WO2020226370A1 - Separator for electrochemical device, and electrochemical device comprising same - Google Patents

Separator for electrochemical device, and electrochemical device comprising same Download PDF

Info

Publication number
WO2020226370A1
WO2020226370A1 PCT/KR2020/005813 KR2020005813W WO2020226370A1 WO 2020226370 A1 WO2020226370 A1 WO 2020226370A1 KR 2020005813 W KR2020005813 W KR 2020005813W WO 2020226370 A1 WO2020226370 A1 WO 2020226370A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
pvdf
based polymer
electrochemical device
resin composition
Prior art date
Application number
PCT/KR2020/005813
Other languages
French (fr)
Korean (ko)
Inventor
김명수
권혜진
윤수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200051771A external-priority patent/KR102477643B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021507601A priority Critical patent/JP7098050B2/en
Priority to CN202080004736.XA priority patent/CN112640196B/en
Priority to US17/283,330 priority patent/US20220006156A1/en
Priority to EP20802576.7A priority patent/EP3916836A4/en
Publication of WO2020226370A1 publication Critical patent/WO2020226370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for an electrochemical device and an electrochemical device including the same.
  • a secondary battery such as a lithium secondary battery has an electrode assembly including a positive electrode, a negative electrode, and a separator, and the electrode assembly may be manufactured in a structure in which a separator is interposed between the positive electrode and the negative electrode.
  • Electrochemical devices as described above are produced by many companies, but their safety characteristics are different. It is very important to evaluate the safety of these electrochemical devices and ensure safety. The most important consideration is that if an electrochemical device malfunctions, it must not injure the user, and for this purpose, the safety standards strictly regulate ignition and smoke in the electrochemical device. In terms of the safety characteristics of an electrochemical device, there is a high concern that an explosion may occur when the electrochemical device is overheated, causing thermal runaway or penetrating the separator. In particular, polyolefin-based porous polymer substrates, which are commonly used as separators for electrochemical devices, exhibit extreme heat shrinkage behavior at a temperature of 100 degrees Celsius (°C) or higher due to material properties and manufacturing process characteristics including stretching. There is a problem that causes a short circuit between the and the cathode.
  • °C degrees Celsius
  • an electrode in which a porous coating layer is formed by coating a mixture of an excessive amount of inorganic particles and a binder resin on at least one surface of a porous polymer substrate having a plurality of pores has been proposed. Since the inorganic particles contained in the porous coating layer have excellent heat resistance, even when the electrochemical device is overheated, insulation between the anode and the cathode is maintained to prevent a short circuit.
  • the preparation of such a porous coating layer includes preparing a polymer solution by mixing a polymer resin with a solvent, adding inorganic particles to the polymer solution and dispersing the inorganic particles uniformly in a slurry, and controlling the inorganic particles to a predetermined size. It goes through a number of process steps such as milling. In this process, it takes a lot of time to disperse and pulverize the inorganic particles, which causes the process to be delayed.
  • An object of the present invention is to provide a method of manufacturing a separator with high process efficiency.
  • another object of the present invention is to provide a separator that is thin and has high heat resistance.
  • a first aspect of the present invention relates to a separator for an electrochemical device, wherein the separator includes a porous polymer substrate; A heat-resistant coating layer formed on at least one surface of the porous polymer substrate, wherein the heat-resistant coating layer includes a resin composition including a PVDF-based polymer and a polyvinylpyrrolidone (PVP)-based polymer, and the resin composition is 100 wt%.
  • the separator includes a porous polymer substrate;
  • a heat-resistant coating layer formed on at least one surface of the porous polymer substrate, wherein the heat-resistant coating layer includes a resin composition including a PVDF-based polymer and a polyvinylpyrrolidone (PVP)-based polymer, and the resin composition is 100 wt%.
  • the content of the PVP-based polymer is included in a ratio of 5 wt% to 40 wt%, the PVP-based polymer has a molecular weight (Mw) of 900,000 g/mol or more, and the resin composition has a loading amount of 1 g/cm 2 on the surface of the porous polymer substrate. It is above, and the air permeability is less than 900s/100cc.
  • a second aspect of the present invention is that in the first aspect, the heat-resistant coating layer has a thickness of 0.5 ⁇ m to 5.0 ⁇ m.
  • the heat-resistant coating layer comprises a resin composition comprising a PVDF-based polymer and a polyvinylpyrrolidone-based polymer, and a heat-resistant coating layer Of the resin composition, 90 wt% or more, preferably 99 wt% or more is included.
  • PVDF-based polymer comprises vinylidene fluoride homopolymer (PVDF), PVDF-HFP, PVDF-CTFE, or two or more of them. It includes a mixture.
  • PVDF vinylidene fluoride homopolymer
  • PVDF-HFP vinylidene fluoride homopolymer
  • PVDF-CTFE vinylidene fluoride homopolymer
  • the fifth aspect of the present invention is according to at least one of the first to fourth aspects, wherein the PVP-based polymer is a homopolymer of N-vinylpyrrolidone, an additional copolymer capable of free radical copolymerization with N-vinylpyrrolidone.
  • a copolymer with monomers or at least one of them is included, and the copolymer is at least 60 wt% of the content of N-vinylpyrrolidone.
  • the comonomer in the fifth aspect, includes acrylamide, a derivative of acrylamide, an acrylic ester, a derivative of an acrylic ester, or two or more of them.
  • a seventh aspect of the present invention is that according to at least one of the first to sixth aspects, the PVP-based polymer has a glass transition temperature (Tg) of 150°C or higher.
  • An eighth aspect of the present invention is that in at least one of the first to seventh aspects, the PVP-based polymer has a melting temperature (Tm) of 380°C or higher.
  • the PVP-based polymer has a packing density of 0.1 g/m 3 to 0.6 g/m 3 .
  • a tenth aspect of the present invention is 0.2g / m 3 to about 0.5g / m 3 is the density (packing density) of the PVP-based polymer according to the ninth aspect.
  • An eleventh aspect of the present invention relates to a method of manufacturing a separator having the above-described characteristics, wherein the method comprises preparing a polymer solution including a resin composition and a dispersion medium containing a PVDF-based polymer and a PVP-based polymer, and the polymer The solution is applied to the surface of the porous polymer substrate and then dried under humidified conditions, and the dispersion medium includes a solvent and a non-solvent for the resin composition, and the resin composition in the polymer solution is contained in a concentration of less than 20 wt%.
  • the dispersion medium contains 20 mol% or less of a non-solvent relative to 100 mol% of the dispersion medium.
  • the separation membrane according to the present invention is provided with a heat-resistant layer containing polyvinylpyrrolidone, and thus has a thin thickness and excellent heat-resistant stability.
  • a heat-resistant layer containing polyvinylpyrrolidone since the process of dispersing and pulverizing inorganic particles is omitted in the method of manufacturing a separator according to the present invention, the time required for manufacturing is shortened, thereby improving process efficiency.
  • Example 1 shows a SEM image of the surface of the separator prepared in Example 1.
  • the present invention relates to a separator for an electrochemical device and an electrochemical device including the same.
  • the electrochemical device is a device that converts chemical energy into electrical energy by an electrochemical reaction, and is a concept including a primary battery and a secondary battery, and the secondary battery is charged Over-discharge is possible and is a concept encompassing lithium ion batteries, nickel-cadmium batteries, and nickel-hydrogen batteries.
  • the separator for an electrochemical device according to an aspect of the present invention serves as an insulating film that electrically insulates electrodes having opposite polarities in the electrochemical device, and includes, for example, a unit cell including an anode, a cathode, and a separator. cell).
  • the separator comprises a porous polymer substrate and a heat resistant coating layer disposed on at least one surface of the porous polymer substrate, and the heat resistant coating layer is a porous polymer membrane having pores, and polyvinylpyrroly Includes money and PVDF-based polymers.
  • the porous polymer substrate refers to a substrate having a plurality of pores formed therein as an ion-conducting barrier that passes ions while blocking electrical contact between a cathode and an anode.
  • the pores are interconnected with each other, so that gas or liquid can pass from one side of the substrate to the other side.
  • the material constituting such a porous polymer substrate either an organic material or an inorganic material having electrical insulation can be used.
  • a thermoplastic resin as a constituent material of the substrate.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the thermoplastic resin and closing the pores of the porous substrate when the battery temperature is increased.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200°C is suitable, and polyolefin is particularly preferred.
  • polymer resins such as polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene It may further include at least any one of.
  • the porous polymer substrate may be a non-woven fabric or a porous polymer film, or a laminate of two or more of them, but is not particularly limited thereto.
  • the porous polymer substrate is any one of the following a) to e).
  • a porous composite membrane having a multilayer structure comprising two or more of the above a) to d).
  • the porous polymer substrate preferably has a thickness of 3 ⁇ m to 12 ⁇ m or 5 ⁇ m to 12 ⁇ m.
  • the thickness thereof is less than the above value, the function of the conductive barrier is not sufficient.
  • the resistance of the separator may increase excessively.
  • the weight average molecular weight (Mw, g/mol) of the polyolefin may be 100,000 to 5 million.
  • the weight average molecular weight is less than 100,000, it may become difficult to secure sufficient mechanical properties.
  • the shutdown characteristics may deteriorate or molding may become difficult.
  • the strength of the protrusion of the porous polymer substrate may be 300 gf or more from the viewpoint of improving the manufacturing yield.
  • the molecular weight (Mw) means a weight average molecular weight.
  • the molecular weight (Mw) may be measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • 200 mg of a polymer resin for molecular weight measurement can be diluted in a solvent such as 200 ml Tetrahydrofuran (THF) to prepare a sample of about 1000 ppm, and measured through an RI detector at 1 ml/min flow using an Agilent 1200 series GPC device. .
  • the piercing strength of a porous substrate refers to the maximum piercing load (gf) measured by performing a piercing test under the conditions of a needle tip radius of curvature of 0.5 mm and a piercing speed of 2 mm/sec using a Kato tech KES-G5 handy compression tester.
  • the porous polymer substrate can be used as long as it is a planar porous polymer substrate used in an electrochemical device, for example, has high ion permeability and mechanical strength, and a pore diameter is generally 10 nm to An insulating thin film having a thickness of 100 nm and generally 5 ⁇ m to 12 ⁇ m may be used.
  • the heat-resistant coating layer may be formed on at least one surface of the porous polymer substrate and includes polyvinylpyrrolidone and PVDF-based polymer.
  • the heat-resistant coating layer is a porous membrane having a plurality of fine pores.
  • these micropores have a structure connected to one or more adjacent pores, and have a porous structure through which gas or liquid can pass from one surface to the other surface.
  • the fine pores of the heat-resistant coating layer may be derived by humidification phase separation of the binder resin performed during the production of the heat-resistant coating layer, as described later.
  • pores of various sizes ranging from several nanometers to tens of micrometers in diameter may be formed in the heat-resistant coating layer. The size of the pores may be calculated from shape analysis through SEM images. If the size of the pores is too small, the pores are likely to be clogged due to the expansion of the binder resin in the heat-resistant coating layer, and if the pore size is excessively large, the function as an insulating film is difficult and self-discharge characteristics deteriorate after manufacturing a secondary battery.
  • pore diameters can be controlled in an appropriate range by appropriately selecting and controlling temperature, humidity, solvent, non-solvent component, etc. in the raw material for the heat-resistant coating layer and the humidification phase separation process described later.
  • the porosity of the heat-resistant coating layer is preferably 30% to 80%. If the porosity is 30% or more, it is advantageous in terms of permeability of lithium ions, and if the porosity is 80% or less, the surface opening ratio is not too high, which is suitable for securing the adhesion between the separator and the electrode. Meanwhile, in one embodiment of the present invention, the air permeability of the separator is 900s/100cc or less, preferably 500s/100cc or less.
  • the porosity and size of the pores are measured using BEL JAPAN's BELSORP (BET equipment) using an adsorption gas such as nitrogen, or a mercury intrusion porosimetry or capillary flow measurement method It can be measured in the same way as (capillary flow porosimetry).
  • the porosity may be calculated from the theoretical density of the coating layer by measuring the thickness and weight of the obtained coating layer.
  • permeability refers to the time for 100 cc of air to permeate through the separator, and as a unit thereof, seconds/100 cc are used herein, and can be used interchangeably with permeability. And is usually expressed as a Gurely value.
  • the thickness of the heat-resistant coating layer is preferably 0.5 ⁇ m to 5.0 ⁇ m on one side of the porous polymer substrate.
  • the thickness may be preferably 0.7 ⁇ m or more, 1 ⁇ m or more, or 1.5 ⁇ m or more when considering mechanical properties or adhesion, and the adhesion to the electrode within the above numerical range is excellent, and as a result, the cell strength of the battery is Is increased.
  • the thickness is 5.0 ⁇ m or less, it is advantageous in terms of cycle characteristics and resistance characteristics of the battery.
  • the heat-resistant coating layer includes a resin composition containing a PVDF-based polymer and a polyvinylpyrrolidone-based polymer, and the resin composition is 90 wt% or more, preferably 99 wt% or more, or 99.9 wt% of 100 wt% of the heat-resistant coating layer. % Or more.
  • the PVDF-based polymer may be included in a range of 60 wt% to 95 wt% relative to 100 wt% of the resin composition.
  • the heat-resistant coating layer may form pores by inducing phase separation of the PVDF-based binder while the polymer solution for forming the heat-resistant coating layer is solidified under humidified conditions.
  • the binder resin component capable of phase separation is not sufficient, and thus pores are not formed at a desired level in terms of the size and porosity of the pores.
  • the PVDF-based polymer has a molecular weight (Mw) of 10,000 to 1 million, preferably 150,000 to 500,000.
  • the PVDF-based polymer may include a homopolymer of vinylidene fluoride (ie, polyvinylidene fluoride), a copolymer of vinylidene fluoride and a monomer copolymerizable therewith, or a mixture thereof.
  • a homopolymer of vinylidene fluoride ie, polyvinylidene fluoride
  • a copolymer of vinylidene fluoride and a monomer copolymerizable therewith or a mixture thereof.
  • a monomer for example, a fluorinated monomer and/or a chlorine-based monomer may be used.
  • Non-limiting examples of the fluorinated monomers include vinyl fluoride; Trifluoroethylene (TrFE); Chlorofluoroethylene (CTFE); 1,2-difluoroethylene; Tetrafluoroethylene (TFE); Hexafluoropropylene (HFP); Perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE), and perfluoro (propyl vinyl) ether (PPVE); Perfluoro(1,3-dioxole); And perfluoro (2,2-dimethyl-1,3-dioxole) (PDD), and one or more of them may be included.
  • PrFE Trifluoroethylene
  • CTFE Chlorofluoroethylene
  • TFE Tetrafluoroethylene
  • HFP Hexafluoropropylene
  • Perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl)
  • the substitution ratio of the monomer in the copolymer may be 0.1 wt% to 25 wt%.
  • the substitution rate of the monomer may be 8 wt% to 20 wt%.
  • the PVDF-based polymer comprises vinylidene fluoride homopolymer (PVDF), PVDF-HFP, PVDF-CTFE, PVDF-CTFE, PVDF-TFE, PVDF-TrFE, or two or more of them. It can be a mixture.
  • the PVDF-based polymer may include PVDF-HFP.
  • the PVDF-based polymer may further include one or more of PVDF-CTFE, PVDF-FEP, and PVDF-TFE together with PVDF-HFP.
  • the PVDF-HFP may have a molecular weight (Mw) of 10,000 to 1 million, preferably 150,000 to 500,000.
  • the substitution rate of HFP in the PVDF-HFP may be 0.1wt% to 25wt%, preferably 8wt% to 80wt%.
  • the polyvinylpyrrolidone (PVP)-based polymer refers to a polymer polymer containing N-vinylpyrrolidone as a monomer.
  • the polyvinylpyrrolidone-based polymer may include a single copolymer of N-vinylpyrrolidone, a copolymer of N-vinylpyrrolidone and additional comonomers capable of free radical copolymerization, or at least one of them.
  • N-vinyl among them in terms of improving the electrochemical properties intended in the present invention is 60 wt% or more, 70 wt% or more, or 80 wt% or more of the content of pyrrolidone.
  • the comonomer is, for example, acrylic acid and substituted acrylic acid, and salts, esters and amides thereof (wherein the substituent on the carbon atom is at the position 2 or 3 of acrylic acid, and independently of each other C 1 to C 20 alkyl, -CN, selected from the group consisting of COOH), methacrylic acid, ethacrylic acid, acrylamide, methacrylamide, N,N-dimethylacrylamide and N,N-dimethylmethacrylamide And one or more of them.
  • amides of acrylic acid and derivatives thereof such as ethacrylamide, N-methylacrylamide, N-ethylacrylamide, N-isopropylacrylamide, N-butylacrylamide, Nt -Butylacrylamide, N-octylacrylamide, Nt-octylacrylamide, N-octadecylacrylamide, N-phenylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-isopropylmethacryl Amide, N-dodecylmethacrylamide, N-[3-(dimethylamino)propyl]methacrylamide, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino)butyl] Methacrylamide, N-[8-(dimethylamino)octyl]methacrylamide
  • esters of acrylic acid and derivatives thereof are, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, Methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, stearyl (Meth)acrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxyethyl methacrylate Rate, 2-hydroxyethyl ethacrylate, 2-methoxye
  • Suitable comonomers are vinyl and allyl esters of linear, branched, or carbocyclic carboxylic acids having 1 to 40 carbon atoms, such as vinyl acetate, vinyl propionate, and valences thereof.
  • Decomposition products such as vinyl alcohol, vinyl or allyl halides, preferably vinyl chloride and allyl chloride, vinyl ethers, preferably methyl, ethyl, butyl or dodecyl vinyl ether, vinylformamide, N-vinyl-N-methylacet Amide, vinylamine; Methyl vinyl ketone; Vinyllactam, preferably vinylpyrrolidone, vinylcaprolactam and vinylpiperidone, vinyl- or allyl-substituted heterocyclic compounds, preferably vinylpyridine, vinyloxazoline and allylpyridine, and vinylfuran and allyl alcohol to be.
  • N-vinylimidazole of the following formula (1).
  • R 9 to R 11 are each independently hydrogen, alkyl or phenyl having 1 to 4 carbon atoms.
  • Examples are 1-vinylimidazole, 1-vinyl-2-methylvinylimidazole, 3-methyl-1-vinylimidazolium chloride and 3-methyl-1-vinylimidazolium methylsulfate.
  • the additional suitable comonomer may be diallylamine of formula (II).
  • R 12 is an alkyl having 1- to 24 carbon atoms, for example diallyldimethylammonium chloride.
  • comonomers are maleic acid, fumaric acid, maleic anhydride and half-esters and half-amides and imides thereof, maleimide, crotonic acid, itaconic acid, vinyl ethers (e.g. methyl, ethyl, butyl or Dodecyl vinyl ether), vinylidene chloride, and hydrocarbons having at least one carbon-carbon double bond, preferably styrene, alpha-methylstyrene, tert-butylstyrene, styrenesulfonic acid and salts thereof, butadiene, isoprene, cyclohexa Diene, ethylene, propylene, 1-butene, 2-butene, isobutylene, and vinyl toluene.
  • vinyl ethers e.g. methyl, ethyl, butyl or Dodecyl vinyl ether
  • vinylidene chloride e.g. methyl, ethy
  • acrylic acid methacrylic acid, maleic acid, fumaric acid, crotonic acid, maleic anhydride, and half-esters thereof, and half-amides and imides, methyl acrylate, methyl methacrylate, ethyl acrylate, Ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, 2-ethylhexyl acrylate, ste Aryl acrylate, stearyl methacrylate, Nt-butylacrylamide, N-octylacrylamide, Nt-octylacrylamide, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-2-hydroxy Ethyl methacrylate, 3-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl
  • Suitable comonomers are polyfunctional monomers such as triallylamine, trivinyl ether, divinylethyleneurea, 3-vinyl-N-vinylpyrrolidone, 4-vinyl-N-vinylpyrrolidone, 5-vinyl- N-vinylpyrrolidone, pentaerythritol triallyl ether, methylenebisacrylamide, butanediol diacrylate, hexanediol diacrylate, dipropylene glycol diacrylate, allyl methacrylate, divinylbenzene, ethylene glycol dimetha Acrylate, triethylene glycol dimethacrylate and triethylene glycol divinyl ether.
  • polyfunctional monomers such as triallylamine, trivinyl ether, divinylethyleneurea, 3-vinyl-N-vinylpyrrolidone, 4-vinyl-N-vinylpyrrolidone, 5-vinyl- N-vinylpyr
  • Very particularly preferred comonomers are N-vinylcaprolactam (VCAp), N-vinyl-imidazole (VI), 1-vinyl-3-methylimidazolium salt (QVI), for example methyl chloride or dimethyl sulfate. Salts obtainable by quaternization, vinyl acetate, (meth)acryl-amide, dimethylaminoethyl (meth)acrylate and dimethylaminoethyl-(meth)acrylamide and their quaternized analogs, diallyldimethylammonium chloride.
  • VCAp N-vinylcaprolactam
  • VI N-vinyl-imidazole
  • QVI 1-vinyl-3-methylimidazolium salt
  • Salts obtainable by quaternization, vinyl acetate, (meth)acryl-amide, dimethylaminoethyl (meth)acrylate and dimethylaminoethyl-(meth)acrylamide and their quaternized analogs,
  • the comonomer when considering the aspect of improving adhesion, preferably contains at least one of acrylamide and derivatives thereof, acrylic esters and derivatives thereof.
  • the polyvinylpyrrolidone polymer is It may be included in the range of 5wt% to 50wt%, or 5wt% to 40wt% relative to 100wt% of the resin composition.
  • the PVP-based polymer when considering the aspect of heat resistance stability of the separator, preferably has a Tg of 150°C or higher and a Tm of 380°C or higher.
  • the molecular weight (Mw) of the PVP-based polymer is 900,000 (g/mol) or more.
  • the heat-resistant coating layer is preferably 1 g / cm 2 or more in the loading amount of the resin composition.
  • the loading amount represents the weight per unit area of the resin composition contained in the heat-resistant coating layer coated on both sides of the porous polymer substrate. If the loading amount is less than the above-described range, the content of the polymer material included in the heat-resistant coating layer is insufficient, so that the shrinkage rate characteristics and adhesion characteristics of the separator are deteriorated.
  • the density (packing density) of the PVP-based polymer in the heat-resistant coating layer is 0.1 g/m 3 to 0.7 g/m 3 , preferably 0.2 g/m 3 to 0.5 g/ m 3 .
  • the density of PVP satisfies the above range, heat resistance is improved and the phase separation behavior of the PVDF-based polymer is not hindered.
  • the density (packing density) of the PVP-based polymer can be calculated by the following (Equation 1).
  • PVP polymer density (g/m 3) (PVP content in heat-resistant coating layer) X ⁇ (weight per unit area of separator-weight per unit area of porous polymer substrate)/(thickness of separator-thickness of porous polymer substrate) ⁇
  • the separator according to the present invention can be prepared by preparing a polymer solution containing the resin composition and then applying it on a porous polymer substrate and solidifying the polymer solution to form a heat-resistant coating layer integrally on the porous polymer substrate. I can.
  • a polymer solution is prepared by introducing a resin composition containing a PVDF-based polymer and a PVP-based polymer into a dispersion medium.
  • the dispersion medium may include a solvent and a non-solvent for the resin composition.
  • the solvent may be a polar amide solvent such as acetone, methyl ethyl ketone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide, etc., and at least one of them You can select and use appropriately.
  • a polar amide solvent such as acetone, methyl ethyl ketone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide, etc., and at least one of them You can select and use appropriately.
  • the non-solvent is methanol, ethanol, propanol, isopropyl alcohol (IPA), isopropanol, butanol, sec-butanol, amyl alcohol, 2-ethyl-1-hexanol , Cyclohexanol, phenol (50° C.), ethylene glycol, 1,3-butanediol, 1,4 butanediol, glycerin, diacetone alcohol, formic acid, acetic acid, propionic acid, glycol ether, diethylene glycol, triethylene glycol, Hexamethylene glycol, polyethylene glycol 400, 2,2-thiodiethanol, gammabutylrolactone, ethyl acetate, butylamine, cyclhexamine analine, ethylenediamine, pyridine, morpholine, 2-aminoaniline, diethanolamine, triethanolamine, aminoethylethanloamine, 2-hydroxy
  • the non-solvent in the dispersion medium is preferably contained in a ratio of 30 mol% or less, preferably 25 mol% or less, and more preferably 20 mol% or less with respect to 100 mol% of the dispersion medium. If the content of the non-solvent exceeds the above range, there is a problem that the phase separation does not proceed effectively, so that the pores do not develop and the adhesion properties are deteriorated.
  • the resin composition in the polymer solution has a concentration of less than 20 wt%, preferably less than 15 wt%. If it exceeds the above range, the resin composition precipitates and phase separation does not proceed effectively.
  • the polymer solution is applied on a porous polymer substrate and allowed to stand for a predetermined time under humidified conditions to solidify (dry) the polymer solution.
  • the humidification condition is about 40% to 80% relative humidity.
  • the solidification of the polymer solution may be performed in a range of about 10 degrees Celsius (°C) to 70 degrees Celsius.
  • phase separation of the PVDF-based polymer in the polymer solution is induced.
  • the solvent moves to the surface of the heat-resistant coating layer, and as the solvent moves, the PVDF-based polymer moves to the surface of the heat-resistant coating layer, thereby increasing the content of the PVDF-based polymer on the surface of the heat-resistant coating layer.
  • the polymer solution may be applied by a conventional coating method such as a Meyer bar, a die coater, a reverse roll coater, and a gravure coater.
  • the present invention provides a secondary battery including the separator.
  • the battery includes a negative electrode, a positive electrode, and a separator interposed between the negative electrode and the positive electrode, and the separator includes the binder resin composition according to the present invention.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the positive electrode active material may include a layered compound such as lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2, etc.), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as formula Li 1+x Mn 2-x O 4 (wherein x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site-type lithium nickel oxide represented by the formula LiNi 1-x M
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the negative electrode includes carbon such as lithium metal oxide, non-graphitized carbon, and graphite-based carbon as a negative electrode active material; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Al, B, P, Si, elements of groups 1, 2 and 3 of the periodic table, halogen, metal complex oxides such as 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); Lithium metal; Lithium alloy; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 ,
  • the conductive material is, for example, graphite, carbon black, carbon fiber or metal fiber, metal powder, conductive whisker, conductive metal oxide, activated carbon, and polyphenylene derivative It may be any one selected from the group consisting of, or a mixture of two or more conductive materials among them. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, denka black, carbon fiber, carbon nanotube, It may be one selected from the group consisting of aluminum powder, nickel powder, zinc oxide, potassium titanate, and titanium oxide, or a mixture of two or more conductive materials.
  • the current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated carbon, nickel, titanium, silver, or the like may be used.
  • binder resin used for the electrode a polymer commonly used for electrodes in the art may be used.
  • Non-limiting examples of such a binder resin include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polymethylmethacrylate.
  • the electrolyte is a salt having a structure such as A+B-, wherein A + contains an ion consisting of an alkali metal cation such as Li + , Na + , K + or a combination thereof, and B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 -
  • a salt containing an ion or a combination thereof such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethylsulfoxide, acetonitrile, dimethoxyethane, dieth
  • a + contains an ion consisting of an alkali metal cation such as Li + , Na + , K + or a
  • the present invention provides a battery module including a battery including the electrode assembly as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • a resin composition was prepared according to the composition of the following [Table 1]. Acetone and isopropyl alcohol (IPA) were mixed to prepare a dispersion medium, and a polymer solution was prepared by adding a resin composition including PVP and PVDF-HFP of each of Examples and Comparative Examples thereto.
  • the PVDF-HFP had a molecular weight (Mw) of 300,000, and a substitution rate of 15 wt%.
  • the polymer solution was coated on a porous polymer substrate (thickness 9 ⁇ m, porosity 32vol%, molecular weight 500,000 polyethylene) by a dip coating method, and humidified phase separation was induced at a relative humidity (RH) of 60% and at room temperature. .
  • RH relative humidity
  • the separator according to the Example showed superior results in terms of air permeability, electrode adhesion, and heat shrinkage compared to the comparative example.
  • the air permeability meter (manufacturer: Asahi Seiko, product name: EG01-55-1MR) was used to measure the time (sec) it took for 100 cc of air to pass through the separator at a constant pressure (0.05 MPa). The average was recorded by measuring a total of 3 points at each 1 point on the left/middle/right of the sample.
  • the separation membrane prepared in each Example and Comparative Example was cut into a size of 5cm x 5cm, and then the degree of shrinkage after holding at 150°C for 30 minutes was calculated in the TD and MD directions.
  • Heat contraction rate (%) [(length before contraction-length after contraction) / length before contraction] X 100
  • the separator prepared in each Example and Comparative Example was cut into 100 mm (length) x 25 mm (width) and laminated with a cathode by hot press at 60°C, 6.5 MPa, 1s, and then UTM equipment (Instron) was used. Then, peeling was performed at an angle of 180 degrees at a speed of 300 mm/min, and the strength at this time was measured. It is desirable to secure at least 50g/25mm.
  • the negative electrode was prepared as follows.
  • a negative electrode slurry was prepared by mixing 66.1 wt% artificial graphite (coal tar pitch), 26.9 wt% natural graphite, 1.5 wt% SiO, 1.5 wt% carbon black, 3 wt% SBR binder, and 1 wt% CMC. This was applied to a copper foil at a loading amount of 495mg/25cm 2 , dried in a vacuum oven at 100° C. for 10 hours or longer, and a negative electrode (total thickness of 159.6 ⁇ m) was prepared using a roll-type press.

Abstract

The present invention relates to a separator for an electrochemical device and an electrochemical device comprising same. The separator includes a porous polymer substrate and a heat-resistant coating layer disposed on at least one surface of the porous polymer substrate, and the heat-resistant coating layer is a porous polymer membrane having pores formed thereon, and includes polyvinylpyrrolidone and a PVDF-based polymer.

Description

전기화학소자용 분리막 및 이를 포함하는 전기화학소자 Separator for electrochemical device and electrochemical device including the same
본 출원은 2019년 5월 9일자로 출원된 한국특허출원 제10-2019-0054535호 및 2020년 4월 28일자로 출원된 한국특허출원 제10-2020-0051771호에 기초한 우선권을 주장한다. 본 발명은 전기화학소자용 분리막 및 이를 포함하는 전기화학소자에 대한 것이다. This application claims priority based on Korean Patent Application No. 10-2019-0054535 filed on May 9, 2019 and Korean Patent Application No. 10-2020-0051771 filed on April 28, 2020. The present invention relates to a separator for an electrochemical device and an electrochemical device including the same.
최근, 전기화학소자 분야에서 그의 안전성 확보에 대해 크게 주목하고 있다. 특히, 리튬 이차전지와 같은 이차전지는 양극, 음극 및 분리막을 구비한 전극 조립체를 갖는데, 이러한 전극 조립체는 양극과 음극 사이에 분리막이 개재된 구조로 제작될 수 있다. Recently, great attention has been paid to securing its safety in the field of electrochemical devices. Particularly, a secondary battery such as a lithium secondary battery has an electrode assembly including a positive electrode, a negative electrode, and a separator, and the electrode assembly may be manufactured in a structure in which a separator is interposed between the positive electrode and the negative electrode.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 고분자 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 섭씨 100도(℃) 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.Electrochemical devices as described above are produced by many companies, but their safety characteristics are different. It is very important to evaluate the safety of these electrochemical devices and ensure safety. The most important consideration is that if an electrochemical device malfunctions, it must not injure the user, and for this purpose, the safety standards strictly regulate ignition and smoke in the electrochemical device. In terms of the safety characteristics of an electrochemical device, there is a high concern that an explosion may occur when the electrochemical device is overheated, causing thermal runaway or penetrating the separator. In particular, polyolefin-based porous polymer substrates, which are commonly used as separators for electrochemical devices, exhibit extreme heat shrinkage behavior at a temperature of 100 degrees Celsius (℃) or higher due to material properties and manufacturing process characteristics including stretching. There is a problem that causes a short circuit between the and the cathode.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 수지의 혼합물을 코팅하여 다공성 코팅층을 형성한 전극이 제안되었다. 다공성 코팅층에 함유된 무기물 입자들은 내열성이 뛰어나므로, 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 절연을 유지하여 단락을 방지한다. In order to solve the safety problem of such an electrochemical device, an electrode in which a porous coating layer is formed by coating a mixture of an excessive amount of inorganic particles and a binder resin on at least one surface of a porous polymer substrate having a plurality of pores has been proposed. Since the inorganic particles contained in the porous coating layer have excellent heat resistance, even when the electrochemical device is overheated, insulation between the anode and the cathode is maintained to prevent a short circuit.
이러한 다공성 코팅층의 제조는 고분자 수지를 용매와 혼합하여 고분자 용액을 제조하는 단계, 상기 고분자 용액에 무기물 입자를 투입하고 무기물 입자를 슬러리 중 균일하게 분산시키는 단계, 무기물 입자를 소정 크기로 제어하기 위해 슬러리를 밀링하는 단계 등 다수의 공정 단계를 거친다. 이러한 공정에서 무기물 입자의 분산과 분쇄에 많은 시간이 소요되어 공정이 지연되는 원인이 된다. The preparation of such a porous coating layer includes preparing a polymer solution by mixing a polymer resin with a solvent, adding inorganic particles to the polymer solution and dispersing the inorganic particles uniformly in a slurry, and controlling the inorganic particles to a predetermined size. It goes through a number of process steps such as milling. In this process, it takes a lot of time to disperse and pulverize the inorganic particles, which causes the process to be delayed.
이에 공정 효율이 높으면서도 무기물 입자를 포함하는 분리막과 유사한 수준의 분리막의 개발이 요청되고 있다. Accordingly, development of a separation membrane having a high process efficiency and a level similar to that of a separation membrane containing inorganic particles is required.
본 발명은 공정 효율이 높은 분리막의 제조 방법을 제공하는 것을 목적으로 한다. 또한, 본 발명의 또 다른 목적은 얇으면서도 내열 안정성이 높은 분리막을 제공하는 것이다. 본 발명의 다른 목적 및 장점들은 하기 설명에 의해 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.An object of the present invention is to provide a method of manufacturing a separator with high process efficiency. In addition, another object of the present invention is to provide a separator that is thin and has high heat resistance. Other objects and advantages of the present invention will be understood by the following description. In addition, it will be easily understood that the objects and advantages of the present invention can be realized by means or methods described in the claims, and combinations thereof.
본 발명은 전술한 기술적 과제를 해결하기 위해 도출된 것이다. 본 발명의 제1 측면은 전기화학소자용 분리막에 대한 것으로서, 상기 분리막은 다공성 고분자 기재; 상기 다공성 고분자 기재의 적어도 일면에 형성된 내열 코팅층;을 포함하며, 상기 내열 코팅층은 PVDF계 고분자 및 폴리비닐 피롤리돈(polyvinylpyrrolidone, PVP)계 고분자을 포함하는 수지 조성물을 포함하며, 상기 수지 조성물 100wt% 대비 PVP계 고분자의 함량은 5wt% 내지 40wt%의 비율로 포함되며, 상기 PVP계 고분자는 분자량(Mw)이 900,000g/mol 이상이고, 상기 수지 조성물은 다공성 고분자 기재 표면에 대한 로딩량이 1g/cm 2 이상이고, 통기도가 900s/100cc 이하인 것이다.The present invention was derived to solve the above-described technical problem. A first aspect of the present invention relates to a separator for an electrochemical device, wherein the separator includes a porous polymer substrate; A heat-resistant coating layer formed on at least one surface of the porous polymer substrate, wherein the heat-resistant coating layer includes a resin composition including a PVDF-based polymer and a polyvinylpyrrolidone (PVP)-based polymer, and the resin composition is 100 wt%. The content of the PVP-based polymer is included in a ratio of 5 wt% to 40 wt%, the PVP-based polymer has a molecular weight (Mw) of 900,000 g/mol or more, and the resin composition has a loading amount of 1 g/cm 2 on the surface of the porous polymer substrate. It is above, and the air permeability is less than 900s/100cc.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 내열 코팅층은 두께가 0.5 ㎛ 내지 5.0㎛인 것인 것이다.A second aspect of the present invention is that in the first aspect, the heat-resistant coating layer has a thickness of 0.5 μm to 5.0 μm.
본 발명의 제3 측면은 상기 제1 내지 제2 측면 중 적어도 어느 하나에 있어서, 상기 내열 코팅층은 PVDF계 고분자 및 폴리비닐피롤리돈(Polyvinylpyrrolidone)계 고분자를 포함하는 수지 조성물을 포함하며, 내열 코팅층 중 상기 수지 조성물이 90wt% 이상, 바람직하게는 99 wt% 이상 포함되는 것이다.A third aspect of the present invention according to at least one of the first to second aspects, wherein the heat-resistant coating layer comprises a resin composition comprising a PVDF-based polymer and a polyvinylpyrrolidone-based polymer, and a heat-resistant coating layer Of the resin composition, 90 wt% or more, preferably 99 wt% or more is included.
본 발명의 제4 측면은 상기 제1 내지 제3 측면 중 적어도 어느 하나에 있어서, 상기 PVDF계 고분자는 불화비닐리덴 단독 중합체(PVDF), PVDF-HFP, PVDF-CTFE 또는 이 중 둘 이상을 포함하는 혼합물을 포함하는 것이다.The fourth aspect of the present invention according to at least any one of the first to third aspects, wherein the PVDF-based polymer comprises vinylidene fluoride homopolymer (PVDF), PVDF-HFP, PVDF-CTFE, or two or more of them. It includes a mixture.
본 발명의 제5 측면은 상기 제1 내지 제4 측면 중 적어도 어느 하나에 있어서, 상기 PVP계 고분자는 N-비닐피롤리돈의 단일 공중합체, N-비닐피롤리돈과 자유 라디칼 공중합 가능한 추가 공단량체들과의 공중합체 또는 이 중 하나 이상을 포함하며, 상기 공중합체는 N-비닐필롤리돈의 함량의 60wt% 이상인 것이다.The fifth aspect of the present invention is according to at least one of the first to fourth aspects, wherein the PVP-based polymer is a homopolymer of N-vinylpyrrolidone, an additional copolymer capable of free radical copolymerization with N-vinylpyrrolidone. A copolymer with monomers or at least one of them is included, and the copolymer is at least 60 wt% of the content of N-vinylpyrrolidone.
본 발명의 제6 측면은 상기 제5 측면에 있어서, 상기 공단량체는 아크릴아미드, 아크릴아미드의 유도체, 아크릴산에스테르, 아크릴산에스테르의 유도체 또는 이 중 둘 이상을 포함하는 것이다In the sixth aspect of the present invention, in the fifth aspect, the comonomer includes acrylamide, a derivative of acrylamide, an acrylic ester, a derivative of an acrylic ester, or two or more of them.
본 발명의 제7 측면은 상기 제1 내지 제6 측면 중 적어도 어느 하나에 있어서, 상기 PVP계 고분자는 유리전이온도(Tg)가 150℃ 이상인 것이다.A seventh aspect of the present invention is that according to at least one of the first to sixth aspects, the PVP-based polymer has a glass transition temperature (Tg) of 150°C or higher.
본 발명의 제8 측면은 상기 제1 내지 제7 측면 중 적어도 어느 하나에 있어서, 상기 PVP계 고분자는 용융온도(Tm)이 380℃ 이상인 것이다.An eighth aspect of the present invention is that in at least one of the first to seventh aspects, the PVP-based polymer has a melting temperature (Tm) of 380°C or higher.
본 발명의 제9 측면은 상기 제1 내지 제8 측면 중 적어도 어느 하나에 있어서, PVP계 고분자의 밀도(packing density)가 0.1g/m 3 내지 0.6g/m 3 것이다.In a ninth aspect of the present invention, according to at least one of the first to eighth aspects, the PVP-based polymer has a packing density of 0.1 g/m 3 to 0.6 g/m 3 .
본 발명의 제10 측면은 상기 제9 측면에 있어서 PVP계 고분자의 밀도(packing density)가 0.2g/m 3 내지 0.5g/m 3 것이다.A tenth aspect of the present invention is 0.2g / m 3 to about 0.5g / m 3 is the density (packing density) of the PVP-based polymer according to the ninth aspect.
본 발명의 제11 측면은, 전술한 특징을 갖는 분리막을 제조하는 방법에 대한 것으로서, 상기 방법은 PVDF계 고분자 및 PVP계 고분자를 포함하는 수지 조성물 및 분산매를 포함하는 고분자 용액을 준비하고, 상기 고분자 용액을 다공성 고분자 기재의 표면에 도포한 후 가습 조건에서 건조하며, 상기 분산매는 수지 조성물에 대한 용매 및 비용매를 포함하며, 상기 고분자 용액 중 수지 조성물은 20wt% 미만의 농도로 포함되는 것이다.An eleventh aspect of the present invention relates to a method of manufacturing a separator having the above-described characteristics, wherein the method comprises preparing a polymer solution including a resin composition and a dispersion medium containing a PVDF-based polymer and a PVP-based polymer, and the polymer The solution is applied to the surface of the porous polymer substrate and then dried under humidified conditions, and the dispersion medium includes a solvent and a non-solvent for the resin composition, and the resin composition in the polymer solution is contained in a concentration of less than 20 wt%.
본 발명의 제12 측면은, 상기 제11 측면에 있어서, 상기 분산매는 분산매 100mol% 대비 비용매가 20mol% 이하로 포함되는 것이다.In a twelfth aspect of the present invention, in the eleventh aspect, the dispersion medium contains 20 mol% or less of a non-solvent relative to 100 mol% of the dispersion medium.
본 발명에 따른 분리막은 폴리비닐피롤리돈을 포함하는 내열층이 구비되어 있어 두께가 얇으면서도 내열 안정성이 우수한 효과가 있다. 또한, 본 발명에 따른 분리막 제조 방법은 무기물 입자를 분산시키거나 및 분쇄하는 공정이 생략되므로 제조에 소요되는 시간이 단축되어 공정 효율이 개선되는 효과가 있다. The separation membrane according to the present invention is provided with a heat-resistant layer containing polyvinylpyrrolidone, and thus has a thin thickness and excellent heat-resistant stability. In addition, since the process of dispersing and pulverizing inorganic particles is omitted in the method of manufacturing a separator according to the present invention, the time required for manufacturing is shortened, thereby improving process efficiency.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. The following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical spirit of the present invention together with the content of the above-described invention, so the present invention is limited to the matters described in such drawings. It is not intended to be limited and interpreted.
도 1은 실시예 1에서 제조된 분리막 표면의 SEM 이미지를 나타낸 것이다.1 shows a SEM image of the surface of the separator prepared in Example 1.
이하 본 발명에 대해 상세하게 설명하다. 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재되고 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is. Therefore, the configurations described in the embodiments described in the present specification and shown in the drawings are only one embodiment of the present invention and do not represent all the technical ideas of the present invention, and thus various alternatives that can be substituted for them at the time of application It should be understood that there may be equivalents and variations.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the entire specification of the present application, when a certain part "includes" a certain constituent element, it means that other constituent elements may be further included instead of excluding other constituent elements unless otherwise stated.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, the terms "about" and "substantially" used throughout the specification of the present application are used as a meaning at or close to the numerical value when a manufacturing and material tolerance inherent to the stated meaning is presented to aid understanding of the present application. In order to prevent unreasonable use by unscrupulous infringers of the stated disclosures, either exact or absolute figures are used.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.In the entire specification of the present application, the description of "A and/or B" means "A or B or both".
이어지는 발명의 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로'의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.Certain terms used in the detailed description of the invention that follow are for convenience and are not limiting. The words “right”, “left”, “top” and “bottom” indicate directions in the drawings to which reference is made. The words'inwardly' and'outwardly' refer to a direction towards or away from the geometric center of a specified device, system and members, respectively. 'Forward','rear','upward','downward' and related words and phrases represent positions and orientations in the drawings to which reference is made, and should not be limited. These terms include the words listed above, their derivatives and words of similar meaning.
본 발명은 전기화학소자용 분리막 및 이를 포함하는 전기화학소자에 대한 것이다. The present invention relates to a separator for an electrochemical device and an electrochemical device including the same.
본 발명의 일 실시양태에 있어서, 상기 전기화학소자는 전기화학적 반응에 의해 화학적 에너지를 전기적 에너지로 변환시키는 장치로서, 일차 전지와 이차 전지(Secondary Battery)를 포함하는 개념이며, 상기 이차 전지는 충전과 방전이 가능한 것으로, 리튬 이온 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 포괄하는 개념이다. 본 발명의 일 측면에 따른 전기화학소자용 분리막은 전기화학소자에서 서로 반대되는 극성을 갖는 전극을 전기적으로 절연하는 절연막의 역할을 하는 것으로서 예를 들어 양극, 음극 및 분리막을 포함하는 단위 셀(unit cell)의 구성요소이다. In one embodiment of the present invention, the electrochemical device is a device that converts chemical energy into electrical energy by an electrochemical reaction, and is a concept including a primary battery and a secondary battery, and the secondary battery is charged Over-discharge is possible and is a concept encompassing lithium ion batteries, nickel-cadmium batteries, and nickel-hydrogen batteries. The separator for an electrochemical device according to an aspect of the present invention serves as an insulating film that electrically insulates electrodes having opposite polarities in the electrochemical device, and includes, for example, a unit cell including an anode, a cathode, and a separator. cell).
다음으로 본 발명에 따른 분리막의 구성을 더욱 상세하게 설명한다. Next, the configuration of the separator according to the present invention will be described in more detail.
본 발명의 일 실시양태에 있어서, 상기 분리막은 다공성 고분자 기재 및 상기 다공성 고분자 기재의 적어도 일측 표면에 배치된 내열 코팅층을 포함하며, 상기 내열 코팅층은 기공이 형성된 다공성의 고분자 막이며, 폴리비닐피롤리돈 및 PVDF계 고분자를 포함한다. In one embodiment of the present invention, the separator comprises a porous polymer substrate and a heat resistant coating layer disposed on at least one surface of the porous polymer substrate, and the heat resistant coating layer is a porous polymer membrane having pores, and polyvinylpyrroly Includes money and PVDF-based polymers.
상기 다공성 고분자 기재는 음극과 양극 사이의 전기적 접촉을 차단하면서 이온을 통과시키는 이온 전도성 배리어(porous ion-conducting barrier)로 내부에 복수의 기공이 형성된 기재를 의미한다. 상기 기공들은 상호간에 서로 연결된 구조로 되어 있어서 기재의 한쪽 면으로부터 다른 쪽 면으로 기체 또는 액체가 통과 가능한 것이다. 이러한 다공성 고분자 기재를 구성하는 재료는, 전기 절연성을 갖는 유기 재료 혹은 무기 재료 중 어느 것도 사용할 수 있다. 특히, 기재에 셧다운 기능을 부여하는 관점에서는, 기재의 구성 재료로서 열가소성 수지를 사용하는 것이 바람직하다. 여기에서, 셧다운 기능이란, 전지 온도가 높아졌을 경우에, 열가소성 수지가 용해하여 다공질 기재의 구멍을 폐쇄함으로써 이온의 이동을 차단하여, 전지의 열폭주를 방지하는 기능을 말한다. 열가소성 수지로서는, 융점 200℃ 미만의 열가소성 수지가 적당하며, 특히 폴리올레핀이 바람직하다.The porous polymer substrate refers to a substrate having a plurality of pores formed therein as an ion-conducting barrier that passes ions while blocking electrical contact between a cathode and an anode. The pores are interconnected with each other, so that gas or liquid can pass from one side of the substrate to the other side. As the material constituting such a porous polymer substrate, either an organic material or an inorganic material having electrical insulation can be used. In particular, from the viewpoint of imparting a shutdown function to the substrate, it is preferable to use a thermoplastic resin as a constituent material of the substrate. Here, the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the thermoplastic resin and closing the pores of the porous substrate when the battery temperature is increased. As the thermoplastic resin, a thermoplastic resin having a melting point of less than 200°C is suitable, and polyolefin is particularly preferred.
또한, 이외에도 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌과 같은 고분자 수지 중 적어도 어느 하나를 더 포함할 수 있다. 상기 다공성 고분자 기재는 부직포 또는 다공성 고분자 필름 또는 이 중 둘 이상의 적층물 등이 있으나 특별히 여 기에 한정되는 것이 아니다.In addition, polymer resins such as polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene It may further include at least any one of. The porous polymer substrate may be a non-woven fabric or a porous polymer film, or a laminate of two or more of them, but is not particularly limited thereto.
구체적으로 상기 다공성 고분자 기재는 하기 a) 내지 e) 중 어느 하나인 것이다.Specifically, the porous polymer substrate is any one of the following a) to e).
a) 고분자 수지를 용융/압출하여 성막한 다공성 필름,a) a porous film formed by melting/extruding a polymer resin,
b) 상기 a)의 다공성 필름이 2층 이상 적층된 다층막,b) a multilayer film in which two or more layers of the porous film of a) are stacked,
c) 고분자 수지를 용융/방사하여 얻은 필라멘트를 집적하여 제조된 부직포웹,c) a nonwoven web produced by integrating filaments obtained by melting/spinning a polymer resin,
d) 상기 c)의 부직포 웹이 2층 이상 적층된 다층막,d) a multilayer film in which two or more layers of the nonwoven web of c) are stacked,
e) 상기 a) 내지 d) 중 둘 이상을 포함하는 다층 구조의 다공성 복합막.e) A porous composite membrane having a multilayer structure comprising two or more of the above a) to d).
본 발명에 있어서, 상기 다공성 고분자 기재는 두께가 3㎛ 내지 12㎛ 또는 5㎛ 내지 12㎛인 것이 바람직하다. 이의 두께가 상기 수치에 미치지 못하는 경우에는 전도성 배리어의 기능이 충분하지 않으며, 반면에 상기 범위를 지나치게 초과하는 경우 (즉, 너무 두꺼우면) 분리막의 저항이 과도하게 증가할 수 있다.In the present invention, the porous polymer substrate preferably has a thickness of 3 μm to 12 μm or 5 μm to 12 μm. When the thickness thereof is less than the above value, the function of the conductive barrier is not sufficient. On the other hand, when it exceeds the above range (ie, when it is too thick), the resistance of the separator may increase excessively.
본 발명의 일 실시양태에 있어서, 상기 폴리올레핀의 중량 평균 분자량(Mw, g/mol)은 10만 내지 500만일 수 있다. 중량 평균 분자량이 10만보다 작으면, 충분한 역학 물성을 확보하는 것이 곤란해질 경우가 있다. 또한, 500만보다 커지면, 셧다운 특성이 나빠질 경우나, 성형이 곤란해질 경우가 있다. 또한, 상기 다공성 고분자 기재의 돌자(突刺) 강도는, 제조 수율을 향상시키는 관점에서, 300gf 이상일 수 있다.In one embodiment of the present invention, the weight average molecular weight (Mw, g/mol) of the polyolefin may be 100,000 to 5 million. When the weight average molecular weight is less than 100,000, it may become difficult to secure sufficient mechanical properties. In addition, when it is larger than 5 million, the shutdown characteristics may deteriorate or molding may become difficult. In addition, the strength of the protrusion of the porous polymer substrate may be 300 gf or more from the viewpoint of improving the manufacturing yield.
본원 명세서에서, 상기 분자량(Mw)은 중량평균 분자량을 의미한다. 본 발명의 일 실시양태에 있어서, 상기 분자량(Mw)은 겔투과 크로마토그래피 (GPC) 를 이용하여 측정될 수 있다. 예를 들어, 분자량 측정 대상 고분자 수지 200mg를 200ml Tetrahydrofuran(THF) 등의 용매에 희석하여 약 1000ppm의 샘플을 제조하여 Agilent 1200 series GPC 기기를 사용하여 1ml/min Flow로 RI detector를 통하여 측정할 수 있다. In the present specification, the molecular weight (Mw) means a weight average molecular weight. In one embodiment of the present invention, the molecular weight (Mw) may be measured using gel permeation chromatography (GPC). For example, 200 mg of a polymer resin for molecular weight measurement can be diluted in a solvent such as 200 ml Tetrahydrofuran (THF) to prepare a sample of about 1000 ppm, and measured through an RI detector at 1 ml/min flow using an Agilent 1200 series GPC device. .
다공질 기재의 돌자강도는 Kato tech KES-G5핸디 압축시험기를 이용하여 바늘 선단의 곡률 반지름 0.5 mm, 돌자속도 2 mm/sec의 조건에서 돌자 시험을 수행해 측정하는 최대돌자하중(gf)을 가리킨다.The piercing strength of a porous substrate refers to the maximum piercing load (gf) measured by performing a piercing test under the conditions of a needle tip radius of curvature of 0.5 mm and a piercing speed of 2 mm/sec using a Kato tech KES-G5 handy compression tester.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 고분자 기재는 전기화학소자에 사용되는 평면상의 다공성 고분자 기재라면 모두 사용이 가능하며, 예컨대, 높은 이온 투과도와 기계적 강도를 가지며 기공 직경은 일반적으로 10nm 내지 100nm이고, 두께는 일반적으로 5㎛ 내지 12㎛인 절연성 박막이 사용될 수 있다.In a specific embodiment of the present invention, the porous polymer substrate can be used as long as it is a planar porous polymer substrate used in an electrochemical device, for example, has high ion permeability and mechanical strength, and a pore diameter is generally 10 nm to An insulating thin film having a thickness of 100 nm and generally 5 μm to 12 μm may be used.
본 발명에 있어서, 상기 내열 코팅층은 상기 다공성 고분자 기재의 적어도 일측 표면에 형성될 수 있으며 폴리비닐필롤리돈 및 PVDF계 고분자를 포함한다. In the present invention, the heat-resistant coating layer may be formed on at least one surface of the porous polymer substrate and includes polyvinylpyrrolidone and PVDF-based polymer.
상기 내열 코팅층은 다수의 미세 기공을 갖는 다공막이다. 상기 내열 코팅층에서 이들 미세 기공들은 인접된 하나 이상의 기공과 서로 연결된 구조로 되어 있으며, 한쪽의 면으로부터 다른 쪽의 면으로 기체 혹은 액체가 통과 가능한 다공성 구조를 갖는다. The heat-resistant coating layer is a porous membrane having a plurality of fine pores. In the heat-resistant coating layer, these micropores have a structure connected to one or more adjacent pores, and have a porous structure through which gas or liquid can pass from one surface to the other surface.
본 발명의 일 실시양태에 있어서, 상기 내열 코팅층의 미세 기공은 후술하는 바와 같이 내열 코팅층 제조 중 수행된 바인더 수지의 가습 상분리에 의해 유래된 것일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 내열 코팅층에는 직경이 수 나노 미터에서 수십 마이크로 미터에 이르는 다양한 크기의 기공이 형성될 수 있다. 상기 기공의 크기는 SEM 이미지를 통한 형상 분석으로부터 산출될 수 있다. 기공의 크기가 너무 작으면 내열 코팅층 내 바인더 수지의 팽창으로 기공이 폐색되기 쉬우며, 기공의 크기가 과도하게 큰 경우에는 절연막으로서의 기능이 어렵고 이차 전지 제조 후 자가 방전 특성이 악화되는 문제가 발생될 수 있으므로 이러한 점을 고려하여 적절한 크기로 제어하는 것이 바람직하다. 이러한 기공 직경은 내열 코팅층용 원료, 후술하는 가습 상분리 공정에서 온도, 습도, 용매, 비용매 성분 등을 적절하게 선택하고 제어함으로써 적절한 범위로 제어될 수 있다. In one embodiment of the present invention, the fine pores of the heat-resistant coating layer may be derived by humidification phase separation of the binder resin performed during the production of the heat-resistant coating layer, as described later. In one embodiment of the present invention, pores of various sizes ranging from several nanometers to tens of micrometers in diameter may be formed in the heat-resistant coating layer. The size of the pores may be calculated from shape analysis through SEM images. If the size of the pores is too small, the pores are likely to be clogged due to the expansion of the binder resin in the heat-resistant coating layer, and if the pore size is excessively large, the function as an insulating film is difficult and self-discharge characteristics deteriorate after manufacturing a secondary battery. Therefore, it is desirable to control it to an appropriate size in consideration of these points. These pore diameters can be controlled in an appropriate range by appropriately selecting and controlling temperature, humidity, solvent, non-solvent component, etc. in the raw material for the heat-resistant coating layer and the humidification phase separation process described later.
본 발명의 일 실시양태에 있어서, 상기 내열 코팅층의 기공도는 30% 내지 80%가 바람직하다. 기공도가 30% 이상이면 리튬 이온의 투과성 측면에서 유리하며, 기공도가 80% 이하이면, 표면 개구율이 너무 높지 않아 분리막과 전극간 접착력을 확보하는데 적합하다. 한편, 본 발명의 일 실시양태에 있어서, 상기 분리막의 통기도는 900s/100cc이하, 바람직하게는 500s/100cc 이하인 것이다. In one embodiment of the present invention, the porosity of the heat-resistant coating layer is preferably 30% to 80%. If the porosity is 30% or more, it is advantageous in terms of permeability of lithium ions, and if the porosity is 80% or less, the surface opening ratio is not too high, which is suitable for securing the adhesion between the separator and the electrode. Meanwhile, in one embodiment of the present invention, the air permeability of the separator is 900s/100cc or less, preferably 500s/100cc or less.
한편, 본 발명에 있어서, 기공도 및 기공의 크기는 질소 등의 흡착 기체를 이용하여 BEL JAPAN사의 BELSORP (BET 장비)를 이용하여 측정하거나 수은 압입법(Mercury intrusion porosimetry) 또는 캐필러리 흐름 측정방법(capillary flow porosimetry)과 같은 방법으로 측정될 수 있다. 또는 본 발명의 일 실시양태에 있어서, 수득된 코팅층의 두께와 무게를 측정하여 이를 코팅층의 이론 밀도로부터 기공도를 계산할 수 있다.On the other hand, in the present invention, the porosity and size of the pores are measured using BEL JAPAN's BELSORP (BET equipment) using an adsorption gas such as nitrogen, or a mercury intrusion porosimetry or capillary flow measurement method It can be measured in the same way as (capillary flow porosimetry). Alternatively, in one embodiment of the present invention, the porosity may be calculated from the theoretical density of the coating layer by measuring the thickness and weight of the obtained coating layer.
본 명세서에서 사용되는 용어 "통기도(permeability)"는 분리막에 대하여 100cc의 공기가 투과하는 시간을 의미하고, 그의 단위로서 본원에서는 초(second)/100cc를 사용하고 있으며, 투과도와 상호 교환하여 사용할 수 있고, 통상적으로 Gurely 값 등으로 표시된다. The term "permeability" as used herein refers to the time for 100 cc of air to permeate through the separator, and as a unit thereof, seconds/100 cc are used herein, and can be used interchangeably with permeability. And is usually expressed as a Gurely value.
본 발명의 일 실시양태에 있어서, 상기 내열 코팅층의 두께는 다공성 고분자 기재의 편면에서 0.5 ㎛ 내지 5.0㎛가 바람직하다. 상기 두께는 기계적 물성이나 접착력 등을 고려하는 경우 바람직하게는 0.7㎛ 이상, 1㎛이상 또는 1.5㎛이상으로 할 수 있으며, 상기 수치 범위내에서 전극과의 접착력이 우수하고 그 결과 전지의 셀 강도가 증가된다. 한편, 상기 두께가 5.0㎛이하이면 전지의 사이클 특성 및 저항 특성의 측면에서 유리하다.In one embodiment of the present invention, the thickness of the heat-resistant coating layer is preferably 0.5 μm to 5.0 μm on one side of the porous polymer substrate. The thickness may be preferably 0.7㎛ or more, 1㎛ or more, or 1.5㎛ or more when considering mechanical properties or adhesion, and the adhesion to the electrode within the above numerical range is excellent, and as a result, the cell strength of the battery is Is increased. On the other hand, if the thickness is 5.0 μm or less, it is advantageous in terms of cycle characteristics and resistance characteristics of the battery.
상기 내열 코팅층은 PVDF계 고분자 및 폴리비닐피롤리돈(Polyvinylpyrrolidone)계 고분자를 포함하는 수지 조성물을 포함하며, 내열 코팅층 100wt% 중 상기 수지 조성물이 90wt% 이상, 바람직하게는 99 wt% 이상 또는 99.9 wt% 이상 포함되는 것이다.The heat-resistant coating layer includes a resin composition containing a PVDF-based polymer and a polyvinylpyrrolidone-based polymer, and the resin composition is 90 wt% or more, preferably 99 wt% or more, or 99.9 wt% of 100 wt% of the heat-resistant coating layer. % Or more.
PVDF계 고분자PVDF polymer
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자는 상기 수지 조성물 100 wt% 대비 60wt% 내지 95wt%의 범위로 포함될 수 있다. 후술하는 바와 같이 상기 내열 코팅층은 가습 조건에서 내열 코팅층 형성용 고분자 용액이 고화되는 동안 PVDF계 바인더의 상분리를 유도하여 기공을 형성될 수 있다. 이때 상기 수지 조성물에서 PVDF계 바인더 수지의 함량이 적은 경우에는 상분리 할 수 있는 바인더 수지 성분이 충분하지 않아 기공의 크기 및 기공도 측면에서 소망하는 수준으로 기공이 형성되지 않는다.In one embodiment of the present invention, the PVDF-based polymer may be included in a range of 60 wt% to 95 wt% relative to 100 wt% of the resin composition. As will be described later, the heat-resistant coating layer may form pores by inducing phase separation of the PVDF-based binder while the polymer solution for forming the heat-resistant coating layer is solidified under humidified conditions. At this time, when the content of the PVDF-based binder resin is small in the resin composition, the binder resin component capable of phase separation is not sufficient, and thus pores are not formed at a desired level in terms of the size and porosity of the pores.
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자는 분자량(Mw)이 1만 내지 100만, 바람직하게는 15만 내지 50만인 것이다.In one embodiment of the present invention, the PVDF-based polymer has a molecular weight (Mw) of 10,000 to 1 million, preferably 150,000 to 500,000.
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자는 불화비닐리덴의 단독 중합체(즉 폴리불화비닐리덴), 불화비닐리덴과 이와 공중합이 가능한 모노머와의 공중합체, 또는 이들의 혼합물을 포함할 수 있다. 본 발명의 일 실시양태에 있어서, 상기 모노머로서는, 예를 들면 불소화된 단량체 및/또는 염소계 단량체 등을 사용할 수 있다. 상기 불소화된 단량체의 비제한적인 예로는 불화비닐; 트리플루오로에틸렌(TrFE); 클로로플루오로에틸렌(CTFE); 1,2-디플루오로에틸렌; 테트라플루오로에틸렌(TFE); 헥사플루오로프로필렌(HFP); 퍼플루오로(메틸비닐)에테르(PMVE), 퍼플루오로(에틸비닐)에테르(PEVE) 및 퍼플루오로(프로필비닐)에테르(PPVE) 등의 퍼플루오로(알킬비닐)에테르; 퍼플루오로(1,3-디옥솔); 및 퍼플루오로(2,2-디메틸-1,3-디옥솔)(PDD)등이 있으며 이 중 하나 이상이 포함될 수 있다. In one embodiment of the present invention, the PVDF-based polymer may include a homopolymer of vinylidene fluoride (ie, polyvinylidene fluoride), a copolymer of vinylidene fluoride and a monomer copolymerizable therewith, or a mixture thereof. have. In one embodiment of the present invention, as the monomer, for example, a fluorinated monomer and/or a chlorine-based monomer may be used. Non-limiting examples of the fluorinated monomers include vinyl fluoride; Trifluoroethylene (TrFE); Chlorofluoroethylene (CTFE); 1,2-difluoroethylene; Tetrafluoroethylene (TFE); Hexafluoropropylene (HFP); Perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE), and perfluoro (propyl vinyl) ether (PPVE); Perfluoro(1,3-dioxole); And perfluoro (2,2-dimethyl-1,3-dioxole) (PDD), and one or more of them may be included.
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자가 불화비닐리덴과 이와 공중합이 가능한 모노머와의 공중합체를 포함하는 경우, 상기 공중합체에서 모노머의 치환율은 0.1wt% 내지 25wt%일 수 있다. 바람직하게는 상기 모노머의 치환율은 8 wt% 내지 20wt%일 수 있다. In one embodiment of the present invention, when the PVDF-based polymer includes a copolymer of vinylidene fluoride and a monomer capable of copolymerization therewith, the substitution ratio of the monomer in the copolymer may be 0.1 wt% to 25 wt%. Preferably, the substitution rate of the monomer may be 8 wt% to 20 wt%.
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자는 불화비닐리덴 단독 중합체(PVDF), PVDF-HFP, PVDF-CTFE, PVDF-CTFE, PVDF-TFE, PVDF-TrFE 또는 이 중 둘 이상을 포함하는 혼합물일 수 있다.In one embodiment of the present invention, the PVDF-based polymer comprises vinylidene fluoride homopolymer (PVDF), PVDF-HFP, PVDF-CTFE, PVDF-CTFE, PVDF-TFE, PVDF-TrFE, or two or more of them. It can be a mixture.
본 발명의 구체적인 일 실시양태에 있어서, 상기 PVDF계 고분자는 PVDF-HFP를 포함할 수 있다. 또한, 상기 PVDF계 고분자는 PVDF-HFP와 함께 PVDF-CTFE, PVDF-FEP 및 PVDF-TFE 중 하나 이상을 더 포함할 수 있다. 여기에서 상기 PVDF-HFP는 분자량(Mw)이 1만 내지 100만, 바람직하게는 15만 내지 50만일 수 있다. 또한, 상기 PVDF-HFP에서 HFP의 치환율은 0.1wt% 내지 25wt%, 바람직하게는 8wt% 내지 80wt%일 수 있다. In a specific embodiment of the present invention, the PVDF-based polymer may include PVDF-HFP. In addition, the PVDF-based polymer may further include one or more of PVDF-CTFE, PVDF-FEP, and PVDF-TFE together with PVDF-HFP. Here, the PVDF-HFP may have a molecular weight (Mw) of 10,000 to 1 million, preferably 150,000 to 500,000. In addition, the substitution rate of HFP in the PVDF-HFP may be 0.1wt% to 25wt%, preferably 8wt% to 80wt%.
폴리비닐피롤리돈계 고분자Polyvinylpyrrolidone polymer
본 발명에 있어서, 상기 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP)계 고분자는 단량체로 N-비닐피롤리돈을 포함하는 고분자 중합체를 의미한다. 상기 폴리비닐피롤리돈계 고분자는 N-비닐피롤리돈의 단일 공중합체, N-비닐피롤리돈과 자유 라디칼 공중합 가능한 추가 공단량체들과의 공중합체 또는 이 중 하나 이상을 포함할 수 있다.In the present invention, the polyvinylpyrrolidone (PVP)-based polymer refers to a polymer polymer containing N-vinylpyrrolidone as a monomer. The polyvinylpyrrolidone-based polymer may include a single copolymer of N-vinylpyrrolidone, a copolymer of N-vinylpyrrolidone and additional comonomers capable of free radical copolymerization, or at least one of them.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 폴리비닐피롤리돈계 고분자로 공단량체들과의 공중합체를 사용하는 경우, 본 발명에서 의도하는 전기화학적인 특성 개선의 측면에서 이 중 N-비닐필롤리돈의 함량의 60wt% 이상, 70wt 이상 또는 80wt% 이상인 것이 바람직하다.Meanwhile, in a specific embodiment of the present invention, in the case of using a copolymer with comonomers as the polyvinylpyrrolidone-based polymer, N-vinyl among them in terms of improving the electrochemical properties intended in the present invention It is preferable that it is 60 wt% or more, 70 wt% or more, or 80 wt% or more of the content of pyrrolidone.
본 발명의 일 실시양태에 있어서, 상기 공단량체는 예를 들어 아크릴산 및 치환된 아크릴산, 및 그의 염, 에스테르 및 아미드(이때 탄소 원자상의 치환기는 아크릴산의 2번 또는 3번 위치에 있으며, 서로 독립적으로 탄소수 1 내지 20인 알킬, -CN, COOH로 이루어진 군으로부터 선택된다), 메타크릴산, 에타크릴산, 아크릴아미드, 메타크릴아미드, N,N-디메틸아크릴아미드 및 N,N-디메틸메타크릴아미드를 들 수 있으며, 이 중 하나 이상을 포함할 수 있다. In one embodiment of the present invention, the comonomer is, for example, acrylic acid and substituted acrylic acid, and salts, esters and amides thereof (wherein the substituent on the carbon atom is at the position 2 or 3 of acrylic acid, and independently of each other C 1 to C 20 alkyl, -CN, selected from the group consisting of COOH), methacrylic acid, ethacrylic acid, acrylamide, methacrylamide, N,N-dimethylacrylamide and N,N-dimethylmethacrylamide And one or more of them.
또한, 전술한 모노머 이외에도 추가의 적합한 공단량체는 아크릴산의 아미드 및 그의 유도체, 예컨대 에타크릴아미드, N-메틸아크릴아미드, N-에틸아크릴아미드, N-이소프로필아크릴아미드, N-부틸아크릴아미드, N-t-부틸아크릴아미드, N-옥틸아크릴아미드, N-t-옥틸아크릴아미드, N-옥타데실아크릴아미드, N-페닐아크릴아미드, N-메틸메타크릴아미드, N-에틸메타크릴아미드, N-이소프로필메타크릴아미드, N-도데실메타크릴아미드, N-[3-(디메틸아미노)프로필]메타크릴아미드, N-[3-(디메틸아미노)프로필]아크릴아미드, N-[3-(디메틸아미노)부틸]메타크릴아미드, N-[8-(디메틸아미노)옥틸]메타크릴아미드, N-[12-(디메틸아미노)도데실]메타크릴아미드, N-[3-(디에틸아미노)프로필]메타크릴아미드, N-[3-(디에틸아미노)프로필]아크릴아미드, 불포화 술폰산, 예컨대, 예를 들면 아크릴아미도프로판술폰산; 3-시아노아크릴산이다.In addition, in addition to the aforementioned monomers, further suitable comonomers are amides of acrylic acid and derivatives thereof such as ethacrylamide, N-methylacrylamide, N-ethylacrylamide, N-isopropylacrylamide, N-butylacrylamide, Nt -Butylacrylamide, N-octylacrylamide, Nt-octylacrylamide, N-octadecylacrylamide, N-phenylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-isopropylmethacryl Amide, N-dodecylmethacrylamide, N-[3-(dimethylamino)propyl]methacrylamide, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino)butyl] Methacrylamide, N-[8-(dimethylamino)octyl]methacrylamide, N-[12-(dimethylamino)dodecyl]methacrylamide, N-[3-(diethylamino)propyl]methacrylamide , N-[3-(diethylamino)propyl]acrylamide, unsaturated sulfonic acids such as acrylamidopropanesulfonic acid; It is 3-cyanoacrylic acid.
상기 아크릴산의 에스테르 및 그의 유도체는, 예컨대 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, n-부틸아크릴레이트, 이소부틸 아크릴레이트, t-부틸아크릴레이트, 2-에틸헥실아크릴레이트, 데실아크릴레이트, 메틸메타크릴레이트, 에틸메타크릴레이트, 프로필메타크릴레이트, n-부틸 메타크릴레이트, 이소부틸메타크릴레이트, t-부틸메타크릴레이트, 2-에틸헥실 메타크릴레이트, 데실메타크릴레이트, 스테아릴(메트)아크릴레이트, 2,3-디히드록시프로필아크릴레이트, 2,3-디히드록시프로필메타크릴레이트, 2-히드록시에틸아크릴레이트, 히드록시프로필아크릴레이트, 2-히드록시에틸 메타크릴레이트, 2-히드록시에틸에타크릴레이트, 2-메톡시에틸아크릴레이트, 2-메톡시에틸메타크릴레이트, 2-메톡시에틸에타크릴레이트, 2-에톡시에틸 메타크릴레이트, 2-에톡시에틸에타크릴레이트, 히드록시프로필메타크릴레이트, 글리세릴모노아크릴레이트, 글리세릴모노메타크릴레이트, 폴리알킬렌글리콜 (메트)아크릴레이트, N,N-디메틸아미노메틸(메트)아크릴레이트, N,N-디에틸아미노메틸 (메트)아크릴레이트, N,N-디메틸아미노에틸 (메트)아크릴레이트, N,N-디에틸아미노에틸(메트)아크릴레이트, N,N-디메틸아미노부틸 (메트)아크릴레이트, N,N-디에틸아미노부틸(메트)아크릴레이트, N,N-디메틸아미노헥실(메트)아크릴레이트, N,N-디메틸아미노옥틸(메트)아크릴레이트, N,N-디메틸아미노도데실(메트)아크릴레이트이다.The esters of acrylic acid and derivatives thereof are, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, Methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, stearyl (Meth)acrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxyethyl methacrylate Rate, 2-hydroxyethyl ethacrylate, 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, 2-methoxyethyl ethacrylate, 2-ethoxyethyl methacrylate, 2- Ethoxyethyl ethacrylate, hydroxypropyl methacrylate, glyceryl monoacrylate, glyceryl monomethacrylate, polyalkylene glycol (meth)acrylate, N,N-dimethylaminomethyl (meth)acrylate , N,N-diethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dimethylaminobutyl ( Meth)acrylate, N,N-diethylaminobutyl (meth)acrylate, N,N-dimethylaminohexyl (meth)acrylate, N,N-dimethylaminooctyl (meth)acrylate, N,N-dimethyl It is aminododecyl (meth)acrylate.
다른 적합한 공단량체는 탄소수 1- 내지 40인 직쇄, 탄소수 3 내지 40인 분지쇄 또는 탄소수 3 내지 40인 카르보시클릭카르복실산의 비닐 및 알릴에스테르, 예컨대 비닐아세테이트, 비닐프로피오네이트, 및 그의 가수분해 산물, 예컨대 비닐 알코올, 비닐 또는 알릴할라이드, 바람직하게는 비닐클로라이드 및 알릴 클로라이드, 비닐에테르, 바람직하게는 메틸, 에틸, 부틸 또는 도데실 비닐에테르, 비닐포름아미드, N-비닐-N-메틸아세트아미드, 비닐아민; 메틸 비닐 케톤; 비닐락탐, 바람직하게는 비닐피롤리돈, 비닐카프로락탐 및 비닐피페리돈, 비닐- 또는 알릴-치환된 헤테로시클릭 화합물, 바람직하게는 비닐피리딘, 비닐옥사졸린 및 알릴피리딘, 및 비닐푸란 및 알릴 알코올이다. 또한 적합한 것은 하기 화학식 1의 N-비닐이미다졸이다.Other suitable comonomers are vinyl and allyl esters of linear, branched, or carbocyclic carboxylic acids having 1 to 40 carbon atoms, such as vinyl acetate, vinyl propionate, and valences thereof. Decomposition products such as vinyl alcohol, vinyl or allyl halides, preferably vinyl chloride and allyl chloride, vinyl ethers, preferably methyl, ethyl, butyl or dodecyl vinyl ether, vinylformamide, N-vinyl-N-methylacet Amide, vinylamine; Methyl vinyl ketone; Vinyllactam, preferably vinylpyrrolidone, vinylcaprolactam and vinylpiperidone, vinyl- or allyl-substituted heterocyclic compounds, preferably vinylpyridine, vinyloxazoline and allylpyridine, and vinylfuran and allyl alcohol to be. Also suitable is N-vinylimidazole of the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2020005813-appb-img-000001
Figure PCTKR2020005813-appb-img-000001
이때, R 9 내지 R 11 은 서로 독립적으로 수소, 탄소수 1 내지 4인 알킬 또는 페닐이다. 예들은 1-비닐이미다졸, 1-비닐-2-메틸비닐이미다졸, 3-메틸-1-비닐이미다졸륨 클로라이드 및 3-메틸-1-비닐이미다졸륨 메틸술페이트이다.At this time, R 9 to R 11 are each independently hydrogen, alkyl or phenyl having 1 to 4 carbon atoms. Examples are 1-vinylimidazole, 1-vinyl-2-methylvinylimidazole, 3-methyl-1-vinylimidazolium chloride and 3-methyl-1-vinylimidazolium methylsulfate.
다른 실시양태에 있어서, 추가의 적합한 공단량체는 하기 화학식 2의 디알릴아민일 수 있다. In other embodiments, the additional suitable comonomer may be diallylamine of formula (II).
[화학식 2][Formula 2]
Figure PCTKR2020005813-appb-img-000002
Figure PCTKR2020005813-appb-img-000002
이때, R 12는 탄소수 1- 내지 24인 알킬, 예를 들면, 디알릴디메틸암모늄 클로라이드이다.At this time, R 12 is an alkyl having 1- to 24 carbon atoms, for example diallyldimethylammonium chloride.
다른 추가의 적합한 공단량체는 말레산, 푸마르산, 말레산 무수물 및 그의 반-에스테르 및 반-아미드 및 이미드, 말레이미드, 크로톤산, 이타콘산, 비닐 에테르(예를 들면: 메틸, 에틸, 부틸 또는 도데실 비닐 에테르), 비닐리덴클로라이드, 및 1개 이상의 탄소-탄소 이중 결합을 가지는 탄화수소, 바람직하게는 스티렌, 알파- 메틸스티렌, tert-부틸스티렌, 스티렌술폰산 및 그의 염, 부타디엔, 이소프렌, 시클로헥사디엔, 에틸렌, 프로필렌, 1-부텐, 2-부텐, 이소부틸렌, 비닐톨루엔이다.Other further suitable comonomers are maleic acid, fumaric acid, maleic anhydride and half-esters and half-amides and imides thereof, maleimide, crotonic acid, itaconic acid, vinyl ethers (e.g. methyl, ethyl, butyl or Dodecyl vinyl ether), vinylidene chloride, and hydrocarbons having at least one carbon-carbon double bond, preferably styrene, alpha-methylstyrene, tert-butylstyrene, styrenesulfonic acid and salts thereof, butadiene, isoprene, cyclohexa Diene, ethylene, propylene, 1-butene, 2-butene, isobutylene, and vinyl toluene.
이들 중에서, 바람직한 것은 아크릴산, 메타크릴산, 말레산, 푸마르산, 크로톤산, 말레산 무수물, 및 그의 반-에스테르, 및 반-아미드 및 이미드, 메틸 아크릴레이트, 메틸 메타크릴레이트, 에틸 아크릴레이트, 에틸 메타크릴레이트, n-부틸 아크릴레이트, n-부틸 메타크릴레이트, t-부틸 아크릴레이트, t-부틸 메타크릴레이트, 이소부틸 아크릴레이트, 이소부틸 메타크릴레이트, 2-에틸헥실 아크릴레이트, 스테아릴 아크릴레이트, 스테아릴메타크릴레이트, N-t-부틸아크릴아미드, N-옥틸아크릴아미드, N-t-옥틸아크릴아미드, 2-히드록시에틸 아크릴레이트, 2-히드록시프로필 아크릴레이트, 2-2-히드록시에틸 메타크릴레이트, 3-히드록시프로필 메타크릴레이트, 3-히드록시프로필 아크릴레이트, 알킬렌 글리콜(메트)아크릴레이트, 스티렌, 불포화 술폰산 및 그의 염, 예컨대, 예를 들면, 아크릴아미도프로판술폰산 및 스티렌술폰산, 비닐피롤리돈, 비닐카프로락탐, 비닐 에테르 (예를 들면: 메틸, 에틸, 부틸 또는 도데실 비닐 에테르), 비닐포름아미드, N-비닐-N-메틸아세트아미드, 비닐아민, 1-비닐이미다졸, 1-비닐-2-메틸이미다졸, N,N-디메틸아미노메틸 메타크릴레이트 및 N-[3-(디메틸-아미노)프로필]메타크릴아미드; 3-메틸-1-비닐이미다졸륨 클로라이드, 3-메틸-1-비닐이미다졸륨 메틸술페이트, N,N-디메틸아미노에틸 메타크릴레이트, N-이소프로필-메타크릴아미드, 메틸 클로라이드로 4차화된 N-[3-(디메틸아미노)프로필]메타크릴아미드, VCAp, VI, 1-비닐-3-메틸이미다졸륨 염, 예컨대 클로라이드 및 메틸술페이트 (QVI), VAC, (메트)아크릴아미드, 디메틸아미노에틸 (메트)아크릴레이트 및 디메틸아미노에틸(메트)아크릴아미드 및 그의 4차화 유사체, 디알릴디메틸암모늄 클로라이드, 비닐 알코올(중합반응 후 비닐 아세테이트로부터의 가수분해에 의해), VFA, 비닐아민(중합반응 후 VFA로부터의 가수분해에 의해), 디메틸아미노프로필 (메트)아크릴레이트, 디메틸아미노프로필(메트)아크릴아미드, (메트)아크릴산, 비닐피페리돈, N,N-디메틸(메트)아크릴아미드, tert-부틸(메트)아크릴아미드, N-tert-옥틸(메트)아크릴아미드, 스테아릴(메트)아크릴아미드, 메틸, 에틸, 부틸,tert-부틸 (메트)아크릴레이트, 2,3-디히드록시프로필 (메트)아크릴레이트, N-이소프로필아크릴아미드, 비닐 프로피오네이트, 1-비닐-2-메틸이미다졸, 비닐피리딘, (메트)아크릴산의 에스테르 또는 알릴 알코올의 에테르 및 사슬의 말단에 메톡시 기 또는 히드록시 기를 가지는 EO 또는 PO 단위 또는 EO/PO 단위를 총 2 내지 200개 가지는 폴리에틸렌 옥사이드 또는 프로필렌 옥사이드 또는 폴리(에틸렌 옥사이드 공프로필렌 옥사이드)의 에테르, 메틸 비닐 에테르, 히드록시에틸 (메트)아크릴레이트, 히드록시프로필 (메트)아크릴레이트, 비닐락탐, 비닐옥사졸린, 예컨대 비닐옥사졸린, 비닐메틸옥사졸린, 비닐에틸옥사졸린, 아크릴아미도프로판술폰산, 알릴 알코올일 수 있다.Among these, preferred are acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, maleic anhydride, and half-esters thereof, and half-amides and imides, methyl acrylate, methyl methacrylate, ethyl acrylate, Ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, 2-ethylhexyl acrylate, ste Aryl acrylate, stearyl methacrylate, Nt-butylacrylamide, N-octylacrylamide, Nt-octylacrylamide, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-2-hydroxy Ethyl methacrylate, 3-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, alkylene glycol (meth)acrylate, styrene, unsaturated sulfonic acids and salts thereof, such as, for example, acrylamidopropanesulfonic acid And styrenesulfonic acid, vinylpyrrolidone, vinylcaprolactam, vinyl ether (eg: methyl, ethyl, butyl or dodecyl vinyl ether), vinylformamide, N-vinyl-N-methylacetamide, vinylamine, 1 -Vinylimidazole, 1-vinyl-2-methylimidazole, N,N-dimethylaminomethyl methacrylate and N-[3-(dimethyl-amino)propyl]methacrylamide; 3-methyl-1-vinylimidazolium chloride, 3-methyl-1-vinylimidazolium methylsulfate, N,N-dimethylaminoethyl methacrylate, N-isopropyl-methacrylamide, methyl chloride 4 N-[3-(dimethylamino)propyl]methacrylamide, VCAp, VI, 1-vinyl-3-methylimidazolium salts such as chloride and methylsulfate (QVI), VAC, (meth)acrylamide , Dimethylaminoethyl (meth)acrylate and dimethylaminoethyl (meth)acrylamide and their quaternized analogs, diallyldimethylammonium chloride, vinyl alcohol (by hydrolysis from vinyl acetate after polymerization), VFA, vinylamine (By hydrolysis from VFA after polymerization reaction), dimethylaminopropyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, (meth)acrylic acid, vinyl piperidone, N,N-dimethyl (meth)acrylamide , tert-butyl (meth)acrylamide, N-tert-octyl (meth)acrylamide, stearyl (meth)acrylamide, methyl, ethyl, butyl, tert-butyl (meth)acrylate, 2,3-dihydro Roxypropyl (meth)acrylate, N-isopropylacrylamide, vinyl propionate, 1-vinyl-2-methylimidazole, vinylpyridine, ester of (meth)acrylic acid or ether of allyl alcohol and at the end of the chain Ether of polyethylene oxide or propylene oxide or poly(ethylene oxide copropylene oxide) having a total of 2 to 200 EO or PO units or EO/PO units having a methoxy group or a hydroxy group, methyl vinyl ether, hydroxyethyl (meth )Acrylate, hydroxypropyl (meth)acrylate, vinyllactam, vinyloxazoline, such as vinyloxazoline, vinylmethyloxazoline, vinylethyloxazoline, acrylamidopropanesulfonic acid, allyl alcohol.
추가의 적합한 공단량체는 다관능성 단량체, 예컨대 트리알릴아민, 트리비닐 에테르, 디비닐에틸렌우레아, 3-비닐-N-비닐피롤리돈, 4-비닐-N-비닐피롤리돈, 5-비닐-N-비닐피롤리돈, 펜타에리트롤 트리알릴 에테르, 메틸렌비스아크릴아미드, 부탄디올 디아크릴레이트, 헥산디올 디아크릴레이트, 디프로필렌글리콜 디아크릴레이트, 알릴 메타크릴레이트, 디비닐벤젠, 에틸렌 글리콜 디메타크릴레이트, 트리에틸렌 글리콜 디메타크릴레이트 및 트리에틸렌 글리콜 디비닐 에테르일 수 있다. Further suitable comonomers are polyfunctional monomers such as triallylamine, trivinyl ether, divinylethyleneurea, 3-vinyl-N-vinylpyrrolidone, 4-vinyl-N-vinylpyrrolidone, 5-vinyl- N-vinylpyrrolidone, pentaerythritol triallyl ether, methylenebisacrylamide, butanediol diacrylate, hexanediol diacrylate, dipropylene glycol diacrylate, allyl methacrylate, divinylbenzene, ethylene glycol dimetha Acrylate, triethylene glycol dimethacrylate and triethylene glycol divinyl ether.
매우 특히 바람직한 공단량체는 N-비닐카프로락탐(VCAp), N-비닐-이미다졸(VI), 1-비닐-3-메틸이미다졸륨 염(QVI), 예를 들면 메틸 클로라이드 또는 디메틸 술페이트로 4차화하여 수득할 수 있는 염, 비닐 아세테이트, (메트)아크릴-아미드, 디메틸아미노에틸 (메트)아크릴레이트 및 디메틸아미노에틸-(메트)아크릴아미드 및 그의4차화 유사체, 디알릴디메틸암모늄 클로라이드이다.Very particularly preferred comonomers are N-vinylcaprolactam (VCAp), N-vinyl-imidazole (VI), 1-vinyl-3-methylimidazolium salt (QVI), for example methyl chloride or dimethyl sulfate. Salts obtainable by quaternization, vinyl acetate, (meth)acryl-amide, dimethylaminoethyl (meth)acrylate and dimethylaminoethyl-(meth)acrylamide and their quaternized analogs, diallyldimethylammonium chloride.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 접착력 개선의 측면을 고려했을 때, 상기 공단량체는 아크릴아미드 및 이의 유도체, 아크릴산 에스테르 및 이의 유도체 중 적어도 하나 이상이 포함되는 것이 바람직하다. 본 발명의 일 실시양태에 있어서, 폴리비닐피롤리돈계 고분자는 상기 수지 조성물 100wt% 대비 5wt% 내지 50wt%의 범위, 또는 5wt% 내지 40wt%로 포함될 수 있다. Meanwhile, in a specific embodiment of the present invention, when considering the aspect of improving adhesion, the comonomer preferably contains at least one of acrylamide and derivatives thereof, acrylic esters and derivatives thereof. In one embodiment of the present invention, the polyvinylpyrrolidone polymer is It may be included in the range of 5wt% to 50wt%, or 5wt% to 40wt% relative to 100wt% of the resin composition.
본 발명에 있어서, 분리막의 내열 안정성의 측면을 고려했을 때 상기 PVP계 고분자는 Tg가 150℃ 이상이며, Tm이 380℃ 이상 인 것이 바람직하다. In the present invention, when considering the aspect of heat resistance stability of the separator, the PVP-based polymer preferably has a Tg of 150°C or higher and a Tm of 380°C or higher.
한편, PVP계 고분자의 분자량(Mw)은 900,000 (g/mol) 이상인 것이다. 상기 수치 범위를 만족하는 경우 무기물이 포함된 내열층과 유사한 수준의 내열성을 나타낼 수 있으며, 무기물 입자를 포함하지 않으므로 공정 효율이 개선되고 분리막의 박막화를 구현할 수 있다. On the other hand, the molecular weight (Mw) of the PVP-based polymer is 900,000 (g/mol) or more. When the above numerical range is satisfied, heat resistance similar to that of the heat-resistant layer containing inorganic material may be exhibited, and since it does not contain inorganic material particles, process efficiency may be improved and a thin film of the separator may be realized.
한편, 본 발명의 일 실시양태에 있어서, 상기 내열 코팅층은 상기 수지 조성물의 로딩량이 1g/cm 2 이상인 것이 바람직하다. 상기 로딩량은 다공성 고분자 기재의 양면에 코팅된 내열 코팅층에 포함된 수지 조성물의 단위 면적당 무게를 나타낸 것이다. 만일 상기 로딩량이 전술한 범위에 미치지 못하는 경우에는 내열 코팅층에 포함된 고분자 재료의 함량이 부족하여 분리막의 수축율 특성 및 접착력 특성이 저하되는 문제가 있다. On the other hand, in one embodiment of the present invention, the heat-resistant coating layer is preferably 1 g / cm 2 or more in the loading amount of the resin composition. The loading amount represents the weight per unit area of the resin composition contained in the heat-resistant coating layer coated on both sides of the porous polymer substrate. If the loading amount is less than the above-described range, the content of the polymer material included in the heat-resistant coating layer is insufficient, so that the shrinkage rate characteristics and adhesion characteristics of the separator are deteriorated.
한편, 본 발명의 일 실시양태에 있어서, 상기 내열 코팅층 내에서 PVP계 고분자의 밀도(packing density)는 0.1 g/m 3 내지 0.7 g/m 3, 바람직하게는 0.2g/m 3 내지 0.5g/m 3인 것이다. PVP의 밀도가 상기 범위를 만족하는 경우, 내열성이 개선됨과 동시에 PVDF계 고분자의 상분리 거동을 방해하지 않는다. On the other hand, in one embodiment of the present invention, the density (packing density) of the PVP-based polymer in the heat-resistant coating layer is 0.1 g/m 3 to 0.7 g/m 3 , preferably 0.2 g/m 3 to 0.5 g/ m 3 . When the density of PVP satisfies the above range, heat resistance is improved and the phase separation behavior of the PVDF-based polymer is not hindered.
본 명세서에 있어서 PVP계 고분자의 밀도(packing density)는 아래 (수식 1)에 의해서 계산될 수 있다. In the present specification, the density (packing density) of the PVP-based polymer can be calculated by the following (Equation 1).
(수식 1)(Equation 1)
PVP 고분자의 밀도(g/m 3) = (내열 코팅층 중 PVP 함량) X {(분리막의 단위 면적당 무게 - 다공성 고분자 기재의 단위 면적당 무게)/(분리막의 두께-다공성 고분자 기재의 두께)}PVP polymer density (g/m 3) = (PVP content in heat-resistant coating layer) X {(weight per unit area of separator-weight per unit area of porous polymer substrate)/(thickness of separator-thickness of porous polymer substrate)}
다음으로 본 발명에 따른 분리막을 제조하는 방법을 설명한다. 본 발명에 따른 분리막은 상기 수지 조성물을 포함하는 고분자 용액을 준비한 후 이를 다공성 고분자 기재 위에 도포하고 상기 고분자 용액을 고화(固化)시킴으로써, 내열 코팅층을 다공성 고분자 기재 위에 일체적으로 형성하는 방법으로 제조할 수 있다.Next, a method of manufacturing a separator according to the present invention will be described. The separator according to the present invention can be prepared by preparing a polymer solution containing the resin composition and then applying it on a porous polymer substrate and solidifying the polymer solution to form a heat-resistant coating layer integrally on the porous polymer substrate. I can.
구체적으로, 우선 PVDF계 고분자와 PVP계 고분자를 포함하는 수지 조성물을 분산매에 투입하여 고분자 용액을 준비한다. 상기 분산매는 상기 수지 조성물에 대한 용매 및 비용매를 포함할 수 있다. Specifically, first, a polymer solution is prepared by introducing a resin composition containing a PVDF-based polymer and a PVP-based polymer into a dispersion medium. The dispersion medium may include a solvent and a non-solvent for the resin composition.
본 발명의 일 실시양태에 있어서, 상기 용매는 아세톤, 메틸에틸케톤, N-메틸피롤리돈, 디메틸아세트아미드, 디메틸포름아미드, 디메틸포름아미드 등의 극성 아미드 용매 등이 사용될 수 있으며 이 중 하나 이상을 적절하게 선택하여 사용할 수 있다.In one embodiment of the present invention, the solvent may be a polar amide solvent such as acetone, methyl ethyl ketone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide, etc., and at least one of them You can select and use appropriately.
또한, 본 발명의 일 실시양태에 있어서, 상기 비용매는 메탄올, 에탄올, 프로판올, 이소프로필 알코올(IPA), 이소프로판올, 부탄올, sec-부탄올, 아밀 알코올(amyl alcohol), 2-에틸-1-헥산올, 사이클로헥산올, 페놀(50℃), 에틸렌글리콜, 1,3-부탄디올, 1,4 부탄디올, 글리세린, 디아세톤 알코올, 포름산, 아세트산, 프로피온산, 글라이콜 에테르, 디에틸렌글리콜, 트리에틸렌 글리콜, 헥사메틸렌글리콜, 폴리에틸렌 글리콜 400, 2,2-티오디에탄올, 감마부틸로락톤, 에틸아세테이트, 부틸아민, cyclhexamine analine, 에틸렌디아민, 피리딘, 모르폴린, 2-아미노아닐린, 디에탄올아민, 트리에탄올아민, aminoethylethanloamine, 2-hydroxyethylmorpholine, 2-아미노-2-메틸-1-프로판올 등을 예로 들 수 있으며, 이 중 하나 이상을 적절하게 선택하여 사용할 수 있다. In addition, in one embodiment of the present invention, the non-solvent is methanol, ethanol, propanol, isopropyl alcohol (IPA), isopropanol, butanol, sec-butanol, amyl alcohol, 2-ethyl-1-hexanol , Cyclohexanol, phenol (50° C.), ethylene glycol, 1,3-butanediol, 1,4 butanediol, glycerin, diacetone alcohol, formic acid, acetic acid, propionic acid, glycol ether, diethylene glycol, triethylene glycol, Hexamethylene glycol, polyethylene glycol 400, 2,2-thiodiethanol, gammabutylrolactone, ethyl acetate, butylamine, cyclhexamine analine, ethylenediamine, pyridine, morpholine, 2-aminoaniline, diethanolamine, triethanolamine, aminoethylethanloamine, 2-hydroxyethylmorpholine, 2-amino-2-methyl-1-propanol, and the like are exemplified, and one or more of them may be appropriately selected and used.
상기 분산매 중 비용매는 분산매 100mol% 대비 30mol% 이하, 바람직하게는 25mol% 이하, 더욱 바람직하게는 20mol% 이하의 비율로 포함되는 것이 바람직하다. 만일 비용매의 함량이 상기 범위를 초과하는 경우에는 상분리가 효과적으로 진행되지 않아 기공이 발달되지 않으며 접착력 특성도 저하되는 문제가 있다. The non-solvent in the dispersion medium is preferably contained in a ratio of 30 mol% or less, preferably 25 mol% or less, and more preferably 20 mol% or less with respect to 100 mol% of the dispersion medium. If the content of the non-solvent exceeds the above range, there is a problem that the phase separation does not proceed effectively, so that the pores do not develop and the adhesion properties are deteriorated.
한편, 본 발명의 일 실시양태에 있어서, 상기 고분자 용액 중 수지 조성물은 20wt% 미만, 바람직하게는 15wt% 이하의 농도를 갖는 것이 바람직하다. 만일 상기 범위를 초과하는 경우에는 수지 조성물이 석출되어 상분리가 효과적으로 진행되지 않는다. Meanwhile, in one embodiment of the present invention, it is preferable that the resin composition in the polymer solution has a concentration of less than 20 wt%, preferably less than 15 wt%. If it exceeds the above range, the resin composition precipitates and phase separation does not proceed effectively.
다음으로 상기 고분자 용액을 다공성 고분자 기재 위에 도포하고 가습 조건하에서 소정 시간 정치하여 상기 고분자 용액을 고화(건조)시킨다. 본 발명의 일 실시양태에 있어서, 상기 가습 조건은 상대 습도 약 40% 내지 80%인 것이다. 또한, 본 발명에 있어서, 상기 고분자 용액의 고화는 약 섭씨 10도(℃) 내지 섭씨 70도의 범위에서 수행될 수 있다. 이때 상기 고분자 용액 중 PVDF계 고분자의 상분리가 유도된다. 상분리의 과정에서 용매가 내열 코팅층의 표면부로 이동하며 용매의 이동을 따라 PVDF계 고분자가 내열 코팅층의 표면부로 이동되면서 내열 코팅층의 표면부에 PVDF계 고분자의 함유량이 높아진다. Next, the polymer solution is applied on a porous polymer substrate and allowed to stand for a predetermined time under humidified conditions to solidify (dry) the polymer solution. In one embodiment of the present invention, the humidification condition is about 40% to 80% relative humidity. Further, in the present invention, the solidification of the polymer solution may be performed in a range of about 10 degrees Celsius (℃) to 70 degrees Celsius. At this time, phase separation of the PVDF-based polymer in the polymer solution is induced. In the process of phase separation, the solvent moves to the surface of the heat-resistant coating layer, and as the solvent moves, the PVDF-based polymer moves to the surface of the heat-resistant coating layer, thereby increasing the content of the PVDF-based polymer on the surface of the heat-resistant coating layer.
본 발명의 일 실시양태에 있어서, 상기 고분자 용액의 도포는 마이어 바, 다이 코터, 리버스 롤 코터, 그라비아 코터 등의 종래의 도공 방식을 적용할 수 있다. In one embodiment of the present invention, the polymer solution may be applied by a conventional coating method such as a Meyer bar, a die coater, a reverse roll coater, and a gravure coater.
한편, 본 발명은 상기 분리막을 포함하는 이차 전지를 제공한다. 상기 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하며, 상기 분리막은 본 발명에 따른 바인더 수지 조성물을 포함하는 것이다.Meanwhile, the present invention provides a secondary battery including the separator. The battery includes a negative electrode, a positive electrode, and a separator interposed between the negative electrode and the positive electrode, and the separator includes the binder resin composition according to the present invention.
본 발명에 있어서, 양극은 양극 집전체 및 상기 집전체의 적어도 일측 표면에 양극 활물질, 도전재 및 바인더 수지를 포함하는 양극 활물질층을 구비한다. 상기 양극 활물질은 리튬 망간복합 산화물(LiMn 2O 4, LiMnO 2 등), 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4 (여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiV 3O 4, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다.In the present invention, the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder resin on at least one surface of the current collector. The positive electrode active material may include a layered compound such as lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2, etc.), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as formula Li 1+x Mn 2-x O 4 (wherein x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site-type lithium nickel oxide represented by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 (where M = Co, Ni, Fe, Cr, Zn or Ta, and x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (where M = Fe, Co, A lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 wherein part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 It may contain one or a mixture of two or more.
본 발명에 있어서, 상기 음극은 음극 집전체 및 상기 집전체의 적어도 일측 표면에 음극 활물질, 도전재 및 바인더 수지를 포함하는 음극 활물질층을 구비한다. 상기 음극은 음극 활물질로 리튬 금속산화물, 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4 및 Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.In the present invention, the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, a conductive material, and a binder resin on at least one surface of the current collector. The negative electrode includes carbon such as lithium metal oxide, non-graphitized carbon, and graphite-based carbon as a negative electrode active material; Li x Fe 2 O 3 (0≤x≤1), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Al, B, P, Si, elements of groups 1, 2 and 3 of the periodic table, halogen, metal complex oxides such as 0<x≦1;1≦y≦3;1≦z≦8); Lithium metal; Lithium alloy; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 and Metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; It may include one or a mixture of two or more selected from among titanium oxides.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는, 예를 들어, 흑연, 카본블랙, 탄소 섬유 또는 금속 섬유, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 활성 카본(activated carbon) 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다. 더욱 구체적으로는 천연 흑연, 인조 흑연, 슈퍼 피(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카(denka) 블랙, 탄소 섬유, 탄소 나노 튜브, 알루미늄 분말, 니켈 분말, 산화 아연, 티탄산 칼륨 및 산화 티탄으로 이루어진 군으로부터 선택된 1종 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다.In a specific embodiment of the present invention, the conductive material is, for example, graphite, carbon black, carbon fiber or metal fiber, metal powder, conductive whisker, conductive metal oxide, activated carbon, and polyphenylene derivative It may be any one selected from the group consisting of, or a mixture of two or more conductive materials among them. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, denka black, carbon fiber, carbon nanotube, It may be one selected from the group consisting of aluminum powder, nickel powder, zinc oxide, potassium titanate, and titanium oxide, or a mixture of two or more conductive materials.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.The current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated carbon, nickel, titanium, silver, or the like may be used.
상기 전극에 사용되는 바인더 수지로는 당업계에서 전극에 통상적으로 사용되는 고분자를 사용할 수 있다. 이러한 바인더 수지의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoridecotrichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetatebutyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetatepropionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸셀룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.As the binder resin used for the electrode, a polymer commonly used for electrodes in the art may be used. Non-limiting examples of such a binder resin include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polymethylmethacrylate. , Polyetylexyl acrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene -co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl Flulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, flulan, and carboxyl methyl cellulose Can be, but is not limited thereto.
상기와 같이 준비된 전극 조립체는 적절한 케이스에 장입하고 전해액을 주입하여 전지를 제조할 수 있다. 본 발명의 일 실시양태에 있어서, 상기 전해액은 A+B-와 같은 구조의 염으로서, A +는 Li +, Na +, K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -, C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤), 에스테르계 화합물 및 이 중 선택된 1종 이상의 혼합물을 포함하는 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.The electrode assembly prepared as described above may be charged in an appropriate case and an electrolyte may be injected to manufacture a battery. In one embodiment of the present invention, the electrolyte is a salt having a structure such as A+B-, wherein A + contains an ion consisting of an alkali metal cation such as Li + , Na + , K + or a combination thereof, and B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 - A salt containing an ion or a combination thereof such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethylsulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC), gamma butyrolactone (g -Butyrolactone), an ester-based compound, and some dissolved or dissociated in an organic solvent including a mixture of at least one selected among them, but are not limited thereto.
또한, 본 발명은, 상기 전극 조립체를 포함하는 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.In addition, the present invention provides a battery module including a battery including the electrode assembly as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source. Specific examples of the device include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, examples will be described in detail to illustrate the present invention in detail. However, the embodiments according to the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.
실시예 Example
분리막의 제조Preparation of separator
하기 [표 1]의 조성에 따라 수지 조성물을 준비하였다. 아세톤과 이소프로필알콜(IPA)를 혼합하여 분산매를 준비하고 여기에 각 실시예 및 비교예의 PVP 및 PVDF-HFP를 포함하는 수지 조성물을 투입하여 고분자 용액을 제조하였다. 상기 PVDF-HFP는 분자량(Mw)가 30만이며, 치환율은 15wt%였다. 다공성 고분자 기재(두께 9㎛, 기공도 32vol%, 분자량 50만 폴리에틸렌)위에 딥 코팅(dip coating) 방법으로 상기 고분자 용액을 코팅하고 상대 습도(RH) 60% 수준 및 상온 조건에서 가습 상분리를 유도하였다. 이와 같은 방법으로 분리막을 제조하였다. A resin composition was prepared according to the composition of the following [Table 1]. Acetone and isopropyl alcohol (IPA) were mixed to prepare a dispersion medium, and a polymer solution was prepared by adding a resin composition including PVP and PVDF-HFP of each of Examples and Comparative Examples thereto. The PVDF-HFP had a molecular weight (Mw) of 300,000, and a substitution rate of 15 wt%. The polymer solution was coated on a porous polymer substrate (thickness 9㎛, porosity 32vol%, molecular weight 500,000 polyethylene) by a dip coating method, and humidified phase separation was induced at a relative humidity (RH) of 60% and at room temperature. . A separator was manufactured in this way.
수지 조성물Resin composition 분산매Dispersion medium 수지 조성물 농도(wt%)Resin composition concentration (wt%) PVP 분자량(Mw, g/mol)PVP molecular weight (Mw, g/mol)
PVP(wt%)PVP(wt%) PVDF-HFP(wt%)PVDF-HFP (wt%) IPA농도 (mol%)IPA concentration (mol%) 아세톤 농도(mol%)Acetone concentration (mol%)
실시예 1Example 1 4040 6060 2020 8080 1515 900,000900,000
실시에 2Implementation 2 4040 6060 2020 8080 1515 3,000,0003,000,000
비교예 1Comparative Example 1 4040 6060 2020 8080 1515 50,00050,000
비교예 2Comparative Example 2 4040 6060 2020 8080 1515 500,000500,000
실시예 3Example 3 4040 6060 2020 8080 1515 900,000900,000
비교예 3Comparative Example 3 4040 6060 2020 8080 1515 900,000900,000
비교예 4Comparative Example 4 4040 6060 2020 8080 1515 900,000900,000
실시예 4Example 4 2020 8080 2020 8080 1515 900,000900,000
비교예 5Comparative Example 5 6060 4040 2020 8080 1515 900,000900,000
실시예 5Example 5 4040 6060 1010 9090 1515 900,000900,000
비교예 6Comparative Example 6 4040 6060 2525 7575 1515 900,000900,000
비교예 7Comparative Example 7 4040 6060 3030 7070 1515 900,000900,000
실시예 6Example 6 4040 6060 2020 8080 1010 900,000900,000
실시예 7Example 7 1515 8585 2020 8080 1515 900,000900,000
비교예 8Comparative Example 8 4040 6060 2020 8080 2020 900,000900,000
비교예 9 Comparative Example 9 4040 6060 2020 8080 2525 900,000900,000
코팅층 두께(㎛)Coating layer thickness (㎛) 로딩량(g/cm 2)Loading amount (g/cm 2 ) 내열 코팅층 내 PVP 밀도 (g/m 3)PVP density in heat-resistant coating layer (g/m 3 ) 통기도 (s/100cc)Air permeability (s/100cc) 열수축율 (%, 150℃)(TD/MD)Heat shrinkage (%, 150℃)(TD/MD) 전극 접착력(gf/25mm)Electrode adhesion (gf/25mm)
실시예 1Example 1 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 280280 29/2529/25 5757
실시예 2Example 2 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 381381 20/1820/18 4646
비교예 1Comparative Example 1 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 9393 67/6367/63 6060
비교예 2Comparative Example 2 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 160160 52/4952/49 6262
실시예 3Example 3 1㎛/1㎛1㎛/1㎛ 2.02.0 0.500.50 433433 19/1519/15 8484
비교예 3Comparative Example 3 1㎛/1㎛1㎛/1㎛ 0.80.8 0.500.50 221221 38/3438/34 3131
비교예 4Comparative Example 4 1㎛/1㎛1㎛/1㎛ 0.50.5 0.500.50 130130 57/5557/55 1313
실시예 4Example 4 1㎛/1㎛1㎛/1㎛ 1.01.0 0.20.2 250250 37/3237/32 9595
비교예 5Comparative Example 5 1㎛/1㎛1㎛/1㎛ 1.01.0 0.60.6 986986 24/2124/21 5151
실시예 5Example 5 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 300300 28/2428/24 5151
비교예 6Comparative Example 6 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 10241024 15/1015/10 1717
비교예 7Comparative Example 7 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 33653365 15/915/9 1010
실시예 6Example 6 1㎛/1㎛1㎛/1㎛ 1.01.0 0.500.50 279279 29/2729/27 6060
실시예 7Example 7 1㎛/1㎛1㎛/1㎛ 1.01.0 0.10.1 181181 51/4751/47 103103
비교예 8Comparative Example 8 3㎛/3㎛3㎛/3㎛ 1.01.0 0.500.50 -- -- --
비교예 9Comparative Example 9 3㎛/3㎛3㎛/3㎛ 1.01.0 0.500.50 -- -- --
상기 표 2에서 확인한 바와 같이 실시예에 따른 분리막의 경우 비교예에 비해 통기도, 전극 접착력 및 열수축율의 측면에서 우수한 결과를 나타내었다. As confirmed in Table 2, the separator according to the Example showed superior results in terms of air permeability, electrode adhesion, and heat shrinkage compared to the comparative example.
실험 방법Experimental method
1) 로딩량1) loading amount
다공성 고분자 기재의 양면에 코팅된 내열 코팅층에 포함된 수지 조성물의 단위 면적당 무게를 나타낸 것이다. It shows the weight per unit area of the resin composition contained in the heat-resistant coating layer coated on both sides of the porous polymer substrate.
2) 통기도2) Air permeability
통기도 측정기(제조사: Asahi Seiko, 제품명: EG01-55-1MR)를 이용하여 일정한 압력(0.05MPa)으로 100cc의 공기가 분리막을 통과하는데 걸리는 시간(sec)를 측정하였다. 샘플의 좌/중/우 각 1 point씩 총 3 point 측정하여 평균을 기록하였다.The air permeability meter (manufacturer: Asahi Seiko, product name: EG01-55-1MR) was used to measure the time (sec) it took for 100 cc of air to pass through the separator at a constant pressure (0.05 MPa). The average was recorded by measuring a total of 3 points at each 1 point on the left/middle/right of the sample.
2000s/100cc 이상인 경우 전지 출력 저하 및 사이클 특성 저하의 원인이 될 수 있다. If it is more than 2000s/100cc, it may cause a decrease in battery power and cycle characteristics.
3) 열수축율3) Heat shrinkage rate
각 실시예 및 비교예에서 제조된 분리막을 5cm x 5cm 크기로 재단한 후 150℃에서 30분간 유지 후 수축한 정도를 TD, MD 방향으로 각각 계산한 것이다. The separation membrane prepared in each Example and Comparative Example was cut into a size of 5cm x 5cm, and then the degree of shrinkage after holding at 150°C for 30 minutes was calculated in the TD and MD directions.
열수축율(%) = [(수축 전 길이 - 수축 후 길이) / 수축 전 길이] X 100Heat contraction rate (%) = [(length before contraction-length after contraction) / length before contraction] X 100
4) 전극 접착력4) Electrode adhesion
각 실시예 및 비교예에서 제조된 분리막을 100 mm (길이) x 25 mm (폭)으로 절단하고 음극과 60℃, 6.5MPa, 1s 조건으로 hot press 로 라미네이션 한 후 UTM 장비(Instron사)를 사용하여 300mm/min의 속도로 180도 각도로 박리하고 이때의 강도를 측정하였다. 50g/25mm 이상 확보되는 것이 바람직하다. The separator prepared in each Example and Comparative Example was cut into 100 mm (length) x 25 mm (width) and laminated with a cathode by hot press at 60°C, 6.5 MPa, 1s, and then UTM equipment (Instron) was used. Then, peeling was performed at an angle of 180 degrees at a speed of 300 mm/min, and the strength at this time was measured. It is desirable to secure at least 50g/25mm.
음극은 다음과 같이 제작하였다. 인조흑연(콜타르 피치) 66.1wt%, 천연흑연 26.9 wt%, SiO 1.5 wt%, 카본블랙 1.5 wt%, SBR 바인더 3 wt%, CMC 1 wt%를 혼합하여 음극 슬러리를 제조하였다. 이를 495mg/25cm 2의 로딩량으로 구리 호일에 도포하고 100℃의 진공오븐에서 10 시간 이상 건조하였고, 롤 형태의 프레스를 이용하여 음극(전체 두께 159.6 ㎛)을 제조하였다.The negative electrode was prepared as follows. A negative electrode slurry was prepared by mixing 66.1 wt% artificial graphite (coal tar pitch), 26.9 wt% natural graphite, 1.5 wt% SiO, 1.5 wt% carbon black, 3 wt% SBR binder, and 1 wt% CMC. This was applied to a copper foil at a loading amount of 495mg/25cm 2 , dried in a vacuum oven at 100° C. for 10 hours or longer, and a negative electrode (total thickness of 159.6 μm) was prepared using a roll-type press.

Claims (12)

  1. 다공성 고분자 기재; 상기 다공성 고분자 기재의 적어도 일면에 형성된 내열 코팅층;을 포함하며, 상기 내열 코팅층은 PVDF계 고분자 및 폴리비닐 피롤리돈(polyvinylpyrrolidone, PVP)계 고분자을 포함하는 수지 조성물을 포함하며, 상기 수지 조성물 100 wt% 대비 PVP계 고분자의 함량은 5wt% 내지 40wt%의 비율로 포함되며, 상기 PVP계 고분자는 분자량(Mw)이 900,000g/mol 이상이고, 상기 수지 조성물은 다공성 고분자 기재 표면에 대한 로딩량이 1g/cm 2 이상이고, 통기도가 900s/100cc이하인 것인 전기화학소자용 분리막. Porous polymer substrate; A heat-resistant coating layer formed on at least one surface of the porous polymer substrate, wherein the heat-resistant coating layer includes a resin composition containing a PVDF-based polymer and a polyvinylpyrrolidone (PVP)-based polymer, and 100 wt% of the resin composition The PVP-based polymer content is included in a ratio of 5 wt% to 40 wt%, and the PVP-based polymer has a molecular weight (Mw) of 900,000 g/mol or more, and the resin composition has a loading amount of 1 g/cm on the surface of the porous polymer substrate. 2 or more, and the air permeability is 900s/100cc or less for an electrochemical device.
  2. 제1항에 있어서,The method of claim 1,
    상기 내열 코팅층은 두께가 0.5㎛ 내지 5.0㎛인 것인 전기화학소자용 분리막.The heat-resistant coating layer is a separator for an electrochemical device having a thickness of 0.5 μm to 5.0 μm.
  3. 제1항에 있어서,The method of claim 1,
    상기 내열 코팅층은 PVDF계 고분자 및 폴리비닐피롤리돈(Polyvinylpyrrolidone)계 고분자를 포함하는 수지 조성물을 포함하며, 내열 코팅층 중 상기 수지 조성물이 90wt% 이상, 바람직하게는 99 wt% 이상 포함되는 것인 전기화학소자용 분리막. The heat-resistant coating layer includes a resin composition including a PVDF-based polymer and a polyvinylpyrrolidone-based polymer, and the resin composition in the heat-resistant coating layer is 90 wt% or more, preferably 99 wt% or more. Separation membrane for chemical devices.
  4. 제1항에 있어서, The method of claim 1,
    상기 PVDF계 고분자는 불화비닐리덴 단독 중합체(PVDF), PVDF-HFP, PVDF-CTFE 또는 이 중 둘 이상을 포함하는 혼합물을 포함하는 것인 전기화학소자용 분리막. The PVDF-based polymer is a separator for an electrochemical device comprising a vinylidene fluoride homopolymer (PVDF), PVDF-HFP, PVDF-CTFE, or a mixture containing two or more of them.
  5. 제1항에 있어서,The method of claim 1,
    상기 PVP계 고분자는 N-비닐피롤리돈의 단일 공중합체, N-비닐피롤리돈과 자유 라디칼 공중합 가능한 추가 공단량체들과의 공중합체 또는 이 중 하나 이상을 포함하며, 상기 공중합체는 N-비닐필롤리돈의 함량의 60wt% 이상인 것인 전기화학소자용 분리막.The PVP-based polymer includes a homopolymer of N-vinylpyrrolidone, a copolymer of N-vinylpyrrolidone and additional comonomers capable of free radical copolymerization, or at least one of them, and the copolymer is N- A separator for an electrochemical device that is 60wt% or more of the content of vinyl pyrrolidone.
  6. 제5항에 있어서,The method of claim 5,
    상기 공단량체는 아크릴아미드, 아크릴아미드의 유도체, 아크릴산에스테르, 아크릴산에스테르의 유도체 또는 이 중 둘 이상을 포함하는 것인 전기화학소자용 분리막.The comonomer is an acrylamide, an acrylamide derivative, an acrylic acid ester, an acrylic acid ester derivative, or a separator for an electrochemical device comprising two or more of them.
  7. 제1항에 있어서,The method of claim 1,
    상기 PVDF계 고분자는 PVDF-HFP를 포함하며 이의 분자량(Mw)은 1만 내지 100만인 것인 전기화학소자용 분리막.The PVDF-based polymer includes PVDF-HFP, and its molecular weight (Mw) is 10,000 to 1 million. A separator for an electrochemical device.
  8. 제1항에 있어서, The method of claim 1,
    상기 PVDF계 고분자는 PVDF-HFP를 포함하며, 여기에서 HFP의 치환율은 0.1wt% 내지 25wt%인 것인 전기화학소자용 분리막. The PVDF-based polymer includes PVDF-HFP, wherein the HFP has a substitution rate of 0.1wt% to 25wt%. A separator for an electrochemical device.
  9. 제1항에 있어서,The method of claim 1,
    PVP계 고분자의 밀도(packing density)가 0.1g/m 3 내지 0.6g/m 3 것인 전기화학소자용 분리막.A separator for an electrochemical device that has a packing density of 0.1g/m 3 to 0.6g/m 3 of a PVP-based polymer.
  10. 제9항에 있어서,The method of claim 9,
    PVP계 고분자의 밀도(packing density)가 0.2g/m 3 내지 0.5g/m 3 것인 전기화학소자용 분리막.A separator for an electrochemical device that has a packing density of 0.2g/m 3 to 0.5g/m 3 of the PVP-based polymer.
  11. 제1항에 따른 분리막을 제조하는 방법이며, 상기 방법은 PVDF계 고분자 및 PVP계 고분자를 포함하는 수지 조성물 및 분산매를 포함하는 고분자 용액을 준비하고, 상기 고분자 용액을 다공성 고분자 기재의 표면에 도포한 후 가습 조건에서 건조하며, 상기 분산매는 수지 조성물에 대한 용매 및 비용매를 포함하며, 상기 고분자 용액 중 수지 조성물은 20wt% 미만의 농도로 포함되는 것인 전기화학소자용 분리막의 제조 방법.A method of manufacturing the separator according to claim 1, wherein the method comprises preparing a polymer solution containing a resin composition and a dispersion medium containing a PVDF-based polymer and a PVP-based polymer, and applying the polymer solution to the surface of a porous polymer substrate. After drying under humidified conditions, the dispersion medium comprises a solvent and a non-solvent for the resin composition, and the resin composition in the polymer solution is contained in a concentration of less than 20wt% of a separator for an electrochemical device.
  12. 제11항에 있어서, The method of claim 11,
    상기 분산매는 분산매 100mol% 대비 비용매가 20mol% 이하로 포함되는 것인 분리막의 제조 방법.The dispersion medium is a method of manufacturing a separator containing less than 20 mol% of a non-solvent relative to 100 mol% of the dispersion medium.
PCT/KR2020/005813 2019-05-09 2020-04-29 Separator for electrochemical device, and electrochemical device comprising same WO2020226370A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021507601A JP7098050B2 (en) 2019-05-09 2020-04-29 Separation membrane for electrochemical devices and electrochemical devices including them
CN202080004736.XA CN112640196B (en) 2019-05-09 2020-04-29 Separator for electrochemical device and electrochemical device including the same
US17/283,330 US20220006156A1 (en) 2019-05-09 2020-04-29 A separator for electrochemical device and an electrochemical device comprising the same
EP20802576.7A EP3916836A4 (en) 2019-05-09 2020-04-29 Separator for electrochemical device, and electrochemical device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190054535 2019-05-09
KR10-2019-0054535 2019-05-09
KR10-2020-0051771 2020-04-28
KR1020200051771A KR102477643B1 (en) 2019-05-09 2020-04-28 A separator for an electrochemical device and an electrochemical device comprising the same

Publications (1)

Publication Number Publication Date
WO2020226370A1 true WO2020226370A1 (en) 2020-11-12

Family

ID=73050984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005813 WO2020226370A1 (en) 2019-05-09 2020-04-29 Separator for electrochemical device, and electrochemical device comprising same

Country Status (1)

Country Link
WO (1) WO2020226370A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140016715A (en) * 2012-07-31 2014-02-10 주식회사 엘지화학 Slurry for coating separator, separator using the slurry and electrochemical device including the separator
KR101551757B1 (en) * 2014-12-30 2015-09-10 삼성에스디아이 주식회사 Composition for forming porous heat-resistance layer, separators comprising the porous heat-resistance layer, electrochemical battery using the separator, and method for preparing the separator
KR20180018408A (en) * 2016-08-09 2018-02-21 주식회사 엘지화학 Separator and electrochemical device containing the same
KR20180031613A (en) * 2016-09-20 2018-03-28 주식회사 엘지화학 Separator with improved heat-resistance and air permeability and secondary battery comprising the same
KR20190006586A (en) * 2019-01-11 2019-01-18 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR20190054535A (en) 2017-11-14 2019-05-22 조상현 Parallel connectable battery case
KR20200051771A (en) 2017-09-11 2020-05-13 소렌토 쎄라퓨틱스, 인코포레이티드 Resiniferatoxin formulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140016715A (en) * 2012-07-31 2014-02-10 주식회사 엘지화학 Slurry for coating separator, separator using the slurry and electrochemical device including the separator
KR101551757B1 (en) * 2014-12-30 2015-09-10 삼성에스디아이 주식회사 Composition for forming porous heat-resistance layer, separators comprising the porous heat-resistance layer, electrochemical battery using the separator, and method for preparing the separator
KR20180018408A (en) * 2016-08-09 2018-02-21 주식회사 엘지화학 Separator and electrochemical device containing the same
KR20180031613A (en) * 2016-09-20 2018-03-28 주식회사 엘지화학 Separator with improved heat-resistance and air permeability and secondary battery comprising the same
KR20200051771A (en) 2017-09-11 2020-05-13 소렌토 쎄라퓨틱스, 인코포레이티드 Resiniferatoxin formulation
KR20190054535A (en) 2017-11-14 2019-05-22 조상현 Parallel connectable battery case
KR20190006586A (en) * 2019-01-11 2019-01-18 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
WO2019164130A1 (en) Separator, method for manufacturing same, and lithium battery including same
WO2017034353A1 (en) Complex separator for electrochemical element, comprising bonding layer, and electrochemical element comprising same
WO2013089313A1 (en) High heat resistance composite separator for lithium secondary battery and lithium secondary battery including same
WO2020013675A1 (en) Electrochemical element separation membrane including low-resistance coating layer, and method for manufacturing same
KR102477643B1 (en) A separator for an electrochemical device and an electrochemical device comprising the same
WO2020067778A1 (en) Separation membrane for electrochemical device, and method for manufacturing same
WO2021210922A1 (en) Separator for electrochemical device and method for manufacturing same
WO2020060310A1 (en) Separator and electrochemical device comprising same
WO2019009564A1 (en) Separator, lithium battery employing same, and method for manufacturing separator
WO2020013671A1 (en) Separator for electrochemical device, and electrochemical device comprising same
WO2019240547A1 (en) Solid electrolyte membrane and all-solid-state battery comprising same
WO2020138627A1 (en) Separator for lithium secondary battery, and lithium secondary battery comprising same
WO2020226367A1 (en) Binder resin composition and separator comprising same for electrochemical device
WO2021101221A1 (en) Separator for electrochemical device and electrochemical device comprising same
WO2021096313A1 (en) Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same
WO2021034060A1 (en) Separator having heat resistant layer for electrochemical device and secondary battery comprising same
WO2020214016A1 (en) Electrolyte membrane for all-solid-state battery, and all-solid-state battery including same
WO2020190101A1 (en) Separation membrane for electrochemical device, and method for manufacturing same
WO2020226370A1 (en) Separator for electrochemical device, and electrochemical device comprising same
WO2022045858A1 (en) Electrochemical device separator and electrochemical device comprising same
WO2023008953A1 (en) Lithium secondary battery cathode comprising insulating layer with excellent wet adhesive strength and lithium secondary battery comprising same
WO2019088698A2 (en) Separator without separator substrate and electrochemical device comprising same
WO2021206431A1 (en) Separator for electrochemical element and method for manufacturing same
WO2022060110A1 (en) Separator for electrochemical device and production method therefor
WO2022240275A1 (en) Composition for separator coating, method for manufacturing separator by using same, separator, and lithium battery employing separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507601

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020802576

Country of ref document: EP

Effective date: 20210823

NENP Non-entry into the national phase

Ref country code: DE