WO2019088698A2 - Separator without separator substrate and electrochemical device comprising same - Google Patents

Separator without separator substrate and electrochemical device comprising same Download PDF

Info

Publication number
WO2019088698A2
WO2019088698A2 PCT/KR2018/013112 KR2018013112W WO2019088698A2 WO 2019088698 A2 WO2019088698 A2 WO 2019088698A2 KR 2018013112 W KR2018013112 W KR 2018013112W WO 2019088698 A2 WO2019088698 A2 WO 2019088698A2
Authority
WO
WIPO (PCT)
Prior art keywords
separator
peroxide
inorganic particles
crosslinking agent
azobis
Prior art date
Application number
PCT/KR2018/013112
Other languages
French (fr)
Korean (ko)
Other versions
WO2019088698A3 (en
Inventor
김민지
남관우
안경호
이제안
김영복
이철행
이정훈
박솔지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180131285A external-priority patent/KR20190049581A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL18872529.5T priority Critical patent/PL3624224T3/en
Priority to ES18872529T priority patent/ES2962470T3/en
Priority to CN201880033686.0A priority patent/CN110651383B/en
Priority to JP2019571266A priority patent/JP2020524886A/en
Priority to EP18872529.5A priority patent/EP3624224B1/en
Priority to US16/640,877 priority patent/US11990641B2/en
Publication of WO2019088698A2 publication Critical patent/WO2019088698A2/en
Publication of WO2019088698A3 publication Critical patent/WO2019088698A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator without a separator substrate and an electrochemical device including the separator, and more particularly to a separator which does not contain a polyolefin substrate used as a separator substrate and includes inorganic particles, a binder for binding between the inorganic particles, To a separation membrane for an electrochemical device.
  • Electric vehicles EV
  • hybrid electric vehicles HEV
  • the lithium secondary battery is a battery case in which an electrode assembly capable of charging / discharging with a positive electrode / separator / negative electrode structure is mounted on a battery case.
  • the positive electrode and the negative electrode are formed by applying a slurry containing an electrode active material or the like on one side or both sides of a metal current collector, followed by drying and rolling.
  • Membranes are one of the most important factors determining the performance and lifetime of secondary batteries.
  • the ion permeability should be high so that the electrolyte can pass through while electrically insulating the anode and the cathode. Mechanical strength and stability at high temperatures are also required.
  • a new membrane composed of an inorganic coating layer without a polyolefin membrane substrate was constructed.
  • the new separator was very low in insulation and internal short-circuiting was easy to occur.
  • the separator is easily torn due to low tensile strength to low elongation. This easily causes a minute short circuit within the electrode assembly.
  • Patent Document 1 discloses a separator composed of a microporous polymer layer composed of an organic modified aluminum boehmite and an organic polymer. And does not provide a concrete solution for improving the strength of these.
  • Non-Patent Document 1 refers to the crosslinking of PVdF-HFP / PEGDMA (polyethylene glycol dimethacrylate) as a method of increasing the strength of a new separation membrane. Non-Patent Document 1 does not apply the above material to a separator, but applies only to a polymer electrolyte.
  • Non-Patent Document 2 discloses boehmite nanoparticles and polyvinylidene fluoride polymers as separators for lithium secondary batteries. It is inappropriate to apply it to a stress cell cell assembly process.
  • Non-Patent Document 3 discloses a porous ceramic membrane based on magnesium aluminate as a separation membrane of a lithium secondary battery having flexibility and thermal stability. A specific method for improving the strength has not been disclosed.
  • Patent Document 1 U.S. Patent No. 8883354
  • Non-Patent Document 1 Thermal shrinking behavior of PVdF-HFP based polymer electrolytes is disclosed in J. Power Sources 144, 2005
  • Non-Patent Document 2 Boehmite-based ceramic separator for lithium-ion batteries, Journal of Applied Electrochemistry, 2016, 69
  • Non-Patent Document 3 Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries, Journal of Membrane Science, 2014, 103
  • the present invention aims to provide a separator having a tensile strength and a high elongation while having insulating properties of the conventional separator.
  • the present invention provides a separation membrane for an improved electrochemical device, which does not include a polyolefin substrate, and which comprises i) inorganic particles and ii) a binder for bonding between the inorganic particles.
  • the separation membrane according to the present invention is a separation membrane for an electrochemical device for securing electrical insulation between a cathode and a cathode.
  • the improved separator does not comprise a polyolefin substrate and may be composed of i) inorganic particles, ii) a binder for binding between the inorganic particles, and iii) compounds further comprising a crosslinking agent.
  • the separator of the present invention is a structure without a separator base of a polyolefin series.
  • the conventional separation membrane is a polyolefin-based separation membrane base, and further, at least one surface thereof is coated with an inorganic layer composed of an inorganic material and a binder.
  • the present invention is a separation membrane composed of only the substances constituting the remaining inorganic layer without the separator substrate.
  • separator similar to the present invention there is a separator composed of only an inorganic layer.
  • Such a conventional separation membrane has a low overall strength of the separation membrane because the polyolefin separation membrane substrate is omitted. If an electrode assembly is made of a low-strength separator, the separator is damaged and is likely to be short-circuited.
  • the present invention uses i) a linear polymer having a plurality of branches or ii) a polymer having two or more functional groups capable of reacting at a specific temperature as a crosslinking agent in a separation membrane to form a three-dimensional network structure. Due to the nature of the network structure, the physical properties and dimensional stability related to stiffness are improved as the density is increased, and a separator having reduced resistance can be provided.
  • the three-dimensional network structure is formed more strongly so that the tensile strength of the separator itself is improved while maintaining dimensional stability, and the risk of damage to the separator is reduced.
  • the present invention can remarkably lower a fine short circuit due to tearing of the separator in the process of manufacturing an electrochemical device.
  • the rate of dimensional change with respect to the electrolytic solution is reduced, and wrinkles caused by swelling when the electrolytic solution is impregnated can be prevented.
  • the inorganic particles serve as a kind of spacer capable of forming micropores through the formation of void spaces between inorganic particles and maintaining physical shape.
  • the inorganic particles used in the separator generally do not change their physical properties even when the temperature is higher than 200 ° C.
  • Such inorganic particles are not particularly limited as long as they are electrochemically stable.
  • the inorganic particles usable in the present invention are not particularly limited as long as oxidation and / or reduction reaction does not occur in the operating voltage range of the applied battery (for example, 0 to 5 V based on Li / Li +).
  • the performance of the electrochemical device can be improved, so that it is preferable that the electrolyte ion transporting ability is as high as possible.
  • the inorganic particles have a high density, they are not only difficult to disperse when forming the separator, but also have a problem of increasing the weight of the battery. Therefore, it is preferable that the density is small.
  • the dissociation of an electrolyte salt for example, a lithium salt in the liquid electrolyte, can also contribute to enhance the ionic conductivity of the electrolyte.
  • the inorganic particles may be selected from the group consisting of high-permittivity inorganic particles having a dielectric constant of 1 or more, preferably 10 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transferring ability, ≪ / RTI >
  • Examples of the inorganic particles having a dielectric constant of 1 or more include SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, But is not limited thereto.
  • the piezoelectricity inorganic particle means a non-conductive material at normal pressure, or a material having electrical conductivity due to a change in internal structure when a certain pressure is applied.
  • the inorganic particles have a high dielectric constant value with a dielectric constant of 100 or more.
  • tension or compression is applied by applying a certain pressure, charges are generated. One side is charged positively and the other side is negatively charged, resulting in a potential difference between both sides.
  • the inorganic particles having the above-mentioned characteristics when the internal short-circuit of both electrodes occurs due to an external impact such as local crush or nail, the anode and the cathode are not in direct contact with each other due to the inorganic particles coated on the separator , The electric potential difference in the particle is generated due to the piezoelectricity of the inorganic particles. As a result, the electrons move between the electrodes, that is, the minute electric current flows, so that the voltage of the battery can be smoothly reduced and the safety can be improved.
  • Examples of the inorganic particles having the piezoelectricity is BaTiO 3, Pb (Zr, Ti ) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) hafnia (HfO 2 ), or mixtures thereof.
  • the inorganic particles having the lithium ion transferring ability include inorganic particles containing a lithium element but having a function of not transferring lithium but moving lithium ions.
  • the inorganic particles having lithium ion transferring ability can transfer and move lithium ions due to a kind of defect existing in the particle structure, so that the lithium ion conductivity in the battery is improved and the battery performance is improved thereby .
  • Examples of the inorganic particles having lithium ion transferring ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Li (LiAlTiP) x O y series glass (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5) such as 3.
  • the alumina hydrate is classified as crystalline and gelatinous depending on the preparation method.
  • the crystalline alumina hydrate contains the gib ZUID ⁇ -Al (OH) 3, via light Al (OH) 3, Dyer Spore ⁇ -AlOOH, bohe 4 paper, and the gel form of the alumina hydrate has a boehmite aluminum ion ⁇ -AlOOH Aluminum hydroxide precipitated by ammonia, and preferably boehmite? -AlOOH can be used.
  • the synergistic effect of these can be doubled.
  • the size of the inorganic particles is not limited, but is preferably in the range of 0.001 ⁇ to 10 ⁇ in order to form a film having a uniform thickness and a proper porosity.
  • the thickness is less than 0.001 ⁇ m, the dispersibility of the separator is deteriorated and it is difficult to control the physical properties of the separator.
  • the thickness is more than 10 ⁇ m, the thickness of the separator formed with the same solid content is increased to decrease the mechanical properties. The probability of an internal short circuit occurring during discharge increases.
  • the binder is gelled upon impregnation with a liquid electrolyte and can exhibit a high degree of swelling of the electrolyte.
  • the electrolyte injected after assembling the cell is impregnated with the polymer, and the polymer having the absorbed electrolyte has electrolytic ion conduction capability.
  • the wetting of the electrolyte for a battery is improved as compared with the conventional hydrophobic polyolefin-based separator, and it is also possible to apply a polar electrolyte for a battery, which has been difficult to be used conventionally.
  • the solubility index is preferably 15 MPa 1/2 to 45 MPa 1/2 , preferably 15 MPa 1/2 to 25 MPa 1/2 and more preferably 30 MPa 1/2 to 45 MPa 1/2, .
  • the solubility index exceeds 15 MPa 1/2 and exceeds 45 MPa 1/2 , it is difficult to swell by a common liquid electrolyte for a battery.
  • the binder is selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichlorethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate , Polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinyl (EPDM), sulphonated EPDM, styrene butylene rubber (SBR), fluorine-containing polymers such as fluorine-containing polymers such as ethylene-propylene-diene monomers Rubber and polyimide. Or two or more.
  • the cross-linking agent is not particularly limited as long as it is a cross-linking reaction at a specific temperature and is formed of a polymer having a three-dimensional network structure.
  • a cross-linking agent may be used for a polymer material containing two to ten functional groups.
  • PEGDMA polyethylene glycol dimethacrylate
  • a polymer substance represented by the following formulas (1) to (2) may be polyethylene glycol dimethacrylate (PEGDMA) or a polymer substance represented by the following formulas (1) to (2).
  • X is an integer of 1 to 100
  • y is an integer of 0 to 30, and
  • z is an integer of 1 to 1,000.
  • the weight average molecular weight of the formula (1) is 1,000 to 100,000 and the p value is a dependent variable.
  • a and c are integers of 1 to 30, and b is an integer of 1 to 1000.
  • the weight average molecular weight of the formula (2) is 1,000 to 100,000 and the d value is a dependent variable.
  • the reaction temperature of the crosslinking agent may be in the range of 120 ° C to 160 ° C, more preferably 130 ° C to 150 ° C. At a low temperature before reaching the temperature range, As the temperature is reached, the reaction takes place and a three-dimensional network is formed by crosslinking.
  • reaction temperature of the crosslinking agent When the reaction temperature of the crosslinking agent is lower than 120 ° C, the crosslinking sites of the crosslinking agent are not broken and the crosslinking reaction is difficult to occur. When the reaction temperature is higher than 160 ° C, the binder or crosslinking agent used may be melted.
  • the separator according to the present invention has a structure in which a crosslinking agent is added to a separator composed of inorganic particles and a binder, a breakdown voltage is high even if the separator substrate is omitted.
  • the separator of the present invention when a foreign substance such as iron (Fe), which is a conductive material, is applied to the separator of the present invention, it is confirmed that the separator has a substantially similar breakdown voltage value as compared with a separator including a separator substrate applied to a secondary battery for an automobile , And the decrease of the breakdown voltage before and after the application of the conductive material hardly occurs.
  • Fe iron
  • the separation membrane may further include a reaction initiator for the crosslinking agent in order to enhance the effect of improving the physical properties by the crosslinking reaction.
  • the type of the reaction initiator is not particularly limited and may be specifically an azo compound or a peroxide compound.
  • the azo compound may be 2,2'-azobis ( (2-methylbutyronitrile), 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis Methoxy-2,4-dimethylvaleronitrile), and preferably at least one of 2,2'-azobis (isobutyronitrile) or 2,2'-azobis (2,4- Ronitril).
  • the peroxide compound may be at least one selected from the group consisting of tetramethyl butyl peroxyneodecanoate, bis (4-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxycarbonate, butyl peroxyneodecanoate, Diisopropylperoxy dicarbonate, diethoxyhexyl peroxydicarbonate, diethoxyhexyl peroxydicarbonate, hexyl peroxy dicarbonate, dimethoxy butyl peroxy dicarbonate, bis (3-methoxy-3 -Methoxybutyl) peroxy dicarbonate, dibutyl peroxy dicarbonate, dicetyl peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethyl butyl peroxide Peroxypivalate, hexyl peroxypivalate, butyl peroxypivalate, trimethylhexanoyl peroxid
  • the separation membrane according to the present invention has a structure without a separation membrane substrate compared to a conventional separation membrane, the strength of the separation membrane itself may be a problem, so that the separation membrane may have a relatively thick thickness. ≪ / RTI >
  • the separator When the thickness of the separator is less than 5 ⁇ , the separator may have a weak strength and may be easily damaged. When the separator is more than 30 ⁇ , the thickness of the entire electrode assembly may increase and the capacity may decrease.
  • the content of the crosslinking agent in the separator may be greater than 0 wt% to less than 15 wt% based on the total weight of the solid content.
  • the content of the crosslinking agent is more than 15 wt% based on the total weight of the solid content, And the local crosslinking agent acts as a plasticizer since it does not occur, and the tensile strength is remarkably reduced, which is not preferable.
  • the air permeability of the separator may range from 50 sec / 100cc to 4,000 sec / 100cc. When the air permeability is less than 50 sec / 100cc, the insulation characteristics are very poor. When the air permeability is more than 4,000 sec / 100cc, And the ionic conductivity is lowered.
  • the physical properties of the separation membrane are influenced by the reaction temperature and reaction time. As the reaction time becomes longer and the reaction temperature increases, the degree of crosslinking reaction increases.
  • PEGDMA polyethylene glycol dimethacrylate
  • the present invention also provides an electrochemical device comprising a positive electrode and a negative electrode, the separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrochemical device may be a lithium secondary battery.
  • the positive electrode is prepared by applying a mixture of a positive electrode active material, a conductive material and a binder on a positive electrode current collector, followed by drying. If necessary, a filler may be further added.
  • the cathode current collector is generally made to have a thickness of 3 m or more to 500 m or less.
  • a positive electrode collector is not particularly limited as long as it has conductivity without causing chemical change to the battery, and may be formed on the surface of stainless steel, aluminum, nickel, titanium, sintered carbon or aluminum or stainless steel Carbon, nickel, titanium, silver, or the like may be used.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
  • the conductive material is usually added in an amount of 1 wt% to 30 wt% based on the total weight of the mixture including the cathode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the mixture containing the cathode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • the negative electrode is manufactured by applying a negative electrode material on an anode current collector, and drying the anode current collector.
  • the above-described components may be optionally included.
  • the negative electrode current collector is generally made to have a thickness of 3 mu m or more and 500 mu m or less.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the negative electrode active material examples include carbon such as non-graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1 ), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 ⁇ x < Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, And Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
  • the present invention can also provide a battery pack including the electrochemical device.
  • the battery pack may be used as a power source for devices requiring high-temperature safety, long cycle characteristics, and high rate characteristics.
  • devices include a mobile device, a wearable device A power tool powered by an electric motor; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And an energy storage system, but the present invention is not limited thereto.
  • 1 is a graph showing the results of measurement of physical properties depending on the presence of a crosslinking agent and an initiator.
  • volume insulation resistance measurement the SM7120 manufactured by HIOKI Co., Ltd. was used and measured under the Rv mode condition. Volumetric insulation resistance was measured for 10 membranes and the average value was calculated. The values listed in Table 1 below are average values.
  • the specific measurement condition setting is as follows.
  • the one end portion of the separation membrane located on the slide glass and the other end portion of the separation membrane not yet attached to the slide glass were mounted on a universal testing machine, and then the strength of the separation membrane was measured while being pulled in opposite directions. At this time, the measurement speed of the UTM apparatus was 500 mm / min, and the length of the measurement section was 100 mm.
  • the membrane was impregnated with 10 ml of the electrolyte solution for 1 hour, and then the length of the membrane was measured to calculate the dimensional change ratio.
  • the average values were calculated for each of the six membranes, and the values shown in Table 1 are average values.
  • a coin cell of 2016 size containing only the separator and electrolyte was prepared without electrodes.
  • the impedance at a specific frequency in the range of 10,000 Hz to 100,000 Hz was measured, and the impedance at each frequency The section was taken as the resistance of the membrane.
  • the slurry was made to be 18% by weight based on the total weight of the slurry.
  • a separation membrane was prepared in the same manner as in Example 1, except that 0.0072 g of 2,2'-azobis (isobutyronitrile) as an initiator was added to the slurry of Example 1.
  • Example 1 Example 2 Comparative Example 1 Volumetric Insulation Resistance (G ⁇ ⁇ cm) (100V, 3S) 4.2 270,000 11 Tensile strength (kgf / cm 2 ) 138 149 135 Dimensional change ratio (%) 3 3 4
  • Example 1 in which the initiator was not added, the volume insulation resistance was as low as 4.2 G ⁇ ⁇ cm, while in Example 2 in which the initiator was added, Comparative Example 1 As compared with the control.
  • the volume insulation resistance is low, insulation is insufficient and a minute current flows.
  • the volume insulation resistance is high, insulation is secured so that no current flows. Therefore, it is understood that when the initiator is added, the insulating property is remarkably improved.
  • the crosslinking degree is improved, the content of the unreacted crosslinking agent is reduced, and the proportion of the polymer reacted with the crosslinking agent is increased. Therefore, it is presumed that the addition of the initiator improves the insulation resistance.
  • a three-dimensional network structure due to crosslinking is formed through drying at 150 ° C., so that the tensile strength increases and the dimensional change rate decreases.
  • Example 1 when Example 1 in which no initiator was added and Example 2 in which an initiator was added was compared with Example 2, it was found that the initiator was effective for crosslinking for forming a three-dimensional network structure as the tensile strength was further increased have.
  • a separation membrane was prepared in the same manner as in Example 1, except that the reaction temperature was changed from 150 ⁇ to 130 ⁇ .
  • the separation membrane was prepared in the same manner as in Example 1, except that the reaction temperature of the slurry was changed to 100 ⁇ .
  • a separation membrane was prepared in the same manner as in Example 1 except that the reaction temperature of the slurry was changed to 170 ⁇ .
  • Comparative Example 2 (100 ° C) Example 3 (130 < 0 > C) Example 1 (150 < 0 > C) Comparative Example 3 (170 DEG C) Volumetric Insulation Resistance (G ⁇ ⁇ cm) (100V, 3S) 1.20 3.43 5.91 5.50 Tensile strength (kgf / cm 2 ) 97 118 136 132 Dimensional change ratio (%) 3 2 2 2
  • Example 1 having a crosslinking temperature of 150 ⁇ ⁇ increase in volume insulation resistance and tensile strength as compared with Example 3 where the crosslinking temperature is 130 ⁇ ⁇ . It can be seen that the rate of dimensional change remains the same.
  • the crosslinking agent of the present invention is capable of producing a separating membrane having a desired physical property by progressively proceeding a crosslinking reaction at a temperature of 120 ° C to 160 ° C.
  • the crosslinking temperature is 150 ° C, It is estimated that a membrane can be produced.
  • a separator was prepared in the same manner as in Example 1 except that the content ratio of the binder in Example 1 was changed from 20% by weight to 15% by weight based on the total solid content weight, and the amount of the crosslinking agent was changed from 2% by weight to 7% by weight .
  • a separator was prepared in the same manner as in Example 1 except that the content ratio of the binder in Example 1 was changed from 20% by weight to 11% by weight based on the total solid weight, and the amount of the crosslinking agent was changed from 2% by weight to 11% by weight .
  • a separator was prepared in the same manner as in Example 1 except that the content ratio of the binder in Example 1 was changed from 20% by weight to 7% by weight based on the total solid content weight, and the amount of the crosslinking agent was changed from 2% by weight to 15% .
  • Example 1 (2 wt% PEGDMA)
  • Example 4 (7 wt% PEGDMA)
  • Example 5 (11 wt% PEGDMA) Comparative Example 4 (15 wt% of PEGDMA)
  • Tensile strength kgf / cm 2 136 88 79 10 Elongation (%) 46 41 15 3
  • the present invention can obtain a separation membrane capable of cell assembly by maintaining a constant tensile strength and elongation only when the content of the crosslinking agent increases within a certain range.
  • Example 2 instead of polyethylene glycol dimethacrylate (PEGDMA) as a crosslinking agent in Example 2, the compound of Formula 1 having 6 functional groups was used, and 2,2'-azobis (isobutyronitrile) instead of initiator 2,2'-azobis '-Azobis (2,4-dimethylvaleronitrile) was used instead of the azobis (2,4-dimethylvaleronitrile).
  • PEGDMA polyethylene glycol dimethacrylate
  • Example 2 instead of polyethylene glycol dimethacrylate (PEGDMA) as a crosslinking agent in Example 2, the compound of Formula 2 having 10 functional groups was used, and 2,2'-azobis (isobutyronitrile) instead of initiator 2,2'-azobis '-Azobis (2,4-dimethylvaleronitrile) was used instead of the azobis (2,4-dimethylvaleronitrile).
  • PEGDMA polyethylene glycol dimethacrylate
  • Example 7 Volumetric insulation resistance, electrical resistance, tensile strength, and numerical rate of change were measured using the separator prepared in Example 2, Example 7, and Example 8. The results are shown in Table 4 below.
  • the dimensional change rate tends to increase as the number of functional groups increases.
  • the separation membrane according to the present invention does not include a polyolefin substrate, and includes a cross-linking agent as an element of the separation membrane, and optionally an initiator.
  • the cross-linking agent has from 2 to 10 functional groups, The volume insulation resistance is remarkably increased to ensure insulation and improve dimensional stability.
  • the separation membrane for an electrochemical device does not include a polyolefin substrate used as a separation membrane substrate, unlike a conventional separation membrane, and is made of a material including inorganic particles, a binder and a crosslinking agent.
  • the problem of low thermal stability can be overcome and the insulating property of the separator can be remarkably improved as the crosslinking compound forms a three-dimensional network structure.
  • the crosslinking agent is transformed from a linear structure to a three-dimensional network structure, so that the tensile strength of the separating membrane itself is increased, so that the possibility of damage to the separating membrane is lowered and short-circuiting within the cell can be prevented. Further, as the number of functional groups of the crosslinking agent increases, the dimensional stability of the separating membrane is improved, and wrinkling or deformation of the separating membrane can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to a separator for an electrochemical device for securing electrical insulation between an anode and a cathode, wherein the separator for an electrochemical device does not comprise a polyolefin substrate but comprises inorganic particles, a binder for binding between the inorganic particles, and a cross-linking agent.

Description

분리막 기재가 없는 분리막 및 이를 포함하는 전기화학소자Membrane without membrane substrate and electrochemical device containing the same
본 출원은 2017년 10월 31일자 한국 특허 출원 제2017-0143690호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2017-0143690, filed on October 31, 2017, the entire contents of which are incorporated herein by reference.
본원 발명은 분리막 기재가 없는 분리막 및 이를 포함하는 전기화학소자에 관한 것으로서, 구체적으로 분리막 기재로 사용되는 폴리올레핀 기재를 포함하지 않으며, 무기물 입자, 상기 무기물 입자 간의 결합을 위한 바인더, 및 가교제를 포함하는 전기화학소자용 분리막에 관한 것이다.The present invention relates to a separator without a separator substrate and an electrochemical device including the separator, and more particularly to a separator which does not contain a polyolefin substrate used as a separator substrate and includes inorganic particles, a binder for binding between the inorganic particles, To a separation membrane for an electrochemical device.
원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있다. 생산된 에너지를 더욱 효율적으로 사용하기 위한 전지에 대한 연구도 꾸준히 진행되고 있다.Research on various power generation technologies such as nuclear power, solar power, wind power, and tidal power is continuing. Research on batteries for more efficient use of the produced energy is also being carried out steadily.
리튬 이차전지는 모바일 기기 관련 시장의 급격한 성장과 비례하여 그 수요도 증가하고 있다. 전기자동차(EV) 및 하이브리드 전기자동차(HEV)의 동력원 등으로 사용영역 또한 확대되고 있다.The demand for lithium secondary batteries is increasing in line with the rapid growth of the market related to mobile devices. Electric vehicles (EV) and hybrid electric vehicles (HEV).
리튬 이차전지는 양극/분리막/음극 구조의 충방전이 가능한 전극조립체를 전지케이스에 장착한 것이다. 양극 및 음극은 금속 집전체의 일면 또는 양면에 전극 활물질 등을 포함하는 슬러리를 도포하고 건조 및 압연한 것이다.The lithium secondary battery is a battery case in which an electrode assembly capable of charging / discharging with a positive electrode / separator / negative electrode structure is mounted on a battery case. The positive electrode and the negative electrode are formed by applying a slurry containing an electrode active material or the like on one side or both sides of a metal current collector, followed by drying and rolling.
분리막은 이차전지의 성능 및 수명을 결정짓는 가장 중요한 요소 중 하나이다. 양극과 음극을 전기적으로 절연시키면서 전해액은 통과할 수 있도록 이온 투과성이 높아야 한다. 기계적 강도 및 고온에서의 안정성도 필요하다.Membranes are one of the most important factors determining the performance and lifetime of secondary batteries. The ion permeability should be high so that the electrolyte can pass through while electrically insulating the anode and the cathode. Mechanical strength and stability at high temperatures are also required.
분리막 기재와 무기물 코팅층으로 이루어진 종래의 분리막은 전극과의 접착력이 약해 계면에서 부분적으로 들뜨거나 주름이 생겼다. 분리막 기재로 사용되는 폴리올레핀은 고온에서 융해되는 문제가 있다.Conventional separators composed of a separator substrate and an inorganic coating layer are weak in adhesion to electrodes and are partially raised or wrinkled at the interface. Polyolefins used as a separator substrate have a problem of being melted at a high temperature.
근본적인 원인을 제거하고자, 폴리올레핀 분리막 기재가 없는 무기물 코팅층으로 된 새로운 분리막을 구성하였다. 새로운 분리막은 절연성이 현저히 낮아 내부 단락이 쉽게 발생하였다. 낮은 인장강도 내지 낮은 연신률로 인해서 분리막이 쉽게 찢어진다. 이로 인해 전극조립체 내부에서 미세한 단락이 발생하는 쉽게 생긴다.In order to eliminate the root cause, a new membrane composed of an inorganic coating layer without a polyolefin membrane substrate was constructed. The new separator was very low in insulation and internal short-circuiting was easy to occur. The separator is easily torn due to low tensile strength to low elongation. This easily causes a minute short circuit within the electrode assembly.
특허문헌 1은 유기 개질된 알루미늄 보헤마이트 및 유기 고분자로 구성된 미세 다공성 고분자층으로 구성된 분리막을 개시하고 있다. 이들의 강도를 향상시키기 위한 구체적인 해결책을 제시하지 못하고 있다. Patent Document 1 discloses a separator composed of a microporous polymer layer composed of an organic modified aluminum boehmite and an organic polymer. And does not provide a concrete solution for improving the strength of these.
비특허문헌 1은 새로운 분리막의 강도를 높이는 방법으로 PVdF-HFP/PEGDMA(폴리에틸렌글리콜디메타크릴레이트)의 가교를 언급하고 있다. 비특허문헌 1은 상기 물질을 분리막에 적용하지 않고, 고분자 전해액에만 적용하고 있다. Non-Patent Document 1 refers to the crosslinking of PVdF-HFP / PEGDMA (polyethylene glycol dimethacrylate) as a method of increasing the strength of a new separation membrane. Non-Patent Document 1 does not apply the above material to a separator, but applies only to a polymer electrolyte.
비특허문헌 2는 보헤마이트 나노입자와 폴리비닐리덴플루오라이드 고분자를 리튬 이차전지용 분리막으로 개시하고 있다. 스트레스가 높은 전지셀 조립 과정에 적용하기에는 부적절하다고 언급하고 있다.Non-Patent Document 2 discloses boehmite nanoparticles and polyvinylidene fluoride polymers as separators for lithium secondary batteries. It is inappropriate to apply it to a stress cell cell assembly process.
비특허문헌 3은 유연성이 있고 열적 안정성이 있는 리튬 이차전지의 분리막으로서 마그네슘 알루미네이트를 기반으로 하는 다공성 세라믹막을 개시하고 있다. 강도를 향상시키기 위한 구체적인 방법을 개시하지 못하고 있다.Non-Patent Document 3 discloses a porous ceramic membrane based on magnesium aluminate as a separation membrane of a lithium secondary battery having flexibility and thermal stability. A specific method for improving the strength has not been disclosed.
이와 같이 고온 환경에 대한 안정성이 높고, 우수한 절연성을 갖으면서, 치수안전성이 향상되어 상기 문제를 해결할 수 있는 폴리올레핀 기재가 없는 분리막에 대한 기술을 제시되지 않았다.As described above, there has not been proposed a technology for a separator which does not have a polyolefin substrate, which has high stability against a high-temperature environment, has excellent insulation, and has improved dimensional stability and can solve the above problems.
- 선행기술문헌- Prior art literature
(특허문헌 1) 미국 등록특허공보 제8883354호(Patent Document 1) U.S. Patent No. 8883354
(비특허문헌 1) Thermal shundown behavior of PVdF-HFP based polymer electrolytes comprising heat sensitive cross linkable oligomers, J. power Sources 144, 2005(Non-Patent Document 1) Thermal shrinking behavior of PVdF-HFP based polymer electrolytes is disclosed in J. Power Sources 144, 2005
(비특허문헌 2) Boehmite-based ceramic separator for lithium-ion batteries, Journal of Applied Electrochemisrty, 2016, 69(Non-Patent Document 2) Boehmite-based ceramic separator for lithium-ion batteries, Journal of Applied Electrochemistry, 2016, 69
(비특허문헌 3) Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries, Journal of Membrane Science, 2014, 103(Non-Patent Document 3) Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries, Journal of Membrane Science, 2014, 103
본원 발명은 분리막의 손상으로 인하여 단락이 일어나는 것을 방지할 수 있는 기술 및 상기 기술이 적용된 분리막을 제공하는 것을 목적으로 한다. 구체적으로 본원 발명은 종래의 분리막 정도의 절연성을 가지면서, 인장강도 및 연신율을 높인 분리막을 제공하고자 한다.It is an object of the present invention to provide a technique capable of preventing a short circuit due to damage of a separation membrane and a separation membrane to which the technology is applied. Specifically, the present invention aims to provide a separator having a tensile strength and a high elongation while having insulating properties of the conventional separator.
상기와 같은 목적을 이루기 위하여 본원 발명은 폴리올레핀 기재를 포함하지 않으며, i) 무기물 입자, ii) 상기 무기물 입자 간의 결합을 위한 바인더를 포함하는 개선된 전기화학소자용 분리막을 제공한다.In order to achieve the above object, the present invention provides a separation membrane for an improved electrochemical device, which does not include a polyolefin substrate, and which comprises i) inorganic particles and ii) a binder for bonding between the inorganic particles.
본원 발명에 따른 분리막은 양극 및 음극 간의 전기 절연성을 확보하기 위한 전기화학소자용 분리막이다.The separation membrane according to the present invention is a separation membrane for an electrochemical device for securing electrical insulation between a cathode and a cathode.
개선된 분리막은 폴리올레핀 기재를 포함하지 않으며, i) 무기물 입자, ii) 상기 무기물 입자 간의 결합을 위한 바인더, 및 iii) 추가로 가교제를 포함하는 화합물들로 이루어질 수 있다.The improved separator does not comprise a polyolefin substrate and may be composed of i) inorganic particles, ii) a binder for binding between the inorganic particles, and iii) compounds further comprising a crosslinking agent.
본원 발명의 분리막을 종래의 분리막과 비교하면, 폴리올레핀 계열의 분리막 기재가 없는 구조이다. 종래의 분리막은 폴리올레핀 계열의 분리막 기재가 있고, 여기에 추가로 적어도 일면에 무기물과 바인더로 구성되는 무기물층이 도포된 것이다. 본원발명은 분리막 기재가 없고, 나머지 무기물층을 구성하는 물질들로만 구성된 분리막이다.Compared with the conventional separator of the present invention, the separator of the present invention is a structure without a separator base of a polyolefin series. The conventional separation membrane is a polyolefin-based separation membrane base, and further, at least one surface thereof is coated with an inorganic layer composed of an inorganic material and a binder. The present invention is a separation membrane composed of only the substances constituting the remaining inorganic layer without the separator substrate.
본원 발명과 유사한 분리막으로서, 무기물층으로만 구성되는 분리막이 있다. 이러한 종래의 분리막은 폴리올레핀 분리막 기재가 생략되기 때문에 분리막의 전체적인 강도가 낮다. 낮은 강도의 분리막으로 전극조립체를 만들면, 분리막이 손상되어 단락이 될 가능성이 높다.As a separator similar to the present invention, there is a separator composed of only an inorganic layer. Such a conventional separation membrane has a low overall strength of the separation membrane because the polyolefin separation membrane substrate is omitted. If an electrode assembly is made of a low-strength separator, the separator is damaged and is likely to be short-circuited.
본원 발명은 분리막의 가교제로서 특정한 온도에서 반응하여 3차원 망상 구조를 형성할 수 있는 i) 다수의 가지를 가지는 선형의 고분자 또는 ii) 2개 이상의 관능기를 갖는 고분자를 사용한다. 망상 구조의 특성상 밀도가 높아짐에 따라 강성과 관련된 물성과 치수 안정성이 향상되며, 저항이 감소된 분리막을 제공할 수 있다.The present invention uses i) a linear polymer having a plurality of branches or ii) a polymer having two or more functional groups capable of reacting at a specific temperature as a crosslinking agent in a separation membrane to form a three-dimensional network structure. Due to the nature of the network structure, the physical properties and dimensional stability related to stiffness are improved as the density is increased, and a separator having reduced resistance can be provided.
반응 개시제를 주입하면 3차원 망상 구조가 좀 더 강하게 형성되어 치수 안전성을 유지하면서 분리막 자체의 인장강도가 향상되는 바, 분리막이 손상되는 위험이 줄어든다.When the initiator is injected, the three-dimensional network structure is formed more strongly so that the tensile strength of the separator itself is improved while maintaining dimensional stability, and the risk of damage to the separator is reduced.
본원 발명은 전기화학소자의 제조 과정에서 분리막이 찢어짐 등에 의한 미세한 단락을 현저히 낮출 수 있다. 또한, 전해액에 대한 치수 변화율이 감소되어 전해액 함침시 스웰링(swelling)에 의한 주름이 생기는 것을 방지할 수 있다.The present invention can remarkably lower a fine short circuit due to tearing of the separator in the process of manufacturing an electrochemical device. In addition, the rate of dimensional change with respect to the electrolytic solution is reduced, and wrinkles caused by swelling when the electrolytic solution is impregnated can be prevented.
a) 무기물 입자a) inorganic particles
본원 발명의 분리막에서 무기물 입자는, 무기물 입자들간 빈 공간의 형성을 가능하게 하여 미세 기공을 형성하는 역할과 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 한다. 분리막에 사용되는 무기물 입자는 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는다.In the separator according to the present invention, the inorganic particles serve as a kind of spacer capable of forming micropores through the formation of void spaces between inorganic particles and maintaining physical shape. The inorganic particles used in the separator generally do not change their physical properties even when the temperature is higher than 200 ° C.
이러한 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 한정되지 않는다. 본원 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 한정되지 않는다. 전해질 이온 전달 능력이 높은 무기물 입자를 사용하는 경우, 전기화학소자 내의 성능 향상을 도모할 수 있으므로, 가능한 전해질 이온 전달 능력이 높은 것이 바람직하다. 상기 무기물 입자가 높은 밀도를 갖는 경우, 분리막 형성시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있다. 그러므로 밀도가 작은 것이 바람직하다. 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.Such inorganic particles are not particularly limited as long as they are electrochemically stable. The inorganic particles usable in the present invention are not particularly limited as long as oxidation and / or reduction reaction does not occur in the operating voltage range of the applied battery (for example, 0 to 5 V based on Li / Li +). When inorganic particles having a high electrolyte ion transporting ability are used, the performance of the electrochemical device can be improved, so that it is preferable that the electrolyte ion transporting ability is as high as possible. When the inorganic particles have a high density, they are not only difficult to disperse when forming the separator, but also have a problem of increasing the weight of the battery. Therefore, it is preferable that the density is small. In the case of an inorganic substance having a high dielectric constant, the dissociation of an electrolyte salt, for example, a lithium salt in the liquid electrolyte, can also contribute to enhance the ionic conductivity of the electrolyte.
상기와 같은 이유들로 인해, 상기 무기물 입자는 유전율 상수가 1 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 압전성(piezoelectricity)을 갖는 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자, 알루미나 수화물 또는 이들의 둘 이상의 혼합물일 수 있다.For the above reasons, the inorganic particles may be selected from the group consisting of high-permittivity inorganic particles having a dielectric constant of 1 or more, preferably 10 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transferring ability, ≪ / RTI >
상기 유전율 상수가 1 이상인 무기물 입자의 예로는 SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합물 등이 있으나, 이에 한정되는 것은 아니다.Examples of the inorganic particles having a dielectric constant of 1 or more include SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, But is not limited thereto.
상기 압전성(piezoelectricity) 무기물 입자는 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미한다. 상기 무기물 입자는 유전율 상수가 100 이상인 높은 유전율 값을 가진다. 또한, 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생한다. 한 면은 양으로, 반대편은 음으로 각각 대전됨으로써, 양쪽 면 간에 전위차가 발생한다.The piezoelectricity inorganic particle means a non-conductive material at normal pressure, or a material having electrical conductivity due to a change in internal structure when a certain pressure is applied. The inorganic particles have a high dielectric constant value with a dielectric constant of 100 or more. In addition, when tension or compression is applied by applying a certain pressure, charges are generated. One side is charged positively and the other side is negatively charged, resulting in a potential difference between both sides.
상기와 같은 특징을 갖는 무기물 입자를 사용하는 경우, Local crush, Nail 등의 외부 충격에 의해 양 전극의 내부 단락이 발생하는 경우 분리막에 코팅된 무기물 입자로 인해 양극과 음극이 직접 접촉하지 않을 뿐만 아니라, 무기물 입자의 압전성으로 인해 입자 내 전위차가 발생하게 되고 이로 인해 양 전극 간의 전자 이동, 즉 미세한 전류의 흐름이 이루어짐으로써, 완만한 전지의 전압 감소 및 이로 인한 안전성 향상을 도모할 수 있다.In the case of using the inorganic particles having the above-mentioned characteristics, when the internal short-circuit of both electrodes occurs due to an external impact such as local crush or nail, the anode and the cathode are not in direct contact with each other due to the inorganic particles coated on the separator , The electric potential difference in the particle is generated due to the piezoelectricity of the inorganic particles. As a result, the electrons move between the electrodes, that is, the minute electric current flows, so that the voltage of the battery can be smoothly reduced and the safety can be improved.
상기 압전성을 갖는 무기물 입자의 예로는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) hafnia (HfO2) 또는 이들의 혼합물 등이 있으나 이에 한정되는 것은 아니다.Examples of the inorganic particles having the piezoelectricity is BaTiO 3, Pb (Zr, Ti ) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) hafnia (HfO 2 ), or mixtures thereof.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 말한다. 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다.The inorganic particles having the lithium ion transferring ability include inorganic particles containing a lithium element but having a function of not transferring lithium but moving lithium ions. The inorganic particles having lithium ion transferring ability can transfer and move lithium ions due to a kind of defect existing in the particle structure, so that the lithium ion conductivity in the battery is improved and the battery performance is improved thereby .
상기 리튬 이온 전달 능력을 갖는 무기물 입자의 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass (LixPySz, 0<x<3, 0<y<3, 0<z<7), 또는 이들의 혼합물 등이 있으나, 이에 한정되는 것은 아니다.Examples of the inorganic particles having lithium ion transferring ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y < (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3), Li (LiAlTiP) x O y series glass (Li x Ge y P z S w , 0 <x <4, 0 <y <1, 0 <z <1, 0 <w <5) such as 3.25 Ge 0.25 P 0.75 S 4 , lithium nitride such as Li 3 N (Li x N y , 0 <x <4, 0 <y <2), Li 3 PO 4 -Li 2 S-SiS 2 SiS 2 based glass (Li x Si y S, such as z, 0 <x <3, 0 <y <2, 0 <z <4), LiI-Li 2 SP 2 S 5 as P 2 S 5 based glass (Li x P y S z , 0 <x <3 , such , 0 <y <3, 0 <z <7), or a mixture thereof, but are not limited thereto.
상기 알루미나 수화물은 제조방법에 따라 결정질인 것과 겔 모양인 것으로 분류된다. 상기 결정질 알루미나 수화물은 기브자이트 ¡-Al(OH)3, 바이어라이트 Al(OH)3, 다이어스포어 ¡-AlOOH, 보헤마이트 ¡-AlOOH의 4종이 있고, 겔 모양인 알루미나 수화물에는 알루미늄 이온을 함유하는 수용액을 암모니아에 의해 침전시킨 수산화알루미늄이 이에 해당되며, 바람직하게는 보헤마이트 ¡-AlOOH가 사용될 수 있다.The alumina hydrate is classified as crystalline and gelatinous depending on the preparation method. The crystalline alumina hydrate contains the gib ZUID ¡-Al (OH) 3, via light Al (OH) 3, Dyer Spore ¡-AlOOH, bohe 4 paper, and the gel form of the alumina hydrate has a boehmite aluminum ion ¡-AlOOH Aluminum hydroxide precipitated by ammonia, and preferably boehmite? -AlOOH can be used.
전술한 높은 유전율의 무기물 입자, 압전성을 갖는 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 알루미나 수화물들을 혼용할 경우, 이들의 상승 효과는 배가 될 수 있다.When the inorganic particles having a high dielectric constant, the inorganic particles having piezoelectricity, the inorganic particles having lithium ion transporting ability, and alumina hydrates are mixed, the synergistic effect of these can be doubled.
상기 무기물 입자의 크기는 제한이 없으나, 균일한 두께의 필름 형성 및 적절한 공극률을 위하여 가능한 한 0.001μm 내지 10μm 범위인 것이 바람직하다. 0.001μm 미만인 경우 분산성이 저하되어 분리막의 물성을 조절하기가 어려우며, 10μm 를 초과하는 경우 동일한 고형분 함량으로 제조되는 분리막의 두께가 증가하여 기계적 물성이 저하되며, 또한 지나치게 큰 기공 크기로 인해 전지 충방전시 내부 단락이 일어날 확률이 높아진다.The size of the inorganic particles is not limited, but is preferably in the range of 0.001 탆 to 10 탆 in order to form a film having a uniform thickness and a proper porosity. When the thickness is less than 0.001 μm, the dispersibility of the separator is deteriorated and it is difficult to control the physical properties of the separator. When the thickness is more than 10 μm, the thickness of the separator formed with the same solid content is increased to decrease the mechanical properties. The probability of an internal short circuit occurring during discharge increases.
b) 바인더b) binder
바인더는 액체 전해액 함침시 겔화되어 높은 전해액 함침율(degree of swelling)을 나타낼 수 있다. 전해액 함침율이 우수한 고분자인 경우, 전지 조립 후 주입되는 전해액은 상기 고분자로 스며들게 되고, 흡수된 전해액을 보유하는 고분자는 전해질 이온 전도 능력을 갖게 된다. 종래 소수성 폴리올레핀 계열 분리막에 비해 전지용 전해액에 대한 젖음성(wetting)이 개선될 뿐만 아니라 종래에 사용되기 어려웠던 전지용 극성 전해액의 적용도 가능하다는 장점이 있다. 가능하면 용해도 지수가 15 MPa1/2 내지 45 MPa1/2인 고분자가 바람직하며, 15 MPa1/2 내지 25 MPa1/2 및 30 MPa1/2 내지 45 MPa1/2 범위가 더욱 바람직하다. 용해도 지수가 15 MPa1/2 미만 및 45 MPa1/2를 초과하는 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어렵게 된다.The binder is gelled upon impregnation with a liquid electrolyte and can exhibit a high degree of swelling of the electrolyte. In the case of a polymer having an excellent electrolyte impregnation rate, the electrolyte injected after assembling the cell is impregnated with the polymer, and the polymer having the absorbed electrolyte has electrolytic ion conduction capability. The wetting of the electrolyte for a battery is improved as compared with the conventional hydrophobic polyolefin-based separator, and it is also possible to apply a polar electrolyte for a battery, which has been difficult to be used conventionally. The solubility index is preferably 15 MPa 1/2 to 45 MPa 1/2 , preferably 15 MPa 1/2 to 25 MPa 1/2 and more preferably 30 MPa 1/2 to 45 MPa 1/2, . When the solubility index exceeds 15 MPa 1/2 and exceeds 45 MPa 1/2 , it is difficult to swell by a common liquid electrolyte for a battery.
구체적으로, 상기 바인더는 폴리비닐리덴플로라이드, 폴리비닐리덴 플로라이드-헥사플루오로프로필렌, 폴리비닐리덴플로라이드-트리클로로에틸렌, 폴리비닐리덴플로라이드-클로로트리플로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 에틸렌 비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복시메틸셀룰로오스, 아크릴로니트릴스티렌부타디엔 공중합체, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), 불소 고무 및 폴리이미드로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.Specifically, the binder is selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichlorethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate , Polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinyl (EPDM), sulphonated EPDM, styrene butylene rubber (SBR), fluorine-containing polymers such as fluorine-containing polymers such as ethylene-propylene-diene monomers Rubber and polyimide. Or two or more.
c) 가교제c) Crosslinking agent
가교제는 특정 온도에서 교차 결합반응이 일어나서 3차원 망상 구조를 갖는 고분자로 이루어지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 2개 내지 10개의 관능기를 포함하는 고분자 물질을 가교제를 사용할 수 있다.The cross-linking agent is not particularly limited as long as it is a cross-linking reaction at a specific temperature and is formed of a polymer having a three-dimensional network structure. For example, a cross-linking agent may be used for a polymer material containing two to ten functional groups.
구체적으로, 폴리에틸렌글리콜디메타크릴레이트(PEGDMA), 또는 하기 화학식 1 내지 2로 나타내는 고분자 물질일 수 있다.Specifically, it may be polyethylene glycol dimethacrylate (PEGDMA) or a polymer substance represented by the following formulas (1) to (2).
화학식 1 Formula 1
Figure PCTKR2018013112-appb-I000001
Figure PCTKR2018013112-appb-I000001
상기 화학식 1에서 x는 1 내지 100의 정수이고, y는 0 내지 30의 정수이며, z는 1 내지 1,000의 정수이다. 상기 화학식 1의 중량평균분자량은 1,000 내지 100,000이며 p 값은 이에 종속되는 변수이다.X is an integer of 1 to 100, y is an integer of 0 to 30, and z is an integer of 1 to 1,000. The weight average molecular weight of the formula (1) is 1,000 to 100,000 and the p value is a dependent variable.
화학식 2(2)
Figure PCTKR2018013112-appb-I000002
Figure PCTKR2018013112-appb-I000002
상기 화학식 2에서 a, c는 1 내지 30의 정수이고, b는 1 내지 1000의 정수이다. 상기 화학식 2의 중량평균분자량은 1,000 내지 100,000이며 d 값은 이에 종속되는 변수이다.In the above formula (2), a and c are integers of 1 to 30, and b is an integer of 1 to 1000. The weight average molecular weight of the formula (2) is 1,000 to 100,000 and the d value is a dependent variable.
상기 가교제의 반응 온도는 120℃ 내지 160℃의 범위일 수 있으며, 더욱 바람직하게는 130℃ 내지 150℃의 범위일 수 있는 바, 상기 온도 범위에 도달하기 전의 낮은 온도에서는 선형 구조로 이루어진 가교제가, 상기 온도 범위에 도달함에 따라 반응이 일어나면서 가교 결합에 의해 3차원 망상 구조가 형성된다.The reaction temperature of the crosslinking agent may be in the range of 120 ° C to 160 ° C, more preferably 130 ° C to 150 ° C. At a low temperature before reaching the temperature range, As the temperature is reached, the reaction takes place and a three-dimensional network is formed by crosslinking.
상기 가교제의 반응 온도가 120℃ 보다 낮은 경우에는 가교제의 가교 결합자리의 결합이 끊어지지 않아서 가교반응이 일어나기 어렵고, 160℃보다 높은 경우에는 함께 사용되는 바인더 또는 가교제가 용융될 수 있으므로 바람직하지 않다.When the reaction temperature of the crosslinking agent is lower than 120 ° C, the crosslinking sites of the crosslinking agent are not broken and the crosslinking reaction is difficult to occur. When the reaction temperature is higher than 160 ° C, the binder or crosslinking agent used may be melted.
또한, 본원 발명에 따른 분리막은, 무기물 입자와 바인더로 구성되는 분리막에 대해 가교제가 추가되는 구성으로 이루어지기 때문에 분리막 기재가 생략되더라도 높은 절연파괴전압(breakdown voltage)을 갖는다.In addition, since the separator according to the present invention has a structure in which a crosslinking agent is added to a separator composed of inorganic particles and a binder, a breakdown voltage is high even if the separator substrate is omitted.
구체적으로, 전도성 물질인 철(Fe)과 같은 이물질을 본원의 분리막에 적용하는 경우, 자동차용 이차전지에 적용되며 분리막 기재를 포함하는 분리막과 비교할 때, 거의 유사한 절연파괴전압 값을 갖는 것으로 확인되며, 또한, 상기 전도성 물질의 적용 전과 후의 절연파괴전압의 감소가 거의 일어나지 않는다.Specifically, when a foreign substance such as iron (Fe), which is a conductive material, is applied to the separator of the present invention, it is confirmed that the separator has a substantially similar breakdown voltage value as compared with a separator including a separator substrate applied to a secondary battery for an automobile , And the decrease of the breakdown voltage before and after the application of the conductive material hardly occurs.
d) 반응 개시제d) reaction initiator
하나의 구체적인 예에서, 상기 분리막은, 가교 반응에 의한 물리적 특성이 향상되는 효과를 높이기 위하여 상기 가교제에 대한 반응 개시제를 더 포함할 수 있다.In one specific example, the separation membrane may further include a reaction initiator for the crosslinking agent in order to enhance the effect of improving the physical properties by the crosslinking reaction.
상기 반응 개시제의 종류는 특별히 제한되는 것은 아니며, 구체적으로, 아조(azo)계 화합물 또는 퍼옥사이드(peroxide)계 화합물일 수 있으며, 예를 들어, 상기 아조계 화합물은 2,2'-아조비스(2-메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴), 2,2'-아조비스(2,4-디메틸발레로니트릴) 및 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴) 중에서 적어도 하나 이상일 수 있고, 바람직하게는 2,2'-아조비스(이소부티로니트릴) 또는 2,2'-아조비스(2,4-디메틸발레로니트릴)일 수 있다.The type of the reaction initiator is not particularly limited and may be specifically an azo compound or a peroxide compound. For example, the azo compound may be 2,2'-azobis ( (2-methylbutyronitrile), 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis Methoxy-2,4-dimethylvaleronitrile), and preferably at least one of 2,2'-azobis (isobutyronitrile) or 2,2'-azobis (2,4- Ronitril).
상기 퍼옥사이드계 화합물은 테트라메틸부틸퍼옥시 네오데카노에이트, 비스(4-부틸시클로헥실)퍼옥시디카보네이트, 디(2-에틸헥실)퍼옥시 카보네이트, 부틸퍼옥시 네오데카노에이트, 디프로필 퍼옥시 디카보네이트, 디이소프로필 퍼옥시 디카보네이트, 디에톡시에틸 퍼옥시 디카보네이트, 디에톡시헥실퍼옥시 디카보네이트, 헥실 퍼옥시 디카보네이트, 디메톡시부틸 퍼옥시 디카보네이트, 비스(3-메톡시-3-메톡시부틸) 퍼옥시 디카보네이트, 디부틸 퍼옥시 디카보네이트, 디세틸(dicetyl)퍼옥시 디카보네이트, 디미리스틸(dimyristyl) 퍼옥시 디카보네이트, 1,1,3,3-테트라메틸부틸 퍼옥시피발레이트(peroxypivalate), 헥실 퍼옥시 피발레이트, 부틸 퍼옥시 피발레이트, 트리메틸 헥사노일 퍼옥사이드, 디메틸 히드록시 부틸 퍼옥시 네오 데카노에이트, 아밀 퍼옥시 네오 데카노에이트, Atofina, 부틸 퍼옥시 네오 데카노에이트, t-부틸퍼옥시네오헵타노에이트, 아밀퍼옥시 피발레이트, t-부틸퍼옥시 피발레이트, t-아밀 퍼옥시-2-에틸헥사노에이트,라우릴 퍼옥사이드, 디라우로일(dilauroyl) 퍼옥사이드, 디데카노일 퍼옥사이드, 벤조일 퍼옥사이드 및 디벤조일 퍼옥사이드 중에서 적어도 하나 이상일 수 있다.The peroxide compound may be at least one selected from the group consisting of tetramethyl butyl peroxyneodecanoate, bis (4-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxycarbonate, butyl peroxyneodecanoate, Diisopropylperoxy dicarbonate, diethoxyhexyl peroxydicarbonate, diethoxyhexyl peroxydicarbonate, hexyl peroxy dicarbonate, dimethoxy butyl peroxy dicarbonate, bis (3-methoxy-3 -Methoxybutyl) peroxy dicarbonate, dibutyl peroxy dicarbonate, dicetyl peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethyl butyl peroxide Peroxypivalate, hexyl peroxypivalate, butyl peroxypivalate, trimethylhexanoyl peroxide, dimethylhydroxybutyl peroxyneodecanoate, amyl peroxy Butyl peroxyneodecanoate, neodecanoate, Atofina, butyl peroxyneodecanoate, t-butyl peroxyneoheptanoate, amyl peroxypivalate, t-butyl peroxypivalate, t-amyl peroxy-2-ethylhexanoate And may be at least one or more selected from the group consisting of lauryl peroxide, dilauroyl peroxide, didecanoyl peroxide, benzoyl peroxide and dibenzoyl peroxide.
e) 분리막의 구성e) Composition of membrane
본원 발명에 따른 분리막은 종래의 분리막과 비교할 때, 분리막 기재가 없는 구조이기 때문에 분리막 자체의 강도가 문제될 수 있으므로, 상대적으로 두꺼운 두께로 이루어질 수 있는 바, 상기 분리막의 두께는 5㎛ 내지 30㎛의 범위로 이루어질 수 있다.Since the separation membrane according to the present invention has a structure without a separation membrane substrate compared to a conventional separation membrane, the strength of the separation membrane itself may be a problem, so that the separation membrane may have a relatively thick thickness. &Lt; / RTI &gt;
상기 분리막의 두께가 5㎛ 보다 작은 경우에는 분리막의 강도가 약해서 쉽게 손상될 수 있고, 30㎛ 보다 큰 경우에는, 전체적인 전극조립체의 두께가 증가되어 용량이 감소될 수 있으므로 바람직하지 않다.When the thickness of the separator is less than 5 탆, the separator may have a weak strength and may be easily damaged. When the separator is more than 30 탆, the thickness of the entire electrode assembly may increase and the capacity may decrease.
상기 분리막에서 가교제의 함량은, 고형분 전체 중량을 기준으로 0 중량% 초과 내지 15 중량% 미만으로 포함될 수 있는 바, 상기 가교제의 함량이 고형분 전체 중량을 기준으로 15 중량% 보다 많은 경우에는 가교가 완벽히 일어나지 않아 국부적으로 가교제가 가소제(plasticizer) 역할을 하게 되어 오히려 인장강도가 현저히 감소하게 되므로 바람직하지 않다.The content of the crosslinking agent in the separator may be greater than 0 wt% to less than 15 wt% based on the total weight of the solid content. When the content of the crosslinking agent is more than 15 wt% based on the total weight of the solid content, And the local crosslinking agent acts as a plasticizer since it does not occur, and the tensile strength is remarkably reduced, which is not preferable.
상기 분리막의 통기도는 50 sec/100cc 내지 4,000 sec/100cc의 범위일 수 있는 바, 상기 통기도가 50 sec/100cc보다 작은 경우에는 절연특성이 매우 열악하고, 4,000 sec/100cc보다 큰 경우에는 전해액 함침성 및 이온 전도도가 낮아지므로 바람직하지 않다.The air permeability of the separator may range from 50 sec / 100cc to 4,000 sec / 100cc. When the air permeability is less than 50 sec / 100cc, the insulation characteristics are very poor. When the air permeability is more than 4,000 sec / 100cc, And the ionic conductivity is lowered.
상기 분리막의 물리적 성질은 반응 온도 및 반응 시간으로부터 영향을 받는 바, 반응 시간이 길어질수록, 반응 온도가 증가할수록 가교 반응의 정도가 증가한다.The physical properties of the separation membrane are influenced by the reaction temperature and reaction time. As the reaction time becomes longer and the reaction temperature increases, the degree of crosslinking reaction increases.
예를 들어, 가교제로 사용되는 폴리에틸렌글리콜디메타크릴레이트(PEGDMA)의 경우, 반응 시간이 10분에서 30분으로 증가할 때, 그리고 반응 온도가 120℃에서 150℃로 증가할 때 가교 결합의 정도가 현저히 증가하게 된다.For example, in the case of polyethylene glycol dimethacrylate (PEGDMA) used as a crosslinking agent, when the reaction time increases from 10 minutes to 30 minutes and when the reaction temperature is increased from 120 ° C to 150 ° C, the degree of crosslinking .
f) 전기화학소자f) electrochemical devices
본원 발명은 또한, 양극과 음극, 상기 양극과 음극 사이에 개재된 상기 분리막, 및 전해질을 포함하는 전기화학소자를 제공하고, 여기서 상기 전기화학소자는 리튬 이차전지일 수 있다.The present invention also provides an electrochemical device comprising a positive electrode and a negative electrode, the separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrochemical device may be a lithium secondary battery.
상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 충진제를 더 첨가하기도 한다.The positive electrode is prepared by applying a mixture of a positive electrode active material, a conductive material and a binder on a positive electrode current collector, followed by drying. If necessary, a filler may be further added.
상기 양극 집전체는 일반적으로 3㎛ 이상 내지 500㎛ 이하의 두께로 만들어진다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The cathode current collector is generally made to have a thickness of 3 m or more to 500 m or less. Such a positive electrode collector is not particularly limited as long as it has conductivity without causing chemical change to the battery, and may be formed on the surface of stainless steel, aluminum, nickel, titanium, sintered carbon or aluminum or stainless steel Carbon, nickel, titanium, silver, or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2 -x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 and Cu 2 V 2 O 7 ; A Ni-site type lithium nickel oxide expressed by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 MO 8 (where, M = Fe, Co, Ni, Cu, or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like. However, the present invention is not limited to these.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 wt% to 30 wt% based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the mixture containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
상기 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.The negative electrode is manufactured by applying a negative electrode material on an anode current collector, and drying the anode current collector. Optionally, the above-described components may be optionally included.
상기 음극 집전체는 일반적으로 3㎛ 이상 내지 500㎛ 이하의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to have a thickness of 3 mu m or more and 500 mu m or less. The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.Examples of the negative electrode active material include carbon such as non-graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 < x &lt; Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, And Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
본원 발명은 또한, 상기 전기화학소자를 포함하는 전지팩을 제공할 수 있다.The present invention can also provide a battery pack including the electrochemical device.
구체적으로, 상기 전지팩은 고온 안전성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있으며, 이러한 디바이스의 상세한 예로는, 모바일 전자기기(mobile device), 웨어러블 전자기기(wearable device), 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력 저장 장치(Energy Storage System) 등을 들 수 있으나, 이에 한정되는 것은 아니다.Specifically, the battery pack may be used as a power source for devices requiring high-temperature safety, long cycle characteristics, and high rate characteristics. Examples of such devices include a mobile device, a wearable device A power tool powered by an electric motor; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And an energy storage system, but the present invention is not limited thereto.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.The structure of these devices and their fabrication methods are well known in the art, and a detailed description thereof will be omitted herein.
도 1은 가교제 및 개시제의 존부에 따른 물성을 측정한 결과를 나타낸 그래프이다.1 is a graph showing the results of measurement of physical properties depending on the presence of a crosslinking agent and an initiator.
도 2는 가교제의 반응 온도에 따른 물성을 측정한 결과를 나타낸 그래프이다.2 is a graph showing the results of measurement of physical properties of the crosslinking agent according to the reaction temperature.
이하, 실시예를 통해 본원 발명을 더욱 상술하지만, 하기 실시예는 본원 발명을 예시하기 위한 것이며, 본원 발명의 범주가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in further detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
하기 실시예 등에서 제조된 분리막의 물성 측정의 구체적인 방법은 하기와 같다.Specific methods for measuring the physical properties of the separator prepared in the following Examples and the like are as follows.
체적절연저항 측정Volumetric Insulation Resistance Measurement
6cm * 6cm 크기로 재단된 분리막 10장을 준비하고, 상기 분리막을 드라이룸에서 이틀 간 보관한 후 절연저항을 측정하였다.Ten sheets of 6 cm * 6 cm cut membranes were prepared and the separator was stored in a dryer for two days before measuring the insulation resistance.
체적절연저항 측정을 위하여 HIOKI사의 SM7120를 이용하여, Rv mode 조건으로 측정하였다. 10장의 분리막에 대한 체적절연저항을 측정하고 그 평균값을 계산하였다. 하기 표 1에 기재된 값은 평균값이다.For the volume insulation resistance measurement, the SM7120 manufactured by HIOKI Co., Ltd. was used and measured under the Rv mode condition. Volumetric insulation resistance was measured for 10 membranes and the average value was calculated. The values listed in Table 1 below are average values.
구체적인 측정 조건 설정은 하기와 같다.The specific measurement condition setting is as follows.
-측정시간 : 3s - Measurement time: 3s
- Average : off- Average: off
- voltage : 100V- voltage: 100V
- speed : slow2- speed: slow2
- range : auto- range: auto
- Delay : 0ms- Delay: 0ms
- SEQ : ON : 0- SEQ: ON: 0
- DCHG 1 : 0- DCHG 1: 0
- CHG : 0- CHG: 0
- DCHG 2 : 0- DCHG 2: 0
인장강도 및 연신율 측정Tensile strength and elongation measurement
15mm *150mm의 크기로 재단된 분리막 6장을 준비하고, 분리막 각각을 슬라이드 글라스의 단축 방향 및 장축 방향과 대응되도록 맞추어 접착시켰다. Six separation membranes cut to a size of 15 mm * 150 mm were prepared, and each of the separation membranes was adhered so as to correspond to the short axis direction and the long axis direction of the slide glass.
슬라이드 글라스 상에 위치하는 분리막 일측 말단부와 상기 슬라이드 글라스와 미접착된 분리막의 타측 말단부를 UTM(Universal Testing Machine)에 장착한 후, 서로 반대 방향으로 당기면서 분리막이 파단되는 강도를 측정하였다. 이 때 UTM 장치의 측정 속도는 500mm/min이며, 측정부의 길이는 100mm로 하였다.The one end portion of the separation membrane located on the slide glass and the other end portion of the separation membrane not yet attached to the slide glass were mounted on a universal testing machine, and then the strength of the separation membrane was measured while being pulled in opposite directions. At this time, the measurement speed of the UTM apparatus was 500 mm / min, and the length of the measurement section was 100 mm.
6장의 분리막에 대해 각각의 실험을 진행하여, 인장강도 및 연신율의 평균값을 계산하였다. 하기 표 1에 기재된 값은 평균값이다.Each of the experiments was carried out on the six membranes, and the average values of tensile strength and elongation were calculated. The values listed in Table 1 below are average values.
치수 변화율 측정Measuring rate of dimensional change
10 cm *10 cm의 크기로 재단된 분리막 6장과, 에틸렌카보네이트(Ethylene Carbonate)/에틸메틸카보네이트(ethyl methyl carnobate)/디메틸카보네이트(dimethylcarbonate)를 3:3::4의 비율로 포함하고 리튬염으로서 LiPF6 1.0M을 포함하는 전해액을 준비하였다.6 membranes cut to a size of 10 cm * 10 cm and ethyl carbonate / ethyl methyl carnobate / dimethylcarbonate in a ratio of 3: 3 :: 4, and a lithium salt , An electrolyte solution containing 1.0 M of LiPF 6 was prepared.
분리막을 상기 전해액 10 ml에 1시간 동안 함침시킨 후 변화된 분리막의 길이를 측정하여, 치수 변화율을 계산하였다. 6장의 분리막에 대해 각각의 실험을 진행하여 평균값을 계산하였고, 하기 표 1에 기재된 값은 평균값이다.The membrane was impregnated with 10 ml of the electrolyte solution for 1 hour, and then the length of the membrane was measured to calculate the dimensional change ratio. The average values were calculated for each of the six membranes, and the values shown in Table 1 are average values.
전기저항 측정Electrical resistance measurement
전극을 포함하지 않고 분리막과 전해액만을 포함하는 2016 size의 코인셀(coin cell)을 제조하였다.A coin cell of 2016 size containing only the separator and electrolyte was prepared without electrodes.
Solatron 사(社)의 Cell Test System 1470E과 Solatron 사의 Frequency Response Analyzer 1255B를 사용하여, 10,000Hz ~100,000Hz 범위의 특정한 진동수에서의 임피던스(impedance)를 측정하였고, 각 임피던스 값들을 선형으로 이을 때의 X절편을 분리막의 저항으로 하였다.Using the Cell Test System 1470E from Solatron and the Frequency Response Analyzer 1255B from Solatron, the impedance at a specific frequency in the range of 10,000 Hz to 100,000 Hz was measured, and the impedance at each frequency The section was taken as the resistance of the membrane.
<실시예 1>&Lt; Example 1 >
무기물 입자로서 보헤마이트(AlO(OH)), 바인더로서 폴리비닐리덴플로라이드(PVdF), 및 가교제로서 폴리에틸렌글리콜디메타크릴레이트(PEGDMA)가 78:20:2의 중량비로 혼합된 고형분의 함량이 슬러리 전체 중량을 기준으로 18 중량%가 되도록 슬러리를 제조하였다.The content of solid content of boehmite (AlO (OH)) as inorganic particles, polyvinylidene fluoride (PVdF) as a binder and polyethylene glycol dimethacrylate (PEGDMA) as a crosslinking agent in a weight ratio of 78: 20: 2 The slurry was made to be 18% by weight based on the total weight of the slurry.
구체적으로, 보헤마이트(AlO(OH)) 28.08g, PVdF 7.2g 및 PEGDMA 0.72g를 아세톤164g에 첨가한 후, 슬러리를 제조하였다. 상기 슬러리를 분리막 형태로 성형한 후 150℃에서 30분간 반응하여 분리막을 제조하였다. 가교 반응이 완료된 이후 상온에서 추가의 건조를 진행한 후 분리막을 완성하였다.Specifically, 28.08 g of boehmite (AlO (OH)), 7.2 g of PVdF and 0.72 g of PEGDMA were added to 164 g of acetone, and then a slurry was prepared. The slurry was formed into a separator and reacted at 150 ° C for 30 minutes to prepare a separator. After completion of the crosslinking reaction, the membrane was further dried at room temperature.
<실시예 2>&Lt; Example 2 >
실시예 1의 슬러리에 개시제인 2,2'-아조비스(이소부티로니트릴) 0.0072g을 추가한 것을 제외하고 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.A separation membrane was prepared in the same manner as in Example 1, except that 0.0072 g of 2,2'-azobis (isobutyronitrile) as an initiator was added to the slurry of Example 1.
<비교예 1>&Lt; Comparative Example 1 &
가교제인 폴리에틸렌글리콜디메타크릴레이트(PEGDMA)를 포함하지 않도록 보헤마이트(AlO(OH)) 및 폴리비닐리덴플로라이드(PVdF)가 78 : 22의 비율로 혼합된 고형분을 사용한 점을 제외하고 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.Except that a solid content of boehmite (AlO (OH)) and polyvinylidene fluoride (PVdF) mixed at a ratio of 78:22 was used so as not to include polyethylene glycol dimethacrylate (PEGDMA) as a crosslinking agent. 1, a separator was prepared.
<실험예 1><Experimental Example 1>
가교제 및 개시제의 존부에 따른 물성 측정Measurement of physical properties according to presence of crosslinking agent and initiator
상기 실시예 1 및 2와 비교예 1에서 제조된 분리막을 이용하여 체적절연저항(volumetric resistivity), 인장강도(tensile strength), 및 치수변화율(swelling)을 측정하였고, 그 결과를 하기 표 1 및 도 1에 나타내었다.Volumetric resistivity, tensile strength, and dimensional change (swelling) were measured using the separator prepared in Examples 1 and 2 and Comparative Example 1, and the results are shown in Tables 1 and 2 Respectively.
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1
체적절연저항 (GΩ·cm)(100V, 3S)Volumetric Insulation Resistance (GΩ · cm) (100V, 3S) 4.24.2 270,000270,000 1111
인장강도 (kgf/cm2)Tensile strength (kgf / cm 2 ) 138138 149149 135135
치수 변화율 (%)Dimensional change ratio (%) 33 33 44
상기 표 1 및 도 1을 참조하면, 개시제를 첨가하지 않은 실시예 1의 경우 체적절연저항이 4.2GΩ·cm로 낮은 반면, 개시제를 첨가한 실시예 2의 경우에는 가교제를 포함하지 않는 비교예 1과 비교할 때 현저히 증가한다. 상기 체적절연저항이 낮은 경우에는 절연이 충분히 되지 않아 미세전류가 흐르는 상태인 반면, 체적절연저항이 높은 경우에는 전류가 흐르지 않도록 절연성이 확보된 상태이다. 따라서 개시제를 첨가하는 경우에는 절연성이 현저히 향상됨을 알 수 있다. 개시제가 첨가될 경우 그렇지 않은 경우에 비해 가교도가 향상되어 미반응 가교제의 함량이 줄고, 가교제가 반응한 고분자의 비율이 증가하게 되기 때문에 개시제가 첨가될 경우 절연저항이 향상되었을 것으로 추측된다.Referring to Table 1 and FIG. 1, in Example 1 in which the initiator was not added, the volume insulation resistance was as low as 4.2 GΩ · cm, while in Example 2 in which the initiator was added, Comparative Example 1 As compared with the control. When the volume insulation resistance is low, insulation is insufficient and a minute current flows. On the other hand, when the volume insulation resistance is high, insulation is secured so that no current flows. Therefore, it is understood that when the initiator is added, the insulating property is remarkably improved. When the initiator is added, the crosslinking degree is improved, the content of the unreacted crosslinking agent is reduced, and the proportion of the polymer reacted with the crosslinking agent is increased. Therefore, it is presumed that the addition of the initiator improves the insulation resistance.
또한, 3차원 망상구조로 변하는 가교제를 포함하는 실시예 1 및 실시예 2의 경우에는 인장강도가 증가하여 분리막의 강도가 향상되고, 치수 변화율은 감소하여 치수 안정성이 증가하게 된다.In the case of Examples 1 and 2 including a crosslinking agent changing into a three-dimensional network structure, the tensile strength is increased and the strength of the separator is improved, and the dimensional change rate is decreased and the dimensional stability is increased.
즉, PEGDMA와 같은 가교제를 추가하여 제조한 분리막의 경우, 150℃에서 건조하는 과정을 통해, 가교 결합에 따른 3차원 망상구조가 형성됨으로써 인장강도는 증가하고 치수 변화율이 감소하는 것을 알 수 있다.That is, in the case of a separator prepared by adding a crosslinking agent such as PEGDMA, a three-dimensional network structure due to crosslinking is formed through drying at 150 ° C., so that the tensile strength increases and the dimensional change rate decreases.
또한, 개시제를 추가하지 않은 실시예 1과 개시제를 추가한 실시예 2를 비교하면, 실시예 2는 인장강도가 더욱 증가하는 바, 개시제가 3차원 망상구조 형성을 위한 가교결합에 효과적인 것을 알 수 있다.Further, when Example 1 in which no initiator was added and Example 2 in which an initiator was added was compared with Example 2, it was found that the initiator was effective for crosslinking for forming a three-dimensional network structure as the tensile strength was further increased have.
<실시예 3>&Lt; Example 3 >
반응 온도를 150℃에서 130℃로 변경한 것을 제외하고 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.A separation membrane was prepared in the same manner as in Example 1, except that the reaction temperature was changed from 150 캜 to 130 캜.
<비교예 2>&Lt; Comparative Example 2 &
슬러리의 반응 온도를 100℃로 한 점을 제외하고 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.The separation membrane was prepared in the same manner as in Example 1, except that the reaction temperature of the slurry was changed to 100 캜.
<비교예 3>&Lt; Comparative Example 3 &
슬러리의 반응 온도를 170℃로 한 점을 제외하고 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.A separation membrane was prepared in the same manner as in Example 1 except that the reaction temperature of the slurry was changed to 170 캜.
<실험예 2><Experimental Example 2>
개시제의 반응 온도에 따른 물성 측정Measurement of physical properties according to reaction temperature of initiator
상기 실시예 1, 실시예 3, 비교예 2 및 비교예 3에서 제조된 분리막을 이용하여 체적절연저항(volumetric resistivity), 인장강도(tensile strength) 및 치수변화율(swelling)을 측정하였고, 그 결과를 하기 표 2 및 도 2에 나타내었다.Volumetric resistivity, tensile strength and swelling were measured using the separator prepared in Example 1, Example 3, Comparative Example 2 and Comparative Example 3, The results are shown in Table 2 and FIG.
비교예 2(100℃)Comparative Example 2 (100 ° C) 실시예 3(130℃)Example 3 (130 &lt; 0 &gt; C) 실시예 1(150℃)Example 1 (150 &lt; 0 &gt; C) 비교예 3(170℃)Comparative Example 3 (170 DEG C)
체적절연저항 (GΩ·cm)(100V, 3S)Volumetric Insulation Resistance (GΩ · cm) (100V, 3S) 1.201.20 3.433.43 5.915.91 5.505.50
인장강도 (kgf/cm2)Tensile strength (kgf / cm 2 ) 9797 118118 136136 132132
치수 변화율 (%)Dimensional change ratio (%) 33 22 22 22
상기 표 2 및 도 2를 참조하면, 가교 온도가 150℃인 실시예 1의 물성은 가교 온도가 130℃인 실시예 3과 비교할 때, 체적절연저항 및 인장강도가 증가한다. 또한 치수 변화율은 동일하게 유지되는 것을 알 수 있다. Referring to Table 2 and FIG. 2, the physical properties of Example 1 having a crosslinking temperature of 150 占 폚 increase in volume insulation resistance and tensile strength as compared with Example 3 where the crosslinking temperature is 130 占 폚. It can be seen that the rate of dimensional change remains the same.
또한, 가교 온도가 100℃인 비교예 2와 가교 온도가 130℃인 실시예 3을 비교할 때, 비교예 2는 체적절연저항 및 인장강도 및 치수 변화율이 모두 열위에 있는 것으로 측정되었다.In addition, in Comparative Example 2 in which the crosslinking temperature was 100 캜 and Example 3 in which the crosslinking temperature was 130 캜, the volume insulation resistance, the tensile strength, and the dimensional change were all found to be in the inferior state.
가교 온도가 170℃인 비교예 3의 경우에는, 실시예 1과 비교할 때 치수변화율은 동일한 값을 유지하나, 체적절연저항 및 인장강도가 감소하는 것으로 측정되었다.In the case of Comparative Example 3 in which the crosslinking temperature was 170 占 폚, the dimensional change ratio was kept at the same value as compared with Example 1, but the volume insulation resistance and the tensile strength were measured to decrease.
따라서, 본원의 가교제는 120℃ 내지 160℃의 온도에서 가교 반응이 활발하게 진행되어 소망하는 물성을 갖는 분리막을 제조할 수 있는 것을 확인할 수 있으며, 가교 온도가 150℃일 때 물리적인 성질이 가장 우수한 분리막을 제조할 수 있는 것으로 평가된다.Therefore, it can be confirmed that the crosslinking agent of the present invention is capable of producing a separating membrane having a desired physical property by progressively proceeding a crosslinking reaction at a temperature of 120 ° C to 160 ° C. When the crosslinking temperature is 150 ° C, It is estimated that a membrane can be produced.
<실시예 4><Example 4>
실시예 1에서 바인더의 함량비를 고형분 전체 중량을 기준으로 20중량%에서 15중량%로, 가교제를 2중량%에서 7중량%로 변경한 것 외에는 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.A separator was prepared in the same manner as in Example 1 except that the content ratio of the binder in Example 1 was changed from 20% by weight to 15% by weight based on the total solid content weight, and the amount of the crosslinking agent was changed from 2% by weight to 7% by weight .
<실시예 5>&Lt; Example 5 >
실시예 1에서 바인더의 함량비를 고형분 전체 중량을 기준으로 20중량%에서 11중량%로, 가교제를 2중량%에서 11중량%로 변경한 것 외에는 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.A separator was prepared in the same manner as in Example 1 except that the content ratio of the binder in Example 1 was changed from 20% by weight to 11% by weight based on the total solid weight, and the amount of the crosslinking agent was changed from 2% by weight to 11% by weight .
<비교예 4>&Lt; Comparative Example 4 &
실시예 1에서 바인더의 함량비를 고형분 전체 중량을 기준으로 20중량%에서 7중량%로, 가교제를 2중량%에서 15중량%로 변경한 것 외에는 실시예 1과 동일한 방법에 의해 분리막을 제조하였다.A separator was prepared in the same manner as in Example 1 except that the content ratio of the binder in Example 1 was changed from 20% by weight to 7% by weight based on the total solid content weight, and the amount of the crosslinking agent was changed from 2% by weight to 15% .
<실험예 3><Experimental Example 3>
가교제의 함량에 따른 물성 측정Measurement of physical properties according to the content of crosslinking agent
상기 실시예 1, 실시예 4, 실시예 5 및 비교예 4에서 제조된 분리막을 이용하여 전기저항 (electrical resistance) 및 연신율(elongation)을 측정하였고, 그 결과를 하기 표 3에 나타내었다.Electrical resistance and elongation of the separator prepared in Examples 1, 4, 5 and 4 were measured. The results are shown in Table 3 below.
실시예 1 (PEGDMA 2wt%)Example 1 (2 wt% PEGDMA) 실시예 4(PEGDMA 7wt%)Example 4 (7 wt% PEGDMA) 실시예 5(PEGDMA 11wt%)Example 5 (11 wt% PEGDMA) 비교예 4(PEGDMA 15wt%)Comparative Example 4 (15 wt% of PEGDMA)
인장강도 kgf/cm2)Tensile strength kgf / cm 2 ) 136136 8888 7979 1010
연신율 (%)Elongation (%) 4646 4141 1515 33
상기 표 3을 참조하면, 가교제가 15 wt% 보다 적게 포함된 실시예 1, 4 및 5는 가교제가 15 wt% 포함된 비교예 4와 비교할 때, 인장강도 및 연신율이 모두 증가된 것으로 측정되었다.Referring to Table 3, Examples 1, 4 and 5, in which less than 15 wt% of crosslinking agent was contained, were measured to have increased both tensile strength and elongation as compared with Comparative Example 4 containing 15 wt% of crosslinking agent.
즉, 가교제가 과량으로 투입되는 경우, 인장강도가 크게 약해지는 것을 알 수 있다.That is, when the cross-linking agent is added in an excessive amount, the tensile strength is remarkably weakened.
따라서, 본원발명은 가교제의 함량이 일정한 범위 내에서 증가하는 경우에만, 일정 인장강도 및 연신율이 유지되어 셀 조립이 가능한 분리막을 얻을 수 있음을 확인하였다.Therefore, it was confirmed that the present invention can obtain a separation membrane capable of cell assembly by maintaining a constant tensile strength and elongation only when the content of the crosslinking agent increases within a certain range.
<실시예 7>&Lt; Example 7 >
상기 실시예 2에서 가교제인 폴리에틸렌글리콜디메타크릴레이트(PEGDMA) 대신 상기 관능기가 6개인 상기 화학식 1의 화합물을 사용하고, 개시제인 2,2'-아조비스(이소부티로니트릴) 대신 2,2'-아조비스(2,4-디메틸발레로니트릴)을 사용한 점을 제외하고 상기 실시예 2와 동일한 방법에 의해 분리막을 제조하였다.Instead of polyethylene glycol dimethacrylate (PEGDMA) as a crosslinking agent in Example 2, the compound of Formula 1 having 6 functional groups was used, and 2,2'-azobis (isobutyronitrile) instead of initiator 2,2'-azobis '-Azobis (2,4-dimethylvaleronitrile) was used instead of the azobis (2,4-dimethylvaleronitrile).
<실시예 8>&Lt; Example 8 >
상기 실시예 2에서 가교제인 폴리에틸렌글리콜디메타크릴레이트(PEGDMA) 대신 상기 관능기가 10개인 상기 화학식 2의 화합물을 사용하고, 개시제인 2,2'-아조비스(이소부티로니트릴) 대신 2,2'-아조비스(2,4-디메틸발레로니트릴)을 사용한 점을 제외하고 상기 실시예 2와 동일한 방법에 의해 분리막을 제조하였다.Instead of polyethylene glycol dimethacrylate (PEGDMA) as a crosslinking agent in Example 2, the compound of Formula 2 having 10 functional groups was used, and 2,2'-azobis (isobutyronitrile) instead of initiator 2,2'-azobis '-Azobis (2,4-dimethylvaleronitrile) was used instead of the azobis (2,4-dimethylvaleronitrile).
<실험예 4><Experimental Example 4>
가교제의 관능기 수 및 가교제의 함량에 따른 물성 측정Measurement of physical properties according to the number of functional groups and the content of crosslinking agent
상기 실시예 2, 실시예 7, 실시예 8에서 제조된 분리막을 이용하여 체적절연저항, 전기저항, 인장강도 및 수치변화율을 측정하였고, 그 결과를 하기 표 4에 나타내었다.Volumetric insulation resistance, electrical resistance, tensile strength, and numerical rate of change were measured using the separator prepared in Example 2, Example 7, and Example 8. The results are shown in Table 4 below.
가교제관능기 수Number of cross-linker functional groups 체적절연저항 (TΩ·cm, 100V, 3S, 6*6cm)Volumetric insulation resistance (TΩ · cm, 100V, 3S, 6 * 6cm) 전기저항 (Ω)Electrical Resistance (Ω) 인장강도 (kgf/cm2)Tensile strength (kgf / cm 2 ) 치수변화율 (%)Dimensional change ratio (%)
실시예 2(가교제 2wt%)Example 2 (2 wt% of crosslinking agent) 2관능기2 functional group 21.521.5 1.961.96 147147 33
실시예 7(가교제 2wt%)Example 7 (2 wt% of crosslinking agent) 6관능기6 functional groups 5454 1.761.76 170170 2.52.5
실시예 8(가교제 2wt%)Example 8 (2 wt% of crosslinking agent) 10관능기10 functional groups 53.453.4 1.981.98 179179 2.32.3
상기 표 4를 참조하면, 관능기 수가 2인 가교제를 포함하는 실시예 2의 분리막에 대비하여 관능기 수가 6개인 가교제를 사용한 실시예 7과 관능기 수가 10개인 가교제를 사용한 실시예 8은 체적절연저항이 증가하는 것으로 나타난다. 이는 더 많은 가교가 진행되었기 때문인 것으로 예측된다.Referring to Table 4, in Example 7 using a crosslinking agent having 6 functional groups and Example 8 using a crosslinking agent having 10 functional groups in comparison with the separation membrane of Example 2 containing a crosslinking agent having a functional group number of 2, . This is presumed to be due to more cross-linking.
인장강도의 변화를 분석하면, 관능기 수가 증가할수록 인장 강도가 감소하는 것으로 나타난다.Analysis of the change in tensile strength shows that tensile strength decreases as the number of functional groups increases.
치수변화율은, 가교제의 함량이 동일한 경우에는 관능기 수가 증가할수록 치수안정성이 높아지는 경향이 있는 것으로 나타난다.When the content of the cross-linking agent is the same, the dimensional change rate tends to increase as the number of functional groups increases.
이와 같이, 본 발명에 따른 분리막은 폴리올레핀 기재를 포함하지 않으며, 분리막의 구성요소로서 가교제를 포함하고 선택적으로 개시제를 더 포함하며, 상기 가교제는 2이상 내지 10개의 관능기를 갖는 바, 상기 가교제 및 개시제로 인하여 체적절연저항이 현저히 증가하여 절연성이 확보되며 치수 안정성이 향상된다.As described above, the separation membrane according to the present invention does not include a polyolefin substrate, and includes a cross-linking agent as an element of the separation membrane, and optionally an initiator. The cross-linking agent has from 2 to 10 functional groups, The volume insulation resistance is remarkably increased to ensure insulation and improve dimensional stability.
본원 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.It will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.
이상에서 설명한 바와 같이, 본원 발명에 따른 전기화학소자용 분리막은 종래의 분리막과 달리 분리막 기재로 사용되는 폴리올레핀 기재를 포함하지 않으며, 무기물 입자, 바인더 및 가교제를 포함하는 물질로 이루어지는 바, 분리막 기재의 열적 안정성이 낮은 문제를 극복할 수 있으며, 상기 가교제 화합물이 3차원 망상구조를 형성함에 따라 분리막의 절연성이 현저히 향상될 수 있다.As described above, the separation membrane for an electrochemical device according to the present invention does not include a polyolefin substrate used as a separation membrane substrate, unlike a conventional separation membrane, and is made of a material including inorganic particles, a binder and a crosslinking agent. The problem of low thermal stability can be overcome and the insulating property of the separator can be remarkably improved as the crosslinking compound forms a three-dimensional network structure.
또한, 상기 가교제가 선형 구조에서 3차원 망상구조로 변형됨에 따라 분리막 자체의 인장강도가 증가하여 분리막의 손상 가능성이 낮아지고, 전지 내부에서 단락이 발생하는 것을 방지할 수 있다. 또한, 가교제의 관능기 수가 증가할수록 분리막의 치수안정성이 향상되어 분리막에 주름이 생기거나 변형되는 것을 방지할 수 있다.Also, as the crosslinking agent is transformed from a linear structure to a three-dimensional network structure, the tensile strength of the separating membrane itself is increased, so that the possibility of damage to the separating membrane is lowered and short-circuiting within the cell can be prevented. Further, as the number of functional groups of the crosslinking agent increases, the dimensional stability of the separating membrane is improved, and wrinkling or deformation of the separating membrane can be prevented.

Claims (13)

  1. 양극 및 음극 간의 전기 절연성을 확보하기 위한 전기화학소자용 분리막으로서,A separation membrane for an electrochemical device for securing electrical insulation between an anode and a cathode,
    상기 분리막은 폴리올레핀 기재를 포함하지 않으며, 무기물 입자, 상기 무기물 입자 간의 결합을 위한 바인더, 및 가교제를 포함하는 전기화학소자용 분리막.Wherein the separator does not include a polyolefin substrate, and includes inorganic particles, a binder for binding between the inorganic particles, and a crosslinking agent.
  2. 제1항에 있어서,The method according to claim 1,
    상기 무기물 입자는 유전율 상수가 1 이상인 고유전율 무기물 입자, 압전성(piezoelectricity)을 가진 무기물 입자, 리튬 이온 전달 능력을 가진 무기물 입자, 알루미나 수화물 또는 이들의 둘 이상의 혼합물인 전기화학소자용 분리막. Wherein the inorganic particles are high-k inorganic particles having a dielectric constant of 1 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion-transferring ability, alumina hydrate, or a mixture of two or more thereof.
  3. 제1항에 있어서,The method according to claim 1,
    상기 바인더는 폴리비닐리덴플로라이드, 폴리비닐리덴 플로라이드-헥사플루오로프로필렌, 폴리비닐리덴플로라이드-트리클로로에틸렌, 폴리비닐리덴플로라이드-클로로트리플로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 에틸렌 비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복시메틸셀룰로오스, 아크릴로니트릴스티렌부타디엔 공중합체, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), 불소 고무 및 폴리이미드로 이루어진 군에서 선택되는 1종 이상인 전기화학소자용 분리막.The binder may be selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichlorethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate, polyacryl Polyvinyl pyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinyl alcohol, (EPDM), sulfonated EPDM, styrene butylene rubber (SBR), fluorocarbon rubber, and poly (polybutylene terephthalate) rubber. Examples of the thermoplastic elastomer include, but are not limited to, polyethylene terephthalate, polyethylene terephthalate, polyethylene terephthalate, &Lt; / RTI &gt; and &lt; RTI ID = 0.0 &gt; Separation membranes for chemical elements.
  4. 제1항에 있어서,The method according to claim 1,
    상기 가교제는 2개 내지 10개의 관능기를 포함하는 고분자 물질인 전기화학소자용 분리막.Wherein the cross-linking agent is a polymer material containing 2 to 10 functional groups.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 가교제는 폴리에틸렌글리콜디메타크릴레이트이거나, 또는 하기 화학식 1 내지 2로 나타내는 고분자 물질인 전기화학소자용 분리막.Wherein the crosslinking agent is polyethylene glycol dimethacrylate, or a polymeric substance represented by any one of the following formulas (1) to (2).
    화학식 1Formula 1
    Figure PCTKR2018013112-appb-I000003
    Figure PCTKR2018013112-appb-I000003
    상기 화학식 1에서 x는 1 내지 100의 정수이고, y는 0 내지 30의 정수이며, z는 1 내지 1,000의 정수이다. 상기 화학식 1의 중량평균분자량은 1,000 내지 100,000이며 p 값은 이에 종속되는 변수이다.X is an integer of 1 to 100, y is an integer of 0 to 30, and z is an integer of 1 to 1,000. The weight average molecular weight of the formula (1) is 1,000 to 100,000 and the p value is a dependent variable.
    화학식 2(2)
    Figure PCTKR2018013112-appb-I000004
    Figure PCTKR2018013112-appb-I000004
    상기 화학식 2에서 a, c는 1 내지 30의 정수이고, b는 1 내지 1000의 정수이다. 상기 화학식 2의 중량평균분자량은 1,000 내지 100,000이며 d 값은 이에 종속되는 변수이다.In the above formula (2), a and c are integers of 1 to 30, and b is an integer of 1 to 1000. The weight average molecular weight of the formula (2) is 1,000 to 100,000 and the d value is a dependent variable.
  6. 제1항에 있어서,The method according to claim 1,
    상기 가교제의 반응 온도는 120℃ 내지 160℃인 전기화학소자용 분리막.Wherein the cross-linking agent has a reaction temperature of 120 ° C to 160 ° C.
  7. 제1항에 있어서,The method according to claim 1,
    상기 분리막은 가교제에 대한 반응 개시제를 더 포함하는 전기화학소자용 분리막.Wherein the separation membrane further comprises a reaction initiator for the crosslinking agent.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 반응 개시제는 아조(azo)계 화합물 또는 퍼옥사이드(peroxide)계 화합물인 전기화학소자용 분리막.Wherein the reaction initiator is an azo-based compound or a peroxide-based compound.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 아조계 화합물은 2,2'-아조비스(2-메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴), 2,2'-아조비스(2,4-디메틸발레로니트릴) 및 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴) 중에서 적어도 하나 이상이 선택되는 전기화학소자용 분리막.The azo compound may be at least one selected from the group consisting of 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (isobutyronitrile), 2,2'-azobis Nitrile) and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile).
  10. 제9항에 있어서,10. The method of claim 9,
    상기 아조계 화합물은 2,2'-아조비스(이소부티로니트릴) 또는 2,2'-아조비스(2,4-디메틸발레로니트릴)인 전기화학소자용 분리막.Wherein the azo-based compound is 2,2'-azobis (isobutyronitrile) or 2,2'-azobis (2,4-dimethylvaleronitrile).
  11. 제8항에 있어서,9. The method of claim 8,
    상기 퍼옥사이드계 화합물은 테트라메틸부틸퍼옥시 네오데카노에이트, 비스(4-부틸시클로헥실)퍼옥시디카보네이트, 디(2-에틸헥실)퍼옥시 카보네이트, 부틸퍼옥시 네오데카노에이트, 디프로필 퍼옥시 디카보네이트, 디이소프로필 퍼옥시 디카보네이트, 디에톡시에틸 퍼옥시 디카보네이트, 디에톡시헥실퍼옥시 디카보네이트, 헥실 퍼옥시 디카보네이트, 디메톡시부틸 퍼옥시 디카보네이트, 비스(3-메톡시-3-메톡시부틸) 퍼옥시 디카보네이트, 디부틸 퍼옥시 디카보네이트, 디세틸(dicetyl)퍼옥시 디카보네이트, 디미리스틸(dimyristyl) 퍼옥시 디카보네이트, 1,1,3,3-테트라메틸부틸 퍼옥시피발레이트(peroxypivalate), 헥실 퍼옥시 피발레이트, 부틸 퍼옥시 피발레이트, 트리메틸 헥사노일 퍼옥사이드, 디메틸 히드록시 부틸 퍼옥시 네오 데카노에이트, 아밀 퍼옥시 네오 데카노에이트, Atofina, 부틸 퍼옥시 네오 데카노에이트, t-부틸퍼옥시네오헵타노에이트, 아밀퍼옥시 피발레이트, t-부틸퍼옥시 피발레이트, t-아밀 퍼옥시-2-에틸헥사노에이트,라우릴 퍼옥사이드, 디라우로일(dilauroyl) 퍼옥사이드, 디데카노일 퍼옥사이드, 벤조일 퍼옥사이드 및 디벤조일 퍼옥사이드 중에서 적어도 하나 이상이 선택되는 전기화학소자용 분리막.The peroxide compound may be at least one selected from the group consisting of tetramethyl butyl peroxyneodecanoate, bis (4-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxycarbonate, butyl peroxyneodecanoate, Diisopropylperoxy dicarbonate, diethoxyhexyl peroxydicarbonate, diethoxyhexyl peroxydicarbonate, hexyl peroxy dicarbonate, dimethoxy butyl peroxy dicarbonate, bis (3-methoxy-3 -Methoxybutyl) peroxy dicarbonate, dibutyl peroxy dicarbonate, dicetyl peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethyl butyl peroxide Peroxypivalate, hexyl peroxypivalate, butyl peroxypivalate, trimethylhexanoyl peroxide, dimethylhydroxybutyl peroxyneodecanoate, amyl peroxy Butyl peroxyneodecanoate, neodecanoate, Atofina, butyl peroxyneodecanoate, t-butyl peroxyneoheptanoate, amyl peroxypivalate, t-butyl peroxypivalate, t-amyl peroxy-2-ethylhexanoate Wherein at least one of dicumyl peroxide, dicumyl peroxide, lauryl peroxide, dilauroyl peroxide, didecanoyl peroxide, benzoyl peroxide and dibenzoyl peroxide is selected.
  12. 제1항에 있어서,The method according to claim 1,
    상기 분리막에서 가교제의 함량은, 고형분 전체 중량을 기준으로 0 중량% 초과 내지 15 중량% 이하로 포함되는 전기화학소자용 분리막.Wherein the content of the crosslinking agent in the separator is in the range of more than 0 wt% to 15 wt% or less based on the total weight of the solid content.
  13. 제1항 내지 제12항 중 어느 하나에 따른 전기화학소자용 분리막을 포함하는 전기화학소자.An electrochemical device comprising a separation membrane for an electrochemical device according to any one of claims 1 to 12.
PCT/KR2018/013112 2017-10-31 2018-10-31 Separator without separator substrate and electrochemical device comprising same WO2019088698A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL18872529.5T PL3624224T3 (en) 2017-10-31 2018-10-31 Separator without separator substrate and electrochemical device comprising same
ES18872529T ES2962470T3 (en) 2017-10-31 2018-10-31 Separator without separator substrate and electrochemical device comprising the same
CN201880033686.0A CN110651383B (en) 2017-10-31 2018-10-31 Separator without separator substrate and electrochemical device comprising same
JP2019571266A JP2020524886A (en) 2017-10-31 2018-10-31 Separation membrane without separation membrane substrate and electrochemical device including the same
EP18872529.5A EP3624224B1 (en) 2017-10-31 2018-10-31 Separator without separator substrate and electrochemical device comprising same
US16/640,877 US11990641B2 (en) 2017-10-31 2018-10-31 Separator having no separator substrate and electrochemical device including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0143690 2017-10-31
KR20170143690 2017-10-31
KR1020180131285A KR20190049581A (en) 2017-10-31 2018-10-30 Separator without separator base member and electrochemical device comprising thereof
KR10-2018-0131285 2018-10-30

Publications (2)

Publication Number Publication Date
WO2019088698A2 true WO2019088698A2 (en) 2019-05-09
WO2019088698A3 WO2019088698A3 (en) 2019-06-20

Family

ID=66332402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013112 WO2019088698A2 (en) 2017-10-31 2018-10-31 Separator without separator substrate and electrochemical device comprising same

Country Status (1)

Country Link
WO (1) WO2019088698A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200287187A1 (en) * 2018-04-13 2020-09-10 Lg Chem, Ltd. Method for improving physical properties of separator by post-treatment crosslinking and separator prepared thereby
CN112186194A (en) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece and electrochemical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194098B1 (en) * 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
KR101117126B1 (en) * 2010-04-19 2012-02-24 한국과학기술연구원 Metal oxide ultrafine fiber-based composite separator with heat resistance and secondary battery using same
KR20160043768A (en) * 2014-10-14 2016-04-22 울산과학기술원 Organic/inorganic composite separator, method for manufacturing the same and electrochemical device containing the same
KR20160136089A (en) * 2015-05-19 2016-11-29 주식회사 엘지화학 A Separator Having an Electrode Bonding Layer and A Secondary battery Comprising the Same
KR101880237B1 (en) * 2015-08-28 2018-08-17 삼성에스디아이 주식회사 Porous heat-resistant layer, separator comprising the porous heat-resistant layer, secondary battery using the separator, and method for preparing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MEMBRANE SCIENCE, 2014, pages 103

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200287187A1 (en) * 2018-04-13 2020-09-10 Lg Chem, Ltd. Method for improving physical properties of separator by post-treatment crosslinking and separator prepared thereby
CN112186194A (en) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece and electrochemical device
CN112186194B (en) * 2019-07-01 2023-09-22 宁德时代新能源科技股份有限公司 Positive electrode current collector, positive electrode sheet and electrochemical device

Also Published As

Publication number Publication date
WO2019088698A3 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2017039385A1 (en) Separation membrane comprising adhesive coating parts with different adhesion forces, and electrode assembly comprising same
WO2017034353A1 (en) Complex separator for electrochemical element, comprising bonding layer, and electrochemical element comprising same
WO2020067778A1 (en) Separation membrane for electrochemical device, and method for manufacturing same
WO2020013671A1 (en) Separator for electrochemical device, and electrochemical device comprising same
WO2020159296A1 (en) Electrode with insulation film, manufacturing method thereof, and lithium secondary battery comprising the same
WO2012093864A2 (en) Electrode assembly including asymmetrically coated separation membrane and electrochemical device including electrode assembly
WO2021210922A1 (en) Separator for electrochemical device and method for manufacturing same
WO2020138627A1 (en) Separator for lithium secondary battery, and lithium secondary battery comprising same
WO2019088698A2 (en) Separator without separator substrate and electrochemical device comprising same
EP3624224B1 (en) Separator without separator substrate and electrochemical device comprising same
WO2021172774A1 (en) Electrode assembly with insulation film formed on tab, manufacturing method thereof, and lithium secondary battery comprising same
WO2021034060A1 (en) Separator having heat resistant layer for electrochemical device and secondary battery comprising same
WO2020226367A1 (en) Binder resin composition and separator comprising same for electrochemical device
WO2020091400A1 (en) Cross-linked polyolefin separator having inorganic coating layer formed thereon, and high-output secondary battery comprising same
WO2020050559A1 (en) Secondary battery separator having no separator substrate
WO2019240501A1 (en) Separator for electrochemical device, comprising inorganic coating layer, and method for manufacturing same
WO2020190101A1 (en) Separation membrane for electrochemical device, and method for manufacturing same
WO2022060110A1 (en) Separator for electrochemical device and production method therefor
WO2022045858A1 (en) Electrochemical device separator and electrochemical device comprising same
WO2021101222A1 (en) Separator for electrochemical device, and electrochemical device comprising same
WO2019022474A1 (en) Battery separator comprising material reducing hydrofluoric acid
WO2020091396A1 (en) Separator for electrochemical device, and method for producing same
WO2019221401A1 (en) Separator without separator substrate
WO2019199137A1 (en) Method for improving properties of separator through post-treatment crosslinking and separator thereby
WO2022211448A1 (en) All-solid-state battery comprising porous current collector, and battery module including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872529

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019571266

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018872529

Country of ref document: EP

Effective date: 20191209

NENP Non-entry into the national phase

Ref country code: DE