WO2020226253A1 - Method for producing silicon powder material - Google Patents

Method for producing silicon powder material Download PDF

Info

Publication number
WO2020226253A1
WO2020226253A1 PCT/KR2019/017718 KR2019017718W WO2020226253A1 WO 2020226253 A1 WO2020226253 A1 WO 2020226253A1 KR 2019017718 W KR2019017718 W KR 2019017718W WO 2020226253 A1 WO2020226253 A1 WO 2020226253A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
silicon powder
powder
silicon
ball milling
Prior art date
Application number
PCT/KR2019/017718
Other languages
French (fr)
Korean (ko)
Inventor
김동완
강우현
김재찬
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190096598A external-priority patent/KR20200130054A/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2020226253A1 publication Critical patent/WO2020226253A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material

Definitions

  • the present invention relates to a method of manufacturing a silicon powder material, and more particularly, to a method of manufacturing a high-purity silicon powder material using a glass substrate of a waste LCD panel or glass scrap generated in an LCD panel manufacturing process.
  • Waste LCD panel is composed of case, glass substrate, frame, panel, driving circuit, backlight unit, among which, as a method of recycling waste glass substrate, waste LCD glass is put into the cement manufacturing process to manufacture cement clinker.
  • waste LCD glass is put into the cement manufacturing process to manufacture cement clinker.
  • it has been proposed to be used as a raw material for producing foamed glass for insulation by adding a foaming agent to waste LCD glass powder and firing.
  • a recycling method has a limitation in commercialization due to its complicated manufacturing process and low economy.
  • glass substrates are known to have a high composition ratio of 40 to 50% and contain up to 70% of silica (SiO 2 ).
  • silicon powder is an anode material having high capacity and high power characteristics of a high-capacity lithium-ion battery, and can be used as an alternative material for commercial graphite-based anodes. If it can be synthesized, it can be a recycling method with high economic efficiency.
  • the present invention is to solve the problems of the prior art described above, one aspect of the present invention is to remove impurities by pre-treating the glass substrate of the waste LCD panel or the glass scrap generated in the LCD manufacturing process by ball milling and acid treatment. And, to provide a method for producing a silicon powder material for synthesizing high-purity silicon powder by reducing and heat treating the silica of the glass material as a raw material.
  • a method for manufacturing a silicon powder material comprises the steps of generating a fine glass powder by finely powdering a glass material containing silica (SiO 2 ); Ball milling the fine glass powder; Acid-treating the ball milled fine glass powder; And reducing the silica contained in the acid-treated fine glass powder to prepare a silicon powder.
  • the glass material may be a glass substrate separated from a waste LCD panel.
  • the glass material may be glass scrap generated in the LCD panel manufacturing process.
  • the step of generating the fine glass powder comprises: pulverizing and pulverizing the glass material; And selecting the micronized glass material by sieving.
  • the ball milling may be a wet ball milling.
  • the acid treatment may be treatment by immersing the fine glass powder in an acid solution.
  • the acid solution may be an aqueous nitric acid solution.
  • the fine glass powder may be immersed in the acid solution at 50 to 70° C. for 65 to 80 hours.
  • washing and freeze-drying the acid-treated fine glass powder may further include .
  • the silicon powder may contain 99.0 to 99.9 wt% of silicon (Si), the remainder of aluminum (Al), and other unavoidable impurities.
  • the other inevitable impurities may include boron (B), calcium (Ca), and strontium (Sr).
  • waste LCD panel and glass scrap can be used as a recycling method.
  • the high-purity silicon powder synthesized therefrom can be used as an anode material having high capacity and high output characteristics of a lithium-ion battery, and thus contribute to the development of an electrode material that replaces a commercial graphite-based anode.
  • FIG. 1 and 2 are flow charts of a method of manufacturing a silicon powder material according to an embodiment of the present invention.
  • Example 3 is an elemental composition (a), scanning electron microscope (SEM) images (b, d, f, h), and particle size analysis results of glass powder samples prepared according to Example 1 and Comparative Example 1 (c, e, g, i).
  • XRD X-ray diffraction
  • EDS energy dispersive X-ray spectroscopy
  • Example 5 is a process chart for manufacturing an electrode according to Example 3 (a), and galvanostatic charge/discharge (b), cyclic voltammetry (c), and rate capability performance (d) of the electrodes manufactured according to Example 3 and Comparative Example 3 ) This is the evaluation result.
  • FIG. 1 and 2 are flow charts of a method of manufacturing a silicon powder material according to an embodiment of the present invention.
  • the method of manufacturing a silicon powder material is a step of generating a fine glass powder by finely powdering a glass material containing silica (SiO 2 ) (S100) , Ball milling the fine glass powder (S200), acid treatment of the ball milled fine glass powder (S300), and reducing the silica contained in the acid-treated fine glass powder to prepare a silicon powder It includes a step (S400).
  • the present invention relates to a method of manufacturing a high-purity silicon powder material using a glass substrate of a waste LCD panel or a glass scrap generated in an LCD panel manufacturing process.
  • a method of manufacturing a high-purity silicon powder material using a glass substrate of a waste LCD panel or a glass scrap generated in an LCD panel manufacturing process As the amount of waste LCD panels increases, methods for manufacturing cement clinker or foam for insulation materials by recycling the waste LCD glass constituting the panel are being developed, but the manufacturing process is complicated and economical is poor, and high capacity lithium Since silicon powder can be used as an anode material of an ion battery, the present invention has been devised to synthesize silicon powder from a waste LCD glass substrate as an economical recycling method.
  • the method of manufacturing a silicon powder material according to the present invention includes a fine glass powder generation step (S100), a ball milling step (S200), an acid treatment step (S400), and a silicon powder synthesis step (S500).
  • the fine glass powder generation step (S100) is a process of finely powdering a glass material containing silica (SiO 2 ).
  • the silica-containing glass material may be used by recovering a glass substrate separated from a waste LCD panel or a glass scrap generated in an LCD panel manufacturing process.
  • the glass used for the LCD panel since it contains up to 70% of silica as a component, it can be used in the present invention for synthesizing silicon powder using silica as a raw material.
  • the glass material of the present invention is not necessarily limited to the glass substrate or glass scrap, and any glass material may be used as long as it is a glass containing a silica component.
  • the glass material may be pulverized and the pulverized glass material may be sieved to obtain a fine glass powder having a predetermined particle size.
  • the glass material is mechanically crushed and then undergoes a pulverization process.
  • the crushing and pulverization are determined according to the particle size of the glass material, and the crushing process with a relatively large particle size is first executed, and then the glass material is crushed through the crushing process. Micronize.
  • the crushing and pulverizing processes are not clearly distinguished and are continuously performed in the pulverization step. After pulverizing the glass material in this way, a fine glass powder having a predetermined size is sorted using a sieve.
  • a sieve having a size of #100 to #300 may be used, but the size of the sieve is not limited thereto, and the size of the sieve may be selected in consideration of a subsequent process.
  • the sieve is a generic term for a tool capable of selecting the finely divided glass material by particle size, and is not limited to a specific tool.
  • pretreatment to remove impurities from the fine glass powder is performed prior to synthesis of the silicon powder.
  • LCD glass contains oxides and other components such as aluminum (Al), calcium (Ca), strontium (Sr), boron (B), etc., so other components other than silica are removed as much as possible through pretreatment.
  • Components other than silica are difficult to remove by forming an inert compound after thermal reduction of magnesium to be described later, so pretreatment is important, and a high purity silica precursor can be prepared through this.
  • the pretreatment proceeds to a ball milling step (S200) and an acid treatment step (S300).
  • the milling time is about 24 hours. Is suitable.
  • the wet ball milling process conditions are not necessarily limited to the rotation speed and the milling time, and may be differently determined in consideration of the amount and state of the fine glass powder to be pretreated, and the subsequent acid treatment process.
  • the fine glass powder is dispersed in the dispersion, so the fine glass powder is collected and dried using a filter.
  • drying may be performed in a freeze drying method.
  • this process is preferably carried out so that the average particle diameter of the finally obtained particles is 600 nm or less.
  • an acid treatment step (S300) is performed, where the acid solution and the fine glass powder are brought into contact to remove most of the impurities that have not been removed by the ball milling.
  • the acid solution nitric acid (aqueous) solution, hydrochloric acid (aqueous) solution, or the like may be used.
  • the contact method may be a method of immersing the fine glass powder in an acid solution, and in this case, it may be immersed at 50 to 70°C for 65 to 80 hours.
  • the contact method and/or the immersion temperature and time are not necessarily limited to the above. After contacting the acid solution in this way, washing and drying the fine glass powder can be additionally performed.
  • the fine glass powder when the fine glass powder is dispersed in an acid solution, it may be separated using a filter, washed with distilled water or the like as a washing solution, and then freeze-dried.
  • the concentration of the aluminum (Al) element which is an impurity having the highest content, is 2 wt% or less, but is not limited thereto.
  • the silicon powder synthesis step (S400) is a process of producing silicon powder by reducing silica contained in the fine glass powder.
  • the fine glass powder has impurities removed through the pretreatment process, high-purity silicon powder can be synthesized.
  • a magnesium thermal reduction process is performed. Magnesium heat reduction is performed by mixing the pretreated fine glass powder and magnesium powder and then heating it. For example, fine glass powder and magnesium powder are mixed and placed in a boat, the boat is sealed, and the boat is heated in an argon atmosphere using a furnace.
  • the heating (heating) rate may be 1 to 5°C/min
  • the reduction temperature may be 600 to 700°C
  • the reduction time may be 2 to 6 hours.
  • a powder product is obtained by the magnesium thermal reduction process
  • by-products are removed using hydrochloric acid (HCl) and hydrofluoric acid (HF).
  • HCl hydrochloric acid
  • HF hydrofluoric acid
  • the product may be added to an aqueous hydrochloric acid solution for 1 to 2 hours and then filtered through a filter, and the filtered product may be added to an aqueous hydrofluoric acid solution for 1 to 2 hours and then filtered again, washed and dried to synthesize a silicon powder.
  • high-purity silicon powder having a silicon (Si) content of 99.0 to 99.9 wt% may be synthesized.
  • the high-purity silicon powder may include remaining aluminum (Al) and other inevitable impurities.
  • Other inevitable impurities may include boron (B), calcium (Ca), and strontium (Sr).
  • LCD waste glass such as a glass substrate separated from a waste LCD panel or glass scrap generated in the LCD panel manufacturing process
  • the impurities may include aluminum (Al), boron (B), calcium (Ca), and strontium (Sr).
  • the silicon powder prepared in this way can be used to manufacture a lithium ion battery anode.
  • silicon powder prepared according to the present invention, a conductive material, a binder, distilled water, etc. are mixed to form a slurry, and then applied to an electrode member such as a copper foil, and the copper foil coated with the slurry is added to water.
  • the anode After being exposed to a humid environment for a certain period of time, such as immersion in, the anode can be manufactured by drying in an oven.
  • the silicon powder is used as an electrode active material.
  • Example 1 Ball milling / nitric acid treatment-glass powder production
  • Glass scraps were recovered in the LCD panel manufacturing process, pulverized through a mortar after mechanical crushing, and filtered through a #200 sieve to obtain fine glass powder.
  • 5 g of fine glass powder and 100 mL of distilled water were added to a polypropylene container containing zirconium oxide balls, and a wet ball milling process was performed at a rotational speed of 180 rpm for 24 hours, and the aqueous glass powder solution that had undergone the ball milling process was filtered through a nylon filter. Then, it was lyophilized.
  • a glass bottle containing 5 g of fine glass powder and 100 mL of 5 M nitric acid aqueous solution was maintained at 60° C.
  • the glass powder produced thereby is defined as "ball milling/nitric acid treatment-glass" below.
  • Example 2 Ball milling / nitric acid treatment-silicon production
  • the magnesium thermal reduction process was performed at a heating rate of 5° C./min, a reduction temperature of 650° C., and a reduction time of 6 hours.
  • the product obtained through the magnesium thermal reduction process was put in 300 mL of 2 M hydrochloric acid aqueous solution for 1 hour and filtered through a nylon filter.
  • the powder filtered through a nylon filter was put in 300 mL of a 5 wt% hydrofluoric acid aqueous solution for 1 hour, then filtered through a nylon filter, and the filtered powder was washed with distilled water and freeze-dried to make silicon powder (hereinafter referred to as "ball milling/nitric acid treatment-silicon"). Ha) obtained.
  • Example 3 Ball milling / nitric acid treatment-silicon post-treatment electrode manufacturing
  • Example 2 The silicon powder prepared in Example 2 (ball milling / nitric acid treatment-silicon) 400 mg, super P conductive material 6 mg, carboxymethyl cellulose 4 mg, citric acid 4.55 mg, potassium hydroxide 0.55 mg, distilled water 125 mg uniformly mixed After preparing the slurry, the slurry was applied to a copper foil. Next, the copper foil coated with the slurry was immersed for 2 days in a container containing a small amount of water (relative humidity: ⁇ 99%), and then dried in an oven at 60° C. for 12 hours to prepare a silicon electrode (Fig. 5 (a) see). The silicon electrode thus prepared is referred to as "ball milling/nitrate treatment-silicon post treatment electrode".
  • fine glass As in Example 1, the glass scrap was pulverized and sieved through a #200 sieve to prepare fine glass powder (hereinafter, referred to as "fine glass").
  • Example 1 a glass powder (hereinafter referred to as "ball milling-glass”) was prepared by performing a wet ball milling process and freeze-drying on the fine glass powder.
  • ball milling-silicon For the ball milling-glass prepared in Comparative Example 1, as in Example 2, heat reduction of magnesium and hydrochloric acid/hydrofluoric acid treatment were performed to prepare silicon powder (hereinafter referred to as “ball milling-silicon”).
  • Example 3 the copper foil coated with the slurry was not immersed in water, but was immediately dried in an oven at 60° C. for 12 hours to prepare a silicon electrode (hereinafter referred to as “ball milling/nitric acid treatment-silicon electrode”).
  • the ball milling/nitric acid treatment-silicon prepared according to Example 2 contains almost no impurities, and impurities are sufficiently removed through ball milling and nitric acid treatment. It can be seen that high-purity silicon powder was prepared through magnesium thermal reduction.
  • the concentration of boron (B) was not detected with EDX, and the concentration of strontium (Sr) could not be measured in SEM-EDX, but in any case, the silicon (Si) content showed high purity of about 99.5 wt%.
  • Example 5 is a process chart for manufacturing an electrode according to Example 3 (a), and galvanostatic charge/discharge (b), cyclic voltammetry (c), and rate capability performance (d) of the electrodes manufactured according to Example 3 and Comparative Example 3 ) This is the evaluation result.
  • Example 3 ball milling / nitric acid treatment-electrode post-treatment was performed in order to realize stable capacity characteristics of the silicon electrode.
  • the binder was agglomerated between the silicon particles to improve the cohesive force of the electrode active material.
  • the adhesion between the electrode active material and the copper foil was improved by forming a copper-ester bond. Accordingly, the mechanical strength of the electrode is improved, and the electrode can maintain its capacity even during continuous charging and discharging. This effect can be confirmed through FIGS. 5(b) to (d) evaluating the performance of the ball milling/nitric acid treatment-silicon post-treatment electrode of Example 3 and the ball milling/nitric acid treatment-silicon electrode of Comparative Example 3. .
  • the fine glass powder is ball-milled and acid-treated to synthesize high-purity silicon powder.

Abstract

The present invention relates to a method for producing a silicon powder material. A method for producing a silicon powder material according to an embodiment of the present invention comprises: a step (S100) for producing a fine glass powder by fine powdering a silica (SiO2)-containing glass material; a step (S200) for ball milling the fine glass powder; a step (S300) for acid-treating the ball milled fine glass powder; and a step (S400) for producing a silicon powder by reducing the silica contained in the acid-treated fine glass powder.

Description

실리콘 분말 소재 제조방법Method of manufacturing silicon powder material
본 발명은 실리콘 분말 소재 제조방법에 관한 것으로서, 보다 상세하게는 폐 LCD 패널의 유리 기판 또는 LCD 패널 제조공정에서 발생하는 유리 스크랩 등을 이용하여 고순도의 실리콘 분말 소재를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a silicon powder material, and more particularly, to a method of manufacturing a high-purity silicon powder material using a glass substrate of a waste LCD panel or glass scrap generated in an LCD panel manufacturing process.
폐 LCD 패널의 양이 기하급수적으로 증가함에 따라 폐 LCD 패널을 수거하여 재활용하는 기술들이 연구되고 있다. 폐 LCD 패널은 케이스, 유리 기판, 프레임, 패널, 구동회로, 백라이트 유닛 등으로 구성되는데, 그 중 폐 유리 기판을 재활용하는 방안으로 폐 LCD 유리를 시멘트 제조공정에 투입하여 시멘트 클링커(clinker)를 제조하거나, 폐 LCD 유리 분말에 발포제를 첨가하여 소성하는 방식으로 단열재용 발포유리를 제조하는 원료로의 사용 등이 제안되고 있다. 그러나 이러한 재활용 방안은 제조공정이 복잡하고 경제성이 떨어져 상용화에 한계가 있다. 폐 LCD 패널 중 유리 기판은 40 ~ 50%의 높은 구성비율을 차지하고, 최대 70% 정도의 실리카(SiO 2)를 함유하는 것으로 알려져 있다. 또한, LCD 패널을 제조하는 공정에서도 실리카를 함유하는 다량의 유리 스크랩이 발생한다. 따라서, 그 유리 기판이나 스크랩을 활용하여 소재화하는 연구 개발이 필요하다. 특히, 실리콘 분말은 고용량 리튬이온전지의 고용량, 고출력 특성을 갖는 애노드(anode) 소재로서, 상용 흑연계 애노드의 대체 소재로 활용 가능하기 때문에, 유리 기판이나 스크랩에 함유된 실리카 분말로부터 고순도의 실리콘 분말을 합성할 수 있다면, 높은 경제성을 가지는 재활용 방안이 될 수 있다.As the amount of waste LCD panels increases exponentially, technologies for collecting and recycling waste LCD panels are being studied. Waste LCD panel is composed of case, glass substrate, frame, panel, driving circuit, backlight unit, among which, as a method of recycling waste glass substrate, waste LCD glass is put into the cement manufacturing process to manufacture cement clinker. Alternatively, it has been proposed to be used as a raw material for producing foamed glass for insulation by adding a foaming agent to waste LCD glass powder and firing. However, such a recycling method has a limitation in commercialization due to its complicated manufacturing process and low economy. Among the waste LCD panels, glass substrates are known to have a high composition ratio of 40 to 50% and contain up to 70% of silica (SiO 2 ). In addition, in the process of manufacturing an LCD panel, a large amount of glass scrap containing silica is generated. Therefore, there is a need for research and development to convert the glass substrate or scrap into a material. In particular, silicon powder is an anode material having high capacity and high power characteristics of a high-capacity lithium-ion battery, and can be used as an alternative material for commercial graphite-based anodes. If it can be synthesized, it can be a recycling method with high economic efficiency.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 폐 LCD 패널의 유리 기판 또는 LCD 제조공정에서 발생하는 유리 스크랩 등을 볼밀링 및 산처리 방식으로 전처리하여 불순물을 제거하고, 그 유리 소재의 실리카를 원료로 환원 열처리하여 고순도 실리콘 분말을 합성하는 실리콘 분말 소재 제조방법을 제공하는 데 있다.The present invention is to solve the problems of the prior art described above, one aspect of the present invention is to remove impurities by pre-treating the glass substrate of the waste LCD panel or the glass scrap generated in the LCD manufacturing process by ball milling and acid treatment. And, to provide a method for producing a silicon powder material for synthesizing high-purity silicon powder by reducing and heat treating the silica of the glass material as a raw material.
본 발명의 실시예에 따른 실리콘 분말 소재 제조방법은 실리카(SiO 2)를 함유한 유리 소재를 미세분말화하여 미세유리분말을 생성하는 단계; 상기 미세유리분말을 볼밀링(ball milling)하는 단계; 볼밀링된 상기 미세유리분말을 산처리하는 단계; 및 산처리된 상기 미세유리분말에 함유된 상기 실리카를 환원시켜 실리콘 분말을 제조하는 단계;를 포함한다.A method for manufacturing a silicon powder material according to an embodiment of the present invention comprises the steps of generating a fine glass powder by finely powdering a glass material containing silica (SiO 2 ); Ball milling the fine glass powder; Acid-treating the ball milled fine glass powder; And reducing the silica contained in the acid-treated fine glass powder to prepare a silicon powder.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 유리 소재는, 폐 LCD 패널로부터 분리된 유리 기판일 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, the glass material may be a glass substrate separated from a waste LCD panel.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 유리 소재는, LCD 패널 제조공정에서 발생한 유리 스크랩(scrap)일 수 있다.In addition, in the method of manufacturing a silicon powder material according to an embodiment of the present invention, the glass material may be glass scrap generated in the LCD panel manufacturing process.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 미세유리분말 생성 단계는, 상기 유리 소재를 분쇄하여 미분화하는 단계; 및 미분화된 상기 유리 소재를 체질(sieving)하여 선별하는 단계;를 포함할 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, the step of generating the fine glass powder comprises: pulverizing and pulverizing the glass material; And selecting the micronized glass material by sieving.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 볼밀링은, 습식 볼밀링일 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, the ball milling may be a wet ball milling.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 산처리는, 상기 미세유리분말을 산 용액에 침지하여 처리하는 것일 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, the acid treatment may be treatment by immersing the fine glass powder in an acid solution.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 산 용액은, 질산 수용액일 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, the acid solution may be an aqueous nitric acid solution.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 미세유리분말은, 50 ~ 70℃에서 65 ~ 80시간 동안 상기 산 용액에 침지될 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, the fine glass powder may be immersed in the acid solution at 50 to 70° C. for 65 to 80 hours.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 산처리 단계와 상기 실리카 환원 단계 사이에, 산처리된 상기 미세유리분말을 세척하고 동결건조하는 단계;를 더 포함할 수 있다.In addition, in the method for manufacturing a silicon powder material according to an embodiment of the present invention, between the acid treatment step and the silica reduction step, washing and freeze-drying the acid-treated fine glass powder; may further include .
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 실리콘 분말은, 실리콘(Si) 99.0 ~ 99.9 wt%, 잔부 알루미늄(Al), 및 기타 불가피한 불순물을 포함할 수 있다.In addition, in the method of manufacturing a silicon powder material according to an embodiment of the present invention, the silicon powder may contain 99.0 to 99.9 wt% of silicon (Si), the remainder of aluminum (Al), and other unavoidable impurities.
또한, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법에 있어서, 상기 기타 불가피한 불순물은 보론(B), 칼슘(Ca), 및 스트론튬(Sr)을 포함할 수 있다.Further, in the method of manufacturing a silicon powder material according to an embodiment of the present invention, the other inevitable impurities may include boron (B), calcium (Ca), and strontium (Sr).
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.Features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be interpreted in a conventional and dictionary meaning, and the inventor may appropriately define the concept of the term in order to describe his or her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에 따르면, 폐 LCD 패널의 유리 기판 또는 LCD 제조공정에서 발생하는 유리 스크랩 등과 같은 실리카 함유 유리를 이용하여 간단하고 경제적인 방식으로 고순도의 실리콘 분말을 합성할 수 있으므로, 폐 LCD 패널 및 유리 스크랩 재활용 방안으로 활용될 수 있다.According to the present invention, since it is possible to synthesize high-purity silicon powder in a simple and economical manner by using silica-containing glass such as a glass substrate of a waste LCD panel or glass scrap generated in the LCD manufacturing process, waste LCD panel and glass scrap It can be used as a recycling method.
또한, 이로부터 합성된 고순도 실리콘 분말은 리튬이온전지의 고용량 및 고출력 특성을 갖는 애노드 소재로의 활용이 가능하여, 상용 흑연계 애노드를 대체하는 전극 소재 개발에 기여할 수 있다.In addition, the high-purity silicon powder synthesized therefrom can be used as an anode material having high capacity and high output characteristics of a lithium-ion battery, and thus contribute to the development of an electrode material that replaces a commercial graphite-based anode.
도 1 및 도 2는 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법의 순서도이다.1 and 2 are flow charts of a method of manufacturing a silicon powder material according to an embodiment of the present invention.
도 3은 실시예 1 및 비교예 1에 따라 제조된 유리 분말 샘플들의 원소 조성(a), scanning electron microscope(SEM) 이미지(b, d, f, h), 및 입도 분석(particle size analysis) 결과(c, e, g, i)이다.3 is an elemental composition (a), scanning electron microscope (SEM) images (b, d, f, h), and particle size analysis results of glass powder samples prepared according to Example 1 and Comparative Example 1 (c, e, g, i).
도 4는 실시예 2 및 비교예 2에 따라 제조된 실리콘 분말 샘플들의 X-ray diffraction(XRD) 분석 결과(a), 및 scanning electron microscope(SEM) 이미지와 energy dispersive X-ray spectroscopy(EDS) mapping 이미지 분석 결과(b)이다.4 is an X-ray diffraction (XRD) analysis result (a) of silicon powder samples prepared according to Example 2 and Comparative Example 2, and energy dispersive X-ray spectroscopy (EDS) mapping with scanning electron microscope (SEM) images. This is the image analysis result (b).
도 5는 실시예 3에 따라 전극을 제조하는 공정도(a), 및 실시예 3 및 비교예 3에 따라 제조된 전극의 galvanostatic 충방전(b), cyclic voltammetry(c), rate capability 성능(d) 평가 결과이다.5 is a process chart for manufacturing an electrode according to Example 3 (a), and galvanostatic charge/discharge (b), cyclic voltammetry (c), and rate capability performance (d) of the electrodes manufactured according to Example 3 and Comparative Example 3 ) This is the evaluation result.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.Objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments associated with the accompanying drawings. In adding reference numerals to elements of each drawing in the present specification, it should be noted that, even though they are indicated on different drawings, only the same elements are to have the same number as possible. Hereinafter, in describing the present invention, detailed descriptions of related known technologies that may unnecessarily obscure the subject matter of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 및 도 2는 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법의 순서도이다.1 and 2 are flow charts of a method of manufacturing a silicon powder material according to an embodiment of the present invention.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 실리콘 분말 소재 제조방법은, 실리카(SiO 2)를 함유한 유리 소재를 미세분말화하여 미세유리분말을 생성하는 단계(S100), 미세유리분말을 볼밀링(ball milling)하는 단계(S200), 볼밀링된 미세유리분말을 산처리하는 단계(S300), 및 산처리된 미세유리분말에 함유된 실리카를 환원시켜 실리콘 분말을 제조하는 단계(S400)를 포함한다.1 and 2, the method of manufacturing a silicon powder material according to an embodiment of the present invention is a step of generating a fine glass powder by finely powdering a glass material containing silica (SiO 2 ) (S100) , Ball milling the fine glass powder (S200), acid treatment of the ball milled fine glass powder (S300), and reducing the silica contained in the acid-treated fine glass powder to prepare a silicon powder It includes a step (S400).
본 발명은 폐 LCD 패널의 유리 기판 또는 LCD 패널 제조공정에서 발생하는 유리 스크랩(scrap) 등을 이용하여 고순도의 실리콘 분말 소재를 제조하는 방법에 관한 것이다. 폐 LCD 패널의 양이 증가함에 따라 그 패널을 구성하는 폐 LCD 유리를 재활용하여 시멘트 클링커 또는 단열재용 발포체를 제조하는 방안 등이 개발되고 있지만, 제조공정이 복잡하며 경제성이 떨어지는 문제가 있고, 고용량 리튬이온전지의 애노드 소재로 실리콘 분말의 활용이 가능한바, 경제성 있는 재활용 방안으로서 폐 LCD 유리 기판 등으로부터 실리콘 분말을 합성하는 본 발명이 안출되었다.The present invention relates to a method of manufacturing a high-purity silicon powder material using a glass substrate of a waste LCD panel or a glass scrap generated in an LCD panel manufacturing process. As the amount of waste LCD panels increases, methods for manufacturing cement clinker or foam for insulation materials by recycling the waste LCD glass constituting the panel are being developed, but the manufacturing process is complicated and economical is poor, and high capacity lithium Since silicon powder can be used as an anode material of an ion battery, the present invention has been devised to synthesize silicon powder from a waste LCD glass substrate as an economical recycling method.
구체적으로, 본 발명에 따른 실리콘 분말 소재 제조방법은, 미세유리분말 생성 단계(S100), 볼밀링 단계(S200), 산처리 단계(S400) 및 실리콘 분말 합성 단계(S500)를 포함한다.Specifically, the method of manufacturing a silicon powder material according to the present invention includes a fine glass powder generation step (S100), a ball milling step (S200), an acid treatment step (S400), and a silicon powder synthesis step (S500).
미세유리분말 생성 단계(S100)는, 실리카(SiO 2)를 함유한 유리 소재를 미세분말화하는 공정이다. 여기서, 실리카 함유 유리 소재는 폐 LCD 패널로부터 분리된 유리 기판이나, LCD 패널 제조공정에서 발생한 유리 스크랩 등을 회수하여 이용할 수 있다. LCD 패널에 사용되는 유리의 경우, 최대 70%에 이르는 실리카를 구성성분으로 포함하기 때문에, 실리카를 원료로 실리콘 분말을 합성하는 본 발명에 이용될 수 있다. 다만, 본 발명의 유리 소재가 반드시 상기 유리 기판 또는 유리 스크랩에 한정되는 것은 아니고, 실리카 성분을 함유하는 유리이기만 하면 어떤 것이라도 사용 가능하다.The fine glass powder generation step (S100) is a process of finely powdering a glass material containing silica (SiO 2 ). Here, the silica-containing glass material may be used by recovering a glass substrate separated from a waste LCD panel or a glass scrap generated in an LCD panel manufacturing process. In the case of the glass used for the LCD panel, since it contains up to 70% of silica as a component, it can be used in the present invention for synthesizing silicon powder using silica as a raw material. However, the glass material of the present invention is not necessarily limited to the glass substrate or glass scrap, and any glass material may be used as long as it is a glass containing a silica component.
여기서, 상기 유리 소재를 분쇄하고, 분쇄된 유리 소재를 체질(sieving)하여 소정의 입도를 갖는 미세유리분말을 획득할 수 있다. 이때, 기계적으로 유리 소재를 파쇄한 후 분쇄 공정을 거치는데, 파쇄와 분쇄는 유리 소재의 입도에 따라 결정되는 것으로서, 상대적으로 입도가 큰 파쇄 공정을 먼저 실행하고 난 후 분쇄 공정을 통해 유리 소재를 미분화한다. 다만, 파쇄 및 분쇄 공정이 명확히 구별되는 것은 아니고, 미분화하는 단계에서 연속적으로 수행된다. 이렇게 유리 소재를 미분화한 다음에는, 체(sieve)를 이용해 소정의 크기를 갖는 미세유리분말을 선별한다. 이때, 체눈의 크기가 #100 ~ #300인 체를 사용할 수 있지만, 반드시 체눈의 크기가 이에 한정되는 것은 아니고, 후속 공정 등을 고려하여 체눈의 크기를 선택할 수 있다. 여기서, 체는 입도별로 미분화된 유리 소재를 선별할 수 있는 도구를 총칭하고, 특정 용구에 한정되는 것은 아니다.Here, the glass material may be pulverized and the pulverized glass material may be sieved to obtain a fine glass powder having a predetermined particle size. At this time, the glass material is mechanically crushed and then undergoes a pulverization process.The crushing and pulverization are determined according to the particle size of the glass material, and the crushing process with a relatively large particle size is first executed, and then the glass material is crushed through the crushing process. Micronize. However, the crushing and pulverizing processes are not clearly distinguished and are continuously performed in the pulverization step. After pulverizing the glass material in this way, a fine glass powder having a predetermined size is sorted using a sieve. At this time, a sieve having a size of #100 to #300 may be used, but the size of the sieve is not limited thereto, and the size of the sieve may be selected in consideration of a subsequent process. Here, the sieve is a generic term for a tool capable of selecting the finely divided glass material by particle size, and is not limited to a specific tool.
미세유리분말이 획득되면, 실리콘 분말 합성에 앞서 미세유리분말의 불순물을 제거하는 전처리를 수행한다. LCD 유리는 실리카 외에도 알루미늄(Al), 칼슘(Ca), 스트론튬(Sr), 보론(B) 등의 산화물 및 기타 성분을 함유하고 있기 때문에, 전처리를 통해 실리카 이외의 다른 성분을 최대한 제거한다. 실리카를 제외한 성분들은 후술하는 마그네슘 열환원 후 불활성(inert) 화합물을 형성하여 제거가 어려우므로, 전처리가 중요하고, 이를 통해 고순도 실리카 전구체를 제조할 수 있다. 여기서, 전처리는 볼밀링(ball milling) 단계(S200) 및 산처리 단계(S300)로 진행된다. When the fine glass powder is obtained, pretreatment to remove impurities from the fine glass powder is performed prior to synthesis of the silicon powder. In addition to silica, LCD glass contains oxides and other components such as aluminum (Al), calcium (Ca), strontium (Sr), boron (B), etc., so other components other than silica are removed as much as possible through pretreatment. Components other than silica are difficult to remove by forming an inert compound after thermal reduction of magnesium to be described later, so pretreatment is important, and a high purity silica precursor can be prepared through this. Here, the pretreatment proceeds to a ball milling step (S200) and an acid treatment step (S300).
볼밀링 단계(S200)는 볼(ball)이 들어있는 용기 내에 재료를 넣고 그 용기를 회전시킴으로써 충격, 전단력, 마찰력 등으로 재료를 미분쇄하는 방식으로 수행된다. 미세유리분말에 대한 볼밀링 공정은 미세유리분말의 크기를 더 작게 함으로써, 후속 산처리에서 유리입자 내부까지 최대한 불순물을 제거할 수 있게 한다. 또한, 볼밀링을 통해서도 불순물이 일부 제거될 수 있다. 여기서, 볼밀링은 습식 볼밀링 방식을 채택할 수 있다. 습식 볼밀링은 볼밀(ball mill)의 회전 용기에 증류수 등과 같은 액상 희석제를 혼합한 상태에서 볼밀링하는 방식이다. 이때, 회전속도 및 밀링시간에 따라 밀링효과에 차이가 있는데, 150 ~ 200 rpm으로 24시간 이상 습식 볼밀링을 진행하는 것이 적절하다. 여기서, 밀링시간이 길어질수록 입자의 크기가 더 작아져 전처리 효율이 증대되지만, 공정시간이 늘어나면 경제성이 떨어지고, 24시간 정도로도 충분히 고순도의 실리콘 분말을 합성할 수 있으므로, 밀링시간은 24시간 정도가 적합하다. 다만, 습식 볼밀링 공정 조건이 반드시 상기 회전속도 및 밀링시간에 한정되는 것은 아니고, 전처리되는 미세유리분말의 양과 상태, 후속 산처리 공정 등을 고려하여 달리 정할 수도 있다. 한편, 습식 볼밀링을 거치면, 분산액 내에 미세유리분말이 분산된 상태로 존재하므로, 필터를 이용해 미세유리분말을 수집하고, 건조한다. 이때, 건조는 동결 건조 방식으로 진행할 수 있다. 일례로, 이러한 과정은 최종적으로 얻어지는 입자의 평균입경이 600 ㎚ 이하가 되도록 진행하는 것이 바람직하다. The ball milling step (S200) is performed in a manner of pulverizing the material by impact, shear force, friction force, etc. by placing a material in a container containing a ball and rotating the container. The ball milling process for the fine glass powder makes the size of the fine glass powder smaller, so that impurities can be removed as far as possible into the glass particles in the subsequent acid treatment. Also, some impurities may be removed through ball milling. Here, the ball milling may employ a wet ball milling method. Wet ball milling is a method of ball milling in a state in which a liquid diluent such as distilled water is mixed in a rotating container of a ball mill. At this time, there is a difference in the milling effect depending on the rotational speed and the milling time, but it is appropriate to perform wet ball milling at 150 ~ 200 rpm for 24 hours or longer. Here, the longer the milling time, the smaller the particle size and the pretreatment efficiency increases.However, as the processing time increases, the economical efficiency decreases, and since it is possible to synthesize sufficiently high-purity silicon powder, the milling time is about 24 hours. Is suitable. However, the wet ball milling process conditions are not necessarily limited to the rotation speed and the milling time, and may be differently determined in consideration of the amount and state of the fine glass powder to be pretreated, and the subsequent acid treatment process. On the other hand, after wet ball milling, the fine glass powder is dispersed in the dispersion, so the fine glass powder is collected and dried using a filter. In this case, drying may be performed in a freeze drying method. As an example, this process is preferably carried out so that the average particle diameter of the finally obtained particles is 600 nm or less.
상기 볼밀링 단계(S200) 후에는, 산처리 단계(S300)를 진행하는데, 여기서 산 용액과 미세유리분말을 접촉시켜, 볼밀링으로 제거되지 않은 불순물을 대부분 제거할 수 있다. 이때, 산 용액은 질산 (수)용액, 염산 (수)용액 등을 사용할 수 있다. 또한, 접촉 방식은 산 용액에 미세유리분말을 침지하는 방식을 이용할 수 있고, 이 경우 50 ~ 70℃에서 65 ~ 80시간 동안 침지할 수 있다. 다만, 접촉 방식 및/또는 침지 온도와 시간은 반드시 상기에 한정되는 것은 아니다. 이렇게 산 용액에 접촉시킨 후에는, 미세유리분말을 세척하고 건조하는 단계를 추가적으로 실행할 수 있다. 이때, 미세유리분말이 산 용액에 분산된 경우에는 필터를 이용해 분리하고, 증류수 등을 세척액으로 사용하여 세척한 후, 동결 건조할 수 있다. 일례로, 상기 산처리 공정은, 가장 높은 함량을 갖는 불순물인 알루미늄(Al) 원소 농도가 2 wt% 이하가 될 때까지 진행하는 것이 적절하지만, 반드시 이에 한정할 것은 아니다.After the ball milling step (S200), an acid treatment step (S300) is performed, where the acid solution and the fine glass powder are brought into contact to remove most of the impurities that have not been removed by the ball milling. At this time, as the acid solution, nitric acid (aqueous) solution, hydrochloric acid (aqueous) solution, or the like may be used. In addition, the contact method may be a method of immersing the fine glass powder in an acid solution, and in this case, it may be immersed at 50 to 70°C for 65 to 80 hours. However, the contact method and/or the immersion temperature and time are not necessarily limited to the above. After contacting the acid solution in this way, washing and drying the fine glass powder can be additionally performed. At this time, when the fine glass powder is dispersed in an acid solution, it may be separated using a filter, washed with distilled water or the like as a washing solution, and then freeze-dried. For example, in the acid treatment process, it is appropriate to proceed until the concentration of the aluminum (Al) element, which is an impurity having the highest content, is 2 wt% or less, but is not limited thereto.
실리콘 분말 합성 단계(S400)는 미세유리분말에 함유된 실리카를 환원시켜 실리콘 분말을 제조하는 공정이다. 여기서, 미세유리분말은 상기 전처리 공정을 통해 불순물이 제거되었으므로, 고순도 실리콘 분말을 합성할 수 있다. The silicon powder synthesis step (S400) is a process of producing silicon powder by reducing silica contained in the fine glass powder. Here, since the fine glass powder has impurities removed through the pretreatment process, high-purity silicon powder can be synthesized.
이때, 실리카로부터 실리콘을 합성하기 위해서, 마그네슘 열환원 공정을 진행한다. 마그네슘 열환원은 전처리된 미세유리분말과 마그네슘 분말을 혼합한 후 가열하는 방식으로 이루어진다. 일례로, 미세유리분말과 마그네슘 분말을 혼합하여 보트에 담고 보트를 밀폐한 후, 퍼니스를 이용하여 아르곤 분위기에서 그 보트를 가열한다. 이때, 가열(승온) 속도는 1 ~ 5℃/min, 환원온도는 600 ~ 700℃, 환원시간은 2 ~ 6시간으로 가열을 진행할 수 있다. At this time, in order to synthesize silicon from silica, a magnesium thermal reduction process is performed. Magnesium heat reduction is performed by mixing the pretreated fine glass powder and magnesium powder and then heating it. For example, fine glass powder and magnesium powder are mixed and placed in a boat, the boat is sealed, and the boat is heated in an argon atmosphere using a furnace. In this case, the heating (heating) rate may be 1 to 5°C/min, the reduction temperature may be 600 to 700°C, and the reduction time may be 2 to 6 hours.
마그네슘 열환원 공정으로 분말 생성물이 얻어지면, 염산(HCl) 및 불산(HF)을 이용해 부산물을 제거한다. 일례로, 상기 생성물을 염산 수용액에 1 ~ 2 시간 동안 넣었다가 필터로 거른 후에, 걸러진 생성물을 불산 수용액에 1 ~ 2 시간 동안 넣었다가 다시 필터로 거르고, 세척 및 건조하여 실리콘 분말을 합성할 수 있다.When a powder product is obtained by the magnesium thermal reduction process, by-products are removed using hydrochloric acid (HCl) and hydrofluoric acid (HF). For example, the product may be added to an aqueous hydrochloric acid solution for 1 to 2 hours and then filtered through a filter, and the filtered product may be added to an aqueous hydrofluoric acid solution for 1 to 2 hours and then filtered again, washed and dried to synthesize a silicon powder. .
상기 공정을 통해 실리콘(Si) 함량이 99.0 ~ 99.9 wt%인 고순도 실리콘 분말을 합성할 수 있다. 고순도 실리콘 분말은 실리콘 이외에 잔부 알루미늄(Al) 및 기타 불가피한 불순물을 포함할 수 있는데, 기타 불가피한 불순물은 보론(B), 칼슘(Ca), 및 스트론튬(Sr)을 포함할 수 있다. 폐 LCD 패널로부터 분리된 유리 기판이나, LCD 패널 제조공정에서 발생한 유리 스크랩 등과 같은 LCD 폐유리는 알칼리 토금속 알루미노보로실리케이트 유리로 이루어지기 때문에 마그네슘 열환원 공정을 통해 실리콘을 합성하면 아무리 볼밀링과 질산처리를 하더라도 불순물 원소들이 소량 남아 있을 수 있고, 그 불순물은 알루미늄(Al), 보론(B), 칼슘(Ca), 및 스트론튬(Sr)을 포함할 수 있다.Through the above process, high-purity silicon powder having a silicon (Si) content of 99.0 to 99.9 wt% may be synthesized. In addition to silicon, the high-purity silicon powder may include remaining aluminum (Al) and other inevitable impurities. Other inevitable impurities may include boron (B), calcium (Ca), and strontium (Sr). Since LCD waste glass, such as a glass substrate separated from a waste LCD panel or glass scrap generated in the LCD panel manufacturing process, is made of alkaline earth metal aluminoborosilicate glass, no matter how much silicon is synthesized through the magnesium heat reduction process, ball milling and nitric acid Even after treatment, a small amount of impurity elements may remain, and the impurities may include aluminum (Al), boron (B), calcium (Ca), and strontium (Sr).
이렇게 제조된 실리콘 분말은 리튬이온전지 애노드(Lithium Ion Battery Anode) 제조에 활용할 수 있다. 일례로, 본 발명에 따라 제조된 실리콘 분말과, 도전재, 바인더, 증류수 등을 혼합하여 슬러리 형태로 만든 후에, 구리 호일(foil)과 같은 전극 부재에 도포하고, 슬러리가 도포된 구리 호일을 물에 침지하는 방식 등과 같이 습윤환경에 일정 시간 노출하였다가, 오븐에서 건조시켜 애노드를 제작할 수 있다. 여기서, 실리콘 분말은 전극 활물질로 사용된다. The silicon powder prepared in this way can be used to manufacture a lithium ion battery anode. For example, silicon powder prepared according to the present invention, a conductive material, a binder, distilled water, etc., are mixed to form a slurry, and then applied to an electrode member such as a copper foil, and the copper foil coated with the slurry is added to water. After being exposed to a humid environment for a certain period of time, such as immersion in, the anode can be manufactured by drying in an oven. Here, the silicon powder is used as an electrode active material.
이하에서는 구체적인 실시예 및 평가예를 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through specific examples and evaluation examples.
실시예 1: 볼밀링/질산처리-유리 분말 제조Example 1: Ball milling / nitric acid treatment-glass powder production
LCD 패널 제조공정에서 유리 스크랩을 회수하고, 기계적 파쇄 후 유발을 통해 미분화하고, #200 체로 걸러서 미세유리 분말을 얻었다. 산화지르코늄 볼이 들어 있는 폴리프로필렌 통에 미세유리분말 5 g과 증류수 100 mL를 넣고 회전수 180 rpm으로 24시간 동안 습식 볼밀링 공정을 진행하고, 볼밀링 공정을 거친 유리 분말 수용액을 나일론 필터로 거른 뒤 동결건조하였다. 다음, 미세유리분말 5 g과 5 M 질산 수용액 100 mL를 넣은 유리병을 72시간동안 60 ℃로 유지시키고, 초미세 유리분말/질산 수용액을 나일론 필터로 거르고 증류수로 세척 및 동결건조함으로써 최종 유리 분말을 제조하였다. 이에 의해 제조된 유리 분말을 이하에서 "볼밀링/질산처리-유리"로 정의한다.Glass scraps were recovered in the LCD panel manufacturing process, pulverized through a mortar after mechanical crushing, and filtered through a #200 sieve to obtain fine glass powder. 5 g of fine glass powder and 100 mL of distilled water were added to a polypropylene container containing zirconium oxide balls, and a wet ball milling process was performed at a rotational speed of 180 rpm for 24 hours, and the aqueous glass powder solution that had undergone the ball milling process was filtered through a nylon filter. Then, it was lyophilized. Next, a glass bottle containing 5 g of fine glass powder and 100 mL of 5 M nitric acid aqueous solution was maintained at 60° C. for 72 hours, and the ultra-fine glass powder / nitric acid aqueous solution was filtered through a nylon filter, washed with distilled water, and freeze-dried to obtain the final glass powder. Was prepared. The glass powder produced thereby is defined as "ball milling/nitric acid treatment-glass" below.
실시예 2: 볼밀링/질산처리-실리콘 제조Example 2: Ball milling / nitric acid treatment-silicon production
실시예 1에서 제조된 볼밀링/질산처리-유리 분말 0.5 g과 마그네슘 0.4 g을 글로브 박스 안에서 균일하게 섞은 뒤 스테인리스강 용기 안에 넣고 밀폐하고, 그 스테인리스강 용기를 튜브형 퍼니스에 넣은 후, 아르곤 분위기에서 승온속도 5 ℃/min, 환원온도 650 ℃, 환원시간 6시간으로 마그네슘 열환원 공정을 진행하였다.Ball milling / nitric acid treatment prepared in Example 1-0.5 g of glass powder and 0.4 g of magnesium were uniformly mixed in a glove box, put in a stainless steel container and sealed, and the stainless steel container was put in a tube furnace, and then in an argon atmosphere. The magnesium thermal reduction process was performed at a heating rate of 5° C./min, a reduction temperature of 650° C., and a reduction time of 6 hours.
마그네슘 열환원 공정을 통해 얻은 생성물을 2 M 염산 수용액 300 mL에 1시간 넣어두고 나일론 필터로 걸렀다. 나일론 필터로 걸러진 분말을 5 wt% 불산 수용액 300 mL에 1시간 넣어다가 나일론 필터로 거른 다음에, 걸러진 분말을 증류수로 세척하고 동결건조하여 실리콘 분말(이하, "볼밀링/질산처리-실리콘"이라고 함)을 얻었다.The product obtained through the magnesium thermal reduction process was put in 300 mL of 2 M hydrochloric acid aqueous solution for 1 hour and filtered through a nylon filter. The powder filtered through a nylon filter was put in 300 mL of a 5 wt% hydrofluoric acid aqueous solution for 1 hour, then filtered through a nylon filter, and the filtered powder was washed with distilled water and freeze-dried to make silicon powder (hereinafter referred to as "ball milling/nitric acid treatment-silicon"). Ha) obtained.
실시예 3: 볼밀링/질산처리-실리콘 후처리 전극 제조Example 3: Ball milling / nitric acid treatment-silicon post-treatment electrode manufacturing
실시예 2에서 제조된 실리콘 분말(볼밀링/질산처리-실리콘) 400 mg과, super P 도전재 6 mg, carboxymethyl cellulose 4 mg, citric acid 4.55 mg, potassium hydroxide 0.55 mg, 증류수 125 mg을 균일하게 섞어 슬러리를 제조한 뒤, 구리 호일(foil)에 슬러리를 도포하였다. 다음, 슬러리를 도포한 구리 호일을 소량의 물이 들어있는 용기(상대습도: ~ 99%)에 2일 동안 침지하였다가, 60 ℃ 오븐에서 12시간 동안 건조하여 실리콘 전극을 제조하였다(도 5의 (a) 참조). 이렇게 제조된 실리콘 전극을 "볼밀링/질산처리-실리콘 후처리 전극"이라고 한다.The silicon powder prepared in Example 2 (ball milling / nitric acid treatment-silicon) 400 mg, super P conductive material 6 mg, carboxymethyl cellulose 4 mg, citric acid 4.55 mg, potassium hydroxide 0.55 mg, distilled water 125 mg uniformly mixed After preparing the slurry, the slurry was applied to a copper foil. Next, the copper foil coated with the slurry was immersed for 2 days in a container containing a small amount of water (relative humidity: ~ 99%), and then dried in an oven at 60° C. for 12 hours to prepare a silicon electrode (Fig. 5 (a) see). The silicon electrode thus prepared is referred to as "ball milling/nitrate treatment-silicon post treatment electrode".
비교예 1: 미세유리 분말, 볼밀링-유리 분말 및 질산처리-유리 분말 제조Comparative Example 1: Preparation of fine glass powder, ball milling-glass powder and nitric acid treatment-glass powder
상기 실시예 1과 같이, 유리 스크랩을 미분화하고, 체로 #200 체로 걸러서 미세유리 분말(이하, "미세유리" 라고 함)을 제조하였다.As in Example 1, the glass scrap was pulverized and sieved through a #200 sieve to prepare fine glass powder (hereinafter, referred to as "fine glass").
또한, 실시예 1에서 질산처리를 제외하고, 미세유리 분말에 대해 습식 볼밀링 공정 및 동결건조하여 유리 분말(이하, "볼밀링-유리"라고 함)을 제조하였다.In addition, except for nitric acid treatment in Example 1, a glass powder (hereinafter referred to as "ball milling-glass") was prepared by performing a wet ball milling process and freeze-drying on the fine glass powder.
또한, 실시예 1에서 볼링링 공정을 거치지 않고, 미세유리분말을 질산 수용액으로 처리하고 세척 및 동결건조하여 유리 분말(이하, "질산처리-유리"라고 함)을 제조하였다.In addition, without going through the bowling process in Example 1, the fine glass powder was treated with an aqueous nitric acid solution, washed and freeze-dried to prepare a glass powder (hereinafter referred to as "nitric acid treatment-glass").
비교예 2: 볼밀링-실리콘 및 질산처리-실리콘 제조Comparative Example 2: Ball milling-silicon and nitric acid treatment-silicon production
비교에 1에서 제조된 볼밀링-유리에 대해, 상기 실시예 2와 같이 마그네슘 열환원 및 염산/불산 처리 공정을 수행하여, 실리콘 분말(이하, "볼밀링-실리콘"이라고 함)을 제조하였다.For the ball milling-glass prepared in Comparative Example 1, as in Example 2, heat reduction of magnesium and hydrochloric acid/hydrofluoric acid treatment were performed to prepare silicon powder (hereinafter referred to as “ball milling-silicon”).
또한, 비교예 1에서 제조된 질산처리-유리에 대해, 상기 실시예 2에 따라 실리콘 분말(이하, "질산처리-실리콘"이라고 함)을 제조하였다.In addition, for the nitric acid treatment-glass prepared in Comparative Example 1, silicon powder (hereinafter referred to as "nitric acid treatment-silicon") was prepared according to Example 2 above.
비교예 3: 볼밀링/질산처리-실리콘 전극 제조Comparative Example 3: Ball milling / nitric acid treatment-silicon electrode manufacturing
실시예 3에서, 슬러리를 도포한 구리 호일을 물에 침지하지 않고, 바로 60 ℃ 오븐에서 12시간 동안 건조하여 실리콘 전극(이하, "볼밀링/질산처리-실리콘 전극"이라고 함)을 제조하였다.In Example 3, the copper foil coated with the slurry was not immersed in water, but was immediately dried in an oven at 60° C. for 12 hours to prepare a silicon electrode (hereinafter referred to as “ball milling/nitric acid treatment-silicon electrode”).
평가예 1: 유리 분말 샘플의 물리적/화학적 특성 평가Evaluation Example 1: Evaluation of physical/chemical properties of glass powder samples
도 3은 실시예 1 및 비교예 1에 따라 제조된 유리 분말 샘플들의 원소 조성(a), scanning electron microscope(SEM) 이미지(b, d, f, h), 및 입도 분석(particle size analysis) 결과(c, e, g, i)이다.3 is an elemental composition (a), scanning electron microscope (SEM) images (b, d, f, h), and particle size analysis results of glass powder samples prepared according to Example 1 and Comparative Example 1 (c, e, g, i).
실시예 1 및 비교예 1에서 각각 제조된 유리 분말을 대상으로, 전처리 조건에 따라 물리적/화학적 특성을 분석 비교하고, 그 결과를 도 3에 나타냈다. 여기서, 도 3의 (a)의 원소 조성 분석은 X-ray fluorescence spectrometer(XRF) 데이터에 기반한다.For each glass powder prepared in Example 1 and Comparative Example 1, physical/chemical properties were analyzed and compared according to pretreatment conditions, and the results are shown in FIG. 3. Here, the elemental composition analysis of FIG. 3A is based on X-ray fluorescence spectrometer (XRF) data.
먼저, SEM 이미지(b, d, f, h)와 입도 분석(particle size analysis) 결과(c, e, g, i)를 비교해 보면, 볼밀링을 한 경우에 입자의 크기가 작고 입도 분포가 좁아진 것을 알 수 있다. First, when comparing the SEM images (b, d, f, h) and the particle size analysis results (c, e, g, i), when ball milling was performed, the particle size was small and the particle size distribution was narrowed. Can be seen.
또한, 도 3의 (a) 데이터를 참고로, 미세유리와 볼밀링-유리를 비교하면, 볼밀링으로 인한 불순물 제거 효과는 미비한 것으로 나타났다. 이에 반해, 미세유리와 질산처리-유리를 비교할 때에, 볼밀링으로 제거되지 않은 알루미늄 산화물이 질산처리를 통해 상당 부분 줄어든 것을 확인할 수 있다. 다만, 질산처리를 하더라도 여전히 많은 불순물이 존재했다. 반면, 질산처리-유리와 볼밀링/질산처리-유리 데이터를 비교하면, 볼밀링/질산처리-유리에서 실리카 및 산소 이외의 불순물이 대부분 제거된 것을 확인할 수 있다. 이로부터, 볼밀링 공정을 통해 입자 크기를 줄인 후 질산처리를 하는 경우에 유리 입자 내부까지 최대한 불순물이 제거된다는 것을 알 수 있다.In addition, referring to the data of FIG. 3 (a), when comparing fine glass and ball milling-glass, it was found that the effect of removing impurities due to ball milling was insufficient. On the other hand, when comparing fine glass and nitric acid treatment-glass, it can be seen that aluminum oxide that was not removed by ball milling was significantly reduced through nitric acid treatment. However, even with nitric acid treatment, there were still many impurities. On the other hand, when comparing the nitric acid treatment-glass and ball milling/nitric acid treatment-glass data, it can be seen that most of the impurities other than silica and oxygen were removed from the ball milling/nitric acid treatment-glass. From this, it can be seen that in the case of nitric acid treatment after reducing the particle size through a ball milling process, impurities are removed as far as possible into the glass particles.
한편, 실시예 1과 비교예 1에서 24시간 동안 볼밀링을 수행했는데, 볼밀링 시간을 72시간으로 늘리고 동일한 방법으로 볼밀링/질산처리-유리와 볼밀링-유리를 제조한 후, XRF 분석을 하였다. 그 결과는 아래 [표 1]과 같다.On the other hand, ball milling was performed for 24 hours in Example 1 and Comparative Example 1, the ball milling time was increased to 72 hours, and ball milling/nitric acid treatment-glass and ball milling-glass were prepared in the same manner, and then XRF analysis was performed. I did. The results are shown in [Table 1] below.
Element(oxide)Element(oxide) Concentration(%)Concentration(%)
72h 볼밀링-유리72h ball milling-glass 72h 볼밀링/질산처리-유리72h Ball Milling/Nitric Acid Treatment-Glass
SiSi 68.8668.86 97.7597.75
AlAl 15.2915.29 2.252.25
SrSr 5.605.60 00
CaCa 8.628.62 00
상기 결과를 보면, 볼밀링 시간이 늘어나면 불순물 제거 효율도 상승한다는 것을 알 수 있다. 이는 볼밀링 시간 증가로 입자의 크기가 더 작아져서 질산처리 후 불순물이 더 효과적으로 제거되는 것을 나타낸다.From the above results, it can be seen that the impurity removal efficiency increases as the ball milling time increases. This indicates that the particle size becomes smaller as the ball milling time increases, and impurities are more effectively removed after nitric acid treatment.
평가예 2: 실리콘 분말의 불순물 분석Evaluation Example 2: Impurity Analysis of Silicon Powder
도 4는 실시예 2 및 비교예 2에 따라 제조된 실리콘 분말 샘플들의 X-ray diffraction(XRD) 분석 결과(a), 및 scanning electron microscope(SEM) 이미지와 energy dispersive X-ray spectroscopy(EDS) mapping 이미지 분석 결과(b)이다.4 is an X-ray diffraction (XRD) analysis result (a) of silicon powder samples prepared according to Example 2 and Comparative Example 2, and energy dispersive X-ray spectroscopy (EDS) mapping with scanning electron microscope (SEM) images. This is the image analysis result (b).
도 4의 (a)를 참고로, 비교예 2의 볼밀링-실리콘과 질산처리-실리콘은 실리콘 관련 peak 이외에 MgAl 2O 4, CaB 6, SrB 6 관련 peak가 나타나므로, MgAl 2O 4, CaB 6, SrB 6 불순물이 존재하는 것으로 파악된다. 또한, 도 4의 (b) 및 (c)의 EDS 이지를 통해서도 해당 불순물이 존재함을 확인할 수 있다.Referring to Figure 4 (a), the ball milling of Comparative Example 2-silicon and nitric acid treatment-silicon in addition to the silicon-related peak MgAl 2 O 4 , CaB 6 , SrB 6 Since the related peak appears, it is understood that MgAl 2 O 4 , CaB 6 , and SrB 6 impurities exist. In addition, it can be confirmed that the impurities are present through the EDS sheet of FIGS. 4B and 4C.
반면, 도 4의 (a) 및 (d)와 같이, 실시예 2에 따라 제조된 볼밀링/질산처리-실리콘에서는 불순물이 거의 포함되지 않는바, 볼밀링 및 질산처리를 통해 불순물이 충분히 제거되고 마그네슘 열환원을 통해 고순도 실리콘 분말이 제조되었음을 알 수 있다.On the other hand, as shown in FIGS. 4A and 4D, the ball milling/nitric acid treatment-silicon prepared according to Example 2 contains almost no impurities, and impurities are sufficiently removed through ball milling and nitric acid treatment. It can be seen that high-purity silicon powder was prepared through magnesium thermal reduction.
또한, 유도결합플라즈마 분광분석(Inductively Coupled Plasma-Optical Emission Spectroscopy, ICP-OES)을 통해 실시예 2에서 합성된 실리콘 분말의 불순물을 분석하였다. 그 결과는 하기 [표 2]와 같다.In addition, impurities in the silicon powder synthesized in Example 2 were analyzed through Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The results are shown in Table 2 below.
ElementElement wt%wt%
AlAl 0.50.5
BB 0.160.16
CaCa 0.030.03
SrSr 0.040.04
ICP-OES 분석 결과, 상기와 같은 농도의 불순물이 검출되었고, 이를 통해 볼밀링/질산처리-실리콘의 순도는 99.27 wt%로 계산된다.As a result of the ICP-OES analysis, impurities of the same concentration were detected, and the purity of the ball milling/nitric acid treatment-silicon was calculated as 99.27 wt%.
또한, TEM-EDX 및 SEM-EDX를 사용하여 실시예 2에서 합성된 실리콘 분말의 성분을 분석하였다. TEM-EDX 분석 결과는 하기 [표 3]과 같고, SEM-EDX 분석 결과는 하기 [표 4]와 같다.In addition, components of the silicon powder synthesized in Example 2 were analyzed using TEM-EDX and SEM-EDX. The TEM-EDX analysis results are shown in the following [Table 3], and the SEM-EDX analysis results are shown in the following [Table 4].
ElementElement wt%wt% atomic %atomic%
AlAl 0.510.51 0.530.53
BB 0.000.00 0.000.00
CaCa -0.47-0.47 -0.33-0.33
SrSr 0.040.04 0.010.01
SiSi 99.4899.48 99.0299.02
ElementElement wt%wt% atomic %atomic%
AlAl 0.350.35 0.370.37
BB 0.000.00 0.000.00
CaCa 0.040.04 0.040.04
SrSr
SiSi 99.5999.59 99.5999.59
EDX로는 보론(B)의 농도는 검출되지 않았고, SEM-EDX에서는 스트론튬(Sr)의 농도를 측정할 수 없었지만, 어느 경우에나 실리콘(Si) 함량은 약 99.5 wt% 정도의 고순도를 나타냈다.The concentration of boron (B) was not detected with EDX, and the concentration of strontium (Sr) could not be measured in SEM-EDX, but in any case, the silicon (Si) content showed high purity of about 99.5 wt%.
평가예 3: 리튬이온전지 애노드 특성 평가Evaluation Example 3: Evaluation of lithium ion battery anode characteristics
도 5는 실시예 3에 따라 전극을 제조하는 공정도(a), 및 실시예 3 및 비교예 3에 따라 제조된 전극의 galvanostatic 충방전(b), cyclic voltammetry(c), rate capability 성능(d) 평가 결과이다.5 is a process chart for manufacturing an electrode according to Example 3 (a), and galvanostatic charge/discharge (b), cyclic voltammetry (c), and rate capability performance (d) of the electrodes manufactured according to Example 3 and Comparative Example 3 ) This is the evaluation result.
도 5의 (a)를 참고로, 실시예 3에서는 볼밀링/질산처리-실리콘 전극의 안정적인 용량 특성을 구현하기 위해서 전극 후처리를 진행하였다. 여기서, 실리콘 입자 사이에 바인더를 응집시켜 전극 활물질의 응집력을 향상시켰다. 또한, 구리-에스테르 결합을 형성시켜 전극 활물질과 구리 호일간의 접착력을 향상시켰다. 이에 전극의 기계적 강도가 향상되며 지속적인 충방전에도 전극이 용량을 유지할 수 있다. 이러한 효과는 실시예 3의 볼밀링/질산처리-실리콘 후처리 전극 및 비교예 3의 볼밀링/질산처리-실리콘 전극의 성능을 평가한 도 5의 (b) 내지 (d)를 통해 확인할 수 있다.Referring to Figure 5 (a), in Example 3 ball milling / nitric acid treatment-electrode post-treatment was performed in order to realize stable capacity characteristics of the silicon electrode. Here, the binder was agglomerated between the silicon particles to improve the cohesive force of the electrode active material. In addition, the adhesion between the electrode active material and the copper foil was improved by forming a copper-ester bond. Accordingly, the mechanical strength of the electrode is improved, and the electrode can maintain its capacity even during continuous charging and discharging. This effect can be confirmed through FIGS. 5(b) to (d) evaluating the performance of the ball milling/nitric acid treatment-silicon post-treatment electrode of Example 3 and the ball milling/nitric acid treatment-silicon electrode of Comparative Example 3. .
도 5의 (b)는 용량 안정성 평가로서, 비교예 3의 볼밀링/질산처리-실리콘 전극의 용량은 빠르게 감소하지만, 실시예 3의 볼밀링/질산처리-실리콘 후처리 전극의 경우에는 높은 용량이 상대적으로 천천히 감소하는 것을 확인할 수 있다.5B is an evaluation of capacity stability, the capacity of the ball milling/nitric acid treatment-silicon electrode of Comparative Example 3 decreases rapidly, but in the case of the ball milling/nitric acid treatment-silicon post-treatment electrode of Example 3, high capacity It can be seen that this relatively slowly decreases.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, this is for explaining the present invention in detail, and the present invention is not limited thereto, and those of ordinary skill in the art within the spirit of the present invention It is clear that modifications or improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention will be made clear by the appended claims.
본 발명은 LCD 폐유리를 미세분말화한 후, 미세유리분말을 볼밀링하고 산처리하여 고순도의 실리콘 분말을 합성하므로 산업상 이용가능성이 인정된다.According to the present invention, since the LCD waste glass is finely powdered, the fine glass powder is ball-milled and acid-treated to synthesize high-purity silicon powder.

Claims (11)

  1. 실리카(SiO 2)를 함유한 유리 소재를 미세분말화하여 미세유리분말을 생성하는 단계;Generating a fine glass powder by finely powdering a glass material containing silica (SiO 2 );
    상기 미세유리분말을 볼밀링(ball milling)하는 단계; Ball milling the fine glass powder;
    볼밀링된 상기 미세유리분말을 산처리하는 단계; 및Acid-treating the ball milled fine glass powder; And
    산처리된 상기 미세유리분말에 함유된 상기 실리카를 환원시켜 실리콘 분말을 제조하는 단계;를 포함하는 실리콘 분말 소재 제조방법.Reducing the silica contained in the acid-treated fine glass powder to prepare a silicon powder; silicon powder material manufacturing method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 유리 소재는, 폐 LCD 패널로부터 분리된 유리 기판인 실리콘 분말 소재 제조방법.The glass material is a silicon powder material manufacturing method that is a glass substrate separated from a waste LCD panel.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 유리 소재는, LCD 패널 제조공정에서 발생한 유리 스크랩(scrap)인 실리콘 분말 소재 제조 방법.The glass material is a method of manufacturing a silicon powder material, which is a glass scrap generated in an LCD panel manufacturing process.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 미세유리분말 생성 단계는,The step of producing the fine glass powder,
    상기 유리 소재를 분쇄하여 미분화하는 단계; 및Pulverizing and pulverizing the glass material; And
    미분화된 상기 유리 소재를 체질(sieving)하여 선별하는 단계;를 포함하는 실리콘 분말 소재 제조방법.Sieve (sieving) the finely divided glass material to select; silicon powder material manufacturing method comprising a.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 볼밀링은, 습식 볼밀링인 실리콘 분말 소재 제조방법.The ball milling is a wet ball milling method for producing a silicon powder material.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 산처리는, 상기 미세유리분말을 산 용액에 침지하여 처리하는 것인 실리콘 분말 소재 제조방법.The acid treatment is a method of manufacturing a silicon powder material by immersing the fine glass powder in an acid solution.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 산 용액은, 질산 수용액인 실리콘 분말 소재 제조방법.The acid solution is an aqueous nitric acid solution, a method for producing a silicon powder material.
  8. 청구항 6에 있어서,The method of claim 6,
    상기 미세유리분말은, 50 ~ 70℃에서 65 ~ 80시간 동안 상기 산 용액에 침지되는 실리콘 분말 소재 제조방법.The fine glass powder is a silicon powder material manufacturing method that is immersed in the acid solution for 65 to 80 hours at 50 ~ 70 ℃.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 산처리 단계와 상기 실리카 환원 단계 사이에,Between the acid treatment step and the silica reduction step,
    산처리된 상기 미세유리분말을 세척하고 동결건조하는 단계;를 더 포함하는 실리콘 분말 소재 제조방법.Washing and freeze-drying the acid-treated fine glass powder; silicon powder material manufacturing method further comprising.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 실리콘 분말은, 실리콘(Si) 99.0 ~ 99.9 wt%, 잔부 알루미늄(Al), 및 기타 불가피한 불순물을 포함하는 실리콘 분말 소재 제조방법.The silicon powder, silicon (Si) 99.0 ~ 99.9 wt%, remaining aluminum (Al), and a method for producing a silicon powder material containing other inevitable impurities.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 기타 불가피한 불순물은 보론(B), 칼슘(Ca), 및 스트론튬(Sr)을 포함하는 실리콘 분말 소재 제조방법.The other inevitable impurities include boron (B), calcium (Ca), and strontium (Sr).
PCT/KR2019/017718 2019-05-08 2019-12-13 Method for producing silicon powder material WO2020226253A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190053554 2019-05-08
KR10-2019-0053554 2019-05-08
KR1020190096598A KR20200130054A (en) 2019-05-08 2019-08-08 Method for fabricating silicon powder
KR10-2019-0096598 2019-08-08

Publications (1)

Publication Number Publication Date
WO2020226253A1 true WO2020226253A1 (en) 2020-11-12

Family

ID=73050806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017718 WO2020226253A1 (en) 2019-05-08 2019-12-13 Method for producing silicon powder material

Country Status (1)

Country Link
WO (1) WO2020226253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117790764A (en) * 2024-02-28 2024-03-29 赣州市瑞富特科技有限公司 Preparation process of high-circularity lithium ion battery anode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886684B1 (en) * 2007-10-30 2009-03-04 주식회사 리싸이텍코리아 Method of material recycling for lcd panel waste
KR101641634B1 (en) * 2015-11-04 2016-07-22 (주)이노소재 Manufacturing method for silica particles containing waste glass and glass cullet
KR20170030716A (en) * 2015-09-09 2017-03-20 포항공과대학교 산학협력단 Method for manufacturing porous silicon derived from ferrous slag, porous silicon prepared thereby and lithium ion battery using the silicon
KR20170078629A (en) * 2015-10-29 2017-07-07 와커 헤미 아게 Process for producing silicon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886684B1 (en) * 2007-10-30 2009-03-04 주식회사 리싸이텍코리아 Method of material recycling for lcd panel waste
KR20170030716A (en) * 2015-09-09 2017-03-20 포항공과대학교 산학협력단 Method for manufacturing porous silicon derived from ferrous slag, porous silicon prepared thereby and lithium ion battery using the silicon
KR20170078629A (en) * 2015-10-29 2017-07-07 와커 헤미 아게 Process for producing silicon
KR101641634B1 (en) * 2015-11-04 2016-07-22 (주)이노소재 Manufacturing method for silica particles containing waste glass and glass cullet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, CHAUGI ET AL.: "Recovery of Valuable Materials and Detoxification of Toxic Substances from Waste Smart Glasses for Development of Total Recycling System.", GLOBAL TOP ENVIRONMENTAL TECHNOLOGY DEVELOPMENT PROJECT, MINISTRY' OF ENVIRONMENT., July 2016 (2016-07-01), pages 1 - 150 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117790764A (en) * 2024-02-28 2024-03-29 赣州市瑞富特科技有限公司 Preparation process of high-circularity lithium ion battery anode material

Similar Documents

Publication Publication Date Title
WO2020116795A1 (en) Method for producing lithium hydroxide from lithium concentrate by mixing and roasting lithium concentrate with sodium sulfate
KR102154947B1 (en) MXene particulate material, manufacturing method of the particulate material, and secondary battery
WO2010058990A2 (en) Electrode active material for secondary battery and method for preparing the same
WO2012148040A1 (en) Porous manganese oxide-based lithium adsorbent having a spinel structure, and method for preparing same
WO2021246606A1 (en) Method for reusing active material using positive electrode scrap
WO2019198972A1 (en) Method for producing lithium hydroxide monohydrate by using waste cathode material of lithium ion secondary battery
WO2015080450A1 (en) Secondary battery comprising solid electrolyte layer
WO2013005887A1 (en) Cathode active material using silicone-carbon core-shell for lithium secondary battery and method for manufacturing same
WO2018164340A1 (en) Method for recovering lithium compound from lithium-containing waste
WO2022055272A1 (en) Method for recovering cathode material
CN112736233B (en) Lithium ion battery electrode active material, preparation method thereof, electrode and battery
WO2021241817A1 (en) Method for reusing active material by using positive electrode scrap
WO2020226253A1 (en) Method for producing silicon powder material
WO2022191593A1 (en) Method for preparing pretreated product for recovering valuable metals of lithium secondary battery
WO2020096212A1 (en) Lithium compound, nickel-based cathode active material, method for preparing lithium oxide, method for preparing nickel-based cathode active material, and secondary battery using same
WO2024096397A1 (en) Silicon-graphene composite negative electrode material and method for manufacturing same
WO2021241819A1 (en) Method for reusing active material using cathode scrap
WO2019108050A1 (en) Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same
US20230369575A1 (en) Lithium-doped silicon oxide composite anode material with high initial coulombic efficiency and preparation method thereof
WO2024034754A1 (en) Method for recycling secondary battery material
CN115020659B (en) LiFePO 4 Preparation method of/C composite positive electrode material
WO2021125655A2 (en) Method for controlling particle sizes of lithium peroxide and method for preparing particle size-controlled lithium oxide
WO2021241818A1 (en) Active material reuse method using cathode scrap
US20210057734A1 (en) Lithium-Ion Battery Anode Material Based on Spherical Natural Graphite Containing Silicates
KR20200130054A (en) Method for fabricating silicon powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928061

Country of ref document: EP

Kind code of ref document: A1