WO2020228544A1 - 一种随机接入上行共享信道配置方法、随机信道接入方法和设备 - Google Patents

一种随机接入上行共享信道配置方法、随机信道接入方法和设备 Download PDF

Info

Publication number
WO2020228544A1
WO2020228544A1 PCT/CN2020/088002 CN2020088002W WO2020228544A1 WO 2020228544 A1 WO2020228544 A1 WO 2020228544A1 CN 2020088002 W CN2020088002 W CN 2020088002W WO 2020228544 A1 WO2020228544 A1 WO 2020228544A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
resource
unit
prach
units
Prior art date
Application number
PCT/CN2020/088002
Other languages
English (en)
French (fr)
Inventor
沈霞
朱颖
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2020228544A1 publication Critical patent/WO2020228544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a method for configuring an uplink shared channel in a random access process, a random channel access method, and network equipment and terminal equipment using the same.
  • the network will introduce a two-step random access process, that is, at least two signaling interactions between the terminal and the base station, called 2 -step RACH, an example is as follows: the first time: the terminal sends information MsgA to the base station, which is a preamble + PUSCH transmission structure, and the main function is to use the preamble and DMRS to estimate the channel and TA; the second time: the base station sends information MsgB to the terminal, Mainly used to indicate random access TA, C-RNTI allocation, authorization of uplink data transmission, and random access contention conflict resolution.
  • 2 -step RACH an example is as follows: the first time: the terminal sends information MsgA to the base station, which is a preamble + PUSCH transmission structure, and the main function is to use the preamble and DMRS to estimate the channel and TA; the second time: the base station sends information MsgB to the terminal, Mainly used to indicate random access TA, C-RNTI allocation, authorization of uplink
  • the specific allocation position and random access opportunity (RO, the time-frequency resource position of the preamble in MsgA) are configured for the transmission resource opportunities (PO, PUSCH resource occasions, that is the time-frequency resource position occupied by PUSCH) in MsgA
  • the relationship is undetermined.
  • the PO resource overhead is the largest, and the fixed position may cause the corresponding PO to be a downlink time slot and not applicable.
  • the relative position between the RO and the PO corresponding to the preamble sequence ID can be configured semi-statically, but there is no solution for the configuration period and the specific configuration of the relative position of the RO and PO within a configuration period. If the preamble sequence ID corresponding to each RO is individually configured with the relative position of the PO, higher signaling overhead will be introduced.
  • This application proposes a random access uplink shared channel configuration method, random channel access method and equipment to solve the MsgA for 2-step RACH, and solve the problem between RO and preamble ID in the system and the DMRS configuration adopted by PO and PUSCH.
  • the problem of the mapping relationship enables the base station to further determine the DMRS configuration adopted by the PO and PUSCH according to the detected RO and preamble sequence ID through the mapping relationship.
  • an embodiment of the present application proposes a random access uplink shared channel configuration method, which includes the following steps:
  • PRACH resource units contains one RO and one preamble sequence ID
  • PUSCH resource unit contains one PO and one DMRS configuration
  • the configuration method is used for network equipment to send downlink control signaling and or high-level signaling, which respectively include at least one of the following indication information: the time-frequency domain resource location of each type of PO, The relative position relationship between the random access channel opportunity unit and the PO, and the corresponding relationship between the PRACH resource unit and the PUSCH resource unit.
  • the configuration method is used for terminal equipment to receive downlink control signaling, high-level signaling, and/or write information, which respectively include at least one of the following indication information: Time-frequency domain resource location, the relative location relationship between the random access channel opportunity unit and the PO, and the correspondence between the PRACH resource unit and the PUSCH resource unit.
  • the random access channel opportunity unit includes one or more time domain ROs, PRACH time slots or PRACH subframes in the time domain, and includes one or more frequency domain ROs in the frequency domain;
  • the uplink shared channel The opportunity unit includes one or more time domain POs, PUSCH slots or PUSCH subframes in the time domain, and one or more frequency domain POs in the frequency domain.
  • the PO time domain format is indicated by time domain PUSCH configuration information, and or the PO frequency domain format is indicated by frequency domain PUSCH configuration information.
  • each group of random access channel opportunity units and a group of uplink shared channel opportunity units is expressed as:
  • the random access channel opportunity units corresponding to the nth type of PO are G groups, and each group contains M continuous time domain random access channel opportunity units;
  • the positions of the g-th group of random access channel opportunity units correspond to the positions of the g-th group of uplink shared channel opportunity units;
  • n, G, M, Q, g are integers greater than or equal to 1; the value range of g is [1, G].
  • each group of random access channel opportunity unit and a group of uplink shared channel opportunity unit can also be expressed as: each group of random access channel opportunity unit is in the time domain with the uplink shared channel opportunity unit.
  • the interval corresponds to the frequency domain interval.
  • the PRACH resource units are sorted according to at least one of the following ways: 1 RO is sorted according to the preamble sequence ID contained; and time-domain multiplexed RO Sort by their frequency domain resource ID; PRACH time slots are sorted by RO time domain resource ID; sort by PRACH time slots.
  • the PUSCH resource units are sorted according to at least one of the following methods: 1 PO is sorted by the corresponding DMRS configuration index; time-domain multiplexed PO is sorted by Its frequency domain resource ID is sorted; PUSCH time slot is sorted by PO time domain resource ID; it is sorted by PUSCH time slot.
  • multiple PRACH resource units correspond to one PUSCH resource unit.
  • this application also proposes a random channel access method for network equipment, including the following steps:
  • Receive RO detect the preamble sequence, and obtain the preamble sequence ID
  • this application also proposes a random channel access method for terminal equipment, including the following steps:
  • PUSCH and DMRS are sent.
  • this application also proposes a network device used in the method described in any of the embodiments of this application, including a first configuration module, a first sending module, and a first receiving module;
  • the first configuration module is configured to write at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative positional relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least The correspondence between a PRACH resource unit and a PUSCH resource unit;
  • the first sending module is configured to send at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative positional relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least one Correspondence between PRACH resource units and PUSCH resource units;
  • the first receiving module is configured to: receive RO, detect the preamble sequence, and obtain the preamble sequence ID; determine the resource location of PUSCH according to the relative position relationship between the random access channel opportunity unit and the uplink shared channel opportunity unit; The corresponding relationship between the PRACH resource unit and the PUSCH resource unit is to receive PUSCH and DMRS.
  • this application also proposes a terminal device used in the method described in any one of the embodiments of this application, including a second sending module, and further including a second receiving module and or a second configuration module;
  • the second configuration module is used to write at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative positional relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least The correspondence between a PRACH resource unit and a PUSCH resource unit;
  • the second receiving module is configured to receive at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative position relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least one Correspondence between PRACH resource units and PUSCH resource units;
  • the second sending module is configured to: send RO; determine the resource location of PUSCH according to the relative position relationship between the random access channel opportunity unit and the uplink shared channel opportunity unit; according to the relationship between the PRACH resource unit and the PUSCH resource unit Correspondence, sending PUSCH and DMRS.
  • the base station will further determine the DMRS configuration adopted by the PO and PUSCH according to the detected RO and the preamble sequence ID through the mapping relationship, thereby realizing the 2-step RACH PUSCH detection.
  • the terminal side can further determine the DMRS configuration adopted by the PO and PUSCH according to the selected RO and the preamble sequence ID through the mapping relationship, so as to realize the generation of the PUSCH.
  • the solution of the present invention can reduce the time interval difference between different ROs and corresponding POs in a PO configuration period, so that the amount of PO resource overhead matches the corresponding amount of RO resource overhead; the mapping method of the present invention does not need to Each preamble sequence ID configures the relative position of RO and PO for signaling indication, reducing the corresponding signaling overhead.
  • Figure 1 is a flowchart of an embodiment of a random access uplink shared channel configuration method according to this application;
  • Figure 2 is a schematic diagram of the time-frequency domain position of PO
  • FIG. 3 is a schematic diagram of the positional relationship between the uplink shared channel opportunity unit and the random access channel opportunity unit including one type of PO;
  • Figure 4 is a schematic diagram of the positional relationship between the uplink shared channel opportunity unit and the random access channel opportunity unit containing multiple types of PO;
  • Figure 5 is a schematic diagram of the correspondence between PRACH resource units and PUSCH resource units
  • Figure 6 is a flowchart of an embodiment of a random channel access method for network equipment
  • FIG. 7 is a flowchart of an embodiment of a random channel access method for terminal equipment
  • Figure 8 is a schematic diagram of an embodiment of a network device and terminal device of this application.
  • the present invention implements the mapping relationship design in two steps.
  • the first step is to configure the PO and the relative position relationship between the RO and the PO
  • the second step is to design the mapping method between the RO and the preamble sequence ID and the DMRS configuration adopted by the PO and PUSCH.
  • the base station further determines the DMRS configuration adopted by the PO and PUSCH according to the detected RO and preamble sequence ID through the mapping relationship, so as to realize 2-step RACH PUSCH detection.
  • the terminal side further determines the DMRS configuration adopted by the PO and PUSCH according to the selected RO and the preamble sequence ID through the mapping relationship, so as to realize PUSCH generation.
  • Fig. 1 is a flowchart of an embodiment of a random access uplink shared channel configuration method according to this application.
  • the embodiment of the present application proposes a random access uplink shared channel configuration method, which includes the following steps 11 to 13:
  • Step 11 Determine the time-frequency resource location of each type of PO in the PUSCH configuration period.
  • the time-domain PUSCH configuration information is used to indicate the PO time-domain format
  • the frequency-domain PUSCH configuration information is used to indicate the PO frequency-domain format.
  • the embodiment of FIG. 2 contains details, and the time-domain PO format includes at least One of the following information indications: occupied subframe index, time slot index, symbol index of the start of the PO in the time slot, the number of time domain POs contained in a time slot, and the length of time domain symbols occupied by the PO; the frequency domain PO
  • the format includes at least one of the following information indications: the number of RBs occupied by one PO, and the total frequency band position occupied by POs that reuse the same time domain resources.
  • Step 12 Determine the relative position relationship between each group of random access channel opportunity units in the PRACH configuration period corresponding to the PUSCH configuration period and a group of uplink shared channel opportunity units in the PUSCH configuration period, where the random access channel
  • the opportunity unit is a resource block including RO
  • the uplink shared channel opportunity unit is a resource block including PO.
  • the random access channel opportunity unit includes one or more time domain ROs, PRACH time slots or PRACH subframes in the time domain, and includes one or more frequency domain ROs in the frequency domain; and one time domain RO
  • One or more ROs can be multiplexed in the frequency domain, that is, one or more ROs occupy the same time domain resources but occupy different frequency domain resources;
  • a PRACH slot can contain one or more time domain ROs, and one PRACH sub
  • the frame may contain one or more PRACH slots.
  • the resource positions of the set of random access channel opportunity units in the time domain may be the time domain resource positions occupied by consecutive M (M is an integer greater than or equal to 1) random access channel opportunity units in the time domain;
  • M is an integer greater than or equal to 1 random access channel opportunity units in the time domain;
  • the above resource location may be the same as the frequency band occupied by one SSB (SS/PBCH block, synchronous broadcast signal block) or one SSB occupies part of the bandwidth of the frequency band or other locations.
  • the frequency domain resource location in the present invention is not specifically limited. After determining the time-frequency resource location of a group of random access channel opportunity units, the RO included in the group of random access channel opportunity units is determined accordingly.
  • the uplink shared channel opportunity unit includes one or more time domain POs, PUSCH time slots or PUSCH subframes in the time domain, and includes one or more frequency domain POs in the frequency domain.
  • the PUSCH configuration period may be N (N is an integer greater than or equal to 1) times the PRACH configuration period, and the value of N may be set as a fixed constant or semi-statically configurable.
  • N is an integer greater than or equal to 1
  • the base station side is triggered to update the PO resource configuration and the set of random access opportunity units and one Group uplink shared channel opportunity unit relative position relationship indication information.
  • one PRACH configuration period corresponds to one PUSCH configuration period.
  • the length of the PUSCH configuration period is N (N>1) PRACH configuration period lengths, N consecutive PRACH configuration periods correspond to one PUSCH configuration period.
  • the POs to be configured in one PUSCH configuration cycle may include multiple types.
  • a type of PO may correspond to a transmission packet size, an MCS configuration, a RB number configuration, or a PUSCH repeated transmission number, etc.
  • the specific PO type is determined according to the system configuration.
  • the PUSCH configuration cycles corresponding to different types of POs can share one configuration cycle, or use different configuration cycles. For example, when the system configuration groups preamble sequences, and different groups of preamble sequences correspond to different types of PO, the preamble sequences carried on the same RO belong to different groups and will be mapped to different types of PO. Multiple types of PO are configured corresponding to the above, and the PUSCH configuration cycles corresponding to different types of PO can share one configuration cycle.
  • the PUSCH configuration periods corresponding to different types of POs can be configured to be different. If they are different, the one PUSCH configuration period represents the PUSCH configuration period of one type of PO, that is, only one type of PO is configured in one PUSCH configuration period. If they are the same, the same PUSCH configuration period is shared with different types of POs, that is, a PUSCH configuration period includes multiple types of PO configurations. Further, the ROs of the different groups may be configured with different PRACH configuration periods.
  • the group of random access channel opportunity units represents a group of random access channel opportunity units corresponding to the same type of PO.
  • the uplink shared channel opportunity unit is composed of one or more POs of the same type.
  • each group of random access channel opportunity units and a group of uplink shared channel opportunity units is expressed as:
  • the random access channel opportunity unit corresponding to the nth type of PO is G group, and each group contains M continuous time domain random access channel opportunity units; it will contain the nth type
  • the uplink shared channel opportunity unit of PO is divided into G groups, each group contains Q continuous time domain uplink shared channel opportunity units; the position of the gth group of random access channel opportunity units corresponds to the position of the gth group of uplink shared channel opportunity units ;
  • n, G, M, Q, g are integers greater than or equal to 1; the value range of g is [1, G].
  • each group of random access channel opportunity units and a group of uplink shared channel opportunity units can also be expressed as:
  • Each group of random access channel opportunity units corresponds to the time domain interval and frequency domain interval where the uplink shared channel opportunity unit is located.
  • the PRACH configuration period corresponding to a PUSCH configuration period includes G (G is an integer greater than or equal to 1) groups of random access channel opportunity units, for each group of random access channel opportunity units, further indicate where the corresponding uplink shared channel opportunity unit is located Time domain interval [t1, t2] and frequency domain position interval [f1, f2].
  • the network equipment including the base station and the terminal according to the instructions to compare the PO contained in the interval [t1, t2] of the time domain position and the interval [f1, f2] of the frequency domain position with the RO contained in the random access channel opportunity unit of the corresponding group. correspond.
  • the starting position t1 of the time domain position interval can be indicated by using the starting time domain position t0 of the random access channel opportunity unit of the corresponding group plus a time domain offset (time_offset).
  • the starting position f1 of the frequency domain position interval can be indicated by using the starting frequency domain position f0 of the random access channel opportunity unit of the corresponding group plus a frequency domain offset (frequency_offset).
  • the specific interval indication method is not limited in the present invention.
  • the time and frequency domain position interval indication information corresponding to each group of random access channel opportunity units and uplink shared channel opportunity units may be used as part of the resource configuration information of the uplink shared channel opportunity.
  • the time domain interval indication information serves as the PO resource time domain indication information
  • the frequency domain interval knowledge information serves as the PO resource frequency domain indication information.
  • step 12 can also be implemented prior to step 11, that is, first determine the PRACH configuration period corresponding to the PUSCH configuration period for each group of random access channel opportunity units and the corresponding PUSCH configuration period The relative position relationship of a group of uplink shared channel opportunity units in, and then generate time-frequency position information of the uplink shared channel opportunity unit in the PUSCH configuration period according to the relative position information.
  • a so-called PUSCH configuration period describes a time window, and the purpose is to map a PRACH resource unit in a time window with a PUSCH resource unit in a corresponding time window.
  • the corresponding PUSCH configuration period time window is determined. For example, when the PUSCH configuration period is N PRACH configuration period length, the position of the uplink shared channel opportunity unit corresponding to the random access opportunity unit in the N PRACH configuration periods is determined according to the relative position relationship, and the PUSCH configuration period time window is determined .
  • Step 13 Determine the correspondence between PRACH resource units and PUSCH resource units, where one PRACH resource unit includes one RO and one preamble sequence ID, and one PUSCH resource unit includes one PO and one Kind of DMRS configuration.
  • the DMRS configuration includes at least one type of information such as DMRS port ID configuration and DMRS generation sequence ID.
  • the DMRS generation sequence ID information indicates a kind of related ID information used in the DMRS generation process, such as a DMRS scrambling ID or a DMRS root sequence ID.
  • the PRACH resource units are sorted according to at least one of the following methods: 1 RO is sorted according to the preamble sequence ID contained; time-domain multiplexed ROs are sorted by their frequency domain resource IDs; PRACH time slots are sorted by RO time domain resource IDs; and PRACH time slots are sorted.
  • sequence of traversing PRACH resource units includes the following steps: 1) 1 RO is sorted by the preamble sequence ID contained; 2) Time domain multiplexed ROs are sorted by their frequency domain resource ID; 3) PRACH Time slots are sorted by RO time domain resource ID; 4) sorted by PRACH time slots.
  • the ordering of the PRACH resource units according to at least one of the following means means that the 1) 2) 3) 4) steps can be arranged arbitrarily to realize the traversal of the PRACH resource units.
  • the PUSCH resource units are sorted according to at least one of the following ways: 1 PO is sorted by the corresponding DMRS configuration index; time-domain multiplexed PO Sort by their frequency domain resource ID; PUSCH time slots are sorted by PO time domain resource ID; sort by PUSCH time slots.
  • the sequence of traversing PUSCH resource units includes the following steps: 1) 1 PO is sorted by the corresponding DMRS configuration index; 2) Time-domain multiplexed POs are sorted by their frequency domain resource ID; 3) PUSCH time Slots are sorted by PO time domain resource ID; 4) Sorted by PUSCH time slot.
  • the ordering of the PUSCH resource units according to at least one of the following means means that the 1) 2) 3) 4) steps can be arranged arbitrarily to realize the traversal of the PUSCH resource units.
  • the traversal sequence in the process of mapping between PRACH resource units and PUSCH resource units is designed as:
  • PRACH resource unit traversal sequence traverse the preamble sequence ID in ascending order on an RO; traverse the frequency domain resource ID of the RO in ascending order in the time-domain multiplexed RO; traverse the time domain resource ID of the RO in ascending order in a PRACH time slot; in ascending order Traverse the PRACH time slot.
  • Corresponding PUSCH resource unit traversal sequence a PO traverses the DMRS configuration index in ascending order; time-domain multiplexed PO traverses the frequency domain resource ID of the PO in ascending order; a PUSCH time slot traverses the time domain resource ID of the PO in ascending order; traverses in ascending order PUSCH time slot.
  • the traversal sequence of the corresponding PUSCH resource unit is related to the DMRS configuration defined in the PUSCH resource unit. If only the DMRS port is included in the DMRS configuration, the DMRS configuration index corresponds to the DMRS port ID. If the DMRS configuration only contains the DMRS generation sequence ID, the DMRS configuration index corresponds to the DMRS generation sequence ID.
  • each index value of the DMRS configuration index corresponds to a DMRS port ID and a DMRS generation sequence ID; accordingly, the step "traverse the DMRS configuration index in ascending order" is split into the first Traverse the DMRS port ID and then traverse the DMRS to generate the sequence ID, or traverse the DMRS scrambling sequence ID first and then traverse the DMRS port ID, which is equivalent to traversing the DMRS configuration index.
  • multiple PRACH resource units correspond to one PUSCH resource unit.
  • P P integer greater than or equal to 1
  • each traversing P PRACH resource units corresponds to traversing 1 PUSCH resource unit.
  • steps 11-13 as an embodiment of the further optimization of the configuration method, it is used for network equipment to send downlink control signaling and or high-level signaling, which respectively include at least one of the following indication information: I1: each of the above The time-frequency domain resource position of the type PO, I2: the relative position relationship between the random access channel opportunity unit and the PO, and I3: the correspondence between the PRACH resource unit and the PUSCH resource unit.
  • the steps of the process embodiment of the configuration method described in this application for network equipment are as follows:
  • Step 21 The base station device writes the following 2-step RACH-related configuration information, including but not limited to:
  • Step 11 Determine the time-frequency resource position of each type of PO in the PUSCH configuration period according to step 11, and generate time-domain PO format and frequency-domain PO format information contained in different types of PO in different PUSCH configuration periods.
  • the PUSCH configuration period may have a variety of time lengths, such as 10ms, 20ms, 40ms, etc.
  • candidate PO types as described above, one PO type corresponds to one PO configuration, and POs with different configurations may correspond to different transport packet sizes.
  • grouping information of random access channel opportunity units included in a PRACH configuration period corresponding to one PUSCH configuration period is not limited.
  • Step 22 The base station equipment generates the following signaling information and notifies the terminal:
  • each group of random access channel opportunity units and a group of uplink shared channel opportunity units in the PUSCH configuration period notify the terminal of a random access channel opportunity unit group included in a PUSCH configuration period and Each group of corresponding uplink shared channel opportunity unit resource location indication.
  • the terminal is notified of the P value of the many-to-one mapping between PRACH resource units and PUSCH resource units, that is, every P PRACH resource units are mapped to one PUSCH resource unit.
  • Step 23 The base station receives and detects the preamble and load information of the MsgA in the 2-step RACH according to the configuration information.
  • the base station side according to the relative position relationship between each group of random access channel opportunity units in the PRACH configuration period corresponding to the PUSCH configuration period and a group of uplink shared channel opportunity units in the PUSCH configuration period, and the relationship between the PRACH resource units and the PUSCH resource units Correspondence, the detected RO and preamble sequence ID are used to further determine the DMRS configuration adopted by the PO and PUSCH, so as to achieve 2-step RACH PUSCH bearer load detection.
  • steps 21-23 it is used for terminal equipment to receive downlink control signaling, high-level signaling, and/or write information, which respectively include at least one of the following indication information:
  • I1 The time-frequency domain resource position of each type of PO
  • I2 the relative position relationship between the random access channel opportunity unit and the PO
  • I3 the correspondence between the PRACH resource unit and the PUSCH resource unit.
  • Step 31 The terminal device writes the following 2-step RACH-related configuration information, including but not limited to:
  • candidate PO type
  • grouping information of random access channel opportunity units included in one PUSCH configuration period is not limited.
  • Step 32 The terminal receives the following signaling information sent by the base station:
  • each type of PO in the PUSCH configuration cycle receives the 2-step PUSCH time domain configuration indication and frequency domain configuration indication in the RACH corresponding to each PO type in each PUSCH configuration cycle; or notify the terminal every time PUSCH time-frequency domain resource location corresponding to each PO type in each PUSCH configuration period.
  • receiving a PUSCH configuration period includes Random access channel opportunity unit grouping and each group of corresponding uplink shared channel opportunity unit resource location indication.
  • the P value of the many-to-one mapping between the PRACH resource unit and the PUSCH resource unit of the terminal is received, that is, every P PRACH resource unit is mapped to one PUSCH resource unit; or the terminal is automatically based on the number of PRACH resource units and the corresponding number of PUSCH resource units.
  • Step 33 The terminal generates the preamble and load information of the MsgA in the 2-step RACH according to the configuration information and sends it to the base station.
  • the terminal side according to the relative position relationship between each group of random access channel opportunity units in the PRACH configuration period corresponding to the PUSCH configuration period and a group of uplink shared channel opportunity units in the PUSCH configuration period, and the relationship between PRACH resource units and PUSCH resource units According to the corresponding relationship of the selected RO and preamble sequence ID, the DMRS configuration adopted by the PO and PUSCH is further determined, so as to realize the generation of PRACH and PUSCH in MsgA.
  • the configuration method is used for network equipment or terminal equipment, which may include the following situations (but not limited to): all three types of indication information I1 to I3 are included in the downlink control signaling; or, all three types of indication information I1 to I3 are included in the downlink control signaling.
  • High-level signaling RRC or, part of the three types of indication information is included in downlink control signaling, and the other part is default configuration information; or, part of the three types of indication information is included in high-level signaling, and the other part is default configuration Information; or, both downlink control signaling and high-layer signaling include part or all of the three types of indication information.
  • the configuration method is used for the terminal device, and it can also be that the information is directly written to the terminal device, including part or all of the three kinds of indication information.
  • Figure 2 is a schematic diagram of the time-frequency domain position of PO.
  • the method for the system to configure each type of PO time-frequency resource position includes but is not limited to the following methods:
  • Method 1 Design the time domain PO format and frequency domain PO format under different PUSCH configuration cycles, use a time domain PUSCH configuration index (PUSCH configuration index) to indicate the time domain PO format used by the PO, and use a frequency domain PUSCH configuration indicator (PUSCH FDM) indicates the frequency domain PO format used by PO.
  • the time-domain PO format determines the time-domain resource position occupied by the PO in each system frame in a PUSCH configuration period, and the format includes at least one of the following information indications: occupied subframe index, time slot index, and PO in the time slot The initial symbol index, the number of time domain POs contained in a slot, and the length of time domain symbols occupied by the PO.
  • the frequency domain PO format determines the frequency domain resource location of POs that reuse the same time domain resources.
  • the format includes at least one of the following information indications: the number of RBs occupied by one PO, and the total number of POs that reuse the same time domain resources.
  • the location of the frequency band is shown in the figure below.
  • the above-mentioned time-domain PO format related indication information may be fused into a time-domain PUSCH configuration indication for indication or a separate indication information may be used for indication
  • the above-mentioned frequency-domain PO format related indication information may be fused into a frequency domain PUSCH configuration indication for indication. Or use separate instructions for instructions.
  • the base station side notifies the terminal of the time domain PUSCH configuration indication and the frequency domain PUSCH configuration indication included in related RRC signaling or downlink control signaling DCI.
  • the time-domain PUSCH configuration indication is used for each type of PO time-frequency resource position to indicate the time-domain PO format used by the type of PO, using
  • the frequency domain PUSCH configuration indication is to indicate the frequency domain PO format used by the type of PO.
  • Manner 2 The time domain and frequency domain resources are configured for the PUSCH by using the configured grant configuration method defined by the existing standard. As described above, when multiple types of POs are included in one PUSCH configuration period, the positions of time-frequency resources occupied by different types of POs are indicated.
  • the base station side generates corresponding RRC signaling according to the PUSCH configuration period to notify the terminal of the time domain and frequency domain resources of the PUSCH configuration. Or the RRC signaling is combined with the DCI signaling to activate and deactivate the PUSCH time-frequency resource configured in the RRC signaling by using the DCI signaling.
  • Figure 3 is a schematic diagram of the positional relationship between the uplink shared channel opportunity unit and the random access channel opportunity unit including one type of PO.
  • the method for the system to periodically indicate the position of the uplink shared channel opportunity unit corresponding to each group of random access channel opportunity units in the PRACH configuration cycle corresponding to a PUSCH configuration cycle is further designed as follows: If a PUSCH configuration cycle corresponds to the PRACH configuration cycle
  • G 5.
  • the group of uplink shared channel opportunity units is composed of one or more uplink shared channel opportunity units.
  • the uplink shared channel opportunity unit is used for 2-step RACH transmission load, and may include one or more time domain POs, or PUSCH time slots, or PUSCH subframes in the time domain, and may include one or more PUSCH subframes in the frequency domain.
  • Frequency domain PO can multiplex one or more POs in the frequency domain, that is, one or more POs occupy the same time domain resources but occupy different frequency domain resources; a PUSCH slot can contain one or more time domains PO, a PUSCH subframe may include one or more PUSCH slots.
  • Figure 4 is a schematic diagram of the positional relationship between the uplink shared channel opportunity unit and the random access channel opportunity unit containing multiple types of PO.
  • the method for the system to periodically indicate the position of the uplink shared channel opportunity unit corresponding to each group of random access channel opportunity units in a PRACH configuration cycle corresponding to a PUSCH configuration cycle is further designed as follows: correspondingly, when a PUSCH configuration cycle includes In the case of multiple types of PO, an example is shown in the following figure: the RO corresponding to the first type of PO is divided into 3 groups of random access channel opportunity units, and the RO of the second type of PO is divided into 2 groups of random access channels Opportunity unit.
  • the first type of PO it is divided into 3 groups of uplink shared channel opportunity units
  • the second type of PO it is divided into 2 groups of uplink shared channel opportunity units.
  • Figure 5 is a schematic diagram of the correspondence between PRACH resource units and PUSCH resource units.
  • the design steps in the PRACH resource unit traversal sequence and the PUSCH resource unit traversal sequence can be interchanged, for example, the time domain is traversed first, and then the frequency domain is traversed.
  • every P (P is an integer greater than or equal to 1) PRACH resource units are mapped to one PUSCH resource unit to support one-to-one or many-to-one mapping scenarios between PRACH resource units and PUSCH resource units.
  • P is an integer greater than or equal to 1
  • PRACH resource units are mapped to one PUSCH resource unit to support one-to-one or many-to-one mapping scenarios between PRACH resource units and PUSCH resource units.
  • resource units every time P PRACH resource units are traversed, 1 PUSCH resource unit is correspondingly traversed.
  • the system configures the P value in the one-to-one mapping relationship or the many-to-one mapping relationship between the PRACH resource unit and the corresponding PUSCH resource unit, which is indicated by the base station-side signaling or the terminal according to the number of PRACH resource units and the corresponding PUSCH resource
  • the number of units is adjusted adaptively, that is, it is assumed that a group of random access channel opportunity units contains J (J is an integer greater than or equal to 1) PRACH resource units, and the corresponding uplink shared channel opportunity unit contains K (K is an integer greater than or equal to 1).
  • PUSCH resource units the terminal adaptively adjusts the mapping of every J/K (rounded down) PRACH resource units to one PUSCH resource unit.
  • the terminal when the base station indicates that there is a one-to-one mapping relationship between the PRACH resource units and the corresponding PUSCH resource units, and the actual number of PUSCH resource units is less than the number of PRACH resource units, the terminal according to the number of PRACH resource units and the corresponding PUSCH resource units The number is adaptively adjusted to a many-to-one mapping relationship, or the terminal still performs mapping according to the one-to-one mapping relationship, where PRACH resource units without corresponding PUSCH resource units only send the preamble sequence.
  • Fig. 6 is a flowchart of an embodiment of a random channel access method for network equipment.
  • This application also proposes a random channel access method for network equipment, including the following steps:
  • Step 61 Receive RO, detect the preamble sequence, and obtain the preamble sequence ID.
  • the network device contains a list of preamble sequence IDs, uses preamble sequences with different IDs and the received preamble sequence for correlation processing, and determines which ID the received preamble sequence is based on whether there is correlation.
  • Step 62 Determine the resource location of the PUSCH according to the relative position relationship between the random access channel opportunity unit and the uplink shared channel opportunity unit.
  • the network device may receive information sent from multiple terminals. If multiple preamble sequences (from different terminals) on one RO are received, the corresponding PO will be detected.
  • Step 63 Receive PUSCH and DMRS according to the correspondence between the PRACH resource unit and the PUSCH resource unit.
  • Fig. 7 is a flowchart of an embodiment of a random channel access method for terminal equipment.
  • This application also proposes a random channel access method for terminal equipment, including the following steps:
  • Step 71 Send the RO, including the preamble sequence.
  • one terminal can only choose one RO and one preamble sequence to send, and multiple terminals may choose the same RO but different preamble sequences.
  • Step 72 Determine the resource location of the PUSCH according to the relative position relationship between the random access channel opportunity unit and the uplink shared channel opportunity unit.
  • Step 73 Send PUSCH and DMRS according to the correspondence between the PRACH resource unit and the PUSCH resource unit.
  • Figure 8 is a schematic diagram of an embodiment of a network device and terminal device of this application.
  • This application also proposes a network device 100, which is used in the method described in any embodiment of this application, and includes a first configuration module 101, a first sending module 102, and a first receiving module 103.
  • the first configuration module is configured to write at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative positional relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least The correspondence between a PRACH resource unit and a PUSCH resource unit; for example, optionally according to steps 11 and 21 of the embodiment of the configuration method of this application, write the time domain PO format and frequency domain contained in different types of PO under different PUSCH configuration periods PO format information; according to steps 13, 21, the mapping relationship between PRACH resource units and PUSCH resource units in the 2-step RACH written.
  • the first sending module is configured to send at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative positional relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least one The correspondence between PRACH resource units and PUSCH resource units.
  • These configuration information are included in downlink control signaling DCI or high-layer signaling RRC; for example, according to steps 11 and 22 of the configuration method embodiment of this application, the terminal is notified of each PUSCH configuration PUSCH time-domain configuration indication and frequency-domain configuration indication for each PO type in the cycle or notify the terminal of the PUSCH time-frequency domain resource location information corresponding to each PO type in each PUSCH configuration cycle; optionally according to the configuration method of this application Steps 12 and 22 of the embodiment, notify the terminal of the random access channel opportunity unit group included in the PRACH configuration period corresponding to a PUSCH configuration period and the resource location indication of each group of corresponding uplink shared channel opportunity unit; according to the configuration method embodiment of this application Steps 13, 22, optionally notify the terminal of the P (P is an integer greater than or equal to 1) for one-to-one or many-to-one mapping between PRACH resource units and PUSCH resource units, that is, every P PRACH resource units are mapped to one PUSCH resource unit.
  • P is an integer greater than or equal
  • the first receiving module is configured to: receive RO, detect the preamble sequence, and obtain the preamble sequence ID; determine the resource location of PUSCH according to the relative position relationship between the random access channel opportunity unit and the uplink shared channel opportunity unit; The corresponding relationship between the PRACH resource unit and the PUSCH resource unit is described, and the PUSCH and DMRS are received and detected. For example, perform step 23 of the configuration method embodiment of the present application, according to the method described in steps 11-13 and 2-step RACH related configuration information, receive and detect the preamble sequence in the RACH detected by the 2-step detection, and according to the RO and preamble sequence ID Further determine the DMRS configuration adopted by the PO and PUSCH, so as to realize 2-step RACH PUSCH bearer load detection.
  • the various partial modules described in this embodiment are used to implement the configuration method and random channel access method of this application, and therefore include other functions used in the various method embodiments of the network device in this application, and will not be repeated here.
  • This application also proposes a terminal device 200, which is used in the method described in any of the embodiments of this application, and includes a second sending module 202, and also includes a second receiving module 203 and or a second configuration module 201.
  • the second configuration module is used to write at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative positional relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least The correspondence between a PRACH resource unit and a PUSCH resource unit; optionally according to the method described in steps 11 and 31 of the configuration method embodiment of this application, write the time domain PO format and frequency domain contained in different types of PO under different PUSCH configuration periods PO format information; the mapping relationship between PRACH resource units and PUSCH resource units in the 2-step RACH written according to the method described in steps 13 and 31 of the configuration method embodiment of this application.
  • the second receiving module is configured to receive at least one of the following configuration information: the position of the time-frequency resource of at least one type of PO, the relative position relationship between at least one group of random access channel opportunity units and the uplink shared channel opportunity unit, at least one Correspondence between PRACH resource units and PUSCH resource units; for example, according to steps 11 and 32 of the configuration method embodiment of this application, the PUSCH time domain configuration indication and frequency domain configuration indication of each PO type in each PUSCH configuration period are received Or the PUSCH time-frequency domain resource location information corresponding to each PO type in each PUSCH configuration period; optionally, please follow steps 12 and 32 of the configuration method embodiment of this application to receive a PUSCH configuration period corresponding to the PRACH configuration period.
  • Random access channel opportunity unit grouping and each group of corresponding uplink shared channel opportunity unit resource location indication information according to steps 13 and 32 of the configuration method embodiment of this application, one-to-one or multiple pairs of PRACH resource units and PUSCH resource units are received
  • a mapped P (P is an integer greater than or equal to 1) value information, that is, every P PRACH resource units are mapped to one PUSCH resource unit.
  • the second sending module is configured to: send RO; determine the resource location of PUSCH according to the relative position relationship between the random access channel opportunity unit and the uplink shared channel opportunity unit; according to the relationship between the PRACH resource unit and the PUSCH resource unit Correspondence, sending PUSCH and DMRS.
  • the PRACH and PUSCH information sent by the terminal should be generated according to the configuration information. For example, perform step 33 of the configuration method embodiment of this application, according to the method described in steps 11-13 and 2-step RACH-related configuration information, select RO and preamble sequence ID to generate and send the preamble signal, and further determine the DMRS used by PO and PUSCH Configure to generate and transmit PUSCH signal.
  • the terminal device When the terminal device includes the second receiving module and the second configuration module, some of the instructions sent by the network device (base station) to the terminal are configuration information, and the terminal writes the relevant configuration information to the second configuration module.
  • the present invention can be implemented by means of software plus the necessary general hardware platform, and of course it can also be implemented by hardware, but in many cases the former is a better implementation. the way.
  • the technical solution of the present invention essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a A terminal device (which may be a mobile phone, a personal computer, a server, or a network device, etc.) executes the method described in each embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入上行共享信道配置方法,包括以下步骤:确定PUSCH配置周期中每一种类型PO的时频资源位置;确定所述PUSCH配置周期中每一组随机接入信道机会单元与一组上行共享信道机会单元的相对位置关系;确定PRACH资源单元和PUSCH资源单元之间的对应关系。本申请还包含随机信道接入的方法,用于网络设备和终端设备;本申请进一步提出用于所述信道配置方法的网络设备和终端设备。本申请的方法和设备,解决针对2-step RACH的MsgA,解决系统中RO及前导序列ID到PO及PUSCH采用的DMRS配置之间的映射关系的问题,使基站能够通过映射关系,根据检测的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置。

Description

一种随机接入上行共享信道配置方法、随机信道接入方法和设备
本申请要求于2019年05月10日提交中国国家知识产权局、申请号为201910390512.6、发明名称为“一种随机接入上行共享信道配置方法、随机信道接入方法和设备”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种随机接入过程中的上行共享信道配置方法、随机信道接入方法和应用其的网络设备、终端设备。
背景技术
为简化基于竞争方式的随机过程,降低信令开销和随机接入时延,网络将引入两步随机接入过程,即终端和基站之间至少两次信令的交互即可,称之为2-step RACH,示例如下:第一次:终端向基站发送信息MsgA,为前导+PUSCH的传输结构,主要作用在于利用前导和DMRS进行信道和TA估计;第二次:基站向终端发送信息MsgB,主要用于指示随机接入的TA、C-RNTI分配、上行数据传输的授权以及随机接入竞争冲突解决等。
目前针对MsgA中PUSCH的传输资源机会(PO,PUSCH resource occasions,即PUSCH占用的时频资源位置)具体的分配位置与随机接入机会(RO,即MsgA中承载前导的时频资源位置)配置的关系未确定。
当前导序列ID对应的RO与PO之间的相对位置固定时,PO资源开销最大,且固定位置可能导致对应的PO为下行时隙而不适用。前导序列ID对应的RO与PO之间的相对位置半静态可配置,但配置周期、一个配置周期内RO与PO相对位置具体如何配置没有解决方案。如果每个RO对应的前导序列ID都单独配置与PO的相对位置时,将引入较高的信令开销。
发明内容
本申请提出一种随机接入上行共享信道配置方法、随机信道接入方法和设备,解决针对2-step RACH的MsgA,解决系统中RO及前导序列ID到PO及PUSCH采用的DMRS配置之间的映射关系的问题,使基站能够通过映射关系,根据检测的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置。
第一方面,本申请实施例提出一种随机接入上行共享信道配置方法,包括以下步骤:
确定PUSCH配置周期中每一种类型PO的时频资源位置;
确定所述PUSCH配置周期对应PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系,其中,所述随机接入信道机会单元是包含RO的资源块,所述上行共享信道机会单元是包含PO的资源块;
确定PRACH资源单元和PUSCH资源单元之间的对应关系,其中,1个所述PRACH资源单元包含1个RO和1个前导序列ID,1个所述PUSCH资源单元包含1个PO和1种DMRS配置。
作为所述配置方法进一步优化的实施例,用于网络设备,发送下行控制信令和或高层信令,分别包含以下至少一种指示信息:所述每一种类型PO的时频域资源位置、所述随机接入信道机会单元与PO的相对位置关系、所述PRACH资源单元和PUSCH资源单元之间的对应关系。
作为所述配置方法进一步优化的另一实施例,用于终端设备,接收下行控制信令、高层信令和或写入信息,分别包含以下至少一种指示信息:所述每一种类型PO的时频域资源位置、所述随机接入信道机会单元与PO的相对位置关系、所述PRACH资源单元和PUSCH资源单元之间的对应关系。
优选地,所述随机接入信道机会单元在时域上包含一个或多个时域RO、PRACH时隙或PRACH子帧,在频域上包含一个或多个频域RO;所述上行共享信道机会单元为在时域上包含一个或多个时域PO、PUSCH时隙或PUSCH 子帧,在频域上包含一个或多个频域PO。
优选地,通过时域PUSCH配置信息来指示PO时域格式,和或,通过频域PUSCH配置信息来指示PO频域格式。
优选地,所述每一组随机接入信道机会单元与一组上行共享信道机会单元的相对位置关系表示为:
一个PUSCH配置周期中,与第n种类型PO相对应的随机接入信道机会单元为G组,每1组包含M个时域连续的随机接入信道机会单元;
将包含所述第n种类型PO的上行共享信道机会单元划分为G组,每1组包含Q个时域连续的上行共享信道机会单元;
第g组随机接入信道机会单元与第g组上行共享信道机会单元的位置相对应;
n、G、M、Q、g为大于等于1的整数;g取值范围为[1,G]。
优选地,所述每一组随机接入信道机会单元与一组上行共享信道机会单元的相对位置关系还可以表示为:每一组随机接入信道机会单元,与上行共享信道机会单元所在时域区间和频域区间相对应。
优选地,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PRACH资源单元按照以下至少一种方式排序:1个RO按所包含的前导序列ID排序;时域复用的RO以其频域资源ID排序;PRACH时隙以RO时域资源ID排序;按PRACH时隙排序。
优选地,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PUSCH资源单元按照以下至少一种方式排序:1个PO以对应的DMRS配置索引排序;时域复用的PO以其频域资源ID排序;PUSCH时隙以PO时域资源ID排序;按PUSCH时隙排序。
优选地,多个PRACH资源单元,对应1个PUSCH资源单元。
第二方面,本申请还提出一种随机信道接入方法,用于网络设备,包含以 下步骤:
接收RO,检测前导序列,获得前导序列ID;
根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;
根据所述PRACH资源单元和PUSCH资源单元的对应关系,接收检测PUSCH和DMRS。
第三方面,本申请还提出一种随机信道接入方法,用于终端设备,包含以下步骤:
发送RO;
根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;
根据所述PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。
第四方面,本申请还提出一种网络设备,用于本申请任意一个实施例所述方法,包含第一配置模块、第一发送模块、第一接收模块;
所述第一配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
所述第一发送模块,用于发送以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
所述第一接收模块,用于:接收RO,检测前导序列,获得前导序列ID;根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确 定PUSCH的资源位置;根据所述PRACH资源单元和PUSCH资源单元的对应关系,接收PUSCH和DMRS。
第五方面,本申请还提出一种终端设备,用于本申请任意一个实施例所述方法,包含第二发送模块,还包含第二接收模块和或第二配置模块;
所述第二配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
所述第二接收模块,用于接收以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
所述第二发送模块,用于:发送RO;根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;根据所述PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
通过本发明设计,一方面可以实现基站将通过映射关系,根据检测的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现2-stepRACH的PUSCH检测。另一方面实现终端侧通过映射关系,根据选择的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现PUSCH的生成。
本发明的方案可以使一个PO配置周期中不同RO到对应的PO之间的时间间隔差异减小,使PO资源开销量与对应的RO资源开销量相匹配;采用本发明的映射方法,无需对每个前导序列ID配置RO与PO相对位置进行信令指示,降低相应信令开销。
附图说明
图1为本申请的随机接入上行共享信道配置方法实施例流程图;
图2为PO的时频域位置示意图;
图3为包含一种类型PO的上行共享信道机会单元与随机接入信道机会单元位置关系示意图;
图4为包含多种类型PO的上行共享信道机会单元与随机接入信道机会单元位置关系示意图;
图5为PRACH资源单元和PUSCH资源单元对应关系示意图;
图6为用于网络设备的随机信道接入方法实施例流程图;
图7为用于终端设备的随机信道接入方法实施例流程图;
图8为本申请网络设备和终端设备实施例示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明将通过两步实现所述映射关系设计,第一步系统配置PO及RO与PO相对位置关系,第二步设计RO及前导序列ID到PO及PUSCH采用的DMRS配置之间映射方法。基站通过映射关系,根据检测的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现2-step RACH的PUSCH检测。终端侧通过映射关系,根据选择的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现PUSCH生成。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为本申请的随机接入上行共享信道配置方法实施例流程图。
本申请实施例提出一种随机接入上行共享信道配置方法,包括以下步骤11~13:
步骤11、确定PUSCH配置周期中每一种类型PO的时频资源位置。
优选地,通过时域PUSCH配置信息来指示PO时域格式,和或,通过频域PUSCH配置信息来指示PO频域格式,图2的实施例包含详述,所述时域PO格式中至少包括一种以下信息指示:占用的子帧索引、时隙索引、时隙中PO起始的符号索引、一个时隙中包含的时域PO数目、PO占用的时域符号长度;所述频域PO格式中至少包括一种以下信息指示:一个PO占用的RB数、复用相同时域资源的PO占用的总频带位置。
步骤12、确定所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系,其中,所述随机接入信道机会单元是包含RO的资源块,所述上行共享信道机会单元是包含PO的资源块。
优选地,所述随机接入信道机会单元在时域上包含一个或多个时域RO、PRACH时隙或PRACH子帧,在频域上包含一个或多个频域RO;一个时域RO上可以在频域复用一个或多个RO,即一个或多个RO占用相同的时域资源,而占用不同的频域资源;一个PRACH时隙可包含一个或多个时域RO,一个PRACH子帧可包含一个或多个PRACH时隙。其中所述一组随机接入信道机会单元在时域上的资源位置可以为时域连续M(M为大于等于1的整数)个随机接入信道机会单元占用的时域资源位置;在频域上的资源位置可以与1个SSB(SS/PBCH block,同步广播信号块)占用的频带相同或者1个SSB占用频带的部分带宽或者其他位置,本发明中频域资源位置不作具体限定。确定一组随机接入信道机会单位的时频资源位置后,其一组随机接入信道机会单元中包含的RO随之确定。
所述上行共享信道机会单元为在时域上包含一个或多个时域PO、PUSCH 时隙或PUSCH子帧,在频域上包含一个或多个频域PO。
其中所述PUSCH配置周期可以为PRACH配置周期的N(N为大于等于1的整数)倍,N的数值可设置为固定常数或者半静态可配置。当N>1时,在PRACH的配置周期更新RO配置后,RO与PO之间原有的映射关系不再适用,则触发基站侧更新PO资源配置以及所述一组随机接入机会单元与一组上行共享信道机会单元的相对位置关系指示信息。
其中当PUSCH配置周期与PRACH配置周期相同时,一个PRACH配置周期与一个PUSCH配置周期相对应。当PUSCH配置周期长度是N(N>1)个PRACH配置周期长度时,连续N个PRACH配置周期与一个PUSCH配置周期相对应。
进一步地,一个PUSCH配置周期中需配置的PO可包含多种类型。一种类型的PO可以对应一种传输包大小、一种MCS配置、一种RB数配置或者一种PUSCH的重复传输次数等,具体PO的类型根据系统配置确定。
不同类型的PO对应的PUSCH配置周期可以共用一个配置周期,或者采用不同的配置周期。例如当系统配置对前导序列进行分组,不同组的前导序列对应不同类型的PO,则发生在同一个RO上承载的前导序列分属于不同组,且将映射到不同类型的PO时,需在RO上对应配置多种类型PO,此时不同类型PO对应的PUSCH配置周期可共用一个配置周期。
又例如当系统配置对RO进行分组,不同组的RO对应不同类型的PO,则在一个RO上对应配置一种类型PO即可,此时不同类型的PO对应的PUSCH配置周期可以配置为不同。如果不同,所述一个PUSCH配置周期表示一种类型的PO的PUSCH配置周期,即一个PUSCH配置周期仅配置一种类型的PO。如果相同,则与不同类型的PO共用一个PUSCH配置周期的情况相同,即一个PUSCH配置周期内包含多种类型的PO配置。进一步地,所述不同组的RO可配置不同的PRACH配置周期。
相应地,所述一组随机接入信道机会单元表示一组对应相同类型PO的随机接入信道机会单元。其中所述上行共享信道机会单元由一个或多个相同类型的PO组成。当发生上述一个PUSCH配置周期内包含多种类型的PO配置时,需指示不同组的随机接入信道机会分别对应不同类型的上行共享信道机会单元。
优选地,所述每一组随机接入信道机会单元与一组上行共享信道机会单元的相对位置关系表示为:
一个PUSCH配置周期中,与第n种类型PO相对应的随机接入信道机会单元为G组,每1组包含M个时域连续的随机接入信道机会单元;将包含所述第n种类型PO的上行共享信道机会单元划分为G组,每1组包含Q个时域连续的上行共享信道机会单元;第g组随机接入信道机会单元与第g组上行共享信道机会单元的位置相对应;其中,n、G、M、Q、g为大于等于1的整数;g取值范围为[1,G]。
优选地,所述每一组随机接入信道机会单元与一组上行共享信道机会单元的相对位置关系还可以表示为:
每一组随机接入信道机会单元,与上行共享信道机会单元所在时域区间和频域区间相对应。例如,如果一个PUSCH配置周期对应的PRACH配置周期包含G(G为大于等于1的整数)组随机接入信道机会单元,对每一组随机接入信道机会单元进一步指示对应上行共享信道机会单元所在时域区间[t1,t2]和频域位置的区间[f1,f2]。网络设备(包括基站和终端)根据指示将时域位置的区间[t1,t2]和频域位置的区间[f1,f2]内包含的PO与对应组的随机接入信道机会单元包含的RO相对应。其中时域位置区间的起始位置t1可以选择利用对应组的随机接入信道机会单元的起始时域位置t0加一个时域偏移(time_offset)进行指示。其中频域位置区间的起始位置f1可以选择利用对应组的随机接入信道机会单元的起始频域位置f0加一个频域偏移(frequency_offset)进行指示。 具体所述区间指示方法在本发明中不作限定。
每一组随机接入信道机会单元与上行共享信道机会单元对应的时、频域位置区间指示信息,可以作为上行共享信道机会的资源配置信息一部分。其中时域区间指示信息作为PO资源时域指示信息,频域区间知识信息作为PO资源频域指示信息。
进一步地,步骤11和步骤12在实施顺序上也可以优先实施步骤12再实施步骤11,即先确定PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与对应的PUSCH配置周期中的一组上行共享信道机会单元相对位置关系,再依据所述相对位置信息生成PUSCH配置周期中的上行共享信道机会单元的时频位置信息。
需要说明的是,所谓一个PUSCH配置周期描述了一个时间窗,目的在于将一个时间窗内的PRACH资源单元与对应的一个时间窗内PUSCH资源单元进行映射。当所述随机接入信道机会单元与对应的上行共享信道机会单元相对位置关系确定时,相应的PUSCH配置周期时间窗确定。例如PUSCH配置周期为N个PRACH配置周期长度时,根据所述相对位置关系确定出N个PRACH配置周期内的随机接入机会单元对应的上行共享信道机会单元位置,也进而PUSCH配置周期时间窗确定。
步骤13、确定PRACH资源单元和PUSCH资源单元之间的对应关系,其中,1个所述PRACH资源单元包含1个RO和1个前导序列ID,1个所述PUSCH资源单元包含1个PO和1种DMRS配置。
假设随机接入信道机会单元中包含的一个RO以及RO承载的前导序列的ID作为一个PRACH资源单元,上行共享信道机会单元包含的一个PO以及PUSCH采用的DMRS配置(DMRS端口或DMRS生成序列ID)作为一个PUSCH资源单元。其中所述DMRS配置至少包括DMRS端口ID配置和DMRS生成序列ID的一种信息。其中DMRS生成序列ID信息表示了一种DMRS生 成过程中采用的相关ID信息,例如一种DMRS加扰ID或者一种DMRS根序列ID等。
优选地,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤中,所述PRACH资源单元按照以下至少一种方式排序:1个RO按所包含的前导序列ID排序;时域复用的RO以其频域资源ID排序;PRACH时隙以RO时域资源ID排序;按PRACH时隙排序。
需要说明的是遍历PRACH资源单元的顺序包括如下几个个步骤:1)1个RO按所包含的前导序列ID排序;2)时域复用的RO以其频域资源ID排序;3)PRACH时隙以RO时域资源ID排序;4)按PRACH时隙排序。所述PRACH资源单元按照以下至少一种方式排序的意思为所述1)2)3)4)步骤可以任意排列以实现PRACH资源单元的遍历。
优选地,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤中,所述PUSCH资源单元按照以下至少一种方式排序:1个PO以对应的DMRS配置索引排序;时域复用的PO以其频域资源ID排序;PUSCH时隙以PO时域资源ID排序;按PUSCH时隙排序。
需要说明的是遍历PUSCH资源单元的顺序包括如下几个个步骤:1)1个PO以对应的DMRS配置索引排序;2)时域复用的PO以其频域资源ID排序;3)PUSCH时隙以PO时域资源ID排序;4)按PUSCH时隙排序。所述PUSCH资源单元按照以下至少一种方式排序的意思为所述1)2)3)4)步骤可以任意排列以实现PUSCH资源单元的遍历。
例如,将PRACH资源单元与PUSCH资源单元之间映射过程中的遍历顺序设计为:
PRACH资源单元遍历顺序:一个RO上以升序遍历前导序列ID;时域复用的RO中以升序遍历RO的频域资源ID;一个PRACH时隙中以升序遍历RO的时域资源ID;以升序遍历PRACH时隙。
对应PUSCH资源单元遍历顺序:一个PO以升序遍历DMRS配置索引;时域复用的PO以升序遍历PO的频域资源ID;一个PUSCH时隙中以升序遍历PO的时域资源ID;以升序遍历PUSCH时隙。
其中所述对应PUSCH资源单元遍历顺序中,与PUSCH资源单元中定义的DMRS配置相关,如果DMRS配置中仅包含DMRS端口,则DMRS配置索引对应为DMRS端口ID。如果DMRS配置中仅包含DMRS生成序列ID,DMRS配置索引对应为DMRS生成序列ID。如果DMRS配置中包含DMRS端口和DMRS生成序列,则DMRS配置索引的每一个索引值对应一个DMRS端口ID和一个DMRS生成序列ID;相应地,将步骤“以升序遍历DMRS配置索引”拆分为先遍历DMRS端口ID再遍历DMRS生成序列ID,或者先遍历DMRS加扰序列ID再遍历DMRS端口ID,等效于遍历DMRS配置索引。
优选地,多个PRACH资源单元,对应1个PUSCH资源单元。例如,可选择每P个(P大于等于1的整数)PRACH资源单元映射到一个PUSCH资源单元,在遍历PRACH资源单元时,每遍历P个PRACH资源单元,对应遍历1个PUSCH资源单元。
在步骤11~13中,作为所述配置方法进一步优化的实施例,用于网络设备,发送下行控制信令和或高层信令,分别包含以下至少一种指示信息:I1:所述每一种类型PO的时频域资源位置、I2:所述随机接入信道机会单元与PO的相对位置关系、I3:所述PRACH资源单元和PUSCH资源单元之间的对应关系。本申请所述配置方法用于网络设备的流程实施例步骤如下:
步骤21、基站设备写入以下2-step RACH相关配置信息,包括不限于:
按照步骤11确定PUSCH配置周期中每一种类型PO的时频资源位置,生成不同PUSCH配置周期下不同类型PO包含的时域PO格式和频域PO格式信息。
根据步骤13所述方法生成的2-step RACH中PRACH资源单元与PUSCH 资源单元之间的映射关系。
候选PUSCH配置周期;PUSCH配置周期可能有多种时间长度,比如10ms,20ms,40ms等。
可选地,候选PO类型;如前面所述,一种PO类型对应一种PO配置,不同配置的PO可能对应不同的传输包大小等。
可选地,一个PUSCH配置周期对应的PRACH配置周期中包含的随机接入信道机会单元分组信息。
步骤22、基站设备生成以下信令信息并通知给终端:
根据PUSCH配置周期中每一种类型PO的时频资源位置,通知终端每个PUSCH配置周期中每一种PO类型对应的2-step RACH中PUSCH时域配置指示和频域配置指示;或者通知终端每个PUSCH配置周期中每一种PO类型对应的PUSCH时频域资源位置。
可选地,根据所述PUSCH配置周期中每一组随机接入信道机会单元与一组上行共享信道机会单元的相对位置关系,通知终端一个PUSCH配置周期中包含的随机接入信道机会单元分组以及每一组对应的上行共享信道机会单元资源位置指示。
可选地,通知终端PRACH资源单元与PUSCH资源单元多对一映射的P值,即每P个PRACH资源单元映射到一个PUSCH资源单元。
步骤23、基站根据配置信息接收检测2-step RACH中的MsgA的前导和负载信息。
基站侧根据所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系、PRACH资源单元和PUSCH资源单元之间的对应关系,利用检测的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现2-step RACH的PUSCH承载负载检测。
在步骤21~23中,作为所述配置方法进一步优化的另一实施例,用于终端设备,接收下行控制信令、高层信令和或写入信息,分别包含以下至少一种指示信息:I1:所述每一种类型PO的时频域资源位置、I2:所述随机接入信道机会单元与PO的相对位置关系、I3:所述PRACH资源单元和PUSCH资源单元之间的对应关系。本申请所述配置方法用于终端设备的流程实施例步骤如下:
步骤31、终端设备写入以下2-step RACH相关配置信息,包括不限于:
确定PUSCH配置周期中每一种类型PO的时频资源位置,生成不同PUSCH配置周期下不同类型PO包含的时域PO格式和频域PO格式信息;
根据步骤13所述方法生成的2-step RACH中PRACH资源单元与PUSCH资源单元之间的映射关系;
候选PUSCH配置周期;
可选地,候选PO类型;
可选地,一个PUSCH配置周期中包含的随机接入信道机会单元分组信息。
步骤32、终端接收基站发送的以下信令信息:
根据PUSCH配置周期中每一种类型PO的时频资源位置,接收每个PUSCH配置周期中每一种PO类型对应的2-step RACH中PUSCH时域配置指示和频域配置指示;或者通知终端每个PUSCH配置周期中每一种PO类型对应的PUSCH时频域资源位置。
可选地,根据所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系,接收一个PUSCH配置周期中包含的随机接入信道机会单元分组以及每一组对应的上行共享信道机会单元资源位置指示。
可选地,接收终端PRACH资源单元与PUSCH资源单元多对一映射的P值,即每P个PRACH资源单元映射到一个PUSCH资源单元;或者终端根据 PRACH资源单元数目和对应的PUSCH资源单元数目自适应调整。
步骤33、终端根据配置信息生成2-step RACH中的MsgA的前导和负载信息并发送给基站。
终端侧根据所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系、PRACH资源单元和PUSCH资源单元之间的对应关系,根据选择的RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现MsgA中PRACH和PUSCH的生成。
所述配置方法用于网络设备或终端设备,这里可包含以下情形(但不限于):三种指示信息I1~I3均包含于下行控制信令;或者,三种指示信息I1~I3均包含于高层信令RRC;或者,三种指示信息中的一部分包含于下行控制信令,另一部分为缺省配置信息;或者,三种指示信息中的一部分包含于高层信令,另一部分为缺省配置信息;或者,下行控制信令和高层信令中均包含三种指示信息中的一部分或全部。
所述配置方法用于终端设备,还可以是,向终端设备直接写入信息,包括三种指示信息中的部分或全部信息。
图2为PO的时频域位置示意图。
对于一个PUSCH配置周期,系统配置每一种类型的PO时频资源位置的方法包括但不限于以下方式:
方式1、设计不同PUSCH配置周期下的时域PO格式和频域PO格式,利用一个时域PUSCH配置指示(PUSCH configuration index)指示PO所利用的时域PO格式,利用一个频域PUSCH配置指示(PUSCH FDM)指示PO所利用的频域PO格式。所述时域PO格式确定了一个PUSCH配置周期中每一个系统帧中PO占用的时域资源位置,格式中至少包括一种以下信息指示:占用的子帧索引、时隙索引、时隙中PO起始的符号索引、一个时隙中包含的时域 PO数目、PO占用的时域符号长度。所述频域PO格式确定了复用相同时域资源的PO的频域资源位置,格式中至少包括一种以下信息指示:一个PO占用的RB数、复用相同时域资源的PO占用的总频带位置,如下图所示。进一步地,上述时域PO格式相关指示信息可以融合到一个时域PUSCH配置指示进行指示或者利用单独的指示信息进行指示,上述频域PO格式相关指示信息可以融合到一个频域PUSCH配置指示进行指示或者利用单独的指示信息进行指示。
基站侧将所述时域PUSCH配置指示和频域PUSCH配置指示包含在相关的RRC信令中或者下行控制信令DCI中通知给终端。
相应地,当系统配置多种类型的PO时频资源位置时,针对每一种类型的PO时频资源位置利用所述时域PUSCH配置指示以指示该类型PO所利用的时域PO格式,利用所述频域PUSCH配置指示以指示该类型PO所利用的频域PO格式。
方式2、采用现有标准定义的免调度(configured grant)配置方法为PUSCH配置时域和频域资源。如上所述,当一个PUSCH配置周期中包含多种类型的PO时,指示不同类型的PO占用的时频资源位置。基站侧根据PUSCH配置周期生成相应的RRC信令将PUSCH配置的时域和频域资源通知给终端。或者进一步RRC信令与DCI信令相结合,利用DCI信令激活和去激活RRC信令中配置的所述PUSCH时频资源。
图3为包含一种类型PO的上行共享信道机会单元与随机接入信道机会单元位置关系示意图。
系统周期性指示一个PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与之对应的上行共享信道机会单元的位置的方法进一步设计为:如果一个PUSCH配置周期对应的PRACH配置周期中对应第n(n为大于等于1的整数)种PO类型的随机接入信道机会单元包含G(G为大于 等于1的整数)组,将该配置周期中第n种类型的PO对应划分为G组上行共享信道机会单元,第g(g取值范围为[1,G])组随机接入信道机会单元与第g(g取值范围为[1,G])组上行共享信道机会单元相对应,如下图示例所示,其中G=5。
其中所述一组上行共享信道机会单元由一个或多个上行共享信道机会单元组成。所述上行共享信道机会单元用于2-step RACH发送负载,在时域上可以包含一个或多个时域PO,或者PUSCH时隙,或者PUSCH子帧,在频域上可以包含一个或多个频域PO。一个时域PO上可以在频域复用一个或多个PO,即一个或多个PO占用相同的时域资源,而占用不同的频域资源;一个PUSCH时隙可包含一个或多个时域PO,一个PUSCH子帧可包含一个或多个PUSCH时隙。
图4为包含多种类型PO的上行共享信道机会单元与随机接入信道机会单元位置关系示意图。
系统周期性指示一个PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与之对应的上行共享信道机会单元的位置的方法进一步设计为:相应地,当一个PUSCH配置周期中包含多种类型的PO时,举例如下图所示:对于对应第一种类型PO的RO分为3组随机接入信道机会单元,对于第二种类型的PO的RO分为2组随机接入信道机会单元。相应地,针对第一种类型PO,对应分为3组上行共享信道机会单元,针对第二种类型PO,对应分为2组上行共享信道机会单元。
图5为PRACH资源单元和PUSCH资源单元对应关系示意图。
举例:假设图5中每个RO对应4个前导序列,PO t_0上对应2个DMRS端口,PO t_1上对应6个DMRS端口,映射关系如下表:
Figure PCTCN2020088002-appb-000001
Figure PCTCN2020088002-appb-000002
Figure PCTCN2020088002-appb-000003
上述PRACH资源单元遍历顺序和PUSCH资源单元遍历顺序中的设计步骤可以相互调换,例如先遍历时域,再遍历频域。
进一步地,设置每P个(P大于等于1的整数)PRACH资源单元映射到一个PUSCH资源单元,以支持PRACH资源单元与PUSCH资源单元之间一对一或多对一的映射场景,在遍历PRACH资源单元时,每遍历P个PRACH资源单元,对应遍历1个PUSCH资源单元。
进一步地,系统配置PRACH资源单元与对应PUSCH资源单元之间的一对一映射关系或多对一映射关系中的P值,由基站端信令指示或者终端根据PRACH资源单元数目和对应的PUSCH资源单元数目自适应调整,即假设一组随机接入信道机会单元中包含J(J为大于等于1的整数)个PRACH资源单元,对应上行共享信道机会单元中包含K(K为大于等于1的整数)个PUSCH资源单元,终端自适应调整每J/K(下取整)个PRACH资源单元映射到一个PUSCH资源单元。
进一步地,当基站指示为PRACH资源单元与对应PUSCH资源单元之间为一对一映射关系,而实际PUSCH资源单元数目少于PRACH资源单元数目,则终端根据PRACH资源单元数目和对应的PUSCH资源单元数目自适应调整为多对一映射关系,或者终端仍根据一对一映射关系进行映射,其中无对应PUSCH资源单元的PRACH资源单元仅发送前导序列。
图6为用于网络设备的随机信道接入方法实施例流程图。
本申请还提出一种随机信道接入方法,用于网络设备,包含以下步骤:
步骤61、接收RO,检测前导序列,获得前导序列ID。
需要说明的是,网络设备包含前导序列ID列表,用不同ID的前导序列和收到的前导序列进行相关处理,根据是否有相关去判断收到的前导序列是哪一个ID。
步骤62、根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置。
需要说明的是,网络设备(基站侧)可能接收到来自多个终端发送信息,如果接收到一个RO上多个前导序列(来自不同终端),会对其对应的PO作检测。
步骤63、根据所述PRACH资源单元和PUSCH资源单元的对应关系,接收PUSCH和DMRS。
图7为用于终端设备的随机信道接入方法实施例流程图。
本申请还提出一种随机信道接入方法,用于终端设备,包含以下步骤:
步骤71、发送RO,包含前导序列。
需要说明的是,一个终端只能选择一个RO和一个前导序列发送,多个终端可能选择相同RO、不同的前导序列。
步骤72、根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置。
步骤73、根据所述PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。
图8为本申请网络设备和终端设备实施例示意图。
本申请还提出一种网络设备100,用于本申请任意一个实施例所述方法,包含第一配置模块101、第一发送模块102、第一接收模块103。
所述第一配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的 相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;例如,可选地按照本申请配置方法实施例步骤11、21,写入不同PUSCH配置周期下不同类型PO包含的时域PO格式和频域PO格式信息;按照步骤13、21,写入的2-step RACH中PRACH资源单元与PUSCH资源单元之间的映射关系。
所述第一发送模块,用于发送以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系,这些配置信息包含在下行控制信令DCI或高层信令RRC中;例如,按照本申请配置方法实施例步骤11、22,通知终端每个PUSCH配置周期中每一种PO类型的PUSCH时域配置指示和频域配置指示或者通知终端每个PUSCH配置周期中每一种PO类型对应的PUSCH时频域资源位置信息;可选地按照本申请配置方法实施例步骤12、22,通知终端一个PUSCH配置周期对应的PRACH配置周期中包含的随机接入信道机会单元分组以及每一组对应的上行共享信道机会单元资源位置指示;按照本申请配置方法实施例步骤13、22,可选地通知终端PRACH资源单元与PUSCH资源单元一对一或多对一映射的P(P为大于等于1的整数)值,即每P个PRACH资源单元映射到一个PUSCH资源单元。
所述第一接收模块,用于:接收RO,检测前导序列,获得前导序列ID;根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;根据所述PRACH资源单元和PUSCH资源单元的对应关系,接收检测PUSCH和DMRS。例如,执行本申请配置方法实施例步骤23,根据步骤11~13所述方法以及2-step RACH相关配置信息,接收并检测2-step检测的RACH中的前导序列,并根据RO及前导序列ID进一步确定PO及PUSCH采用的DMRS配置,从而实现2-step RACH的PUSCH承载负载检 测。
本实施例所述各部分模块,用于实现本申请配置方法和随机信道接入方法,因此包含本申请用于网络设备各方法实施例的其他功能,这里不再赘述。
本申请还提出一种终端设备200,用于本申请任意一个实施例所述方法,包含第二发送模块202,还包含第二接收模块203和或第二配置模块201。
所述第二配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;可选地根据本申请配置方法实施例步骤11、31所述方法写入不同PUSCH配置周期下不同类型PO包含的时域PO格式和频域PO格式信息;根据本申请配置方法实施例步骤13、31所述方法写入的2-step RACH中PRACH资源单元与PUSCH资源单元之间的映射关系。
所述第二接收模块,用于接收以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;例如,按照本申请配置方法实施例步骤11、32,接收每个PUSCH配置周期中每一种PO类型的PUSCH时域配置指示和频域配置指示或者每个PUSCH配置周期中每一种PO类型对应的PUSCH时频域资源位置信息;可选地请按照本申请配置方法实施例步骤12、32,接收一个PUSCH配置周期对应的PRACH配置周期中包含的随机接入信道机会单元分组以及每一组对应的上行共享信道机会单元资源位置指示信息;按照本申请配置方法实施例步骤13、32,接收PRACH资源单元与PUSCH资源单元一对一或多对一映射的P(P为大于等于1的整数)值信息,即每P个PRACH资源单元映射到一个PUSCH资源单元。
所述第二发送模块,用于:发送RO;根据所述随机接入信道机会单元与 上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;根据所述PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。终端发送的PRACH和PUSCH信息要根据配置信息生成。例如执行本申请配置方法实施例步骤33,根据步骤11~13所述方法以及2-step RACH相关配置信息,选择RO及前导序列ID生成前导序列信号并发送,并进一步确定PO及PUSCH采用的DMRS配置以生成PUSCH信号并发送。
当终端设备包含第二接收模块和第二配置模块时,网络设备(基站)发给终端的指令有些是配置信息,终端把相关配置信息写到第二配置模块。
本实施例所述各部分模块,用于实现本申请配置方法和随机信道接入方法,因此包含本申请用于终端设备的各方法实施例的其他功能,这里不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台终端设备(可以是手机,个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (21)

  1. 一种随机接入上行共享信道配置方法,其特征在于,包括以下步骤:
    确定PUSCH配置周期中每一种类型PO的时频资源位置;
    确定所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系,其中,所述随机接入信道机会单元是包含RO的资源块,所述上行共享信道机会单元是包含PO的资源块;
    确定PRACH资源单元和PUSCH资源单元之间的对应关系,其中,1个所述PRACH资源单元包含1个RO和1个前导序列ID,1个所述PUSCH资源单元包含1个PO和1种DMRS配置。
  2. 如权利要求1所述方法,其特征在于,
    下行控制信令和或高层信令,分别包含以下至少一种指示信息:
    所述每一种类型PO的时频域资源位置、
    所述随机接入信道机会单元与PO的相对位置关系、
    所述PRACH资源单元和PUSCH资源单元之间的对应关系。
  3. 如权利要求1所述方法,其特征在于,
    写入信息,包含以下至少一种指示信息:
    所述每一种类型PO的时频域资源位置、
    所述随机接入信道机会单元与PO的相对位置关系、
    所述PRACH资源单元和PUSCH资源单元之间的对应关系。
  4. 如权利要求1所述方法,其特征在于,
    所述随机接入信道机会单元在时域上包含一个或多个时域RO、PRACH时隙或PRACH子帧,在频域上包含一个或多个频域RO;
    所述上行共享信道机会单元在时域上包含一个或多个时域PO、PUSCH时隙或PUSCH子帧,在频域上包含一个或多个频域PO。
  5. 如权利要求1所述方法,其特征在于,
    PRACH资源单元与对应PUSCH资源单元之间的一对一映射关系或多对一映射关系中的P值,根据PRACH资源单元数目和对应的PUSCH资源单元数目自适应调整;
    一组随机接入信道机会单元中包含J(J为大于等于1的整数)个PRACH资源单元,对应上行共享信道机会单元中包含K(K为大于等于1的整数)个PUSCH资源单元,自适应调整每J/K(下取整)个PRACH资源单元映射到一个PUSCH资源单元。
  6. 如权利要求1所述方法,其特征在于,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PRACH资源单元按照以下至少一种方式排序:
    1个RO按所包含的前导序列ID排序;
    时域复用的RO以其频域资源ID排序;
    PRACH时隙以RO时域资源ID排序;
    按PRACH时隙排序。
  7. 如权利要求1所述方法,其特征在于,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PUSCH资源单元按照以下至少一种方式排序:
    1个PO以对应的DMRS配置索引排序;
    时域复用的PO以其频域资源ID排序;
    PUSCH时隙以PO时域资源ID排序;
    按PUSCH时隙排序。
  8. 一种网络设备,其特征在于,所述网络设备用于:
    确定PUSCH配置周期中每一种类型PO的时频资源位置;
    确定所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系,其中,所述随机接入信道机会单元是包含RO的资源块,所述上行共享信道机会单元是包含PO的资源块;
    确定PRACH资源单元和PUSCH资源单元之间的对应关系,其中,1个所述PRACH资源单元包含1个RO和1个前导序列ID,1个所述PUSCH资源单元包含1个PO和1种DMRS配置。
  9. 如权利要求8所述网络设备,其特征在于,
    发送的下行控制信令和或高层信令,分别包含以下至少一种指示信息:
    所述每一种类型PO的时频域资源位置、
    所述随机接入信道机会单元与PO的相对位置关系、
    所述PRACH资源单元和PUSCH资源单元之间的对应关系。
  10. 如权利要求8所述网络设备,其特征在于,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PRACH资源单元按照以下至少一种方式排序:
    1个RO按所包含的前导序列ID排序;
    时域复用的RO以其频域资源ID排序;
    PRACH时隙以RO时域资源ID排序;
    按PRACH时隙排序。
  11. 如权利要求8所述网络设备,其特征在于,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PUSCH资源单元按照以下至少一种方式排序:
    1个PO以对应的DMRS配置索引排序;
    时域复用的PO以其频域资源ID排序;
    PUSCH时隙以PO时域资源ID排序;
    按PUSCH时隙排序。
  12. 如权利要求8~11任意一项所述网络设备,其特征在于,包含第一配置模块、第一发送模块、第一接收模块;
    所述第一配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
    所述第一发送模块,用于发送以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
    所述第一接收模块,用于:接收RO,检测前导序列,获得前导序列ID;根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;根据所述PRACH资源单元和PUSCH资源单元的对应关系,接收PUSCH和DMRS。
  13. 如权利要求8~11任意一项所述网络设备,其特征在于,所述网络设备还用于:
    接收RO,检测前导序列,获得前导序列ID;
    根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;
    根据所述PRACH资源单元和PUSCH资源单元的对应关系,接收检测PUSCH和DMRS。
  14. 一种终端设备,用于权利要求1~7任意一项所述方法,其特征在于,包含第二发送模块,还包含第二接收模块和或第二配置模块;
    所述第二配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
    所述第二接收模块,用于接收以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
    所述第二发送模块,用于:发送RO;根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;根据所述PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。
  15. 一种终端设备,其特征在于,所述终端设备用于:
    确定PUSCH配置周期中每一种类型PO的时频资源位置;
    确定所述PUSCH配置周期对应的PRACH配置周期中每一组随机接入信道机会单元与PUSCH配置周期中的一组上行共享信道机会单元的相对位置关系,其中,所述随机接入信道机会单元是包含RO的资源块,所述上行共享信道机会单元是包含PO的资源块;
    确定PRACH资源单元和PUSCH资源单元之间的对应关系,其中,1个所述PRACH资源单元包含1个RO和1个前导序列ID,1个所述PUSCH资 源单元包含1个PO和1种DMRS配置。
  16. 如权利要求15所述终端设备,其特征在于,
    接收的下行控制信令、高层信令和或写入信息,分别包含以下至少一种指示信息:
    所述每一种类型PO的时频域资源位置、
    所述随机接入信道机会单元与PO的相对位置关系、
    所述PRACH资源单元和PUSCH资源单元之间的对应关系。
  17. 如权利要求15所述终端设备,其特征在于,
    所述随机接入信道机会单元在时域上包含一个或多个时域RO、PRACH时隙或PRACH子帧,在频域上包含一个或多个频域RO;
    所述上行共享信道机会单元在时域上包含一个或多个时域PO、PUSCH时隙或PUSCH子帧,在频域上包含一个或多个频域PO。
  18. 如权利要求15所述终端设备,其特征在于,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PRACH资源单元按照以下至少一种方式排序:
    1个RO按所包含的前导序列ID排序;
    时域复用的RO以其频域资源ID排序;
    PRACH时隙以RO时域资源ID排序;
    按PRACH时隙排序。
  19. 如权利要求15所述终端设备,其特征在于,确定PRACH资源单元和PUSCH资源单元之间的对应关系的步骤,所述PUSCH资源单元按照以下至少一种方式排序:
    1个PO以对应的DMRS配置索引排序;
    时域复用的PO以其频域资源ID排序;
    PUSCH时隙以PO时域资源ID排序;
    按PUSCH时隙排序。
  20. 如权利要求15~19任意一项所述终端设备,其特征在于,包含第二发送模块,还包含第二接收模块和或第二配置模块;
    所述第二配置模块,用于写入以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
    所述第二接收模块,用于接收以下至少一种配置信息:至少一种类型PO的时频资源位置、至少一组随机接入信道机会单元与上行共享信道机会单元的相对位置关系、至少一个PRACH资源单元和PUSCH资源单元之间的对应关系;
    所述第二发送模块,用于:发送RO;根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;根据所述 PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。
  21. 如权利要求15~19任意一项所述终端设备,其特征在于,所述终端设备还用于:
    发送RO;
    根据所述随机接入信道机会单元与上行共享信道机会单元的相对位置关系,确定PUSCH的资源位置;
    根据所述PRACH资源单元和PUSCH资源单元的对应关系,发送PUSCH和DMRS。
PCT/CN2020/088002 2019-05-10 2020-04-30 一种随机接入上行共享信道配置方法、随机信道接入方法和设备 WO2020228544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910390512.6 2019-05-10
CN201910390512.6A CN111918396B (zh) 2019-05-10 2019-05-10 一种随机接入上行共享信道配置方法、随机信道接入方法和设备

Publications (1)

Publication Number Publication Date
WO2020228544A1 true WO2020228544A1 (zh) 2020-11-19

Family

ID=73242288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088002 WO2020228544A1 (zh) 2019-05-10 2020-04-30 一种随机接入上行共享信道配置方法、随机信道接入方法和设备

Country Status (2)

Country Link
CN (1) CN111918396B (zh)
WO (1) WO2020228544A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010411A1 (zh) * 2021-08-05 2023-02-09 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065530A (zh) * 2011-01-07 2011-05-18 中兴通讯股份有限公司 服务小区的确定方法、基站和用户设备
US20160119947A1 (en) * 2013-09-16 2016-04-28 Lg Electronics Inc. Multi-point coordination method for receiving uplink data in wireless communication system and apparatus performing same
US20170303215A1 (en) * 2014-09-24 2017-10-19 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065530A (zh) * 2011-01-07 2011-05-18 中兴通讯股份有限公司 服务小区的确定方法、基站和用户设备
US20160119947A1 (en) * 2013-09-16 2016-04-28 Lg Electronics Inc. Multi-point coordination method for receiving uplink data in wireless communication system and apparatus performing same
US20170303215A1 (en) * 2014-09-24 2017-10-19 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "3GPP TSG-RAN WG1 Meeting #97 R1-1907180", CHANNEL STRUCTURE FOR TWO-STEP RACH, 4 May 2019 (2019-05-04), XP051709206, DOI: 20200718185146X *
MCC SUPPORT: "3GPP", DRAFT REPORT OF 3GPP TSG RAN WG1 #96B V0.2.0, 26 April 2019 (2019-04-26) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010411A1 (zh) * 2021-08-05 2023-02-09 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN111918396A (zh) 2020-11-10
CN111918396B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
US10567126B2 (en) System and method for WLAN OFDMA design of subcarrier groups and frame format
US20190013904A1 (en) Systems and Methods for OFDM with Flexible Sub-Carrier Spacing and Symbol Duration
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
KR102417648B1 (ko) 다수의 뉴머럴러지를 가진 업 링크 타이밍 조정
CN109391966B (zh) 一种定时提前确定方法及设备
CN103220070A (zh) 一种上行信号的发送方法及用户设备
CA2714421A1 (en) Dynamic adjustment of downlink/uplink allocation ratio in tdd wireless systems
US11523418B2 (en) Method and apparatus for resource indication
WO2020063464A1 (zh) Dmrs处理方法、装置、系统、设备、终端、存储介质
CN110856256A (zh) 一种用于无线通信中的方法和装置
CN106576025A (zh) 增强的随机接入信道过程
WO2020228544A1 (zh) 一种随机接入上行共享信道配置方法、随机信道接入方法和设备
CN109803371A (zh) 一种通信处理方法和装置
CN102148670B (zh) 一种时间提前ta值指示方法和装置
US10257827B2 (en) Method for configuring frame structure, user equipment and network equipment
WO2020030253A1 (en) Reducing dci payload
JP7357089B2 (ja) アップリンク情報送信方法および装置、基地局、ならびにユーザ機器
CN107733600B (zh) 一种分配参考信号资源的方法和设备
CN111417200B (zh) 上行传输方法、资源指示方法、终端及网络设备
WO2022262121A1 (zh) 一种无线网络上行同步方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805927

Country of ref document: EP

Kind code of ref document: A1