WO2020228159A1 - 一种多种复合能源承压模块热水控制系统 - Google Patents

一种多种复合能源承压模块热水控制系统 Download PDF

Info

Publication number
WO2020228159A1
WO2020228159A1 PCT/CN2019/100685 CN2019100685W WO2020228159A1 WO 2020228159 A1 WO2020228159 A1 WO 2020228159A1 CN 2019100685 W CN2019100685 W CN 2019100685W WO 2020228159 A1 WO2020228159 A1 WO 2020228159A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure
hot water
bearing module
pipe
Prior art date
Application number
PCT/CN2019/100685
Other languages
English (en)
French (fr)
Inventor
陈立敏
葛飞
孙金金
武加耀
Original Assignee
马鞍山市博浪热能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马鞍山市博浪热能科技有限公司 filed Critical 马鞍山市博浪热能科技有限公司
Priority to ZA2019/05863A priority Critical patent/ZA201905863B/en
Publication of WO2020228159A1 publication Critical patent/WO2020228159A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a control system, in particular to a hot water control system of multiple composite energy pressurized modules, belonging to the field of hot water control applications.
  • Modular hot water control system is to modularize the hot water control system and divide it into separate parts, and each separate part can be used in conjunction.
  • the existing modular control system is not highly intelligent and cannot be adjusted quickly according to the actual water process. The purpose of ensuring the timely supply of hot water and energy saving cannot be achieved. And the hot water is not smooth enough in the internal circulation, and the heating is not even enough.
  • the purpose of the present invention is to provide a multi-energy pressurized modular hot water control system, which can solve the problem that the existing modular control system is not highly intelligent and cannot be adjusted quickly according to the actual water use process.
  • the hot water is not smoothly circulated internally and the heating is not evenly supplied.
  • a multi-energy pressure-bearing module hot water control system including air source heat pump water heaters, solar collectors, electric heating pipes, pressure-bearing module heating water tanks, first pressure-bearing module hot water storage tanks and second bearing modules
  • a pressure module hot water storage tank, a circulation pipe and a return pipe are connected through the air source heat pump water heater and the pressure module heating water tank, and an air source circulating water pump is installed in the middle of the circulation pipe.
  • a liquid storage tube is installed inside the solar heat collecting plate, and two flow tubes are connected at both ends of the bottom of the liquid storage tube.
  • a solar heat exchange sleeve is installed inside the pressure-bearing module heating water tank, and a solar heat exchange sleeve The two ends of the pipe run through the pressure-bearing module heating water tank and are connected to the two circulation pipes at the bottom of the solar collector.
  • One of the circulation pipes is equipped with a solar circulating water pump in the middle, and the inner side of the pressure-bearing module heating water tank is installed with electricity.
  • an inner ring temperature sensor and a heating temperature sensor are installed inside the pressure-bearing module heating water tank, and the solar heat collecting plate temperature sensor is installed inside the solar heat collecting plate.
  • the heating water tank of the pressure-bearing module is connected with the top of the first pressure-bearing module hot water storage tank through a pipe, and the top of the first pressure-bearing module hot water storage tank is connected with the top of the second pressure-bearing module hot water storage tank through a pipe.
  • a hot water pipe is connected to one side of the pipeline between the pressure-bearing module heating water tank and the top of the first pressure-bearing module hot water storage tank, and a water inlet pipe is connected to the top side of the pressure-bearing module heating water tank.
  • One side is connected with the second pressure-bearing module hot water storage tank through a pipeline, and the water inlet pipe is installed between the second pressure-bearing module hot water storage tank and the pressure-bearing module heating water tank with a pressure-bearing module hot water internal circulation pump and an electric Two-way valve.
  • an electric heating temperature sensor is installed inside the first pressure-bearing module hot water storage tank, and an inlet water temperature sensor is installed inside the second pressure-bearing module hot water storage tank.
  • a return pipe is connected to the bottom side of the water inlet pipe, a check valve, a hot water return pump, and a return water temperature sensor are sequentially installed between the return pipe and the water inlet pipe, and the other end of the return pipe is connected to the hot water pipe Connection, several water points are set between the return pipe and the hot water pipe.
  • a safety valve is installed on the top side of the heating water tank of the pressure-bearing module.
  • an automatic exhaust valve is installed between the hot water internal circulation pump of the pressure-bearing module and the electric two-way valve.
  • control system controls the specific steps used by the control system.
  • Step 1 When the air source heat pump water heater is working, the heating temperature sensor detects that the water temperature in the heating water tank of the pressure module is lower than the set temperature T1, the air source circulating water pump starts, and the air source heat pump water heater works for a period of time
  • the inner ring temperature sensor detects that the water temperature in the heating water tank of the pressure-bearing module is greater than the set temperature T1
  • the electric two-way valve opens, and the hot water internal circulation pump of the pressure-bearing module works
  • the second pressure-bearing module stores hot water
  • the water in the tank is delivered to the pressure-bearing module heating water tank, the heated water from the pressure-bearing module heating water tank is delivered to the first pressure-bearing module hot water storage tank, and the water inside the first pressure-bearing module hot water storage tank enters
  • the inside of the second pressure-bearing module hot water storage tank circulates in sequence until the inlet water temperature sensor detects that the temperature reaches the set temperature T1, the air source heat pump water heater
  • Step 2 When the temperature difference between the electric heating temperature sensor and the inlet water temperature sensor is greater than the set temperature difference T3, the client's water consumption is large, and the air source heat pump water heater alone cannot meet the user's water consumption, and the electric heating pipe is started. use;
  • Step 3 When the temperature sensor of the solar collector panel detects that the internal temperature is greater than the set temperature T1, the solar circulating water pump starts, and the heat exchange fluid heated in the liquid storage tube inside the solar collector panel is delivered to the solar heat exchange jacket The water in the pressure-bearing module heating water tank is heated in the pipe, and then flows back to the liquid storage pipe through the circulation pipe.
  • the air energy heat pump relies on a small amount of electric energy to drive the compressor to absorb the energy in the air to produce hot water.
  • the solar collector plate relies on absorbing solar energy to produce hot water.
  • hot water is produced mainly by electric heating pipes and air.
  • the control system can also use air energy, solar energy, and electricity to produce a large amount of hot water. This system can not only produce a large amount of hot water but also has a good energy-saving effect. It has a high degree of intelligence and can adapt to different use needs and changes in various environments.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Air source heat pump water heater 2. Solar collector plate; 3. Electric heating tube; 4. Solar heat exchange sleeve; 5. Solar circulating water pump; 6. Air source circulating water pump; 7. Pressure bearing Module hot water internal circulation pump; 8. Solar collector temperature sensor; 9. Heating temperature sensor; 10. Inner ring temperature sensor; 11. Electric heating temperature sensor; 12. Inlet water temperature sensor; 13. Return water temperature sensor; 14. Hot water return pump; 15. Safety valve; 16. Automatic exhaust valve; 17. Electric two-way valve; 18. Check valve; 19. Return pipe; 20. Water inlet pipe; 21. Pressure-bearing module heating water tank; 22. The first pressure-bearing module hot water storage tank; 23. The second pressure-bearing module hot water storage tank; 24. Hot water pipe.
  • a multi-energy pressurized module hot water control system including air source heat pump water heater 1, solar collector plate 2, electric heating pipe 3, pressurized module heating water tank 21, first
  • the pressure-bearing module hot water storage tank 22 and the second pressure-bearing module hot water storage tank 23, the air source heat pump water heater 1 and the pressure-bearing module heating water tank 21 are connected through a circulation pipe and a return pipe, and the middle of the circulation pipe is installed Circulating water pump 6 with air source;
  • a liquid storage tube is installed inside the solar heat collecting plate 2, and both ends of the bottom of the liquid storage tube are connected with two flow tubes.
  • the pressure module heating water tank 21 is equipped with a solar heat exchange sleeve 4, and the solar heat exchange sleeve The two ends of 4 penetrate the pressure-bearing module heating water tank 21 and are connected to the two circulation pipes at the bottom of the solar collector plate 2.
  • the middle of one of the circulation pipes is equipped with a solar circulating water pump 5, and the pressure-bearing module heating water tank 21 is installed on the inner side
  • the pressure-bearing module heating water tank 21 is connected to the top of the first pressure-bearing module hot water storage tank 22 through a pipeline, and the first pressure-bearing module hot water storage tank 22 and the second pressure-bearing module hot water storage tank 23 pass through
  • the pipeline is connected through, the side of the pipeline between the pressure-bearing module heating water tank 21 and the top of the first pressure-bearing module hot water storage tank 22 is connected with a hot water pipe 24, and the top side of the pressure-bearing module heating water tank 21 is connected with a water inlet pipe 20 ,
  • One side of the water inlet pipe 20 is connected to the second pressure-bearing module hot water storage tank 23 through a pipe, and the water inlet pipe 20 is installed between the second pressure-bearing module hot water storage tank 23 and the pressure-bearing module heating water tank 21.
  • an electric heating temperature sensor 11 is installed inside the first pressure-bearing module hot water storage tank 22, and an inlet water temperature sensor 12 is installed inside the second pressure-bearing module hot water storage tank 23.
  • the inlet water temperature sensor 12 can detect the water temperature inside the second pressure module hot water storage tank 23.
  • a return pipe 19 is connected to the bottom side of the water inlet pipe 20, and a check valve 18, a hot water return pump 14 and a return water temperature sensor are sequentially installed between the return pipe 19 and the water inlet pipe 20 13. And the other end of the return pipe 19 is connected with the hot water pipe 24, and several water points are set between the return pipe 19 and the hot water pipe 24.
  • the hot water return pump 14 transfers the water stored in the hot water pipe 24 to the inside of the water inlet pipe 20 to ensure that the water used at the water intake point is always hot water.
  • the check valve 18 can prevent cold water from entering the user end, and ensure that the user end is not affected by cold water during the process of using hot water.
  • a safety valve 15 is installed on the top side of the pressure-bearing module heating water tank 21, and the safety valve 15 can ensure the safety performance of the pressure-bearing module heating water tank 21 in use.
  • an automatic exhaust valve 16 is installed between the pressure-bearing module hot water internal circulation pump 7 and the electric two-way valve 17.
  • the electric two-way valve can control the pressure module heating water tank 21 and the second
  • the opening and closing of the cold water pipe between the pressure-bearing module hot water storage tank 23 controls the internal hot water circulation, and the gas in the water is discharged from the automatic exhaust valve 16 during the heating process.
  • control system As a technical optimization solution of the present invention, the specific steps used by the control system include:
  • Step 1 When the air source heat pump water heater 1 works, the heating temperature sensor 9 detects that the water temperature in the pressure module heating water tank 21 is lower than the set temperature T1, the air source circulating water pump 6 starts, and the air source heat pump water heater 1 After working for a period of time, when the inner ring temperature sensor 10 detects that the water temperature in the pressure-bearing module heating water tank 21 is greater than the set temperature T1, the electric two-way valve 17 opens, and the pressure-bearing module hot water internal circulation pump 7 works. When the water in the second pressure-bearing module hot water storage tank 23 is delivered to the pressure-bearing module heating water tank 21, the heated water from the pressure-bearing module heating water tank 21 is delivered to the first pressure-bearing module hot water storage tank 22.
  • the water inside a pressure-bearing module hot water storage tank 22 enters the inside of the second pressure-bearing module hot water storage tank 23 and circulates in sequence until the water inlet temperature sensor 12 detects that the temperature reaches the set temperature T1, the air source The heat pump water heater 1 and the air source circulating water pump 6 stop working, the electric two-way valve 17 is closed, and the hot water internal circulating pump 7 of the pressure-bearing module stops running; when the user gets hot water from the hot water pipe 24, cold water enters the water inlet pipe 20 Inside the second pressure-bearing module hot water storage tank 23, when the user uses hot water and the water temperature detected by the return water temperature sensor 13 is lower than the set return water temperature T2, the hot water return pump 14 passes the cold water through the return pipe 19 Transported to the inside of the second pressure-bearing module hot water storage tank 23;
  • Step 2 When the temperature difference between the electric heating temperature sensor 11 and the inlet water temperature sensor 12 is greater than the set temperature difference T3, the client's water consumption is large, and the air source heat pump water heater 1 alone cannot satisfy the user's water consumption.
  • the heating tube 3 is put into use;
  • Step 3 When the solar collector panel temperature sensor 8 detects that the internal temperature is greater than the set temperature T1, the solar circulating water pump 5 starts, and the heat exchange fluid heated in the liquid storage tube inside the solar collector panel 2 is delivered to the solar energy The heat exchange sleeve 4 heats the water in the pressure-bearing module heating water tank 21, and then flows back to the liquid storage pipe through the circulation pipe.
  • the control system When the present invention is in use, the control system is connected with an external control device, and the entire system can be intelligently controlled through the control device.
  • the heating temperature sensor 9 detects that the water temperature in the pressure-bearing module heating water tank 21 is lower than the set temperature T1, the required water temperature T1 in the pressure-bearing module heating water tank 21 can be controlled by the control device Free setting, the air source circulating water pump 6 starts, the water in the pressure module heating water tank 21 enters the air source heat pump water heater 1 through the circulation pipe, and the water returns from the return pipe to the pressure module after being internally heated
  • the inside of the heating water tank 21 raises the water temperature inside the heating water tank 21 of the pressure-bearing module.
  • the air source heat pump water heater 1 After the air source heat pump water heater 1 has been working for a period of time, when the inner ring temperature sensor 10 detects that the water temperature in the pressure-bearing module heating water tank 21 is greater than the set temperature T1, the electric two-way valve 17 opens, and the hot water in the pressure-bearing module The circulating pump 7 is working.
  • the water from the second pressure-bearing module hot water storage tank 23 is delivered to the pressure-bearing module heating water tank 21, and the heated water from the pressure-bearing module heating water tank 21 is delivered to the first pressure-bearing module for heat storage
  • the water inside the first pressure-bearing module hot water storage tank 22 enters the second pressure-bearing module hot water storage tank 23, and circulates sequentially until the inlet water temperature sensor 12 detects that the temperature reaches the set temperature.
  • T1 the air source heat pump water heater 1 and the air source circulating water pump 6 stop working, the electric two-way valve 17 is closed, and the pressure-bearing module hot water internal circulating pump 7 stops running.
  • the gas in the water is discharged from the automatic exhaust valve 16.
  • cold water enters the inside of the second pressure-bearing module hot water storage tank 23 from the water inlet pipe 20.
  • the hot water return pump 14 delivers the cold water to the second pressure-bearing module hot water storage tank 23 through the return pipe 19 internal;
  • the air source heat pump water heater 1 and the electric heating pipe 3 are used together to heat water and increase the amount of hot water.
  • the solar collector panel temperature sensor 8 detects that the internal temperature is greater than the set temperature T1
  • the solar circulating water pump 5 starts, and the heat exchange fluid heated in the liquid storage tube inside the solar collector panel 2 is usually ethanol solution.
  • the water delivered to the solar heat exchange sleeve 4 exchanges heat with the water inside, heats the water in the pressure-bearing module heating water tank 21, and then flows back to the liquid storage pipe through the circulation pipe to be heated and circulated again.
  • the air-source heat pump water heater 1, the electric heating tube 3 and the solar collector plate 2 can be used alone or in conjunction with each other. Intelligent control can ensure the timely supply of hot water.
  • the specific working principle of the present invention is that by installing an air source heat pump water heater, an electric heating tube and a solar heat collecting tube in the system, three kinds of composite energy sources of air energy, solar energy and electric energy can be combined into a heating system.
  • the air energy heat pump relies on a small amount of electric energy to drive the compressor to absorb the energy in the air to produce hot water.
  • the solar collector plate relies on absorbing solar energy to produce hot water.
  • hot water is produced mainly by electric heating pipes and air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明公开了一种多种复合能源承压模块热水控制系统,包括空气源热泵热水机、太阳能集热板、电加热管、承压模块加热水箱、第一承压模块储热水箱和第二承压模块储热水箱,所述空气源热泵热水机与承压模块加热水箱之间贯通连接有流通管和回流管,流通管的中部安装有空气源循环水泵。通过在系统中安装空气源热泵热水机、电加热管和太阳能集热管,可以将空气能、太阳能、电能三种复合能源组合成为一个加热系统。如果在需求热水比较多的时候,也可以通过控制系统同时使用空气能、太阳能、电能共同产生大量热水。通过此系统不仅能产生大量的热水而且起到了很好节能效果,智能化程度较高,能适应不同的使用需求和多种环境的变化。

Description

一种多种复合能源承压模块热水控制系统 技术领域
本发明涉及一种控制系统,具体涉及一种多种复合能源承压模块热水控制系统,属于热水控制应用领域。
背景技术
模块热水控制系统是将热水的控制系统模块化,分成各个单独的部分,且各个单独的部分又可以配合使用。但是现有的模块化控制系统智能化程度不高,不能根据实际的用水过程进行快速的调节。无法达到保证热水及时的供应和能源节省的目的。且热水在内部循环时不够流畅,供热不够均匀。
发明内容
本发明的目的在于提供一种多种复合能源承压模块热水控制系统,可以解决现有的模块化控制系统智能化程度不高,不能根据实际的用水过程进行快速的调节。无法达到保证热水及时的供应和能源节省的目的。且热水在内部循环时不够流畅,供热不够均匀的技术问题。
本发明的目的可以通过以下技术方案实现:
一种多种复合能源承压模块热水控制系统,包括空气源热泵热水机、太阳能集热板、电加热管、承压模块加热水箱、第一承压模块储热水箱和第二承压模块储热水箱,所述空气源热泵热水机与承压模块加热水箱之间贯通连接有流通管和回流管,流通管的中部安装有空气源循环水泵。
所述太阳能集热板的内部安装有储液管,储液管的底部两端均连接两根流通管,所述承压模块加热水箱的内部安装有太阳能换热套管,且太阳能换热套管的两端贯穿承压模块加热水箱与太阳能集热板底部的两根流通管连接,其中一根流通管的中部安装有太阳能循环水泵,所述承压模块加热水箱的内部一侧安装有电加热管,所述承压模块加热水箱的内部还安装有内环温度传感器和加热温度传感器,所述太阳能集热板的内部安装有太阳能集热板温度传感器。
所述承压模块加热水箱与第一承压模块储热水箱顶部之间通过管道贯通连 接,第一承压模块储热水箱与第二承压模块储热水箱顶部之间通过管道贯通连接,所述承压模块加热水箱与第一承压模块储热水箱顶部之间的管道一侧连接有热水管,所述承压模块加热水箱的顶部一侧连接有进水管,进水管的一侧通过管道与第二承压模块储热水箱连接,且进水管在第二承压模块储热水箱与承压模块加热水箱之间安装有承压模块热水内循环泵和电动两通阀。
优选的,所述第一承压模块储热水箱的内部安装有电加热温度传感器,第二承压模块储热水箱的内部安装有进水温度传感器。
优选的,所述进水管的底部一侧连接有回水管,回水管与进水管之间依次安装有止回阀、热水回水泵和回水温度传感器,且回水管的另一端与热水管连接,回水管与热水管之间设置有若干个用水点。
优选的,所述承压模块加热水箱顶端一侧安装有安全阀。
优选的,所述承压模块热水内循环泵与电动两通阀之间安装有自动排气阀。
优选的,该控制系统使用的具体步骤包括:
步骤一:当空气源热泵热水机工作时,加热温度传感器检测承压模块加热水箱中的水温低于设定的温度T1时,空气源循环水泵启动,空气源热泵热水机工作一段时间后,当内环温度传感器检测到承压模块加热水箱中的水温大于设定的温度T1时,电动两通阀打开,承压模块热水内循环泵工作,此时第二承压模块储热水箱的水被输送到承压模块加热水箱中,承压模块加热水箱已加热的水被输送到第一承压模块储热水箱中,第一承压模块储热水箱内部的水进入到第二承压模块储热水箱的内部,依次进行循环,直到进水温度传感器检测到温度达到设定的温度T1时,空气源热泵热水机和空气源循环水泵停止工作,电动两通阀关闭,承压模块热水内循环泵停止运行;用户从热水管获取热水时,冷水从进水管进入第二承压模块储热水箱的内部,当用户使用热水时,回水温度传感器检测的水温低于设定的回水温度T2时,热水回水泵将冷水通过回水管输送到第二承压模块储热水箱的内部;
步骤二:当电加热温度传感器和进水温度传感器之间的温差大于设定的温差T3时,则客户端用水量大,仅用空气源热泵热水机无法满足用户用水,启动 电加热管投入使用;
步骤三:当太阳能集热板温度传感器检测到内部的温度大于设定的温度T1时,太阳能循环水泵启动,太阳能集热板内部储液管中被加热的换热液被输送到太阳能换热套管中将承压模块加热水箱中水加热,然后通过流通管回流到储液管中。
本发明的有益效果:
通过在系统中安装空气源热泵热水机、电加热管和太阳能集热管,可以将空气能、太阳能、电能三种复合能源组合成为一个加热系统。在气温高的环境下空气能热泵依靠少部分电能驱动压缩机吸收空气中的能量产生热水,在有阳光的环境下,太阳能集热板依靠吸收太阳能产生热水,当环境温度较低和没有阳光的环境下主要依靠电加热管和空气能产生热水。如果在需求热水比较多的时候,也可以通过控制系统同时使用空气能、太阳能、电能共同产生大量热水。通过此系统不仅能产生大量的热水而且起到了很好节能效果,智能化程度较高,能适应不同的使用需求和多种环境的变化。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1为本发明整体结构示意图。
图中:1、空气源热泵热水机;2、太阳能集热板;3、电加热管;4、太阳能换热套管;5、太阳能循环水泵;6、空气源循环水泵;7、承压模块热水内循环泵;8、太阳能集热板温度传感器;9、加热温度传感器;10、内环温度传感器;11、电加热温度传感器;12、进水温度传感器;13、回水温度传感器;14、热水回水泵;15、安全阀;16、自动排气阀;17、电动两通阀;18、止回阀;19、回水管;20、进水管;21、承压模块加热水箱;22、第一承压模块储热水箱;23、第二承压模块储热水箱;24、热水管。
本发明的较佳实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明 中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,一种多种复合能源承压模块热水控制系统,包括空气源热泵热水机1、太阳能集热板2、电加热管3、承压模块加热水箱21、第一承压模块储热水箱22和第二承压模块储热水箱23,空气源热泵热水机1与承压模块加热水箱21之间贯通连接有流通管和回流管,流通管的中部安装有空气源循环水泵6;
太阳能集热板2的内部安装有储液管,储液管的底部两端均连接两根流通管,承压模块加热水箱21的内部安装有太阳能换热套管4,且太阳能换热套管4的两端贯穿承压模块加热水箱21与太阳能集热板2底部的两根流通管连接,其中一根流通管的中部安装有太阳能循环水泵5,承压模块加热水箱21的内部一侧安装有电加热管3,承压模块加热水箱21的内部还安装有内环温度传感器10和加热温度传感器9,太阳能集热板2的内部安装有太阳能集热板温度传感器8;
承压模块加热水箱21与第一承压模块储热水箱22顶部之间通过管道贯通连接,第一承压模块储热水箱22与第二承压模块储热水箱23顶部之间通过管道贯通连接,承压模块加热水箱21与第一承压模块储热水箱22顶部之间的管道一侧连接有热水管24,承压模块加热水箱21的顶部一侧连接有进水管20,进水管20的一侧通过管道与第二承压模块储热水箱23连接,且进水管20在第二承压模块储热水箱23与承压模块加热水箱21之间安装有承压模块热水内循环泵7和电动两通阀17。
作为本发明的一种技术优化方案,第一承压模块储热水箱22的内部安装有电加热温度传感器11,第二承压模块储热水箱23的内部安装有进水温度传感器12,当电加热温度传感器11和进水温度传感器12之间的温差大于设定的温差T3时,则客户端用水量大,仅用空气源热泵热水机1无法满足用户用水,启动电加热管3投入使用,进水温度传感器12能检测第二承压模块储热水箱23内部的水温。
作为本发明的一种技术优化方案,进水管20的底部一侧连接有回水管19,回水管19与进水管20之间依次安装有止回阀18、热水回水泵14和回水温度传感器13,且回水管19的另一端与热水管24连接,回水管19与热水管24之间设置有若干个用水点。取水点使用热水前,热水回水泵14将热水管24内部存留的水输送到进水管20的内部,保证取水点使用的水一直是热水。止回阀18可以防止冷水进入到用户端,保证用户端用热水的过程中不受冷水的影响。
作为本发明的一种技术优化方案,承压模块加热水箱21顶端一侧安装有安全阀15,安全阀15能保障承压模块加热水箱21在使用中的安全性能。
作为本发明的一种技术优化方案,承压模块热水内循环泵7与电动两通阀17之间安装有自动排气阀16,电动两通阀可以控制承压模块加热水箱21与第二承压模块储热水箱23之间冷水管的开启和关闭,进而控制内部的热水循环,加热过程中水中气体从自动排气阀16排出。
作为本发明的一种技术优化方案,该控制系统使用的具体步骤包括:
步骤一:当空气源热泵热水机1工作时,加热温度传感器9检测承压模块加热水箱21中的水温低于设定的温度T1时,空气源循环水泵6启动,空气源热泵热水机1工作一段时间后,当内环温度传感器10检测到承压模块加热水箱21中的水温大于设定的温度T1时,电动两通阀17打开,承压模块热水内循环泵7工作,此时第二承压模块储热水箱23的水被输送到承压模块加热水箱21中,承压模块加热水箱21已加热的水被输送到第一承压模块储热水箱22中,第一承压模块储热水箱22内部的水进入到第二承压模块储热水箱23的内部,依次进行循环,直到进水温度传感器12检测到温度达到设定的温度T1时,空气源热泵热水机1和空气源循环水泵6停止工作,电动两通阀17关闭,承压模块热水内循环泵7停止运行;用户从热水管24获取热水时,冷水从进水管20进入第二承压模块储热水箱23的内部,当用户使用热水时,回水温度传感器13检测的水温低于设定的回水温度T2时,热水回水泵14将冷水通过回水管19输送到第二承压模块储热水箱23的内部;
步骤二:当电加热温度传感器11和进水温度传感器12之间的温差大于设 定的温差T3时,则客户端用水量大,仅用空气源热泵热水机1无法满足用户用水,启动电加热管3投入使用;
步骤三:当太阳能集热板温度传感器8检测到内部的温度大于设定的温度T1时,太阳能循环水泵5启动,太阳能集热板2内部储液管中被加热的换热液被输送到太阳能换热套管4中将承压模块加热水箱21中水加热,然后通过流通管回流到储液管中。
本发明在使用时,将控制系统与外部的控制器械连接,通过控制器械可以智能化的控制整个系统。当空气源热泵热水机1工作时,加热温度传感器9检测承压模块加热水箱21中的水温低于设定的温度T1时,承压模块加热水箱21中的所需水温T1可以通过控制器械自由的设定,空气源循环水泵6启动,承压模块加热水箱21中的水通过流通管进入到空气源热泵热水机1的内部,水在内部加热后从回流管回流进入到承压模块加热水箱21的内部,将承压模块加热水箱21内部的水温提升。空气源热泵热水机1工作一段时间后,当内环温度传感器10检测到承压模块加热水箱21中的水温大于设定的温度T1时,电动两通阀17打开,承压模块热水内循环泵7工作,此时第二承压模块储热水箱23的水被输送到承压模块加热水箱21中,承压模块加热水箱21已加热的水被输送到第一承压模块储热水箱22中,第一承压模块储热水箱22内部的水进入到第二承压模块储热水箱23的内部,依次进行循环,直到进水温度传感器12检测到温度达到设定的温度T1时,空气源热泵热水机1和空气源循环水泵6停止工作,电动两通阀17关闭,承压模块热水内循环泵7停止运行。加热过程中水中气体从自动排气阀16排出。当用户从热水管24获取热水时,冷水从进水管20进入第二承压模块储热水箱23的内部。当用户使用热水时,回水温度传感器13检测的水温低于设定的回水温度T2时,热水回水泵14将冷水通过回水管19输送到第二承压模块储热水箱23的内部;
当电加热温度传感器11和进水温度传感器12之间的温差大于设定的温差T3时,则客户端用水量大,仅用空气源热泵热水机1无法满足用户用水,启动电加热管3投入使用,空气源热泵热水机1和电加热管3配合使用,共同为水 加热,增加热水量。当太阳能集热板温度传感器8检测到内部的温度大于设定的温度T1时,太阳能循环水泵5启动,太阳能集热板2内部储液管中被加热的换热液,通常为乙醇溶液,被输送到太阳能换热套管4中与内部的水热量交换,将承压模块加热水箱21中的水加热,然后通过流通管回流到储液管中再次受热循环。使用中空气源热泵热水机1、电加热管3和太阳能集热板2可以单独使用也可相互配合使用,通过智能化的控制能保证热水的及时供应。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
工业实用性
本发明的具体工作原理是:通过在系统中安装空气源热泵热水机、电加热管和太阳能集热管,可以将空气能、太阳能、电能三种复合能源组合成为一个加热系统。在气温高的环境下空气能热泵依靠少部分电能驱动压缩机吸收空气中的能量产生热水,在有阳光的环境下,太阳能集热板依靠吸收太阳能产生热水,当环境温度较低和没有阳光的环境下主要依靠电加热管和空气能产生热水。

Claims (6)

  1. 一种多种复合能源承压模块热水控制系统,其特征在于,包括空气源热泵热水机(1)、太阳能集热板(2)、电加热管(3)、承压模块加热水箱(21)、第一承压模块储热水箱(22)和第二承压模块储热水箱(23),所述空气源热泵热水机(1)与承压模块加热水箱(21)之间贯通连接有流通管和回流管,流通管的中部安装有空气源循环水泵(6);
    所述太阳能集热板(2)的内部安装有储液管,储液管的底部两端均连接两根流通管,所述承压模块加热水箱(21)的内部安装有太阳能换热套管(4),且太阳能换热套管(4)的两端贯穿承压模块加热水箱(21)与太阳能集热板(2)底部的两根流通管连接,其中一根流通管的中部安装有太阳能循环水泵(5),所述承压模块加热水箱(21)的内部一侧安装有电加热管(3),所述承压模块加热水箱(21)的内部还安装有内环温度传感器(10)和加热温度传感器(9),所述太阳能集热板(2)的内部安装有太阳能集热板温度传感器(8);
    所述承压模块加热水箱(21)与第一承压模块储热水箱(22)顶部之间通过管道贯通连接,第一承压模块储热水箱(22)与第二承压模块储热水箱(23)顶部之间通过管道贯通连接,所述承压模块加热水箱(21)与第一承压模块储热水箱(22)顶部之间的管道一侧连接有热水管(24),所述承压模块加热水箱(21)的顶部一侧连接有进水管(20),进水管(20)的一侧通过管道与第二承压模块储热水箱(23)连接,且进水管(20)在第二承压模块储热水箱(23)与承压模块加热水箱(21)之间安装有承压模块热水内循环泵(7)和电动两通阀(17)。
  2. 根据权利要求1所述的一种多种复合能源承压模块热水控制系统,其特征在于,所述第一承压模块储热水箱(22)的内部安装有电加热温度传感器(11),第二承压模块储热水箱(23)的内部安装有进水温度传感器(12)。
  3. 根据权利要求1所述的一种多种复合能源承压模块热水控制系统,其特 征在于,所述进水管(20)的底部一侧连接有回水管(19),回水管(19)与进水管(20)之间依次安装有止回阀(18)、热水回水泵(14)和回水温度传感器(13),且回水管(19)的另一端与热水管(24)连接,回水管(19)与热水管(24)之间设置有若干个用水点。
  4. 根据权利要求1所述的一种多种复合能源承压模块热水控制系统,其特征在于,所述承压模块加热水箱(21)顶端一侧安装有安全阀(15)。
  5. 根据权利要求1所述的一种多种复合能源承压模块热水控制系统,其特征在于,所述承压模块热水内循环泵(7)与电动两通阀(17)之间安装有自动排气阀(16)。
  6. 根据权利要求1所述的一种多种复合能源承压模块热水控制系统,其特征在于,该控制系统使用的具体步骤包括:
    步骤一:当空气源热泵热水机(1)工作时,加热温度传感器(9)检测承压模块加热水箱(21)中的水温低于设定的温度T1时,空气源循环水泵(6)启动,空气源热泵热水机(1)工作一段时间后,当内环温度传感器(10)检测到承压模块加热水箱(21)中的水温大于设定的温度T1时,电动两通阀(17)打开,承压模块热水内循环泵(7)工作,此时第二承压模块储热水箱(23)的水被输送到承压模块加热水箱(21)中,承压模块加热水箱(21)已加热的水被输送到第一承压模块储热水箱(22)中,第一承压模块储热水箱(22)内部的水进入到第二承压模块储热水箱(23)的内部,依次进行循环,直到进水温度传感器(12)检测到温度达到设定的温度T1时,空气源热泵热水机(1)和空气源循环水泵(6)停止工作,电动两通阀(17)关闭,承压模块热水内循环泵(7)停止运行;用户从热水管(24)获取热水时,冷水从进水管(20)进入第二承压模块储热水箱(23)的内部,当用户使用热水时,回水温度传感器(13)检测的水温低于设定的回水温度T2时,热水回水泵(14)将冷水通过回水管(19) 输送到第二承压模块储热水箱(23)的内部;
    步骤二:当电加热温度传感器(11)和进水温度传感器(12)之间的温差大于设定的温差T3时,则客户端用水量大,仅用空气源热泵热水机(1)无法满足用户用水,启动电加热管(3)投入使用;
    步骤三:当太阳能集热板温度传感器(8)检测到内部的温度大于设定的温度T1时,太阳能循环水泵(5)启动,太阳能集热板(2)内部储液管中被加热的换热液被输送到太阳能换热套管(4)中将承压模块加热水箱(21)中水加热,然后通过流通管回流到储液管中。
PCT/CN2019/100685 2019-05-13 2019-08-15 一种多种复合能源承压模块热水控制系统 WO2020228159A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2019/05863A ZA201905863B (en) 2019-05-13 2019-09-05 A pressure-bearing module hot water control system with multiple energy sources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910393989.XA CN110108042A (zh) 2019-05-13 2019-05-13 一种多种复合能源承压模块热水控制系统
CN201910393989.X 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020228159A1 true WO2020228159A1 (zh) 2020-11-19

Family

ID=67489658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100685 WO2020228159A1 (zh) 2019-05-13 2019-08-15 一种多种复合能源承压模块热水控制系统

Country Status (3)

Country Link
CN (1) CN110108042A (zh)
WO (1) WO2020228159A1 (zh)
ZA (1) ZA201905863B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108042A (zh) * 2019-05-13 2019-08-09 马鞍山市博浪热能科技有限公司 一种多种复合能源承压模块热水控制系统
CN110715448B (zh) * 2019-10-21 2021-06-01 浙江正理生能科技有限公司 一种加热承压系统的控制方法
CN111707004B (zh) * 2020-05-25 2021-10-01 广东纽恩泰新能源科技发展有限公司 一种模块组合式空气源热泵机组控制系统
CN112850929A (zh) * 2021-01-11 2021-05-28 李耀强 一种智能节水洗车机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179736A (ja) * 2010-03-01 2011-09-15 Corona Corp 貯湯式給湯装置
JP2014037963A (ja) * 2013-10-25 2014-02-27 Enetecs Kk 太陽熱給湯システム
CN204404560U (zh) * 2015-01-14 2015-06-17 力诺瑞特(上海)新能源有限公司 一种分体式太阳能与空气源热泵复合系统
CN105546842A (zh) * 2016-02-15 2016-05-04 河南水木环保科技股份有限公司 高效太阳平板吸热系统
CN107490189A (zh) * 2017-08-31 2017-12-19 马鞍山市博浪热能科技有限公司 一种模块化承压热泵系统及其控制方法
CN207365408U (zh) * 2017-08-31 2018-05-15 马鞍山市博浪热能科技有限公司 一种模块化承压热泵系统
CN109631350A (zh) * 2019-01-30 2019-04-16 中国建筑西北设计研究院有限公司 太阳能蓄热供暖系统及其供暖控制方法
CN110108042A (zh) * 2019-05-13 2019-08-09 马鞍山市博浪热能科技有限公司 一种多种复合能源承压模块热水控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848292A (zh) * 2014-10-22 2015-08-19 青岛万力科技有限公司 太阳能生活热水集中换热系统
CN104534685A (zh) * 2015-01-14 2015-04-22 力诺瑞特(上海)新能源有限公司 一种分体式太阳能与空气源热泵复合系统
CN204574533U (zh) * 2015-04-28 2015-08-19 湖南亚晨建筑科技有限公司 一种全自动智能化防漏防高温恒温太阳能热水系统
CN210197733U (zh) * 2019-05-13 2020-03-27 马鞍山市博浪热能科技有限公司 一种多种复合能源承压模块热水控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179736A (ja) * 2010-03-01 2011-09-15 Corona Corp 貯湯式給湯装置
JP2014037963A (ja) * 2013-10-25 2014-02-27 Enetecs Kk 太陽熱給湯システム
CN204404560U (zh) * 2015-01-14 2015-06-17 力诺瑞特(上海)新能源有限公司 一种分体式太阳能与空气源热泵复合系统
CN105546842A (zh) * 2016-02-15 2016-05-04 河南水木环保科技股份有限公司 高效太阳平板吸热系统
CN107490189A (zh) * 2017-08-31 2017-12-19 马鞍山市博浪热能科技有限公司 一种模块化承压热泵系统及其控制方法
CN207365408U (zh) * 2017-08-31 2018-05-15 马鞍山市博浪热能科技有限公司 一种模块化承压热泵系统
CN109631350A (zh) * 2019-01-30 2019-04-16 中国建筑西北设计研究院有限公司 太阳能蓄热供暖系统及其供暖控制方法
CN110108042A (zh) * 2019-05-13 2019-08-09 马鞍山市博浪热能科技有限公司 一种多种复合能源承压模块热水控制系统

Also Published As

Publication number Publication date
ZA201905863B (en) 2021-07-28
CN110108042A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020228159A1 (zh) 一种多种复合能源承压模块热水控制系统
CN101726156B (zh) 一种利用太阳能制冷、采暖与供水的工艺方法及装置
CN201083433Y (zh) 太阳能联合热泵供热水节能装置
CN108253643B (zh) 一种即热蓄热热泵与太阳能耦合热水系统及控制方法
CN201196455Y (zh) 一种多热源自动供热水系统
CN104534685A (zh) 一种分体式太阳能与空气源热泵复合系统
CN204404560U (zh) 一种分体式太阳能与空气源热泵复合系统
WO2021180137A1 (zh) 壁挂炉热水系统
CN106196258A (zh) 热水节能系统及其控制方法
WO2017140117A1 (zh) 一种高效太阳平板吸热系统及其运行方法
CN207975720U (zh) 一种电锅炉和太阳能联用供暖装置
CN101545654A (zh) 一种太阳能集中集热分户水箱交换供热系统
CN210197733U (zh) 一种多种复合能源承压模块热水控制系统
CN111365747A (zh) 一种多能互补供热系统及供热方法
CN205807901U (zh) 一种太阳能供热压缩热压机系统
CN205747543U (zh) 一种热管式太阳能热水集中供应系统
CN205332323U (zh) 一种可利用太阳能和空气能的采暖装置
CN205332605U (zh) 一种模块化集成控制管路太阳能地源热泵系统
CN212204713U (zh) 一种热水供给系统
CN2773557Y (zh) 一种太阳能供热装置
CN201212703Y (zh) 真空超导与太阳能集热组合采热装置
CN210441316U (zh) 一种生活热水供给系统
CN2874356Y (zh) 太阳能地板辐射采暖系统
CN107388323A (zh) 一种锅炉供热系统
CN208365712U (zh) 一种太阳能集成空气源热泵的冷暖系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928908

Country of ref document: EP

Kind code of ref document: A1