WO2020226481A2 - Biopanel para generación de energía eléctrica basado en fotosíntesis y nanofluidos. - Google Patents

Biopanel para generación de energía eléctrica basado en fotosíntesis y nanofluidos. Download PDF

Info

Publication number
WO2020226481A2
WO2020226481A2 PCT/MX2020/050006 MX2020050006W WO2020226481A2 WO 2020226481 A2 WO2020226481 A2 WO 2020226481A2 MX 2020050006 W MX2020050006 W MX 2020050006W WO 2020226481 A2 WO2020226481 A2 WO 2020226481A2
Authority
WO
WIPO (PCT)
Prior art keywords
biopanel
photosynthetic
microalgae
nanofluids
nanoparticles
Prior art date
Application number
PCT/MX2020/050006
Other languages
English (en)
French (fr)
Other versions
WO2020226481A3 (es
Inventor
Juan Antonio ARRIAGA VIVEROS
Miguel MAYORGA ROJAS
Katia ALVAREZ BENÍTEZ
Adan RAMÍREZ SÁNCHEZ
Samuel ROMERO CASTELLO
Patricia PARRA CERVANTES
Jorge Alejandro BÁRCENAS REGIDOR
Ramón Soto Vázquez
Original Assignee
Greenfluidics, S.A.S. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greenfluidics, S.A.S. De C.V. filed Critical Greenfluidics, S.A.S. De C.V.
Publication of WO2020226481A2 publication Critical patent/WO2020226481A2/es
Publication of WO2020226481A3 publication Critical patent/WO2020226481A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention refers to a sustainable system for the generation of electrical energy, which is based on the union of the properties of its components, on the one hand the photosynthesis of microalgae and on the other the heat transport of nanofluids, obtaining electrical energy after a thermoelectric transformation process, in addition to the release of oxygen and capture of carbon dioxide from the environment.
  • Chlorophyceae are green microalgae found in fresh water bodies, they are characterized by their greenish-yellowish coloration due to the presence of chlorophyll "a” and "b", they also contain pigments that can darken, these are known as beta carotenes, they are recognized by their storage of starch that is accumulated in the chloroplast and not in the cytoplasm.
  • Chlorophyll microalgae have light-collecting pigments, which are called chlorophyll.
  • Chlorophyll "a” is the main pigment in most green organisms (macro and micro) its chemical composition is C55H7205N4Mg, it shows a dark green color and the absorption peaks are at 430 nm and 662 nm, it is not present in bacteria photosynthetic.
  • the chemical composition of chlorophyll "b” differs from type "a” by the substitution of a methyl group for a CHO, its color is bluish green, with absorption peaks 453 nm and 642 nm, green algae are rich in this chlorophyll.
  • Carotenoids are accessory pigments, they are found in low concentrations in chlorophyte microalgae, being abundant in fruits or roots of higher plants. Different types of pigments have different levels of photon uptake, that is, each pigment absorbs light at different wavelengths.
  • the nutrition of green microalgae is autotrophic, based on reserve carbohydrates stored in plastids in the form of starch generated by a metabolic process known as photosynthesis and, as a first step, the light reactions take place, which is the conversion of solar energy into chemical energy, the which is a complex process that includes the transport of electrons and photosynthetic metabolism of carbon due to light reactions.
  • Carbon reduction is catalyzed by insoluble enzymes, it takes place in the stroma.
  • the reactions that catalyze the reduction of CO2 to carbohydrates are coupled with the consumption of NADPH and ATP by enzymes in the soluble phase of chloroplasts.
  • CO2 enters the Calvin cycle by reacting with ribulose-1, 5-bisphosphate to form two molecules of 3- phosphoglycerate, this reaction is regulated by the enzyme rubisco. Rubisco activity is also regulated by light.
  • chlorophyll is highly unstable and must quickly give up this energy to pigments adjacent to it.
  • the pigment can re-emit the photon but in lower energy, this process is known as fluorescence, this fluorescence is emitted in the red region of the spectrum, or else releasing the photon only in the form of heat, another
  • the energy of the excited state is used to carry out chemical reactions, that is, to carry out photosynthesis.
  • the photosynthetic pigments (chlorophylls and carotenoids) form an antenna complex that transports the electrons given by the photons to a reaction center where the chemical reactions of oxidation and reduction take place.
  • Nanofluids refer to a suspension of water and graphene oxide nanoparticles, whose main use within the biopanel is to transport the heat generated by solar radiation that impacts the biopanel.
  • Said nanoparticles are not limited only to those derived from graphene oxide, but may also originate from some metal with high thermal conductivity properties existing on the market.
  • Determining the density of the microalgae population is important to keep track of the growth and development of organisms, even more so if they are used as live food. There are different methods to keep track.
  • the Neubauer chamber and optical density counting has been carried out using a portable spectrophotometer of the HACH® brand model DR / 2010, under the principle of transmittance and a growth curve was made, as a first step a curve of calibration to previously arrive at a growth curve. Dilutions are made of a mature culture, the number of dilutions that must be made to facilitate counting the chamber depends on the original volume. Neubauer. It is advisable to add 1 ml of microalgae to 9 ml of sterile water, count each solution and finally count the mother culture.
  • the Mexican patent application MX / a / 2017/001999 speaks of an electrical energy generation system based on photosynthesis processes by means of the capture of electrons product of photosynthesis which are captured by a metallic mesh that is placed under the root of the plant or tree used to generate photosynthesis.
  • the US patent US 9,187,684 talks about the use of nanofluids as a heat transfer system, it refers to liquid systems of zinc oxide nanofluids with a concentration of 0.01 to 5% by volume and a particle size of 125 to 175 nm, as well as its use for cooling computers that have an integrated circuit system.
  • Patent application US 2016/0168530 refers to an integrated system for the cultivation of algae or plants and the production of electrical energy, which has a luminescent solar concentrator and at least one photovoltaic cell.
  • Figure 1 Daily growth curve for Desmodesmus sp. in the middle of African violet.
  • Figure 2. Flow velocity at the entrance to the biopanel.
  • FIG. 1 Pulse mixing simulations. Starting at the top left and going to the right, the evolution of the flow and the generation of vortices can be seen until this flow ceases and then another input pulse is performed.
  • FIG. 1 Front view of the biopanel, where 1 is the main frame, 2 is the sensor system, 3 is the solar concentrators, 4 is the heat exchanger, 5 is the container for photosynthetic microorganisms, 6 is the container for nanofluids and 7 is the mixer obstacle.
  • FIG. 7 Rear of the biopanel, where 5 is the microalgae container and 8 is an array of Peltier cells.
  • FIG. 8 Perspective view of the biopanel, where 1 is the main frame, 2 is the sensor system, 3 is the solar concentrators, 4 is the container for photosynthetic microorganisms, 5 is the container for nanofluids, 6 is the cell arrangement Peltier, 11 is the nanofluid flow outlet and 12 is the microalgae outlet.
  • FIG. 9 Displaced view of the biopanel, where 1 is the main frame, 2 is the sensor system, 3 is the solar concentrators, 4 is the heat exchanger, 5 is the container for photosynthetic microorganisms, 6 is the container for nanofluids , 7 is the mixer obstacle, 8 is the Peltier cell array, 13 is the microalgae container lid, and 14 is the cavities for the sensor system.
  • FIG. 10 Top view of the biopanel, where 9 is the nanofluid flow inlet, 10 is the microalgae flow inlet and 11 is the nanofluid flow outlet.
  • FIG. 11 Bottom view of the biopanel, where 1 is the main frame, 3 is the solar concentrators, 6 is the nanofluid container, 8 is the Peltier cell arrangement and 12 is the microalgae outlet.
  • FIG. 12 Left side view of the biopanel, where 1 is the main frame, 3 is the solar concentrators, 6 is the nanofluid container, 8 is the Peltier cell arrangement, 9 is the nanofluid flow inlet and 10 is the microalgae flow inlet.
  • Figure 14 Bottom view zoom of the mixer obstacle.
  • the present invention refers to a sustainable system for the generation of electrical energy, which is based on the union of the properties of its components, on the one hand, the photosynthesis of microalgae and on the other the heat transport of organic nanofluids, obtaining electrical energy after a thermoelectric transformation process, in addition to the release of oxygen and capture of carbon dioxide from the environment.
  • Culture The method for the multiplication of microorganisms, such as bacteria, in which an optimal medium is prepared to favor the desired growth process.
  • Culture medium An aqueous solution of different compounds that contains all the essential elements that microorganisms require to grow, which can be solid or liquid.
  • Biomass The heterogeneous set of organic matter, both due to its origin and its nature.
  • biomass is used to refer to a renewable energy source based on the use of organic matter formed by biological means in the immediate past or the products derived from it.
  • Photosynthetic microorganisms The group of photosynthetic protists and aquatic prokaryotes that contain chlorophyll a as their main photosynthetic pigment and with simple reproductive structures.
  • Nanofluids A class of fluids formed from dispersing nanometric particles in an aqueous medium, which are generally used for heat transfer processes.
  • the biopanel object of the present invention characterized in that it comprises: i) a structure composed of at least one polymeric material, i) at least one photosynthetic microorganism, i, i) at least one aqueous system of nanofluids, iv) a light concentration system, v) at least one heat exchanger that separated the photosynthetic microorganism and the aqueous nanofluid system and vi) at least one automated control system comprising sensors and software.
  • the polymeric material comprises the following characteristics: i) a light transmission of at least 90%, i) completely smooth, iii) photostable, iv) inherent to cleaning products and v) scratch resistant; and is selected from: ethylene tetrafluoroethylene (ETFE), polymethylmethacrylate (PMMA), polystyrene (PS), polycarbonate (PC), polyethylene terephthalate (PET), glass, polyvinyl chloride (PVC), polyethylene (PE), acrylic and other plastics obtained from organic matter, or combinations thereof.
  • EFE ethylene tetrafluoroethylene
  • PMMA polymethylmethacrylate
  • PS polystyrene
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • PE polyethylene
  • any type of photosynthetic microorganism containing chlorophyll A and / or chlorophyll B, selected from a microalga or a cyanobacteria can be used.
  • Non-limiting examples of microalgae that can be used in accordance with the present invention include microorganisms of the cytates: i) Chlamydomonadales, i) Sphaeropleales, iii) Chaetophorales, iv) Chaetopeltidales, v) Oedogoniales and vi) Trebuxiophyceae.
  • the green microalgae chlorophyllia is selected from: Chlamydomonas moewsuii, Chlamydomonas reinhardtii, Chlorococcum hypnosporum, Volvox carteó, Haematococcus, Dunaliella, Protosiphon, Hydrodictyon, Pedastrum, Sphaeroplea, Scenedesmus, Cogonoselasmodesum, Cogonoselasmodesumium and Bulbochaete.
  • Non-limiting examples of cyanobacteria that can be used in accordance with the present invention include microorganisms of the classes: i) Chroococcales, ii) Nostocales, ii) Oscillatoriales and iv) Synechococcales.
  • any amount of photosynthetic microorganisms that can be used according to the state of the art can be used.
  • An expert in microorganisms will appreciate that photosynthetic microorganisms may have different nutritional needs or may require different culture conditions for optimal growth and development, so these conditions can be modified as necessary.
  • the mediums useful for the development of photosynthetic microorganisms can vary depending on the characteristics of the microalgae or cyanobacteria used, for example, in a non-limiting way: i) CHU culture medium, i) African violet culture medium, i ⁇ ) triple medium 17 or iv) a medium containing at least 5% N, 2% Mg and K, 3% P and 0.001% metals.
  • any of the formulations of culture medium used can be supplemented by the optional addition of growth factors, particular ions such as sodium, chloride, calcium, magnesium, and phosphate, pH regulators, vitamins, trace elements, amino acids, lipids. , glucose or another sugar that works as an energy source.
  • growth factors particular ions such as sodium, chloride, calcium, magnesium, and phosphate, pH regulators, vitamins, trace elements, amino acids, lipids. , glucose or another sugar that works as an energy source.
  • These supplements can be integrated into the culture medium at the beginning of the culture, or during the growth of the microorganisms. Once the microorganism is in the culture medium, the latter is kept under conditions such as to allow the survival, growth and viability of the cell culture. Specific conditions will vary depending on the photosynthetic microorganism.
  • the pH, temperature, concentration of photosynthetic microorganisms, viable cell density, biomass levels, density, osmolality, turbidity, or other factor that serve to maintain specific control for each microorganism In order to control culture conditions, the pH, temperature, concentration of photosynthetic microorganisms, viable cell density, biomass levels, density, osmolality, turbidity, or other factor that serve to maintain specific control for each microorganism.
  • Nanofluids refer to a suspension of water and carbon nanoparticles, whose main use within the biopanel is to transport the heat generated by solar radiation that impacts the biopanel.
  • Said nanoparticles are not limited only to those originating from graphene oxide, but may also originate from some metal with high thermal conductivity properties existing on the market.
  • the aqueous nanofluid system contains nanoparticles selected from: carbon nanoparticles and SiC nanoparticles or combinations thereof; characterized in that the aqueous nanofluid system is used to transport heat generated by solar radiation that impacts the biopanel.
  • the aqueous nanofluid system absorbs the heat released by the photosynthetic action of the photosynthetic microorganism.
  • Nanofluids located on the front, being the first to take advantage of solar radiation through a surface optics that allow concentration of radiation.
  • Nanofluids are in a recirculating flow, where the flow speed regulates the temperature, through automated sensing and control, at which the suspension is.
  • this layer of nanofluids it is in contact, first of all, with the microalgae system with internal heat exchangers in the geometric sites of greatest dissipation associated with the microalgae flows.
  • the heat conduction is connected to a Peltier thermoelectric system to convert the heat into electrical current that can be stored in capacitors or in some type of commercial battery.
  • electrical current it is preferred to save heat, then it is stored with chemical bonds through reversible chemical reactions, in such a way that for a first prototype cobalt oxide has been chosen.
  • the light concentration system is characterized because the concentrated light system is made up of Fresnell grids.
  • the wall that separates the photosynthetic microogranism and the aqueous nanofluid system is a wall that allows heat exchange between both systems.
  • the heat exchanger that separates the photosynthetic microogranism and the aqueous nanofluid system is selected from the following materials: polycarbonate, polymers, biopolymers, metals, or combinations thereof.
  • both the photosynthetic microorganism and the aqueous nanofluidic system apply mixing turbulence caused by an incoming flow force and internal obstacles placed so that vortices are generated in such a way that the flow can be of two types, continuous or intermittent flow.
  • the system has a circular inlet and outlet flow, it enters with a determined velocity ranging from 0.1 m / s and 15 m / s and the flow current when colliding with obstacles generates vortices that mix the solution.
  • System flow recirculates around the edges of the design in two directions to start colliding with obstacles again.
  • the maintenance is based on the drainage of 45% (maximum) of the total volume of microalgae and the same percentage of pure culture medium is introduced to re-generate an optimal density.
  • This mixing system makes use of the force of the incoming flow, combined with geometry and optimized internal obstacles that allow generating placed vortices that homogeneously mix the medium in which the microalgae are found, which does not require the use of mechanical aggregates inside. of the biopanel for mixing, such as paddles, propellers, among others.
  • the incoming flow is intermittent or in pulses similar to a heart, which makes it more efficient both mixing (avoiding a stabilization of the vortex) and energy expenditure, by using less energy in mixing.
  • the photosynthetic systems integrated in the present invention generate heat due to the inefficiency of photosynthesis to convert light energy to chemical energy.
  • the theoretical conversion of red light into chemical energy is 31% and the remaining 69% is lost as heat. Therefore, the amount of cooling in a culture system will depend on the intensity of the light and the cell concentration, however, reactor cooling is only used in closed systems.
  • the cooling system is graphene oxide nanofluids, it has to do with the flow rate has to be faster than the microalgae suspension.
  • the system is designed so that there are two zones Specific one where the microalgae are specifically found and another divided by a material that allows heat to pass through where the nanofluids circulate.
  • the biopanel includes an automated control system that includes sensors and software that monitors the conditions of pH, temperature and concentration of photosynthetic microorganisms.
  • the biopanel has a microalgae maintenance system with respect to the appropriate growth curve for the species that is placed in the biopanel. Each time the maximum growth point is reached, 45% of the microalgae volume is drained and this percentage of pure culture medium (the medium depends on the species that is placed) is placed inside the biopanel to maintain stable growth.
  • the functionality of the biopanel comprises a biomass input and output system such that when the maximum growth point of the photosynthetic microorganism is reached, the growth medium can be replaced with a new one, avoiding medium saturation.
  • the thermal energy released by the photosynthetic action of photosynthetic microogranism is used to produce electrical energy, in addition to the transport of heat by the nanofluids captured by solar radiation.
  • the present invention comprises a method for producing electrical energy from a biopanel comprising:
  • a cell medium comprising: i) a photosynthetic microorganism containing chlorophyll A and / or B and ii) a culture medium containing micronutrients and salts; 2) maintain the culture in a growth phase under a set of established growth conditions;
  • the initial concentration of photosynthetic microorganisms is in a range of 4x10 7 and 6x10 12 cells per milliliter, the minimum concentration required being 4x10 7 cells per milliliter.
  • the microorganisms can be maintained in the biopanel until reaching a desired cell density or biomass production concentration. In one embodiment, it is necessary to allow the viable cell density to reach the maximum to reach the maximum photosynthetic capacity of the biopanel, however it is advisable to maintain a cell density of at least 10% to ensure photosynthetic activity within the biopanel.
  • biomass within the biopanel Given the growth of biomass within the biopanel, it comprises an inlet and outlet system such that the biomass is allowed to drain upon reaching the maximum growth point or integrating a new culture with microorganisms, or new nutrients to the culture medium.
  • the biomass drained from the biopanel is useful for the generation of fertilizers, food or for the extraction of high-value molecules, among other uses known in the state of the art.
  • Chlorophyte species develop and multiply in relation to the physicochemical conditions of the environment, the macronutrients or growth-limiting factors, carbon, nitrogen, phosphorus, silicon, magnesium, potassium and calcium, which are required in large quantities while micronutrients such as iron, manganese, copper, zinc, sodium, molybdenum, chlorine and cobalt are required in less quantity.
  • the cultivation aspects, the laboratory equipment and the physical and chemical parameters will depend mostly on the type of culture and the volume that needs to be generated.
  • the culture of Desmodesmus sp microalgae can be easily maintained with Erlenmeyer flasks, perforated rubber stoppers, Silicon tubing and oxygen pumps for fish tanks (it will depend on the culture and the desired quantity). In a controlled temperature of 18-22 ° C. If a rigorous control is required in the crops, UV lamps (240 to 280nm) will be needed to ensure safety, filters, constant pH measurements, dissolved salts. To obtain a record of the growth of the culture, that is, the determination of the population density of the microalgae, instrumentation such as a centrifuge and spectrophotometer is needed, everything will depend on the method used.
  • the CHU culture medium covers the needs that Desmodesmus sp demand for constant growth. Therefore, at the laboratory level it is a suitable medium, which will be named as the standard medium. It is advisable to sow in the standard medium once the Desmodesmus sp microalgae has been isolated, however it is not necessary that it be totally purified since seeding it consecutively helps to isolate it little by little and avoid contamination of the culture.
  • micronutrients and macronutrients necessary for the cultivation of microalgae can be achieved in commercial fertilizer formulas, the use of commercial substances reduces costs by avoiding buying dehydrated culture media or the macro and micronutrients separately.
  • the present invention corresponds to a method for obtaining a culture of chlorophyte green microalgae comprising:
  • Biopanels as skylight Fixed biopanels (similar to solar panels)
  • Biopanels in extreme conditions for energy and oxygen generation (future space colonies).
  • Biopanels as photobioreactors in extreme conditions to generate biomass for the production of superfoods or organic fertilizers.
  • Biopanels adapted to bioenergetic sculptures are provided.
  • Biopanels as optimized photobioreactors to obtain biomass.
  • Biopaneles for irrigation systems of biofertilizers from microalgae Biopaneles for irrigation systems of biofertilizers from microalgae.
  • Biopanels for hydroponic cultivation systems enriched with microalgae Biopanels for hydroponic cultivation systems enriched with microalgae.
  • Biopanel as a cell phone case as an extra battery.
  • Biopanel as a water quality biosensor for heavy metal detection.
  • Biopanel to carry out energy sales through electronic transactions using blockchain.
  • Biopanel to obtain real-time data on solar radiation and environmental conditions.
  • Example 1 CHU culture medium.
  • the following culture medium formulation works well for the cultivation of microalgae such as Desmodesmus sp and Chlorella sp.
  • Example 3 Mixture of CHU micronutrients with ferric citrate and silica.
  • a micronutrient mixture (CHU) with ferric citrate and silica is used depending on the volume of medium required:
  • the amount of the aliquot will depend on the volume of medium to be inoculated, for example, to inoculate a 400ml of medium, 5ml is enough,
  • Example 5 Formulation of micronutrients and macronutrients. Obtain through a composition with the following content of micronutrients and macronutrients.
  • Desmodesmus sp The differences presented by Desmodesmus sp are observed due to the different culture medium to which they are subjected.
  • the growth curve ensures that with the alternative medium the days of maximum growth are 9 days less compared to the first method.
  • Example 7 Nanofluids.
  • the system admits the incorporation of solvated nanoparticles in liquid, which allows the absorption of electromagnetic solar radiation both in the visible frequency spectrum and in the infrared, including the family of graphene oxides, any combination that results in a solution hybrid such as graphene oxide decorated with silver and any combination of nanoparticles with the characteristics shown in the following table:
  • Example 8 Heat exchangers and energy concentrators.
  • the external part of the biopanel where the nanofluids are found have a convex shape to concentrate light (solar radiation concentrators) in columns of high thermal conductivity (heat exchangers) corresponding to metallic materials in a range between 100 and 400 W / mK (Watts / meters- ° Kelvin).
  • the thermal conductivity corresponding to the external part of the biopanel oscillates in a range of 1-10 W / mK corresponding to plastics or bioplastics with convex geometry to concentrate light (solar radiation concentrators).
  • Nanofluids flow between parallel columns (heat exchangers) with the purpose of exchanging heat with peltier cells to carry out the conversion to electric current with an efficiency between 20 and 30% depending on the thermal conductivities used.
  • These can be manufactured from translucent materials, including glass, crystal, acrylic, plastics in general and / or any other material that meets the characteristic of a transmittance greater than 92%.
  • the pulse mixing process consists of using a metering pump by pulses, which generates intermittent flows, where the biopanel has a flow inlet and a flow outlet.
  • the flow intermittency is given by a step function type flow input (figure 4) with an amplitude between 0.1 m / s and 15 m / s, and a continuous flow intermittence of 2 seconds and a rest of 3 seconds. These intermittences allow the vortex generated in the middle of the bionapel to stabilize for a short period of time and then when a new pulse is generated, the vortex is altered again and completely mixed, causing the microalgae not to agglomerate in the center by the stabilization of the vortex (Figure 5).
  • the triangular shaped biopanel favors the mixing process comprising a main frame (1), which measures 124.86 cm from end to end, 9.60 cm wide and 5.70 cm thick, this being an equilateral triangle with an angle of 60 ° at each of its tips, a system of sensors (2) contained in a cavity measuring 6.60 cm long, 4.80 cm wide and 4.80 cm high, a system of concentrators of solar radiation (3) measuring 81.60 cm long by 4.80 cm wide and a second solar radiation concentrator with measurements of 57.6 cm long and 4.80 cm wide, a heat exchanger (4) made with a material that allows the passage of heat with measurements of 6.15 cm long, 0.60 cm wide and 80.0 cm high, and a second heat exchanger with the following measures 6.15 cm long, 0.60 cm wide and 57.0 cm high, a container of photosynthetic microorganisms (5) the Which is a equilateral triangle internal to the main frame, and which measures 60.43 cm on each side, a container of nanofluids (6), in
  • the main framework has nanofluid inlet holes (9), microalgae inlet (10), nanofluid outlet (11) and microalgae outlet (12), which are positioned to provide a good flow both inlet as an outlet for the nanofluids and microalgae, avoiding stagnation within the tanks and thus a malfunction of the biopanel, as can be seen in figure 10 and figure 11; in which a top and bottom view of the biopanel can be seen respectively, as well as, in figure 12 and 13, which show the biopanel from a left side view and a right side view respectively.

Abstract

La presente invención se refiere a un sistema sustentable para la generación de energía eléctrica, que se basa en la unión de las propiedades de sus componentes, por un lado la fotosintesis de las microalgas y por otro el 5 transporte de calor de nanofluidos orgánicos, obteniendo energía eléctrica tras un proceso de transformación termoeléctrica, además de la liberación de oxígeno y captura de dióxido de carbono del ambiente.

Description

BIOPANEL PARA GENERACIÓN DE ENERGÍA ELÉCTRICA BASADO EN FOTOSÍNTESIS Y NANOFLUIDOS.
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un sistema sustentable para la generación de energía eléctrica, que se basa en la unión de las propiedades de sus componentes, por un lado la fotosíntesis de las microalgas y por otro el transporte de calor de nanofluidos, obteniendo energía eléctrica tras un proceso de transformación termoeléctrica, además de la liberación de oxígeno y captura de dióxido de carbono del ambiente.
ANTECEDENTES
Las clorofíceas son microalgas verdes que se encuentran en cuerpos de agua dulce, son caracterizadas por su coloración verdosa-amarillenta debida a la presencia de clorofila“a” y“b”, también contienen pigmentos que pueden oscurecer, estos son conocidos como beta carotenos, son reconocidas por su almacenamiento de almidón que es acumulado en el cloroplasto y no en el citoplasma.
Las microalgas clorofíceas cuentan con pigmentos captadores de luz, que reciben el nombre de clorofila. Existen diversos tipos de clorofila que tiene diferentes características. La clorofila “a” es el pigmento principal en la mayoría de organismos verdes (macro y micro) su composición química es C55H7205N4Mg, muestra un color verde oscuro y los picos de absorción están a 430 nm y 662 nm, no está presente en las bacterias fotosintéticas. La composición química de la clorofila“b” se diferencia al tipo“a” por la sustitución de un grupo metilo por un CHO, su color es verde azulado, con picos de absorción 453 nm y 642 nm, las algas verdes son ricas en esta clorofila. Los carotenoides son pigmentos accesorios, se encuentran en bajas concentraciones en las microalgas clorofíceas siendo abundantes en frutas o raíces de plantas superiores. Los distintos tipos de pigmentos tienen distintos niveles de captación de fotones, es decir cada pigmento absorben luz en diferentes longitudes de onda.
La nutrición de las microalgas verdes es autótrofa, a base de carbohidratos de reserva almacenados en plastidios en forma de almidón generados por un proceso metabólico conocido como fotosíntesis y como primer paso suceden las reacciones luminosas que es la conversión de energía solar en energía química, el cual es un proceso complejo que incluye el transporte de electrones y metabolismo fotosintético del carbono debido a las reacciones luminosas. La reducción del carbono es catalizada por enzimas insolubles, se lleva a cabo en el estroma. Las reacciones que catalizan la reducción del CO2 a carbohidratos están acopladas al consumo de NADPH y ATP por en enzimas en fase soluble de los cloroplastos. El CO2 entra en el ciclo de Calvin al reaccionar con la ribulosa-1 ,5-bifosfato para formar dos moléculas de 3- fosfoglicerato, esta reacción está regulada por la enzima rubisco. La actividad de la rubisco está también regulada por la luz.
Los sistemas fotosintéticos siempre generan calor a causa de la ¡neficiencia de la fotosíntesis de convertir la energía luminosa a energía química. La conversión teórica de la luz roja en energía química es de un 31 % y el 69 % restante se pierde como calor. Por ello, la cantidad de enfriamiento en un sistema de cultivo dependerá de la intensidad de la luz y de la concentración celular, sin embargo, el enfriamiento del reactor es sólo utilizado en sistemas cerrados.
La luz induce cambios iónicos reversibles en el estroma que modulan la actividad de la rubisco y otras enzimas cloroplásticas. Bajo iluminación, los protones son bombeados desde el estroma al lumen de los tilacoides. El flujo de protones está acoplado a la incorporación de Mg2+ al estroma. Este flujo iónico disminuye la concentración de H+ del estroma, es decir el pH aumenta de 7 (neutro) a 8, y aumenta la concentración de Mg2+. Estos cambios en la composición iónica del estroma se invierten en oscuridad. Al final, el carbono es exportado como triosas fosfato. La molécula de la clorofila pasa de un estado mínimo de energía a un estado excitado por la absorción de un fotón, esto genera que la distribución de los electrones de la clorofila excitada sea distinta a la molécula en estado fundamental.
En ese estado excitado la clorofila es altamente inestable y debe ceder esa energía rápidamente a pigmentos adyacentes a ella. Existen otras rutas para liberar la energía disponible, el pigmento puede reemitir el fotón pero en menor energía , este proceso es conocido como fluorescencia, esta fluorescencia es emitida en la región roja del espectro, o bien liberar el fotón únicamente en forma de calor, otra alternativa es que la energía del estado excitado sea empleada para realizar reacciones químicas, es decir, pasa a realizar la fotosíntesis. Los pigmentos fotosintéticos (clorofilas y carotenoides) forman un complejo antena que transporta los electrones cedidos por los fotones a un centro de reacción donde se llevan a cabo los reacciones químicas de oxidación y reducción. La luz dirige gran parte de las reacciones fotosintéticas, como la reducción de NADP (adenina dinucleótido fosfato) y la formación de ATP, estas reacciones se conocen como “reacciones de los tilacoides”, las reacciones de fijación y reducción del carbono se denominan“reacciones del estroma” ya que se producen en el estroma.
Los nanofluidos se refieren a una suspensión de agua y nanoparticulas de óxido de grafeno, el cual tiene como uso principal dentro del biopanel el transportar el calor generado por la radiación solar que impacta al biopanel. Dichas nanoparticulas no se limitan solo a las provinientes de óxido de grafeno, sino también pueden tener origen de algún metal con propiedades de alta conductividad térmica existentes en el mercado.
Determinar la densidad de la población de microalgas es importante para llevar un control del crecimiento y desarrollo de los organismos más aún si estos son usados como alimento vivo. Hay diferentes métodos para llevar este control. Experimentalmente se ha realizado el conteo con Cámara de Neubauer y densidad óptica mediante un espectrofotómetro portátil de la marca HACH® modelo DR/2010, bajo el principio de la transmitancia y se realizó una curva de crecimiento, como primer paso se debe construir una curva de calibración para previamente llegar a una curva de crecimiento. Se hacen diluciones de un cultivo maduro, depende del volumen original la cantidad de diluciones que debe hacerse para facilitar el conteo la cámara de Neubauer. Es recomendable agregar 1 mi de microalgas en 9 mi de agua estéril, hacer conteo de cada disolución y al final hacer un conteo del cultivo madre.
Habiendo explicado lo anterior y habiendo realizando un estudio del estado de la técnica, se encontraron los siguientes documentos relacionados con la invención descrita:
La solicitud de patente mexicana MX/a/2017/001999 habla de un sistema de generación de energía eléctrica a base de procesos de fotosíntesis por medio de la captación de electrones producto de la fotosíntesis los cuales son captados por una malla metálica que se encuentra colocada debajo de la raíz de la planta u árbol utilizado para generar llevar acabo la fotosíntesis.
La patente estadounidense US 9, 187,684 habla del uso de nanofluidos como un sistema de transferencia de calor, refiere sistemas líquidos de nanofluidos de oxido de zinc con una concentración del 0.01 al 5% de volumen y un tamaño de partícula de 125 a 175 nm, así como su uso para el enfriamiento de computadoras que cuentan con un sistema de circuitos integrados.
La solicitud de patente US 2016/0168530 se refiere a un sistema integrado para el cultivo de algas o plantas y la producción de energía eléctrica, el cual cuenta con un concentrador solar luminiscente y al menos una celda fotovoltaica.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1. Curva de crecimiento diario para Desmodesmus sp. en medio de violeta africana. Figura 2. Velocidad de flujo en la entrada al biopanel.
Figura 3. Velocidad de flujo en la salida al biopanel.
Figura 4. Función escalonada de la entrada de flujo al biopanel.
Figura 5. Simulaciones de mezclado por pulsos. Empezando en la parte superior izquierda y en dirección a derecha se aprecia la evolución del flujo y la generación de vórtices hasta que este flujo cesa y posteriormente se vuelve a realizar otro pulso de entrada.
Figura 6. Vista frontal del biopanel, en donde 1 es el armazón principal, 2 es el sistema de sensores, 3 son los concentradors solares, 4 es el intercambiador de calor, 5 es el contenedor de microorganismos fotosintéticos, 6 es el contenedor de nanofluidos y 7 es el obstáculo mezclador.
Figura 7. posterior del biopanel, en donde 5 es el contenedor de microalgas y 8 es un arreglo de celdas Peltier.
Figura 8. Vista perspectiva del biopanel, en donde 1 es el armazón principal, 2 es el sistema de sensores, 3 son los concentradors solares, 4 es el contenedor de microorganismos fotosintéticos, 5 es el contenedor de nanofluidos, 6 es el arreglo de celdas Peltier, 11 es la salida de flujo de nanofluidos y 12 es la salida de microalgas.
Figura 9. Vista desplazada del biopanel, en donde 1 es el armazón principal, 2 es el sistema de sensores, 3 son los concentradores solares, 4 es el intercambiador de calor, 5 es el contenedor de microorganismos fotosintéticos, 6 es el contenedor de nanofluidos, 7 es el obstáculo mezclador, 8 es el arreglo de celdas de Peltier, 13 es la tapa del contenedor de microalgas y 14 son las cavidades para el sistema de sensores.
Figura 10. Vista superior del biopanel, en donde 9 es la entrada de flujo de nanofluidos, 10 es la entrada de flujo de microalgas y 11 es la salida de flujo de nanofluidos.
Figura 11. Vista inferior del biopanel, donde 1 es el armazón principal, 3 son los concentradores solares, 6 es el contenedor de nanofluidos, 8 es el arreglo de celdas de Peltier y 12 es la salida de microalgas.
Figura 12. Vista lateral izquierda del biopanel, en donde 1 es el armazón principal, 3 son los concentradores solares, 6 es el contenedor de nanofluidos, 8 es el arreglo de celdas Peltier, 9 es la entrada de flujo de nanofluidos y 10 es la entrada de flujo de microalgas.
Figura 13. Vista lateral derecha, en donde 11 es la salida de flujo de nanofluidos.
Figura 14. Acercamiento de vista inferior del obstáculo mezclador.
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un sistema sustentable para la generación de energía eléctrica, que se basa en la unión de las propiedades de sus componentes, por un lado, la fotosíntesis de las microalgas y por otro el transporte de calor de nanofluidos orgánicos, obteniendo energía eléctrica tras un proceso de transformación termoeléctrica, además de la liberación de oxígeno y captura de dióxido de carbono del ambiente.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Para los efectos de facilitar la delimitación del alcance de la presente invención se presentan las siguientes definiciones:
Cultivo: Al método para la multiplicación de microorganismos, tales como lo son bacterias en el que se prepara un medio óptimo para favorecer el proceso de crecimiento deseado.
Medio de cultivo: A la solución acuosa de diferentes compuestos que contiene todos los elementos indispensables que requieren los microorganismos para crecer, los cuales pueden ser sólidos o líquidos.
Biomasa: Al conjunto heterogéneo de materias orgánicas, tanto por su origen como por su naturaleza. En el contexto energético, el término biomasa se emplea para denominar a una fuente de energía renovable basada en la utilización de la materia orgánica formada por vía biológica en un pasado inmediato o de los productos derivados de ésta.
Microorganismos fotosintéticos: Al grupo de protistas fotosintéticos y procariotas acuáticos que contienen clorofila a como su principal pigmento fotosintético y con estructuras reproductivas simples.
Nanofluidos: A la clase de fluidos formados a partir de dispersar partículas nanometricas en un medio acuoso, los cuales son utilizados generalmente para procesos de transferencia de calor.
Método: Al modo ordenado y sistemático de proceder para llegar a un resultado o fin determinado.
El biopanel objeto de la presente invención, caracterizado porque comprende: i) una estructura compuesta por al menos un material polimérico, ¡i) al menos un microorganismo fotosintético, i¡¡) al menos un sistema acuoso de nanofluidos, iv) un sistema de concentración de luz, v) al menos un intercambiador de calor que separé al microorganismo fotosintético y al sistema acuoso de nanofluidos y vi) al menos un sistema automatizado de control que comprende sensores y software.
En una modalidad, el material polimérico comprende las siguientes características: i) una transmisión de luz de al menos del 90%, ¡i) completamente liso, iii) fotoestable, iv) inherte a productos de limpieza y v) resistente al rayado.; y se selecciona de: etilenotetrafluoretileno (ETFE), polimetilmetacrilato (PMMA), poliestireno (PS), policarbonato (PC), polietileno tereftalato (PET), vidrio, policloruro de vinilo (PVC), polietileno (PE), acrílico y otros plásticos obtenidos a partir de materia orgánica, o combinaciones de los mismos.
De conformidad con la presente invención, se puede utilizar cualquier tipo de microorganismo fotosintético que contenga clorofila A y/o clorofila B, seleccionado de una microalga o una cianobacteria.
Ejemplos, de manera no limitativa, de microalgas que pueden emplearse de acuerdo con la presente invención comprenden microorganismos de los ciados: i) Chlamydomonadales, ¡i) Sphaeropleales, iii) Chaetophorales, iv) Chaetopeltidales , v) Oedogoniales y vi) Trebuxiophyceae. En una modalidad particular, la microalga verde cloroficea se selecciona de: Chlamydomonas moewsuii, Chlamydomonas reinhardtii, Chlorococcum hypnosporum, Volvox carteó, Haematococcus, Dunaliella, Protosiphon, Hydrodictyon, Pedastrum, Sphaeroplea, Scenedesmus, Desmodesmus, Coelastrum, Chaetospora, Fritschiella, Stigeoclonium, Oedogonium y Bulbochaete. Ejemplos, de manera no limitativa, de cianobacterias que pueden emplearse de acuerdo con la presente invención comprenden microorganismos de las clases: i) Chroococcales, ¡i) Nostocales, i¡¡) Oscillatoriales y iv) Synechococcales.
Adicionalmente, se puede emplear cualquier cantidad de microorganismos fotosintéticos que pueda utilizarse de acuerdo al estado de la técnica. Un experto en microorganismos, apreciará que los microorganismos fotosintéticos pueden tener diferentes necesidades nutricionales o podría requerir diferentes condiciones de cultivo para su desarrollo y crecimiento óptimo, por lo que estas condiciones podrán modificarse según sea necesario. Los medio útiles para el desarrollo de los microorganismos fotosintéticos pueden vahar dependiendo de las caracterísiticas de la microalga o cianobacteria utilizada, por ejemplo, de manera no limitativa: i) medio de cultivo CHU, ¡i) medio de cultivo violeta africana, i¡¡) medio triple 17 o iv) un medio que contenga como mínimo 5% de N, 2% de Mg y K, 3% de P y 0.001 % de metales.
Cualquiera de las formulaciones de medio de cultivo utilizadas, puede ser suplementada por la adición de manera opcional de factores de crecimiento, iones particulares como sodio, cloruro, calcio, magnesio, y fosfato, reguladores de pH, vitaminas, elementos traza, aminoácidos, lípidos, glucosa u otro azúcar que funcione como fuente de energía. Dichos suplementos pueden integrarse al medio de cultivo al inicio del cultivo, o durante el crecimiento de los microorganismos. Una vez que se tiene el microorganismo en el medio de cultivo, este último se mantiene en condiciones tales que permitan la supervivencia, crecimiento y viabilidad del cultivo celular. Las condiciones específicas variaran dependiendo del microorganismo fotosintético.
A fin de controlar las condiciones de cultivo, puede monitorearse el pH, la temperatura, la concentración de microorganismos fotosintéticos, la densidad celular viable, los niveles de biomasa, la densidad, osmolalidad, turbidez u otro factor que sirva para mantener el control específico para cada microorganismo.
Los nanofluidos se refieren a una suspensión de agua y nanopartículas de carbono, el cual tiene como uso principal dentro del biopanel el transportar el calor generado por la radiación solar que impacta al biopanel. Dichas nanopartículas no se limitan solo a las provenientes de óxido de grafeno, sino también pueden tener origen de algún metal con propiedades de alta conductividad térmica existentes en el mercado.
En una modalidad, el sistema acuoso de nanofluidos contiene nanopartículas seleccionadas de: nanopartículas de carbono y de nanopartículas de SiC o combinaciones de las mismas; caracterizado porque el sistema acuoso de nanofluidos es utilizado para el transporte de calor generado por la radiación solar que impacta al biopanel.
En otra modalidad, el sistema acuoso de nanofluidos absorbe el calor liberado por la acción fotosintética del microorganismo fotosintético.
La capa de nanofluidos que los contienen se encuentra en la parte frontal, siendo los primeros en aprovechar la radiación solar a través de una superficie óptica que permite concentrar la radiación. Los nanofluidos se encuentran en un flujo recirculante, donde la velocidad del flujo regula la temperatura, mediante un sensado y control automatizado a la cual se encuentre la suspensión.
Al final de esta capa de nanofluidos se encuentra en contacto, en primer lugar con el sistema de microalgas con intercambiadores de calor internos en los sitios geométricos de mayor disipación asociados a los flujos de las microalgas. Adicionalmente, la conducción de calor se conecta a un sistema termoeléctrico Peltier para convertir el calor en corriente eléctrica que puede ser guardada en capacitores o en algún tipo de batería comercial. Por otra parte, si en lugar de corriente eléctrica se prefiere guardar calor, entonces éste se guarda con enlaces químicos a través de reacciones químicas reversibles, de tal manera que para un primer prototipo se ha escogido el óxido de cobalto. El sistema de concentración de luz, se caracteriza porque el sistema concentrado de luz esta conformado por rejillas de Fresnell.
La pared que separa al microogranismo fotosintético y al sistema acuoso de nanofluidos es una pared que permite el intercambio de calor entre ambos sistemas.
En una modalidad, el intercambiador de calor que separa al microogranismo fotosintético y al sistema acuoso de nanofluidos se selecciona de los siguientes materiales: policarbonato, polímeros, biopolímeros, metales o combinaciones de los mismos.
Dentro del sistema existen obstáculos óptimamente colocados para que flujo genere vórtices para un mezclado eficiente de la suspensión de microalgas. Sin utilizar un mezclado mecánico. Esto es una innovación de sistema de cultivo para aplicar la energía mínima posible para el mezclado basado en el diseño correcto del sistema de flujo. Ningún sistema de cultivo de microalgas usa los vórtices para el mezclado, la gran mayoría utiliza burbujeo gaseoso, impulsores de hélice o por flujo tubular continuo.
En una modalidad preferida, tanto el microorganismo fotosintético como el sistema acuoso de nanofluidos se aplica una turbulencia de mezclado provocada por una fuerza de flujo entrante y por obstáculos internos colocados de manera que se generen vórtices de tal manera en que entra el flujo puede ser de dos tipos, flujo continuo o intermitente.
El sistema tiene un flujo circular de entrada y salida, entra con una velocidad determinada que va de 0.1 m/s y 15 m/s y la corriente de flujo al colisionar con los obstáculos se generan vórtices que mezclan la solución. El flujo del sistema recircula por los bordes del diseño en dos direcciones para volver a comenzar a colisionar con los obstáculos. El mantenimiento se basa en el drenado de un 45% (máximo) del volumen total de microalgas y se introduce ese mismo porcentaje de medio de cultivo puro para volver a generar una densidad óptima.
Las ventajas encontradas al utilizar estas magnitudes de velocidad en la entrada y salida del biopanel son:
1. Lograr un mezclado óptimo sin utilizar medios mecánicos al interior del biopanel.
2. Ahorro de energía al no utilizar medios mecánicos que tengan un alto costo energético. Este sistema de mezclado hace uso de la fuerza del flujo entrante, combinado con geometría y obstáculos internos optimizados que permiten generar vórtices colocados que mezclan de manera homogénea el medio en que se encuentran las microalgas, el cual no requiere el uso de agregados mecánicos al interior del biopanel para el mezclado, como paletas, propelas, entre otros. El flujo entrante es intermitente o en pulsos de manera similar a un corazón, lo cual lo hace más eficiente tanto el mezclado (evitando una estabilización del vórtice) como el gasto energético, al utilizar menos energía en su mezclado.
Las ventajas que otorga al biopanel:
1. Mezclado mediante obstáculos sin utilizar medios mecánicos.
2. Permite un mejor desarrollo en el crecimiento de las microalgas al no dejar que depredadores puedan adherirse fácilmente a ellas y disminuyan la concentración de microalgas en el medio.
Los sistemas fotosintéticos integrados en la presente invención, generan calor a causa de la ineficiencia de la fotosíntesis de convertir la energía luminosa a energía química. La conversión teórica de la luz roja en energía química es de un 31 % y el 69 % restante se pierde como calor. Por ello, la cantidad de enfriamiento en un sistema de cultivo dependerá de la intensidad de la luz y de la concentración celular, sin embargo, el enfriamiento del reactor es sólo utilizado en sistemas cerrados.
El sistema de enfriamiento son los nanofluidos de óxido de grafeno, tiene que ver con la velocidad de flujo tiene que ser más rápido que la suspensión de microalgas. El diseño del sistema está pensado para que haya dos zonas específicas una donde se encuentren específicamente las microalgas y otra dividida por un material que deje pasar el calor donde circulen los nanofluidos. De manera opcional, el biopanel comprende un sistema automatizado de control que comprende sensores y software que realiza un monitoreo de las condiciones de pH, temperatura y concentración de microorganismos fotosintéticos.
El biopanel tiene un sistema de mantenimiento de microalgas con respecto a la curva de crecimiento adecuada a la especie que se coloque en el biopanel. Cada vez que se alcance el punto máximo de crecimiento se drena el 45% del volumen de microalgas y se coloque este porcentaje de medio de cultivo (el medio depende de la especie que se coloque) puro dentro del biopanel para mantener el crecimiento estable.
La funcionalidad del biopanel, comprende un sistema de entrada y salida de biomasa tal que al alcanzarse el punto máximo de crecimiento del microorganismo fotosintético, se pueda sustituir el medio de crecimiento por uno nuevo, evitando la saturación de medio.
La energía térmica liberada por la acción fotosintética del microogranismo fotosintético se utiliza para producir energía eléctrica, adicional al transporte de calor por los nanofluidos captados por la radiación solar. En una modalidad adicional, la presente invención comprende un método para producir energía eléctrica a partir de un biopanel que comprende:
1 ) suministrar un medio celular que comprende: i) un microorganismo fotosintético que contengan clorofila A y/o B y ¡i) un médio de cultivo que contiene micronutrientes y sales; 2) mantener el cultivo en una fase de crecimiento bajo un conjunto de condiciones de crecimiento establecidas;
3) suministrar un sistema acuoso de nanofluidos;
4) donde el medio celular y el sistema acuoso de nanofluidos se encuentran separados por un intercambiador de calor,
5) hacer incidir sobre el medio celular haces de luz para generar una reacción fotosintética dentro de las microalga;
6) transportar el calor liberado por la acción fotosintética de las microalgas mediante el sistema acuoso de nanofluidos; y
7) convertir la energía térmica en energía eléctrica.
De acuerdo a la presente invención, la concentración inicial de microorganismos fotosintéticos se encuentra en un rango de 4x107 y 6x1012 células por mililitro siendo el mímimo de concentración requerido un 4x107 células por mililitro.
Conforme a la presente invención, los microorganismos pueden mantenerse en el biopanel hasta alcanzar una densidad celular o concentración de producción de biomasa deseada. En una modalidad , es necesario permitir que la densidad celular viable alcance el máximo para alcanzar la máxima capacidad fotosintética del biopanel, sin embargo es recomendable mantener una densidad celular de mínimo el 10 % para asegurar la actividad fotosintética dentro del biopanel.
Dado el crecimiento de la biomasa dentro del biopanel, este comprende un sistema de entrada y salida tal que se permita drenar la biomasa al alcanzar el punto máximo de crecimiento o integrar un nuevo cultivo con microorganismos, o nuevos nutrientes al medio de cultivo. La biomasa drenada del biopanel resulta útil para la generación de fertilizantes, alimentos o para la extracción de moléculas de alto valor, entre otros usos conocidos en el estado de la técnica.
Existen diferentes medios de cultivo, para cultivos a nivel laboratorio se utilizan medios artificiales líquidos (conveniente para medios continuos) ya ofrecen resultados constantes. Las especies clorofíceas se desarrollan y multiplican en relación de las condiciones fisicoquímicas del medio, los macronutrientes o factores limitantes del crecimiento, el carbono, nitrógeno, fósforo, silicio, magnesio, potasio y calcio, que se requieren en cantidades grandes mientras los micronutrientes como el fierro, manganeso, cobre, zinc, sodio, molibdeno, cloro y cobalto se requieren en menor cantidad.
Los aspectos de cultivo, el equipo de laboratorio y los parámetros físicos y químicos dependerán en su mayoría por el tipo de cultivo y el volumen que se requiera generar.
Hay diversos medios de cultivos que se colocan en los recipientes de vidrio. Es necesario el acceso a un microscopio óptico para revisar periódicamente el estado físico de las microalgas, una centrifuga para obtener muestras de la concentración y cámara de Neubauer para conteos de crecimiento en número de células entre volumen de medio.
Se puede mantener fácilmente el cultivo de microalgas Desmodesmus sp, con matraces Erlenmeyer, tapones de goma horadados, tubería de Silicon y bombas de oxígeno para peceras (dependerá del cultivo y de la cantidad deseada). En una temperatura controlada de 18-22°C. Si se exige un control riguroso en los cultivos se necesitaran lámparas UV (240 a 280nm) para asegurar la inocuidad, filtros, constantes mediciones de pH, sales disueltas. Para obtener un registro del crecimiento del cultivo, es decir, la determinación de la densidad de población de las microalgas se necesita instrumentación como centrifuga y espectrofotómetro, todo dependerá del método que se utilice.
Experimentalmente el medio de cultivo CHU cubre las necesidades que las Desmodesmus sp exigen para un crecimiento constante. Por lo que a nivel laboratorio es un medio adecuado, al cual se nombrará como medio estándar. Es conveniente sembrar en el medio estándar una vez aislada la microalga Desmodesmus sp, sin embargo no es necesario que esté totalmente purificada ya que sembrarla consecutivamente ayuda a aislarla poco a poco y evitar contaminación del cultivo.
Los micronutrientes y macronutrientes necesarios para el cultivo de microalgas pueden conseguirse en las fórmulas de fertilizantes comerciales, el uso de sustancias comerciales reduce los costos al evitar comprar medios de cultivo deshidratados o los macro y micronutrientes por separado.
En una modalidad adicional, la presente invención corresponde a un método para obtener un cultivo de microalgas verdes clorofíceas que comprende:
1 ) aislar una microalga verde clorofícea de una muestra de agua;
2) escoger el medio de cultivo adecuado las microalgas verdes clorofíceas previamente aisladas;
3) realizar la inoculación de las microalgas verdes clorofíceas aisladas en el medio de cultivo seleccionado; 4) mantener el medio de microalgas verdes clorofíceas bajo condiciones físicas y químicas idóneas para garantizar el correcto desarrollo de las algas verdes clorofíceas;
5) incubar el medio de cultivo; y
6) determinar la densidad de la población de microalgas para llevar un control del crecimiento y desarrollo de las microalgas.
En una modalidad, se requiere mantener los parámetros comunes (pH y temperatura) mantener, si es posible, un control coloración ya que las microalgas revelan aspectos importantes con tan sólo cambiar su pigmentación, como el color verde brillante pueden indicar un cambio poco usual de concentración de sales en su medio por la turgencia de sus vacuolas. Mantener fotoperiodos adecuados también es importante, puede manejarse 12 horas de luz por la noche y 12 horas de luz natural por el día, o bien 24 horas de luz artificial.
Entre las aplicaciones encontradas para el biopanel, se encuentran:
• Industria de la construcción:
Biopaneles en ventanas Biopaneles en murosfalsos
Biopaneles como tragaluz Biopaneles fijos (similares a paneles solares)
Biopaneles en piso interactivo (iluminado)
Biopaneles como estructuras agregadas (shading systems) · Industria aeroespacial:
Biopaneles en transbordadores espaciales para generación de oxigeno.
Biopaneles en condiciones extremas para generación de energía y oxígeno (futuras colonias espaciales).
Biopaneles como fotobiorreactores en condiciones extremas para generar biomasa para producción de superalimentes o abonos orgánicos.
• Industria fotobiorreactores
Optimización de los flujos y mezclados a partir del diseño y velocidad del flujo utilizado en nuestro biopanel.
• Industria del arte
Biopaneles adaptados a esculturas bioenergéticas.
• Industria alimenticia
Biopaneles como fotobiorreactores optm izados para obtención de biomasa.
• Industria agrícola
Biopaneles para sistemas de riego de biofertilizantes a partir de microalgas.
Biopaneles para sistemas de cultivo hidropónico enriquecido con microalgas.
• Industria de telecomunicaciones
Biopaneles para telecomunicación por puntos cuánticos
• Extras
Biopanel como carcasa de celular como pila extra.
Biopanel para alimentar estaciones de carga eléctrica para autos eléctricos.
Biopanel como biosensor de calidad de agua para detección de metales pesados.
Biopanel para realizar venta de energía mediante transacciones electrónicas usando blockchain.
Biopanel para obtener datos en tiempo real de radiación solar y condiciones ambientales.
A continuación, se presentan de manera descriptiva, mas no limitativa un conjunto de ejemplos que representan las características de la presente invención:
EJEMPLOS:
Ejemplo 1. Medio de cultivo CHU.
La siguiente formulación de medio de cultivo funciona de manera adecuada para el cultivo de microalgas como el Desmodesmus sp y Chlorella sp.
Figure imgf000023_0001
Ejemplo 2. Medio de cultivo par algas de agua dulce.
Un ejemplo de otro medio de cultivo genérico para microalgas se presenta a continuación:
Figure imgf000024_0001
Ejemplo 3. Mezcla de micronutrientes CHU con citrato férrico y sílice.
Se utiliza una mezcla de micronutrientes (CHU) con citrato férrico y sílice dependiendo del volumen de medio requerido:
Figure imgf000024_0002
Ejemplo 4. Preparación y sembrado de Desmodesmus sp.
Los siguientes pasos corresponden a la preparación y sembrado en medio estándar de Desmodesmus sp.
1. En matraces Erlenmeyer (o en matraces de bola) limpios, de preferencia nuevos y que tengan el doble del volumen total que lo que se requiere cultivar (para evitar derrames). Se puede meter el medio al autoclave o irradiar el medio con luz U.V (240 a 280nm) por 20 minutos, incluso introducirlos un minuto a un microondas convencional.
2. Del aislamiento previo inocular con una alícuota los matraces o recipientes con el medio esterilizado a temperatura amiente, la cantidad de la alícuota dependerá del volumen de medio que se inocule, por ejemplo, para inocular un 400ml de medio bastan con 5ml,
2ml o una muestra generosa tomada con un asa del medio sólido, si es el caso.
3. Es conveniente hacer cultivos por triplicado y comenzar el conteo celular a partir del segundo sembrado para asegurar que haya crecimiento y que no haya contaminación extrema del medio.
4. Después de la inoculación del medio colocar un tapón de hule con dos perforaciones en una de ellas se introduce un varilla de vidrio para permitir el paso de C02 del ambiente, en la otra perforación se introduce una manguera de Silicon o una varilla de vidrio doblada que irá conectada a una manguera de la máquina de oxígeno para que el medio este en constante agitación por medio del burbujeo y se evita la contaminación por rotíferos o la sedimentación.
Ejemplo 5. Formulación de micronutrientes y macronutrientes. Obtener mediante una composición con el siguiente contenido de micronutrientes y macronutrientes.
Figure imgf000026_0001
Para sembrar en medio alternativo (fertilizante) se siguen exactamente los mismo pasos que con el medio estándar, la única diferencia es que es conveniente que la concentración de medio-agua estéril sea de 1/100, por ejemplo si se busca un volumen de 400 mi el volumen de medio añadido debe ser de 4m, sin embargo se puede conseguir un crecimiento con tan solo 2ml de fertilizante en 400ml de agua.
La coloración del cultivo cambia notablemente, esto depende de la etapa de crecimiento, es decir a los cuatro días o cinco, el color verde es muy brillante, después comienza a oscurecer, presumiendo la maduración del cultivo, que va de 10 a 12 días con tan sólo inocular 20ml de microalgas.
El evidente cambio de color a causa del uso del fertilizante para violeta africana como medio de cultivo se debe a la turgencia de las Desmodesmus y a la vez este hinchamiento podría ser causado por el fenómeno osmótico de medio hipotónico en el cual las células se someten a turgencia por existir menor concentración salina en el exterior que en el interior celular, después de todo dentro de los componentes del fertilizante no se hallaban sales. La clorofila b, a pesar de ser más estable que la clorofila a, sufre alteraciones en el sistema fotosintético II (PSII) que pueden causar esos cambios de color.
Ejemplo 6. Crecimiento de microalgas
Se observa las diferencias que presentan las Desmodesmus sp por el diferente medio de cultivo a la que son sometidas.
Figure imgf000027_0001
Los cultivos crecen en buen tiempo (figura 1 ), no son muy susceptibles a la contaminación, y el costo del fertilizante es sumamente barato. Esto reduce los costos. Sin embargo no se han hecho pruebas de si el medio de cultivo alternativo representa algún riesgo toxicológico para los crustáceos que se alimenten de las células clorofíceas.
La curva de crecimiento asegura que con el medio alternativo los días de crecimiento máximo son 9 días menos en comparación al primer método. Ejemplo 7. Nanofluidos.
El sistema admite la incorporación de nanopartículas solvatadas en líquido, que permite la absorción de radiación solar electromagnética tanto en el espectro visible de frecuencias como la infrarroja, entre los que se incluyen la familia de óxidos de grafeno cualquier combinación que dé lugar una solución híbrida como lo es el óxido de grafeno decorado con plata y cualquier combinación de nanopartículas con las características que se presentan en el siguiente cuadro:
Figure imgf000028_0001
Ejemplo 8. Intercambiadores de calor y concentradores de energía.
La parte externa del biopanel donde se encuentran los nanofluidos tienen forma convexa para concentrar la luz (concentradores de radiación solar) en columnas de alta conductividad térmica (intercambiadores de calor) correspondiente a materiales metálicos en un intervalo entre 100 y 400 W/ mK (Watts/metros-°Kelvin).
La conductividad térmica correspondiente a la parte externa del biopanel oscila en un intervalo de 1 -10 W/ mK correspondiente a plásticos o bioplásticos con geometría convexa para concentrar la luz (concentradores de radiación solar).
Los nanofluidos fluyen entre las columnas paralelas (intercambiadores de calor) con el propósito de intercambiar calor con celdas peltier para llevar a cabo la conversión a corriente eléctrica con una eficiencia entre el 20 y 30% en función de las conductividades térmicas usadas.
Al colocar concentradores solares caracterizados porque presentan geometrías que bajo óptica anidolica permiten transmitir y concentrar un amplio espectro de frecuencias electromagnéticas provenientes de la radiación solar, adaptadas en función de la geoposición y que concentran radiación a través de un fluido ya sea gaseoso o de mezcla líquida hacia un absorbedor, conductor, convertidor termoeléctrico o fotovoltaico, o algún intercambiador de calor.
Estos pueden ser manufacturado a partir de materiales translúcidos, incluidos vidrio, cristal, acrílico, plásticos en general y/o cualquier otro material que cumpla con la característica de una transmitancia mayor al 92%.
Ejemplo 9. Magnitud de velocidad
Se han realizado las mediciones de magnitud de la velocidad de entrada y salida del flujo a través de simulaciones computacionales, mediante software especializado en multifísica, el cual otorga una certeza 99.5% obteniéndose los gráficos mostrados en la figura 2 y figura 3.
En los cuales mostraron una entrada de flujo de entrada con una velocidad de aproximadamente 5 m/s, y una salida de hasta 3 m/s, lo cual demuestra que tras el mezclado se mantiene un 60% de la velocidad inicial, teniendo la suficiente presión para poder volver a recircular el flujo.
Debido al prototipado en versión digital se han hecho estas mediciones mediante software, sin embargo, en una versión real el flujo esta dado y regulado a través de bombas de agua que regulan el flujo mediante sus sistemas de control, y así además se mide de manera cuantitativa el flujo de entrada mediante sensores de presión en la entrada y salida del biopanel. Ejemplo 10. Mezclado por pulsos
El proceso de mezclado por pulsos consiste en utilizar una bomba dosificadora por pulsos, la cual genere flujos intermitentes, donde el biopanel tiene una entrada de flujo y una salida de flujo.
La intermitencia de flujo se encuentra dada por una entrada de flujo tipo función escalonada (figura 4) con una amplitud de entre 0.1 m/s y 15 m/s, y una intermitencia de un flujo continuo de 2 segundos y un descanso de 3 segundos. Estas intermitencias permiten que el vórtice generado en el medio del bionapel se estabilice por un periodo corto de tiempo y después al generarse un nuevo pulso vuelva a alterarse el vórtice y se mezcle por completo, provocando que no se aglomeren en el centro las microalgas por la estabilización del vórtice (Figura 5).
Ejemplo 11. Estructura del biopanel
El biopanel de figura triangular favorece el proceso de mezclado que comprende un armazón principal (1 ), el cual mide 124.86 cm de punta a punta, 9.60 cm de ancho y 5.70 cm de grosor, siendo este un triangulo equilátero con un angúlo de 60° en cada una de sus puntas, un sistema de sensores (2) contenidos en una cavidad con medidas de 6.60 cm de largo, 4.80 cm de ancho y 4.80 cm de alto, un sistema de concentradores de radiación solar (3) con medidas de 81.60 cm de largo por 4.80 cm de ancho y un segundo concentrador de radiación solar con medidas de 57.6 cm de largo y 4.80 cm de ancho, un intercambiador de calor (4) elaborado con un material que permita el paso de calor con las medidas de 6.15 cm de largo, 0.60 cm de ancho y 80.0 cm de alto, y un segundo intercambiador de calor con presenta las siguientes medidas de 6.15 cm de largo, 0.60 cm de ancho y 57.0 cm de alto , un contenedor de microorganismos fotosintéticos (5) el cual es un triangulo equilátero interno al armazón principal, y el cual mide 60.43 cm por cada lado, un contenedor de nanofluidos (6), en el cual cada uno de sus lados mide 82.25 cm, donde el contenedor presenta dos puentes, un obstáculo mezclador (7) con medidas de 5.10 cm de largo y 5.40 cm ancho y un arreglo de rejillas de Fresnell (8) las cuales se encuentran en la parte frontal del armazón principal, en donde todos los componentes anteriormente descritos se encuentran en colocados en cavidades dentro del armazón principal, tal como se observa en la figura 6, figura 7, figura 8 y figura 9.
En donde el armazón principal cuenta con orificios de entrada de nanofluidos (9), entrada de microalgas (10), salida de nanofluidos (11 ) y de salida de microalgas (12), los cuales están posicionados para proporcionar un buen flujo tanto de entrada como de salida de los nanofluidos y de las microalgas, evitando estancamiento dentro de los depósitos y así un mal funcionamiento del biopanel, tal como se puede observar en la figura 10 y figura 11 ; en las cules se puede observar una vista superior e inferior del biopanel respectivamente, asi como, en la figura 12 y 13, que muestran el biopanel desde una vista lateral izquierda y una vista lateral derecha respectivamente.

Claims

REIVINDICACIONES Habiéndose descrito la invención, se reclama como propiedad lo contenido en las siguientes reivindicaciones:
1 . Un biopanel para la generación de energía eléctrica mediante fotosíntesis caracterizado por: i) una estructura compuesta por al menos un material polimérico, ¡i) al menos microorganismo fotosintético, iii) al menos un sistema acuoso de nanofluidos, iv) un sistema de concentración de luz, v) al menos un intercambiador de calor que separe al microorganismo fotosintético y al sistema acuoso de nanofluidos y vi) al menos un sistema automatizado de control que comprende sensores para la lectura de parametros de crecimiento.
2. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el material polimérico comprende: i) una transmisión de luz de al menos del 90%, ¡i) completamente liso, i¡¡) fotoestable, iv) inherte a productos de limpieza y v) resistente al rayado.
3. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el material polimérico se selecciona de: etilenotetrafluoretileno (ETFE), polimetilmetacrilato (PMMA), poliestireno (PS), policarbonato (PC), polietileno tereftalato (PET), vidrio, policloruro de vinilo (PVC), polietileno (PE), acrílico y otros plásticos obtenidos a partir de materia orgánica, o combinaciones de los mismos.
4. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el microoganismo fotosintético debe contener clorofila A y/o clorofila B.
5. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el microorganismo fotosintético puede ser una microalga o una cianobacteria.
6. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el sistema acuoso de nanofluidos contiene nanopartículas seleccionadas de: nanopartículas de carbono, nanopartículas de titanio, nanopatículas de cobre, nanopartículas de aluminio y/o nanopartículas de nanotubos de carbono.
7. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el sistema acuoso de nanofluidos es utilizado para el transporte de calor generado por la radiación solar que impacta al biopanel.
8. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el sistema acuoso de nanofluidos absorbe el calor liberado por la acción fotosintética del microorganismo fotosintético.
9. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el sistema concentrado de luz esta conformado por rejillas tipo Fresnell.
10. El biopanel de conformidad con la reivindicación 1 , caracterizado porque la pared que separa al microogranismo fotosintético y al sistema acuoso de nanofluidos es una pared que permite el intercambio de calor entre ambos sistemas.
11. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el intercambiador de calor que separa al microogranismo fotosintético y al sistema acuoso de nanofluidos se selecciona de los siguientes materiales: pol ¡carbonato, polímeros, biopolímeros, metales o combinaciones de los mismos.
12. El biopanel de conformidad con la reivindicación 1 , caracterizado porque tanto el microogranismo fotosintético como en el sistema acuoso de nanofluidos se aplica una turbulencia de mezclado.
13. El biopanel de conformidad con la reivindicación 1 , caracterizado porque la turbulencia de mezclado es provocada por una fuerza de flujo entrante y por obstáculos internos colocados de manera que se generen vórtices la manera en que entra el flujo puede ser de dos tipos, flujo continuo o intermitente con una velocidad de entrada que puede ser de entre 0.1 a 15 m/s.
14. El biopanel de conformidad con la reivindicación 1 , caracterizado porque en la turbulencia de mezclado se presentan vórtices distribuidos los cuales son generados mediante un flujo de entrada intermitente.
15. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el sistema automatizado de control que comprende sensores y software realizara un monitoreo de las condiciones de pH, temperatura, concentración de microorganismos fotosintéticos y oxígeno disuelto.
16. El biopanel de conformidad con la reivindicación 1 , caracterizado porque el biopanel funciona con un sistema de entrada y salida de biomasa al alcanzarse el punto máximo de crecimiento del microorganismo fotosintético.
17. El biopanel de conformidad con la reivindicación 1 , caracterizado porque la biomasa drenada del biopanel podra ser utilizada para la generación de fertilizantes, alimentos o extracción de moléculas de alto valor.
18. El biopanel de conformidad con la reivindicación 1 , caracterizado porque se utiliza la energía térmica liberada por la acción fotosintética del microogranismo fotosintético para producir energía eléctrica además del transporte de calor por los nanofluidos captados por la radiación solar.
19. El biopanel de conformidad con la reivindicación 1 , caracterizado porque se utiliza para la producción de energía eléctrica tras un proceso de fotosíntesis del microogranismo fotosintético y por el transporte de calor de nanofluidos orgánicos.
20. Un método para producir energía eléctrica a partir de un biopanel conforme a la reivindicación 1 que comprende las etapas de:
1 ) suministrar un medio celular que comprende: i) un microorganismo fotosintético que contengan clorofila A y/o B y ¡i) un médio de cultivo que contiene micronutrientes y sales;
2) mantener el cultivo en una fase de crecimiento bajo un conjunto de condiciones de crecimiento establecidas;
3) suministrar un sistema acuoso de nanofluidos;
4) donde el medio celular y el sistema acuoso de nanofluidos se encuentran separados por un intercambiador de calor;
5) hacer incidir sobre el medio celular haces de luz para generar una reacción fotosintética dentro de las microalga;
6) transportar el calor liberado por la acción fotosintética de las microalgas mediante el sistema acuoso de nanofluidos; y
7) convertir la energía térmica en energía eléctrica.
21. El método de conformidad con la reivindicación 20, caracterizado por que el medio de cultivo se selecciona de: i) medio de cultivo CHU, ¡i) medio de cultivo violeta africana y i¡¡) medio triple 17.
22. El método de conformidad con la reivindicación 20, caracterizado porque el microorganismo fotosintético es seleccionado de microalgas y cianobacterias.
23. El método de conformidad con la reivindicación 20, caracterizado porque el medio de cultivo se mantiene bajo el control de las siguientes condiciones: de Temperatura (T), pH, oxígeno disuelto y turbidez.
24. El método de conformidad con la reivindicación 20, caracterizado porque el medio de cultivo presenta una concentración inicial o mínima de microorganismos fotosintéticos.
25. El método de conformidad con la reivindicación 20, caracterizado porque el medio de cultivo presenta una concentración final o máxima de microorganismos fotosintéticos.
26. El método de conformidad con la reivindicación 20, caracterizado porque el biopanel funciona con un sistema de entrada y salida, en donde se drena la biomasa al alcanzarse el punto máximo de crecimiento del microorganismo fotosintético.
27. El método de conformidad con la reivindicación 20, caracterizado porque el sistema acuoso de nanofluidos integra nanopartículas de carbono, nanopartículas de titanio, nanopatículas de cobre, nanopartículas de aluminio y/o nanopartículas de nanotubos de carbono
28. El método de conformidad con la reivindicación 20, caracterizado porque el sistema acuoso de nanofluidos es utilizado para el transporte de calor generado por la radiación solar que impacta al biopanel.
29. El método de conformidad con la reivindicación 20, caracterizado porque el intercambiador de calor que separa al microorganismo fotosintético y al sistema acuoso de nanofluidos es una pared que permite el intercambio de calor entre ambos sistemas.
30. El método de conformidad con la reivindicación 20, caracterizado porque el intercambiador de calor que separa al microorganismo fotosintético y al sistema acuoso de nanofluidos se selecciona de los siguientes materiales: pol ¡carbonato, polímeros, biopolímeros, metales o combinaciones de los mismos.
31. El método de conformidad con la reivindicación 20, caracterizado porque los haces de luz que se hacen incidir sobre el medio celular tienen una longitud de onda entre 400 y 700 nm.
32. El método de conformidad con la reivindicación 20, caracterizado porque el método es útil para transformar la energía térmica liberada por el microorganismo fotosintético en energía eléctrica.
33. El método de conformidad con la reivindicación 20, caracterizado porque el método presenta una capacidad de generación de energía eléctrica hasta del 30%.
34. Un método para obtener un cultivo de microorganismos fotosintéticos que comprende:
1 ) aislar una microalga verde clorofícea de una muestra de agua;
2) escoger el medio de cultivo adecuado las microalgas verdes clorofíceas previamente aisladas;
3) realizar la inoculación de las microalgas verdes clorofíceas aisladas en el medio de cultivo seleccionado; 4) mantener el medio de microalgas verdes clorofíceas bajo condiciones físicas y químicas idóneas para garantizar el correcto desarrollo de las algas verdes clorofíceas;
5) incubar el medio de cultivo; y
6) determinar la densidad de la población de microalgas para llevar un control del crecimiento y desarrollo de las microalgas.
35. El método de conformidad con la reivindicación 34, caracterizado porque el aislamiento de las microalgas se realiza mediante la técnica de rayado en placa de Agar, donde el agar es una solución i) al 1.5 a 3.0% de solución nutritiva para microalgas y ¡i) agar disuelto en este medio.
36. El método de conformidad con la reivindicación 34, caracterizado porque los medios de cultivos para la inoculación de la microalga verde clorofícea aislada se selecciona de i) medio de cultivo CHU y ¡i) medio de cultivo de Violeta Africana.
37. El método de conformidad con la reivindicación 34, caracterizado porque i) inocular una alícuota de 2 a 5 mi en un volumen de 400 mi de medio, ¡i) colocar un tapón de hule con dos perforaciones en el mismo, iii) por las perforaciones permitir el paso de dióxido de carbono del ambiente y iv) burbujear oxígeno al medio de cultivo para que el medio se encuentre en constante agitación y se evite la contaminación o la sedimentación.
38. El método de conformidad con la reivindicación 34, caracterizado porque el medio se mantiene en las siguientes condiciones mínimas: i) una temperatura que oscila en el rango de 15 a 22° C, ¡i) un pH en el rango de 7 a 9, i¡¡) disposición de nutrientes escenciales como Fosforo, Azufre, Magnesio, Calcio, Potasio y algunos metales.
39. El método de conformidad con la reivindicación 34, caracterizado porque el conteo de la población de microalgas se realiza mediante el método de densidad óptica y mediante conteo por camara de Neubauer.
40. Un biopanel caracterizado porque comprende: i) una estructura compuesta por un material polímerico, ¡i) un microorganismo fotosintético seleccionado de microalgas o cianobacterias el cual se encuentra inmerso en un medio de cutivo, i¡¡) al menos un sistema acuoso de nanofluidos, donde el sistema acuoso de nanofluidos se encuentra constituido por nanopartículas de carbono, nanopartículas de titanio, nanopatículas de cobre, nanopartículas de aluminio y/o nanopartículas de nanotubos de carbón, el cual sirve como un sistema de absorción de energía térmica, iv) un sistema de concentración de luz, v) al menos un intercambiador de calor que separe al microorganismo fotosintético y al sistema acuoso de nanofluidos y vi) al menos un sistema automatizado de control que comprende sensores para la lectura de parametros de crecimiento, donde el biopanel en su conjunto esta adaptado para transformar la energía térmica liberada por la fotosíntesis de las microalgas a energía eléctrica por medio de celdas de Peltier.
PCT/MX2020/050006 2019-05-03 2020-05-04 Biopanel para generación de energía eléctrica basado en fotosíntesis y nanofluidos. WO2020226481A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2019/005264 2019-05-03
MX2019005264A MX2019005264A (es) 2019-05-03 2019-05-03 Biopanel para generacion de energia electrica basado en fotosintesis y nanofluidos.

Publications (2)

Publication Number Publication Date
WO2020226481A2 true WO2020226481A2 (es) 2020-11-12
WO2020226481A3 WO2020226481A3 (es) 2020-12-03

Family

ID=68807439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2020/050006 WO2020226481A2 (es) 2019-05-03 2020-05-04 Biopanel para generación de energía eléctrica basado en fotosíntesis y nanofluidos.

Country Status (2)

Country Link
MX (1) MX2019005264A (es)
WO (1) WO2020226481A2 (es)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20131325A1 (it) * 2013-08-02 2015-02-03 Eni Spa Sistema integrato per la coltivazione di alghe o di piante e produzione di energia elettrica

Also Published As

Publication number Publication date
MX2019005264A (es) 2019-09-11
WO2020226481A3 (es) 2020-12-03

Similar Documents

Publication Publication Date Title
Soni et al. Spirulina–From growth to nutritional product: A review
CN102203233B (zh) 藻类生长系统
Pulz et al. Photobioreactors: design and performance with respect to light energy input
EP2501795B1 (en) Accordion bioreactor
Raeisossadati et al. Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production
JP4747303B2 (ja) 藻類の促成栽培装置と栽培方法
ES2645251T3 (es) Fotobiorreactor de flujo continuo o discontinuo y procedimiento de uso
US8765460B2 (en) Photobioreactor system for mass production of microorganisms
Cañedo et al. Considerations for photobioreactor design and operation for mass cultivation of microalgae
US20210079325A1 (en) Large scale mixotrophic production systems
CN103025860A (zh) 用于使光合成生物生长的方法和装置
CN101638620B (zh) 一种模拟蓝藻水华上浮的方法和装置
WO2008074906A1 (es) Fotobiorreactor electromagnético para la obtención de biomasa
Masojídek et al. Thin-layer systems for mass cultivation of microalgae: flat panels and sloping cascades
ES2319376B1 (es) "fotobiorreactor".
JP5657938B2 (ja) 光合成微細藻類の循環式培養方法
CN102936569B (zh) 盐藻培养基、半连续培养方式及藻液中原生动物杀灭方法
CN103627623B (zh) 高epa产率的微拟球藻培养系统及培养方法
WO2011065445A1 (ja) 微細藻類培養装置
WO2020226481A2 (es) Biopanel para generación de energía eléctrica basado en fotosíntesis y nanofluidos.
CN205368378U (zh) 微藻培养装置
Matthes et al. Reliable production of microalgae biomass using a novel microalgae platform
Griffiths 5 Microalgal Cultivation
CA2764291A1 (en) Low-cost integrated pond-photobioreactor
ES2711101T3 (es) Sección de perfil para el cultivo de organismos fotosintéticos bajo condiciones controladas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802479

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802479

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 20802479

Country of ref document: EP

Kind code of ref document: A2