WO2020230226A1 - Operation plan device, operation plan method, and operation plan program - Google Patents

Operation plan device, operation plan method, and operation plan program Download PDF

Info

Publication number
WO2020230226A1
WO2020230226A1 PCT/JP2019/018884 JP2019018884W WO2020230226A1 WO 2020230226 A1 WO2020230226 A1 WO 2020230226A1 JP 2019018884 W JP2019018884 W JP 2019018884W WO 2020230226 A1 WO2020230226 A1 WO 2020230226A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
decision
provisional solution
time
value
Prior art date
Application number
PCT/JP2019/018884
Other languages
French (fr)
Japanese (ja)
Inventor
秀哉 柴田
龍弥 松永
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019007201.3T priority Critical patent/DE112019007201T5/en
Priority to JP2021519066A priority patent/JP7016449B2/en
Priority to PCT/JP2019/018884 priority patent/WO2020230226A1/en
Publication of WO2020230226A1 publication Critical patent/WO2020230226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management

Definitions

  • the present invention relates to a technique for obtaining an operation plan for a plurality of generators.
  • the problem of determining the operation plan of the generator is called the "operation plan problem".
  • the operation planning problem also called the Unit Communication problem, has been widely studied. It is well known that the operation planning problem is formulated as a mixed 01 integer programming problem in which 01 determination variables and continuous determination variables are mixed.
  • the start state of the generator and the stop state of the generator are represented by the 01 determinants, and the output value of the generator is represented by the continuous determinants.
  • the coefficient of determination is added as appropriate according to the type of constraint condition to be considered and the description method of the constraint condition to be considered.
  • the purpose is to minimize the total cost of power generation, which is the sum of the fuel cost and the start-up cost of the generator.
  • the main constraints are supply and demand balance constraints, reserve capacity constraints, generator operation constraints and fuel constraints.
  • the supply-demand balance constraint is a constraint that matches the power demand and the amount of power generation.
  • the reserve force constraint is a constraint to secure a certain amount of reserve force and a certain amount of adjustment force.
  • the generator operation constraint is a constraint to comply with the generator-specific operation constraint such as the minimum continuous start time, the minimum continuous stop time, the output upper limit value, the output lower limit value, and the output change speed.
  • the fuel constraint is a constraint that the fuel consumption does not exceed the remaining fuel amount.
  • the mixed 01 integer programming problem is a combinatorial optimization problem, it takes time to solve the mixed 01 integer programming problem. In particular, as the scale of the mixed 01 integer programming problem increases, the solution time tends to increase sharply.
  • the scale of the operation planning problem is determined by the number of generators, the length of the planning period, and the time step. In the future, it is expected that the number of generators subject to the operation plan will increase due to wide-area cooperation accompanying the liberalization of electricity. In addition, it is expected that the time step width will be set finely in order to formulate a more detailed operation plan. Therefore, it is expected that the scale of the operation planning problem will increase in the future. Therefore, a means for solving the operation planning problem at high speed is required.
  • Patent Document 1 discloses a method for solving an operation planning problem at high speed. In that method, the operation plan at the time when the demand reaches the maximum value or the minimum value is determined first, and then the operation plan at the remaining time is determined. That is, Patent Document 1 discloses a method of planning an operation planning problem in two stages.
  • the operation plan at a certain point in time is independently determined at the time of drafting the first stage. Therefore, if the operation plan at a certain point in time cannot be properly made without handling the operation plan for a certain amount of time, the method of Patent Document 1 cannot deal with it.
  • a pumped storage power generator water is pumped up in advance, and power is generated by discharging water at the peak of demand. In other words, it is necessary to prepare in advance for peak demand. Therefore, it is highly possible that an appropriate operation plan cannot be made at the peak of demand unless the operation plan of a certain amount of time until the peak of demand is handled.
  • thermal power generators with a slow start-up speed must start up in advance at the peak of demand.
  • Patent Document 1 cannot make an appropriate operation plan for the pumped storage power generator or the thermal power generator.
  • An object of the present invention is to be able to solve an operation plan problem at high speed while handling an operation plan for a certain amount of time.
  • the operation planning device of the present invention Of the planning periods targeted by the operation plans of multiple generators, the unconfirmed period in which the operation plan has not been finalized is the period in which the operation plan is finalized starting from the start time of the unfixed period. And the period after the period to be confirmed, and the period division part that divides into Of the plurality of decision variables included in the reference problem, which is an optimization problem for determining the operation plans of the plurality of generators, the value of the decision variable for the confirmed period for which the operation plan has been confirmed has been determined.
  • a provisional solution decision problem generator that generates a provisional solution decision problem, which is an optimization problem obtained by fixing the value, By solving the provisional solution determination problem, a partial determination unit for obtaining the solution of the determination variable for the determination target period among the plurality of determination variables included in the provisional solution determination problem as a new confirmed value is provided. ..
  • a provisional solution determination problem based on an operation plan for a fixed period is generated, and the operation plan for the period to be determined is determined by solving the provisional solution determination problem.
  • the value of the decision variable for the fixed period is fixed. Therefore, the provisional solution determination problem can be solved at a higher speed than the case of solving the optimization problem in which the value of the decision variable for the fixed period is not fixed. Therefore, it is possible to solve the operation plan problem (provisional solution decision problem) at high speed while handling the operation plan for a certain period of time that has been fixed.
  • FIG. 1 The block diagram of the operation planning system 200 in Embodiment 1.
  • FIG. The block diagram of the operation planning apparatus 100 in Embodiment 1.
  • FIG. The figure which shows each configuration of the operation planning part 120 and the optimization problem part 140 in Embodiment 1.
  • FIG. The flowchart of the operation planning method in Embodiment 1.
  • FIG. 1 The hardware block diagram of the operation planning apparatus 100 in Embodiment 1.
  • Embodiment 1 The operation planning system 200 will be described with reference to FIGS. 1 to 7.
  • the operation planning system 200 is a system for determining a plurality of operation plans.
  • the configuration of the operation planning system 200 includes a user terminal 210 and an operation planning device 100.
  • the user terminal 210 is a computer operated by the user.
  • the specific user is the person in charge of operating the generator.
  • Specific examples of the user terminal 210 are a personal computer, a tablet computer, or a smartphone.
  • the user terminal 210 communicates with the operation planning device 100 via the network. Specifically, the user terminal 210 transmits the input data 211 to the operation planning device 100.
  • the input data 211 includes power demand data 212, generator configuration data 213, generator characteristic data 214, and fixed time width data 215.
  • the power demand data 212, the generator configuration data 213, the generator characteristic data 214, and the fixed time width data 215 may be transmitted individually. The contents of the power demand data 212, the generator configuration data 213, the generator characteristic data 214, and the fixed time width data 215 will be described later.
  • the operation planning device 100 functions as an operation planning server. Then, the operation planning device 100 generates the operation planning data 201 based on the input data 211.
  • the operation plan data 201 is data indicating an operation plan of a plurality of generators.
  • the configuration of the operation planning device 100 is a computer including hardware such as a processor 101, a memory 102, an auxiliary storage device 103, a communication device 104, and an input / output interface 105. These hardware are connected to each other via signal lines.
  • the processor 101 is an IC that performs arithmetic processing and controls other hardware.
  • the processor 101 is a CPU, DSP or GPU.
  • IC is an abbreviation for Integrated Circuit.
  • CPU is an abbreviation for Central Processing Unit.
  • DSP is an abbreviation for Digital Signal Processor.
  • GPU is an abbreviation for Graphics Processing Unit.
  • the memory 102 is a volatile storage device.
  • the memory 102 is also called a main storage device or a main memory.
  • the memory 102 is a RAM.
  • the data stored in the memory 102 is stored in the auxiliary storage device 103 as needed.
  • RAM is an abbreviation for Random Access Memory.
  • the auxiliary storage device 103 is a non-volatile storage device.
  • the auxiliary storage device 103 is a ROM, HDD, or flash memory.
  • the data stored in the auxiliary storage device 103 is loaded into the memory 102 as needed.
  • ROM is an abbreviation for Read Only Memory.
  • HDD is an abbreviation for Hard Disk Drive.
  • the communication device 104 is a receiver and a transmitter.
  • the communication device 104 is a communication chip or NIC.
  • NIC is an abbreviation for Network Interface Card.
  • the input / output interface 105 is a port to which an input device and an output device are connected.
  • the input / output interface 105 is a USB terminal
  • the input device is a keyboard and a mouse
  • the output device is a display.
  • USB is an abbreviation for Universal Serial Bus.
  • the operation planning device 100 includes elements such as a reception unit 110, an operation planning unit 120, an output unit 130, and an optimization problem unit 140. These elements are realized in software.
  • the auxiliary storage device 103 stores an operation planning program for operating the computer as a reception unit 110, an operation planning unit 120, an output unit 130, and an optimization problem unit 140.
  • the operation planning program is loaded into the memory 102 and executed by the processor 101.
  • the OS is further stored in the auxiliary storage device 103. At least a portion of the OS is loaded into memory 102 and executed by processor 101.
  • the processor 101 executes the operation planning program while executing the OS.
  • OS is an abbreviation for Operating System.
  • the input / output data of the operation planning program is stored in the storage unit 190.
  • the memory 102 functions as a storage unit 190.
  • a storage device such as an auxiliary storage device 103, a register in the processor 101, and a cache memory in the processor 101 may function as a storage unit 190 instead of the memory 102 or together with the memory 102.
  • the operation planning device 100 may include a plurality of processors that replace the processor 101.
  • the plurality of processors share the role of the processor 101.
  • the operation plan program can be recorded (stored) in a computer-readable manner on a non-volatile recording medium such as an optical disk or a flash memory.
  • the configurations of the operation planning unit 120 and the optimization problem unit 140 will be described with reference to FIG.
  • the operation planning unit 120 includes elements such as a period division unit 121, a provisional solution determination problem generation unit 122, and a partial determination unit 123.
  • the functions of each element provided in the operation planning unit 120 will be described later.
  • the optimization problem unit 140 includes elements such as a reference problem generation unit 141 and an optimization problem calculation unit 142. The function of each element provided in the optimization problem unit 140 will be described later.
  • the operation procedure of the operation planning device 100 corresponds to the operation planning method. Further, the operation procedure of the operation planning device 100 corresponds to the processing procedure by the operation planning program.
  • step S110 the reception unit 110 receives the input data 211.
  • step S111 the reception unit 110 receives the input data 211 transmitted from the user terminal 210.
  • step S112 the reception unit 110 stores the received input data 211 in the storage unit 190.
  • step S120 the operation planning unit 120 generates the operation plan data 201 based on the input data 211.
  • the details of the operation planning process (S120) will be described later.
  • step S130 the output unit 130 outputs the operation plan data 201.
  • the output unit 130 transmits the operation plan data 201 to the user terminal 210.
  • step S121 the reference problem generation unit 141 generates a reference problem based on the input data 211.
  • the reference problem is an optimization problem for determining the operation plan of a plurality of generators.
  • the input data 211 includes power demand data 212, generator configuration data 213, generator characteristic data 214, and fixed time width data 215.
  • the electric power demand data 212 is data indicating the electric power demand. Specifically, the power demand data 212 shows the expected power demand value for the planning period.
  • the planning period is the period covered by the operation plan.
  • the expected power demand value represents the amount of power to be generated by a plurality of generators, and is given every unit time. If you want to determine the operation plan for the week from April 1st to April 7th on an hourly basis, the power demand data 212 is available at 24 points (0:00) on each day from April 1st to April 7th.
  • the expected power demand value (1 o'clock, ..., 23:00) is shown.
  • the generator configuration data 213 is data showing the configurations of a plurality of generators. Specifically, the generator configuration data 213 shows information such as the number of generators and the relationship between the generators.
  • the relationship between generators is, for example, information such as sharing a fuel tank, sharing a reservoir in a pumping generator, and configuring a combined cycle generator with two or more generators. is there.
  • the relationship between generators is the basis of constraints that span two or more generators.
  • the generator characteristic data 214 is data indicating the characteristics of each generator. Specifically, the generator characteristic data 214 shows information such as a generator type, power generation efficiency, minimum continuous operation time, minimum continuous stop time, output upper limit value, output lower limit value, and output change speed. Power generation efficiency is expressed as a function of power generation and fuel consumption.
  • the fixed time width data 215 is data indicating a fixed time width.
  • the fixed time width is the time width in which the operation plan is fixed at one time.
  • the time width corresponds to the length of time.
  • the unit of the fixed time width is equal to the unit of determining the operation plan.
  • the operation plans of multiple generators are fixed for each fixed time width.
  • the standard problem can be generated by using the existing technology for generating the optimization problem.
  • the procedure for generating the reference problem will be omitted.
  • step S122 the period division unit 121 divides the undetermined period of the planning period into the determination target period and the relaxation target period.
  • the undetermined period is the period during which the operation plan has not been finalized.
  • the confirmation target period is a period starting from the first time of the undetermined period and then the operation plan is confirmed.
  • the length of the confirmation target period is determined based on the confirmation time width data 215.
  • the mitigation target period is the period after the definite target period.
  • the period division unit 121 divides the undetermined period as follows. First, the period division unit 121 divides the planning period into a fixed period and an undetermined period. The fixed period is the period for which the operation plan has been finalized. In the first step S122, there is no fixed period, and the entire planned period becomes an unfixed period. Next, the period division unit 121 calculates the time when the time having the fixed time width elapses from the start time of the unfixed period. The calculated time is called the confirmation target time. However, when the calculated time is a time after the final time of the undetermined period, the period division unit 121 sets the final time of the undetermined period as the determination target time. The final time of the undetermined period is the same as the final time of the planned period.
  • the period division unit 121 determines the period from the start time of the undetermined period to the confirmation target time as the confirmation target period. In addition, the period division unit 121 determines the remaining period of the undetermined period as the relaxation target period. The remaining period of the undetermined period is the period obtained by subtracting the confirmed period from the undetermined period.
  • the fixed target time is the final time of the unfixed period
  • the entire unfixed period is the fixed target period. In this case, there is no mitigation period.
  • step S123 the provisional solution determination problem generation unit 122 generates the provisional solution determination problem based on the reference problem.
  • the provisional solution determination problem is an optimization problem for determining the operation plans of a plurality of generators in the period to be determined. The details of the provisional solution determination problem generation process (S123) will be described later.
  • step S124 the partial determination unit 123 solves the provisional solution determination problem and determines the operation plan for the determination target period.
  • the partial decision unit 123 finds the solution of the decision variable for the decision target period among the plurality of decision variables included in the provisional solution decision problem as a new fixed value by solving the provisional solution decision problem. Therefore, the operation plan is updated to the fixed state by the fixed time width in the order of the earliest time.
  • the partial determination unit 123 operates as follows. First, the partial determination unit 123 acquires the provisional solution by solving the provisional solution determination problem. The tentative solution represents the operation plan of multiple generators during the planning period. Next, the partial determination unit 123 extracts the solution of the decision variable for the determination target period from the provisional solution. Then, the partial determination unit 123 stores the solution of the determination variable for the determination target period as a determined value in the storage unit 190.
  • the partial determination unit 123 acquires a provisional solution as follows.
  • the partial determination unit 123 passes the provisional solution determination problem to the optimization problem calculation unit 142, and receives the provisional solution from the optimization problem calculation unit 142.
  • the optimization problem calculation unit 142 receives the provisional solution determination problem from the partial determination unit 123, solves the provisional solution determination problem, and passes the provisional solution to the partial determination unit 123.
  • any existing technique for solving the optimization problem can be used.
  • a mathematical programming solver Much software is known as a commercial mathematical programming solver or a free mathematical programming solver.
  • An example of a commercial numerical planning solver is the Gurobi Optimizer.
  • Each mathematical programming solver has a class of optimization problems that can be solved.
  • the reference problem generation unit 141 uses an existing mathematical plan solver, the reference problem generation unit 141 generates an optimization problem (reference problem) of a class that can be solved by the mathematical plan solver used.
  • step S125 the period division unit 121 determines whether or not an undetermined period remains. If there is a mitigation target period in step S122, an undetermined period remains. If the undetermined period remains, the process proceeds to step S122. If there is no undetermined period left, the process ends.
  • the details of the provisional solution determination problem generation process (S123) will be described below.
  • the provisional solution determination problem generation unit 122 edits the reference problem by the fixed process (1) and the mitigation process (2).
  • the edited standard problem becomes a provisional solution decision problem.
  • the provisional solution determination problem generation unit 122 may generate the provisional solution determination problem without performing the relaxation process (2).
  • the provisional solution decision problem generation unit 122 selects a decision variable for the fixed period from a plurality of decision variables included in the reference problem, and fixes the value of the decision variable for the fixed period to the fixed value. As a result, the value of the decision variable for the fixed period becomes one of the constraints.
  • the provisional solution determination problem generation unit 122 selects the constraint condition for the relaxation target period from the plurality of constraint conditions included in the reference problem, and relaxes the constraint condition for the relaxation target period.
  • the details of the fixing process (1) will be described.
  • the provisional solution determination problem generation unit 122 fixes the respective values of all the decision variables for the fixed period to the fixed values.
  • the provisional solution determination problem generation unit 122 may fix the respective values of some decision variables with respect to the fixed period to the fixed values. In this case, the provisional solution decision problem generation unit 122 selects all the decision variables for the fixed period from the plurality of decision variables included in the reference problem, and selects some decision variables from all the decision variables for the fixed period. To do. Then, the provisional solution determination problem generation unit 122 fixes the respective values of some of the selected decision variables to the confirmed values.
  • the first determinant group is a determinant variable group indicating whether or not each generator is operating (operating or stopping) during the fixed period.
  • a set of determinants is one or more determinants. That is, the value of each decision variable included in the second decision variable group is not fixed.
  • the second determinant group is all the determinants that are not included in the first determinant group in the plurality of determinants for the fixed period.
  • the second coefficient of determination variable group indicates the output value of each generator in the fixed period.
  • the second decision variable group is the decision target in the provisional solution decision problem.
  • the description of the fixing process (1) will be continued.
  • the provisional solution determination problem generation unit 122 does not fix the respective values of all the decision variables for the undetermined period.
  • the provisional solution determination problem generation unit 122 may fix the value of the unique decision variable for the undetermined period to the unique decision value.
  • the unique decision variable is a decision variable whose value is uniquely determined according to the operation plan of the fixed period.
  • the unique determination value is a value that is uniquely determined according to the operation plan of the fixed period.
  • the provisional solution decision problem generation unit 122 selects all the decision variables for the undetermined period from the plurality of decision variables included in the reference problem, and selects the unique decision variables from all the decision variables for the undetermined period. Then, the provisional solution determination problem generation unit 122 fixes the value of the selected unique determination variable to the unique determination value.
  • the generator characteristic data 214 indicates the minimum continuous down time of each generator.
  • the minimum continuous downtime for a generator is 6 hours. If the generator is shut down one hour before the last time of the fixed period, the generator must be shut down for at least five hours from the beginning of the unfixed period. Therefore, among the determinants indicating whether or not the generator is operating, the determinants for 5 hours starting from the start time of the undetermined period are the unique determinants. In addition, the value meaning stop is the unique determination value. The same can be said for the minimum continuous operation time.
  • At least one of the plurality of generators has a plurality of activation patterns.
  • Generator characteristic data 214 shows a plurality of activation patterns of these generators.
  • the startup pattern depends on the length of the downtime before startup. In general, the longer the stop time before startup, the slower the startup speed in the startup pattern.
  • the reference problem has a coefficient of determination for determining the start-up pattern.
  • the decision variable indicating the start pattern of this generator is the unique decision variable.
  • a value that identifies a start-up pattern corresponding to the length of time that the generator has stopped is a unique determination value.
  • the generator characteristic data 214 shows a plurality of output bands of each generator.
  • Each output band is an output range from the lower limit of the output band to the upper limit of the output band.
  • the lower limit of the output band is the lower limit of the output value in the output band
  • the upper limit of the output band is the upper limit of the output value in the output band.
  • a plurality of output bands are continuous, and two consecutive output bands do not overlap except for a boundary value. In order to shift the output value from one output band to the next, the size of the output value must be kept at the same size as the boundary value for a certain period of time.
  • the reference problem has a decision variable indicating the output band to which the output value belongs at each time.
  • each generator has an output change rate constraint.
  • the generator characteristic data 214 shows the output change rate constraint of each generator.
  • step S122 the undetermined period is divided into a fixed period and a mitigation target period.
  • step S124 the provisional solution for the confirmation target period becomes the final operation plan in the confirmation target period.
  • the provisional solution is a solution obtained by solving the provisional solution decision problem. Therefore, in step S123, the provisional solution determination problem generation unit 122 does not relax all the constraints on the determination target period. This ensures the feasibility of the final operation plan.
  • the provisional solution determination problem generation unit 122 relaxes the constraint condition for the period after the determination target period (relaxation target period). For example, the provisional solution determination problem generation unit 122 ignores some constraints.
  • the constraints on the relaxation target period may include constraints over a long period of time.
  • the constraints over a long period of time include a constraint based on the minimum continuous operation time, a constraint based on the minimum continuous stop time, an output retention constraint at the time of transition to the output band, and a constraint on a start pattern based on the stop time.
  • the output value of each generator at each time cannot be adjusted to a desired value unless the operation plan is appropriately determined at an early stage. As a result, the final operation plan may violate the supply-demand balance constraint.
  • the provisional solution determination problem generation unit 122 may make the degree of relaxation of the constraint condition for the first half of the relaxation target period smaller than the degree of relaxation of the constraint condition for the latter half of the relaxation target period. For example, the provisional solution determination problem generation unit 122 relaxes the constraint condition for the latter half of the relaxation target period, but does not relax the constraint condition for the first half of the relaxation target period. As a result, the constraints over a long period of time can be appropriately considered.
  • the provisional solution determination problem generation unit 122 operates as follows. First, the provisional solution determination problem generation unit 122 divides the relaxation target period into a first relaxation target period and a second relaxation target period.
  • the first mitigation target period is a period starting from the beginning time of the mitigation target period.
  • the second mitigation target period is the period after the first mitigation target period.
  • the provisional solution determination problem generation unit 122 sets the degree of relaxation of the constraint condition for the first relaxation target period to be lower than the degree of relaxation of the constraint condition for the second relaxation target period. For example, the provisional solution determination problem generation unit 122 does not relax the constraint condition for the first relaxation target period over a long period of time, and relaxes the constraint condition for the second relaxation target period over a long period of time. To do.
  • a long time is a time longer than a predetermined reference time.
  • the provisional solution determination problem generation unit 122 sets the degree of relaxation of the constraint condition to the first relaxation target period to zero.
  • the provisional solution determination problem generation unit 122 determines the length of time in the constraint condition over the longest time among the constraints over a long time as the length of the first relaxation target period. If the constraint condition over a long period of time is a constraint related to the minimum continuous operating time, the minimum continuous operating time is a candidate for the length of the first relaxation target period. If the constraint condition over a long period of time is a constraint related to the minimum continuous stop time, the minimum continuous stop time is a candidate for the length of the first relaxation target period.
  • the required output retention period is a candidate for the length of the first relaxation target period. If the constraint condition over a long period of time is the output retention constraint at the time of transition to the output band, the required output retention period is a candidate for the length of the first relaxation target period. If the constraint condition over a long period of time is a constraint related to the start pattern, the longest generator stop time for determining the start pattern is a candidate for the length of the first relaxation target period. By determining the length of the first relaxation target period in this way, it is possible to derive a provisional solution by correctly considering all the constraints over a long period of time.
  • the provisional solution determination problem generation unit 122 determines the length of the first relaxation target period based on the time length defined by the time constraint among the plurality of constraint conditions included in the reference problem.
  • the time constraint is a constraint condition for the time spanning the fixed period and the relaxed period.
  • the provisional solution determination problem generation unit 122 determines the length of the first relaxation target period based on the longest time length among the plurality of time lengths defined by the plurality of time constraints.
  • FIG. 7 shows the structure of the planning period.
  • the planning period is divided into a fixed period and an unfixed period.
  • the undetermined period is divided into a fixed period and a mitigation period.
  • the mitigation target period is divided into a first mitigation target period and a second mitigation target period.
  • the operation planning system 200 may include a plurality of user terminals 210.
  • the operation planning device 100 may also serve as the user terminal 210.
  • the input data 211 may be automatically input from another system to the operation planning device 100.
  • the operation plans of a plurality of generators can be sequentially determined in the order of earliest time. Furthermore, the degree of relaxation of each constraint can be changed in consideration of the time of the constraint imposed over a long period of time. As a result, it is possible to obtain an operation plan at high speed while considering the constraints imposed over a long period of time.
  • the operation planning device 100 includes a processing circuit 109.
  • the processing circuit 109 is hardware that realizes the reception unit 110, the operation planning unit 120, the output unit 130, and the optimization problem unit 140.
  • the processing circuit 109 may be dedicated hardware or a processor 101 that executes a program stored in the memory 102.
  • the processing circuit 109 is dedicated hardware, the processing circuit 109 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • the operation planning device 100 may include a plurality of processing circuits that replace the processing circuit 109.
  • the plurality of processing circuits share the role of the processing circuit 109.
  • some functions may be realized by dedicated hardware, and the remaining functions may be realized by software or firmware.
  • the processing circuit 109 can be realized by hardware, software, firmware, or a combination thereof.
  • the embodiments are examples of preferred embodiments and are not intended to limit the technical scope of the present invention.
  • the embodiment may be partially implemented or may be implemented in combination with other embodiments.
  • the procedure described using the flowchart or the like may be appropriately changed.
  • the operation planning device 100 may be realized by a plurality of devices.
  • the "part” which is an element of the operation planning device 100 may be read as “processing” or "process”.
  • 100 operation planning device 101 processor, 102 memory, 103 auxiliary storage device, 104 communication device, 105 input / output interface, 109 processing circuit, 110 reception unit, 120 operation planning unit, 121 period division unit, 122 provisional solution determination problem generation unit , 123 partial determination unit, 130 output unit, 140 optimization problem unit, 141 standard problem generation unit, 142 optimization problem calculation unit, 190 storage unit, 200 operation planning system, 201 operation plan data, 210 user terminal, 211 input Data, 212 power demand data, 213 generator configuration data, 214 generator characteristic data, 215 fixed time width data.

Abstract

According to the present invention, a period division unit (121) divides an undecided period in which an operation plan is not decided in a plan period into a period to be decided and a period after the period to be decided. A provisional solution determination problem creation unit (122) creates a provisional solution determination problem that is an optimization problem obtained by fixing, to a decision completion value, a value of a determination variable for a decision completion period among a plurality of determination variables included in a reference problem that is an optimization problem for determining operation plans for a plurality of generators. A partial decision unit (123) obtains, as a new decision completion value, a solution of a determination variable for the period to be decided by solving the provisional solution determination problem.

Description

運転計画装置、運転計画方法および運転計画プログラムOperation planning device, operation planning method and operation planning program
 本発明は、複数台の発電機の運転計画を求めるための技術に関するものである。 The present invention relates to a technique for obtaining an operation plan for a plurality of generators.
 電力供給の安定性と電力供給の経済性とを両立するためには、複数台の発電機の運転計画を適切に作成する必要がある。具体的には、電力需要と発電量を一致させ、且つ、各発電機の物理的な制約条件を満たし、且つ、発電効率が良い発電機を適切に稼動させるように、運転計画を作成する必要がある。 In order to achieve both the stability of power supply and the economic efficiency of power supply, it is necessary to appropriately create an operation plan for multiple generators. Specifically, it is necessary to create an operation plan so that the power demand and the amount of power generation are matched, the physical constraints of each generator are satisfied, and the generator with good power generation efficiency is operated appropriately. There is.
 発電機の運転計画を決定する問題を「運転計画問題」と称する。
 運転計画問題は、Unit Commitment問題とも呼ばれ、広く研究されている。運転計画問題は、01決定変数と連続決定変数とが混在した混合01整数計画問題として定式化されることが良く知られている。
The problem of determining the operation plan of the generator is called the "operation plan problem".
The operation planning problem, also called the Unit Communication problem, has been widely studied. It is well known that the operation planning problem is formulated as a mixed 01 integer programming problem in which 01 determination variables and continuous determination variables are mixed.
 運転計画問題を混合01整数計画問題として定式化する多くの研究では、発電機の起動状態と発電機の停止状態とが01決定変数で表され、発電機の出力値が連続決定変数で表される。その上で、考慮したい制約条件の種類と考慮したい制約条件の記述の仕方とに応じて、決定変数が適宜追加される。目的は、燃料費と発電機の起動費とを合計した発電総費用を最小化することである。
 主な制約条件は、需給バランス制約、予備力制約、発電機運転制約および燃料制約などである。需給バランス制約とは、電力需要と発電量を一致させるという制約である。予備力制約とは、一定量の予備力および一定量の調整力を確保するという制約である。発電機運転制約とは、最小連続起動時間、最小連続停止時間、出力上限値、出力下限値および出力変化速度などの発電機固有の運転制約を遵守するという制約である。燃料制約とは、燃料消費量が残燃料量を上回らないようにするという制約である。
In many studies that formulate the operation planning problem as a mixed 01 integer programming problem, the start state of the generator and the stop state of the generator are represented by the 01 determinants, and the output value of the generator is represented by the continuous determinants. To. Then, the coefficient of determination is added as appropriate according to the type of constraint condition to be considered and the description method of the constraint condition to be considered. The purpose is to minimize the total cost of power generation, which is the sum of the fuel cost and the start-up cost of the generator.
The main constraints are supply and demand balance constraints, reserve capacity constraints, generator operation constraints and fuel constraints. The supply-demand balance constraint is a constraint that matches the power demand and the amount of power generation. The reserve force constraint is a constraint to secure a certain amount of reserve force and a certain amount of adjustment force. The generator operation constraint is a constraint to comply with the generator-specific operation constraint such as the minimum continuous start time, the minimum continuous stop time, the output upper limit value, the output lower limit value, and the output change speed. The fuel constraint is a constraint that the fuel consumption does not exceed the remaining fuel amount.
 混合01整数計画問題は組合せ最適化問題であるので、混合01整数計画問題の求解には時間が掛かる。特に、混合01整数計画問題の規模が大きくなると、求解時間は急激に増大する傾向にある。 Since the mixed 01 integer programming problem is a combinatorial optimization problem, it takes time to solve the mixed 01 integer programming problem. In particular, as the scale of the mixed 01 integer programming problem increases, the solution time tends to increase sharply.
 運転計画問題の規模は、発電機台数、計画期間の長さ、及び時刻の刻み幅によって決定される。
 今後、電力自由化に伴う広域連携により、運転計画の対象となる発電機の台数が増加することが予想される。また、より精緻な運転計画を立案する為に、時刻の刻み幅が細かく設定されることが予想される。
 したがって、運転計画問題の規模が今後増大していくと予想される。そのため、運転計画問題を高速に解く手段が必要である。
The scale of the operation planning problem is determined by the number of generators, the length of the planning period, and the time step.
In the future, it is expected that the number of generators subject to the operation plan will increase due to wide-area cooperation accompanying the liberalization of electricity. In addition, it is expected that the time step width will be set finely in order to formulate a more detailed operation plan.
Therefore, it is expected that the scale of the operation planning problem will increase in the future. Therefore, a means for solving the operation planning problem at high speed is required.
 特許文献1には、運転計画問題を高速に解くための方法が開示されている。
 その方法では、需要が極大値または極小値を取る時刻の運転計画が先に決定され、その後に残りの時刻の運転計画が決定される。
 つまり、特許文献1には、運転計画問題を2段階に分けて立案する方法が開示されている。
Patent Document 1 discloses a method for solving an operation planning problem at high speed.
In that method, the operation plan at the time when the demand reaches the maximum value or the minimum value is determined first, and then the operation plan at the remaining time is determined.
That is, Patent Document 1 discloses a method of planning an operation planning problem in two stages.
特開2001-258157号公報Japanese Unexamined Patent Publication No. 2001-258157
 特許文献1の方法では、1段階目の立案時に、ある時点の運転計画が単独で決定される。そのため、ある程度まとまった時間の運転計画を扱わなければ、ある時点の運転計画を適切に立てられないような場合、特許文献1の方法では対処することができない。
 例えば、揚水発電機では、事前に水をくみ上げておいて、需要のピーク時に放水によって発電が行われる。つまり、需要のピーク時に向けた事前の準備が必要となる。そのため、需要のピーク時までのある程度まとまった時間の運転計画を扱わなければ、需要のピーク時における適切な運転計画を立てることができない可能性が高い。
 また、起動速度が遅い火力発電機では、需要のピーク時に合わせて、事前に起動を開始しなければならない。つまり、需要のピーク時に向けた事前の準備が必要となる。そのため、需要のピーク時までのある程度まとまった時間の運転計画を扱わなければ、需要のピーク時における適切な運転計画を立てることができない可能性が高い。
 したがって、特許文献1の方法では、揚水発電機または火力発電機に対して適切な運転計画を立てることができない可能性が高い。
In the method of Patent Document 1, the operation plan at a certain point in time is independently determined at the time of drafting the first stage. Therefore, if the operation plan at a certain point in time cannot be properly made without handling the operation plan for a certain amount of time, the method of Patent Document 1 cannot deal with it.
For example, in a pumped storage power generator, water is pumped up in advance, and power is generated by discharging water at the peak of demand. In other words, it is necessary to prepare in advance for peak demand. Therefore, it is highly possible that an appropriate operation plan cannot be made at the peak of demand unless the operation plan of a certain amount of time until the peak of demand is handled.
In addition, thermal power generators with a slow start-up speed must start up in advance at the peak of demand. In other words, it is necessary to prepare in advance for peak demand. Therefore, it is highly possible that an appropriate operation plan cannot be made at the peak of demand unless the operation plan of a certain amount of time until the peak of demand is handled.
Therefore, it is highly possible that the method of Patent Document 1 cannot make an appropriate operation plan for the pumped storage power generator or the thermal power generator.
 本発明は、ある程度まとまった時間の運転計画を扱いつつ、運転計画問題を高速に解くことができるようにすることを目的とする。 An object of the present invention is to be able to solve an operation plan problem at high speed while handling an operation plan for a certain amount of time.
 本発明の運転計画装置は、
 複数台の発電機の運転計画が対象とする計画期間のうち運転計画が確定済みでない未確定期間を、前記未確定期間の先頭時刻から始まり次に運転計画が確定される期間である確定対象期間と、前記確定対象期間の後の期間と、に分割する期間分割部と、
 前記複数台の発電機の運転計画を決定するための最適化問題である基準問題に含まれる複数の決定変数のうちの運転計画が確定済みである確定済み期間に対する決定変数の値を確定済みの値に固定して得られる最適化問題である暫定解決定問題を生成する暫定解決定問題生成部と、
 前記暫定解決定問題を解くことによって、前記暫定解決定問題に含まれる複数の決定変数のうちの前記確定対象期間に対する決定変数の解を新たな確定済みの値として求める部分確定部と、を備える。
The operation planning device of the present invention
Of the planning periods targeted by the operation plans of multiple generators, the unconfirmed period in which the operation plan has not been finalized is the period in which the operation plan is finalized starting from the start time of the unfixed period. And the period after the period to be confirmed, and the period division part that divides into
Of the plurality of decision variables included in the reference problem, which is an optimization problem for determining the operation plans of the plurality of generators, the value of the decision variable for the confirmed period for which the operation plan has been confirmed has been determined. A provisional solution decision problem generator that generates a provisional solution decision problem, which is an optimization problem obtained by fixing the value,
By solving the provisional solution determination problem, a partial determination unit for obtaining the solution of the determination variable for the determination target period among the plurality of determination variables included in the provisional solution determination problem as a new confirmed value is provided. ..
 本発明によれば、確定済み期間の運転計画に基づく暫定解決定問題が生成され、暫定解決定問題を解いて確定対象期間の運転計画が確定される。暫定解決定問題では、確定済み期間に対する決定変数の値が固定される。そのため、確定済み期間に対する決定変数の値が固定されない最適化問題を解く場合に比べて、暫定解決定問題は高速に解くことができる。
 したがって、確定済み期間のある程度まとまった時間の運転計画を扱いつつ、運転計画問題(暫定解決定問題)を高速に解くことができる。
According to the present invention, a provisional solution determination problem based on an operation plan for a fixed period is generated, and the operation plan for the period to be determined is determined by solving the provisional solution determination problem. In the provisional solution decision problem, the value of the decision variable for the fixed period is fixed. Therefore, the provisional solution determination problem can be solved at a higher speed than the case of solving the optimization problem in which the value of the decision variable for the fixed period is not fixed.
Therefore, it is possible to solve the operation plan problem (provisional solution decision problem) at high speed while handling the operation plan for a certain period of time that has been fixed.
実施の形態1における運転計画システム200の構成図。The block diagram of the operation planning system 200 in Embodiment 1. FIG. 実施の形態1における運転計画装置100の構成図。The block diagram of the operation planning apparatus 100 in Embodiment 1. FIG. 実施の形態1における運転計画部120と最適化問題部140とのそれぞれの構成を示す図。The figure which shows each configuration of the operation planning part 120 and the optimization problem part 140 in Embodiment 1. FIG. 実施の形態1における運転計画方法のフローチャート。The flowchart of the operation planning method in Embodiment 1. 実施の形態1における受付処理(S110)のフローチャート。The flowchart of the reception process (S110) in Embodiment 1. 実施の形態1における運転計画処理(S120)のフローチャート。The flowchart of the operation plan processing (S120) in Embodiment 1. 実施の形態1における計画期間の構成図。The block diagram of the planning period in Embodiment 1. 実施の形態1における運転計画装置100のハードウェア構成図。The hardware block diagram of the operation planning apparatus 100 in Embodiment 1. FIG.
 実施の形態および図面において、同じ要素または対応する要素には同じ符号を付している。説明した要素と同じ符号が付された要素の説明は適宜に省略または簡略化する。図中の矢印はデータの流れ又は処理の流れを主に示している。 In the embodiments and drawings, the same element or the corresponding element is designated by the same reference numeral. Descriptions of elements with the same reference numerals as the described elements will be omitted or simplified as appropriate. The arrows in the figure mainly indicate the flow of data or the flow of processing.
 実施の形態1.
 運転計画システム200について、図1から図7に基づいて説明する。
 運転計画システム200は、複数の運転計画を決定するためのシステムである。
Embodiment 1.
The operation planning system 200 will be described with reference to FIGS. 1 to 7.
The operation planning system 200 is a system for determining a plurality of operation plans.
***構成の説明***
 図1に基づいて、運転計画システム200の構成を説明する。
 運転計画システム200は、利用者端末210と運転計画装置100とを備える。
*** Explanation of configuration ***
The configuration of the operation planning system 200 will be described with reference to FIG.
The operation planning system 200 includes a user terminal 210 and an operation planning device 100.
 利用者端末210は、利用者が操作するコンピュータである。
 具体的な利用者は、発電機の運用担当者である。
 利用者端末210の具体例は、パーソナルコンピュータ、タブレット型コンピュータまたはスマートフォンである。
The user terminal 210 is a computer operated by the user.
The specific user is the person in charge of operating the generator.
Specific examples of the user terminal 210 are a personal computer, a tablet computer, or a smartphone.
 利用者端末210は、ネットワークを介して、運転計画装置100と通信する。
 具体的には、利用者端末210は、入力データ211を運転計画装置100へ送信する。
 入力データ211は、電力需要データ212と発電機構成データ213と発電機特性データ214と確定時間幅データ215とを含む。
 但し、電力需要データ212と発電機構成データ213と発電機特性データ214と確定時間幅データ215とのそれぞれが個別に送信されてもよい。
 電力需要データ212と発電機構成データ213と発電機特性データ214と確定時間幅データ215とのそれぞれの内容については後述する。
The user terminal 210 communicates with the operation planning device 100 via the network.
Specifically, the user terminal 210 transmits the input data 211 to the operation planning device 100.
The input data 211 includes power demand data 212, generator configuration data 213, generator characteristic data 214, and fixed time width data 215.
However, the power demand data 212, the generator configuration data 213, the generator characteristic data 214, and the fixed time width data 215 may be transmitted individually.
The contents of the power demand data 212, the generator configuration data 213, the generator characteristic data 214, and the fixed time width data 215 will be described later.
 運転計画装置100は、運転計画サーバとして機能する。
 そして、運転計画装置100は、入力データ211に基づいて運転計画データ201を生成する。
 運転計画データ201は、複数台の発電機の運転計画を示すデータである。
The operation planning device 100 functions as an operation planning server.
Then, the operation planning device 100 generates the operation planning data 201 based on the input data 211.
The operation plan data 201 is data indicating an operation plan of a plurality of generators.
 図2に基づいて、運転計画装置100の構成を説明する。
 運転計画装置100は、プロセッサ101とメモリ102と補助記憶装置103と通信装置104と入出力インタフェース105といったハードウェアを備えるコンピュータである。これらのハードウェアは、信号線を介して互いに接続されている。
The configuration of the operation planning device 100 will be described with reference to FIG.
The operation planning device 100 is a computer including hardware such as a processor 101, a memory 102, an auxiliary storage device 103, a communication device 104, and an input / output interface 105. These hardware are connected to each other via signal lines.
 プロセッサ101は、演算処理を行うICであり、他のハードウェアを制御する。例えば、プロセッサ101は、CPU、DSPまたはGPUである。
 ICは、Integrated Circuitの略称である。
 CPUは、Central Processing Unitの略称である。
 DSPは、Digital Signal Processorの略称である。
 GPUは、Graphics Processing Unitの略称である。
The processor 101 is an IC that performs arithmetic processing and controls other hardware. For example, the processor 101 is a CPU, DSP or GPU.
IC is an abbreviation for Integrated Circuit.
CPU is an abbreviation for Central Processing Unit.
DSP is an abbreviation for Digital Signal Processor.
GPU is an abbreviation for Graphics Processing Unit.
 メモリ102は揮発性の記憶装置である。メモリ102は、主記憶装置またはメインメモリとも呼ばれる。例えば、メモリ102はRAMである。メモリ102に記憶されたデータは必要に応じて補助記憶装置103に保存される。
 RAMは、Random Access Memoryの略称である。
The memory 102 is a volatile storage device. The memory 102 is also called a main storage device or a main memory. For example, the memory 102 is a RAM. The data stored in the memory 102 is stored in the auxiliary storage device 103 as needed.
RAM is an abbreviation for Random Access Memory.
 補助記憶装置103は不揮発性の記憶装置である。例えば、補助記憶装置103は、ROM、HDDまたはフラッシュメモリである。補助記憶装置103に記憶されたデータは必要に応じてメモリ102にロードされる。
 ROMは、Read Only Memoryの略称である。
 HDDは、Hard Disk Driveの略称である。
The auxiliary storage device 103 is a non-volatile storage device. For example, the auxiliary storage device 103 is a ROM, HDD, or flash memory. The data stored in the auxiliary storage device 103 is loaded into the memory 102 as needed.
ROM is an abbreviation for Read Only Memory.
HDD is an abbreviation for Hard Disk Drive.
 通信装置104はレシーバ及びトランスミッタである。例えば、通信装置104は通信チップまたはNICである。
 NICは、Network Interface Cardの略称である。
The communication device 104 is a receiver and a transmitter. For example, the communication device 104 is a communication chip or NIC.
NIC is an abbreviation for Network Interface Card.
 入出力インタフェース105は、入力装置および出力装置が接続されるポートである。例えば、入出力インタフェース105はUSB端子であり、入力装置はキーボードおよびマウスであり、出力装置はディスプレイである。
 USBは、Universal Serial Busの略称である。
The input / output interface 105 is a port to which an input device and an output device are connected. For example, the input / output interface 105 is a USB terminal, the input device is a keyboard and a mouse, and the output device is a display.
USB is an abbreviation for Universal Serial Bus.
 運転計画装置100は、受付部110と運転計画部120と出力部130と最適化問題部140といった要素を備える。これらの要素はソフトウェアで実現される。 The operation planning device 100 includes elements such as a reception unit 110, an operation planning unit 120, an output unit 130, and an optimization problem unit 140. These elements are realized in software.
 補助記憶装置103には、受付部110と運転計画部120と出力部130と最適化問題部140としてコンピュータを機能させるための運転計画プログラムが記憶されている。運転計画プログラムは、メモリ102にロードされて、プロセッサ101によって実行される。
 補助記憶装置103には、さらに、OSが記憶されている。OSの少なくとも一部は、メモリ102にロードされて、プロセッサ101によって実行される。
 プロセッサ101は、OSを実行しながら、運転計画プログラムを実行する。
 OSは、Operating Systemの略称である。
The auxiliary storage device 103 stores an operation planning program for operating the computer as a reception unit 110, an operation planning unit 120, an output unit 130, and an optimization problem unit 140. The operation planning program is loaded into the memory 102 and executed by the processor 101.
The OS is further stored in the auxiliary storage device 103. At least a portion of the OS is loaded into memory 102 and executed by processor 101.
The processor 101 executes the operation planning program while executing the OS.
OS is an abbreviation for Operating System.
 運転計画プログラムの入出力データは記憶部190に記憶される。
 メモリ102は記憶部190として機能する。但し、補助記憶装置103、プロセッサ101内のレジスタおよびプロセッサ101内のキャッシュメモリなどの記憶装置が、メモリ102の代わりに、又は、メモリ102と共に、記憶部190として機能してもよい。
The input / output data of the operation planning program is stored in the storage unit 190.
The memory 102 functions as a storage unit 190. However, a storage device such as an auxiliary storage device 103, a register in the processor 101, and a cache memory in the processor 101 may function as a storage unit 190 instead of the memory 102 or together with the memory 102.
 運転計画装置100は、プロセッサ101を代替する複数のプロセッサを備えてもよい。複数のプロセッサは、プロセッサ101の役割を分担する。 The operation planning device 100 may include a plurality of processors that replace the processor 101. The plurality of processors share the role of the processor 101.
 運転計画プログラムは、光ディスクまたはフラッシュメモリ等の不揮発性の記録媒体にコンピュータ読み取り可能に記録(格納)することができる。 The operation plan program can be recorded (stored) in a computer-readable manner on a non-volatile recording medium such as an optical disk or a flash memory.
 図3に基づいて、運転計画部120と最適化問題部140とのそれぞれの構成を説明する。
 運転計画部120は、期間分割部121と暫定解決定問題生成部122と部分確定部123といった要素を備える。運転計画部120に備わる各要素の機能については後述する。
 最適化問題部140は、基準問題生成部141と最適化問題計算部142といった要素を備える。最適化問題部140に備わる各要素の機能については後述する。
The configurations of the operation planning unit 120 and the optimization problem unit 140 will be described with reference to FIG.
The operation planning unit 120 includes elements such as a period division unit 121, a provisional solution determination problem generation unit 122, and a partial determination unit 123. The functions of each element provided in the operation planning unit 120 will be described later.
The optimization problem unit 140 includes elements such as a reference problem generation unit 141 and an optimization problem calculation unit 142. The function of each element provided in the optimization problem unit 140 will be described later.
***動作の説明***
 運転計画装置100の動作の手順は運転計画方法に相当する。また、運転計画装置100の動作の手順は運転計画プログラムによる処理の手順に相当する。
*** Explanation of operation ***
The operation procedure of the operation planning device 100 corresponds to the operation planning method. Further, the operation procedure of the operation planning device 100 corresponds to the processing procedure by the operation planning program.
 図4に基づいて、運転計画方法を説明する。
 ステップS110において、受付部110は、入力データ211を受け付ける。
The operation planning method will be described with reference to FIG.
In step S110, the reception unit 110 receives the input data 211.
 図5に基づいて、受付処理(S110)を説明する。
 ステップS111において、受付部110は、利用者端末210から送信された入力データ211を受信する。
The reception process (S110) will be described with reference to FIG.
In step S111, the reception unit 110 receives the input data 211 transmitted from the user terminal 210.
 ステップS112において、受付部110は、受信した入力データ211を記憶部190に記憶する。 In step S112, the reception unit 110 stores the received input data 211 in the storage unit 190.
 図4に戻り、ステップS120から説明を続ける。
 ステップS120において、運転計画部120は、入力データ211に基づいて、運転計画データ201を生成する。
 運転計画処理(S120)の詳細について後述する。
Returning to FIG. 4, the description continues from step S120.
In step S120, the operation planning unit 120 generates the operation plan data 201 based on the input data 211.
The details of the operation planning process (S120) will be described later.
 ステップS130において、出力部130は、運転計画データ201を出力する。
 例えば、出力部130は、運転計画データ201を利用者端末210へ送信する。
In step S130, the output unit 130 outputs the operation plan data 201.
For example, the output unit 130 transmits the operation plan data 201 to the user terminal 210.
 図6に基づいて、運転計画処理(S120)を説明する。
 ステップS121において、基準問題生成部141は、入力データ211に基づいて、基準問題を生成する。
 基準問題は、複数台の発電機の運転計画を決定するための最適化問題である。
The operation planning process (S120) will be described with reference to FIG.
In step S121, the reference problem generation unit 141 generates a reference problem based on the input data 211.
The reference problem is an optimization problem for determining the operation plan of a plurality of generators.
 入力データ211は、電力需要データ212と発電機構成データ213と発電機特性データ214と確定時間幅データ215とを含む。 The input data 211 includes power demand data 212, generator configuration data 213, generator characteristic data 214, and fixed time width data 215.
 電力需要データ212は、電力の需要を示すデータである。
 具体的には、電力需要データ212は、計画期間の予想電力需要値を示す。計画期間は、運転計画の対象となる期間である。予想電力需要値は、複数台の発電機によって発電すべき電力量を表し、単位時間毎に与えられる。
 4月1日から4月7日までの1週間の運転計画を1時間単位で決定したい場合、電力需要データ212は、4月1日から4月7日までの各日の24時点(0時、1時、・・・、23時)の予想電力需要値を示す。
The electric power demand data 212 is data indicating the electric power demand.
Specifically, the power demand data 212 shows the expected power demand value for the planning period. The planning period is the period covered by the operation plan. The expected power demand value represents the amount of power to be generated by a plurality of generators, and is given every unit time.
If you want to determine the operation plan for the week from April 1st to April 7th on an hourly basis, the power demand data 212 is available at 24 points (0:00) on each day from April 1st to April 7th. The expected power demand value (1 o'clock, ..., 23:00) is shown.
 発電機構成データ213は、複数台の発電機の構成を示すデータである。
 具体的には、発電機構成データ213は、発電機の台数および発電機間の関係などの情報を示す。発電機間の関係とは、例えば、燃料タンクを共有していること、揚水発電機において貯水池を共有していること、2台以上の発電機でコンバインドサイクル発電機を構成することなどの情報である。発電機間の関係は、2台以上の発電機に跨る制約条件の基となる。
The generator configuration data 213 is data showing the configurations of a plurality of generators.
Specifically, the generator configuration data 213 shows information such as the number of generators and the relationship between the generators. The relationship between generators is, for example, information such as sharing a fuel tank, sharing a reservoir in a pumping generator, and configuring a combined cycle generator with two or more generators. is there. The relationship between generators is the basis of constraints that span two or more generators.
 発電機特性データ214は、各発電機の特性を示すデータである。
 具体的には、発電機特性データ214は、発電機の種類、発電効率、最小連続運転時間、最小連続停止時間、出力上限値、出力下限値および出力変化速度などの情報を示す。発電効率は、発電量と燃料消費量との関数で表される。
The generator characteristic data 214 is data indicating the characteristics of each generator.
Specifically, the generator characteristic data 214 shows information such as a generator type, power generation efficiency, minimum continuous operation time, minimum continuous stop time, output upper limit value, output lower limit value, and output change speed. Power generation efficiency is expressed as a function of power generation and fuel consumption.
 確定時間幅データ215は、確定時間幅を示すデータである。
 確定時間幅は、運転計画が一度に確定される時間幅である。時間幅は時間の長さに相当する。確定時間幅の単位は運転計画を決定する単位に等しい。
 複数台の発電機の運転計画は、確定時間幅ずつ確定される。
The fixed time width data 215 is data indicating a fixed time width.
The fixed time width is the time width in which the operation plan is fixed at one time. The time width corresponds to the length of time. The unit of the fixed time width is equal to the unit of determining the operation plan.
The operation plans of multiple generators are fixed for each fixed time width.
 基準問題は、最適化問題を生成するための既存技術を利用することによって生成することが可能である。基準問題を生成する手順については説明を省略する。 The standard problem can be generated by using the existing technology for generating the optimization problem. The procedure for generating the reference problem will be omitted.
 ステップS122において、期間分割部121は、計画期間のうちの未確定期間を確定対象期間と緩和対象期間とに分割する。
 未確定期間は、運転計画が確定済みでない期間である。
 確定対象期間は、未確定期間の先頭時刻から始まり次に運転計画が確定される期間である。確定対象期間の長さは、確定時間幅データ215に基づいて決定される。
 緩和対象期間は、確定対象期間の後の期間である。
In step S122, the period division unit 121 divides the undetermined period of the planning period into the determination target period and the relaxation target period.
The undetermined period is the period during which the operation plan has not been finalized.
The confirmation target period is a period starting from the first time of the undetermined period and then the operation plan is confirmed. The length of the confirmation target period is determined based on the confirmation time width data 215.
The mitigation target period is the period after the definite target period.
 期間分割部121は、未確定期間を以下のように分割する。
 まず、期間分割部121は、計画期間を確定済み期間と未確定期間とに分割する。確定済み期間は、運転計画が確定済みである期間である。初回のステップS122では、確定済み期間が存在せず、計画期間の全体が未確定期間となる。
 次に、期間分割部121は、未確定期間の先頭時刻から確定時間幅を有する時間が経過時の時刻を算出する。算出される時刻を確定対象時刻と称する。但し、算出された時刻が未確定期間の最終時刻より後の時刻である場合、期間分割部121は、未確定期間の最終時刻を確定対象時刻とする。未確定期間の最終時刻は、計画期間の最終時刻と同じである。
 そして、期間分割部121は、未確定期間の先頭時刻から確定対象時刻までの期間を確定対象期間に決定する。
 また、期間分割部121は、未確定期間の残りの期間を緩和対象期間に決定する。未確定期間の残りの期間とは、未確定期間から確定済み期間を除いた期間である。
 確定対象時刻が未確定期間の最終時刻である場合、未確定期間の全体が確定対象期間となる。この場合、緩和対象期間は存在しない。
The period division unit 121 divides the undetermined period as follows.
First, the period division unit 121 divides the planning period into a fixed period and an undetermined period. The fixed period is the period for which the operation plan has been finalized. In the first step S122, there is no fixed period, and the entire planned period becomes an unfixed period.
Next, the period division unit 121 calculates the time when the time having the fixed time width elapses from the start time of the unfixed period. The calculated time is called the confirmation target time. However, when the calculated time is a time after the final time of the undetermined period, the period division unit 121 sets the final time of the undetermined period as the determination target time. The final time of the undetermined period is the same as the final time of the planned period.
Then, the period division unit 121 determines the period from the start time of the undetermined period to the confirmation target time as the confirmation target period.
In addition, the period division unit 121 determines the remaining period of the undetermined period as the relaxation target period. The remaining period of the undetermined period is the period obtained by subtracting the confirmed period from the undetermined period.
When the fixed target time is the final time of the unfixed period, the entire unfixed period is the fixed target period. In this case, there is no mitigation period.
 ステップS123において、暫定解決定問題生成部122は、基準問題に基づいて暫定解決定問題を生成する。
 暫定解決定問題は、確定対象期間における複数台の発電機の運転計画を確定するための最適化問題である。
 暫定解決定問題生成処理(S123)の詳細について後述する。
In step S123, the provisional solution determination problem generation unit 122 generates the provisional solution determination problem based on the reference problem.
The provisional solution determination problem is an optimization problem for determining the operation plans of a plurality of generators in the period to be determined.
The details of the provisional solution determination problem generation process (S123) will be described later.
 ステップS124において、部分確定部123は、暫定解決定問題を解いて確定対象期間の運転計画を確定する。
 言い換えると、部分確定部123は、暫定解決定問題を解くことによって、暫定解決定問題に含まれる複数の決定変数のうちの確定対象期間に対する決定変数の解を新たな確定済みの値として求める。
 したがって、時刻の早い順に確定時間幅ずつ運転計画が確定済み状態に更新される。
In step S124, the partial determination unit 123 solves the provisional solution determination problem and determines the operation plan for the determination target period.
In other words, the partial decision unit 123 finds the solution of the decision variable for the decision target period among the plurality of decision variables included in the provisional solution decision problem as a new fixed value by solving the provisional solution decision problem.
Therefore, the operation plan is updated to the fixed state by the fixed time width in the order of the earliest time.
 具体的には、部分確定部123は以下のように動作する。
 まず、部分確定部123は、暫定解決定問題を解くことによって暫定解を取得する。暫定解は、計画期間における複数台の発電機の運転計画を表す。
 次に、部分確定部123は、暫定解から、確定対象期間に対する決定変数の解を抽出する。
 そして、部分確定部123は、記憶部190に、確定対象期間に対する決定変数の解を確定済みの値として保存する。
Specifically, the partial determination unit 123 operates as follows.
First, the partial determination unit 123 acquires the provisional solution by solving the provisional solution determination problem. The tentative solution represents the operation plan of multiple generators during the planning period.
Next, the partial determination unit 123 extracts the solution of the decision variable for the determination target period from the provisional solution.
Then, the partial determination unit 123 stores the solution of the determination variable for the determination target period as a determined value in the storage unit 190.
 具体的には、部分確定部123は以下のように暫定解を取得する。
 部分確定部123は、暫定解決定問題を最適化問題計算部142に渡し、最適化問題計算部142から暫定解を受け取る。最適化問題計算部142は、部分確定部123から暫定解決定問題を受け取り、暫定解決定問題を解き、暫定解を部分確定部123に渡す。
Specifically, the partial determination unit 123 acquires a provisional solution as follows.
The partial determination unit 123 passes the provisional solution determination problem to the optimization problem calculation unit 142, and receives the provisional solution from the optimization problem calculation unit 142. The optimization problem calculation unit 142 receives the provisional solution determination problem from the partial determination unit 123, solves the provisional solution determination problem, and passes the provisional solution to the partial determination unit 123.
 暫定解決定問題を解く方法として、最適化問題を解くための任意の既存技術を利用することができる。
 例えば、数理計画ソルバと呼ばれるソフトウェアを利用する方法がある。商用の数理計画ソルバまたはフリーの数理計画ソルバとして、多くのソフトウェアが知られている。商用の数計画ソルバの一例はGurobi Optimizerである。それぞれの数理計画ソルバには、解くことができる最適化問題のクラスが決まっている。最適化問題計算部142が既存の数理計画ソルバを使用する場合、基準問題生成部141は、使用される数理計画ソルバが解けるクラスの最適化問題(基準問題)を生成する。
As a method of solving the provisional solution decision problem, any existing technique for solving the optimization problem can be used.
For example, there is a method of using software called a mathematical programming solver. Much software is known as a commercial mathematical programming solver or a free mathematical programming solver. An example of a commercial numerical planning solver is the Gurobi Optimizer. Each mathematical programming solver has a class of optimization problems that can be solved. When the optimization problem calculation unit 142 uses an existing mathematical plan solver, the reference problem generation unit 141 generates an optimization problem (reference problem) of a class that can be solved by the mathematical plan solver used.
 ステップS125において、期間分割部121は、未確定期間が残っているか判定する。ステップS122で緩和対象期間が存在した場合、未確定期間が残っている。
 未確定期間が残っている場合、処理はステップS122に進む。
 未確定期間が残っていない場合、処理は終了する。
In step S125, the period division unit 121 determines whether or not an undetermined period remains. If there is a mitigation target period in step S122, an undetermined period remains.
If the undetermined period remains, the process proceeds to step S122.
If there is no undetermined period left, the process ends.
 以下に、暫定解決定問題生成処理(S123)の詳細を説明する。
 暫定解決定問題生成部122は、固定処理(1)と緩和処理(2)とによって基準問題を編集する。編集後の基準問題が暫定解決定問題となる。但し、暫定解決定問題生成部122は、緩和処理(2)を行わずに暫定解決定問題を生成してもよい。
 (1)暫定解決定問題生成部122は、基準問題に含まれる複数の決定変数から確定済み期間に対する決定変数を選択し、確定済み期間に対する決定変数の値を確定済みの値に固定する。これにより、確定済み期間に対する決定変数の値が制約条件の一つになる。
 (2)暫定解決定問題生成部122は、基準問題に含まれる複数の制約条件から緩和対象期間に対する制約条件を選択し、緩和対象期間に対する制約条件を緩和する。
The details of the provisional solution determination problem generation process (S123) will be described below.
The provisional solution determination problem generation unit 122 edits the reference problem by the fixed process (1) and the mitigation process (2). The edited standard problem becomes a provisional solution decision problem. However, the provisional solution determination problem generation unit 122 may generate the provisional solution determination problem without performing the relaxation process (2).
(1) The provisional solution decision problem generation unit 122 selects a decision variable for the fixed period from a plurality of decision variables included in the reference problem, and fixes the value of the decision variable for the fixed period to the fixed value. As a result, the value of the decision variable for the fixed period becomes one of the constraints.
(2) The provisional solution determination problem generation unit 122 selects the constraint condition for the relaxation target period from the plurality of constraint conditions included in the reference problem, and relaxes the constraint condition for the relaxation target period.
 固定処理(1)の詳細を説明する。
 暫定解決定問題生成部122は、確定済み期間に対する全ての決定変数のそれぞれの値を確定済みの値に固定する。
The details of the fixing process (1) will be described.
The provisional solution determination problem generation unit 122 fixes the respective values of all the decision variables for the fixed period to the fixed values.
 但し、暫定解決定問題生成部122は、確定済み期間に対する一部の決定変数のそれぞれの値を確定済みの値に固定してもよい。
 この場合、暫定解決定問題生成部122は、基準問題に含まれる複数の決定変数から確定済み期間に対する全ての決定変数を選択し、確定済み期間に対する全ての決定変数から一部の決定変数を選択する。そして、暫定解決定問題生成部122は、選択した一部の決定変数のそれぞれの値を確定済みの値に固定する。
However, the provisional solution determination problem generation unit 122 may fix the respective values of some decision variables with respect to the fixed period to the fixed values.
In this case, the provisional solution decision problem generation unit 122 selects all the decision variables for the fixed period from the plurality of decision variables included in the reference problem, and selects some decision variables from all the decision variables for the fixed period. To do. Then, the provisional solution determination problem generation unit 122 fixes the respective values of some of the selected decision variables to the confirmed values.
 一部の決定変数の具体例は、第1決定変数群である。
 第1決定変数群は、確定済み期間における各発電機の稼働の有無(稼働または停止)を示す決定変数群である。決定変数群は1つ以上の決定変数である。
 つまり、第2決定変数群に含まれる各決定変数の値は固定されない。
 第2決定変数群は、確定済み期間に対する複数の決定変数において第1決定変数群に含まれない全ての決定変数である。例えば、第2決定変数群は、確定済み期間における各発電機の出力値などを示す。第2決定変数群は、暫定解決定問題において決定対象となる。
A specific example of some determinants is the first coefficient of determination variables.
The first determinant group is a determinant variable group indicating whether or not each generator is operating (operating or stopping) during the fixed period. A set of determinants is one or more determinants.
That is, the value of each decision variable included in the second decision variable group is not fixed.
The second determinant group is all the determinants that are not included in the first determinant group in the plurality of determinants for the fixed period. For example, the second coefficient of determination variable group indicates the output value of each generator in the fixed period. The second decision variable group is the decision target in the provisional solution decision problem.
 値が固定される決定変数が多いほど、求解速度が向上するが、近似精度が低下する。つまり、求解速度と近似制度とはトレードオフの関係にある。
 最適化問題において一般に決定が難しいと判断される決定変数の値を固定することで、求解速度を効果的に向上させることができる。
 例えば、離散変数は、最適化問題において一般に決定が難しいと判断される。離散変数は、離散値が設定される決定変数である。また、多くの制約条件の影響を受けている決定変数なども、最適化問題において一般に決定が難しいと判断される。
The more determinants whose values are fixed, the faster the solution, but the lower the approximation accuracy. In other words, there is a trade-off between the solution speed and the approximation system.
By fixing the value of the decision variable, which is generally judged to be difficult to determine in the optimization problem, the solution speed can be effectively improved.
For example, discrete variables are generally found to be difficult to determine in optimization problems. A discrete variable is a determinant for which a discrete value is set. In addition, it is generally judged that it is difficult to determine a decision variable that is affected by many constraints in an optimization problem.
 固定処理(1)の説明を続ける。
 暫定解決定問題生成部122は、未確定期間に対する全ての決定変数のそれぞれの値を固定しない。
The description of the fixing process (1) will be continued.
The provisional solution determination problem generation unit 122 does not fix the respective values of all the decision variables for the undetermined period.
 但し、未確定期間に対する全ての決定変数の中に一意決定変数が含まれる場合、暫定解決定問題生成部122は、未確定期間に対する一意決定変数の値を一意決定値に固定してもよい。
 一意決定変数は、確定済み期間の運転計画に応じて一意に値が定まる決定変数である。一意決定値は、確定済み期間の運転計画に応じて一意に定まる値である。
 この場合、暫定解決定問題生成部122は、基準問題に含まれる複数の決定変数から未確定期間に対する全ての決定変数を選択し、未確定期間に対する全ての決定変数から一意決定変数を選択する。そして、暫定解決定問題生成部122は、選択した一意決定変数の値を一意決定値に固定する。
However, when the unique decision variable is included in all the decision variables for the undetermined period, the provisional solution determination problem generation unit 122 may fix the value of the unique decision variable for the undetermined period to the unique decision value.
The unique decision variable is a decision variable whose value is uniquely determined according to the operation plan of the fixed period. The unique determination value is a value that is uniquely determined according to the operation plan of the fixed period.
In this case, the provisional solution decision problem generation unit 122 selects all the decision variables for the undetermined period from the plurality of decision variables included in the reference problem, and selects the unique decision variables from all the decision variables for the undetermined period. Then, the provisional solution determination problem generation unit 122 fixes the value of the selected unique determination variable to the unique determination value.
 一意決定変数の一例を説明する。
 発電機特性データ214は各発電機の最小連続停止時間を示す。ある発電機の最小連続停止時間は6時間である。この発電機が確定済み期間の最終時刻から1時間前に停止状態になった場合、未確定期間の先頭時刻から少なくとも5時間、この発電機は停止しなければならない。したがって、この発電機の稼働の有無を示す決定変数のうち未確定期間の先頭時刻から始まる5時間に対する決定変数が一意決定変数となる。また、停止を意味する値が一意決定値となる。最小連続稼働時間に関しても同様のことが言える。
An example of the unique decision variable will be described.
The generator characteristic data 214 indicates the minimum continuous down time of each generator. The minimum continuous downtime for a generator is 6 hours. If the generator is shut down one hour before the last time of the fixed period, the generator must be shut down for at least five hours from the beginning of the unfixed period. Therefore, among the determinants indicating whether or not the generator is operating, the determinants for 5 hours starting from the start time of the undetermined period are the unique determinants. In addition, the value meaning stop is the unique determination value. The same can be said for the minimum continuous operation time.
 一意決定変数の別の例を説明する。
 複数台の発電機のうちの少なくともいずれかが複数の起動パターンを有する。発電機特性データ214がこれらの発電機の複数の起動パターンを示す。起動パターンは、起動前の停止時間の長さに依存する。一般には、起動前の停止時間が長いほど、起動パターンにおける起動速度が遅くなる。起動パターンを考慮した運転計画を立てる場合、基準問題は、起動パターンを決定するための決定変数を有する。ある発電機が確定済み期間に一定時間停止した後に未確定期間に起動する場合、起動パターンが確定される。したがって、この発電機の起動パターンを示す決定変数が一意決定変数となる。また、この発電機が停止した一定時間の長さに対応する起動パターンを識別する値が一意決定値となる。
Another example of the unique decision variable will be described.
At least one of the plurality of generators has a plurality of activation patterns. Generator characteristic data 214 shows a plurality of activation patterns of these generators. The startup pattern depends on the length of the downtime before startup. In general, the longer the stop time before startup, the slower the startup speed in the startup pattern. When making an operation plan considering the start-up pattern, the reference problem has a coefficient of determination for determining the start-up pattern. When a generator is stopped for a certain period of time in a fixed period and then started in an undetermined period, the start pattern is fixed. Therefore, the decision variable indicating the start pattern of this generator is the unique decision variable. Further, a value that identifies a start-up pattern corresponding to the length of time that the generator has stopped is a unique determination value.
 一意決定変数の別の例を説明する。
 発電機特性データ214が各発電機の複数の出力帯を示す。各出力帯は、出力帯下限値から出力帯上限値までの出力範囲である。出力帯下限値は出力帯における出力値の下限であり、出力帯上限値は出力帯における出力値の上限である。複数の出力帯は連続し、連続する2つの出力帯は境界値を除いて重複しない。ある出力帯から次の出力帯へ出力値を移行させるためには、出力値の大きさが境界値と同じ大きさで一定時間保持されなければならない。このような制約条件を考慮した運転計画を立てる場合、基準問題は、各時刻において出力値が属する出力帯を示す決定変数を有する。一方、各発電機は出力変化速度制約を有する。発電機特性データ214は各発電機の出力変化速度制約を示す。ある時刻における出力値が定まると、その出力値は出力変化速度制約の範囲内でしか変化させられない。そのため、時刻毎に到達し得ない出力帯が定まる場合がある。したがって、各時刻において出力値が属する出力帯を示す決定変数が一意決定変数となる。また、各時刻において出力値が到達し得る出力帯を識別する値が一意決定値となる。
Another example of the unique decision variable will be described.
The generator characteristic data 214 shows a plurality of output bands of each generator. Each output band is an output range from the lower limit of the output band to the upper limit of the output band. The lower limit of the output band is the lower limit of the output value in the output band, and the upper limit of the output band is the upper limit of the output value in the output band. A plurality of output bands are continuous, and two consecutive output bands do not overlap except for a boundary value. In order to shift the output value from one output band to the next, the size of the output value must be kept at the same size as the boundary value for a certain period of time. When making an operation plan in consideration of such constraints, the reference problem has a decision variable indicating the output band to which the output value belongs at each time. On the other hand, each generator has an output change rate constraint. The generator characteristic data 214 shows the output change rate constraint of each generator. Once the output value at a certain time is determined, the output value can be changed only within the range of the output change speed constraint. Therefore, the output band that cannot be reached may be determined for each time. Therefore, the decision variable indicating the output band to which the output value belongs at each time becomes the unique decision variable. Further, a value that identifies an output band that the output value can reach at each time is a unique determination value.
 緩和処理(2)の詳細を説明する。
 ステップS122において、未確定期間は確定対象期間と緩和対象期間とに分割される。
 ステップS124において、確定対象期間に対する暫定解は確定対象期間における最終的な運転計画となる。暫定解は、暫定解決定問題を解くことによって得られる解である。
 そのため、ステップS123において、暫定解決定問題生成部122は、確定対象期間に対する全ての制約条件を緩和しない。これにより、最終的な運転計画の実行可能性が担保される。一方、暫定解決定問題生成部122は、確定対象期間の後の期間(緩和対象期間)に対する制約条件を緩和する。例えば、暫定解決定問題生成部122は、一部制約条件を無視する。
The details of the mitigation process (2) will be described.
In step S122, the undetermined period is divided into a fixed period and a mitigation target period.
In step S124, the provisional solution for the confirmation target period becomes the final operation plan in the confirmation target period. The provisional solution is a solution obtained by solving the provisional solution decision problem.
Therefore, in step S123, the provisional solution determination problem generation unit 122 does not relax all the constraints on the determination target period. This ensures the feasibility of the final operation plan. On the other hand, the provisional solution determination problem generation unit 122 relaxes the constraint condition for the period after the determination target period (relaxation target period). For example, the provisional solution determination problem generation unit 122 ignores some constraints.
 しかし、緩和対象期間に対する制約条件の中に、長時間に跨る制約条件が含まれる場合がある。
 例えば、長時間に跨る制約条件とは、最小連続稼働時間に基づく制約、最小連続停止時間に基づく制約、出力帯移行時の出力保持制約、および、停止時間に基づく起動パターンの制約などである。
 長時間に跨る制約条件が存在する場合、早い時刻の段階で適切に運転計画が決定されなければ、各時刻における各発電機の出力値を所望の値に調整することができない。その結果、最終的な運転計画が需給バランス制約に違反することになり兼ねない。
However, the constraints on the relaxation target period may include constraints over a long period of time.
For example, the constraints over a long period of time include a constraint based on the minimum continuous operation time, a constraint based on the minimum continuous stop time, an output retention constraint at the time of transition to the output band, and a constraint on a start pattern based on the stop time.
When there are constraints over a long period of time, the output value of each generator at each time cannot be adjusted to a desired value unless the operation plan is appropriately determined at an early stage. As a result, the final operation plan may violate the supply-demand balance constraint.
 そのため、暫定解決定問題生成部122は、緩和対象期間の前半に対する制約条件の緩和の度合いを、緩和対象期間の後半に対する制約条件の緩和の度合いよりも小さくしてよい。例えば、暫定解決定問題生成部122は、緩和対象期間の後半に対する制約条件を緩和するが、緩和対象期間の前半に対する制約条件を緩和しない。
 これにより、長時間に跨る制約条件を適切に考慮することができる。
Therefore, the provisional solution determination problem generation unit 122 may make the degree of relaxation of the constraint condition for the first half of the relaxation target period smaller than the degree of relaxation of the constraint condition for the latter half of the relaxation target period. For example, the provisional solution determination problem generation unit 122 relaxes the constraint condition for the latter half of the relaxation target period, but does not relax the constraint condition for the first half of the relaxation target period.
As a result, the constraints over a long period of time can be appropriately considered.
 そこで、暫定解決定問題生成部122は、以下のように動作する。
 まず、暫定解決定問題生成部122は、緩和対象期間を第1緩和対象期間と第2緩和対象期間とに分割する。
 第1緩和対象期間は、緩和対象期間の先頭時刻から始まる期間である。
 第2緩和対象期間は、第1緩和対象期間の後の期間である。
 そして、暫定解決定問題生成部122は、第1緩和対象期間に対する制約条件の緩和の度合いを第2緩和対象期間に対する制約条件の緩和の度合いよりも低くする。
 例えば、暫定解決定問題生成部122は、第1緩和対象期間に対する制約条件のうち長時間に跨る制約条件を緩和せず、第2緩和対象期間に対する制約条件のうち長時間に跨る制約条件を緩和する。長時間とは、予め決められた基準時間よりも長い時間である。
 例えば、暫定解決定問題生成部122は、第1緩和対象期間に対する制約条件の緩和の度合いをゼロにする。
Therefore, the provisional solution determination problem generation unit 122 operates as follows.
First, the provisional solution determination problem generation unit 122 divides the relaxation target period into a first relaxation target period and a second relaxation target period.
The first mitigation target period is a period starting from the beginning time of the mitigation target period.
The second mitigation target period is the period after the first mitigation target period.
Then, the provisional solution determination problem generation unit 122 sets the degree of relaxation of the constraint condition for the first relaxation target period to be lower than the degree of relaxation of the constraint condition for the second relaxation target period.
For example, the provisional solution determination problem generation unit 122 does not relax the constraint condition for the first relaxation target period over a long period of time, and relaxes the constraint condition for the second relaxation target period over a long period of time. To do. A long time is a time longer than a predetermined reference time.
For example, the provisional solution determination problem generation unit 122 sets the degree of relaxation of the constraint condition to the first relaxation target period to zero.
 第1緩和対象期間の長さの決め方、すなわち、第1緩和対象期間と第2緩和対象期間との分け方について説明する。
 例えば、暫定解決定問題生成部122は、長時間に跨る制約条件のうち最も長い時間に跨る制約条件における時間の長さを第1緩和対象期間の長さに決定する。
 長時間に跨る制約条件が最小連続稼働時間に関する制約であれば、最小連続稼働時間が第1緩和対象期間の長さの候補となる。
 長時間に跨る制約条件が最小連続停止時間に関する制約であれば、最小連続停止時間が第1緩和対象期間の長さの候補となる。
 長時間に跨る制約条件が出力帯移行時の出力保持制約であれば、出力の必要保持期間が第1緩和対象期間の長さの候補となる。
 長時間に跨る制約条件が起動パターンに関する制約であれば、起動パターンを決定する最も長い発電機停止時間が第1緩和対象期間の長さの候補となる。
 このように第1緩和対象期間の長さを決定することで、長時間に跨る制約条件の全てを正しく考慮して暫定解を導出することが可能となる。
A method of determining the length of the first mitigation target period, that is, a method of dividing the first mitigation target period and the second mitigation target period will be described.
For example, the provisional solution determination problem generation unit 122 determines the length of time in the constraint condition over the longest time among the constraints over a long time as the length of the first relaxation target period.
If the constraint condition over a long period of time is a constraint related to the minimum continuous operating time, the minimum continuous operating time is a candidate for the length of the first relaxation target period.
If the constraint condition over a long period of time is a constraint related to the minimum continuous stop time, the minimum continuous stop time is a candidate for the length of the first relaxation target period.
If the constraint condition over a long period of time is the output retention constraint at the time of transition to the output band, the required output retention period is a candidate for the length of the first relaxation target period.
If the constraint condition over a long period of time is a constraint related to the start pattern, the longest generator stop time for determining the start pattern is a candidate for the length of the first relaxation target period.
By determining the length of the first relaxation target period in this way, it is possible to derive a provisional solution by correctly considering all the constraints over a long period of time.
 つまり、暫定解決定問題生成部122は、基準問題に含まれる複数の制約条件のうちの時間制約によって規定される時間長に基づいて、第1緩和対象期間の長さを決定する。
 時間制約は、確定対象期間と緩和対象期間とに跨る時間に対する制約条件である。
 具体的には、暫定解決定問題生成部122は、複数の時間制約によって規定される複数の時間長のうち最も長い時間長に基づいて、第1緩和対象期間の長さを決定する。
That is, the provisional solution determination problem generation unit 122 determines the length of the first relaxation target period based on the time length defined by the time constraint among the plurality of constraint conditions included in the reference problem.
The time constraint is a constraint condition for the time spanning the fixed period and the relaxed period.
Specifically, the provisional solution determination problem generation unit 122 determines the length of the first relaxation target period based on the longest time length among the plurality of time lengths defined by the plurality of time constraints.
 図7に、計画期間の構成を示す。
 計画期間は、確定済み期間と未確定期間とに分割される。
 未確定期間は、確定対象期間と緩和対象期間とに分割される。
 緩和対象期間は、第1緩和対象期間と第2緩和対象期間とに分割される。
FIG. 7 shows the structure of the planning period.
The planning period is divided into a fixed period and an unfixed period.
The undetermined period is divided into a fixed period and a mitigation period.
The mitigation target period is divided into a first mitigation target period and a second mitigation target period.
***実施例の説明***
 運転計画システム200は、複数台の利用者端末210を備えてもよい。
 運転計画装置100が利用者端末210を兼ねてもよい。
 入力データ211は、他システムから運転計画装置100へ自動的に入力されてもよい。
*** Explanation of Examples ***
The operation planning system 200 may include a plurality of user terminals 210.
The operation planning device 100 may also serve as the user terminal 210.
The input data 211 may be automatically input from another system to the operation planning device 100.
***実施の形態1の効果***
 実施の形態1により、複数台の発電機の運転計画を時刻の早い順に逐次的に確定させることできる。さらに、長時間に渡って課される制約条件の時間を考慮して、各制約条件の緩和の度合いを変えることができる。これにより、長時間に渡って課される制約条件を考慮しつつ、高速に運転計画を求めることができる。
*** Effect of Embodiment 1 ***
According to the first embodiment, the operation plans of a plurality of generators can be sequentially determined in the order of earliest time. Furthermore, the degree of relaxation of each constraint can be changed in consideration of the time of the constraint imposed over a long period of time. As a result, it is possible to obtain an operation plan at high speed while considering the constraints imposed over a long period of time.
***実施の形態1の補足***
 図8に基づいて、運転計画装置100のハードウェア構成を説明する。
 運転計画装置100は処理回路109を備える。
 処理回路109は、受付部110と運転計画部120と出力部130と最適化問題部140とを実現するハードウェアである。
 処理回路109は、専用のハードウェアであってもよいし、メモリ102に格納されるプログラムを実行するプロセッサ101であってもよい。
*** Supplement to Embodiment 1 ***
The hardware configuration of the operation planning device 100 will be described with reference to FIG.
The operation planning device 100 includes a processing circuit 109.
The processing circuit 109 is hardware that realizes the reception unit 110, the operation planning unit 120, the output unit 130, and the optimization problem unit 140.
The processing circuit 109 may be dedicated hardware or a processor 101 that executes a program stored in the memory 102.
 処理回路109が専用のハードウェアである場合、処理回路109は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。
 FPGAは、Field Programmable Gate Arrayの略称である。
When the processing circuit 109 is dedicated hardware, the processing circuit 109 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
ASIC is an abbreviation for Application Specific Integrated Circuit.
FPGA is an abbreviation for Field Programmable Gate Array.
 運転計画装置100は、処理回路109を代替する複数の処理回路を備えてもよい。複数の処理回路は、処理回路109の役割を分担する。 The operation planning device 100 may include a plurality of processing circuits that replace the processing circuit 109. The plurality of processing circuits share the role of the processing circuit 109.
 運転計画装置100において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。 In the operation planning device 100, some functions may be realized by dedicated hardware, and the remaining functions may be realized by software or firmware.
 このように、処理回路109はハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。 In this way, the processing circuit 109 can be realized by hardware, software, firmware, or a combination thereof.
 実施の形態は、好ましい形態の例示であり、本発明の技術的範囲を制限することを意図するものではない。実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。フローチャート等を用いて説明した手順は、適宜に変更してもよい。 The embodiments are examples of preferred embodiments and are not intended to limit the technical scope of the present invention. The embodiment may be partially implemented or may be implemented in combination with other embodiments. The procedure described using the flowchart or the like may be appropriately changed.
 運転計画装置100は、複数の装置で実現されてもよい。
 運転計画装置100の要素である「部」は、「処理」または「工程」と読み替えてもよい。
The operation planning device 100 may be realized by a plurality of devices.
The "part" which is an element of the operation planning device 100 may be read as "processing" or "process".
 100 運転計画装置、101 プロセッサ、102 メモリ、103 補助記憶装置、104 通信装置、105 入出力インタフェース、109 処理回路、110 受付部、120 運転計画部、121 期間分割部、122 暫定解決定問題生成部、123 部分確定部、130 出力部、140 最適化問題部、141 基準問題生成部、142 最適化問題計算部、190 記憶部、200 運転計画システム、201 運転計画データ、210 利用者端末、211 入力データ、212 電力需要データ、213 発電機構成データ、214 発電機特性データ、215 確定時間幅データ。 100 operation planning device, 101 processor, 102 memory, 103 auxiliary storage device, 104 communication device, 105 input / output interface, 109 processing circuit, 110 reception unit, 120 operation planning unit, 121 period division unit, 122 provisional solution determination problem generation unit , 123 partial determination unit, 130 output unit, 140 optimization problem unit, 141 standard problem generation unit, 142 optimization problem calculation unit, 190 storage unit, 200 operation planning system, 201 operation plan data, 210 user terminal, 211 input Data, 212 power demand data, 213 generator configuration data, 214 generator characteristic data, 215 fixed time width data.

Claims (11)

  1.  複数台の発電機の運転計画が対象とする計画期間のうち運転計画が確定済みでない未確定期間を、前記未確定期間の先頭時刻から始まり次に運転計画が確定される期間である確定対象期間と、前記確定対象期間の後の期間と、に分割する期間分割部と、
     前記複数台の発電機の運転計画を決定するための最適化問題である基準問題に含まれる複数の決定変数のうちの運転計画が確定済みである確定済み期間に対する決定変数の値を確定済みの値に固定して得られる最適化問題である暫定解決定問題を生成する暫定解決定問題生成部と、
     前記暫定解決定問題を解くことによって、前記暫定解決定問題に含まれる複数の決定変数のうちの前記確定対象期間に対する決定変数の解を新たな確定済みの値として求める部分確定部と、
    を備える運転計画装置。
    Of the planning periods targeted by the operation plans of multiple generators, the unconfirmed period in which the operation plan has not been finalized is the period in which the operation plan is finalized starting from the start time of the unfixed period. And the period after the period to be confirmed, and the period division part that divides into
    Of the plurality of decision variables included in the reference problem, which is an optimization problem for determining the operation plans of the plurality of generators, the value of the decision variable for the confirmed period for which the operation plan has been confirmed has been determined. A provisional solution decision problem generator that generates a provisional solution decision problem, which is an optimization problem obtained by fixing the value,
    By solving the provisional solution decision problem, a partial decision unit for obtaining the solution of the decision variable for the decision target period among the plurality of decision variables included in the provisional solution decision problem as a new fixed value, and
    An operation planning device equipped with.
  2.  前記暫定解決定問題生成部は、前記基準問題に含まれる複数の決定変数のうちの前記確定済み期間に対する全ての決定変数から一部の決定変数を選択し、選択した一部の決定変数のそれぞれの値を確定済みの値に固定する
    請求項1に記載の運転計画装置。
    The provisional solution decision problem generation unit selects some decision variables from all the decision variables for the fixed period among the plurality of decision variables included in the reference problem, and each of the selected decision variables. The operation planning apparatus according to claim 1, wherein the value of is fixed to a fixed value.
  3.  前記暫定解決定問題生成部は、前記基準問題に含まれる複数の決定変数のうちの前記未確定期間に対する全ての決定変数から前記確定済み期間の運転計画に応じて一意に値が定まる決定変数を選択し、選択した決定変数の値を一意に定まる値に固定する
    請求項1または請求項2に記載の運転計画装置。
    The provisional solution decision problem generation unit determines a decision variable whose value is uniquely determined according to the operation plan of the fixed period from all the decision variables for the undetermined period among the plurality of decision variables included in the reference problem. The operation planning apparatus according to claim 1 or 2, wherein the value of the selected decision variable is fixed to a uniquely determined value.
  4.  前記暫定解決定問題生成部は、前記基準問題に含まれる複数の制約条件のうち前記確定対象期間の後の期間である緩和対象期間に対する制約条件を緩和して前記暫定解決定問題を生成する
    請求項1から請求項3のいずれか1項に記載の運転計画装置。
    The provisional solution determination problem generation unit is claimed to generate the provisional solution determination problem by relaxing the constraint condition for the relaxation target period, which is the period after the confirmation target period, among the plurality of constraint conditions included in the reference problem. The operation planning device according to any one of claims 1 to 3.
  5.  前記暫定解決定問題生成部は、前記緩和対象期間を前記緩和対象期間の先頭時刻から始まる第1緩和対象期間と前記第1緩和対象期間の後の第2緩和対象期間とに分割し、前記第1緩和対象期間に対する制約条件の緩和の度合いを前記第2緩和対象期間に対する制約条件の緩和の度合いよりも低くする
    請求項4に記載の運転計画装置。
    The provisional solution determination problem generation unit divides the relaxation target period into a first relaxation target period starting from the start time of the relaxation target period and a second relaxation target period after the first relaxation target period. 1. The operation planning device according to claim 4, wherein the degree of relaxation of the constraint condition for the relaxation target period is lower than the degree of relaxation of the constraint condition for the second relaxation target period.
  6.  前記暫定解決定問題生成部は、前記第1緩和対象期間に対する制約条件のうち基準時間よりも長い時間に跨る制約条件を緩和せず、前記第2緩和対象期間に対する制約条件のうち前記基準時間よりも長い時間に跨る制約条件を緩和する
    請求項5に記載の運転計画装置。
    The provisional solution determination problem generation unit does not relax the constraint condition for the first relaxation target period over a time longer than the reference time, and is more than the reference time among the constraint conditions for the second relaxation target period. The operation planning device according to claim 5, wherein the constraint condition over a long period of time is relaxed.
  7.  前記暫定解決定問題生成部は、前記第1緩和対象期間に対する制約条件の緩和の度合いをゼロにする
    請求項5に記載の運転計画装置。
    The operation planning device according to claim 5, wherein the provisional solution determination problem generation unit sets the degree of relaxation of the constraint condition to zero with respect to the first relaxation target period.
  8.  前記暫定解決定問題生成部は、前記基準問題に含まれる複数の制約条件のうち前記確定済み期間と前記緩和対象期間とに跨る時間に対する制約条件である時間制約によって規定される時間長に基づいて、前記第1緩和対象期間の長さを決定する
    請求項5から請求項7のいずれか1項に記載の運転計画装置。
    The provisional solution determination problem generation unit is based on the time length defined by the time constraint, which is a constraint condition for the time spanning the fixed period and the relaxation target period among the plurality of constraints included in the reference problem. The operation planning device according to any one of claims 5 to 7, which determines the length of the first relaxation target period.
  9.  前記暫定解決定問題生成部は、複数の時間制約によって規定される複数の時間長のうち最も長い時間長に基づいて、前記第1緩和対象期間の長さを決定する
    請求項8に記載の運転計画装置。
    The operation according to claim 8, wherein the provisional solution determination problem generation unit determines the length of the first relaxation target period based on the longest time length among the plurality of time lengths defined by the plurality of time constraints. Planning equipment.
  10.  期間分割部が、複数台の発電機の運転計画が対象とする計画期間のうち運転計画が確定済みでない未確定期間を、前記未確定期間の先頭時刻から始まり次に運転計画が確定される期間である確定対象期間と、前記確定対象期間の後の期間とに分割し、
     暫定解決定問題生成部が、前記複数台の発電機の運転計画を決定するための最適化問題である基準問題に含まれる複数の決定変数のうちの運転計画が確定済みである確定済み期間に対する決定変数の値を確定済みの値に固定して得られる最適化問題である暫定解決定問題を生成し、
     部分確定部が、前記暫定解決定問題を解くことによって、前記暫定解決定問題に含まれる複数の決定変数のうちの前記確定対象期間に対する決定変数の解を新たな確定済みの値として求める
    運転計画方法。
    The period division section starts the undetermined period in which the operation plan is not finalized among the planning periods targeted by the operation plans of multiple generators from the beginning time of the undetermined period, and then the period in which the operation plan is finalized. It is divided into a period to be confirmed and a period after the period to be confirmed.
    For the fixed period in which the operation plan of the plurality of decision variables included in the reference problem, which is the optimization problem for determining the operation plans of the plurality of generators, is fixed by the provisional solution decision problem generation unit. Generate a provisional solution decision problem, which is an optimization problem obtained by fixing the value of the decision variable to a fixed value.
    An operation plan in which the partial decision unit solves the provisional solution decision problem to obtain the solution of the decision variable for the decision target period among the plurality of decision variables included in the provisional solution decision problem as a new confirmed value. Method.
  11.  複数台の発電機の運転計画が対象とする計画期間のうち運転計画が確定済みでない未確定期間を、前記未確定期間の先頭時刻から始まり次に運転計画が確定される期間である確定対象期間と、前記確定対象期間の後の期間と、に分割する期間分割処理と、
     前記複数台の発電機の運転計画を決定するための最適化問題である基準問題に含まれる複数の決定変数のうちの運転計画が確定済みである確定済み期間に対する決定変数の値を確定済みの値に固定して得られる最適化問題である暫定解決定問題を生成する暫定解決定問題生成処理と、
     前記暫定解決定問題を解くことによって、前記暫定解決定問題に含まれる複数の決定変数のうちの前記確定対象期間に対する決定変数の解を新たな確定済みの値として求める部分確定処理と、
    をコンピュータに実行させるための運転計画プログラム。
    Of the planning periods targeted by the operation plans of multiple generators, the unconfirmed period in which the operation plan has not been finalized is the period in which the operation plan is finalized starting from the start time of the unfixed period. And the period division process that divides into the period after the determination target period, and
    Of the plurality of decision variables included in the reference problem, which is an optimization problem for determining the operation plans of the plurality of generators, the value of the decision variable for the confirmed period for which the operation plan has been confirmed has been determined. A provisional solution decision problem generation process that generates a provisional solution decision problem, which is an optimization problem obtained by fixing the value, and
    By solving the provisional solution decision problem, a partial decision process for obtaining the solution of the decision variable for the decision target period among the plurality of decision variables included in the provisional solution decision problem as a new fixed value, and
    An operation planning program for a computer to execute.
PCT/JP2019/018884 2019-05-13 2019-05-13 Operation plan device, operation plan method, and operation plan program WO2020230226A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019007201.3T DE112019007201T5 (en) 2019-05-13 2019-05-13 Operations planning facility, operations planning process and operations planning program
JP2021519066A JP7016449B2 (en) 2019-05-13 2019-05-13 Operation planning device, operation planning method and operation planning program
PCT/JP2019/018884 WO2020230226A1 (en) 2019-05-13 2019-05-13 Operation plan device, operation plan method, and operation plan program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018884 WO2020230226A1 (en) 2019-05-13 2019-05-13 Operation plan device, operation plan method, and operation plan program

Publications (1)

Publication Number Publication Date
WO2020230226A1 true WO2020230226A1 (en) 2020-11-19

Family

ID=73289874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018884 WO2020230226A1 (en) 2019-05-13 2019-05-13 Operation plan device, operation plan method, and operation plan program

Country Status (3)

Country Link
JP (1) JP7016449B2 (en)
DE (1) DE112019007201T5 (en)
WO (1) WO2020230226A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032463A1 (en) * 2001-09-28 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Method for assisting in planning of power supply schedule
JP2014082932A (en) * 2014-01-14 2014-05-08 Fuji Electric Co Ltd Electric power system planning apparatus and electric power system planning method
JP2018129989A (en) * 2017-02-10 2018-08-16 株式会社東芝 Operation plan creation device, operation plan creation method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332032B2 (en) 2000-03-09 2002-10-07 株式会社日立製作所 Generator operation planning device, generator operation planning method, and storage medium storing generator operation planning program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032463A1 (en) * 2001-09-28 2003-04-17 Mitsubishi Denki Kabushiki Kaisha Method for assisting in planning of power supply schedule
JP2014082932A (en) * 2014-01-14 2014-05-08 Fuji Electric Co Ltd Electric power system planning apparatus and electric power system planning method
JP2018129989A (en) * 2017-02-10 2018-08-16 株式会社東芝 Operation plan creation device, operation plan creation method, and program

Also Published As

Publication number Publication date
DE112019007201T5 (en) 2021-12-30
JPWO2020230226A1 (en) 2021-09-27
JP7016449B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
TWI528168B (en) Microprocessor, method of operating microprocessor and computer program product
EP2469676A1 (en) Demand-prediction device, program, and recording medium
JP2012254007A (en) Method of solving unit commitment problem for set of generators
JP6515640B2 (en) Tidal current calculation apparatus, tidal current calculation method, and program
US10037063B2 (en) Semiconductor integrated circuit including a system controlling circuit
JP2017099148A (en) Power management system and power management method
TWI702558B (en) Operation plan preparation device, operation plan preparation method and storage medium
TW201610641A (en) Adjusting clock frequency
Fan et al. An edge-based formulation for combined-cycle units
JP6640025B2 (en) Distributed processing control system and distributed processing control method
Gupta et al. Elastic caching
JP2013258806A (en) Frequency control apparatus, power input/output apparatus, frequency control system, frequency control method, and program
Moradi et al. A semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem
JP2018106431A (en) Facility equipment operation plan generation apparatus and method
JP7016449B2 (en) Operation planning device, operation planning method and operation planning program
US11438142B1 (en) System and method for mining digital currency in a blockchain network
CN116050635A (en) Fuzzy random double-layer robust optimization method and device for energy storage frequency modulation transaction
CN116014725A (en) Method, device, equipment and storage medium for determining secondary frequency modulation power demand
Shin et al. Technique for transition energy-aware dynamic voltage assignment
JP6937969B2 (en) Operation planning device, operation planning method and operation planning program
CN114493331A (en) Power scheduling method and device for generator set, computer equipment and storage medium
KR102197767B1 (en) Integration of renewable energy and electric vehicle charging in smart cities
JP6067856B2 (en) Calculation device, calculation method, and program
TWI665570B (en) Power generation plan developing apparatus, power generation plan developing method, and recording medium
CN110554758A (en) computing device and method of operating a computing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519066

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19928504

Country of ref document: EP

Kind code of ref document: A1