 is reversing, the transmission control unit 11 sequentially supplies the transmission signal TS to the four sonars 2_OR, 2_IR, 2_IL, and 2_OL, thereby causing the four sonars 2_OR, The exploration wave TW is sequentially transmitted to 2_IR, 2_IL, and 2_OL.
  • the exploration wave TW transmitted by each sonar 2 is, for example, a pulse wave modulated at a predetermined carrier frequency.
  • the transmission control unit 11 uses so-called "time division multiplexing", “frequency division multiplexing” or “code division multiplexing” to perform rear sonar. It is preferable to control 3.
  • the reception control unit 21 acquires the output electric signal (hereinafter referred to as “received signal”) RS.
  • the reception control unit 21 executes a process of detecting the object O (hereinafter referred to as “object detection process”) by comparing the intensity of the received signal RS with a predetermined threshold value Th1.
  • object detection process a process of detecting the object O
  • Th1 a predetermined threshold value
  • RS' indicates a signal corresponding to the result of the threshold value determination (hereinafter referred to as “determination result signal”).
  • the reception control unit 21 outputs the reception signal RS to the echo detection unit 22.
  • the echo detection unit 22 executes a process of detecting a portion of the received signal RS corresponding to the reflected wave RW by the object O, that is, an echo E (hereinafter referred to as “echo detection process”). To do. More specifically, the echo detection unit 22 detects the one echo E when one echo E exists in the time window W_T having a predetermined width. On the other hand, when a plurality of echoes E are present in the time window W_T, the echo detection unit 22 detects the plurality of echoes E.
  • the group EG composed of one or more detected echoes E is referred to as an “echo group”.
  • the time window W_T corresponds to the distance window W_D having a predetermined width.
  • the time window W_T and the distance window W_D are collectively referred to as a "window".
  • the width of the window W is a standard value for the height of a general pedestrian (hereinafter referred to as "standard height”), a standard value for the swing width of the arm of a general pedestrian, or a standard value for the stride length of a general pedestrian. It is preset based on at least one of the values (hereinafter referred to as "reference stride"). For example, when the reference height is 180 centimeters and the reference stride is 80 centimeters, the width of the distance window W_D is set to 100 centimeters. This value includes the so-called “margin”. As described above, the window W has a width corresponding to a pedestrian.
  • the reception control unit 21 determines the distance D by the following equation (1) for each part where the intensity in the received signal RS exceeds the threshold Th1 (that is, for each echo E). Is executed (hereinafter referred to as "distance measurement processing").
  • the distance D corresponds to the distance between the vehicle 1 and the object corresponding to each echo E (ie, object O or part of object O).
  • PV indicates the propagation velocity of the exploration wave TW in the air.
  • the value of the propagation velocity PV is stored in advance in the reception control unit 21, for example.
  • PT indicates the round-trip propagation time of the exploration wave TW. Therefore, PV ⁇ PT corresponds to the round-trip propagation distance PD of the exploration wave TW.
  • two echoes E_1 and E_2 are detected. Further, two distances D_1 and D_2 (not shown) corresponding to the two echoes E_1 and E_2 are calculated based on the two reciprocating propagation times PT_1 and PT_2 corresponding to the two echoes E_1 and E_2. At this time, PV ⁇ PT_1 corresponds to the reciprocating propagation distance PD_1. Further, PV ⁇ PT_2 corresponds to the reciprocating propagation distance PD_2.
  • the reflected wave RW received by the rear sonar 3 includes two reflected waves RW1 and RW2 reflected by the object O in different directions.
  • the two reflected waves RW1 and RW2 are received by, for example, different sonars 2 out of N sonars 2.
  • the reflected wave RW1 of one of the two reflected waves RW1 and RW2 is referred to as a "first reflected wave”.
  • the other reflected wave RW2 of the two reflected waves RW1 and RW2 is referred to as a "second reflected wave”.
  • the received signal RS acquired by the reception control unit 21 is the received signal RS1 corresponding to the first reflected wave RW1 (hereinafter referred to as “first received signal”) RS1 and the second reflected wave. It includes a received signal (hereinafter referred to as “second received signal”) RS2 corresponding to RW2.
  • the echo group EG detected by the echo detection unit 22 includes an echo group EG1 in the first received signal RS1 (hereinafter referred to as "first echo group”) and an echo group in the second received signal RS2 (hereinafter referred to as “second echo group”). It is called “echo group”.) It contains EG2.
  • FIG. 3 shows an example of the first echo group EG1 and the second echo group EG2 when the object O is one pole.
  • the sonar 2_OR transmits the exploration wave TW1
  • the sonar 2_OR receives the first reflected wave RW1
  • the reception control unit 21 acquires the first reception signal RS1
  • echo detection is performed. It is assumed that the unit 22 has detected the first echo group EG1.
  • the exploration wave TW1 and the first reflected wave RW1 in this case have a so-called "direct wave” relationship.
  • the sonar 2_OL transmits the exploration wave TW2
  • the sonar 2_OL receives the second reflected wave RW2
  • the reception control unit 21 acquires the second reception signal RS2
  • the echo detection unit 22 receives the second reception signal RS2. 2 It is assumed that the echo group EG2 is detected.
  • the exploration wave TW2 and the second reflected wave RW2 in this case have a direct wave relationship.
  • the first echo group EG1 includes one echo E_1. This is a plate echo.
  • the second echo group EG2 includes one echo E_2. This is a plate echo.
  • FIG. 4 shows other examples such as the first echo group EG1 and the second echo group EG2 when the object O is one pole.
  • the sonar 2_OR transmits the exploration wave TW1
  • the sonar 2_OR receives the first reflected wave RW1
  • the reception control unit 21 acquires the first reception signal RS1, and the echo detection unit 22. Detected the first echo group EG1.
  • the exploration wave TW1 and the first reflected wave RW1 in this case have a direct wave relationship.
  • another sonar 2_OL receives the second reflected wave RW2, the reception control unit 21 acquires the second reception signal RS2, and the echo detection unit 22 detects the second echo group EG2.
  • the exploration wave TW1 and the second reflected wave RW2 in this case have a so-called "indirect wave" relationship.
  • the first echo group EG1 includes one echo E_1. This is a plate echo.
  • the second echo group EG2 includes one echo E_2. This is a plate echo.
  • the object O when the object O is one pole, it is individual regardless of the irradiation timing of the exploration wave TW on the object O, the irradiation direction of the exploration wave TW on the object O, and the reflection direction of the exploration wave TW by the object O.
  • the number of echoes E included in the echo group EG (hereinafter referred to as "the number of echoes") NE is constant. More specifically, the number of echoes NE is 1.
  • the shape of a pedestrian is more complicated than the shape of a pole. Therefore, when the pedestrian is irradiated with the exploration wave TW, the exploration wave is generated by one or more parts of the pedestrian (for example, the head, torso, right arm, left arm, right leg and left leg).
  • the TW is reflected.
  • the mounting height of the rear sonar 3 is higher than the position of the pedestrian's waist and the irradiation direction of the exploration wave TW by each sonar 2 is set to be parallel to or substantially parallel to the road surface, mainly.
  • the exploration wave TW is reflected by at least one part of the three parts including the torso, the right arm and the left arm.
  • the pedestrian has a state in which the right arm is swung forward by the arm swing and the left leg is stepped forward in response to this (hereinafter referred to as "first state”).
  • the state in which the arms are placed right next to the torso (hereinafter referred to as "second state”) is repeated.
  • A1 in FIG. 5 shows an example of a range in which the exploration wave TW is mainly irradiated (hereinafter referred to as “irradiation range”) when the object O is a pedestrian. Further, A2 in FIG. 5 shows an example of a range in which the exploration wave TW is mainly reflected (hereinafter referred to as “reflection range”) in this case.
  • the exploration wave TW is irradiated from the left side of the pedestrian and the pedestrian is in the first state or the third state, the left arm, the torso and the right arm are mainly included 3 It is highly probable that the exploration wave TW will be reflected by the site (A2_1, A2_2 and A2_3 in the figure). On the other hand, in this case, when the pedestrian is in the second state, it is highly probable that the exploration wave TW is mainly reflected by one part (A2_1 in the figure) including the left arm.
  • the number of parts that mainly reflect the exploration wave TW in the pedestrian varies depending on the irradiation timing of the exploration wave TW on the pedestrian.
  • the number of the parts varies depending on the irradiation direction of the exploration wave TW to the pedestrian. Therefore, the number of the parts varies depending on the direction of reflection of the exploration wave TW by the pedestrian.
  • FIG. 6 shows an example of the first echo group EG1 and the second echo group EG2 when the object O is a pedestrian.
  • the sonar 2_OR transmits the exploration wave TW1
  • the sonar 2_OR receives the first reflected wave RW1
  • the reception control unit 21 acquires the first reception signal RS1
  • echo detection is performed. It is assumed that the unit 22 has detected the first echo group EG1.
  • the exploration wave TW1 and the first reflected wave RW1 in this case have a direct wave relationship.
  • the sonar 2_OL transmits the exploration wave TW2
  • the sonar 2_OL receives the second reflected wave RW2
  • the reception control unit 21 acquires the second reception signal RS2
  • the echo detection unit 22 receives the second reception signal RS2. 2
  • the echo group EG2 is detected.
  • the exploration wave TW2 and the second reflected wave RW2 in this case have a direct wave relationship.
  • the first echo group EG1 includes two echoes E_1 and E_2. That is, the first echo group EG1 includes a forest-like echo. This is because, for example, the exploration wave TW1 is reflected mainly by the torso and one arm, and the first reflected wave RW1 is received by the sonar 2_OR.
  • the second echo group EG2 contains three echoes E_3, E_4, E_5. That is, the second echo group EG2 includes a forest-like echo. This is because, for example, the exploration wave TW2 is reflected mainly by the torso and both arms, and the second reflected wave RW2 is received by the sonar 2_OL.
  • FIG. 7 shows other examples such as the first echo group EG1 and the second echo group EG2 when the object O is a pedestrian.
  • the sonar 2_OR transmits the exploration wave TW1
  • the sonar 2_OR receives the first reflected wave RW1
  • the reception control unit 21 acquires the first reception signal RS1, and the echo detection unit 22. Detected the first echo group EG1.
  • the exploration wave TW1 and the first reflected wave RW1 in this case have a direct wave relationship.
  • another sonar 2_OL receives the second reflected wave RW2, the reception control unit 21 acquires the second reception signal RS2, and the echo detection unit 22 detects the second echo group EG2.
  • the exploration wave TW1 and the second reflected wave RW2 in this case have an indirect wave relationship.
  • the first echo group EG1 includes two echoes E_1 and E_2. That is, the first echo group EG1 includes a forest-like echo. This is because, for example, the first reflected wave RW1 is mainly related to the reflection by the body and one arm.
  • the second echo group EG2 contains one echo E_3. That is, the second echo group EG2 includes a plate-shaped echo. This is because, for example, the second reflected wave RW2 is mainly related to the reflection by the body.
  • the first pedestrian discrimination unit 23 determines whether or not the object O is a pedestrian as follows. More specifically, the first pedestrian discrimination unit 23 determines whether the object O is a pedestrian or a stationary object.
  • the first pedestrian discrimination unit 23 calculates the number of echoes in the first echo group EG1 (hereinafter referred to as “first echo number”) NE1 and the number of echoes in the second echo group EG2 (hereinafter referred to as “second echo”). It is called “number”.) NE2 is calculated.
  • the first pedestrian discrimination unit 23 determines that the object O is a pedestrian when at least one of the first echo number NE1 and the second echo number NE2 is 2 or more.
  • the first pedestrian determination unit 23 determines that the object O is a stationary object.
  • the first pedestrian discrimination unit 23 calculates the first echo number NE1 and the second echo number NE2.
  • the first pedestrian discrimination unit 23 determines that the object O is a pedestrian when the total number of the first echo number NE1 and the second echo number NE2 is 3 or more.
  • the first pedestrian determination unit 23 determines that the object O is a stationary object.
  • the first pedestrian discrimination unit 23 determines that the object O is a pedestrian when at least one of the first echo group EG1 and the second echo group EG2 includes a plurality of echoes E. ..
  • the first pedestrian discrimination unit 23 is the object O. Is determined to be a stationary object.
  • the first echo number NE1 is 1 and the second echo number NE2 is 1. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a stationary object. Further, in the example shown in FIG. 4, the first echo number NE1 is 1 and the second echo number NE2 is 1. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a stationary object. Further, in the example shown in FIG. 6, the first echo number NE1 is 2 and the second echo number NE2 is 3. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a pedestrian. Further, in the example shown in FIG. 7, the first echo number NE1 is 2 and the second echo number NE2 is 1. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a pedestrian.
  • the object O is a pedestrian or a stationary object based only on the echo group EG corresponding to the reflected wave RW in one direction by the object O.
  • the object O is stationary even though the object O is a pedestrian, based on the plate-shaped echo included in the second echo group EG2 corresponding to the second reflected wave RW2. It may be misidentified as a thing.
  • the first pedestrian discrimination unit 23 determines whether the object O is a pedestrian or a stationary object based on the echo groups EG1 and EG2 corresponding to the reflected waves RW1 and RW2 in a plurality of directions by the object O. Determine. Thereby, for example, in the example shown in FIG. 7, it is possible to accurately determine that the object O is a pedestrian.
  • each of the first echo group EG1 and the second echo group EG2 contains one or more echoes E.
  • the body discrimination unit 24 determines which of the one or more echoes E echoes corresponds to the body. More specifically, the body discriminating unit 24 discriminates the echo E corresponding to the body by the following first discriminating method, second discriminating method, third discriminating method or fourth discriminating method.
  • the body discrimination unit 24 calculates the number of echoes NE in each echo group EG. In addition, the body discrimination unit 24 calculates the width (hereinafter referred to as "echo width") EW of the portion exceeding the threshold Th1 in each echo E. When the number of echoes NE is 1, and the echo width EW of the one echo E is equal to or larger than a predetermined width, the body discriminating unit 24 determines that the one echo E corresponds to the body. To do.
  • the body discriminating unit 24 discriminates the echo E corresponding to the body based on the magnitude of the echo width EW.
  • one echo E_1 is detected.
  • the fuselage discrimination unit 24 calculates that the number of echoes NE is 1, and also calculates one echo width EW_1 corresponding to the one echo E_1. Since the one echo width EW_1 is equal to or larger than the predetermined width, the body discrimination unit 24 determines that the one echo E_1 corresponds to the body.
  • the body discrimination unit 24 calculates the number of echoes NE in each echo group EG. Further, the body discriminating unit 24 calculates the echo width EW of each echo E. When the number of echoes NE is 2 or more, the body discrimination unit 24 determines that the echo E having the maximum echo width EW among the two or more echoes E corresponds to the body.
  • the body discriminating unit 24 discriminates the echo E corresponding to the body based on the magnitude of the echo width EW.
  • the fuselage discriminating unit 24 calculates that the number of echoes NE is 2, and also calculates two echo widths EW_1 and EW_2 corresponding to the two echoes E_1 and E_2. Since the echo width EW_1 is larger than the echo width EW_2, the body discrimination unit 24 determines that the echo E_1 corresponds to the body.
  • the body discrimination unit 24 calculates the number of echoes NE in each echo group EG. When the number of echoes NE is 3 or more, the body discriminating unit 24 has the remaining echoes E excluding the echoes E arranged at both ends in the window W among the three or more echoes E corresponding to the body. It is determined that. In other words, the body discriminating unit 24 determines that the echo E arranged in the central portion in the window W of the three or more echoes E corresponds to the body.
  • the body discriminating unit 24 discriminates the echo E corresponding to the body based on the arrangement position in the window W.
  • the fuselage discrimination unit 24 calculates that the echo number NE is 3.
  • the body discriminating unit 24 determines that the remaining echoes E_2 excluding the echoes E_1 and E_3 arranged at both ends in the window W of the three echoes E_1, E_2, and E_3 correspond to the fuselage. .. That is, the body discriminating unit 24 determines that the echo E_2 arranged in the central portion in the window W of the three echoes E_1, E_2, and E_3 corresponds to the fuselage.
  • the body discriminating unit 24 calculates the number of echoes NE in each echo group EG. Further, the body discriminating unit 24 calculates the peak value (hereinafter referred to as “actual peak value”) P of each echo E. Further, the body discriminating unit 24 calculates the echo width EW of each echo E, and calculates the peak value (hereinafter referred to as “estimated peak value”) P'based on the calculated echo width EW. Specifically, for example, the body discriminating unit 24 calculates the estimated peak value P'by multiplying the calculated echo width EW by a predetermined coefficient ⁇ .
  • the fuselage discrimination unit 24 calculates the difference value ⁇ P between the actual peak value P and the estimated peak value P'for each echo E.
  • the body discrimination unit 24 determines that the echo E having the maximum difference value ⁇ P among the two or more echoes E corresponds to the body.
  • the predetermined coefficient ⁇ a coefficient that is similar to the transmission signal is selected.
  • the corresponding echo E waveform is a waveform in which the echo width EW is larger than the actual peak value P. This indicates that the reflection area is large (see the description of the first determination method).
  • the exploration wave enters an object with a large reflection area, the number of propagation paths reflected by the object and received again increases, and the propagation path lengths differ slightly. Therefore, each reflected wave that has propagated through these plurality of propagation paths and returned is received with a slight delay, and thus becomes a composite wave of these reflected waves.
  • the echo width of the composite wave becomes large, but the peak itself does not become large because it does not have a similar waveform to the exploration wave.
  • the corresponding echo E waveform is a waveform in which the echo width EW is smaller than the actual peak value P. This indicates that the reflection area is small (see the description of the first determination method).
  • the number of propagation paths reflected by the object and received again is smaller than that of an object with a large reflection area. Therefore, the number of reflected waves to be combined is also reduced, so that the synthesized wave has a waveform close to the similar waveform of the exploration wave.
  • the echo width of the composite wave is smaller than that of an object with a large reflection area. Therefore, the body discriminating unit 24 discriminates the echo E corresponding to the body based on the magnitude of the difference value ⁇ P.
  • the fuselage discrimination unit 24 calculates that the echo number NE is 2.
  • the fuselage discrimination unit 24 calculates the actual peak value P_1 for the echo E_1, calculates the echo width EW_1, calculates the estimated peak value P'_1, and calculates the difference value ⁇ P_1.
  • the fuselage discrimination unit 24 calculates the actual peak value P_2 for the echo E_2, calculates the echo width EW_2, calculates the estimated peak value P'_2, and calculates the difference value ⁇ P_2. Since the difference value ⁇ P_2 is larger than the difference value ⁇ P_1, the body discriminating unit 24 determines that the echo E_2 corresponds to the body.
  • body discrimination process the processes executed by the body discrimination unit 24 are collectively referred to as "body discrimination process”.
  • the vehicle information acquisition unit 12 uses the sensors 5 to acquire information indicating the position coordinates of the vehicle 1 when the exploration wave TW is transmitted by each sonar 2. Further, the position calculation unit 13 acquires information indicating the distance D calculated by the reception control unit 21. The position calculation unit 13 calculates the position of the object O by using this information. More specifically, the position calculation unit 13 has a position coordinate PC of the object O in the coordinate system CS1 having an X axis corresponding to the left-right direction of the vehicle 1 and a Y axis corresponding to the front-rear direction of the vehicle 1. Is calculated. Various known calculation methods can be used for the calculation of the position coordinate PC. The description of these calculation methods will be omitted.
  • the position calculation unit 13 acquires the discrimination result by the body discrimination unit 24.
  • the position calculation unit 13 calculates the position coordinate PC of the body based on the determination result by the body determination unit 24. That is, in this case, the reception control unit 21 calculates, for example, the distance D corresponding to the left arm, the distance D corresponding to the torso, and the distance D corresponding to the right arm.
  • the position calculation unit 13 calculates the position coordinate PC based on the distance D corresponding to the body of the calculated distance D.
  • position calculation process the processes executed by the position calculation unit 13 are collectively referred to as "position calculation process”.
  • the vehicle information acquisition unit 12 uses the sensors 5 to acquire information indicating the position coordinates of the vehicle 1 and information indicating the traveling direction of the vehicle 1.
  • the warning necessity determination unit 14 calculates the predicted course PP of the vehicle 1 by using this information.
  • the warning necessity determination unit 14 sets a range (hereinafter referred to as “predicted course range”) A3 corresponding to the calculated predicted course PP.
  • the predicted course range A3 is, for example, a range in the coordinate system CS1.
  • the warning necessity determination unit 14 determines whether the object O is located within the predicted course range A3 or outside the predicted course range A3 based on the position coordinate PC calculated by the position calculation unit 13. judge.
  • the warning necessity determination unit 14 acquires the determination result by the first pedestrian determination unit 23. When the warning necessity determination unit 14 determines that the object O is located within the predicted course range A3 (see FIG. 9), the warning necessity determination unit 14 of the vehicle 1 regardless of the determination result by the first pedestrian determination unit 23. It is determined that a warning to passengers (hereinafter simply referred to as "warning”) is necessary.
  • the warning necessity determination unit 14 determines that the object O is located outside the predicted course range A3 (see FIG. 10)
  • the determination result by the first pedestrian determination unit 23 determines the pedestrian.
  • determine that a warning is required.
  • the warning necessity determination unit 14 determines that the warning is unnecessary when the determination result by the first pedestrian determination unit 23 indicates a stationary object.
  • FIG. 11 shows a table T used for these determination processes.
  • warning signal output unit 15 determines that a warning is required by the warning necessity determination unit 14
  • the warning signal output unit 15 outputs a warning signal (hereinafter referred to as “warning signal”) to the output device 6 and the vehicle control device (not shown). Or output to at least one of the wireless communication devices (not shown).
  • the vehicle control device is composed of, for example, an ECU.
  • the wireless communication device is composed of, for example, a transmitter and a receiver for wireless communication.
  • the display in the output device 6 displays a warning image when the warning signal is output by the warning signal output unit 15.
  • the speaker in the output device 6 outputs a warning voice when the warning signal is output by the warning signal output unit 15.
  • the vehicle control device executes control for collision damage mitigation by controlling the brake and engine torque of the vehicle 1. As a result, it is possible to reduce the damage when the vehicle 1 collides with the object O.
  • the vehicle control device executes collision avoidance control by controlling the brake, engine torque, steering, and the like of the vehicle 1. As a result, it is possible to avoid a collision between the vehicle 1 and the object O.
  • the wireless communication device When the warning signal is output by the warning signal output unit 15, the wireless communication device notifies the mobile information terminal (not shown) or the server device (not shown) to that effect. As a result, it is possible to notify a person different from the passenger of the vehicle 1 that the vehicle 1 may collide with the object O.
  • the control device 4 has a processor 31 and a memory 32.
  • the memory 32 includes a transmission control unit 11, a vehicle information acquisition unit 12, a position calculation unit 13, a warning necessity determination unit 14, a warning signal output unit 15, a reception control unit 21, an echo detection unit 22, and a first pedestrian determination unit.
  • a program for realizing the functions of the 23 and the body discriminating unit 24 is stored.
  • the processor 31 reads and executes such a program, the transmission control unit 11, the vehicle information acquisition unit 12, the position calculation unit 13, the warning necessity determination unit 14, the warning signal output unit 15, the reception control unit 21, and the echo detection unit 22, the functions of the first pedestrian discrimination unit 23 and the body discrimination unit 24 are realized.
  • the control device 4 has a processing circuit 33.
  • the function of the body discriminating unit 24 is realized by a dedicated processing circuit 33.
  • the control device 4 has a processor 31, a memory 32, and a processing circuit 33 (not shown).
  • Some of the functions of the body discriminating unit 24 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the dedicated processing circuit 33.
  • the processor 31 is composed of one or a plurality of processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 32 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 32 is composed of one or more non-volatile memories and one or more volatile memories. Each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Advanced Storage), a Small DriveSlide (Erasable Memory), and an EEPROM. Drive) is used.
  • the processing circuit 33 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 33 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 33 is composed of one or a plurality of processing circuits.
  • the individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
  • the transmission control unit 11 executes the exploration wave transmission control (step ST1).
  • the reception control unit 21 acquires the reception signal RS (step ST2).
  • the reception control unit 21 executes the object detection process and the distance measurement process (step ST3). Since the details of the exploration wave transmission control, the object detection process, and the distance measurement process have already been described with reference to FIG. 2, the description thereof will be omitted again.
  • step ST4 “NO”) the process of the control device 4 proceeds to step ST1.
  • step ST4 “YES” the obstacle detection device 100 then detects the object O and the second received signal RS2 using the first received signal RS1. It is determined whether or not the object O detected by the use is the same object as each other (step ST5).
  • the obstacle detection device 100 determines whether or not these objects O are the same objects based on the distance D calculated by the distance measuring process. That is, the obstacle detection device 100 is the difference between the distance D corresponding to the object O detected by using the first received signal RS1 and the distance D corresponding to the object O detected by using the second received signal RS2. Calculate the value. When the calculated difference value is less than a predetermined value, the obstacle detection device 100 determines that these objects O are the same objects. On the other hand, when the calculated difference value is equal to or greater than a predetermined value, the obstacle detection device 100 determines that these objects O are different objects from each other.
  • step ST5 “YES” When it is determined that these objects O are the same objects (step ST5 “YES”), the process of the control device 4 proceeds to step ST6. On the other hand, when it is determined that these objects O are different objects from each other (step ST5 “NO”), the process of the control device 4 proceeds to step ST1.
  • the echo detection unit 22 executes the echo detection process (step ST6). Since the details of the echo detection process have already been described with reference to FIG. 2, the description thereof will be omitted again.
  • the first pedestrian discrimination unit 23 executes the pedestrian discrimination process (step ST7). Since the details of the pedestrian discrimination process have already been described with reference to FIGS. 3 to 7, the description thereof will be omitted again.
  • step ST8 “YES” When the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian (step ST8 “YES”), then the body discrimination unit 24 executes the body discrimination process (step ST9). Since the details of the body discrimination process have already been described with reference to FIG. 8, the description will be omitted again. If the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object (step ST8 “NO”), the process of step ST9 is skipped.
  • step ST10 the position calculation unit 13 executes the position calculation process. Since the details of the position calculation process have already been described, the description thereof will be omitted again.
  • step ST11 shown in FIG. 14 is executed, for example, after the process of step ST10 shown in FIG.
  • the warning necessity determination unit 14 determines the necessity of warning (step ST11). Since the details of the determination method by the warning necessity determination unit 14 have already been described with reference to FIGS. 9 to 11, the description will be omitted again.
  • step ST12 “YES” When the warning necessity determination unit 14 determines that a warning is required (step ST12 “YES”), then the warning signal output unit 15 outputs a warning signal (step ST13). Since the details of the output destination of the warning signal have already been persuaded, the explanation will be omitted again. If the warning necessity determination unit 14 determines that the warning is unnecessary (step ST12 “NO”), the process of step ST13 is skipped.
  • the irradiation range A1 and the reflection range A2 when the object O is a pedestrian are not limited to the specific examples shown in FIG.
  • the irradiation range A1 may include the road surface R.
  • a pedestrian is referred to as a state in which both feet are in contact with the road surface R (hereinafter referred to as "fourth state”) and a state in which only one foot is in contact with the road surface R (hereinafter referred to as “fifth state”). ) And repeat.
  • the exploration wave TW is irradiated in the fourth state, so-called “regression reflection” occurs in each of the left foot and the right foot. Therefore, the reflected wave RW by two parts (A2_1 and A2_2 in the figure) including the left foot and the right foot is received.
  • regression reflection occurs in either the left foot or the right foot. Therefore, the reflected wave RW by one part (A2_1 in the figure) including the left foot or the right foot is received.
  • the regression reflection means that the exploration wave TW is first reflected by the road surface R and then reflected by the shoes of a pedestrian.
  • the regression reflection means that the exploration wave TW is first reflected by the pedestrian's shoes and then by the road surface R.
  • the number of parts that mainly reflect the exploration wave TW in the pedestrian varies depending on the irradiation timing of the exploration wave TW on the pedestrian. Therefore, it is possible to determine whether or not the object O is a pedestrian by the pedestrian discrimination process in the first pedestrian discrimination unit 23.
  • the reflectance of the exploration wave TW by the body may be low.
  • such materials are rarely used in shoes.
  • the pedestrian can be reliably detected based on the reflected wave RW due to the retroreflective even when the pedestrian is wearing clothes having low reflectance. it can.
  • the control device 4 may repeatedly execute the process shown in FIG. 13 when the vehicle 1 is moving backward. As a result, the control device 4 may execute a so-called "tracking" process for each object O.
  • the control device 4 may calculate the TTC (Time To Collision) related to each object O based on the tracking result. For example, the mode or content of the warning output by the output device 6 may change according to the calculated TTC, or the output timing of the warning by the output device 6 may change. good.
  • TTC Time To Collision
  • the first reflected wave RW1 may be a direct wave and the second reflected wave RW2 may be a direct wave (see FIG. 3 or FIG. 6). Further, the first reflected wave RW1 may be a direct wave and the second reflected wave RW2 may be an indirect wave (see FIG. 4 or 7). On the other hand, the first reflected wave RW1 may be an indirect wave and the second reflected wave RW2 may be a direct wave (not shown). Further, the first reflected wave RW1 may be an indirect wave and the second reflected wave RW2 may be an indirect wave (not shown).
  • the direct wave when only the direct wave is used, it is required to transmit the exploration wave TW at least twice before the pedestrian discrimination process is executed.
  • the indirect wave when the indirect wave is used, it is required to transmit the exploration wave TW at least once before the pedestrian discrimination process is executed. That is, by using the indirect wave, the pedestrian discrimination process can be executed earlier than in the case of using only the direct wave. Therefore, it is more preferable to use an indirect wave.
  • one sonar 2 may be provided at the rear end of the vehicle 1 instead of the N sonars 2. That is, the rear sonar 3 may be configured by the one sonar 2. In this case, the first reflected wave RW1 and the second reflected wave RW2 may be received by the one sonar 2 transmitting the exploration wave TW a plurality of times while the vehicle 1 is reversing.
  • N sonars 2 may be provided at the front end of the vehicle 1. That is, the front sonar may be composed of the N sonars 2.
  • the process shown in FIG. 13 may be executed when the vehicle 1 is moving forward.
  • the object detection process in this case detects the object O existing in front of the vehicle 1.
  • one sonar 2 may be provided at the front end of the vehicle 1. That is, the front sonar may be provided by the one sonar 2. In this case, even if the first reflected wave RW1 and the second reflected wave RW2 are received by the one sonar 2 transmitting the exploration wave TW a plurality of times when the vehicle 1 is moving forward. good.
  • the exploration wave TW is not limited to ultrasonic waves, but may be radio waves or light. However, it is more preferable to use ultrasonic waves from the viewpoint of suppressing the occurrence of interference of the exploration wave TW between the vehicle 1 and the vehicle in front or the vehicle behind the vehicle 1.
  • the obstacle detection device 100 differs from the first received signal RS1 corresponding to the first reflected wave RW1 reflected by the object O existing around the vehicle 1 and the first reflected wave RW1 depending on the object O.
  • the reception control unit 21 that acquires the received signal RS including the second received signal RS2 corresponding to the second reflected wave RW2 reflected in the direction, the first echo group EG1 in the first received signal RS1, and the second reception.
  • a first pedestrian discrimination unit 23 that determines that the object O is a pedestrian and outputs the result of the determination when E is present is provided. Thereby, it is possible to determine whether or not the object O is a pedestrian. In particular, by using the reflected waves RW1 and RW2 in a plurality of directions, it is possible to improve the accuracy of determining whether or not the object O is a pedestrian, as compared with the case where only the reflected waves RW in one direction are used.
  • the obstacle detection device 100 is a body discrimination unit that discriminates the echo E corresponding to the pedestrian's body among the plurality of echoes E based on the number of echoes NE in the echo group EG or the echo width EW in the echo group EG. 24 is provided. Thereby, when the object O is a pedestrian, the echo E corresponding to the torso can be discriminated. As a result, for example, when the object O is a pedestrian, the position coordinate PC of the object O can be accurately calculated.
  • the body discriminating unit 24 when the number of echoes NE is 3 or more, the echo E arranged in the central portion excluding the echo E arranged at both ends in the window W among the plurality of echoes E is the fuselage. It is determined that the echo E corresponds to. In this way, the echo E corresponding to the body can be discriminated by the third discriminating method (see FIG. 8C).
  • the body discrimination unit 24 determines that the echo E having the maximum echo width EW among the plurality of echoes E is the echo E corresponding to the body. In this way, the echo E corresponding to the body can be discriminated by the second discriminating method (see FIG. 8B).
  • the body discriminating unit 24 calculates a difference value ⁇ P between the actual peak value P and the estimated peak value P'based on the echo width EW for each of the plurality of echoes E, and among the plurality of echoes E. It is determined that the echo E having the maximum difference value ⁇ P is the echo E corresponding to the fuselage. In this way, the echo E corresponding to the body can be discriminated by the fourth discriminating method (see FIG. 8D).
  • the reflected wave RW including the first reflected wave RW1 and the second reflected wave RW2 is received by a plurality of sonars 2 provided at different positions in the vehicle 1.
  • the first reflected wave RW1 is received by the sonar 2_OR
  • the second reflected wave RW2 is received by another sonar 2_OL (see FIGS. 3, 4, 6 and 7). ).
  • the rear sonar 3 is composed of a plurality of sonars 2. By using the rear sonar 3, it is possible to detect the object O existing behind the vehicle 1.
  • the road surface R is included in the irradiation range A1 of the exploration wave TW by the plurality of sonars 2.
  • FIG. 16 is a block diagram showing a main part of an obstacle detection system including the obstacle detection device according to the second embodiment. An obstacle detection system including the obstacle detection device according to the second embodiment will be described with reference to FIG. In FIG. 16, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the control device 4a has a second pedestrian discrimination unit 25.
  • the second pedestrian discrimination unit 25 when the first echo group EG1 and the second echo group EG2 are detected by the echo detection unit 22, the object O is subjected to a discrimination method different from the discrimination method by the first pedestrian discrimination unit 23. Determine if you are a pedestrian. More specifically, the second pedestrian discrimination unit 25 discriminates whether the object O is a pedestrian or a stationary object as follows.
  • the second pedestrian discrimination unit 25 calculates the similarity DS between the first echo group EG1 and the second echo group EG2.
  • the second pedestrian discrimination unit 25 determines that the object O is a stationary object when the calculated similarity DS is equal to or higher than a predetermined value.
  • the second pedestrian determination unit 25 determines that the object O is a pedestrian.
  • the first echo number NE1 becomes equal to the second echo number NE2.
  • the shape of the portion related to the reflection of the first reflected wave RW1 in the object O is the same as the shape of the portion related to the reflection of the second reflected wave RW2.
  • the material of the portion related to the reflection of the first reflected wave RW1 is the same as the material of the portion related to the reflection of the second reflected wave RW2.
  • the first echo number NE1 may be different from the second echo number NE2 as described in the first embodiment. Further, in this case, the shape of the portion related to the reflection of the first reflected wave RW1 (for example, one portion including the left arm) is changed to the portion related to the reflection of the second reflected wave RW2 (for example, the left arm, depending on the posture of the pedestrian). There is a high probability that it will be different from the shape of the body) and the right arm).
  • the material of the part related to the reflection of the first reflected wave RW1 (for example, cloth) is the material of the part related to the reflection of the second reflected wave RW2 (for example, cloth and skin) according to the clothes of the pedestrian. Can be different.
  • the second pedestrian discrimination unit 25 determines whether the object O is a pedestrian or a stationary object based on the level of the similarity DS.
  • the second pedestrian discrimination unit 25 determines whether the object O is a pedestrian or a stationary object based on the level of the similarity DS.
  • the second pedestrian discrimination unit 25 calculates the correlation function between the first echo group EG1 and the second echo group EG2.
  • the second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated correlation function.
  • the second pedestrian discrimination unit 25 detects the waveform area (hereinafter referred to as “first area”) S1 in the first echo group EG1.
  • the first area S1 is, for example, the total value of the areas of the portions where the intensity in the first echo group EG1 exceeds the threshold Th1.
  • the second pedestrian discrimination unit 25 calculates the waveform area (hereinafter referred to as “second area”) S2 in the second echo group EG2.
  • the second area S2 is, for example, the total value of the areas of the portions where the intensity in the second echo group EG2 exceeds the threshold Th1.
  • the second pedestrian discrimination unit 25 calculates the difference value between the first area S1 and the second area S2.
  • the second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated difference value.
  • the second pedestrian discrimination unit 25 calculates the peak value (hereinafter referred to as “first peak value”) in the first echo group EG1.
  • the first peak value is, for example, the actual peak value P of the one echo E when the first echo group EG1 includes one echo E. Or, for example, when the first echo group EG1 includes two or more echoes E, the first peak value is the maximum value, the minimum value, the average value, or the center of the actual peak value P of the two or more echoes E. The value.
  • the second pedestrian discrimination unit 25 calculates the peak value (hereinafter referred to as "second peak value") in the second echo group EG2.
  • the second peak value is, for example, the actual peak value P of the one echo E when the second echo group EG2 includes one echo E. Or, for example, when the second echo group EG2 includes two or more echoes E, the second peak value is the maximum value, the minimum value, the average value, or the median of the actual peak value P of the two or more echoes E. The value.
  • the second pedestrian discrimination unit 25 calculates the difference value between the first peak value and the second peak value.
  • the second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated difference value.
  • the second pedestrian discrimination unit 25 calculates the similarity DS by using the determination result signal RS'corresponding to each of the first reception signal RS1 and the first reception signal RS1.
  • the second pedestrian discrimination unit 25 has a portion in the window W of the determination result signal RS'corresponding to the first reception signal RS1 and a determination result signal corresponding to the second reception signal RS2.
  • the correlation function with the part in the window W of RS' is calculated.
  • the second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated correlation function by the same calculation method as in the first specific example.
  • the second pedestrian discrimination unit 25 indicates a portion (“High” in the figure) indicating that the object O in the determination result signal RS ′ corresponding to the first reception signal RS1 is detected.
  • the waveform area in the object detection unit of the determination result signal RS'corresponding to the second reception signal RS2 is calculated.
  • the second pedestrian discrimination unit 25 calculates the similarity DS based on these waveform areas by the same calculation method as in the second specific example.
  • Transmission control unit 11 vehicle information acquisition unit 12, position calculation unit 13, warning necessity determination unit 14, warning signal output unit 15, reception control unit 21, echo detection unit 22, first pedestrian discrimination unit 23, fuselage discrimination unit
  • the main part of the control device 4a is composed of the 24 and the second pedestrian discrimination unit 25. Further, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the body discrimination unit 24, and the second pedestrian discrimination unit 25 constitute a main part of the obstacle detection device 100a.
  • the main part of the obstacle detection system 200a is configured.
  • the functions of the discriminating unit 24 and the second pedestrian discriminating unit 25 may be realized by, for example, the processor 31 and the memory 32, or may be realized by the dedicated processing circuit 33.
  • the discrimination result by the second pedestrian discrimination unit 25 is used with priority over the discrimination result by the first pedestrian discrimination unit 23.
  • the body discrimination unit 24 and the position calculation unit 13 In the warning necessity determination unit 14 and the like the object O is regarded as a stationary object.
  • the body discrimination unit 24, the position calculation In the unit 13 and the warning necessity determination unit 14 the object O is regarded as a pedestrian.
  • the second pedestrian discrimination unit 25 confirms the discrimination result by the first pedestrian discrimination unit 23.
  • the processes executed by the second pedestrian discrimination unit 25 are collectively referred to as "discrimination result confirmation process".
  • steps ST1 to ST7 are executed. Since the processing contents of steps ST1 to ST7 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
  • the second pedestrian discrimination unit 25 executes the discrimination result confirmation process (step ST21). Since the details of the determination result confirmation process have already been described, the description thereof will be omitted again.
  • steps ST8 to ST10 are executed. Since the processing contents of steps ST8 to ST10 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
  • step ST8 “NO” is set.
  • step ST8 “YES” is set.
  • step ST8 “YES” is set.
  • step ST8 “NO” is set.
  • the control device 4a may repeatedly execute the process shown in FIG. 17 when the vehicle 1 is moving backward.
  • the similarity DS is calculated a plurality of times by executing the process shown in FIG. 17 a plurality of times (step ST21).
  • the second pedestrian discrimination unit 25 may use these similarity DSs to calculate the fluctuation amount ⁇ DS of the similarity DS with respect to time.
  • the second pedestrian discrimination unit 25 may discriminate whether the object O is a pedestrian or a stationary object based on the calculated fluctuation amount ⁇ DS.
  • the fluctuation amount ⁇ DS tends to be smaller than when the object O is a pedestrian. This is because the shape and material of the portion that mainly reflects the exploration wave TW do not change with time.
  • the fluctuation amount ⁇ DS tends to be larger than when the object O is a stationary object. This is because the shape and material of the portion that mainly reflects the exploration wave TW can fluctuate with time.
  • the second pedestrian discrimination unit 25 determines that the object O is a pedestrian when the fluctuation amount ⁇ DS is equal to or greater than a predetermined threshold value Th2. On the other hand, when the fluctuation amount ⁇ DS is less than the threshold value Th2, the second pedestrian discrimination unit 25 determines that the object O is a stationary object.
  • the threshold Th2 may be set by using a so-called "machine learning" technique.
  • the use of the discrimination result by the second pedestrian discrimination unit 25 is not limited to the confirmation of the discrimination result by the first pedestrian discrimination unit 23.
  • the object O is a pedestrian. It may be determined to be present.
  • the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object and the discrimination result by the second pedestrian discrimination unit 25 indicates a stationary object
  • the object O May be determined to be a stationary object.
  • the obstacle detection device 100a may not have the first pedestrian determination unit 23.
  • the discrimination result by the second pedestrian discrimination unit 25 may be used instead of the discrimination result by the first pedestrian discrimination unit 23.
  • the obstacle detection system 200a can employ various modifications similar to those described in the first embodiment.
  • the obstacle detection device 100a determines whether or not the object O is a pedestrian based on the similarity DS between the first echo group EG1 and the second echo group EG2, and the result of the determination is A second pedestrian discriminating unit 25 for outputting Thereby, for example, the discrimination result by the first pedestrian discrimination unit 23 can be confirmed. As a result, the accuracy of determining whether or not the object O is a pedestrian can be further improved.
  • FIG. 18 is a block diagram showing a main part of an obstacle detection system including the obstacle detection device according to the third embodiment.
  • An obstacle detection system including the obstacle detection device according to the third embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the control device 4b has a third pedestrian discrimination unit 26.
  • the exploration wave TW is transmitted M times or more (M is an integer of 2 or more), and the received signal RS is acquired M times, so that M first received signals RS1 And when M second received signals RS2 are acquired and M echo group EGs are detected M times, and M first echo group EG1 and M second echo group EG2 are detected, the first Whether or not the object O is a pedestrian is determined by a discrimination method different from the discrimination method by the pedestrian discrimination unit 23. More specifically, the third pedestrian discrimination unit 26 discriminates whether the object O is a pedestrian or a stationary object as follows.
  • the third pedestrian discrimination unit 26 calculates the first echo number NE1 in each of the M first echo group EG1, and the second echo number NE2 in each of the M second echo group EG2. Is calculated.
  • the third pedestrian discrimination unit 26 calculates the feature amount (hereinafter referred to as “first feature amount”) FV1 based on the number of echoes NE.
  • the third pedestrian discrimination unit 26 calculates the average value of these echo numbers NE.
  • the third pedestrian discrimination unit 26 uses the calculated average value for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 calculates the echo width EW of each of the one or more echoes E in each of the M first echo group EG1, and also in each of the M second echo group EG2.
  • the echo width EW of each of one or more echoes E is calculated.
  • the third pedestrian discrimination unit 26 calculates the feature amount (hereinafter referred to as “second feature amount”) FV2 based on these echo widths EW. Further, the third pedestrian discrimination unit 26 calculates a value indicating the fluctuation amount ⁇ FV2 of the second feature amount FV2 with respect to time by executing the statistical processing for the calculated second feature amount FV2.
  • the third pedestrian discrimination unit 26 calculates the total value or the average value of the echo width EW in each echo group EG.
  • the third pedestrian discrimination unit 26 calculates the dispersion value of these total values or the dispersion value of these average values.
  • the calculated total value or average value is the second feature amount FV2.
  • the calculated variance value is a value indicating the fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 compares the calculated value of the first feature amount FV1 with the threshold value Th3 corresponding to the value of the calculated fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 determines that the object O is a pedestrian when the calculated value of the first feature amount FV1 is the threshold value Th3 or more.
  • the third pedestrian discrimination unit 26 determines that the object O is a stationary object.
  • the threshold Th3 is set as follows.
  • the measured value of the first feature amount FV1 and the measured value of the fluctuation amount ⁇ FV2 are collected. Further, when the object O is two poles, the measured value of the first feature amount FV1 and the measured value of the fluctuation amount ⁇ FV2 are collected. Further, when the object O is a pedestrian, the measured value of the first feature amount FV1 and the measured value of the fluctuation amount ⁇ FV2 are collected.
  • a curve corresponding to the threshold value Th3 (hereinafter referred to as "discrimination curve") is set based on the regions A4_1 and A4_2 corresponding to the stationary object and the region A4_3 corresponding to the pedestrian (see FIG. 19).
  • a machine learning technique may be used for setting the regions A4_1, A4_2, and A4_3, and setting the discrimination curve corresponding to the threshold value Th3.
  • the threshold value Th3 is set by the time the vehicle 1 is shipped at the latest.
  • the third pedestrian discrimination unit 26 determines whether the object O is a pedestrian or a stationary object by using the set threshold value Th3 as described above.
  • Transmission control unit 11 vehicle information acquisition unit 12, position calculation unit 13, warning necessity determination unit 14, warning signal output unit 15, reception control unit 21, echo detection unit 22, first pedestrian discrimination unit 23, fuselage discrimination unit
  • the main part of the control device 4b is composed of the 24 and the third pedestrian discrimination unit 26. Further, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the body discrimination unit 24, and the third pedestrian discrimination unit 26 constitute the main part of the obstacle detection device 100b.
  • the main part of the obstacle detection system 200b is configured.
  • the functions of the discriminating unit 24 and the third pedestrian discriminating unit 26 may be realized by, for example, the processor 31 and the memory 32, or may be realized by the dedicated processing circuit 33.
  • the discrimination result by the third pedestrian discrimination unit 26 is used with priority over the discrimination result by the first pedestrian discrimination unit 23.
  • the body discrimination unit 24 and the position calculation unit 13 In the warning necessity determination unit 14 and the like the object O is regarded as a stationary object.
  • the body discrimination unit 24, the position calculation In the unit 13 and the warning necessity determination unit 14 the object O is regarded as a pedestrian.
  • the third pedestrian discrimination unit 26 confirms the discrimination result by the first pedestrian discrimination unit 23.
  • the processes executed by the third pedestrian discrimination unit 26 are collectively referred to as "discrimination result confirmation process".
  • steps ST1 to ST7 are executed. Since the processing contents of steps ST1 to ST7 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
  • step ST7 the third pedestrian discrimination unit 26 determines whether or not the execution condition of the discrimination result confirmation process is satisfied (step ST31).
  • the third pedestrian discrimination unit 26 has the number of detected first echo group EG1 (that is, the number of detections) and the detected second echo group EG2 for the object O detected by the object detection process this time. Calculate the number (ie, the number of detections).
  • the third pedestrian discrimination unit 26 determines that the execution condition of the discrimination result confirmation process is satisfied (step ST31 “YES”). ..
  • the third pedestrian discrimination unit 26 determines that the execution condition of the discrimination result confirmation process is not satisfied (step ST31 "NO". ").
  • step ST31 “YES” When it is determined that the execution condition of the discrimination result confirmation process is satisfied (step ST31 “YES”), the third pedestrian discrimination unit 26 then executes the discrimination result confirmation process (step ST32). Since the details of the determination result confirmation process have already been described with reference to FIG. 19, the description will be omitted again.
  • steps ST8 to ST10 are executed. Since the processing contents of steps ST8 to ST10 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
  • step ST8 “NO” is set.
  • step ST8 “YES” is set.
  • step ST8 “YES” is set.
  • step ST8 “NO” is set.
  • the first feature amount FV1 is not limited to the above specific example.
  • the third pedestrian discrimination unit 26 may calculate the first feature amount FV1 as follows. Further, the second feature amount FV2 is not limited to the above specific example.
  • the third pedestrian discrimination unit 26 may calculate the fluctuation amount ⁇ FV2 as follows.
  • the third pedestrian discrimination unit 26 calculates the total value of the first echo number NE1 in each of the M first echo group EG1 and the second echo number NE2 in the corresponding second echo group EG2.
  • the third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 calculates the total value of the total value of the echo width EW in each of the M first echo group EG1 and the total value of the echo width EW in the corresponding second echo group EG2.
  • the third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 calculates the total value of the first area S1 in each of the M first echo group EG1 and the second area S2 in the corresponding second echo group EG2.
  • the third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 uses M determination result signals RS'corresponding to M first received signals RS1 and M determination result signals RS' corresponding to M second received signals RS2. Then, the first feature amount FV1 or the fluctuation amount ⁇ FV2 is calculated.
  • the third pedestrian discrimination unit 26 relates to the number of object detection units in the determination result signal RS'corresponding to each of the M first reception signals RS1 and the corresponding second reception signal RS2.
  • the total value with the number of object detection units in the determination result signal RS' is calculated.
  • the third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 has the total value of the waveform widths in the judgment result signals RS'corresponding to each of the M first reception signals RS1 and the judgment result signal related to the corresponding second reception signal RS2. Calculate the total value with the total value of the waveform width in RS'.
  • the third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ⁇ FV2.
  • the third pedestrian discrimination unit 26 has the total value of the waveform areas in the judgment result signals RS'corresponding to each of the M first reception signals RS1 and the judgment result signal related to the corresponding second reception signal RS2. Calculate the total value with the total value of the waveform area in RS'.
  • the third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1.
  • the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ⁇ FV2.
  • the obstacle detection device 100b may not have the first pedestrian determination unit 23.
  • the discrimination result by the third pedestrian discrimination unit 26 may be used instead of the discrimination result by the first pedestrian discrimination unit 23.
  • the first pedestrian determination unit 23 is provided.
  • the obstacle detection system 200b can employ various modifications similar to those described in the first embodiment.
  • the obstacle detection device 100b uses the first feature amount FV1 based on the number of echoes NE in the echo group EG and the fluctuation amount ⁇ FV2 of the second feature amount FV2 based on the echo width EW in the echo group EG.
  • a third pedestrian discrimination unit 26 is provided which determines whether or not the object O is a pedestrian and outputs the result of the determination. Thereby, for example, the discrimination result by the first pedestrian discrimination unit 23 can be confirmed. As a result, the accuracy of determining whether or not the object O is a pedestrian can be further improved.
  • the obstacle detection device of the present invention can be used for, for example, AEB (Autonomous Emergency Braking).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

This obstacle detection device (100) comprises a reception control unit (21) for acquiring reception signals (RS) including a first reception signal (RS1) corresponding to a first reflected wave (RW1) reflected by an object (O) in the vicinity of a vehicle (1) and a second reception signal (RS2) corresponding to a second reflected wave (RW2) reflected by the object (O) in a direction different from the first reflected wave (RW1), an echo detection unit (22) for detecting echo groups (EG) including a first echo group (EG1) in the first reception signal (RS1) and a second echo group (EG2) in the second reception signal (RS2), and a first pedestrian determination unit (23) for, on the basis of detection results from the echo detection unit (22), determining that the object (O) is a pedestrian if there are a plurality of echoes (E) within a window (W) having a width corresponding to a pedestrian and outputting the result of the determination.

Description

障害物検知装置Obstacle detector
 本発明は、障害物検知装置に関する。 The present invention relates to an obstacle detection device.
 従来、車両に設けられたTOF(Time of Flight)方式の測距センサを用いて、車両の周囲における障害物等の物体(以下単に「物体」という。)を検知する装置、すなわち障害物検知装置が開発されている。特許文献1には、測距センサによる受信信号のうちの物体による反射波に対応する部位(以下「エコー」という。)の波形に基づき、物体が人であるか物であるかを判別する技術が開示されている。 Conventionally, a device that detects an object such as an obstacle (hereinafter, simply referred to as an "object") around the vehicle by using a TOF (Time of Flight) type distance measuring sensor provided in the vehicle, that is, an obstacle detecting device. Has been developed. Patent Document 1 describes a technique for determining whether an object is a person or an object based on the waveform of a portion (hereinafter referred to as "echo") corresponding to a reflected wave by the object in the signal received by the distance measuring sensor. Is disclosed.
 特許文献1のFig.3の林状エコーを検出することにより、物体が人であると判別される。これは物体が人である場合、胴体、手、足など反射面の表面形状が複雑であることにより、林状エコーが検出される蓋然性が高いことを利用したものである。ここで、林状エコーとは、一定距離において、エコーが複数ランダムに発生する状態を示している。 Fig. of Patent Document 1. By detecting the forest-like echo of No. 3, it is determined that the object is a person. This utilizes the fact that when the object is a human being, the surface shape of the reflective surface such as the torso, hands, and feet is complicated, so that it is highly probable that a forest echo will be detected. Here, the forest-like echo indicates a state in which a plurality of echoes are randomly generated at a certain distance.
米国特許第8432770号明細書U.S. Pat. No. 8,432,770
 図5を参照して後述するように、物体が歩行者であるとき、歩行者に対する探査波の照射タイミング、歩行者に対する探査波の照射方向、及び歩行者による探査波の反射方向などにより、板状エコーが検出されることがある。このため、例えば、物体による一方向に対する反射波に対応するエコーのみに基づき物体が歩行者であるか静止物であるかが判別されるものである場合、かかる板状エコーに基づき、物体が歩行者であるにもかかわらず、物体が静止物であると誤判別される問題があった。 As will be described later with reference to FIG. 5, when the object is a pedestrian, the plate depends on the timing of irradiating the pedestrian with the exploration wave, the direction of irradiating the pedestrian with the exploration wave, the direction of reflection of the exploration wave by the pedestrian, and the like. Symptom echo may be detected. Therefore, for example, when it is determined whether the object is a pedestrian or a stationary object only based on the echo corresponding to the reflected wave in one direction by the object, the object walks based on the plate-shaped echo. Despite being a person, there was a problem that the object was misidentified as a stationary object.
 本発明は、上記のような課題を解決するためになされたものであり、物体が歩行者であるか否かの判別精度を向上することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to improve the accuracy of determining whether or not an object is a pedestrian.
 本発明の障害物検知装置は、車両の周囲に存在する物体により反射された第1反射波に対応する第1受信信号と、物体により第1反射波と異なる方向に反射された第2反射波に対応する第2受信信号と、を含む受信信号を取得する受信制御部と、第1受信信号における第1エコー群と、第2受信信号における第2エコー群と、を含むエコー群を検出するエコー検出部と、エコー検出部による検出結果に基づき、歩行者に対応する幅を有するウィンドウ内に複数個のエコーが存在するとき、物体が歩行者であると判別して、当該判別の結果を出力する第1歩行者判別部と、を備えるものである。 The obstacle detection device of the present invention has a first received signal corresponding to a first reflected wave reflected by an object existing around the vehicle and a second reflected wave reflected by the object in a direction different from the first reflected wave. Detects an echo group including a reception control unit that acquires a reception signal including a second reception signal corresponding to the above, a first echo group in the first reception signal, and a second echo group in the second reception signal. Based on the detection results of the echo detection unit and the echo detection unit, when a plurality of echoes exist in a window having a width corresponding to a pedestrian, it is determined that the object is a pedestrian, and the determination result is obtained. It is provided with a first pedestrian discrimination unit for output.
 本発明によれば、上記のように構成したので、物体が歩行者であるか否かの判別精度を向上することができる。 According to the present invention, since it is configured as described above, it is possible to improve the accuracy of determining whether or not the object is a pedestrian.
実施の形態1に係る障害物検知装置を含む障害物検知システムの要部を示すブロック図である。It is a block diagram which shows the main part of the obstacle detection system including the obstacle detection device which concerns on Embodiment 1. FIG. 送信制御部、受信制御部及びエコー検出部により実行される処理の内容を示す説明図である。It is explanatory drawing which shows the content of the processing executed by the transmission control unit, the reception control unit, and the echo detection unit. 1本のポールにより探査波が反射されたときの第1エコー群及び第2エコー群などの例を示す説明図である。It is explanatory drawing which shows the example of the 1st echo group and the 2nd echo group when the exploration wave is reflected by one pole. 1本のポールにより探査波が反射されたときの第1エコー群及び第2エコー群などの他の例を示す説明図である。It is explanatory drawing which shows the other example such as the 1st echo group and the 2nd echo group when the exploration wave is reflected by one pole. 歩行者に対する探査波の照射範囲の例、及び歩行者による探査波の反射範囲の例を示す説明図である。It is explanatory drawing which shows the example of the irradiation range of the exploration wave to a pedestrian, and the example of the reflection range of the exploration wave by a pedestrian. 歩行者により探査波が反射されたときの第1エコー群及び第2エコー群などの例を示す説明図である。It is explanatory drawing which shows the example of the 1st echo group and the 2nd echo group when the exploration wave is reflected by a pedestrian. 歩行者により探査波が反射されたときの第1エコー群及び第2エコー群などの他の例を示す説明図である。It is explanatory drawing which shows the other example such as the 1st echo group and the 2nd echo group when the exploration wave is reflected by a pedestrian. 胴体判別部により実行される処理の内容を示す説明図である。It is explanatory drawing which shows the content of the process executed by the body discriminating part. 胴体判別部により実行される他の処理の内容を示す説明図である。It is explanatory drawing which shows the content of other processing executed by the body discriminating part. 胴体判別部により実行される他の処理の内容を示す説明図である。It is explanatory drawing which shows the content of other processing executed by the body discriminating part. 胴体判別部により実行される他の処理の内容を示す説明図である。It is explanatory drawing which shows the content of other processing executed by the body discriminating part. 物体が予測進路範囲内に位置している状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the object is located in the predicted course range. 物体が予測進路範囲外に位置している状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the object is located outside the predicted course range. 警告要否判定部における判定用のテーブルの例を示す説明図である。It is explanatory drawing which shows the example of the table for judgment in the warning necessity judgment part. 実施の形態1に係る障害物検知装置を含む制御装置のハードウェア構成を示す説明図である。It is explanatory drawing which shows the hardware configuration of the control device including the obstacle detection device which concerns on Embodiment 1. FIG. 実施の形態1に係る障害物検知装置を含む制御装置の他のハードウェア構成を示す説明図である。It is explanatory drawing which shows the other hardware configuration of the control device including the obstacle detection device which concerns on Embodiment 1. FIG. 実施の形態1に係る障害物検知装置を含む制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control apparatus including the obstacle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る障害物検知装置を含む制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control apparatus including the obstacle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る障害物検知装置を含む制御装置の他の動作を示すフローチャートである。It is a flowchart which shows other operation of the control apparatus including the obstacle detection apparatus which concerns on Embodiment 1. FIG. 歩行者に対する探査波の照射範囲の他の例、及び歩行者による探査波の反射範囲の他の例を示す説明図である。It is explanatory drawing which shows another example of the irradiation range of the exploration wave to a pedestrian, and another example of the reflection range of the exploration wave by a pedestrian. 実施の形態2に係る障害物検知装置を含む障害物検知システムの要部を示すブロック図である。It is a block diagram which shows the main part of the obstacle detection system including the obstacle detection device which concerns on Embodiment 2. FIG. 実施の形態2に係る障害物検知装置を含む制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device including the obstacle detection device which concerns on Embodiment 2. 実施の形態2に係る障害物検知装置を含む制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device including the obstacle detection device which concerns on Embodiment 2. 実施の形態3に係る障害物検知装置を含む障害物検知システムの要部を示すブロック図である。It is a block diagram which shows the main part of the obstacle detection system including the obstacle detection apparatus which concerns on Embodiment 3. 第3歩行者判別部における判別用の閾値の例を示す説明図である。It is explanatory drawing which shows the example of the threshold value for discrimination in the 3rd pedestrian discrimination part. 実施の形態3に係る障害物検知装置を含む制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device including the obstacle detection device which concerns on Embodiment 3. 実施の形態3に係る障害物検知装置を含む制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device including the obstacle detection device which concerns on Embodiment 3.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る障害物検知装置を含む障害物検知システムの要部を示すブロック図である。図1を参照して、実施の形態1に係る障害物検知装置を含む障害物検知システムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of an obstacle detection system including an obstacle detection device according to the first embodiment. An obstacle detection system including the obstacle detection device according to the first embodiment will be described with reference to FIG.
 車両1は、N個のソナー2を有している(Nは2以上の整数である。)。具体的には、例えば、車両1の後端部に4個のソナー2_OR,2_IR,2_IL,2_OLが設けられている。これらのソナー2_OR,2_IR,2_IL,2_OLにより、リアソナー3が構成されている。個々のソナー2は、車両1の後方に超音波(以下「探査波」という。)TWを送信自在なものである。また、個々のソナー2は、車両1の後方に存在する物体Oにより探査波が反射されたとき、当該反射された探査波(すなわち反射波)RWを受信自在なものである。 Vehicle 1 has N sonars 2 (N is an integer of 2 or more). Specifically, for example, four sonars 2_OR, 2_IR, 2_IL, and 2_OL are provided at the rear end of the vehicle 1. The rear sonar 3 is composed of these sonars 2_OR, 2_IR, 2_IL, and 2_OL. Each sonar 2 is capable of transmitting ultrasonic waves (hereinafter referred to as "exploration waves") TW behind the vehicle 1. Further, each sonar 2 is capable of receiving the reflected exploration wave (that is, the reflected wave) RW when the exploration wave is reflected by the object O existing behind the vehicle 1.
 車両1は、制御装置4を有している。制御装置4は、例えば、ECU(Electronic Control Unit)により構成されている。車両1は、センサ類5を有している。センサ類5は、例えば、車輪速センサ、GPS(Global Positioning System)受信機、ヨーレートセンサ及びジャイロセンサを含むものである。車両1は、出力装置6を有している。出力装置6は、例えば、ディスプレイ又はスピーカのうちの少なくとも一方により構成されている。出力装置6のうちのディスプレイは、例えば、液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイを用いたものである。 Vehicle 1 has a control device 4. The control device 4 is composed of, for example, an ECU (Electronic Control Unit). The vehicle 1 has sensors 5. The sensors 5 include, for example, a wheel speed sensor, a GPS (Global Positioning System) receiver, a yaw rate sensor, and a gyro sensor. The vehicle 1 has an output device 6. The output device 6 is composed of, for example, at least one of a display and a speaker. The display in the output device 6 is, for example, a liquid crystal display or an organic EL (Electro Luminescence) display.
 制御装置4は、送信制御部11を有している。制御装置4は、受信制御部21、エコー検出部22、第1歩行者判別部23及び胴体判別部24を有している。受信制御部21、エコー検出部22、第1歩行者判別部23及び胴体判別部24により、障害物検知装置100の要部が構成されている。制御装置4は、車両情報取得部12、位置算出部13、警告要否判定部14及び警告信号出力部15を有している。 The control device 4 has a transmission control unit 11. The control device 4 includes a reception control unit 21, an echo detection unit 22, a first pedestrian discrimination unit 23, and a body discrimination unit 24. The reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, and the body discrimination unit 24 constitute the main part of the obstacle detection device 100. The control device 4 includes a vehicle information acquisition unit 12, a position calculation unit 13, a warning necessity determination unit 14, and a warning signal output unit 15.
 このようにして、障害物検知システム200の要部が構成されている。 In this way, the main part of the obstacle detection system 200 is configured.
 次に、図2を参照して、送信制御部11、受信制御部21及びエコー検出部22の動作について説明する。 Next, the operations of the transmission control unit 11, the reception control unit 21, and the echo detection unit 22 will be described with reference to FIG.
 送信制御部11は、N個のソナー2に電気信号(以下「送信信号」という。)TSを順次供給することにより、N個のソナー2に探査波TWを順次送信させる制御(以下「探査波送信制御」という。)を実行する。具体的には、例えば、送信制御部11は、車両1が後退しているとき、4個のソナー2_OR,2_IR,2_IL,2_OLに送信信号TSを順次供給することにより、4個のソナー2_OR,2_IR,2_IL,2_OLに探査波TWを順次送信させる。 The transmission control unit 11 sequentially supplies an electric signal (hereinafter referred to as “transmission signal”) TS to N sonars 2 to sequentially transmit exploration wave TW to N sonars 2 (hereinafter referred to as “exploration wave”). "Transmission control") is executed. Specifically, for example, when the vehicle 1 is reversing, the transmission control unit 11 sequentially supplies the transmission signal TS to the four sonars 2_OR, 2_IR, 2_IL, and 2_OL, thereby causing the four sonars 2_OR, The exploration wave TW is sequentially transmitted to 2_IR, 2_IL, and 2_OL.
 個々のソナー2により送信される探査波TWは、例えば、所定の搬送波周波数にて変調されたパルス波である。N個のソナー2のうちの任意の2個のソナー2間の干渉を回避する観点から、送信制御部11は、いわゆる「時分割多重」、「周波数分割多重」又は「符号分割多重」によりリアソナー3を制御するのが好適である。 The exploration wave TW transmitted by each sonar 2 is, for example, a pulse wave modulated at a predetermined carrier frequency. From the viewpoint of avoiding interference between any two sonars 2 out of N sonars 2, the transmission control unit 11 uses so-called "time division multiplexing", "frequency division multiplexing" or "code division multiplexing" to perform rear sonar. It is preferable to control 3.
 受信制御部21は、個々のソナー2により電気信号が出力されたとき、当該出力された電気信号(以下「受信信号」という。)RSを取得する。受信制御部21は、受信信号RSの強度を所定の閾値Th1と比較することにより、物体Oを検出する処理(以下「物体検出処理」という。)を実行する。図中RS’は、かかる閾値判定の結果に対応する信号(以下「判定結果信号」という。)を示している。受信制御部21は、物体検出処理により物体Oが検出された場合、受信信号RSをエコー検出部22に出力する。 When an electric signal is output by each sonar 2, the reception control unit 21 acquires the output electric signal (hereinafter referred to as “received signal”) RS. The reception control unit 21 executes a process of detecting the object O (hereinafter referred to as “object detection process”) by comparing the intensity of the received signal RS with a predetermined threshold value Th1. In the figure, RS'indicates a signal corresponding to the result of the threshold value determination (hereinafter referred to as “determination result signal”). When the object O is detected by the object detection process, the reception control unit 21 outputs the reception signal RS to the echo detection unit 22.
 エコー検出部22は、物体検出処理の結果に基づき、受信信号RSのうちの物体Oによる反射波RWに対応する部位、すなわちエコーEを検出する処理(以下「エコー検出処理」という。)を実行する。より具体的には、エコー検出部22は、所定幅を有する時間窓W_T内に1個のエコーEが存在するとき、当該1個のエコーEを検出する。他方、時間窓W_T内に複数個のエコーEが存在するとき、エコー検出部22は、当該複数個のエコーEを検出する。以下、当該検出された1個以上のエコーEにより構成されるグループEGを「エコー群」という。 Based on the result of the object detection process, the echo detection unit 22 executes a process of detecting a portion of the received signal RS corresponding to the reflected wave RW by the object O, that is, an echo E (hereinafter referred to as “echo detection process”). To do. More specifically, the echo detection unit 22 detects the one echo E when one echo E exists in the time window W_T having a predetermined width. On the other hand, when a plurality of echoes E are present in the time window W_T, the echo detection unit 22 detects the plurality of echoes E. Hereinafter, the group EG composed of one or more detected echoes E is referred to as an “echo group”.
 ここで、時間窓W_Tは、所定幅を有する距離窓W_Dに対応するものである。以下、時間窓W_T及び距離窓W_Dを総称して「ウィンドウ」という。ウィンドウWの幅は、一般的な歩行者の身長の基準値(以下「基準身長」という。)、一般的な歩行者の腕の振り幅の基準値、又は一般的な歩行者の歩幅の基準値(以下「基準歩幅」という。)のうちの少なくとも一つに基づき、予め設定されたものである。例えば、基準身長が180センチメートルであり、かつ、基準歩幅が80センチメートルであるとき、距離窓W_Dの幅は、100センチメートルに設定されている。この値は、いわゆる「マージン」を含むものである。このように、ウィンドウWは、歩行者に対応する幅を有するものである。 Here, the time window W_T corresponds to the distance window W_D having a predetermined width. Hereinafter, the time window W_T and the distance window W_D are collectively referred to as a "window". The width of the window W is a standard value for the height of a general pedestrian (hereinafter referred to as "standard height"), a standard value for the swing width of the arm of a general pedestrian, or a standard value for the stride length of a general pedestrian. It is preset based on at least one of the values (hereinafter referred to as "reference stride"). For example, when the reference height is 180 centimeters and the reference stride is 80 centimeters, the width of the distance window W_D is set to 100 centimeters. This value includes the so-called "margin". As described above, the window W has a width corresponding to a pedestrian.
 受信制御部21は、物体検出処理により物体Oが検出された場合、受信信号RSにおける強度が閾値Th1を超えている部位毎に(すなわちエコーE毎に)、以下の式(1)により距離Dを算出する処理(以下「測距処理」という。)を実行する。距離Dは、車両1と個々のエコーEに対応する物(すなわち物体O又は物体Oの一部)との間の距離に対応している。 When the object O is detected by the object detection process, the reception control unit 21 determines the distance D by the following equation (1) for each part where the intensity in the received signal RS exceeds the threshold Th1 (that is, for each echo E). Is executed (hereinafter referred to as "distance measurement processing"). The distance D corresponds to the distance between the vehicle 1 and the object corresponding to each echo E (ie, object O or part of object O).
 D=(PV×PT)/2 (1) D = (PV x PT) / 2 (1)
 ここで、PVは、空気中の探査波TWの伝搬速度を示している。伝搬速度PVの値は、例えば、受信制御部21に予め記憶されている。また、PTは、探査波TWの往復伝搬時間を示している。したがって、PV×PTは、探査波TWの往復伝搬距離PDに対応している。 Here, PV indicates the propagation velocity of the exploration wave TW in the air. The value of the propagation velocity PV is stored in advance in the reception control unit 21, for example. In addition, PT indicates the round-trip propagation time of the exploration wave TW. Therefore, PV × PT corresponds to the round-trip propagation distance PD of the exploration wave TW.
 図2に示す例においては、2個のエコーE_1,E_2が検出される。また、2個のエコーE_1,E_2に対応する2個の往復伝搬時間PT_1,PT_2に基づき、2個のエコーE_1,E_2に対応する2個の距離D_1,D_2(不図示)が算出される。このとき、PV×PT_1は、往復伝搬距離PD_1に対応している。また、PV×PT_2は、往復伝搬距離PD_2に対応している。 In the example shown in FIG. 2, two echoes E_1 and E_2 are detected. Further, two distances D_1 and D_2 (not shown) corresponding to the two echoes E_1 and E_2 are calculated based on the two reciprocating propagation times PT_1 and PT_2 corresponding to the two echoes E_1 and E_2. At this time, PV × PT_1 corresponds to the reciprocating propagation distance PD_1. Further, PV × PT_2 corresponds to the reciprocating propagation distance PD_2.
 ここで、障害物検知システム200において、リアソナー3により受信される反射波RWは、物体Oにより互いに異なる方向に反射された2個の反射波RW1,RW2を含むものである。当該2個の反射波RW1,RW2は、例えば、N個のソナー2のうちの互いに異なるソナー2により受信されるものである。以下、当該2個の反射波RW1,RW2のうちの一方の反射波RW1を「第1反射波」という。また、当該2個の反射波RW1,RW2のうちの他方の反射波RW2を「第2反射波」という。 Here, in the obstacle detection system 200, the reflected wave RW received by the rear sonar 3 includes two reflected waves RW1 and RW2 reflected by the object O in different directions. The two reflected waves RW1 and RW2 are received by, for example, different sonars 2 out of N sonars 2. Hereinafter, the reflected wave RW1 of one of the two reflected waves RW1 and RW2 is referred to as a "first reflected wave". Further, the other reflected wave RW2 of the two reflected waves RW1 and RW2 is referred to as a "second reflected wave".
 したがって、障害物検知装置100において、受信制御部21により取得される受信信号RSは、第1反射波RW1に対応する受信信号(以下「第1受信信号」という。)RS1と、第2反射波RW2に対応する受信信号(以下「第2受信信号」という。)RS2とを含むものである。また、エコー検出部22により検出されるエコー群EGは、第1受信信号RS1におけるエコー群(以下「第1エコー群」という。)EG1と、第2受信信号RS2におけるエコー群(以下「第2エコー群」という。)EG2とを含むものである。 Therefore, in the obstacle detection device 100, the received signal RS acquired by the reception control unit 21 is the received signal RS1 corresponding to the first reflected wave RW1 (hereinafter referred to as “first received signal”) RS1 and the second reflected wave. It includes a received signal (hereinafter referred to as "second received signal") RS2 corresponding to RW2. The echo group EG detected by the echo detection unit 22 includes an echo group EG1 in the first received signal RS1 (hereinafter referred to as "first echo group") and an echo group in the second received signal RS2 (hereinafter referred to as "second echo group"). It is called "echo group".) It contains EG2.
 次に、図3~図7を参照して、第1歩行者判別部23の動作について説明する。 Next, the operation of the first pedestrian discrimination unit 23 will be described with reference to FIGS. 3 to 7.
 図3は、物体Oが1本のポールである場合における、第1エコー群EG1及び第2エコー群EG2などの例を示している。 FIG. 3 shows an example of the first echo group EG1 and the second echo group EG2 when the object O is one pole.
 図3に示す如く、まず、ソナー2_ORが探査波TW1を送信したとき、このソナー2_ORが第1反射波RW1を受信して、受信制御部21が第1受信信号RS1を取得して、エコー検出部22が第1エコー群EG1を検出したものとする。この場合における探査波TW1及び第1反射波RW1は、いわゆる「直接波」の関係を有している。次いで、他のソナー2_OLが探査波TW2を送信したとき、このソナー2_OLが第2反射波RW2を受信して、受信制御部21が第2受信信号RS2を取得して、エコー検出部22が第2エコー群EG2を検出したものとする。この場合における探査波TW2及び第2反射波RW2は、直接波の関係を有している。 As shown in FIG. 3, first, when the sonar 2_OR transmits the exploration wave TW1, the sonar 2_OR receives the first reflected wave RW1, the reception control unit 21 acquires the first reception signal RS1, and echo detection is performed. It is assumed that the unit 22 has detected the first echo group EG1. The exploration wave TW1 and the first reflected wave RW1 in this case have a so-called "direct wave" relationship. Next, when another sonar 2_OL transmits the exploration wave TW2, the sonar 2_OL receives the second reflected wave RW2, the reception control unit 21 acquires the second reception signal RS2, and the echo detection unit 22 receives the second reception signal RS2. 2 It is assumed that the echo group EG2 is detected. The exploration wave TW2 and the second reflected wave RW2 in this case have a direct wave relationship.
 図3に示す例において、第1エコー群EG1は、1個のエコーE_1を含むものである。これは、板状エコーである。また、第2エコー群EG2は、1個のエコーE_2を含むものである。これは、板状エコーである。 In the example shown in FIG. 3, the first echo group EG1 includes one echo E_1. This is a plate echo. Further, the second echo group EG2 includes one echo E_2. This is a plate echo.
 図4は、物体Oが1本のポールである場合における、第1エコー群EG1及び第2エコー群EG2などの他の例を示している。 FIG. 4 shows other examples such as the first echo group EG1 and the second echo group EG2 when the object O is one pole.
 図4に示す如く、ソナー2_ORが探査波TW1を送信したとき、このソナー2_ORが第1反射波RW1を受信して、受信制御部21が第1受信信号RS1を取得して、エコー検出部22が第1エコー群EG1を検出したものとする。この場合における探査波TW1及び第1反射波RW1は、直接波の関係を有している。また、このとき、他のソナー2_OLが第2反射波RW2を受信して、受信制御部21が第2受信信号RS2を取得して、エコー検出部22が第2エコー群EG2を検出したものとする。この場合における探査波TW1及び第2反射波RW2は、いわゆる「間接波」の関係を有している。 As shown in FIG. 4, when the sonar 2_OR transmits the exploration wave TW1, the sonar 2_OR receives the first reflected wave RW1, the reception control unit 21 acquires the first reception signal RS1, and the echo detection unit 22. Detected the first echo group EG1. The exploration wave TW1 and the first reflected wave RW1 in this case have a direct wave relationship. Further, at this time, another sonar 2_OL receives the second reflected wave RW2, the reception control unit 21 acquires the second reception signal RS2, and the echo detection unit 22 detects the second echo group EG2. To do. The exploration wave TW1 and the second reflected wave RW2 in this case have a so-called "indirect wave" relationship.
 図4に示す例において、第1エコー群EG1は、1個のエコーE_1を含むものである。これは、板状エコーである。また、第2エコー群EG2は、1個のエコーE_2を含むものである。これは、板状エコーである。 In the example shown in FIG. 4, the first echo group EG1 includes one echo E_1. This is a plate echo. Further, the second echo group EG2 includes one echo E_2. This is a plate echo.
 このように、物体Oが1本のポールである場合、物体Oに対する探査波TWの照射タイミング、物体Oに対する探査波TWの照射方向、及び物体Oによる探査波TWの反射方向にかかわらず、個々のエコー群EGに含まれるエコーEの個数(以下「エコー数」という。)NEが一定である。より具体的には、エコー数NEが1である。 In this way, when the object O is one pole, it is individual regardless of the irradiation timing of the exploration wave TW on the object O, the irradiation direction of the exploration wave TW on the object O, and the reflection direction of the exploration wave TW by the object O. The number of echoes E included in the echo group EG (hereinafter referred to as "the number of echoes") NE is constant. More specifically, the number of echoes NE is 1.
 これに対して、物体Oが歩行者である場合は以下のようになる。 On the other hand, when the object O is a pedestrian, it becomes as follows.
 通常、歩行者の形状はポールの形状に比して複雑である。このため、歩行者に探査波TWが照射されたとき、歩行者の複数個の部位(例えば頭部、胴体、右腕、左腕、右脚及び左脚)のうちの1個以上の部位により探査波TWが反射される。例えば、リアソナー3の取付け高さが歩行者の腰の位置よりも高く、かつ、個々のソナー2による探査波TWの照射方向が路面と平行又は略平行な方向に設定されている場合、主に、胴体、右腕及び左腕を含む3部位のうちの少なくとも1部位により探査波TWが反射される。 Normally, the shape of a pedestrian is more complicated than the shape of a pole. Therefore, when the pedestrian is irradiated with the exploration wave TW, the exploration wave is generated by one or more parts of the pedestrian (for example, the head, torso, right arm, left arm, right leg and left leg). The TW is reflected. For example, when the mounting height of the rear sonar 3 is higher than the position of the pedestrian's waist and the irradiation direction of the exploration wave TW by each sonar 2 is set to be parallel to or substantially parallel to the road surface, mainly. The exploration wave TW is reflected by at least one part of the three parts including the torso, the right arm and the left arm.
 図5に示す如く、歩行者は、腕振りにより右腕が前方に振り上げられており、かつ、これに応じて左脚が前方に踏み出されている状態(以下「第1状態」という。)と、腕振りにより左腕が前方に振り上げられており、かつ、これに応じて右脚が前方に踏み出されている状態(以下「第3状態」という。)と、これらの状態に対する中間の状態、すなわち両腕が胴体の真横に配置されている状態(以下「第2状態」という。)とを繰り返す。 As shown in FIG. 5, the pedestrian has a state in which the right arm is swung forward by the arm swing and the left leg is stepped forward in response to this (hereinafter referred to as "first state"). The state in which the left arm is swung forward by the arm swing and the right leg is stepped forward in response to this (hereinafter referred to as the "third state") and the intermediate state between these states, that is, both. The state in which the arms are placed right next to the torso (hereinafter referred to as "second state") is repeated.
 図5におけるA1は、物体Oが歩行者である場合における、探査波TWが主に照射される範囲(以下「照射範囲」という。)の例を示している。また、図5におけるA2は、この場合における、探査波TWが主に反射される範囲(以下「反射範囲」という。)の例を示している。 A1 in FIG. 5 shows an example of a range in which the exploration wave TW is mainly irradiated (hereinafter referred to as “irradiation range”) when the object O is a pedestrian. Further, A2 in FIG. 5 shows an example of a range in which the exploration wave TW is mainly reflected (hereinafter referred to as “reflection range”) in this case.
 図5に示す如く、仮に、歩行者の左方から探査波TWが照射された場合において、歩行者が第1状態又は第3状態であるときは、主に、左腕、胴体及び右腕を含む3部位(図中A2_1、A2_2及びA2_3)により探査波TWが反射される蓋然性が高い。他方、この場合において、歩行者が第2状態であるときは、主に、左腕を含む1部位(図中A2_1)により探査波TWが反射される蓋然性が高い。 As shown in FIG. 5, if the exploration wave TW is irradiated from the left side of the pedestrian and the pedestrian is in the first state or the third state, the left arm, the torso and the right arm are mainly included 3 It is highly probable that the exploration wave TW will be reflected by the site (A2_1, A2_2 and A2_3 in the figure). On the other hand, in this case, when the pedestrian is in the second state, it is highly probable that the exploration wave TW is mainly reflected by one part (A2_1 in the figure) including the left arm.
 このように、物体Oが歩行者である場合、歩行者に対する探査波TWの照射タイミングに応じて、歩行者における探査波TWを主に反射する部位数が変動する。また、歩行者に対する探査波TWの照射方向に応じて、当該部位数が変動する。したがって、歩行者による探査波TWの反射方向に応じて、当該部位数が変動する。 In this way, when the object O is a pedestrian, the number of parts that mainly reflect the exploration wave TW in the pedestrian varies depending on the irradiation timing of the exploration wave TW on the pedestrian. In addition, the number of the parts varies depending on the irradiation direction of the exploration wave TW to the pedestrian. Therefore, the number of the parts varies depending on the direction of reflection of the exploration wave TW by the pedestrian.
 図6は、物体Oが歩行者である場合における、第1エコー群EG1及び第2エコー群EG2などの例を示している。 FIG. 6 shows an example of the first echo group EG1 and the second echo group EG2 when the object O is a pedestrian.
 図6に示す如く、まず、ソナー2_ORが探査波TW1を送信したとき、このソナー2_ORが第1反射波RW1を受信して、受信制御部21が第1受信信号RS1を取得して、エコー検出部22が第1エコー群EG1を検出したものとする。この場合における探査波TW1及び第1反射波RW1は、直接波の関係を有している。次いで、他のソナー2_OLが探査波TW2を送信したとき、このソナー2_OLが第2反射波RW2を受信して、受信制御部21が第2受信信号RS2を取得して、エコー検出部22が第2エコー群EG2を検出したものとする。この場合における探査波TW2及び第2反射波RW2は、直接波の関係を有している。 As shown in FIG. 6, first, when the sonar 2_OR transmits the exploration wave TW1, the sonar 2_OR receives the first reflected wave RW1, the reception control unit 21 acquires the first reception signal RS1, and echo detection is performed. It is assumed that the unit 22 has detected the first echo group EG1. The exploration wave TW1 and the first reflected wave RW1 in this case have a direct wave relationship. Next, when another sonar 2_OL transmits the exploration wave TW2, the sonar 2_OL receives the second reflected wave RW2, the reception control unit 21 acquires the second reception signal RS2, and the echo detection unit 22 receives the second reception signal RS2. 2 It is assumed that the echo group EG2 is detected. The exploration wave TW2 and the second reflected wave RW2 in this case have a direct wave relationship.
 図6に示す例において、第1エコー群EG1は、2個のエコーE_1,E_2を含むものである。すなわち、第1エコー群EG1は、林状エコーを含むものである。これは、例えば、主に胴体及び片腕により探査波TW1が反射されて、かかる第1反射波RW1がソナー2_ORにより受信されたためである。 In the example shown in FIG. 6, the first echo group EG1 includes two echoes E_1 and E_2. That is, the first echo group EG1 includes a forest-like echo. This is because, for example, the exploration wave TW1 is reflected mainly by the torso and one arm, and the first reflected wave RW1 is received by the sonar 2_OR.
 他方、第2エコー群EG2は、3個のエコーE_3,E_4,E_5を含むものである。すなわち、第2エコー群EG2は、林状エコーを含むものである。これは、例えば、主に胴体及び両腕により探査波TW2が反射されて、かかる第2反射波RW2がソナー2_OLにより受信されたためである。 On the other hand, the second echo group EG2 contains three echoes E_3, E_4, E_5. That is, the second echo group EG2 includes a forest-like echo. This is because, for example, the exploration wave TW2 is reflected mainly by the torso and both arms, and the second reflected wave RW2 is received by the sonar 2_OL.
 図7は、物体Oが歩行者である場合における、第1エコー群EG1及び第2エコー群EG2などの他の例を示している。 FIG. 7 shows other examples such as the first echo group EG1 and the second echo group EG2 when the object O is a pedestrian.
 図7に示す如く、ソナー2_ORが探査波TW1を送信したとき、このソナー2_ORが第1反射波RW1を受信して、受信制御部21が第1受信信号RS1を取得して、エコー検出部22が第1エコー群EG1を検出したものとする。この場合における探査波TW1及び第1反射波RW1は、直接波の関係を有している。また、このとき、他のソナー2_OLが第2反射波RW2を受信して、受信制御部21が第2受信信号RS2を取得して、エコー検出部22が第2エコー群EG2を検出したものとする。この場合における探査波TW1及び第2反射波RW2は、間接波の関係を有している。 As shown in FIG. 7, when the sonar 2_OR transmits the exploration wave TW1, the sonar 2_OR receives the first reflected wave RW1, the reception control unit 21 acquires the first reception signal RS1, and the echo detection unit 22. Detected the first echo group EG1. The exploration wave TW1 and the first reflected wave RW1 in this case have a direct wave relationship. Further, at this time, another sonar 2_OL receives the second reflected wave RW2, the reception control unit 21 acquires the second reception signal RS2, and the echo detection unit 22 detects the second echo group EG2. To do. The exploration wave TW1 and the second reflected wave RW2 in this case have an indirect wave relationship.
 図7に示す例において、第1エコー群EG1は、2個のエコーE_1,E_2を含むものである。すなわち、第1エコー群EG1は、林状エコーを含むものである。これは、例えば、第1反射波RW1が主に胴体及び片腕による反射に係るものであるためである。 In the example shown in FIG. 7, the first echo group EG1 includes two echoes E_1 and E_2. That is, the first echo group EG1 includes a forest-like echo. This is because, for example, the first reflected wave RW1 is mainly related to the reflection by the body and one arm.
 他方、第2エコー群EG2は、1個のエコーE_3を含むものである。すなわち、第2エコー群EG2は、板状エコーを含むものである。これは、例えば、第2反射波RW2が主に胴体による反射に係るものであるためである。 On the other hand, the second echo group EG2 contains one echo E_3. That is, the second echo group EG2 includes a plate-shaped echo. This is because, for example, the second reflected wave RW2 is mainly related to the reflection by the body.
 このように、物体Oが歩行者である場合、歩行者に対する探査波TWの照射タイミング、歩行者に対する探査波TWの照射方向、及び歩行者による探査波TWの反射方向に応じて、個々のエコー群EGにおけるエコー数NEが変動する。これは、図5を参照して説明したとおり、歩行者における探査波TWを主に反射する部位数が変動するためである。 In this way, when the object O is a pedestrian, individual echoes are made according to the irradiation timing of the exploration wave TW on the pedestrian, the irradiation direction of the exploration wave TW on the pedestrian, and the reflection direction of the exploration wave TW by the pedestrian. The number of echoes NE in the group EG fluctuates. This is because, as explained with reference to FIG. 5, the number of parts that mainly reflect the exploration wave TW in the pedestrian fluctuates.
 以上の内容を踏まえて、第1歩行者判別部23は、以下のようにして、物体Oが歩行者であるか否かを判別する。より具体的には、第1歩行者判別部23は、物体Oが歩行者であるか静止物であるかを判別する。 Based on the above contents, the first pedestrian discrimination unit 23 determines whether or not the object O is a pedestrian as follows. More specifically, the first pedestrian discrimination unit 23 determines whether the object O is a pedestrian or a stationary object.
 すなわち、第1歩行者判別部23は、第1エコー群EG1におけるエコー数(以下「第1エコー数」という。)NE1を算出するとともに、第2エコー群EG2におけるエコー数(以下「第2エコー数」という。)NE2を算出する。第1歩行者判別部23は、第1エコー数NE1又は第2エコー数NE2のうちの少なくとも一方が2以上である場合、物体Oが歩行者であると判別する。他方、第1エコー数NE1が1であり、かつ、第2エコー数NE2が1である場合、第1歩行者判別部23は、物体Oが静止物であると判別する。 That is, the first pedestrian discrimination unit 23 calculates the number of echoes in the first echo group EG1 (hereinafter referred to as “first echo number”) NE1 and the number of echoes in the second echo group EG2 (hereinafter referred to as “second echo”). It is called "number".) NE2 is calculated. The first pedestrian discrimination unit 23 determines that the object O is a pedestrian when at least one of the first echo number NE1 and the second echo number NE2 is 2 or more. On the other hand, when the first echo number NE1 is 1 and the second echo number NE2 is 1, the first pedestrian determination unit 23 determines that the object O is a stationary object.
 または、第1歩行者判別部23は、第1エコー数NE1を算出するとともに、第2エコー数NE2を算出する。第1歩行者判別部23は、第1エコー数NE1及び第2エコー数NE2の合計数が3以上である場合、物体Oが歩行者であると判別する。他方、第1エコー数NE1及び第2エコー数NE2の合計数が2である場合、第1歩行者判別部23は、物体Oが静止物であると判別する。 Alternatively, the first pedestrian discrimination unit 23 calculates the first echo number NE1 and the second echo number NE2. The first pedestrian discrimination unit 23 determines that the object O is a pedestrian when the total number of the first echo number NE1 and the second echo number NE2 is 3 or more. On the other hand, when the total number of the first echo number NE1 and the second echo number NE2 is 2, the first pedestrian determination unit 23 determines that the object O is a stationary object.
 換言すれば、第1歩行者判別部23は、第1エコー群EG1又は第2エコー群EG2のうちの少なくとも一方が複数個のエコーEを含むものである場合、物体Oが歩行者であると判別する。他方、第1エコー群EG1が1個のエコーEのみを含むものであり、かつ、第2エコー群EG2が1個のエコーEのみを含むものである場合、第1歩行者判別部23は、物体Oが静止物であると判別する。 In other words, the first pedestrian discrimination unit 23 determines that the object O is a pedestrian when at least one of the first echo group EG1 and the second echo group EG2 includes a plurality of echoes E. .. On the other hand, when the first echo group EG1 contains only one echo E and the second echo group EG2 contains only one echo E, the first pedestrian discrimination unit 23 is the object O. Is determined to be a stationary object.
 例えば、図3に示す例においては、第1エコー数NE1が1であり、かつ、第2エコー数NE2が1である。このため、第1歩行者判別部23は、物体Oが静止物であると判別する。また、図4に示す例においては、第1エコー数NE1が1であり、かつ、第2エコー数NE2が1である。このため、第1歩行者判別部23は、物体Oが静止物であると判別する。また、図6に示す例においては、第1エコー数NE1が2であり、かつ、第2エコー数NE2が3である。このため、第1歩行者判別部23は、物体Oが歩行者であると判別する。また、図7に示す例においては、第1エコー数NE1が2であり、かつ、第2エコー数NE2が1である。このため、第1歩行者判別部23は、物体Oが歩行者であると判別する。 For example, in the example shown in FIG. 3, the first echo number NE1 is 1 and the second echo number NE2 is 1. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a stationary object. Further, in the example shown in FIG. 4, the first echo number NE1 is 1 and the second echo number NE2 is 1. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a stationary object. Further, in the example shown in FIG. 6, the first echo number NE1 is 2 and the second echo number NE2 is 3. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a pedestrian. Further, in the example shown in FIG. 7, the first echo number NE1 is 2 and the second echo number NE2 is 1. Therefore, the first pedestrian discrimination unit 23 determines that the object O is a pedestrian.
 仮に、物体Oによる一方向に対する反射波RWに対応するエコー群EGのみに基づき物体Oが歩行者であるか静止物であるかが判別されるものであるとする。この場合、例えば、図7に示す例において、第2反射波RW2に対応する第2エコー群EG2に含まれる板状エコーに基づき、物体Oが歩行者であるにもかかわらず、物体Oが静止物であると誤判別される可能性がある。これに対して、第1歩行者判別部23は、物体Oによる複数方向に対する反射波RW1,RW2に対応するエコー群EG1,EG2に基づき、物体Oが歩行者であるか静止物であるかを判別する。これにより、例えば、図7に示す例において、物体Oが歩行者であると正確に判別することができる。 Suppose that it is determined whether the object O is a pedestrian or a stationary object based only on the echo group EG corresponding to the reflected wave RW in one direction by the object O. In this case, for example, in the example shown in FIG. 7, the object O is stationary even though the object O is a pedestrian, based on the plate-shaped echo included in the second echo group EG2 corresponding to the second reflected wave RW2. It may be misidentified as a thing. On the other hand, the first pedestrian discrimination unit 23 determines whether the object O is a pedestrian or a stationary object based on the echo groups EG1 and EG2 corresponding to the reflected waves RW1 and RW2 in a plurality of directions by the object O. Determine. Thereby, for example, in the example shown in FIG. 7, it is possible to accurately determine that the object O is a pedestrian.
 このように、複数方向に対する反射波RW1,RW2を用いることにより、一方向に対する反射波RWのみを用いる場合に比して、物体Oが歩行者であるか否かの判別精度を向上することができる。 In this way, by using the reflected waves RW1 and RW2 in a plurality of directions, it is possible to improve the accuracy of determining whether or not the object O is a pedestrian, as compared with the case where only the reflected waves RW in one direction are used. it can.
 以下、第1歩行者判別部23により実行される処理を総称して「歩行者判別処理」という。 Hereinafter, the processes executed by the first pedestrian discrimination unit 23 are collectively referred to as "pedestrian discrimination processing".
 次に、図8を参照して、胴体判別部24の動作について説明する。 Next, the operation of the body discriminating unit 24 will be described with reference to FIG.
 第1歩行者判別部23により物体Oが歩行者であると判別されたとき、第1エコー群EG1及び第2エコー群EG2の各々は、1個以上のエコーEを含むものである。このとき、胴体判別部24は、当該1個以上のエコーEのうちのいずれのエコーEが胴体に対応するものであるかを判別する。より具体的には、胴体判別部24は、以下の第1判別方法、第2判別方法、第3判別方法又は第4判別方法により、胴体に対応するエコーEを判別する。 When the object O is determined to be a pedestrian by the first pedestrian discrimination unit 23, each of the first echo group EG1 and the second echo group EG2 contains one or more echoes E. At this time, the body discrimination unit 24 determines which of the one or more echoes E echoes corresponds to the body. More specifically, the body discriminating unit 24 discriminates the echo E corresponding to the body by the following first discriminating method, second discriminating method, third discriminating method or fourth discriminating method.
〈第1判別方法(図8A参照)〉
 胴体判別部24は、個々のエコー群EGにおけるエコー数NEを算出する。また、胴体判別部24は、個々のエコーEにおける閾値Th1を超えている部位の幅(以下「エコー幅」という。)EWを算出する。エコー数NEが1である場合において、当該1個のエコーEのエコー幅EWが所定幅以上であるとき、胴体判別部24は、当該1個のエコーEが胴体に対応するものであると判別する。
<First discrimination method (see FIG. 8A)>
The body discrimination unit 24 calculates the number of echoes NE in each echo group EG. In addition, the body discrimination unit 24 calculates the width (hereinafter referred to as "echo width") EW of the portion exceeding the threshold Th1 in each echo E. When the number of echoes NE is 1, and the echo width EW of the one echo E is equal to or larger than a predetermined width, the body discriminating unit 24 determines that the one echo E corresponds to the body. To do.
 通常、探査波TWを反射する部位の面積(以下「反射面積」という。)が大きいときは、反射面積が小さいときに比して、対応するエコーEのエコー幅EWが大きくなる。換言すれば、反射面積が小さいときは、反射面積が大きいときに比して、対応するエコーEのエコー幅EWが小さくなる。ここで、探査波TWが胴体により反射されるときは、探査波TWが左腕又は右腕などにより反射されるときに比して、反射面積が大きくなる傾向がある。他方、探査波TWが左腕又は右腕などにより反射されるときは、探査波TWが胴体により反射されるときに比して、反射面積が小さくなる傾向がある。そこで、胴体判別部24は、エコー幅EWの大小に基づき、胴体に対応するエコーEを判別するのである。 Normally, when the area of the portion that reflects the exploration wave TW (hereinafter referred to as "reflection area") is large, the echo width EW of the corresponding echo E becomes larger than when the reflection area is small. In other words, when the reflection area is small, the echo width EW of the corresponding echo E is smaller than when the reflection area is large. Here, when the exploration wave TW is reflected by the body, the reflection area tends to be larger than when the exploration wave TW is reflected by the left arm or the right arm. On the other hand, when the exploration wave TW is reflected by the left arm or the right arm, the reflection area tends to be smaller than when the exploration wave TW is reflected by the body. Therefore, the body discriminating unit 24 discriminates the echo E corresponding to the body based on the magnitude of the echo width EW.
 図8Aに示す例においては、1個のエコーE_1が検出されている。胴体判別部24は、エコー数NEが1であると算出するとともに、当該1個のエコーE_1に対応する1個のエコー幅EW_1を算出する。胴体判別部24は、当該1個のエコー幅EW_1が所定幅以上であるため、当該1個のエコーE_1が胴体に対応するものであると判別する。 In the example shown in FIG. 8A, one echo E_1 is detected. The fuselage discrimination unit 24 calculates that the number of echoes NE is 1, and also calculates one echo width EW_1 corresponding to the one echo E_1. Since the one echo width EW_1 is equal to or larger than the predetermined width, the body discrimination unit 24 determines that the one echo E_1 corresponds to the body.
〈第2判別方法(図8B参照)〉
 胴体判別部24は、個々のエコー群EGにおけるエコー数NEを算出する。また、胴体判別部24は、個々のエコーEのエコー幅EWを算出する。エコー数NEが2以上である場合、胴体判別部24は、当該2個以上のエコーEのうちの最大のエコー幅EWを有するエコーEが胴体に対応するものであると判別する。
<Second discrimination method (see FIG. 8B)>
The body discrimination unit 24 calculates the number of echoes NE in each echo group EG. Further, the body discriminating unit 24 calculates the echo width EW of each echo E. When the number of echoes NE is 2 or more, the body discrimination unit 24 determines that the echo E having the maximum echo width EW among the two or more echoes E corresponds to the body.
 すなわち、上記のとおり、探査波TWが胴体により反射されるときは、探査波TWが左腕又は右腕などにより反射されるときに比して、反射面積が大きくなる傾向がある。他方、探査波TWが左腕又は右腕などにより反射されるときは、探査波TWが胴体により反射されるときに比して、反射面積が小さくなる傾向がある。そこで、胴体判別部24は、エコー幅EWの大小に基づき、胴体に対応するエコーEを判別するのである。 That is, as described above, when the exploration wave TW is reflected by the body, the reflection area tends to be larger than when the exploration wave TW is reflected by the left arm or the right arm. On the other hand, when the exploration wave TW is reflected by the left arm or the right arm, the reflection area tends to be smaller than when the exploration wave TW is reflected by the body. Therefore, the body discriminating unit 24 discriminates the echo E corresponding to the body based on the magnitude of the echo width EW.
 図8Bに示す例においては、2個のエコーE_1,E_2が検出されている。胴体判別部24は、エコー数NEが2であると算出するとともに、当該2個のエコーE_1,E_2に対応する2個のエコー幅EW_1,EW_2を算出する。胴体判別部24は、エコー幅EW_1がエコー幅EW_2よりも大きいため、エコーE_1が胴体に対応するものであると判別する。 In the example shown in FIG. 8B, two echoes E_1 and E_2 are detected. The fuselage discriminating unit 24 calculates that the number of echoes NE is 2, and also calculates two echo widths EW_1 and EW_2 corresponding to the two echoes E_1 and E_2. Since the echo width EW_1 is larger than the echo width EW_2, the body discrimination unit 24 determines that the echo E_1 corresponds to the body.
〈第3判別方法(図8C参照)〉
 胴体判別部24は、個々のエコー群EGにおけるエコー数NEを算出する。エコー数NEが3以上である場合、胴体判別部24は、当該3個以上のエコーEのうちのウィンドウW内の両端部に配置されたエコーEを除く残余のエコーEが胴体に対応するものであると判別する。換言すれば、胴体判別部24は、当該3個以上のエコーEのうちのウィンドウW内の中央部に配置されたエコーEが胴体に対応するものであると判別する。
<Third discrimination method (see FIG. 8C)>
The body discrimination unit 24 calculates the number of echoes NE in each echo group EG. When the number of echoes NE is 3 or more, the body discriminating unit 24 has the remaining echoes E excluding the echoes E arranged at both ends in the window W among the three or more echoes E corresponding to the body. It is determined that. In other words, the body discriminating unit 24 determines that the echo E arranged in the central portion in the window W of the three or more echoes E corresponds to the body.
 例えば、左腕、胴体及び右腕により探査波TWが反射されるときは、通常、まず、左腕又は右腕のうちのいずれか一方により探査波TWが反射されて、次いで、胴体により探査波TWが反射されて、次いで、左腕又は右腕のうちのいずれか他方により探査波TWが反射される蓋然性が高い。そこで、胴体判別部24は、ウィンドウW内の配置位置に基づき、胴体に対応するエコーEを判別するのである。 For example, when the exploration wave TW is reflected by the left arm, the torso and the right arm, usually, the exploration wave TW is first reflected by either the left arm or the right arm, and then the exploration wave TW is reflected by the fuselage. Then, it is highly probable that the exploration wave TW is reflected by either the left arm or the right arm. Therefore, the body discriminating unit 24 discriminates the echo E corresponding to the body based on the arrangement position in the window W.
 図8Cに示す例においては、3個のエコーE_1,E_2,E_3が検出されている。胴体判別部24は、エコー数NEが3であると算出する。胴体判別部24は、当該3個のエコーE_1,E_2,E_3のうちのウィンドウW内の両端部に配置されたエコーE_1,E_3を除く残余のエコーE_2が胴体に対応するものであると判別する。すなわち、胴体判別部24は、当該3個のエコーE_1,E_2,E_3のうちのウィンドウW内の中央部に配置されたエコーE_2が胴体に対応するものであると判別する。 In the example shown in FIG. 8C, three echoes E_1, E_2, and E_3 are detected. The fuselage discrimination unit 24 calculates that the echo number NE is 3. The body discriminating unit 24 determines that the remaining echoes E_2 excluding the echoes E_1 and E_3 arranged at both ends in the window W of the three echoes E_1, E_2, and E_3 correspond to the fuselage. .. That is, the body discriminating unit 24 determines that the echo E_2 arranged in the central portion in the window W of the three echoes E_1, E_2, and E_3 corresponds to the fuselage.
〈第4判別方法(図8D参照)〉
 胴体判別部24は、個々のエコー群EGにおけるエコー数NEを算出する。また、胴体判別部24は、個々のエコーEのピーク値(以下「実ピーク値」という。)Pを算出する。また、胴体判別部24は、個々のエコーEのエコー幅EWを算出して、当該算出されたエコー幅EWに基づくピーク値(以下「推定ピーク値」という。)P’を算出する。具体的には、例えば、胴体判別部24は、当該算出されたエコー幅EWに所定の係数αを乗算することにより、推定ピーク値P’を算出する。胴体判別部24は、個々のエコーEについて、実ピーク値Pと推定ピーク値P’との差分値ΔPを算出する。胴体判別部24は、エコー数NEが2以上である場合、当該2個以上のエコーEのうちの最大の差分値ΔPを有するエコーEが胴体に対応するものであると判別する。所定の係数αの具体例は、送信信号と相似形になるような係数を選択する。
<Fourth discrimination method (see FIG. 8D)>
The body discriminating unit 24 calculates the number of echoes NE in each echo group EG. Further, the body discriminating unit 24 calculates the peak value (hereinafter referred to as “actual peak value”) P of each echo E. Further, the body discriminating unit 24 calculates the echo width EW of each echo E, and calculates the peak value (hereinafter referred to as “estimated peak value”) P'based on the calculated echo width EW. Specifically, for example, the body discriminating unit 24 calculates the estimated peak value P'by multiplying the calculated echo width EW by a predetermined coefficient α. The fuselage discrimination unit 24 calculates the difference value ΔP between the actual peak value P and the estimated peak value P'for each echo E. When the number of echoes NE is 2 or more, the body discrimination unit 24 determines that the echo E having the maximum difference value ΔP among the two or more echoes E corresponds to the body. As a specific example of the predetermined coefficient α, a coefficient that is similar to the transmission signal is selected.
 すなわち、差分値ΔPが大きい場合、対応するエコーEの波形は、実ピーク値Pに対してエコー幅EWが大きい波形である。これは、反射面積が大きいことを示している(第1判別方法の説明参照。)。探査波が反射面積の大きな物体に入射すると、物体で反射して再び受信する伝搬経路の数が大きくなり、その伝搬経路長は少しずつ異なるものとなる。そのため、これら複数の伝搬経路を伝搬して戻ってきた各反射波は少しずつ遅延して受信されるので、これら反射波の合成波となる。合成波のエコー幅は大きくなるが、探査波の相似波形にならずピーク自体は大きくならない。他方、差分値ΔPが小さい場合、対応するエコーEの波形は、実ピーク値Pに対してエコー幅EWが小さい波形である。これは、反射面積が小さいことを示している(第1判別方法の説明参照。)。探査波が反射面積の小さな物体に入射すると、物体で反射して再び受信する伝搬経路の数は大きな物体に比して少ない。そのため、合成される反射波の数も少なくなるので、合成波は探査波の相似波形に近い波形となる。反射面積の大きい物体に比して、合成波のエコー幅も小さくなる。そこで、胴体判別部24は、差分値ΔPの大小に基づき、胴体に対応するエコーEを判別するのである。 That is, when the difference value ΔP is large, the corresponding echo E waveform is a waveform in which the echo width EW is larger than the actual peak value P. This indicates that the reflection area is large (see the description of the first determination method). When the exploration wave enters an object with a large reflection area, the number of propagation paths reflected by the object and received again increases, and the propagation path lengths differ slightly. Therefore, each reflected wave that has propagated through these plurality of propagation paths and returned is received with a slight delay, and thus becomes a composite wave of these reflected waves. The echo width of the composite wave becomes large, but the peak itself does not become large because it does not have a similar waveform to the exploration wave. On the other hand, when the difference value ΔP is small, the corresponding echo E waveform is a waveform in which the echo width EW is smaller than the actual peak value P. This indicates that the reflection area is small (see the description of the first determination method). When an exploration wave is incident on an object with a small reflection area, the number of propagation paths reflected by the object and received again is smaller than that of an object with a large reflection area. Therefore, the number of reflected waves to be combined is also reduced, so that the synthesized wave has a waveform close to the similar waveform of the exploration wave. The echo width of the composite wave is smaller than that of an object with a large reflection area. Therefore, the body discriminating unit 24 discriminates the echo E corresponding to the body based on the magnitude of the difference value ΔP.
 図8Dに示す例においては、2個のエコーE_1,E_2が検出されている。胴体判別部24は、エコー数NEが2であると算出する。胴体判別部24は、エコーE_1について、実ピーク値P_1を算出して、エコー幅EW_1を算出して、推定ピーク値P’_1を算出して、差分値ΔP_1を算出する。胴体判別部24は、エコーE_2について、実ピーク値P_2を算出して、エコー幅EW_2を算出して、推定ピーク値P’_2を算出して、差分値ΔP_2を算出する。胴体判別部24は、差分値ΔP_2が差分値ΔP_1よりも大きいため、エコーE_2が胴体に対応するものであると判別する。 In the example shown in FIG. 8D, two echoes E_1 and E_2 are detected. The fuselage discrimination unit 24 calculates that the echo number NE is 2. The fuselage discrimination unit 24 calculates the actual peak value P_1 for the echo E_1, calculates the echo width EW_1, calculates the estimated peak value P'_1, and calculates the difference value ΔP_1. The fuselage discrimination unit 24 calculates the actual peak value P_2 for the echo E_2, calculates the echo width EW_2, calculates the estimated peak value P'_2, and calculates the difference value ΔP_2. Since the difference value ΔP_2 is larger than the difference value ΔP_1, the body discriminating unit 24 determines that the echo E_2 corresponds to the body.
 以下、胴体判別部24により実行される処理を総称して「胴体判別処理」という。 Hereinafter, the processes executed by the body discrimination unit 24 are collectively referred to as "body discrimination process".
 次に、位置算出部13の動作について説明する。併せて、車両情報取得部12の動作について説明する。 Next, the operation of the position calculation unit 13 will be described. At the same time, the operation of the vehicle information acquisition unit 12 will be described.
 車両情報取得部12は、センサ類5を用いて、個々のソナー2により探査波TWが送信されたときの車両1の位置座標を示す情報を取得する。また、位置算出部13は、受信制御部21により算出された距離Dを示す情報を取得する。位置算出部13は、これらの情報を用いて、物体Oの位置を算出する。より具体的には、位置算出部13は、車両1の左右方向に対応するX軸を有し、かつ、車両1の前後方向に対応するY軸を有する座標系CS1における物体Oの位置座標PCを算出する。位置座標PCの算出には、公知の種々の算出方法を用いることができる。これらの算出方法については説明を省略する。 The vehicle information acquisition unit 12 uses the sensors 5 to acquire information indicating the position coordinates of the vehicle 1 when the exploration wave TW is transmitted by each sonar 2. Further, the position calculation unit 13 acquires information indicating the distance D calculated by the reception control unit 21. The position calculation unit 13 calculates the position of the object O by using this information. More specifically, the position calculation unit 13 has a position coordinate PC of the object O in the coordinate system CS1 having an X axis corresponding to the left-right direction of the vehicle 1 and a Y axis corresponding to the front-rear direction of the vehicle 1. Is calculated. Various known calculation methods can be used for the calculation of the position coordinate PC. The description of these calculation methods will be omitted.
 ここで、第1歩行者判別部23による判別結果が歩行者を示している場合、位置算出部13は、胴体判別部24による判別結果を取得する。位置算出部13は、胴体判別部24による判別結果に基づき、胴体の位置座標PCを算出する。すなわち、この場合、受信制御部21により、例えば、左腕に対応する距離D、胴体に対応する距離D及び右腕に対応する距離Dが算出されている。位置算出部13は、当該算出された距離Dのうちの胴体に対応する距離Dに基づき、位置座標PCを算出する。 Here, when the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian, the position calculation unit 13 acquires the discrimination result by the body discrimination unit 24. The position calculation unit 13 calculates the position coordinate PC of the body based on the determination result by the body determination unit 24. That is, in this case, the reception control unit 21 calculates, for example, the distance D corresponding to the left arm, the distance D corresponding to the torso, and the distance D corresponding to the right arm. The position calculation unit 13 calculates the position coordinate PC based on the distance D corresponding to the body of the calculated distance D.
 以下、位置算出部13により実行される処理を総称して「位置算出処理」という。 Hereinafter, the processes executed by the position calculation unit 13 are collectively referred to as "position calculation process".
 次に、図9~図11を参照して、警告要否判定部14及び警告信号出力部15の動作について説明する。併せて、車両情報取得部12及び出力装置6などの動作について説明する。 Next, the operations of the warning necessity determination unit 14 and the warning signal output unit 15 will be described with reference to FIGS. 9 to 11. At the same time, the operations of the vehicle information acquisition unit 12 and the output device 6 will be described.
 車両情報取得部12は、センサ類5を用いて、車両1の位置座標を示す情報、及び車両1の進行方向を示す情報を取得する。警告要否判定部14は、これらの情報を用いて、車両1の予測進路PPを算出する。警告要否判定部14は、当該算出された予測進路PPに対応する範囲(以下「予測進路範囲」という。)A3を設定する。予測進路範囲A3は、例えば、座標系CS1における範囲である。警告要否判定部14は、位置算出部13により算出された位置座標PCに基づき、物体Oが予測進路範囲A3内に位置するものであるか予測進路範囲A3外に位置するものであるかを判定する。 The vehicle information acquisition unit 12 uses the sensors 5 to acquire information indicating the position coordinates of the vehicle 1 and information indicating the traveling direction of the vehicle 1. The warning necessity determination unit 14 calculates the predicted course PP of the vehicle 1 by using this information. The warning necessity determination unit 14 sets a range (hereinafter referred to as “predicted course range”) A3 corresponding to the calculated predicted course PP. The predicted course range A3 is, for example, a range in the coordinate system CS1. The warning necessity determination unit 14 determines whether the object O is located within the predicted course range A3 or outside the predicted course range A3 based on the position coordinate PC calculated by the position calculation unit 13. judge.
 警告要否判定部14は、第1歩行者判別部23による判別結果を取得する。警告要否判定部14は、物体Oが予測進路範囲A3内に位置するものであると判定された場合(図9参照)、第1歩行者判別部23による判別結果にかかわらず、車両1の搭乗者等に対する警告(以下単に「警告」という。)が要であると判別する。 The warning necessity determination unit 14 acquires the determination result by the first pedestrian determination unit 23. When the warning necessity determination unit 14 determines that the object O is located within the predicted course range A3 (see FIG. 9), the warning necessity determination unit 14 of the vehicle 1 regardless of the determination result by the first pedestrian determination unit 23. It is determined that a warning to passengers (hereinafter simply referred to as "warning") is necessary.
 また、警告要否判定部14は、物体Oが予測進路範囲A3外に位置するものであると判定された場合において(図10参照)、第1歩行者判別部23による判別結果が歩行者を示しているとき、警告が要であると判定する。また、警告要否判定部14は、この場合において、第1歩行者判別部23による判別結果が静止物を示しているとき、警告が不要であると判定する。図11は、これらの判定処理に用いられるテーブルTを示している。 Further, when the warning necessity determination unit 14 determines that the object O is located outside the predicted course range A3 (see FIG. 10), the determination result by the first pedestrian determination unit 23 determines the pedestrian. When indicated, determine that a warning is required. Further, in this case, the warning necessity determination unit 14 determines that the warning is unnecessary when the determination result by the first pedestrian determination unit 23 indicates a stationary object. FIG. 11 shows a table T used for these determination processes.
 警告信号出力部15は、警告要否判定部14により警告が要であると判定された場合、警告用の信号(以下「警告信号」という。)を出力装置6、車両制御装置(不図示)又は無線通信装置(不図示)のうちの少なくとも一つに出力する。車両制御装置は、例えば、ECUにより構成されている。無線通信装置は、例えば、無線通信用の送信機及び受信機により構成されている。 When the warning signal output unit 15 determines that a warning is required by the warning necessity determination unit 14, the warning signal output unit 15 outputs a warning signal (hereinafter referred to as “warning signal”) to the output device 6 and the vehicle control device (not shown). Or output to at least one of the wireless communication devices (not shown). The vehicle control device is composed of, for example, an ECU. The wireless communication device is composed of, for example, a transmitter and a receiver for wireless communication.
 出力装置6のうちのディスプレイは、警告信号出力部15により警告信号が出力されたとき、警告用の画像を表示する。出力装置6のうちのスピーカは、警告信号出力部15により警告信号が出力されたとき、警告用の音声を出力する。これにより、車両1が物体Oと衝突する可能性があることを車両1の搭乗者に知らせることができる。 The display in the output device 6 displays a warning image when the warning signal is output by the warning signal output unit 15. The speaker in the output device 6 outputs a warning voice when the warning signal is output by the warning signal output unit 15. As a result, it is possible to notify the passenger of the vehicle 1 that the vehicle 1 may collide with the object O.
 車両制御装置は、警告信号出力部15により警告信号が出力されたとき、車両1のブレーキ及びエンジントルクなどを制御することにより、衝突被害軽減用の制御を実行する。これにより、仮に車両1が物体Oと衝突したときの被害の軽減を図ることができる。または、車両制御装置は、警告信号出力部15により警告信号が出力されたとき、車両1のブレーキ、エンジントルク及びステアリングなどを制御することにより、衝突回避用の制御を実行する。これにより、車両1と物体O間の衝突の回避を図ることができる。 When the warning signal is output by the warning signal output unit 15, the vehicle control device executes control for collision damage mitigation by controlling the brake and engine torque of the vehicle 1. As a result, it is possible to reduce the damage when the vehicle 1 collides with the object O. Alternatively, when the warning signal is output by the warning signal output unit 15, the vehicle control device executes collision avoidance control by controlling the brake, engine torque, steering, and the like of the vehicle 1. As a result, it is possible to avoid a collision between the vehicle 1 and the object O.
 無線通信装置は、警告信号出力部15により警告信号が出力されたとき、その旨を携帯情報端末(不図示)又はサーバ装置(不図示)などに通知する。これにより、車両1が物体Oと衝突する可能性があることを車両1の搭乗者と異なる者に知らせることができる。 When the warning signal is output by the warning signal output unit 15, the wireless communication device notifies the mobile information terminal (not shown) or the server device (not shown) to that effect. As a result, it is possible to notify a person different from the passenger of the vehicle 1 that the vehicle 1 may collide with the object O.
 次に、図12を参照して、制御装置4の要部のハードウェア構成について説明する。 Next, the hardware configuration of the main part of the control device 4 will be described with reference to FIG.
 図12Aに示す如く、制御装置4は、プロセッサ31及びメモリ32を有している。メモリ32には、送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23及び胴体判別部24の機能を実現するためのプログラムが記憶されている。かかるプログラムをプロセッサ31が読み出して実行することにより、送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23及び胴体判別部24の機能が実現される。 As shown in FIG. 12A, the control device 4 has a processor 31 and a memory 32. The memory 32 includes a transmission control unit 11, a vehicle information acquisition unit 12, a position calculation unit 13, a warning necessity determination unit 14, a warning signal output unit 15, a reception control unit 21, an echo detection unit 22, and a first pedestrian determination unit. A program for realizing the functions of the 23 and the body discriminating unit 24 is stored. When the processor 31 reads and executes such a program, the transmission control unit 11, the vehicle information acquisition unit 12, the position calculation unit 13, the warning necessity determination unit 14, the warning signal output unit 15, the reception control unit 21, and the echo detection unit 22, the functions of the first pedestrian discrimination unit 23 and the body discrimination unit 24 are realized.
 または、図12Bに示す如く、制御装置4は、処理回路33を有している。この場合、送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23及び胴体判別部24の機能が専用の処理回路33により実現される。 Alternatively, as shown in FIG. 12B, the control device 4 has a processing circuit 33. In this case, the transmission control unit 11, the vehicle information acquisition unit 12, the position calculation unit 13, the warning necessity determination unit 14, the warning signal output unit 15, the reception control unit 21, the echo detection unit 22, the first pedestrian determination unit 23, and the like. The function of the body discriminating unit 24 is realized by a dedicated processing circuit 33.
 または、制御装置4は、プロセッサ31、メモリ32及び処理回路33を有している(不図示)。この場合、送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23及び胴体判別部24の機能のうちの一部の機能がプロセッサ31及びメモリ32により実現されるとともに、残余の機能が専用の処理回路33により実現される。 Alternatively, the control device 4 has a processor 31, a memory 32, and a processing circuit 33 (not shown). In this case, the transmission control unit 11, the vehicle information acquisition unit 12, the position calculation unit 13, the warning necessity determination unit 14, the warning signal output unit 15, the reception control unit 21, the echo detection unit 22, the first pedestrian determination unit 23, and the like. Some of the functions of the body discriminating unit 24 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the dedicated processing circuit 33.
 プロセッサ31は、1個又は複数個のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 31 is composed of one or a plurality of processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
 メモリ32は、1個又は複数個の不揮発性メモリにより構成されている。または、メモリ32は、1個又は複数個の不揮発性メモリ及び1個又は複数個の揮発性メモリにより構成されている。個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)を用いたものである。 The memory 32 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 32 is composed of one or more non-volatile memories and one or more volatile memories. Each volatile memory uses, for example, a RAM (Random Access Memory). The individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Advanced Storage), a Small DriveSlide (Erasable Memory), and an EEPROM. Drive) is used.
 処理回路33は、1個又は複数個のデジタル回路により構成されている。または、処理回路33は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路33は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 33 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 33 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 33 is composed of one or a plurality of processing circuits. The individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
 次に、図13のフローチャートを参照して、制御装置4の動作について、送信制御部11、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び位置算出部13の動作を中心に説明する。 Next, with reference to the flowchart of FIG. 13, regarding the operation of the control device 4, the transmission control unit 11, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the body discrimination unit 24, and the position calculation unit The operation of 13 will be mainly described.
 まず、送信制御部11が探査波送信制御を実行する(ステップST1)。次いで、受信制御部21が受信信号RSを取得する(ステップST2)。次いで、受信制御部21が物体検出処理及び測距処理を実行する(ステップST3)。探査波送信制御、物体検出処理及び測距処理の詳細については、図2を参照して既に説明したとおりであるため、再度の説明は省略する。 First, the transmission control unit 11 executes the exploration wave transmission control (step ST1). Next, the reception control unit 21 acquires the reception signal RS (step ST2). Next, the reception control unit 21 executes the object detection process and the distance measurement process (step ST3). Since the details of the exploration wave transmission control, the object detection process, and the distance measurement process have already been described with reference to FIG. 2, the description thereof will be omitted again.
 物体検出処理により物体Oが検出されなかった場合(ステップST4“NO”)、制御装置4の処理はステップST1に進む。他方、物体検出処理により物体Oが検出された場合(ステップST4“YES”)、次いで、障害物検知装置100は、第1受信信号RS1を用いて検出された物体Oと第2受信信号RS2を用いて検出された物体Oとが互いに同一の物体であるか否かを判定する(ステップST5)。 If the object O is not detected by the object detection process (step ST4 “NO”), the process of the control device 4 proceeds to step ST1. On the other hand, when the object O is detected by the object detection process (step ST4 “YES”), the obstacle detection device 100 then detects the object O and the second received signal RS2 using the first received signal RS1. It is determined whether or not the object O detected by the use is the same object as each other (step ST5).
 具体的には、例えば、障害物検知装置100は、測距処理により算出された距離Dに基づき、これらの物体Oが互いに同一の物体であるか否かを判定する。すなわち、障害物検知装置100は、第1受信信号RS1を用いて検出された物体Oに対応する距離Dと、第2受信信号RS2を用いて検出された物体Oに対応する距離Dとの差分値を算出する。障害物検知装置100は、当該算出された差分値が所定値未満である場合、これらの物体Oが互いに同一の物体であると判定する。他方、当該算出された差分値が所定値以上である場合、障害物検知装置100は、これらの物体Oが互いに異なる物体であると判定する。 Specifically, for example, the obstacle detection device 100 determines whether or not these objects O are the same objects based on the distance D calculated by the distance measuring process. That is, the obstacle detection device 100 is the difference between the distance D corresponding to the object O detected by using the first received signal RS1 and the distance D corresponding to the object O detected by using the second received signal RS2. Calculate the value. When the calculated difference value is less than a predetermined value, the obstacle detection device 100 determines that these objects O are the same objects. On the other hand, when the calculated difference value is equal to or greater than a predetermined value, the obstacle detection device 100 determines that these objects O are different objects from each other.
 これらの物体Oが互いに同一の物体であると判定された場合(ステップST5“YES”)、制御装置4の処理はステップST6に進む。他方、これらの物体Oが互いに異なる物体であると判定された場合(ステップST5“NO”)、制御装置4の処理はステップST1に進む。 When it is determined that these objects O are the same objects (step ST5 “YES”), the process of the control device 4 proceeds to step ST6. On the other hand, when it is determined that these objects O are different objects from each other (step ST5 “NO”), the process of the control device 4 proceeds to step ST1.
 次いで、エコー検出部22がエコー検出処理を実行する(ステップST6)。エコー検出処理の詳細については、図2を参照して既に説明したととおりであるため、再度の説明は省略する。 Next, the echo detection unit 22 executes the echo detection process (step ST6). Since the details of the echo detection process have already been described with reference to FIG. 2, the description thereof will be omitted again.
 次いで、第1歩行者判別部23が歩行者判別処理を実行する(ステップST7)。歩行者判別処理の詳細については、図3~図7を参照して既に説明したとおりであるため、再度の説明は省略する。 Next, the first pedestrian discrimination unit 23 executes the pedestrian discrimination process (step ST7). Since the details of the pedestrian discrimination process have already been described with reference to FIGS. 3 to 7, the description thereof will be omitted again.
 第1歩行者判別部23による判別結果が歩行者を示している場合(ステップST8“YES”)、次いで、胴体判別部24が胴体判別処理を実行する(ステップST9)。胴体判別処理の詳細については、図8を参照して既に説明したとおりであるため、再度の説明は省略する。なお、第1歩行者判別部23による判別結果が静止物を示している場合(ステップST8“NO”)、ステップST9の処理はスキップされる。 When the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian (step ST8 “YES”), then the body discrimination unit 24 executes the body discrimination process (step ST9). Since the details of the body discrimination process have already been described with reference to FIG. 8, the description will be omitted again. If the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object (step ST8 “NO”), the process of step ST9 is skipped.
 次いで、位置算出部13が位置算出処理を実行する(ステップST10)。位置算出処理の詳細については、既に説明したとおりであるため、再度の説明は省略する。 Next, the position calculation unit 13 executes the position calculation process (step ST10). Since the details of the position calculation process have already been described, the description thereof will be omitted again.
 次に、図14を参照して、制御装置4の動作について、警告要否判定部14及び警告信号出力部15の動作を中心に説明する。図14に示すステップST11の処理は、例えば、図13に示すステップST10の処理に次いで実行される。 Next, with reference to FIG. 14, the operation of the control device 4 will be described focusing on the operations of the warning necessity determination unit 14 and the warning signal output unit 15. The process of step ST11 shown in FIG. 14 is executed, for example, after the process of step ST10 shown in FIG.
 まず、警告要否判定部14が警告の要否を判定する(ステップST11)。警告要否判定部14による判定方法の詳細については、図9~図11を参照して既に説明したとおりであるため、再度の説明は省略する。 First, the warning necessity determination unit 14 determines the necessity of warning (step ST11). Since the details of the determination method by the warning necessity determination unit 14 have already been described with reference to FIGS. 9 to 11, the description will be omitted again.
 警告要否判定部14により警告が要であると判定された場合(ステップST12“YES”)、次いで、警告信号出力部15が警告信号を出力する(ステップST13)。警告信号の出力先の詳細については、既に説得したとおりであるため、再度の説明は省略する。なお、警告要否判定部14により警告が不要であると判定された場合(ステップST12“NO”)、ステップST13の処理はスキップされる。 When the warning necessity determination unit 14 determines that a warning is required (step ST12 “YES”), then the warning signal output unit 15 outputs a warning signal (step ST13). Since the details of the output destination of the warning signal have already been persuaded, the explanation will be omitted again. If the warning necessity determination unit 14 determines that the warning is unnecessary (step ST12 “NO”), the process of step ST13 is skipped.
 なお、物体Oが歩行者である場合における照射範囲A1及び反射範囲A2は、図5に示す具体例に限定されるものではない。例えば、図15に示す如く、照射範囲A1に路面Rが含まれるものであっても良い。 The irradiation range A1 and the reflection range A2 when the object O is a pedestrian are not limited to the specific examples shown in FIG. For example, as shown in FIG. 15, the irradiation range A1 may include the road surface R.
 図15に示す如く、歩行者は、両足が路面Rに接している状態(以下「第4状態」という。)と、片足のみが路面Rに接している状態(以下「第5状態」という。)とを繰り返す。第4状態にて探査波TWが照射された場合、左足及び右足の各々にて、いわゆる「回帰反射」が発生する。このため、左足及び右足を含む2部位(図中A2_1及びA2_2)による反射波RWが受信される。他方、第5状態にて探査波TWが照射された場合、左足又は右足のうちのいずれか一方にて回帰反射が発生する。このため、左足又は右足を含む1部位(図中A2_1)による反射波RWが受信される。 As shown in FIG. 15, a pedestrian is referred to as a state in which both feet are in contact with the road surface R (hereinafter referred to as "fourth state") and a state in which only one foot is in contact with the road surface R (hereinafter referred to as "fifth state"). ) And repeat. When the exploration wave TW is irradiated in the fourth state, so-called "regression reflection" occurs in each of the left foot and the right foot. Therefore, the reflected wave RW by two parts (A2_1 and A2_2 in the figure) including the left foot and the right foot is received. On the other hand, when the exploration wave TW is irradiated in the fifth state, regression reflection occurs in either the left foot or the right foot. Therefore, the reflected wave RW by one part (A2_1 in the figure) including the left foot or the right foot is received.
 ここで、回帰反射とは、探査波TWが、まず、路面Rにより反射されて、次いで、歩行者の靴により反射されることである。または、回帰反射とは、探査波TWが、まず、歩行者の靴により反射されて、次いで、路面Rにより反射されることである。 Here, the regression reflection means that the exploration wave TW is first reflected by the road surface R and then reflected by the shoes of a pedestrian. Alternatively, the regression reflection means that the exploration wave TW is first reflected by the pedestrian's shoes and then by the road surface R.
 このように、歩行者に対する探査波TWの照射タイミングに応じて、歩行者における探査波TWを主に反射する部位数が変動する。このため、第1歩行者判別部23における歩行者判別処理により、物体Oが歩行者であるか否かを判別することができる。 In this way, the number of parts that mainly reflect the exploration wave TW in the pedestrian varies depending on the irradiation timing of the exploration wave TW on the pedestrian. Therefore, it is possible to determine whether or not the object O is a pedestrian by the pedestrian discrimination process in the first pedestrian discrimination unit 23.
 特に、歩行者が着用している服の材質によっては、胴体による探査波TWの反射率が低いことがある。これに対して、かかる材質が靴に使用されることは稀である。照射範囲A1に路面Rが含まれている場合、歩行者が反射率の低い服を着用しているときであっても、回帰反射による反射波RWに基づき、歩行者を確実に検知することができる。 In particular, depending on the material of the clothes worn by pedestrians, the reflectance of the exploration wave TW by the body may be low. In contrast, such materials are rarely used in shoes. When the road surface R is included in the irradiation range A1, the pedestrian can be reliably detected based on the reflected wave RW due to the retroreflective even when the pedestrian is wearing clothes having low reflectance. it can.
 次に、障害物検知システム200の変形例について説明する。 Next, a modified example of the obstacle detection system 200 will be described.
 制御装置4は、車両1が後退しているとき、図13に示す処理を繰り返し実行するものであっても良い。これにより、制御装置4は、個々の物体Oについて、いわゆる「トラッキング」の処理を実行するものであっても良い。制御装置4は、トラッキングの結果に基づき、個々の物体Oに係るTTC(Time To Collision)を演算するものであっても良い。当該演算されたTTCに応じて、例えば、出力装置6により出力される警告の態様若しくは内容が変化するものであっても良く、又は出力装置6による警告の出力タイミングが変化するものであっても良い。 The control device 4 may repeatedly execute the process shown in FIG. 13 when the vehicle 1 is moving backward. As a result, the control device 4 may execute a so-called "tracking" process for each object O. The control device 4 may calculate the TTC (Time To Collision) related to each object O based on the tracking result. For example, the mode or content of the warning output by the output device 6 may change according to the calculated TTC, or the output timing of the warning by the output device 6 may change. good.
 また、上記のとおり、第1反射波RW1が直接波であり、かつ、第2反射波RW2が直接波であっても良い(図3又は図6参照)。また、第1反射波RW1が直接波であり、かつ、第2反射波RW2が間接波であっても良い(図4又は図7参照)。これに対して、第1反射波RW1が間接波であり、かつ、第2反射波RW2が直接波であっても良い(不図示)。また、第1反射波RW1が間接波であり、かつ、第2反射波RW2が間接波であっても良い(不図示)。 Further, as described above, the first reflected wave RW1 may be a direct wave and the second reflected wave RW2 may be a direct wave (see FIG. 3 or FIG. 6). Further, the first reflected wave RW1 may be a direct wave and the second reflected wave RW2 may be an indirect wave (see FIG. 4 or 7). On the other hand, the first reflected wave RW1 may be an indirect wave and the second reflected wave RW2 may be a direct wave (not shown). Further, the first reflected wave RW1 may be an indirect wave and the second reflected wave RW2 may be an indirect wave (not shown).
 ただし、直接波のみを用いた場合、歩行者判別処理が実行されるよりも先に、探査波TWを最低2回送信することが求められる。これに対して、間接波を用いた場合、歩行者判別処理が実行されるよりも先に、探査波TWを最低1回送信することが求められる。すなわち、間接波を用いることにより、直接波のみを用いる場合に比して、歩行者判別処理を早期に実行することができる。このため、間接波を用いるのがより好適である。 However, when only the direct wave is used, it is required to transmit the exploration wave TW at least twice before the pedestrian discrimination process is executed. On the other hand, when the indirect wave is used, it is required to transmit the exploration wave TW at least once before the pedestrian discrimination process is executed. That is, by using the indirect wave, the pedestrian discrimination process can be executed earlier than in the case of using only the direct wave. Therefore, it is more preferable to use an indirect wave.
 また、車両1の後端部に、N個のソナー2に代えて1個のソナー2が設けられているものであっても良い。すなわち、当該1個のソナー2によりリアソナー3が構成されているものであっても良い。この場合、車両1の後退中に当該1個のソナー2が探査波TWを複数回送信することにより、第1反射波RW1及び第2反射波RW2が受信されるものであっても良い。 Further, one sonar 2 may be provided at the rear end of the vehicle 1 instead of the N sonars 2. That is, the rear sonar 3 may be configured by the one sonar 2. In this case, the first reflected wave RW1 and the second reflected wave RW2 may be received by the one sonar 2 transmitting the exploration wave TW a plurality of times while the vehicle 1 is reversing.
 また、車両1の前端部にN個のソナー2が設けられているものであっても良い。すなわち、当該N個のソナー2によりフロントソナーが構成されているものであっても良い。この場合、車両1が前進しているとき、図13に示す処理が実行されるものであっても良い。この場合における物体検知処理は、車両1の前方に存在する物体Oを検知するものである。 Further, N sonars 2 may be provided at the front end of the vehicle 1. That is, the front sonar may be composed of the N sonars 2. In this case, the process shown in FIG. 13 may be executed when the vehicle 1 is moving forward. The object detection process in this case detects the object O existing in front of the vehicle 1.
 また、車両1の前端部に1個のソナー2が設けられているものであっても良い。すなわち、当該1個のソナー2によりフロントソナーが設けられているものであっても良い。この場合、車両1が前進しているとき、当該1個のソナー2が探査波TWを複数回送信することにより、第1反射波RW1及び第2反射波RW2が受信されるものであっても良い。 Further, one sonar 2 may be provided at the front end of the vehicle 1. That is, the front sonar may be provided by the one sonar 2. In this case, even if the first reflected wave RW1 and the second reflected wave RW2 are received by the one sonar 2 transmitting the exploration wave TW a plurality of times when the vehicle 1 is moving forward. good.
 また、N個のソナー2に代えて、1個以上のライダ又は1個以上のレーダが設けられているものであっても良い。すなわち、探査波TWは、超音波に限定されるものではなく、電波又は光であっても良い。ただし、車両1と車両1に対する前方車両又は後方車両との間における探査波TWの干渉の発生を抑制する観点から、超音波を用いるのがより好適である。 Further, instead of N sonars 2, one or more riders or one or more radars may be provided. That is, the exploration wave TW is not limited to ultrasonic waves, but may be radio waves or light. However, it is more preferable to use ultrasonic waves from the viewpoint of suppressing the occurrence of interference of the exploration wave TW between the vehicle 1 and the vehicle in front or the vehicle behind the vehicle 1.
 以上のように、障害物検知装置100は、車両1の周囲に存在する物体Oにより反射された第1反射波RW1に対応する第1受信信号RS1と、物体Oにより第1反射波RW1と異なる方向に反射された第2反射波RW2に対応する第2受信信号RS2と、を含む受信信号RSを取得する受信制御部21と、第1受信信号RS1における第1エコー群EG1と、第2受信信号RS2における第2エコー群EG2と、を含むエコー群EGを検出するエコー検出部22と、エコー検出部22による検出結果に基づき、歩行者に対応する幅を有するウィンドウW内に複数個のエコーEが存在するとき、物体Oが歩行者であると判別して、当該判別の結果を出力する第1歩行者判別部23と、を備える。これにより、物体Oが歩行者であるか否かを判別することができる。特に、複数方向に対する反射波RW1,RW2を用いることにより、一方向に対する反射波RWのみを用いる場合に比して、物体Oが歩行者であるか否かの判別精度を向上することができる。 As described above, the obstacle detection device 100 differs from the first received signal RS1 corresponding to the first reflected wave RW1 reflected by the object O existing around the vehicle 1 and the first reflected wave RW1 depending on the object O. The reception control unit 21 that acquires the received signal RS including the second received signal RS2 corresponding to the second reflected wave RW2 reflected in the direction, the first echo group EG1 in the first received signal RS1, and the second reception. A plurality of echoes in a window W having a width corresponding to a pedestrian based on the detection results of the echo detection unit 22 for detecting the second echo group EG2 including the second echo group EG2 in the signal RS2 and the echo detection unit 22. A first pedestrian discrimination unit 23 that determines that the object O is a pedestrian and outputs the result of the determination when E is present is provided. Thereby, it is possible to determine whether or not the object O is a pedestrian. In particular, by using the reflected waves RW1 and RW2 in a plurality of directions, it is possible to improve the accuracy of determining whether or not the object O is a pedestrian, as compared with the case where only the reflected waves RW in one direction are used.
 また、障害物検知装置100は、エコー群EGにおけるエコー数NE又はエコー群EGにおけるエコー幅EWに基づき、複数個のエコーEのうちの歩行者の胴体に対応するエコーEを判別する胴体判別部24を備える。これにより、物体Oが歩行者であるとき、胴体に対応するエコーEを判別することができる。この結果、例えば、物体Oが歩行者であるとき、物体Oの位置座標PCを正確に算出することができ。 Further, the obstacle detection device 100 is a body discrimination unit that discriminates the echo E corresponding to the pedestrian's body among the plurality of echoes E based on the number of echoes NE in the echo group EG or the echo width EW in the echo group EG. 24 is provided. Thereby, when the object O is a pedestrian, the echo E corresponding to the torso can be discriminated. As a result, for example, when the object O is a pedestrian, the position coordinate PC of the object O can be accurately calculated.
 また、胴体判別部24は、エコー数NEが3以上であるとき、複数個のエコーEのうちのウィンドウW内の両端部に配置されたエコーEを除く中央部に配置されたエコーEが胴体に対応するエコーEであると判別する。このように、第3判別方法により、胴体に対応するエコーEを判別することができる(図8C参照)。 Further, in the body discriminating unit 24, when the number of echoes NE is 3 or more, the echo E arranged in the central portion excluding the echo E arranged at both ends in the window W among the plurality of echoes E is the fuselage. It is determined that the echo E corresponds to. In this way, the echo E corresponding to the body can be discriminated by the third discriminating method (see FIG. 8C).
 また、胴体判別部24は、複数個のエコーEのうちの最大のエコー幅EWを有するエコーEが前記胴体に対応するエコーEであると判別する。このように、第2判別方法により、胴体に対応するエコーEを判別することができる(図8B参照)。 Further, the body discrimination unit 24 determines that the echo E having the maximum echo width EW among the plurality of echoes E is the echo E corresponding to the body. In this way, the echo E corresponding to the body can be discriminated by the second discriminating method (see FIG. 8B).
 また、胴体判別部24は、複数個のエコーEの各々について、実ピーク値Pとエコー幅EWに基づく推定ピーク値P’との差分値ΔPを算出して、複数個のエコーEのうちの最大の差分値ΔPを有するエコーEが胴体に対応するエコーEであると判別する。このように、第4判別方法により、胴体に対応するエコーEを判別することができる(図8D参照)。 Further, the body discriminating unit 24 calculates a difference value ΔP between the actual peak value P and the estimated peak value P'based on the echo width EW for each of the plurality of echoes E, and among the plurality of echoes E. It is determined that the echo E having the maximum difference value ΔP is the echo E corresponding to the fuselage. In this way, the echo E corresponding to the body can be discriminated by the fourth discriminating method (see FIG. 8D).
 また、第1反射波RW1及び第2反射波RW2を含む反射波RWは、車両1における互いに異なる位置に設けられた複数個のソナー2により受信されるものである。例えば、第1反射波RW1がソナー2_ORにより受信されるものであり、かつ、第2反射波RW2が他のソナー2_OLにより受信されるものである(図3、図4、図6及び図7参照)。複数個のソナー2を用いることにより、物体Oによる反射方向が互いに異なる反射波RW1,RW2を受信することができる。 Further, the reflected wave RW including the first reflected wave RW1 and the second reflected wave RW2 is received by a plurality of sonars 2 provided at different positions in the vehicle 1. For example, the first reflected wave RW1 is received by the sonar 2_OR, and the second reflected wave RW2 is received by another sonar 2_OL (see FIGS. 3, 4, 6 and 7). ). By using a plurality of sonars 2, it is possible to receive reflected waves RW1 and RW2 having different reflection directions by the object O.
 また、複数個のソナー2によりリアソナー3が構成されている。リアソナー3を用いることにより、車両1の後方に存在する物体Oを検知することができる。 In addition, the rear sonar 3 is composed of a plurality of sonars 2. By using the rear sonar 3, it is possible to detect the object O existing behind the vehicle 1.
 また、複数個のソナー2による探査波TWの照射範囲A1に路面Rが含まれている。これにより、物体Oが歩行者であるとき、歩行者が着用している服の材質にかかわらず、歩行者を確実に検知することができる(図15参照)。 Further, the road surface R is included in the irradiation range A1 of the exploration wave TW by the plurality of sonars 2. As a result, when the object O is a pedestrian, the pedestrian can be reliably detected regardless of the material of the clothes worn by the pedestrian (see FIG. 15).
実施の形態2.
 図16は、実施の形態2に係る障害物検知装置を含む障害物検知システムの要部を示すブロック図である。図16を参照して、実施の形態2に係る障害物検知装置を含む障害物検知システムについて説明する。なお、図16において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 16 is a block diagram showing a main part of an obstacle detection system including the obstacle detection device according to the second embodiment. An obstacle detection system including the obstacle detection device according to the second embodiment will be described with reference to FIG. In FIG. 16, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図16に示す如く、制御装置4aは、第2歩行者判別部25を有している。第2歩行者判別部25は、エコー検出部22により第1エコー群EG1及び第2エコー群EG2が検出されたとき、第1歩行者判別部23による判別方法と異なる判別方法により、物体Oが歩行者であるか否かを判別する。より具体的には、第2歩行者判別部25は、以下のようにして、物体Oが歩行者であるか静止物であるかを判別する。 As shown in FIG. 16, the control device 4a has a second pedestrian discrimination unit 25. In the second pedestrian discrimination unit 25, when the first echo group EG1 and the second echo group EG2 are detected by the echo detection unit 22, the object O is subjected to a discrimination method different from the discrimination method by the first pedestrian discrimination unit 23. Determine if you are a pedestrian. More specifically, the second pedestrian discrimination unit 25 discriminates whether the object O is a pedestrian or a stationary object as follows.
 すなわち、第2歩行者判別部25は、第1エコー群EG1と第2エコー群EG2間の類似度DSを算出する。第2歩行者判別部25は、当該算出された類似度DSが所定値以上である場合、物体Oが静止物であると判別する。他方、当該算出された類似度DSが所定値未満である場合、第2歩行者判別部25は、物体Oが歩行者であると判別する。 That is, the second pedestrian discrimination unit 25 calculates the similarity DS between the first echo group EG1 and the second echo group EG2. The second pedestrian discrimination unit 25 determines that the object O is a stationary object when the calculated similarity DS is equal to or higher than a predetermined value. On the other hand, when the calculated similarity DS is less than a predetermined value, the second pedestrian determination unit 25 determines that the object O is a pedestrian.
 実施の形態1にて説明したとおり、物体Oが静止物(例えば1本のポール)である場合、第1エコー数NE1が第2エコー数NE2と等しくなる。また、この場合、物体Oにおける第1反射波RW1の反射に係る部位の形状が、第2反射波RW2の反射に係る部位の形状と同様である蓋然性が高い。さらに、この場合、第1反射波RW1の反射に係る部位の材質が、第2反射波RW2の反射に係る部位の材質と同様である蓋然性が高い。 As described in the first embodiment, when the object O is a stationary object (for example, one pole), the first echo number NE1 becomes equal to the second echo number NE2. Further, in this case, it is highly probable that the shape of the portion related to the reflection of the first reflected wave RW1 in the object O is the same as the shape of the portion related to the reflection of the second reflected wave RW2. Further, in this case, it is highly probable that the material of the portion related to the reflection of the first reflected wave RW1 is the same as the material of the portion related to the reflection of the second reflected wave RW2.
 他方、物体Oが歩行者である場合、実施の形態1にて説明したとおり、第1エコー数NE1が第2エコー数NE2と異なり得る。また、この場合、歩行者の姿勢などに応じて、第1反射波RW1の反射に係る部位(例えば左腕を含む1部位)の形状が、第2反射波RW2の反射に係る部位(例えば左腕、胴体及び右腕を含む3部位)の形状と異なる蓋然性が高い。さらに、この場合、歩行者の服装などに応じて、第1反射波RW1の反射に係る部位の材質(例えば布)が、第2反射波RW2の反射に係る部位の材質(例えば布及び肌)と異なり得る。 On the other hand, when the object O is a pedestrian, the first echo number NE1 may be different from the second echo number NE2 as described in the first embodiment. Further, in this case, the shape of the portion related to the reflection of the first reflected wave RW1 (for example, one portion including the left arm) is changed to the portion related to the reflection of the second reflected wave RW2 (for example, the left arm, depending on the posture of the pedestrian). There is a high probability that it will be different from the shape of the body) and the right arm). Further, in this case, the material of the part related to the reflection of the first reflected wave RW1 (for example, cloth) is the material of the part related to the reflection of the second reflected wave RW2 (for example, cloth and skin) according to the clothes of the pedestrian. Can be different.
 したがって、物体Oが静止物であるときは、物体Oが歩行者であるときに比して、類似度DSが高くなる傾向がある。他方、物体Oが歩行者であるときは、物体Oが静止物であるときに比して、類似度DSが低くなる傾向がある。そこで、第2歩行者判別部25は、類似度DSの高低に基づき、物体Oが歩行者であるか静止物であるかを判別するのである。以下、類似度DSの算出方法の具体例について説明する。 Therefore, when the object O is a stationary object, the similarity DS tends to be higher than when the object O is a pedestrian. On the other hand, when the object O is a pedestrian, the similarity DS tends to be lower than when the object O is a stationary object. Therefore, the second pedestrian discrimination unit 25 determines whether the object O is a pedestrian or a stationary object based on the level of the similarity DS. Hereinafter, a specific example of the calculation method of the similarity DS will be described.
〈類似度DSの算出方法の第1具体例〉
 第2歩行者判別部25は、第1エコー群EG1と第2エコー群EG2間の相関関数を演算する。第2歩行者判別部25は、当該演算された相関関数に基づき、類似度DSを算出する。
<First specific example of the calculation method of similarity DS>
The second pedestrian discrimination unit 25 calculates the correlation function between the first echo group EG1 and the second echo group EG2. The second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated correlation function.
〈類似度DSの算出方法の第2具体例〉
 第2歩行者判別部25は、第1エコー群EG1における波形面積(以下「第1面積」という。)S1を検出する。第1面積S1は、例えば、第1エコー群EG1における強度が閾値Th1を超えている部位の面積の合計値である。また、第2歩行者判別部25は、第2エコー群EG2における波形面積(以下「第2面積」という。)S2を算出する。第2面積S2は、例えば、第2エコー群EG2における強度が閾値Th1を超えている部位の面積の合計値である。
<Second specific example of the calculation method of similarity DS>
The second pedestrian discrimination unit 25 detects the waveform area (hereinafter referred to as “first area”) S1 in the first echo group EG1. The first area S1 is, for example, the total value of the areas of the portions where the intensity in the first echo group EG1 exceeds the threshold Th1. Further, the second pedestrian discrimination unit 25 calculates the waveform area (hereinafter referred to as “second area”) S2 in the second echo group EG2. The second area S2 is, for example, the total value of the areas of the portions where the intensity in the second echo group EG2 exceeds the threshold Th1.
 第2歩行者判別部25は、第1面積S1と第2面積S2間の差分値を算出する。第2歩行者判別部25は、当該算出された差分値に基づき、類似度DSを算出する。 The second pedestrian discrimination unit 25 calculates the difference value between the first area S1 and the second area S2. The second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated difference value.
〈類似度DSの算出方法の第3具体例〉
 第2歩行者判別部25は、第1エコー群EG1におけるピーク値(以下「第1ピーク値」という。)を算出する。第1ピーク値は、例えば、第1エコー群EG1が1個のエコーEを含むものである場合、当該1個のエコーEの実ピーク値Pである。または、例えば、第1ピーク値は、第1エコー群EG1が2個以上のエコーEを含むものである場合、当該2個以上のエコーEの実ピーク値Pの最大値、最小値、平均値又は中央値である。
<Third specific example of the calculation method of similarity DS>
The second pedestrian discrimination unit 25 calculates the peak value (hereinafter referred to as “first peak value”) in the first echo group EG1. The first peak value is, for example, the actual peak value P of the one echo E when the first echo group EG1 includes one echo E. Or, for example, when the first echo group EG1 includes two or more echoes E, the first peak value is the maximum value, the minimum value, the average value, or the center of the actual peak value P of the two or more echoes E. The value.
 また、第2歩行者判別部25は、第2エコー群EG2におけるピーク値(以下「第2ピーク値」という。)を算出する。第2ピーク値は、例えば、第2エコー群EG2が1個のエコーEを含むものである場合、当該1個のエコーEの実ピーク値Pである。または、例えば、第2ピーク値は、第2エコー群EG2が2個以上のエコーEを含むものである場合、当該2個以上のエコーEの実ピーク値Pの最大値、最小値、平均値又は中央値である。 Further, the second pedestrian discrimination unit 25 calculates the peak value (hereinafter referred to as "second peak value") in the second echo group EG2. The second peak value is, for example, the actual peak value P of the one echo E when the second echo group EG2 includes one echo E. Or, for example, when the second echo group EG2 includes two or more echoes E, the second peak value is the maximum value, the minimum value, the average value, or the median of the actual peak value P of the two or more echoes E. The value.
 第2歩行者判別部25は、第1ピーク値と第2ピーク値間の差分値を算出する。第2歩行者判別部25は、当該算出された差分値に基づき、類似度DSを算出する。 The second pedestrian discrimination unit 25 calculates the difference value between the first peak value and the second peak value. The second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated difference value.
〈類似度DSの算出方法の第4具体例〉
 第2歩行者判別部25は、第1受信信号RS1及び第1受信信号RS1の各々に対応する判定結果信号RS’を用いて、類似度DSを算出する。
<Fourth specific example of the calculation method of similarity DS>
The second pedestrian discrimination unit 25 calculates the similarity DS by using the determination result signal RS'corresponding to each of the first reception signal RS1 and the first reception signal RS1.
 具体的には、例えば、第2歩行者判別部25は、第1受信信号RS1に対応する判定結果信号RS’のうちのウィンドウW内の部位と、第2受信信号RS2に対応する判定結果信号RS’のうちのウィンドウW内の部位との相関関数を演算する。第2歩行者判別部25は、当該演算された相関関数に基づき、第1具体例と同様の算出方法により類似度DSを算出する。 Specifically, for example, the second pedestrian discrimination unit 25 has a portion in the window W of the determination result signal RS'corresponding to the first reception signal RS1 and a determination result signal corresponding to the second reception signal RS2. The correlation function with the part in the window W of RS'is calculated. The second pedestrian discrimination unit 25 calculates the similarity DS based on the calculated correlation function by the same calculation method as in the first specific example.
 または、例えば、第2歩行者判別部25は、第1受信信号RS1に対応する判定結果信号RS’のうちの物体Oが検出されたことを示す値(図中「High」)を示す部位(以下「物体検出部」という。)における波形面積と、第2受信信号RS2に対応する判定結果信号RS’のうちの物体検出部における波形面積とを算出する。第2歩行者判別部25は、これらの波形面積に基づき、第2具体例と同様の算出方法により類似度DSを算出する。 Alternatively, for example, the second pedestrian discrimination unit 25 indicates a portion (“High” in the figure) indicating that the object O in the determination result signal RS ′ corresponding to the first reception signal RS1 is detected. The waveform area in the object detection unit of the determination result signal RS'corresponding to the second reception signal RS2 is calculated. The second pedestrian discrimination unit 25 calculates the similarity DS based on these waveform areas by the same calculation method as in the second specific example.
 送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び第2歩行者判別部25により、制御装置4aの要部が構成されている。また、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び第2歩行者判別部25により、障害物検知装置100aの要部が構成されている。 Transmission control unit 11, vehicle information acquisition unit 12, position calculation unit 13, warning necessity determination unit 14, warning signal output unit 15, reception control unit 21, echo detection unit 22, first pedestrian discrimination unit 23, fuselage discrimination unit The main part of the control device 4a is composed of the 24 and the second pedestrian discrimination unit 25. Further, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the body discrimination unit 24, and the second pedestrian discrimination unit 25 constitute a main part of the obstacle detection device 100a.
 このようにして、障害物検知システム200aの要部が構成されている。 In this way, the main part of the obstacle detection system 200a is configured.
 制御装置4aの要部のハードウェア構成は、実施の形態1にて図12を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び第2歩行者判別部25の機能は、例えば、プロセッサ31及びメモリ32により実現されるものであっても良く、又は専用の処理回路33により実現されるものであっても良い。 Since the hardware configuration of the main part of the control device 4a is the same as that described with reference to FIG. 12 in the first embodiment, the illustration and description will be omitted. That is, the transmission control unit 11, the vehicle information acquisition unit 12, the position calculation unit 13, the warning necessity determination unit 14, the warning signal output unit 15, the reception control unit 21, the echo detection unit 22, the first pedestrian determination unit 23, and the fuselage. The functions of the discriminating unit 24 and the second pedestrian discriminating unit 25 may be realized by, for example, the processor 31 and the memory 32, or may be realized by the dedicated processing circuit 33.
 障害物検知システム200aにおいては、第2歩行者判別部25による判別結果が第1歩行者判別部23による判別結果よりも優先的に用いられる。例えば、第1歩行者判別部23による判別結果が歩行者を示している場合において、第2歩行者判別部25による判別結果が静止物を示しているとき、胴体判別部24、位置算出部13及び警告要否判定部14などにおいては、物体Oが静止物であるとみなされる。または、例えば、第1歩行者判別部23による判別結果が静止物を示している場合において、第2歩行者判別部25による判別結果が歩行者を示しているとき、胴体判別部24、位置算出部13及び警告要否判定部14などにおいては、物体Oが歩行者であるとみなされる。 In the obstacle detection system 200a, the discrimination result by the second pedestrian discrimination unit 25 is used with priority over the discrimination result by the first pedestrian discrimination unit 23. For example, when the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian and the discrimination result by the second pedestrian discrimination unit 25 indicates a stationary object, the body discrimination unit 24 and the position calculation unit 13 In the warning necessity determination unit 14 and the like, the object O is regarded as a stationary object. Alternatively, for example, when the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object and the discrimination result by the second pedestrian discrimination unit 25 indicates a pedestrian, the body discrimination unit 24, the position calculation In the unit 13 and the warning necessity determination unit 14, the object O is regarded as a pedestrian.
 すなわち、第2歩行者判別部25は、第1歩行者判別部23による判別結果を確認するものであるといえる。以下、実施の形態2において、第2歩行者判別部25により実行される処理を総称して「判別結果確認処理」という。 That is, it can be said that the second pedestrian discrimination unit 25 confirms the discrimination result by the first pedestrian discrimination unit 23. Hereinafter, in the second embodiment, the processes executed by the second pedestrian discrimination unit 25 are collectively referred to as "discrimination result confirmation process".
 次に、図17のフローチャートを参照して、制御装置4aの動作について、送信制御部11、受信制御部21、エコー検出部22、第1歩行者判別部23、第2歩行者判別部25、胴体判別部24及び位置算出部13の動作を中心に説明する。なお、図17において、図13に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, with reference to the flowchart of FIG. 17, regarding the operation of the control device 4a, the transmission control unit 11, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the second pedestrian discrimination unit 25, The operations of the body determination unit 24 and the position calculation unit 13 will be mainly described. In FIG. 17, the same reference numerals are given to the same steps as those shown in FIG. 13, and the description thereof will be omitted.
 まず、ステップST1~ST7の処理が実行される。ステップST1~ST7の処理内容は、実施の形態1にて図13のフローチャートを参照して説明したものと同様であるため、再度の説明は省略する。 First, the processes of steps ST1 to ST7 are executed. Since the processing contents of steps ST1 to ST7 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
 次いで、第2歩行者判別部25が判別結果確認処理を実行する(ステップST21)。判別結果確認処理の詳細については、既に説明したとおりであるため、再度の説明は省略する。 Next, the second pedestrian discrimination unit 25 executes the discrimination result confirmation process (step ST21). Since the details of the determination result confirmation process have already been described, the description thereof will be omitted again.
 次いで、ステップST8~ST10の処理が実行される。ステップST8~ST10の処理内容は、実施の形態1にて図13のフローチャートを参照して説明したものと同様であるため、再度の説明は省略する。 Next, the processes of steps ST8 to ST10 are executed. Since the processing contents of steps ST8 to ST10 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
 ただし、第1歩行者判別部23による判別結果が歩行者を示している場合において、第2歩行者判別部25による判別結果が静止物を示しているときは、ステップST8“NO”となる。他方、この場合において、第2歩行者判別部25による判別結果が歩行者を示しているときは、ステップST8“YES”となる。 However, when the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian and the discrimination result by the second pedestrian discrimination unit 25 indicates a stationary object, step ST8 “NO” is set. On the other hand, in this case, when the discrimination result by the second pedestrian discrimination unit 25 indicates a pedestrian, step ST8 “YES” is set.
 また、第1歩行者判別部23による判別結果が静止物を示している場合において、第2歩行者判別部25による判別結果が歩行者を示しているときは、ステップST8“YES”となる。他方、この場合において、第2歩行者判別部25による判別結果が静止物を示しているときは、ステップST8“NO”となる。 Further, when the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object and the discrimination result by the second pedestrian discrimination unit 25 indicates a pedestrian, step ST8 “YES” is set. On the other hand, in this case, when the discrimination result by the second pedestrian discrimination unit 25 indicates a stationary object, step ST8 “NO” is set.
 次に、障害物検知システム200aの変形例について説明する。 Next, a modified example of the obstacle detection system 200a will be described.
 制御装置4aは、車両1が後退しているとき、図17に示す処理を繰り返し実行するものであっても良い。この場合、図17に示す処理が複数回実行されることにより、類似度DSが複数回算出される(ステップST21)。第2歩行者判別部25は、これらの類似度DSを用いて、時間に対する類似度DSの変動量ΔDSを算出するものであっても良い。第2歩行者判別部25は、当該算出された変動量ΔDSに基づき、物体Oが歩行者であるか静止物であるかを判別するものであっても良い。 The control device 4a may repeatedly execute the process shown in FIG. 17 when the vehicle 1 is moving backward. In this case, the similarity DS is calculated a plurality of times by executing the process shown in FIG. 17 a plurality of times (step ST21). The second pedestrian discrimination unit 25 may use these similarity DSs to calculate the fluctuation amount ΔDS of the similarity DS with respect to time. The second pedestrian discrimination unit 25 may discriminate whether the object O is a pedestrian or a stationary object based on the calculated fluctuation amount ΔDS.
 すなわち、物体Oが静止物でるあときは、物体Oが歩行者であるときに比して、変動量ΔDSが小さい傾向がある。これは、探査波TWを主に反射する部位の形状及び材質などが時間に対して変動しないためである。他方、物体Oが歩行者であるときは、物体Oが静止物であるときに比して、変動量ΔDSが大きい傾向がある。これは、探査波TWを主に反射する部位の形状及び材質などが時間に対して変動し得るためである。 That is, when the object O is a stationary object, the fluctuation amount ΔDS tends to be smaller than when the object O is a pedestrian. This is because the shape and material of the portion that mainly reflects the exploration wave TW do not change with time. On the other hand, when the object O is a pedestrian, the fluctuation amount ΔDS tends to be larger than when the object O is a stationary object. This is because the shape and material of the portion that mainly reflects the exploration wave TW can fluctuate with time.
 そこで、第2歩行者判別部25は、変動量ΔDSが所定の閾値Th2以上である場合、物体Oが歩行者であると判別する。他方、変動量ΔDSが閾値Th2未満である場合、第2歩行者判別部25は、物体Oが静止物であると判別する。閾値Th2は、いわゆる「機械学習」の技術を用いて設定されたものであっても良い。 Therefore, the second pedestrian discrimination unit 25 determines that the object O is a pedestrian when the fluctuation amount ΔDS is equal to or greater than a predetermined threshold value Th2. On the other hand, when the fluctuation amount ΔDS is less than the threshold value Th2, the second pedestrian discrimination unit 25 determines that the object O is a stationary object. The threshold Th2 may be set by using a so-called "machine learning" technique.
 また、第2歩行者判別部25による判別結果の用途は、第1歩行者判別部23による判別結果の確認に限定されるものではない。例えば、障害物検知装置100aは、第1歩行者判別部23による判別結果又は第2歩行者判別部25による判別結果のうちの少なくとも一方が歩行者を示しているとき、物体Oが歩行者であると判別するものであっても良い。また、障害物検知装置100aは、第1歩行者判別部23による判別結果が静止物を示しており、かつ、第2歩行者判別部25による判別結果が静止物を示しているとき、物体Oが静止物であると判別するものであっても良い。 Further, the use of the discrimination result by the second pedestrian discrimination unit 25 is not limited to the confirmation of the discrimination result by the first pedestrian discrimination unit 23. For example, in the obstacle detection device 100a, when at least one of the discrimination result by the first pedestrian discrimination unit 23 and the discrimination result by the second pedestrian discrimination unit 25 indicates a pedestrian, the object O is a pedestrian. It may be determined to be present. Further, in the obstacle detection device 100a, when the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object and the discrimination result by the second pedestrian discrimination unit 25 indicates a stationary object, the object O May be determined to be a stationary object.
 また、障害物検知装置100aは、第1歩行者判別部23を有しないものであっても良い。この場合、第1歩行者判別部23による判別結果に代えて、第2歩行者判別部25による判別結果が用いられるものであっても良い。 Further, the obstacle detection device 100a may not have the first pedestrian determination unit 23. In this case, the discrimination result by the second pedestrian discrimination unit 25 may be used instead of the discrimination result by the first pedestrian discrimination unit 23.
 そのほか、障害物検知システム200aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 In addition, the obstacle detection system 200a can employ various modifications similar to those described in the first embodiment.
 以上のように、障害物検知装置100aは、第1エコー群EG1と第2エコー群EG2との類似度DSに基づき、物体Oが歩行者であるか否かを判別して、当該判別の結果を出力する第2歩行者判別部25を備える。これにより、例えば、第1歩行者判別部23による判別結果を確認することができる。この結果、物体Oが歩行者であるか否かの判別精度を更に向上することができる。 As described above, the obstacle detection device 100a determines whether or not the object O is a pedestrian based on the similarity DS between the first echo group EG1 and the second echo group EG2, and the result of the determination is A second pedestrian discriminating unit 25 for outputting Thereby, for example, the discrimination result by the first pedestrian discrimination unit 23 can be confirmed. As a result, the accuracy of determining whether or not the object O is a pedestrian can be further improved.
実施の形態3.
 図18は、実施の形態3に係る障害物検知装置を含む障害物検知システムの要部を示すブロック図である。図18を参照して、実施の形態3に係る障害物検知装置を含む障害物検知システムについて説明する。なお、図18において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 3.
FIG. 18 is a block diagram showing a main part of an obstacle detection system including the obstacle detection device according to the third embodiment. An obstacle detection system including the obstacle detection device according to the third embodiment will be described with reference to FIG. In FIG. 18, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図18に示す如く、制御装置4bは、第3歩行者判別部26を有している。第3歩行者判別部26は、探査波TWがM回以上送信されて(Mは2以上の整数である。)、受信信号RSがM回取得されることによりM個の第1受信信号RS1及びM個の第2受信信号RS2が取得されて、エコー群EGがM回検出されることによりM個の第1エコー群EG1及びM個の第2エコー群EG2が検出されたとき、第1歩行者判別部23による判別方法と異なる判別方法により、物体Oが歩行者であるか否かを判別する。より具体的には、第3歩行者判別部26は、以下のようにして、物体Oが歩行者であるか静止物であるかを判別する。 As shown in FIG. 18, the control device 4b has a third pedestrian discrimination unit 26. In the third pedestrian discrimination unit 26, the exploration wave TW is transmitted M times or more (M is an integer of 2 or more), and the received signal RS is acquired M times, so that M first received signals RS1 And when M second received signals RS2 are acquired and M echo group EGs are detected M times, and M first echo group EG1 and M second echo group EG2 are detected, the first Whether or not the object O is a pedestrian is determined by a discrimination method different from the discrimination method by the pedestrian discrimination unit 23. More specifically, the third pedestrian discrimination unit 26 discriminates whether the object O is a pedestrian or a stationary object as follows.
 すなわち、まず、第3歩行者判別部26は、M個の第1エコー群EG1の各々における第1エコー数NE1を算出するとともに、M個の第2エコー群EG2の各々における第2エコー数NE2を算出する。第3歩行者判別部26は、これらのエコー数NEに基づく特徴量(以下「第1特徴量」という。)FV1を算出する。 That is, first, the third pedestrian discrimination unit 26 calculates the first echo number NE1 in each of the M first echo group EG1, and the second echo number NE2 in each of the M second echo group EG2. Is calculated. The third pedestrian discrimination unit 26 calculates the feature amount (hereinafter referred to as “first feature amount”) FV1 based on the number of echoes NE.
 具体的には、例えば、第3歩行者判別部26は、これらのエコー数NEの平均値を算出する。第3歩行者判別部26は、当該算出された平均値を第1特徴量FV1に用いる。 Specifically, for example, the third pedestrian discrimination unit 26 calculates the average value of these echo numbers NE. The third pedestrian discrimination unit 26 uses the calculated average value for the first feature amount FV1.
 また、第3歩行者判別部26は、M個の第1エコー群EG1の各々における1個以上のエコーEの各々のエコー幅EWを算出するとともに、M個の第2エコー群EG2の各々における1個以上のエコーEの各々のエコー幅EWを算出する。第3歩行者判別部26は、これらのエコー幅EWに基づく特徴量(以下「第2特徴量」という。)FV2を算出する。また、第3歩行者判別部26は、当該算出された第2特徴量FV2に対する統計処理を実行することにより、時間に対する第2特徴量FV2の変動量ΔFV2を示す値を算出する。 Further, the third pedestrian discrimination unit 26 calculates the echo width EW of each of the one or more echoes E in each of the M first echo group EG1, and also in each of the M second echo group EG2. The echo width EW of each of one or more echoes E is calculated. The third pedestrian discrimination unit 26 calculates the feature amount (hereinafter referred to as “second feature amount”) FV2 based on these echo widths EW. Further, the third pedestrian discrimination unit 26 calculates a value indicating the fluctuation amount ΔFV2 of the second feature amount FV2 with respect to time by executing the statistical processing for the calculated second feature amount FV2.
 具体的には、例えば、第3歩行者判別部26は、個々のエコー群EGにおけるエコー幅EWの合計値又は平均値を算出する。第3歩行者判別部26は、これらの合計値の分散値、又は、これらの平均値の分散値を算出する。この場合、当該算出された合計値又は平均値が第2特徴量FV2である。また、当該算出された分散値が変動量ΔFV2を示す値である。 Specifically, for example, the third pedestrian discrimination unit 26 calculates the total value or the average value of the echo width EW in each echo group EG. The third pedestrian discrimination unit 26 calculates the dispersion value of these total values or the dispersion value of these average values. In this case, the calculated total value or average value is the second feature amount FV2. Further, the calculated variance value is a value indicating the fluctuation amount ΔFV2.
 次いで、第3歩行者判別部26は、当該算出された第1特徴量FV1の値を、当該算出された変動量ΔFV2の値に応じた閾値Th3と比較する。第3歩行者判別部26は、当該算出された第1特徴量FV1の値が閾値Th3以上である場合、物体Oが歩行者であると判別する。他方、当該算出された第1特徴量FV1の値が閾値Th3未満である場合、第3歩行者判別部26は、物体Oが静止物であると判別する。 Next, the third pedestrian discrimination unit 26 compares the calculated value of the first feature amount FV1 with the threshold value Th3 corresponding to the value of the calculated fluctuation amount ΔFV2. The third pedestrian discrimination unit 26 determines that the object O is a pedestrian when the calculated value of the first feature amount FV1 is the threshold value Th3 or more. On the other hand, when the calculated value of the first feature amount FV1 is less than the threshold value Th3, the third pedestrian discrimination unit 26 determines that the object O is a stationary object.
 ここで、閾値Th3の設定方法の具体例について説明する。遅くとも車両1が出荷されるまでに、以下のようにして、閾値Th3が設定される。 Here, a specific example of the setting method of the threshold value Th3 will be described. By the time the vehicle 1 is shipped at the latest, the threshold Th3 is set as follows.
 例えば、まず、物体Oが1本のポールである場合における、第1特徴量FV1の実測値及び変動量ΔFV2の実測値が収集される。また、物体Oが2本のポールである場合における、第1特徴量FV1の実測値及び変動量ΔFV2の実測値が収集される。また、物体Oが歩行者である場合における、第1特徴量FV1の実測値及び変動量ΔFV2の実測値が収集される。 For example, first, when the object O is one pole, the measured value of the first feature amount FV1 and the measured value of the fluctuation amount ΔFV2 are collected. Further, when the object O is two poles, the measured value of the first feature amount FV1 and the measured value of the fluctuation amount ΔFV2 are collected. Further, when the object O is a pedestrian, the measured value of the first feature amount FV1 and the measured value of the fluctuation amount ΔFV2 are collected.
 これらの値は、第1特徴量FV1に対応する第1軸を有し、かつ、変動量ΔFV2に対応する第2軸を有する座標系CS2にプロットされる。当該プロットされた点群に対するクラスタリングにより、1本のポールに対応する領域A4_1、2本のポールに対応する領域A4_2、及び歩行者に対応する領域A4_3が設定される(図19参照)。 These values are plotted in the coordinate system CS2 having the first axis corresponding to the first feature amount FV1 and having the second axis corresponding to the fluctuation amount ΔFV2. By clustering the plotted point cloud, the area A4_1 corresponding to one pole, the area A4_2 corresponding to two poles, and the area A4_3 corresponding to a pedestrian are set (see FIG. 19).
 次いで、静止物に対応する領域A4_1,A4_2及び歩行者に対応する領域A4_3に基づき、閾値Th3に対応する曲線(以下「判別曲線」という。)が設定される(図19参照)。なお、領域A4_1,A4_2,A4_3の設定、及び閾値Th3に対応する判別曲線の設定には、機械学習の技術が用いられるものであっても良い。 Next, a curve corresponding to the threshold value Th3 (hereinafter referred to as "discrimination curve") is set based on the regions A4_1 and A4_2 corresponding to the stationary object and the region A4_3 corresponding to the pedestrian (see FIG. 19). A machine learning technique may be used for setting the regions A4_1, A4_2, and A4_3, and setting the discrimination curve corresponding to the threshold value Th3.
 これにより、遅くとも車両1が出荷されるまでに、閾値Th3が設定された状態となる。閾値Th3が設定された状態にて、第3歩行者判別部26は、上記のとおり、当該設定された閾値Th3を用いて物体Oが歩行者あるか静止物であるかを判別する。 As a result, the threshold value Th3 is set by the time the vehicle 1 is shipped at the latest. In the state where the threshold value Th3 is set, the third pedestrian discrimination unit 26 determines whether the object O is a pedestrian or a stationary object by using the set threshold value Th3 as described above.
 送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び第3歩行者判別部26により、制御装置4bの要部が構成されている。また、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び第3歩行者判別部26により、障害物検知装置100bの要部が構成されている。 Transmission control unit 11, vehicle information acquisition unit 12, position calculation unit 13, warning necessity determination unit 14, warning signal output unit 15, reception control unit 21, echo detection unit 22, first pedestrian discrimination unit 23, fuselage discrimination unit The main part of the control device 4b is composed of the 24 and the third pedestrian discrimination unit 26. Further, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the body discrimination unit 24, and the third pedestrian discrimination unit 26 constitute the main part of the obstacle detection device 100b.
 このようにして、障害物検知システム200bの要部が構成されている。 In this way, the main part of the obstacle detection system 200b is configured.
 制御装置4bの要部のハードウェア構成は、実施の形態1にて図12を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送信制御部11、車両情報取得部12、位置算出部13、警告要否判定部14、警告信号出力部15、受信制御部21、エコー検出部22、第1歩行者判別部23、胴体判別部24及び第3歩行者判別部26の機能は、例えば、プロセッサ31及びメモリ32により実現されるものであっても良く、又は専用の処理回路33により実現されるものであっても良い。 Since the hardware configuration of the main part of the control device 4b is the same as that described with reference to FIG. 12 in the first embodiment, the illustration and description will be omitted. That is, the transmission control unit 11, the vehicle information acquisition unit 12, the position calculation unit 13, the warning necessity determination unit 14, the warning signal output unit 15, the reception control unit 21, the echo detection unit 22, the first pedestrian determination unit 23, and the fuselage. The functions of the discriminating unit 24 and the third pedestrian discriminating unit 26 may be realized by, for example, the processor 31 and the memory 32, or may be realized by the dedicated processing circuit 33.
 障害物検知システム200bにおいては、第3歩行者判別部26による判別結果が第1歩行者判別部23による判別結果よりも優先的に用いられる。例えば、第1歩行者判別部23による判別結果が歩行者を示している場合において、第3歩行者判別部26による判別結果が静止物を示しているとき、胴体判別部24、位置算出部13及び警告要否判定部14などにおいては、物体Oが静止物であるとみなされる。または、例えば、第1歩行者判別部23による判別結果が静止物を示している場合において、第3歩行者判別部26による判別結果が歩行者を示しているとき、胴体判別部24、位置算出部13及び警告要否判定部14などにおいては、物体Oが歩行者であるとみなされる。 In the obstacle detection system 200b, the discrimination result by the third pedestrian discrimination unit 26 is used with priority over the discrimination result by the first pedestrian discrimination unit 23. For example, when the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian and the discrimination result by the third pedestrian discrimination unit 26 indicates a stationary object, the body discrimination unit 24 and the position calculation unit 13 In the warning necessity determination unit 14 and the like, the object O is regarded as a stationary object. Alternatively, for example, when the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object and the discrimination result by the third pedestrian discrimination unit 26 indicates a pedestrian, the body discrimination unit 24, the position calculation In the unit 13 and the warning necessity determination unit 14, the object O is regarded as a pedestrian.
 すなわち、第3歩行者判別部26は、第1歩行者判別部23による判別結果を確認するものであるといえる。以下、実施の形態3において、第3歩行者判別部26により実行される処理を総称して「判別結果確認処理」という。 That is, it can be said that the third pedestrian discrimination unit 26 confirms the discrimination result by the first pedestrian discrimination unit 23. Hereinafter, in the third embodiment, the processes executed by the third pedestrian discrimination unit 26 are collectively referred to as "discrimination result confirmation process".
 次に、図20のフローチャートを参照して、制御装置4bの動作について、送信制御部11、受信制御部21、エコー検出部22、第1歩行者判別部23、第3歩行者判別部26、胴体判別部24及び位置算出部13の動作を中心に説明する。なお、図20において、図13に示すステップと同様のステップには同一符号を付して説明を省略する。制御装置4bは、車両1が後退しているとき、図20に示す処理を繰り返し実行する。 Next, with reference to the flowchart of FIG. 20, regarding the operation of the control device 4b, the transmission control unit 11, the reception control unit 21, the echo detection unit 22, the first pedestrian discrimination unit 23, the third pedestrian discrimination unit 26, The operations of the body determination unit 24 and the position calculation unit 13 will be mainly described. In FIG. 20, the same steps as those shown in FIG. 13 are designated by the same reference numerals, and the description thereof will be omitted. The control device 4b repeatedly executes the process shown in FIG. 20 when the vehicle 1 is moving backward.
 まず、ステップST1~ST7の処理が実行される。ステップST1~ST7の処理内容は、実施の形態1にて図13のフローチャートを参照して説明したものと同様であるため、再度の説明は省略する。 First, the processes of steps ST1 to ST7 are executed. Since the processing contents of steps ST1 to ST7 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
 ステップST7に次いで、第3歩行者判別部26は、判別結果確認処理の実行条件が満たされているか否かを判定する(ステップST31)。 Following step ST7, the third pedestrian discrimination unit 26 determines whether or not the execution condition of the discrimination result confirmation process is satisfied (step ST31).
 すなわち、第3歩行者判別部26は、今回の物体検出処理にて検出された物体Oについて、検出済みの第1エコー群EG1の個数(すなわち検出回数)及び検出済みの第2エコー群EG2の個数(すなわち検出回数)を算出する。第3歩行者判別部26は、かかるエコー群EGの検出数が所定数(例えばM)以上である場合、判別結果確認処理の実行条件が満たされていると判定する(ステップST31“YES”)。他方、かかるエコー群EGの検出数が所定数(例えばM)未満である場合、第3歩行者判別部26は、判別結果確認処理の実行条件が満たされていないと判定する(ステップST31“NO”)。 That is, the third pedestrian discrimination unit 26 has the number of detected first echo group EG1 (that is, the number of detections) and the detected second echo group EG2 for the object O detected by the object detection process this time. Calculate the number (ie, the number of detections). When the number of detected echo group EGs is equal to or greater than a predetermined number (for example, M), the third pedestrian discrimination unit 26 determines that the execution condition of the discrimination result confirmation process is satisfied (step ST31 “YES”). .. On the other hand, when the number of detected echo group EGs is less than a predetermined number (for example, M), the third pedestrian discrimination unit 26 determines that the execution condition of the discrimination result confirmation process is not satisfied (step ST31 "NO". ").
 判別結果確認処理の実行条件が満たされていると判定された場合(ステップST31“YES”)、次いで、第3歩行者判別部26が判別結果確認処理を実行する(ステップST32)。判別結果確認処理の詳細については、図19を参照して既に説明したとおりであるため、再度の説明は省略する。 When it is determined that the execution condition of the discrimination result confirmation process is satisfied (step ST31 “YES”), the third pedestrian discrimination unit 26 then executes the discrimination result confirmation process (step ST32). Since the details of the determination result confirmation process have already been described with reference to FIG. 19, the description will be omitted again.
 次いで、ステップST8~ST10の処理が実行される。ステップST8~ST10の処理内容は、実施の形態1にて図13のフローチャートを参照して説明したものと同様であるため、再度の説明は省略する。 Next, the processes of steps ST8 to ST10 are executed. Since the processing contents of steps ST8 to ST10 are the same as those described with reference to the flowchart of FIG. 13 in the first embodiment, the description thereof will be omitted again.
 ただし、第1歩行者判別部23による判別結果が歩行者を示している場合において、第3歩行者判別部26による判別結果が静止物を示しているときは、ステップST8“NO”となる。他方、この場合において、第3歩行者判別部26による判別結果が歩行者を示しているときは、ステップST8“YES”となる。 However, when the discrimination result by the first pedestrian discrimination unit 23 indicates a pedestrian and the discrimination result by the third pedestrian discrimination unit 26 indicates a stationary object, step ST8 “NO” is set. On the other hand, in this case, when the discrimination result by the third pedestrian discrimination unit 26 indicates a pedestrian, step ST8 “YES” is set.
 また、第1歩行者判別部23による判別結果が静止物を示している場合において、第3歩行者判別部26による判別結果が歩行者を示しているときは、ステップST8“YES”となる。他方、この場合において、第3歩行者判別部26による判別結果が静止物を示しているときは、ステップST8“NO”となる。 Further, when the discrimination result by the first pedestrian discrimination unit 23 indicates a stationary object and the discrimination result by the third pedestrian discrimination unit 26 indicates a pedestrian, step ST8 “YES” is set. On the other hand, in this case, when the discrimination result by the third pedestrian discrimination unit 26 indicates a stationary object, step ST8 “NO” is set.
 次に、障害物検知システム200bの変形例について説明する。 Next, a modified example of the obstacle detection system 200b will be described.
 第1特徴量FV1は、上記の具体例に限定されるものではない。第3歩行者判別部26は、以下のようにして第1特徴量FV1を算出するものであっても良い。また、第2特徴量FV2は、上記の具体例に限定されるものではない。第3歩行者判別部26は、以下のようにして変動量ΔFV2を算出するものであっても良い。 The first feature amount FV1 is not limited to the above specific example. The third pedestrian discrimination unit 26 may calculate the first feature amount FV1 as follows. Further, the second feature amount FV2 is not limited to the above specific example. The third pedestrian discrimination unit 26 may calculate the fluctuation amount ΔFV2 as follows.
〈第1特徴量FV1又は第2特徴量FV2の第1変形例〉
 第3歩行者判別部26は、M個の第1エコー群EG1の各々における第1エコー数NE1と、対応する第2エコー群EG2における第2エコー数NE2との合計値を算出する。第3歩行者判別部26は、当該算出された合計値の平均値を第1特徴量FV1に用いる。または、第3歩行者判別部26は、当該算出された合計値を第2特徴量FV2に用いて、変動量ΔFV2を算出する。
<First modification of the first feature amount FV1 or the second feature amount FV2>
The third pedestrian discrimination unit 26 calculates the total value of the first echo number NE1 in each of the M first echo group EG1 and the second echo number NE2 in the corresponding second echo group EG2. The third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1. Alternatively, the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ΔFV2.
〈第1特徴量FV1又は第2特徴量FV2の第2変形例〉
 第3歩行者判別部26は、M個の第1エコー群EG1の各々におけるエコー幅EWの合計値と、対応する第2エコー群EG2におけるエコー幅EWの合計値との合計値を算出する。第3歩行者判別部26は、当該算出された合計値の平均値を第1特徴量FV1に用いる。または、第3歩行者判別部26は、当該算出された合計値を第2特徴量FV2に用いて、変動量ΔFV2を算出する。
<Second modification of the first feature amount FV1 or the second feature amount FV2>
The third pedestrian discrimination unit 26 calculates the total value of the total value of the echo width EW in each of the M first echo group EG1 and the total value of the echo width EW in the corresponding second echo group EG2. The third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1. Alternatively, the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ΔFV2.
〈第1特徴量FV1又は第2特徴量FV2の第3変形例〉
 第3歩行者判別部26は、M個の第1エコー群EG1の各々における第1面積S1と、対応する第2エコー群EG2における第2面積S2との合計値を算出する。第3歩行者判別部26は、当該算出された合計値の平均値を第1特徴量FV1に用いる。または、第3歩行者判別部26は、当該算出された合計値を第2特徴量FV2に用いて、変動量ΔFV2を算出する。
<Third modification example of the first feature amount FV1 or the second feature amount FV2>
The third pedestrian discrimination unit 26 calculates the total value of the first area S1 in each of the M first echo group EG1 and the second area S2 in the corresponding second echo group EG2. The third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1. Alternatively, the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ΔFV2.
〈第1特徴量FV1又は第2特徴量FV2の第4変形例〉
 第3歩行者判別部26は、M個の第1受信信号RS1に対応するM個の判定結果信号RS’及びM個の第2受信信号RS2に対応するM個の判定結果信号RS’を用いて、第1特徴量FV1又は変動量ΔFV2を算出する。
<Fourth modification of the first feature amount FV1 or the second feature amount FV2>
The third pedestrian discrimination unit 26 uses M determination result signals RS'corresponding to M first received signals RS1 and M determination result signals RS' corresponding to M second received signals RS2. Then, the first feature amount FV1 or the fluctuation amount ΔFV2 is calculated.
 具体的には、例えば、第3歩行者判別部26は、M個の第1受信信号RS1の各々に係る判定結果信号RS’における物体検出部の個数と、対応する第2受信信号RS2に係る判定結果信号RS’における物体検出部の個数との合計値を算出する。第3歩行者判別部26は、当該算出された合計値の平均値を第1特徴量FV1に用いる。または、第3歩行者判別部26は、当該算出された合計値を第2特徴量FV2に用いて、変動量ΔFV2を算出する。 Specifically, for example, the third pedestrian discrimination unit 26 relates to the number of object detection units in the determination result signal RS'corresponding to each of the M first reception signals RS1 and the corresponding second reception signal RS2. The total value with the number of object detection units in the determination result signal RS'is calculated. The third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1. Alternatively, the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ΔFV2.
 または、例えば、第3歩行者判別部26は、M個の第1受信信号RS1の各々に係る判定結果信号RS’における波形幅の合計値と、対応する第2受信信号RS2に係る判定結果信号RS’における波形幅の合計値との合計値を算出する。第3歩行者判別部26は、当該算出された合計値の平均値を第1特徴量FV1に用いる。または、第3歩行者判別部26は、当該算出された合計値を第2特徴量FV2に用いて、変動量ΔFV2を算出する。 Alternatively, for example, the third pedestrian discrimination unit 26 has the total value of the waveform widths in the judgment result signals RS'corresponding to each of the M first reception signals RS1 and the judgment result signal related to the corresponding second reception signal RS2. Calculate the total value with the total value of the waveform width in RS'. The third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1. Alternatively, the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ΔFV2.
 または、例えば、第3歩行者判別部26は、M個の第1受信信号RS1の各々に係る判定結果信号RS’における波形面積の合計値と、対応する第2受信信号RS2に係る判定結果信号RS’における波形面積の合計値との合計値を算出する。第3歩行者判別部26は、当該算出された合計値の平均値を第1特徴量FV1に用いる。または、第3歩行者判別部26は、当該算出された合計値を第2特徴量FV2に用いて、変動量ΔFV2を算出する。 Alternatively, for example, the third pedestrian discrimination unit 26 has the total value of the waveform areas in the judgment result signals RS'corresponding to each of the M first reception signals RS1 and the judgment result signal related to the corresponding second reception signal RS2. Calculate the total value with the total value of the waveform area in RS'. The third pedestrian discrimination unit 26 uses the average value of the calculated total values for the first feature amount FV1. Alternatively, the third pedestrian discrimination unit 26 uses the calculated total value for the second feature amount FV2 to calculate the fluctuation amount ΔFV2.
 また、障害物検知装置100bは、第1歩行者判別部23を有しないものであっても良い。この場合、第1歩行者判別部23による判別結果に代えて、第3歩行者判別部26による判別結果が用いられるものであっても良い。ただし、物体Oが歩行者であるか静止物であるかの判別を早期に実行する観点から、第1歩行者判別部23が設けられているのがより好適である。 Further, the obstacle detection device 100b may not have the first pedestrian determination unit 23. In this case, the discrimination result by the third pedestrian discrimination unit 26 may be used instead of the discrimination result by the first pedestrian discrimination unit 23. However, from the viewpoint of early determination of whether the object O is a pedestrian or a stationary object, it is more preferable that the first pedestrian determination unit 23 is provided.
 そのほか、障害物検知システム200bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 In addition, the obstacle detection system 200b can employ various modifications similar to those described in the first embodiment.
 以上のように、障害物検知装置100bは、エコー群EGにおけるエコー数NEに基づく第1特徴量FV1と、エコー群EGにおけるエコー幅EWに基づく第2特徴量FV2の変動量ΔFV2とを用いて、物体Oが歩行者であるか否かを判別して、当該判別の結果を出力する第3歩行者判別部26を備える。これにより、例えば、第1歩行者判別部23による判別結果を確認することができる。この結果、物体Oが歩行者であるか否かの判別精度を更に向上することができる。 As described above, the obstacle detection device 100b uses the first feature amount FV1 based on the number of echoes NE in the echo group EG and the fluctuation amount ΔFV2 of the second feature amount FV2 based on the echo width EW in the echo group EG. A third pedestrian discrimination unit 26 is provided which determines whether or not the object O is a pedestrian and outputs the result of the determination. Thereby, for example, the discrimination result by the first pedestrian discrimination unit 23 can be confirmed. As a result, the accuracy of determining whether or not the object O is a pedestrian can be further improved.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本発明の障害物検知装置は、例えば、AEB(Autonomous Emergency Braking)に用いることができる。 The obstacle detection device of the present invention can be used for, for example, AEB (Autonomous Emergency Braking).
 1 車両、2 ソナー、3 リアソナー、4,4a,4b 制御装置、5 センサ類、6 出力装置、11 送信制御部、12 車両情報取得部、13 位置算出部、14 警告要否判定部、15 警告信号出力部、21 受信制御部、22 エコー検出部、23 第1歩行者判別部、24 胴体判別部、25 第2歩行者判別部、26 第3歩行者判別部、31 プロセッサ、32 メモリ、33 処理回路、100,100a,100b 障害物検知装置、200,200a,200b 障害物検知システム。 1 vehicle, 2 sonar, 3 rear sonar, 4, 4a, 4b control device, 5 sensors, 6 output device, 11 transmission control unit, 12 vehicle information acquisition unit, 13 position calculation unit, 14 warning necessity judgment unit, 15 warning Signal output unit, 21 reception control unit, 22 echo detection unit, 23 first pedestrian discrimination unit, 24 body discrimination unit, 25 second pedestrian discrimination unit, 26 third pedestrian discrimination unit, 31 processor, 32 memory, 33 Processing circuit, 100, 100a, 100b obstacle detection device, 200, 200a, 200b obstacle detection system.

Claims (10)

  1.  車両の周囲に存在する物体により反射された第1反射波に対応する第1受信信号と、前記物体により前記第1反射波と異なる方向に反射された第2反射波に対応する第2受信信号と、を含む受信信号を取得する受信制御部と、
     前記第1受信信号における第1エコー群と、前記第2受信信号における第2エコー群と、を含むエコー群を検出するエコー検出部と、
     前記エコー検出部による検出結果に基づき、歩行者に対応する幅を有するウィンドウ内に複数個のエコーが存在するとき、前記物体が前記歩行者であると判別して、当該判別の結果を出力する第1歩行者判別部と、
     を備える障害物検知装置。
    The first received signal corresponding to the first reflected wave reflected by an object existing around the vehicle and the second received signal corresponding to the second reflected wave reflected by the object in a direction different from the first reflected wave. A reception control unit that acquires a reception signal including
    An echo detection unit that detects an echo group including a first echo group in the first received signal and a second echo group in the second received signal.
    Based on the detection result by the echo detection unit, when a plurality of echoes exist in a window having a width corresponding to a pedestrian, the object is determined to be the pedestrian and the result of the determination is output. The first pedestrian discrimination unit and
    Obstacle detection device equipped with.
  2.  前記エコー群におけるエコー数又は前記エコー群におけるエコー幅に基づき、前記複数個のエコーのうちの前記歩行者の胴体に対応するエコーを判別する胴体判別部を備えることを特徴とする請求項1記載の障害物検知装置。 The first aspect of claim 1, wherein the body discriminating unit for discriminating the echo corresponding to the pedestrian's body among the plurality of echoes based on the number of echoes in the echo group or the echo width in the echo group is provided. Obstacle detection device.
  3.  前記胴体判別部は、前記エコー数が3以上であるとき、前記複数個のエコーのうちの前記ウィンドウ内の両端部に配置されたエコーを除く中央部に配置されたエコーが前記胴体に対応するエコーであると判別することを特徴とする請求項2記載の障害物検知装置。 When the number of echoes is 3 or more, the body discriminating unit corresponds to the body in the echoes arranged in the central portion excluding the echoes arranged at both ends in the window among the plurality of echoes. The obstacle detection device according to claim 2, wherein it is determined to be an echo.
  4.  前記胴体判別部は、前記複数個のエコーのうちの最大の前記エコー幅を有するエコーが前記胴体に対応するエコーであると判別することを特徴とする請求項2記載の障害物検知装置。 The obstacle detecting device according to claim 2, wherein the body discriminating unit determines that the echo having the maximum echo width among the plurality of echoes is the echo corresponding to the body.
  5.  前記胴体判別部は、
     前記複数個のエコーの各々について、実ピーク値と前記エコー幅に基づく推定ピーク値との差分値を算出して、
     前記複数個のエコーのうちの最大の前記差分値を有するエコーが前記胴体に対応するエコーであると判別する
     ことを特徴とする請求項2記載の障害物検知装置。
    The body discriminating unit is
    For each of the plurality of echoes, the difference value between the actual peak value and the estimated peak value based on the echo width is calculated.
    The obstacle detection device according to claim 2, wherein the echo having the maximum difference value among the plurality of echoes is determined to be the echo corresponding to the body.
  6.  前記第1反射波及び前記第2反射波を含む反射波は、前記車両における互いに異なる位置に設けられた複数個のソナーにより受信されるものであることを特徴とする請求項1記載の障害物検知装置。 The obstacle according to claim 1, wherein the first reflected wave and the reflected wave including the second reflected wave are received by a plurality of sonars provided at different positions in the vehicle. Detection device.
  7.  前記複数個のソナーによりリアソナーが構成されていることを特徴とする請求項6記載の障害物検知装置。 The obstacle detection device according to claim 6, wherein the rear sonar is composed of the plurality of sonars.
  8.  前記第1エコー群と前記第2エコー群との類似度に基づき、前記物体が前記歩行者であるか否かを判別して、当該判別の結果を出力する第2歩行者判別部を備えることを特徴とする請求項1記載の障害物検知装置。 A second pedestrian discriminating unit that determines whether or not the object is a pedestrian based on the degree of similarity between the first echo group and the second echo group and outputs the result of the determination is provided. The obstacle detection device according to claim 1, wherein the obstacle detection device is characterized.
  9.  前記エコー群におけるエコー数に基づく第1特徴量と、前記エコー群におけるエコー幅に基づく第2特徴量の変動量とを用いて、前記物体が前記歩行者であるか否かを判別して、当該判別の結果を出力する第3歩行者判別部を備えることを特徴とする請求項1記載の障害物検知装置。 Using the first feature amount based on the number of echoes in the echo group and the variation amount of the second feature amount based on the echo width in the echo group, it is determined whether or not the object is the pedestrian. The obstacle detection device according to claim 1, further comprising a third pedestrian discrimination unit that outputs the result of the discrimination.
  10.  前記複数個のソナーによる探査波の照射範囲に路面が含まれていることを特徴とする請求項1記載の障害物検知装置。 The obstacle detection device according to claim 1, wherein the road surface is included in the irradiation range of the exploration wave by the plurality of sonars.
PCT/JP2019/018917 2019-05-13 2019-05-13 Obstacle detection device WO2020230231A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514438A JP6918272B2 (en) 2019-05-13 2019-05-13 Obstacle detector
PCT/JP2019/018917 WO2020230231A1 (en) 2019-05-13 2019-05-13 Obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018917 WO2020230231A1 (en) 2019-05-13 2019-05-13 Obstacle detection device

Publications (1)

Publication Number Publication Date
WO2020230231A1 true WO2020230231A1 (en) 2020-11-19

Family

ID=73289976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018917 WO2020230231A1 (en) 2019-05-13 2019-05-13 Obstacle detection device

Country Status (2)

Country Link
JP (1) JP6918272B2 (en)
WO (1) WO2020230231A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325400A (en) * 2021-06-02 2021-08-31 辉创电子科技(苏州)有限公司 Method for identifying high and low objects in horizontal parking space based on ultrasonic waves

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243384A (en) * 1985-04-19 1986-10-29 Daihatsu Motor Co Ltd Alarm system for ultrasonic sonar
JP2004317360A (en) * 2003-04-17 2004-11-11 Matsushita Electric Ind Co Ltd Vehicle periphery monitoring system
JP2010231317A (en) * 2009-03-26 2010-10-14 Waseda Univ Vehicle detection module and traffic flow monitoring system
WO2011145140A1 (en) * 2010-05-19 2011-11-24 三菱電機株式会社 Obstacle detection device
US8432770B2 (en) * 2005-05-09 2013-04-30 Robert Bosch Gmbh Method and device for detecting the surface character of objects in road traffic or of persons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243384A (en) * 1985-04-19 1986-10-29 Daihatsu Motor Co Ltd Alarm system for ultrasonic sonar
JP2004317360A (en) * 2003-04-17 2004-11-11 Matsushita Electric Ind Co Ltd Vehicle periphery monitoring system
US8432770B2 (en) * 2005-05-09 2013-04-30 Robert Bosch Gmbh Method and device for detecting the surface character of objects in road traffic or of persons
JP2010231317A (en) * 2009-03-26 2010-10-14 Waseda Univ Vehicle detection module and traffic flow monitoring system
WO2011145140A1 (en) * 2010-05-19 2011-11-24 三菱電機株式会社 Obstacle detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325400A (en) * 2021-06-02 2021-08-31 辉创电子科技(苏州)有限公司 Method for identifying high and low objects in horizontal parking space based on ultrasonic waves

Also Published As

Publication number Publication date
JPWO2020230231A1 (en) 2021-09-13
JP6918272B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
CN105473402B (en) On-vehicle control apparatus
US10247825B2 (en) Object detection device
US9030349B2 (en) Moving object detection system
US8885889B2 (en) Parking assist apparatus and parking assist method and parking assist system using the same
US10006999B2 (en) Driver assistance system for detecting an object in the surroundings of a vehicle
US20200055495A1 (en) Braking assistance method and apparatus for vehicle
US10421394B2 (en) Driving assistance device, and storage medium
CN108535709B (en) Road clutter suppression
GB2523094A (en) Vehicle water detection system
US20210370931A1 (en) Driving assistance device
JP2007232408A (en) Apparatus and method for estimating shape of structure and obstacle detection apparatus
JP2010256198A (en) Object detection device for vehicle and travel controller for the vehicle
JP2021026557A (en) Obstacle detection device
JP2020101923A (en) Detection device, mobile body system, and detection method
JP7111181B2 (en) DETECTION DEVICE, MOBILE SYSTEM, AND DETECTION METHOD
JP2018054328A (en) Machine for mine work and obstacle detection device thereof
JP6918272B2 (en) Obstacle detector
US20210327274A1 (en) Driving assistance device
JP7385026B2 (en) Method and apparatus for classifying objects, especially in the vicinity of automobiles
US20230003876A1 (en) Electronic device, method for controlling electronic device, and program
JP7134344B2 (en) Obstacle detection device
CN113552575A (en) Parking obstacle detection method and device
JP7328863B2 (en) Control device
KR20220166704A (en) Non-line-of-sight radar apparatus
US11816990B2 (en) Moving-object detection apparatus for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928529

Country of ref document: EP

Kind code of ref document: A1