WO2020225909A1 - Rare earth non-sintered magnet - Google Patents

Rare earth non-sintered magnet Download PDF

Info

Publication number
WO2020225909A1
WO2020225909A1 PCT/JP2019/018585 JP2019018585W WO2020225909A1 WO 2020225909 A1 WO2020225909 A1 WO 2020225909A1 JP 2019018585 W JP2019018585 W JP 2019018585W WO 2020225909 A1 WO2020225909 A1 WO 2020225909A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
magnetic material
material particles
sintered magnet
particles
Prior art date
Application number
PCT/JP2019/018585
Other languages
French (fr)
Japanese (ja)
Inventor
輝雄 伊藤
千生 石原
大地 氏田
有紗 平良
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/018585 priority Critical patent/WO2020225909A1/en
Priority to JP2021518280A priority patent/JP7294413B2/en
Publication of WO2020225909A1 publication Critical patent/WO2020225909A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Definitions

  • the present invention relates to a rare earth non-sintered magnet.
  • Permanent magnets that use magnetic materials containing rare earth elements are widely used in household products, automobiles, electrical appliances, communication equipment, audio equipment, medical equipment, general industrial equipment, and the like.
  • Known rare earth magnets include neodymium magnets, samarium-cobalt magnets, placeozim magnets, and Sm-Fe-N (samarium-iron-nitrogen) magnets.
  • neodymium magnets and samarium-cobalt magnets which have excellent heat resistance, are used as so-called sintered magnets manufactured by sintering at a high temperature.
  • the Samarium iron-nitrogen magnet has performance comparable to that of a neodymium magnet, but its magnetism decreases when heated at a high temperature. Therefore, it is generally used as a so-called bond magnet obtained by mixing with a binder such as resin. (See, for example, Patent Document 1 and Patent Document 2).
  • Bonded magnets have advantages such as lower manufacturing cost and easier processing than sintered magnets.
  • strength under high temperature mechanical strength
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a rare earth non-sintered magnet having excellent strength at high temperatures.
  • the means for solving the above problems include the following aspects.
  • ⁇ 1> A rare earth non-sintered magnet that is a heat-treated product of a molded product containing magnetic material particles containing rare earth elements, and has a mass increase rate of 1.0% or less when heat-treated at 200 ° C. for 504 hours in an air atmosphere.
  • .. ⁇ 2> A heat-treated product of a molded body containing magnetic material particles containing rare earth elements, and the absolute value of the dimensional change rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere is 1.4% or less.
  • ⁇ 3> The rare earth non-sintered magnet according to ⁇ 1> or ⁇ 2>, wherein the magnetic material particles contain samarium (Sm) as the rare earth element.
  • ⁇ 4> The rare earth non-sintered magnet according to any one of ⁇ 1> to ⁇ 3>, which contains at least one of an oxide and a hydroxide as a component contained in the magnetic material particles.
  • ⁇ 5> The rare earth non-sintered magnet according to any one of ⁇ 1> to ⁇ 4>, which further contains metal particles other than the magnetic material particles.
  • ⁇ 6> The rare earth non-sintered magnet according to any one of ⁇ 1> to ⁇ 5>, which does not contain a resin component or has a content of the resin component of 10% by mass or less.
  • a rare earth non-sintered magnet having excellent strength at high temperature is provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term "process” is used in addition to a process independent of other processes, even if the process cannot be clearly distinguished from other processes, as long as the purpose of the process is achieved. Is also included.
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of applicable substances.
  • the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • a rare earth magnet obtained without sintering magnetic material particles containing a rare earth element is referred to as a "rare earth non-sintered magnet”.
  • the treatment performed so that the maximum temperature of the molded product reaches 80 ° C. or higher is referred to as "heat treatment”.
  • the rare earth non-sintered magnet of the first embodiment according to the present disclosure is a heat-treated product of a molded product containing magnetic material particles containing rare earth elements, and has a mass increase rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere. Is 1.0% or less. Since the rare earth non-sintered magnet of the first embodiment has a small mass increase rate when exposed to high temperature conditions for a long time, oxides, hydroxides, etc. are used as general-purpose magnets at the boundary between magnetic material particles. There are many of them in comparison, and as a result, it is presumed that they are excellent in strength at high temperatures.
  • the rare earth non-sintered magnet of the first embodiment preferably has a mass increase rate of 0.95% or less when heat-treated at 200 ° C. for 504 hours in an air atmosphere. , 0.9% or less is more preferable. Further, the above-mentioned mass increase rate may be 0.1% or more. The above-mentioned mass increase rate can be obtained by the method described in Examples described later.
  • the rare earth non-sintered magnet of the first embodiment is obtained by heat-treating the molded body at a temperature at which the magnetic material particles in the molded body are not sintered (for example, 500 ° C. or lower).
  • a temperature at which the magnetic material particles do not sinter By heat-treating the molded body at a temperature at which the magnetic material particles do not sinter, magnetic material particles that are not suitable for manufacturing sintered magnets (for example, Sm-Fe-N magnetic material particles) are also suitably used as raw materials. can do.
  • the rare earth non-sintered magnet of the first embodiment preferably contains at least one of an oxide and a hydroxide of the components contained in the magnetic material particles. By containing at least one of the above-mentioned oxides and hydroxides, the strength of the rare earth non-sintered magnet is superior.
  • the type of magnetic material particles contained in the molded product is not particularly limited.
  • magnetic material particles containing Sm (samarium) as a rare earth element and magnetic material particles containing Nd (neodymium) as a rare earth element can be mentioned.
  • the magnetic material particles contained in the molded product may be only one type or a combination of two or more types.
  • Examples of the magnetic material particles containing Sm include Sm-Fe-N magnetic material particles (Sm 2 Fe 17 N 3 , Sm Fe 7 N x, etc., x is a positive number) and Sm-Fe-B magnetic material particles (Sm 2 Fe). 14 B, Sm 15 Fe 77 B 5 etc.), Sm-Co magnetic material particles (SmCo 5 , Sm 2 Co 17 etc.), Sm-Co-N magnetic material particles (Sm 2 Co 17 N x etc., x is positive Number), Sm-Co-B magnetic material particles (Sm 15 Co 77 B 5, etc.) and the like.
  • Examples of the magnetic material particles containing Nd include Nd—Fe—B magnetic material particles (Nd 2 Fe 14 B and the like).
  • magnetic material particles magnetic material particles further containing Fe in addition to the rare earth element are preferable.
  • oxides and hydroxides of Fe are generated by heat treatment of the molded product in an atmosphere containing oxygen, and the strength of the rare earth non-sintered magnet tends to be further improved.
  • the magnetic material particles containing Sm Sm-Fe-N magnetic material particles are preferable from the viewpoint of excellent balance between coercive force and magnetic flux density.
  • the Sm-Fe-N magnetic material particles mean magnetic material particles containing Sm (samarium), Fe (iron) and N (nitrogen).
  • the Sm-Fe-N magnetic material particles may contain other elements in addition to Sm, Fe and N.
  • Other elements include Ga, Nd, Zr, Ti, Cr, Co, Zn, Mn, V, Mo, W, Si, Re, Cu, Al, Ca, B, Ni, C, La, Ce, Pr, Examples thereof include Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Th and the like.
  • One of these other elements may be used alone, or two or more of them may be used in combination.
  • Other elements may be introduced by being replaced with a part of the phase structure of the magnet phase containing 50% by mass or more of Sm, Fe and N in total, or may be inserted and introduced.
  • the total amount of Sm, Fe and N is preferably 50% by mass or more of the total amount.
  • the volume average particle diameter (D50) of the magnetic material particles is not particularly limited. For example, it may be selected from the range of 0.1 ⁇ m to 100 ⁇ m.
  • the volume average particle diameter (D50) of the magnetic material particles is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the volume average particle diameter (D50) of the magnetic material particles may be 1 ⁇ m or more. From the viewpoint of the strength and magnetic properties of the rare earth non-sintered magnet, two or more kinds of magnetic material particles having different volume average particle diameters (D50) may be used in combination.
  • the volume average particle size (D50) of the magnetic material particles is defined as the particle size (D50) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measuring device. Can be measured.
  • the shape of the magnetic material particles is not particularly limited. From the viewpoint of the magnetic properties of the rare earth non-sintered magnet, the shape of the magnetic material particles is preferably spherical or close to spherical. In the present disclosure, examples of the spherical shape or a shape close to a spherical shape include a shape having a circularity coefficient of 78% or more or a needle-likeness coefficient of 75% or more. From the viewpoint of the strength of rare earth non-sintered magnets, magnetic material particles having a spherical or near-spherical shape and other shapes, that is, a shape having a circularity coefficient of less than 78% and an needle-likeness coefficient of less than 75%. It may be used in combination with magnetic material particles.
  • the magnetic material particles may have a circularity coefficient of 78% or more, 80% or more, 85% or more, or 90% or more. It can be said that the larger the circularity coefficient of the magnetic material particles, the closer the shape of the magnetic material particles is to a spherical shape.
  • the magnetic material particles may have an acicularity coefficient of 75% or more, 80% or more, 85% or more, or 90% or more. It can be said that the larger the needle-likeness coefficient of the magnetic material particles, the closer the shape of the magnetic material particles is to a spherical shape.
  • the area, peripheral length, major axis and minor axis of the particle image of the magnetic material particles can be measured by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the major axis of the magnetic material particles has the longest distance from an arbitrary point a on the surface of the magnetic material particles to an arbitrary point b different from the point a when observing a photographed image of the magnetic material particles.
  • the minor axis of the magnetic material particles is perpendicular to the major axis, and is the length of the line segment having the longest length among the line segments connecting the two points on the surface of the magnetic material particles.
  • the area, peripheral length, major axis and minor axis of the particle image of the magnetic material particles may be calculated using image software or the like.
  • the area, circumference length, major axis, and minor axis of the particle image of the magnetic material particles are obtained as arithmetic mean values of the measured values of 100 particles.
  • the content of magnetic material particles in the molded product before and after the heat-treated product is not particularly limited, and from the viewpoint of ensuring the magnetic properties and improving the strength at high temperatures, the molded product It is preferably 30% by mass to 100% by mass of the whole. From the viewpoint of ensuring the magnetic properties of the rare earth non-sintered magnet, the content of the magnetic material particles described above is more preferably 35% by mass or more, and further preferably 40% by mass or more of the entire molded body. , 45% by mass or more is particularly preferable. From the viewpoint of the strength of the rare earth non-sintered magnet, the content of the magnetic material particles described above is more preferably 90% by mass or less, still more preferably 85% by mass or less, and 80% by mass. It is particularly preferable that it is% or less.
  • the molded product may be composed of only the magnetic material particles, or may further contain metal particles other than the magnetic material particles in addition to the magnetic material particles.
  • metal particles means particles of a metal or alloy that does not contain rare earth elements.
  • the specific surface area of the metal particles is preferably 0.2 m 2 / g or more from the viewpoint that a sufficient contact area with the magnetic material particles can be obtained and the bonding of the magnetic material particles becomes stronger.
  • the upper limit of the specific surface area of the metal particles is not particularly limited, and may be, for example, 2.0 m 2 / g or less.
  • the specific surface area of the metal particles can be measured by the BET method (nitrogen gas adsorption method).
  • the type of metal particles is not particularly limited.
  • the metal particles include simple substance particles of metals such as copper (Cu), aluminum (Al), iron (Fe), titanium (Ti), tin (Sn), and indium (In), alloys of these metals, and the like. Particles can be mentioned.
  • One type of these metal particles may be used alone, or two or more types may be used in combination.
  • the metal particles preferably contain at least one of copper (Cu) and aluminum (Al).
  • the metal particles more preferably contain Cu for the reasons shown below.
  • (1) When a magnet of a desired size is produced using metal particles having a large specific gravity without changing the content rate (mass standard) of the metal particles, the ratio (volume ratio) of the magnetic material particles to the entire magnet ) Can be increased. Therefore, when metal particles having a large specific gravity are used without changing the content rate based on the mass, the rare earth metal bond magnet can easily secure the magnetic characteristics.
  • (3) When Cu is used as the metal particles, the coefficient of thermal expansion of the obtained magnet becomes close to that of iron (Fe). Therefore, when an iron member is used for the portion to which the magnet is applied, the obtained coefficient of thermal expansion is preferable.
  • the metal particles may be particles of an alloy (copper alloy) containing copper and an element other than copper.
  • the copper alloy is selected from the group consisting of copper and phosphorus (P), cobalt (Co), manganese (Mn), nickel (Ni), zinc (Zn), tin (Sn) and iron (Fe). Included are at least one type of copper alloy.
  • the volume average particle diameter (D50) of the metal particles is not particularly limited. For example, it is preferably 1 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 80 ⁇ m, and even more preferably 20 ⁇ m to 70 ⁇ m.
  • As the metal particles two or more kinds of metal particles having different volume average particle diameters (D50) may be used in combination.
  • the volume average particle diameter (D50) of the metal particles can be measured in the same manner as the volume average particle diameter (D50) of the magnetic material particles.
  • the metal particles are preferably soft metal particles from the viewpoint of playing a role as a binder for the magnetic material particles. Specifically, it is preferably metal particles having a Vickers hardness Hv of 200 or less. From the viewpoint of the binding property with the magnetic material particles, the Vickers hardness Hv of the metal particles is preferably 150 or less, and more preferably 100 or less. The lower limit of the Vickers hardness Hv of the metal particles is not particularly limited. For example, it may be 10 or more, or 30 or more.
  • the method for measuring Vickers hardness Hv is as follows. According to JIS Z 2244 (2009), using a Micro Vickers hardness tester (manufactured by Mitutoyo Co., Ltd .: HM-200B), the test piece is pressed against the surface of the test piece with a predetermined test force and formed at that time. The hardness of the test piece is calculated from the diagonal length of the recess.
  • the Vickers hardness Hv of the metal particles may be specified from the analysis result of the metal component contained in the rare earth non-sintered magnet.
  • the rare earth non-sintered magnet to be measured is subjected to elemental analysis by energy dispersive X-ray analysis (EDS) using a scanning electron microscope (manufactured by Nippon Denshi Co., Ltd .: JSM-IT100) to perform element analysis on the rare earth non-sintered magnet.
  • EDS energy dispersive X-ray analysis
  • JSM-IT100 scanning electron microscope
  • the shape of the metal particles is not particularly limited.
  • an irregular shape can be mentioned. Since the shape of the metal particles is irregular, the voids in the molded body can be reduced, and a rare earth non-sintered magnet having excellent strength tends to be obtained.
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the metal particles having an irregular shape is not particularly limited. From the viewpoint that the mechanical strength is more likely to be improved, the value of the major axis / minor axis ratio is preferably larger than 1, more preferably 1.5 or more, and further preferably 2 or more.
  • the value of the major axis / minor axis ratio is preferably 3.5 or less, and more preferably 3 or less.
  • the major axis and minor axis of the metal particles can be measured by the same method as the major axis and minor axis of the magnetic material particles described above.
  • the content of the metal particles before the heat-treated product and after the heat-treated product is not particularly limited.
  • the content of the metal particles is preferably 5% by mass to 70% by mass of the entire molded product.
  • the content of the metal particles described above is more preferably 10% by mass or more, further preferably 15% by mass or more, and 20% by mass of the entire molded product. The above is particularly preferable.
  • the content of the metal particles described above is more preferably 65% by mass or less, still more preferably 60% by mass or less, and 55% by mass. It is particularly preferable that it is% or less.
  • the molded product may contain a resin.
  • the resin include thermosetting resins such as epoxy resin and phenol resin. From the viewpoint of heat resistance and oil resistance of the obtained rare earth non-sintered magnet, the molded product does not contain resin, or the content of the resin before and after the heat-treated product is the total of the molded product. The content is preferably 10% by mass or less, and the molded product does not contain a resin, or the content of the above-mentioned resin is more preferably 5% by mass or less of the entire molded product.
  • the rare earth non-sintered magnet of the second embodiment according to the present disclosure is a heat-treated product of a molded body containing magnetic material particles containing rare earth elements, and has a dimensional change rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere.
  • the absolute value of is 1.4% or less. Since the rare earth non-sintered magnet of the second embodiment has a small absolute value of the dimensional change rate when exposed to a high temperature condition for a long time, oxides, hydroxides, etc. are generated at the boundary between the magnetic material particles. It is abundant in comparison with general-purpose magnets, and as a result, it is presumed that it has excellent strength at high temperatures.
  • the preferred configuration of the rare earth non-sintered magnet of the second embodiment is the same as that of the rare earth non-sintered magnet of the first embodiment described above.
  • the rare earth non-sintered magnet of the second embodiment has the above-mentioned mass increase. The condition of the rate may be satisfied.
  • the rare earth non-sintered magnet of the second embodiment has an absolute value of 1.0% or less of the dimensional change rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere from the viewpoint of strength at high temperature. It is preferably 0.5% or less, more preferably 0.3% or less, and particularly preferably 0.2% or less. Further, the absolute value of the above-mentioned dimensional change rate may be 0.05% or more. The absolute value of the above-mentioned dimensional change rate can be obtained by the method described in Examples described later.
  • the above-mentioned dimensional change rate may have a negative value, for example, it may be -0.5% or more and -0.05% or less, or -0.3% or more and -0.05% or less. It may be -0.2% or more and -0.05% or less.
  • the rare earth non-sintered magnet of the present disclosure Since the rare earth non-sintered magnet of the present disclosure has excellent strength at high temperatures, it can be preferably applied to applications requiring heat resistance. Further, the rare earth non-sintered magnet of the present disclosure is compared with a rare earth non-sintered magnet that mainly uses a resin material as a binder when the resin is not contained or the amount of the resin is 10% by mass or less. It is also excellent in oil resistance, and the rare earth non-sintered magnet of the present disclosure can be preferably applied to applications requiring oil resistance.
  • the manufacturing method of the present embodiment is a manufacturing method of a rare earth non-sintered magnet having a step of heat-treating a molded body containing magnetic material particles containing a rare earth element in an atmosphere containing oxygen.
  • a rare earth non-sintered magnet having excellent strength at high temperature can be obtained. The reason is not clear, but it can be thought of as follows.
  • a molded product containing magnetic material particles is heat-treated in an atmosphere containing oxygen.
  • the amounts of oxides and hydroxides of the components contained in the magnetic material particles are relative to each other.
  • the rare earth non-sintered magnet of the present disclosure is not limited to the following specific examples.
  • Material preparation process for magnets materials for magnets containing magnetic material particles are prepared.
  • the method of preparing the material for the magnet is not particularly limited.
  • a material for a magnet may be prepared by mixing magnetic material particles and, if necessary, metal particles contained therein.
  • the preparation of the material for magnets is, for example, a mixing shaker, a tumbler mixer, a V-type mixer, a double cone type mixing.
  • a known mixing device such as a machine, a ribbon type mixer, a Nauter mixer, a Henschel mixer, or a super mixer may be used.
  • the molding method is not particularly limited. From the viewpoint of moldability, the compression molding method is preferable.
  • the pressure for compression molding is not particularly limited, and the higher the pressure, the higher the magnetic flux density and the higher the strength of the rare earth non-sintered magnet. On the other hand, from the viewpoint of productivity, it is preferable that the pressure in the case of compression molding is low. Therefore, the pressure for compression molding may be, for example, 500 MPa to 2500 MPa. From the viewpoint of mass productivity and mold life, the pressure for compression molding is more preferably 700 MPa to 1500 MPa.
  • the density of the molded product obtained in the molding process is not particularly limited. For example, it is preferably 75% to 90%, more preferably 80% to 90%, based on the true density of the magnet material as a raw material.
  • density of the molded product is in the range of 75% to 90% with respect to the true density of the magnet material, a rare earth non-sintered magnet having good magnetic properties and excellent mechanical strength tends to be obtained.
  • the mold When a mold is used in the molding process, the mold may be heated and molded, or the mold may be molded without being heated.
  • the heating temperature of the mold is not particularly limited.
  • the heating temperature of the mold is preferably 100 ° C. to 300 ° C., more preferably 150 ° C. to 250 ° C.
  • the heating of the mold is different from the "heat treatment" performed on the molded product obtained in the molding step.
  • the molded product obtained in the molding step is heat-treated in an atmosphere containing oxygen.
  • the heat treatment method is not particularly limited. For example, it can be carried out using a known device such as a heating furnace.
  • the "atmosphere containing oxygen" in which the heat treatment is performed is not particularly limited as long as it is an atmosphere in which oxygen is present.
  • oxygen gas may be supplied or the operation may be performed in the atmosphere. From an economical point of view, it is preferable to carry out the operation in the atmosphere (generally, the oxygen concentration in the components excluding water is about 23% by mass).
  • the oxygen concentration in the atmosphere containing oxygen is not particularly limited. From the viewpoint of promoting the formation of oxides and hydroxides by heat treatment, the oxygen concentration may be, for example, 10% by mass or more. From the viewpoint of suppressing the excessive formation of oxides and hydroxides, the oxygen concentration may be, for example, 40% by mass or less.
  • the heat treatment step is preferably performed in an atmosphere containing oxygen and water vapor.
  • an atmosphere containing oxygen it is considered that the water content in the molded body reacts with the components of the magnetic material particles to generate hydroxides and oxides.
  • the heat treatment is performed in an atmosphere further containing water vapor in addition to oxygen, the water content contained in the molded body reacts with the water vapor and the components of the magnetic material particles to produce more hydroxides and oxides. It is thought to be promoted. As a result, it is considered that the strength of the rare earth non-sintered magnet obtained by increasing the bonding strength of the magnetic material particles is further improved.
  • the concentration of water vapor in the atmosphere containing water vapor is not particularly limited. From the viewpoint of promoting the formation of hydroxides and oxides, the concentration of water vapor is preferably 10% or more as a relative humidity, for example. On the other hand, from the viewpoint of suppressing the decrease in strength due to the excessive formation of hydroxides and oxides, the concentration of water vapor is preferably 80% or less, and more preferably 70% or less, for example, as a relative humidity. preferable.
  • the heat treatment may be performed under reduced pressure, pressurized pressure, or atmospheric pressure. From an economic point of view, it is preferable to carry out under atmospheric pressure.
  • the temperature of the heat treatment is not particularly limited as long as the magnetic material particles are not sintered, and can be set in consideration of the heat resistance of the magnetic material particles contained in the molded product.
  • the heat treatment temperature may be, for example, 500 ° C. or lower, 450 ° C. or lower, 350 ° C. or lower, or 300 ° C. or lower. It may be 250 degreeC or less.
  • the lower limit of the heat treatment temperature is not particularly limited, but from the viewpoint of promoting the formation of oxides and hydroxides, it is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher.
  • the heat treatment temperature in the present disclosure represents the maximum temperature reached.
  • the heat treatment time (holding time at the maximum temperature reached) is not particularly limited. From the viewpoint of obtaining a sufficient heat treatment effect, the heat treatment time is preferably 10 minutes or more, more preferably 30 minutes or more, and further preferably 1 hour or more. From the viewpoint of mass productivity, the heat treatment time is preferably 100 hours or less.
  • the rate of temperature rise until the maximum temperature is reached is not particularly limited.
  • the rate of temperature rise may be, for example, 2 ° C./min or higher, or 5 ° C./min or higher.
  • the heating rate may be, for example, 20 ° C./min or less, or 15 ° C./min or less.
  • the cooling rate is not particularly limited.
  • the cooling rate value may be, for example, 2 ° C./min or higher, or 5 ° C./min or higher.
  • the cooling rate may be, for example, 20 ° C./min or less, or 15 ° C./min or less.
  • Example 1 the magnetic material particles shown in Table 3 are used as materials for magnets, and in Example 2, the magnetic material particles and metal particles shown in Table 3 are mixed so as to be 75:25 on a mass basis for magnets. The material was prepared. In Example 2, the magnetic material particles and the metal particles were mixed by stirring at about 50 rpm for 30 minutes using a stirrer.
  • the obtained molded product was heat-treated in the air (oxygen concentration 23% by mass, relative humidity 60% at a temperature of 25 ° C.) at 200 ° C. for 1 hour to obtain a test piece of a rare earth non-sintered magnet. Obtained. This heat treatment does not cause sintering of the magnet material.
  • the obtained molded product was heat-treated in a nitrogen atmosphere at 200 ° C. for 1 hour to obtain a test piece of a rare earth non-sintered magnet.
  • Magnetic material particles Sm-Fe-N magnetic material particles (Sumitomo Metal Mining Co., Ltd., volume average particle diameter: 3 ⁇ m)
  • Metal particles Copper particles ("CE-15” manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., major axis / minor axis ratio: 2.8.5, Vickers hardness Hv: 50, volume average particle diameter: 45 ⁇ m)
  • Mass change rate (%) [(AB) / B] x 100 (A means the mass (g) of the test piece of the rare earth non-sintered magnet after the heat treatment, and B means the mass (g) of the test piece of the rare earth non-sintered magnet before the heat treatment.) The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

A rare earth non-sintered magnet which is a heat-treated molded body comprising magnetic particles containing a rare earth element and which has a rate of mass increase when heat-treated for 504 hours at 200°C in an ambient atmosphere of 1.0% or less.

Description

希土類非焼結磁石Rare earth non-sintered magnet
 本発明は、希土類非焼結磁石に関する。 The present invention relates to a rare earth non-sintered magnet.
 希土類元素を含む磁性材を用いた永久磁石(希土類磁石)は、家庭用品、自動車、電機製品、通信機器、音響機器、医療機器、一般産業機器等に広く利用されている。 Permanent magnets (rare earth magnets) that use magnetic materials containing rare earth elements are widely used in household products, automobiles, electrical appliances, communication equipment, audio equipment, medical equipment, general industrial equipment, and the like.
 希土類磁石としては、ネオジム磁石、サマリウムコバルト磁石、プラセオジム磁石、Sm-Fe-N(サマリウム鉄窒素)磁石等が知られている。これらの中でも、耐熱性に優れるネオジム磁石及びサマリウムコバルト磁石は、高温で焼結して製造されるいわゆる焼結型磁石として使用されている。これに対してサマリウム鉄窒素磁石は、ネオジム磁石に匹敵する性能を有する一方で、高温で加熱すると磁性が低下するため、樹脂等のバインダと混合して得られるいわゆるボンド磁石としての使用が一般的である(例えば、特許文献1及び特許文献2参照)。 Known rare earth magnets include neodymium magnets, samarium-cobalt magnets, placeozim magnets, and Sm-Fe-N (samarium-iron-nitrogen) magnets. Among these, neodymium magnets and samarium-cobalt magnets, which have excellent heat resistance, are used as so-called sintered magnets manufactured by sintering at a high temperature. On the other hand, the Samarium iron-nitrogen magnet has performance comparable to that of a neodymium magnet, but its magnetism decreases when heated at a high temperature. Therefore, it is generally used as a so-called bond magnet obtained by mixing with a binder such as resin. (See, for example, Patent Document 1 and Patent Document 2).
特開平08-273916号公報Japanese Unexamined Patent Publication No. 08-273916 特開平10-275718号公報Japanese Unexamined Patent Publication No. 10-275718
 ボンド磁石は焼結型磁石に比べて製造コストが低い、加工が容易である等の利点を有する。その一方で、耐熱性が求められる用途での適用の観点から、高温環境下での使用に耐え得る機械的強度(以下、高温下での強度とも称する)の改善に対する要求が高まっている。 Bonded magnets have advantages such as lower manufacturing cost and easier processing than sintered magnets. On the other hand, from the viewpoint of application in applications requiring heat resistance, there is an increasing demand for improvement of mechanical strength (hereinafter, also referred to as strength under high temperature) that can withstand use in a high temperature environment.
 本開示は、上記事情に鑑みてなされたものであり、高温下での強度に優れる希土類非焼結磁石を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a rare earth non-sintered magnet having excellent strength at high temperatures.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 希土類元素を含む磁性材粒子を含む成形体の熱処理物であり、大気雰囲気下にて200℃で504時間熱処理したときの質量増加率が1.0%以下である希土類非焼結磁石。
<2> 希土類元素を含む磁性材粒子を含む成形体の熱処理物であり、大気雰囲気下にて200℃で504時間熱処理したときの寸法変化率の絶対値が1.4%以下である希土類非焼結磁石。
<3> 前記磁性材粒子が前記希土類元素としてサマリウム(Sm)を含む<1>又は<2>に記載の希土類非焼結磁石。
<4> 前記磁性材粒子に含まれる成分の酸化物及び水酸化物の少なくとも一方を含む<1>~<3>のいずれか1つに記載の希土類非焼結磁石。
<5> 前記磁性材粒子以外の金属粒子をさらに含む<1>~<4>のいずれか1つに記載の希土類非焼結磁石。
<6> 樹脂成分を含まないか、又は前記樹脂成分の含有率が10質量%以下である<1>~<5>のいずれか1つに記載の希土類非焼結磁石。
The means for solving the above problems include the following aspects.
<1> A rare earth non-sintered magnet that is a heat-treated product of a molded product containing magnetic material particles containing rare earth elements, and has a mass increase rate of 1.0% or less when heat-treated at 200 ° C. for 504 hours in an air atmosphere. ..
<2> A heat-treated product of a molded body containing magnetic material particles containing rare earth elements, and the absolute value of the dimensional change rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere is 1.4% or less. Sintered magnet.
<3> The rare earth non-sintered magnet according to <1> or <2>, wherein the magnetic material particles contain samarium (Sm) as the rare earth element.
<4> The rare earth non-sintered magnet according to any one of <1> to <3>, which contains at least one of an oxide and a hydroxide as a component contained in the magnetic material particles.
<5> The rare earth non-sintered magnet according to any one of <1> to <4>, which further contains metal particles other than the magnetic material particles.
<6> The rare earth non-sintered magnet according to any one of <1> to <5>, which does not contain a resin component or has a content of the resin component of 10% by mass or less.
 本開示によれば、高温下での強度に優れる希土類非焼結磁石が提供される。 According to the present disclosure, a rare earth non-sintered magnet having excellent strength at high temperature is provided.
 以下、本発明の一実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であっても、その工程の目的が達成されるのであれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示では、希土類元素を含む磁性材粒子を焼結させずに得られる希土類磁石を「希土類非焼結磁石」と称する。
 本開示では、成形体の最高到達温度が80℃以上となるように行う処理を「熱処理」と称する。
Hereinafter, one embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
In the present disclosure, the term "process" is used in addition to a process independent of other processes, even if the process cannot be clearly distinguished from other processes, as long as the purpose of the process is achieved. Is also included.
In the present disclosure, the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, a rare earth magnet obtained without sintering magnetic material particles containing a rare earth element is referred to as a "rare earth non-sintered magnet".
In the present disclosure, the treatment performed so that the maximum temperature of the molded product reaches 80 ° C. or higher is referred to as "heat treatment".
<希土類非焼結磁石>
[第1実施形態]
 本開示に係る第1実施形態の希土類非焼結磁石は、希土類元素を含む磁性材粒子を含む成形体の熱処理物であり、大気雰囲気下にて200℃で504時間熱処理したときの質量増加率が1.0%以下である。第1実施形態の希土類非焼結磁石は、高温条件下に長時間曝されたときの質量増加率が小さいため、磁性材粒子同士の境界にて、酸化物、水酸化物等が汎用磁石と比較して多く存在しており、その結果、高温下での強度に優れると推測される。
<Rare earth non-sintered magnet>
[First Embodiment]
The rare earth non-sintered magnet of the first embodiment according to the present disclosure is a heat-treated product of a molded product containing magnetic material particles containing rare earth elements, and has a mass increase rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere. Is 1.0% or less. Since the rare earth non-sintered magnet of the first embodiment has a small mass increase rate when exposed to high temperature conditions for a long time, oxides, hydroxides, etc. are used as general-purpose magnets at the boundary between magnetic material particles. There are many of them in comparison, and as a result, it is presumed that they are excellent in strength at high temperatures.
 第1実施形態の希土類非焼結磁石は、高温下での強度の観点から、大気雰囲気下にて200℃で504時間熱処理したときの質量増加率は、0.95%以下であることが好ましく、0.9%以下であることがより好ましい。また、前述の質量増加率は、0.1%以上であってもよい。
 前述の質量増加率は、後述の実施例に記載の方法により求めることができる。
From the viewpoint of strength at high temperature, the rare earth non-sintered magnet of the first embodiment preferably has a mass increase rate of 0.95% or less when heat-treated at 200 ° C. for 504 hours in an air atmosphere. , 0.9% or less is more preferable. Further, the above-mentioned mass increase rate may be 0.1% or more.
The above-mentioned mass increase rate can be obtained by the method described in Examples described later.
 第1実施形態の希土類非焼結磁石は、成形体中の磁性材粒子が焼結しない温度(例えば、500℃以下)で成形体に対して熱処理を行うことで得られる。磁性材粒子が焼結しない温度で成形体に対して熱処理を行うことで、焼結型磁石の製造に適さない磁性材粒子(例えば、Sm-Fe-N磁性材粒子)も原料として好適に使用することができる。 The rare earth non-sintered magnet of the first embodiment is obtained by heat-treating the molded body at a temperature at which the magnetic material particles in the molded body are not sintered (for example, 500 ° C. or lower). By heat-treating the molded body at a temperature at which the magnetic material particles do not sinter, magnetic material particles that are not suitable for manufacturing sintered magnets (for example, Sm-Fe-N magnetic material particles) are also suitably used as raw materials. can do.
 第1実施形態の希土類非焼結磁石は、磁性材粒子に含まれる成分の酸化物及び水酸化物の少なくとも一方を含むことが好ましい。前述の酸化物及び水酸化物の少なくとも一方を含むことにより、希土類非焼結磁石の強度により優れる。 The rare earth non-sintered magnet of the first embodiment preferably contains at least one of an oxide and a hydroxide of the components contained in the magnetic material particles. By containing at least one of the above-mentioned oxides and hydroxides, the strength of the rare earth non-sintered magnet is superior.
-磁性材粒子-
 成形体に含まれる磁性材粒子の種類は、特に限定されない。例えば、希土類元素としてSm(サマリウム)を含む磁性材粒子及び希土類元素としてNd(ネオジム)を含む磁性材粒子が挙げられる。成形体に含まれる磁性材粒子は、1種のみであっても、2種以上の組み合わせであってもよい。
-Magnetic material particles-
The type of magnetic material particles contained in the molded product is not particularly limited. For example, magnetic material particles containing Sm (samarium) as a rare earth element and magnetic material particles containing Nd (neodymium) as a rare earth element can be mentioned. The magnetic material particles contained in the molded product may be only one type or a combination of two or more types.
 Smを含む磁性材粒子としては、Sm-Fe-N磁性材粒子(SmFe17、SmFe等、xは正の数)、Sm-Fe-B磁性材粒子(SmFe14B、Sm15Fe77等)、Sm-Co磁性材粒子(SmCo、SmCo17等)、Sm-Co-N磁性材粒子(SmCo17等、xは正の数)、Sm-Co-B磁性材粒子(Sm15Co77等)などが挙げられる。
 Ndを含む磁性材粒子としては、Nd-Fe-B磁性材粒子(NdFe14B等)などが挙げられる。
Examples of the magnetic material particles containing Sm include Sm-Fe-N magnetic material particles (Sm 2 Fe 17 N 3 , Sm Fe 7 N x, etc., x is a positive number) and Sm-Fe-B magnetic material particles (Sm 2 Fe). 14 B, Sm 15 Fe 77 B 5 etc.), Sm-Co magnetic material particles (SmCo 5 , Sm 2 Co 17 etc.), Sm-Co-N magnetic material particles (Sm 2 Co 17 N x etc., x is positive Number), Sm-Co-B magnetic material particles (Sm 15 Co 77 B 5, etc.) and the like.
Examples of the magnetic material particles containing Nd include Nd—Fe—B magnetic material particles (Nd 2 Fe 14 B and the like).
 磁性材粒子としては、希土類元素に加え、Feをさらに含む磁性材粒子が好ましい。Feを含む磁性材粒子を用いることで、酸素を含む雰囲気中での成形体の熱処理によってFeの酸化物及び水酸化物が生成し、希土類非焼結磁石の強度がより向上する傾向にある。 As the magnetic material particles, magnetic material particles further containing Fe in addition to the rare earth element are preferable. By using magnetic material particles containing Fe, oxides and hydroxides of Fe are generated by heat treatment of the molded product in an atmosphere containing oxygen, and the strength of the rare earth non-sintered magnet tends to be further improved.
 Smを含む磁性材粒子の中でも、保磁力及び磁束密度のバランスに優れる観点で、Sm-Fe-N磁性材粒子が好ましい。ここで、Sm-Fe-N磁性材粒子とは、Sm(サマリウム)、Fe(鉄)及びN(窒素)を含む磁性材粒子を意味する。 Among the magnetic material particles containing Sm, Sm-Fe-N magnetic material particles are preferable from the viewpoint of excellent balance between coercive force and magnetic flux density. Here, the Sm-Fe-N magnetic material particles mean magnetic material particles containing Sm (samarium), Fe (iron) and N (nitrogen).
 Sm-Fe-N磁性材粒子は、Sm、Fe及びN以外に、他の元素を含有していてもよい。他の元素としては、Ga、Nd、Zr、Ti、Cr、Co、Zn、Mn、V、Mo、W、Si、Re、Cu、Al、Ca、B、Ni、C、La、Ce、Pr、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Th等が挙げられる。これら他の元素は、1種を単独で用いてもよく、2種以上を併用してもよい。他の元素は、Sm、Fe及びNを合計で50質量%以上含有する磁石相の相構造の一部と置換されていて導入されていてもよく、挿入されて導入されていてもよい。Sm-Fe-N磁性材粒子が、Sm、Fe及びN以外の元素を含有する場合、Sm、Fe及びNの総量が全体の50質量%以上であることが好ましい。 The Sm-Fe-N magnetic material particles may contain other elements in addition to Sm, Fe and N. Other elements include Ga, Nd, Zr, Ti, Cr, Co, Zn, Mn, V, Mo, W, Si, Re, Cu, Al, Ca, B, Ni, C, La, Ce, Pr, Examples thereof include Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Th and the like. One of these other elements may be used alone, or two or more of them may be used in combination. Other elements may be introduced by being replaced with a part of the phase structure of the magnet phase containing 50% by mass or more of Sm, Fe and N in total, or may be inserted and introduced. When the Sm-Fe-N magnetic material particles contain elements other than Sm, Fe and N, the total amount of Sm, Fe and N is preferably 50% by mass or more of the total amount.
 磁性材粒子の体積平均粒子径(D50)は、特に限定されない。例えば、0.1μm~100μmの範囲から選択してもよい。
 磁性材粒子の体積平均粒子径が小さいほど、得られる希土類非焼結磁石の強度が向上する傾向にある。これは、磁性材粒子の体積平均粒子径が小さいほど体積当たりの粒子の表面積が増大し、磁性材粒子表面における酸化物及び水酸化物の生成が進行するためと考えられる。希土類非焼結磁石の強度の観点からは、磁性材粒子の体積平均粒子径(D50)は、50μm以下であることが好ましく、25μm以下であることがより好ましく、15μm以下であることがさらに好ましく、10μm以下であることが特に好ましく、4μm以下であることが極めて好ましい。磁性材粒子の体積平均粒子径(D50)は、1μm以上であってもよい。
 希土類非焼結磁石の強度及び磁気特性の観点からは、体積平均粒子径(D50)が異なる2種以上の磁性材粒子を併用してもよい。
 磁性材粒子の体積平均粒子径(D50)は、レーザー回折散乱式粒度分布測定装置により測定された体積基準の粒度分布において、小径側からの累積が50%となるときの粒子径(D50)として測定することができる。
The volume average particle diameter (D50) of the magnetic material particles is not particularly limited. For example, it may be selected from the range of 0.1 μm to 100 μm.
The smaller the volume average particle diameter of the magnetic material particles, the higher the strength of the obtained rare earth non-sintered magnet tends to be. It is considered that this is because the smaller the volume average particle diameter of the magnetic material particles, the larger the surface area of the particles per volume, and the more the formation of oxides and hydroxides on the surface of the magnetic material particles progresses. From the viewpoint of the strength of the rare earth non-sintered magnet, the volume average particle diameter (D50) of the magnetic material particles is preferably 50 μm or less, more preferably 25 μm or less, still more preferably 15 μm or less. It is particularly preferably 10 μm or less, and extremely preferably 4 μm or less. The volume average particle diameter (D50) of the magnetic material particles may be 1 μm or more.
From the viewpoint of the strength and magnetic properties of the rare earth non-sintered magnet, two or more kinds of magnetic material particles having different volume average particle diameters (D50) may be used in combination.
The volume average particle size (D50) of the magnetic material particles is defined as the particle size (D50) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measuring device. Can be measured.
 磁性材粒子の形状は特に限定されない。希土類非焼結磁石の磁気特性の観点からは、磁性材粒子の形状は球状又は球状に近い形状であることが好ましい。
 本開示において球状又は球状に近い形状としては、円形度係数が78%以上であるか、針状度係数が75%以上である形状が挙げられる。
 希土類非焼結磁石の強度の観点からは、球状又は球状に近い形状の磁性材粒子と、それ以外の形状、すなわち円形度係数が78%未満かつ針状度係数が75%未満である形状の磁性材粒子とを併用してもよい。
The shape of the magnetic material particles is not particularly limited. From the viewpoint of the magnetic properties of the rare earth non-sintered magnet, the shape of the magnetic material particles is preferably spherical or close to spherical.
In the present disclosure, examples of the spherical shape or a shape close to a spherical shape include a shape having a circularity coefficient of 78% or more or a needle-likeness coefficient of 75% or more.
From the viewpoint of the strength of rare earth non-sintered magnets, magnetic material particles having a spherical or near-spherical shape and other shapes, that is, a shape having a circularity coefficient of less than 78% and an needle-likeness coefficient of less than 75%. It may be used in combination with magnetic material particles.
 磁性材粒子は、円形度係数が78%以上であってもよく、80%以上であってもよく、85%以上であってもよく、90%以上であってもよい。磁性材粒子の円形度係数が大きいほど、磁性材粒子の形が球状に近いといえる。磁性材粒子の円形度係数は、次のように定義される。
 円形度係数=(4πS/L)×100
 S=粒子像の面積
 L=粒子像の周囲長
The magnetic material particles may have a circularity coefficient of 78% or more, 80% or more, 85% or more, or 90% or more. It can be said that the larger the circularity coefficient of the magnetic material particles, the closer the shape of the magnetic material particles is to a spherical shape. The circularity coefficient of the magnetic material particles is defined as follows.
Circularity coefficient = (4πS / L 2 ) × 100
S = Area of particle image L = Peripheral length of particle image
 磁性材粒子は、針状度係数が75%以上であってもよく、80%以上であってもよく、85%以上であってもよく、90%以上であってもよい。磁性材粒子の針状度係数が大きいほど、磁性材粒子の形が球状に近いといえる。磁性材粒子の針状度係数は、次のように定義される。
 針状度係数(%)=(b/a)×100
 a=粒子像の長径
 b=粒子像の短径
The magnetic material particles may have an acicularity coefficient of 75% or more, 80% or more, 85% or more, or 90% or more. It can be said that the larger the needle-likeness coefficient of the magnetic material particles, the closer the shape of the magnetic material particles is to a spherical shape. The needle-likeness coefficient of the magnetic material particles is defined as follows.
Needle degree coefficient (%) = (b / a) x 100
a = major axis of particle image b = minor axis of particle image
 磁性材粒子の粒子像の面積、周囲長、長径及び短径は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等による観察によって測定できる。具体的には、磁性材粒子の長径は、磁性材粒子の撮影像を観察したときに、磁性材粒子表面の任意の点aから、点aと異なる任意の点bまでの距離が最長となる線分の長さとする。磁性材粒子の短径は、長径に垂直であって、磁性材粒子表面の二点を結ぶ線分のうち、長さが最長となる線分の長さとする。磁性材粒子の粒子像の面積、周囲長、長径及び短径は、画像ソフト等を用いて計算してもよい。磁性材粒子の粒子像の面積、周囲長、長径及び短径は、100個の粒子の測定値の算術平均値として求められる。 The area, peripheral length, major axis and minor axis of the particle image of the magnetic material particles can be measured by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. Specifically, the major axis of the magnetic material particles has the longest distance from an arbitrary point a on the surface of the magnetic material particles to an arbitrary point b different from the point a when observing a photographed image of the magnetic material particles. The length of the line segment. The minor axis of the magnetic material particles is perpendicular to the major axis, and is the length of the line segment having the longest length among the line segments connecting the two points on the surface of the magnetic material particles. The area, peripheral length, major axis and minor axis of the particle image of the magnetic material particles may be calculated using image software or the like. The area, circumference length, major axis, and minor axis of the particle image of the magnetic material particles are obtained as arithmetic mean values of the measured values of 100 particles.
 熱処理物とする前及び熱処理物とした後の成形体中の磁性材粒子の含有率は、特に限定されず、磁気特性の確保と高温下での強度の向上とのバランスの観点から、成形体全体の30質量%~100質量%であることが好ましい。希土類非焼結磁石の磁気特性を確保する観点からは、前述の磁性材粒子の含有率は、成形体全体の35質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、45質量%以上であることが特に好ましい。希土類非焼結磁石の強度の観点からは、前述の磁性材粒子の含有率は、成形体全体の90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。 The content of magnetic material particles in the molded product before and after the heat-treated product is not particularly limited, and from the viewpoint of ensuring the magnetic properties and improving the strength at high temperatures, the molded product It is preferably 30% by mass to 100% by mass of the whole. From the viewpoint of ensuring the magnetic properties of the rare earth non-sintered magnet, the content of the magnetic material particles described above is more preferably 35% by mass or more, and further preferably 40% by mass or more of the entire molded body. , 45% by mass or more is particularly preferable. From the viewpoint of the strength of the rare earth non-sintered magnet, the content of the magnetic material particles described above is more preferably 90% by mass or less, still more preferably 85% by mass or less, and 80% by mass. It is particularly preferable that it is% or less.
-金属粒子-
 成形体は、磁性材粒子のみからなっていても、磁性材粒子に加えて磁性材粒子以外の金属粒子をさらに含んでいてもよい。成形体が金属粒子を含むことで、得られる希土類非焼結磁石の強度がより向上する傾向にある。
 本開示において「金属粒子」とは、希土類元素を含まない金属又は合金の粒子を意味する。
-Metal particles-
The molded product may be composed of only the magnetic material particles, or may further contain metal particles other than the magnetic material particles in addition to the magnetic material particles. When the molded body contains metal particles, the strength of the obtained rare earth non-sintered magnet tends to be further improved.
In the present disclosure, the term "metal particles" means particles of a metal or alloy that does not contain rare earth elements.
 金属粒子の比表面積は、磁性材粒子との接触面積が充分に得られて磁性材粒子の接合がより強固になる観点から、0.2m/g以上であることが好ましい。金属粒子の比表面積の上限は特に制限されず、例えば、2.0m/g以下であってもよい。
 金属粒子の比表面積は、BET法(窒素ガス吸着法)で測定することができる。
The specific surface area of the metal particles is preferably 0.2 m 2 / g or more from the viewpoint that a sufficient contact area with the magnetic material particles can be obtained and the bonding of the magnetic material particles becomes stronger. The upper limit of the specific surface area of the metal particles is not particularly limited, and may be, for example, 2.0 m 2 / g or less.
The specific surface area of the metal particles can be measured by the BET method (nitrogen gas adsorption method).
 金属粒子の種類は、特に限定されない。金属粒子として具体的には、銅(Cu)、アルミニウム(Al)、鉄(Fe)、チタン(Ti)、錫(Sn)、インジウム(In)等の金属の単体の粒子、これら金属の合金などの粒子が挙げられる。これらの金属粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、金属粒子は、銅(Cu)及びアルミニウム(Al)の少なくともいずれかを含むことが好ましい。 The type of metal particles is not particularly limited. Specifically, the metal particles include simple substance particles of metals such as copper (Cu), aluminum (Al), iron (Fe), titanium (Ti), tin (Sn), and indium (In), alloys of these metals, and the like. Particles can be mentioned. One type of these metal particles may be used alone, or two or more types may be used in combination. Among these, the metal particles preferably contain at least one of copper (Cu) and aluminum (Al).
 金属粒子は、下記に示す理由から、Cuを含むことがより好ましい。
 (1)金属粒子の含有率(質量基準)を変更せずに比重の大きい金属粒子を用いて、目的とする大きさの磁石を作製する場合に、磁石全体に対する磁性材粒子の割合(体積比)を大きくできる。そのため、質量基準での含有率を変更せずに、比重の大きい金属粒子を用いた場合、希土類メタルボンド磁石は磁気特性を確保しやすくなる。
 (2)Cuは延性が高いため、これを金属粒子として用いると、成形体中の磁性材粒子と金属粒子が最密充填されやすくなり、成形体の密度が向上する。さらに、Cuは摺動性に優れる、すなわち摩擦抵抗が低いため、成形に用いる金型の長寿命化にも繋がる。
 (3)金属粒子としてCuを用いると、得られる磁石の熱膨張率が鉄(Fe)に近くなる。そのため、磁石を適用する部位に鉄製の部材が用いられている場合、得られる熱膨張率が好ましいものとなる。
The metal particles more preferably contain Cu for the reasons shown below.
(1) When a magnet of a desired size is produced using metal particles having a large specific gravity without changing the content rate (mass standard) of the metal particles, the ratio (volume ratio) of the magnetic material particles to the entire magnet ) Can be increased. Therefore, when metal particles having a large specific gravity are used without changing the content rate based on the mass, the rare earth metal bond magnet can easily secure the magnetic characteristics.
(2) Since Cu has high ductility, when it is used as metal particles, the magnetic material particles and the metal particles in the molded body are likely to be packed most closely, and the density of the molded body is improved. Further, Cu has excellent slidability, that is, low frictional resistance, which leads to a long life of the mold used for molding.
(3) When Cu is used as the metal particles, the coefficient of thermal expansion of the obtained magnet becomes close to that of iron (Fe). Therefore, when an iron member is used for the portion to which the magnet is applied, the obtained coefficient of thermal expansion is preferable.
 金属粒子は、銅と銅以外の元素とを含む合金(銅合金)の粒子であってもよい。銅合金として具体的には、銅と、リン(P)、コバルト(Co)、マンガン(Mn)、ニッケル(Ni)、亜鉛(Zn)、錫(Sn)及び鉄(Fe)からなる群より選択される少なくとも1種と、を含む銅合金が挙げられる。 The metal particles may be particles of an alloy (copper alloy) containing copper and an element other than copper. Specifically, the copper alloy is selected from the group consisting of copper and phosphorus (P), cobalt (Co), manganese (Mn), nickel (Ni), zinc (Zn), tin (Sn) and iron (Fe). Included are at least one type of copper alloy.
 金属粒子の体積平均粒子径(D50)は、特に限定されない。例えば、1μm~100μmであることが好ましく、10μm~80μmであることがより好ましく、20μm~70μmであることがさらに好ましい。
 金属粒子としては、体積平均粒子径(D50)が異なる2種以上の金属粒子を併用してもよい。
 金属粒子の体積平均粒子径(D50)は、磁性材粒子の体積平均粒子径(D50)と同様にして測定することができる。
The volume average particle diameter (D50) of the metal particles is not particularly limited. For example, it is preferably 1 μm to 100 μm, more preferably 10 μm to 80 μm, and even more preferably 20 μm to 70 μm.
As the metal particles, two or more kinds of metal particles having different volume average particle diameters (D50) may be used in combination.
The volume average particle diameter (D50) of the metal particles can be measured in the same manner as the volume average particle diameter (D50) of the magnetic material particles.
 金属粒子は、磁性材粒子の結着材としての役割を果たす観点からは、軟らかい金属の粒子であることが好ましい。具体的には、ビッカース硬さHvが200以下である金属の粒子であることが好ましい。磁性材粒子との結着性の観点からは、金属粒子のビッカース硬さHvは150以下であることが好ましく、100以下であることがより好ましい。金属粒子のビッカース硬さHvの下限値は特に限定されるものではない。例えば、10以上であってもよく、30以上であってもよい。 The metal particles are preferably soft metal particles from the viewpoint of playing a role as a binder for the magnetic material particles. Specifically, it is preferably metal particles having a Vickers hardness Hv of 200 or less. From the viewpoint of the binding property with the magnetic material particles, the Vickers hardness Hv of the metal particles is preferably 150 or less, and more preferably 100 or less. The lower limit of the Vickers hardness Hv of the metal particles is not particularly limited. For example, it may be 10 or more, or 30 or more.
 ビッカース硬さHvの測定方法は、以下のとおりである。JIS Z 2244(2009)に準じて、マイクロビッカース硬さ試験機(株式会社ミツトヨ製:HM-200B)を用いて、予め定められた試験力にて試験体の表面に押圧し、その際に形成されたくぼみの対角線長さから試験体の硬度を算出する。なお、希土類非焼結磁石に含まれる金属成分の分析結果から金属粒子のビッカース硬さHvを特定してもよい。例えば、測定対象となる希土類非焼結磁石に対し、走査型電子顕微鏡(日本電子株式会社製:JSM-IT100)を用いたエネルギー分散型X線分析(EDS)により元素分析を行って、希土類非焼結磁石に含まれる金属の種類を特定することで、原料となった金属粒子のビッカース硬さHvを推定してもよい。 The method for measuring Vickers hardness Hv is as follows. According to JIS Z 2244 (2009), using a Micro Vickers hardness tester (manufactured by Mitutoyo Co., Ltd .: HM-200B), the test piece is pressed against the surface of the test piece with a predetermined test force and formed at that time. The hardness of the test piece is calculated from the diagonal length of the recess. The Vickers hardness Hv of the metal particles may be specified from the analysis result of the metal component contained in the rare earth non-sintered magnet. For example, the rare earth non-sintered magnet to be measured is subjected to elemental analysis by energy dispersive X-ray analysis (EDS) using a scanning electron microscope (manufactured by Nippon Denshi Co., Ltd .: JSM-IT100) to perform element analysis on the rare earth non-sintered magnet. By specifying the type of metal contained in the sintered magnet, the Vickers hardness Hv of the metal particles used as a raw material may be estimated.
 金属粒子の形状は、特に限定されない。例えば、不規則形状が挙げられる。金属粒子の形状が不規則形状であることで、成形体中の空隙を少なくでき、強度に優れる希土類非焼結磁石が得られる傾向がある。不規則形状を有する金属粒子の短径に対する長径の比(長径/短径)は、特に限定されるものではない。より機械的強度が向上しやすい観点から、長径/短径の比の値は、1より大きいことが好ましく、1.5以上であることがより好ましく、2以上であることがさらに好ましい。また、成形体中での分散性等の観点から、長径/短径の比の値は、3.5以下であることが好ましく、3以下であることがより好ましい。金属粒子の長径及び短径は、前述の磁性材粒子の長径及び短径と同様の方法により測定できる。 The shape of the metal particles is not particularly limited. For example, an irregular shape can be mentioned. Since the shape of the metal particles is irregular, the voids in the molded body can be reduced, and a rare earth non-sintered magnet having excellent strength tends to be obtained. The ratio of the major axis to the minor axis (major axis / minor axis) of the metal particles having an irregular shape is not particularly limited. From the viewpoint that the mechanical strength is more likely to be improved, the value of the major axis / minor axis ratio is preferably larger than 1, more preferably 1.5 or more, and further preferably 2 or more. Further, from the viewpoint of dispersibility in the molded product, the value of the major axis / minor axis ratio is preferably 3.5 or less, and more preferably 3 or less. The major axis and minor axis of the metal particles can be measured by the same method as the major axis and minor axis of the magnetic material particles described above.
 成形体が金属粒子を含む場合、熱処理物とする前及び熱処理物とした後の金属粒子の含有率は、特に限定されない。磁気特性の確保と強度の向上のバランスの観点から、前述の金属粒子の含有率は成形体全体の5質量%~70質量%であることが好ましい。希土類非焼結磁石の強度の観点からは、前述の金属粒子の含有率は、成形体全体の10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましい。希土類非焼結磁石の磁気特性の観点からは、前述の金属粒子の含有率は、成形体全体の65質量%以下であることがより好ましく、60質量%以下であることがさらに好ましく、55質量%以下であることが特に好ましい。 When the molded product contains metal particles, the content of the metal particles before the heat-treated product and after the heat-treated product is not particularly limited. From the viewpoint of ensuring the magnetic properties and improving the strength, the content of the metal particles is preferably 5% by mass to 70% by mass of the entire molded product. From the viewpoint of the strength of the rare earth non-sintered magnet, the content of the metal particles described above is more preferably 10% by mass or more, further preferably 15% by mass or more, and 20% by mass of the entire molded product. The above is particularly preferable. From the viewpoint of the magnetic properties of the rare earth non-sintered magnet, the content of the metal particles described above is more preferably 65% by mass or less, still more preferably 60% by mass or less, and 55% by mass. It is particularly preferable that it is% or less.
-樹脂成分-
 成形体は、樹脂を含んでもよい。樹脂としては、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられる。得られる希土類非焼結磁石の耐熱性及び耐油性の観点からは、成形体は樹脂を含まないか、又は、熱処理物とする前及び熱処理物とした後の樹脂の含有率が成形体全体の10質量%以下であることが好ましく、成形体は樹脂を含まないか、又は、前述の樹脂の含有率が成形体全体の5質量%以下であることがより好ましい。
-Resin component-
The molded product may contain a resin. Examples of the resin include thermosetting resins such as epoxy resin and phenol resin. From the viewpoint of heat resistance and oil resistance of the obtained rare earth non-sintered magnet, the molded product does not contain resin, or the content of the resin before and after the heat-treated product is the total of the molded product. The content is preferably 10% by mass or less, and the molded product does not contain a resin, or the content of the above-mentioned resin is more preferably 5% by mass or less of the entire molded product.
[第2実施形態]
 本開示に係る第2実施形態の希土類非焼結磁石は、希土類元素を含む磁性材粒子を含む成形体の熱処理物であり、大気雰囲気下にて200℃で504時間熱処理したときの寸法変化率の絶対値が1.4%以下である。第2実施形態の希土類非焼結磁石は、高温条件下に長時間曝されたときの寸法変化率の絶対値が小さいため、磁性材粒子同士の境界にて、酸化物、水酸化物等が汎用磁石と比較して比較的多く存在しており、その結果、高温下での強度に優れると推測される。
[Second Embodiment]
The rare earth non-sintered magnet of the second embodiment according to the present disclosure is a heat-treated product of a molded body containing magnetic material particles containing rare earth elements, and has a dimensional change rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere. The absolute value of is 1.4% or less. Since the rare earth non-sintered magnet of the second embodiment has a small absolute value of the dimensional change rate when exposed to a high temperature condition for a long time, oxides, hydroxides, etc. are generated at the boundary between the magnetic material particles. It is abundant in comparison with general-purpose magnets, and as a result, it is presumed that it has excellent strength at high temperatures.
 第2実施形態の希土類非焼結磁石における好ましい構成は、前述の第1実施形態の希土類非焼結磁石と同様であり、例えば、第2実施形態の希土類非焼結磁石は、前述の質量増加率の条件を満たしていてもよい。 The preferred configuration of the rare earth non-sintered magnet of the second embodiment is the same as that of the rare earth non-sintered magnet of the first embodiment described above. For example, the rare earth non-sintered magnet of the second embodiment has the above-mentioned mass increase. The condition of the rate may be satisfied.
 第2実施形態の希土類非焼結磁石は、高温下での強度の観点から、大気雰囲気下にて200℃で504時間熱処理したときの寸法変化率の絶対値は、1.0%以下であることが好ましく、0.5%以下であることがより好ましく、0.3%以下であることがさらに好ましく、0.2%以下であることが特に好ましい。
また、前述の寸法変化率の絶対値は、0.05%以上であってもよい。
 前述の寸法変化率の絶対値は、後述の実施例に記載の方法により求めることができる。
The rare earth non-sintered magnet of the second embodiment has an absolute value of 1.0% or less of the dimensional change rate when heat-treated at 200 ° C. for 504 hours in an air atmosphere from the viewpoint of strength at high temperature. It is preferably 0.5% or less, more preferably 0.3% or less, and particularly preferably 0.2% or less.
Further, the absolute value of the above-mentioned dimensional change rate may be 0.05% or more.
The absolute value of the above-mentioned dimensional change rate can be obtained by the method described in Examples described later.
 前述の寸法変化率は、値が負であってもよく、例えば、-0.5%以上-0.05%以下であってもよく、-0.3%以上-0.05%以下であってもよく、-0.2%以上-0.05%以下であってもよい。 The above-mentioned dimensional change rate may have a negative value, for example, it may be -0.5% or more and -0.05% or less, or -0.3% or more and -0.05% or less. It may be -0.2% or more and -0.05% or less.
 本開示の希土類非焼結磁石は高温下での強度に優れるため、耐熱性が要求される用途にも好ましく適用できる。また、本開示の希土類非焼結磁石は、樹脂を含まないか、樹脂の量が10質量%以下である場合には、結着材として主に樹脂材料を用いる希土類非焼結磁石に比べて耐油性にも優れており、本開示の希土類非焼結磁石は、耐油性が要求される用途にも好ましく適用できる。 Since the rare earth non-sintered magnet of the present disclosure has excellent strength at high temperatures, it can be preferably applied to applications requiring heat resistance. Further, the rare earth non-sintered magnet of the present disclosure is compared with a rare earth non-sintered magnet that mainly uses a resin material as a binder when the resin is not contained or the amount of the resin is 10% by mass or less. It is also excellent in oil resistance, and the rare earth non-sintered magnet of the present disclosure can be preferably applied to applications requiring oil resistance.
<希土類非焼結磁石の製造方法>
 本開示の希土類非焼結磁石の製造方法の一実施形態について以下に説明する。本実施形態の製造方法は、希土類元素を含む磁性材粒子を含む成形体を、酸素を含む雰囲気中で熱処理する工程を有する希土類非焼結磁石の製造方法である。
<Manufacturing method of rare earth non-sintered magnet>
An embodiment of the method for producing a rare earth non-sintered magnet of the present disclosure will be described below. The manufacturing method of the present embodiment is a manufacturing method of a rare earth non-sintered magnet having a step of heat-treating a molded body containing magnetic material particles containing a rare earth element in an atmosphere containing oxygen.
 本開示の方法によれば、高温下での強度に優れる希土類非焼結磁石が得られる。その理由は明らかではないが、以下のように考えることができる。 According to the method of the present disclosure, a rare earth non-sintered magnet having excellent strength at high temperature can be obtained. The reason is not clear, but it can be thought of as follows.
 本開示の希土類非焼結磁石の製造方法では、磁性材粒子を含む成形体を、酸素を含む雰囲気中で熱処理する。これにより、磁性材粒子の粒子同士の境界において、磁性材粒子に含まれる成分(例えば、Sm-Fe-N系磁性材粒子に含まれるFe)の酸化物及び水酸化物の生成量が、相対的に増加する傾向がみられる。この傾向は、不活性ガス雰囲気下における熱処理ではみられないものである。そして、この相対的に増加した酸化物及び水酸化物が、希土類非焼結磁石の強度の向上に寄与していると推測される。 In the method for producing a rare earth non-sintered magnet disclosed in the present disclosure, a molded product containing magnetic material particles is heat-treated in an atmosphere containing oxygen. As a result, at the boundary between the magnetic material particles, the amounts of oxides and hydroxides of the components contained in the magnetic material particles (for example, Fe contained in the Sm-Fe-N-based magnetic material particles) are relative to each other. There is a tendency to increase. This tendency is not seen in heat treatment under an inert gas atmosphere. It is presumed that the relatively increased oxides and hydroxides contribute to the improvement of the strength of the rare earth non-sintered magnet.
 以下、本開示の希土類非焼結磁石を製造方法の具体例について説明する。以下の具体例では、磁性材粒子を含む磁石用材料を準備する工程(磁石用材料準備工程)と、磁石用材料を成形して成形体とする工程(成形工程)と、成形工程で得られた成形体を、酸素を含む雰囲気中で熱処理する工程(熱処理工程)と、をこの順に実施する。ただし、本開示の希土類非焼結磁石の製造方法は、以下の具体例に制限されるものではない。 Hereinafter, a specific example of a method for manufacturing the rare earth non-sintered magnet of the present disclosure will be described. In the following specific examples, it is obtained in a step of preparing a material for magnets containing magnetic material particles (material preparation step for magnets), a step of molding a material for magnets into a molded product (molding step), and a molding step. A step of heat-treating the molded product in an atmosphere containing oxygen (heat treatment step) is carried out in this order. However, the method for producing a rare earth non-sintered magnet of the present disclosure is not limited to the following specific examples.
(1)磁石用材料準備工程
 磁石用材料準備工程では、磁性材粒子を含む磁石用材料を準備する。磁石用材料を準備する方法は、特に限定されない。例えば、磁性材粒子と、必要に応じて含まれる金属粒子とを混合して磁石用材料を調製してもよい。
(1) Material preparation process for magnets In the material preparation process for magnets, materials for magnets containing magnetic material particles are prepared. The method of preparing the material for the magnet is not particularly limited. For example, a material for a magnet may be prepared by mixing magnetic material particles and, if necessary, metal particles contained therein.
 磁性材粒子と他の材料(例えば、金属粒子)とを混合して磁石用材料を調製する場合、磁石用材料の調製は、例えば、ミキシングシェーカー、タンブラーミキサー、V型混合機、ダブルコーン型混合機、リボン型混合機、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー等の公知の混合装置を用いて行ってもよい。 When preparing a material for magnets by mixing magnetic material particles and other materials (for example, metal particles), the preparation of the material for magnets is, for example, a mixing shaker, a tumbler mixer, a V-type mixer, a double cone type mixing. A known mixing device such as a machine, a ribbon type mixer, a Nauter mixer, a Henschel mixer, or a super mixer may be used.
(2)成形工程
 成形工程では、磁石用材料を成形して成形体とする。成形の方法は、特に限定されない。成形性の観点からは、圧縮成形法であることが好ましい。圧縮成形する場合の圧力は、特に限定されず、圧力が高いほど高磁束密度及び高強度の希土類非焼結磁石が得られる傾向にある。一方、生産性の観点からは、圧縮成形する場合の圧力は低いことが好ましい。このため、圧縮成形する場合の圧力は、例えば、500MPa~2500MPaであってもよい。量産性及び金型寿命の観点から、圧縮成形する場合の圧力は、700MPa~1500MPaであることがより好ましい。
(2) Molding process In the molding process, a magnet material is molded into a molded product. The molding method is not particularly limited. From the viewpoint of moldability, the compression molding method is preferable. The pressure for compression molding is not particularly limited, and the higher the pressure, the higher the magnetic flux density and the higher the strength of the rare earth non-sintered magnet. On the other hand, from the viewpoint of productivity, it is preferable that the pressure in the case of compression molding is low. Therefore, the pressure for compression molding may be, for example, 500 MPa to 2500 MPa. From the viewpoint of mass productivity and mold life, the pressure for compression molding is more preferably 700 MPa to 1500 MPa.
 成形工程で得られる成形体の密度(成形体全体の密度)は、特に限定されない。例えば、原料となる磁石用材料の真密度に対して75%~90%であることが好ましく、80%~90%であることがより好ましい。成形体の密度が磁石用材料の真密度に対して75%~90%の範囲であると、磁気特性が良好で、機械的強度に優れる希土類非焼結磁石が得られる傾向にある。 The density of the molded product obtained in the molding process (density of the entire molded product) is not particularly limited. For example, it is preferably 75% to 90%, more preferably 80% to 90%, based on the true density of the magnet material as a raw material. When the density of the molded product is in the range of 75% to 90% with respect to the true density of the magnet material, a rare earth non-sintered magnet having good magnetic properties and excellent mechanical strength tends to be obtained.
 成形工程で金型を使用する場合、金型を加熱して成形してもよく、金型を加熱しないで成形してもよい。金型を加熱して成形する場合、金型の加熱温度は、特に限定されない。例えば、金型の加熱温度は、100℃~300℃であることが好ましく、150℃~250℃であることがより好ましい。なお、金型の加熱は、成形工程で得られた成形体に対して行う「熱処理」とは異なるものである。 When a mold is used in the molding process, the mold may be heated and molded, or the mold may be molded without being heated. When the mold is heated for molding, the heating temperature of the mold is not particularly limited. For example, the heating temperature of the mold is preferably 100 ° C. to 300 ° C., more preferably 150 ° C. to 250 ° C. The heating of the mold is different from the "heat treatment" performed on the molded product obtained in the molding step.
(3)熱処理工程
 熱処理工程では、成形工程で得られた成形体を、酸素を含む雰囲気中で熱処理する。熱処理の方法は、特に限定されない。例えば、加熱炉等の公知の装置を用いて行うことができる。熱処理が行われる「酸素を含む雰囲気」は、酸素が存在する雰囲気であれば、特に制限されない。例えば、酸素ガスを供給して行ってもよく、大気中で行ってもよい。経済的な観点からは、大気中(一般的には、水分を除く成分中の酸素濃度が約23質量%)で行うことが好ましい。
(3) Heat Treatment Step In the heat treatment step, the molded product obtained in the molding step is heat-treated in an atmosphere containing oxygen. The heat treatment method is not particularly limited. For example, it can be carried out using a known device such as a heating furnace. The "atmosphere containing oxygen" in which the heat treatment is performed is not particularly limited as long as it is an atmosphere in which oxygen is present. For example, oxygen gas may be supplied or the operation may be performed in the atmosphere. From an economical point of view, it is preferable to carry out the operation in the atmosphere (generally, the oxygen concentration in the components excluding water is about 23% by mass).
 酸素を含む雰囲気中の酸素濃度(水分を除く成分中の濃度、以下同様)は、特に限定されるものではない。熱処理による酸化物及び水酸化物の生成を促進する観点からは、酸素濃度は、例えば、10質量%以上であってもよい。酸化物及び水酸化物の過剰な生成を抑制する観点からは、酸素濃度は、例えば、40質量%以下であってもよい。 The oxygen concentration in the atmosphere containing oxygen (concentration in the components excluding water, the same applies hereinafter) is not particularly limited. From the viewpoint of promoting the formation of oxides and hydroxides by heat treatment, the oxygen concentration may be, for example, 10% by mass or more. From the viewpoint of suppressing the excessive formation of oxides and hydroxides, the oxygen concentration may be, for example, 40% by mass or less.
 熱処理工程は、酸素及び水蒸気を含む雰囲気中で行うことが好ましい。
 上述したように、酸素を含む雰囲気中で熱処理を行うと、成形体に含まれる水分と、磁性材粒子の成分とが反応して水酸化物及び酸化物が生成すると考えられる。ここで、酸素に加えて水蒸気をさらに含む雰囲気中で熱処理を行うと、成形体に含まれる水分と、水蒸気と、磁性材粒子の成分とが反応して水酸化物及び酸化物の生成がより促進されると考えられる。その結果、磁性材粒子の接合強度が増して得られる希土類非焼結磁石の強度がより向上すると考えられる。
The heat treatment step is preferably performed in an atmosphere containing oxygen and water vapor.
As described above, when the heat treatment is performed in an atmosphere containing oxygen, it is considered that the water content in the molded body reacts with the components of the magnetic material particles to generate hydroxides and oxides. Here, when the heat treatment is performed in an atmosphere further containing water vapor in addition to oxygen, the water content contained in the molded body reacts with the water vapor and the components of the magnetic material particles to produce more hydroxides and oxides. It is thought to be promoted. As a result, it is considered that the strength of the rare earth non-sintered magnet obtained by increasing the bonding strength of the magnetic material particles is further improved.
 水蒸気を含む雰囲気中の水蒸気の濃度は、特に限定されない。水酸化物及び酸化物の生成を促進する観点からは、水蒸気の濃度は、例えば、相対湿度として10%以上であることが好ましい。一方、水酸化物及び酸化物の過剰な生成による強度の低下を抑制する観点からは、水蒸気の濃度は、例えば、相対湿度として80%以下であることが好ましく、70%以下であることがより好ましい。 The concentration of water vapor in the atmosphere containing water vapor is not particularly limited. From the viewpoint of promoting the formation of hydroxides and oxides, the concentration of water vapor is preferably 10% or more as a relative humidity, for example. On the other hand, from the viewpoint of suppressing the decrease in strength due to the excessive formation of hydroxides and oxides, the concentration of water vapor is preferably 80% or less, and more preferably 70% or less, for example, as a relative humidity. preferable.
 熱処理は、減圧下又は加圧下で行っても、大気圧下で行ってもよい。経済的な観点からは、大気圧下で行うことが好ましい。 The heat treatment may be performed under reduced pressure, pressurized pressure, or atmospheric pressure. From an economic point of view, it is preferable to carry out under atmospheric pressure.
 熱処理の温度は磁性材粒子が焼結しない温度であれば特に制限されず、成形体に含まれる磁性材粒子の耐熱性等を考慮して設定できる。
 充分な磁気特性を維持する観点からは、熱処理の温度は、例えば、500℃以下であってもよく、450℃以下であってもよく、350℃以下であってもよく、300℃以下であってもよく、250℃以下であってもよい。熱処理の温度の下限値は特に制限されないが、酸化物及び水酸化物の生成を促進する観点からは、100℃以上であることが好ましく、150℃以上であることがより好ましい。なお、本開示における熱処理の温度は、最高到達温度を表す。
The temperature of the heat treatment is not particularly limited as long as the magnetic material particles are not sintered, and can be set in consideration of the heat resistance of the magnetic material particles contained in the molded product.
From the viewpoint of maintaining sufficient magnetic properties, the heat treatment temperature may be, for example, 500 ° C. or lower, 450 ° C. or lower, 350 ° C. or lower, or 300 ° C. or lower. It may be 250 degreeC or less. The lower limit of the heat treatment temperature is not particularly limited, but from the viewpoint of promoting the formation of oxides and hydroxides, it is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher. The heat treatment temperature in the present disclosure represents the maximum temperature reached.
 熱処理の時間(最高到達温度での保持時間)は、特に限定されない。充分な熱処理の効果を得る観点からは、熱処理の時間は、10分以上であることが好ましく、30分以上であることがより好ましく、1時間以上であることがさらに好ましい。量産性の観点からは、熱処理の時間は、100時間以下であることが好ましい。 The heat treatment time (holding time at the maximum temperature reached) is not particularly limited. From the viewpoint of obtaining a sufficient heat treatment effect, the heat treatment time is preferably 10 minutes or more, more preferably 30 minutes or more, and further preferably 1 hour or more. From the viewpoint of mass productivity, the heat treatment time is preferably 100 hours or less.
 熱処理工程において、最高到達温度に到達するまでの昇温速度は、特に限定されない。昇温速度は、例えば、2℃/分以上であってもよく、5℃/分以上であってもよい。昇温速度は、例えば、20℃/分以下であってもよく、15℃/分以下であってもよい。 In the heat treatment process, the rate of temperature rise until the maximum temperature is reached is not particularly limited. The rate of temperature rise may be, for example, 2 ° C./min or higher, or 5 ° C./min or higher. The heating rate may be, for example, 20 ° C./min or less, or 15 ° C./min or less.
 熱処理の終了後、成形体は、成形体の温度が室温(例えば、25℃)になるまで冷却される。冷却速度は、特に限定されない。冷却速度値は、例えば、2℃/分以上であってもよく、5℃/分以上であってもよい。また、冷却速度は、例えば、20℃/分以下であってもよく、15℃/分以下であってもよい。 After the heat treatment is completed, the molded product is cooled until the temperature of the molded product reaches room temperature (for example, 25 ° C.). The cooling rate is not particularly limited. The cooling rate value may be, for example, 2 ° C./min or higher, or 5 ° C./min or higher. The cooling rate may be, for example, 20 ° C./min or less, or 15 ° C./min or less.
 以下に実施例を挙げて本発明の実施形態をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<実施例1及び2>
 実施例1では表3に示す磁性材粒子を磁石用材料として用い、実施例2では表3に示す磁性材粒子及び金属粒子を、質量基準で75:25となるように混合することにより磁石用材料を調製した。実施例2では、磁性材粒子と金属粒子とを撹拌装置を用いて約50回転/分にて30分間撹拌することにより混合した。
<Examples 1 and 2>
In Example 1, the magnetic material particles shown in Table 3 are used as materials for magnets, and in Example 2, the magnetic material particles and metal particles shown in Table 3 are mixed so as to be 75:25 on a mass basis for magnets. The material was prepared. In Example 2, the magnetic material particles and the metal particles were mixed by stirring at about 50 rpm for 30 minutes using a stirrer.
(成形体の作製)
 実施例1及び2の磁石用材料を用いて、油圧プレス機を用いて、980MPaの圧力で圧縮成形を行い、外径11.3mm×全長10mmの円柱形状の圧縮成形体を作製した。成形体の密度(Mg/m)を表3に示す。
(Making a molded product)
Using the materials for magnets of Examples 1 and 2, compression molding was performed at a pressure of 980 MPa using a hydraulic press to prepare a cylindrical compression molded body having an outer diameter of 11.3 mm and a total length of 10 mm. The density of the molded product (Mg / m 3 ) is shown in Table 3.
(熱処理)
 得られた成形体に対し、大気中(酸素濃度23質量%、温度25℃での相対湿度60%)にて200℃、1時間の条件で熱処理を行い、希土類非焼結磁石の試験片を得た。この熱処理では、磁石用材料の焼結は生じない。
(Heat treatment)
The obtained molded product was heat-treated in the air (oxygen concentration 23% by mass, relative humidity 60% at a temperature of 25 ° C.) at 200 ° C. for 1 hour to obtain a test piece of a rare earth non-sintered magnet. Obtained. This heat treatment does not cause sintering of the magnet material.
<比較例1及び2>
 比較例1及び2では表3に示す磁性材粒子を磁石用材料として用いた。
<Comparative Examples 1 and 2>
In Comparative Examples 1 and 2, the magnetic material particles shown in Table 3 were used as the magnet material.
(成形体の作製)
 比較例1及び2の磁石用材料を用いて、油圧プレス機を用いて、980MPaの圧力で圧縮成形を行い、外径11.3mm×全長10mmの円柱形状の圧縮成形体を作製した。成形体の密度(Mg/m)を表3に示す。
(Making a molded product)
Using the materials for magnets of Comparative Examples 1 and 2, compression molding was performed at a pressure of 980 MPa using a hydraulic press to prepare a cylindrical compression molded body having an outer diameter of 11.3 mm and a total length of 10 mm. The density of the molded product (Mg / m 3 ) is shown in Table 3.
(熱処理)
 得られた成形体に対し、窒素雰囲気にて200℃、1時間の条件で熱処理を行い、希土類非焼結磁石の試験片を得た。
(Heat treatment)
The obtained molded product was heat-treated in a nitrogen atmosphere at 200 ° C. for 1 hour to obtain a test piece of a rare earth non-sintered magnet.
 表3中の略称は以下のとおりである。
 磁性材粒子:Sm-Fe-N磁性材粒子(住友金属鉱山株式会社、体積平均粒子径:3μm)
 金属粒子:銅粒子(福田金属箔粉工業株式会社製「CE-15」、長径/短径の比:2.8.5、ビッカース硬さHv:50、体積平均粒子径:45μm)
 磁性材粒子:Nd-Fe-B磁性材粒子(「Nd-Fe-B(1)」とも称する。日立金属株式会社製、体積平均粒子径:100μm、鱗片状粒子であり、耐熱エポキシ樹脂を2質量%含む。)
 磁性材粒子:Nd-Fe-B磁性材粒子(「Nd-Fe-B(2)」とも称する。日立金属株式会社製、体積平均粒子径:100μm、鱗片状粒子であり、耐熱エポキシ樹脂を1質量%含む。)
The abbreviations in Table 3 are as follows.
Magnetic material particles: Sm-Fe-N magnetic material particles (Sumitomo Metal Mining Co., Ltd., volume average particle diameter: 3 μm)
Metal particles: Copper particles ("CE-15" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., major axis / minor axis ratio: 2.8.5, Vickers hardness Hv: 50, volume average particle diameter: 45 μm)
Magnetic material particles: Nd-Fe-B magnetic material particles (also referred to as "Nd-Fe-B (1)", manufactured by Hitachi Metals Co., Ltd., volume average particle diameter: 100 μm, scaly particles, heat-resistant epoxy resin 2 Including mass%.)
Magnetic material particles: Nd-Fe-B magnetic material particles (also referred to as "Nd-Fe-B (2)", manufactured by Hitachi Metals Co., Ltd., volume average particle diameter: 100 μm, scaly particles, heat-resistant epoxy resin 1 Including mass%.)
(質量変化率の算出)
 上記で作製した希土類非焼結磁石の試験片を、大気雰囲気(酸素濃度23質量%、温度25℃、相対湿度60%)下にて200℃で表1に示す時間にわたって熱処理したときの質量変化率(正の値である場合は質量増加率)を以下の式に基づいて算出した。上記熱処理は恒温槽で行い、恒温槽の換気孔は開放している状態であった。
 質量変化率(%)=[(A-B)/B]×100
(Aは、熱処理後の希土類非焼結磁石の試験片の質量(g)を意味し、Bは、熱処理前の希土類非焼結磁石の試験片の質量(g)を意味する。)
 結果を表1に示す。
(Calculation of mass change rate)
Mass change when the test piece of the rare earth non-sintered magnet produced above is heat-treated at 200 ° C. for the time shown in Table 1 under an air atmosphere (oxygen concentration 23% by mass, temperature 25 ° C., relative humidity 60%). The rate (mass increase rate if it is a positive value) was calculated based on the following formula. The above heat treatment was performed in a constant temperature bath, and the ventilation holes of the constant temperature bath were open.
Mass change rate (%) = [(AB) / B] x 100
(A means the mass (g) of the test piece of the rare earth non-sintered magnet after the heat treatment, and B means the mass (g) of the test piece of the rare earth non-sintered magnet before the heat treatment.)
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(寸法変化率の算出)
 上記で作製した希土類非焼結磁石の試験片を、大気雰囲気(酸素濃度23質量%、温度25℃、相対湿度60%)下にて200℃で表2に示す時間にわたって熱処理したときの寸法変化率を以下の式に基づいて算出した。
 寸法変化率(%)=[(C-D)/D]×100
(Cは、熱処理後の希土類非焼結磁石の試験片の外径の寸法(mm)を意味し、Dは、熱処理前の希土類非焼結磁石の試験片の外径の寸法(mm)を意味する。)
 結果を表2に示す。
(Calculation of dimensional change rate)
Dimensional change when the test piece of the rare earth non-sintered magnet produced above is heat-treated at 200 ° C. for the time shown in Table 2 under an atmospheric atmosphere (oxygen concentration 23% by mass, temperature 25 ° C., relative humidity 60%). The rate was calculated based on the following formula.
Dimensional change rate (%) = [(CD) / D] x 100
(C means the outer diameter dimension (mm) of the test piece of the rare earth non-sintered magnet after the heat treatment, and D means the outer diameter dimension (mm) of the test piece of the rare earth non-sintered magnet before the heat treatment. means.)
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(150℃における強度の評価)
 万能圧縮試験機(株式会社島津製作所製、AG-10TBR)を使用して、上記で作製した希土類非焼結磁石の試験片を、150℃雰囲気下にて、高さ方向から圧縮圧力を印加した。そして、圧縮圧力により、試験片が破壊されたときの圧縮圧力の最大値から圧壊強度(MPa)を算出して、高温圧壊強度(MPa)の評価を行った。高温圧壊強度(MPa)についてはN=3であり、平均値をそれぞれ求めた。結果を表3に示す。
(Evaluation of strength at 150 ° C)
Using a universal compression tester (manufactured by Shimadzu Corporation, AG-10TBR), the test piece of the rare earth non-sintered magnet produced above was subjected to compression pressure from the height direction in an atmosphere of 150 ° C. .. Then, the crushing strength (MPa) was calculated from the maximum value of the compressive pressure when the test piece was broken by the compressive pressure, and the high-temperature crushing strength (MPa) was evaluated. The high temperature crushing strength (MPa) was N = 3, and the average value was calculated for each. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、実施例1及び2において、質量変化率及び寸法変化率の絶対値がそれぞれより大きい値であった比較例1及び2よりも希土類非焼結磁石の圧壊強度が高かった。 As shown in Tables 1 to 3, in Examples 1 and 2, the crushing strength of the rare earth non-sintered magnet was higher than that of Comparative Examples 1 and 2 in which the absolute values of the mass change rate and the dimensional change rate were larger, respectively. it was high.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated and incorporated herein.

Claims (6)

  1.  希土類元素を含む磁性材粒子を含む成形体の熱処理物であり、
     大気雰囲気下にて200℃で504時間熱処理したときの質量増加率が1.0%以下である希土類非焼結磁石。
    It is a heat-treated product of a molded product containing magnetic material particles containing rare earth elements.
    A rare earth non-sintered magnet having a mass increase rate of 1.0% or less when heat-treated at 200 ° C. for 504 hours in an air atmosphere.
  2.  希土類元素を含む磁性材粒子を含む成形体の熱処理物であり、
     大気雰囲気下にて200℃で504時間熱処理したときの寸法変化率の絶対値が1.4%以下である希土類非焼結磁石。
    It is a heat-treated product of a molded product containing magnetic material particles containing rare earth elements.
    A rare earth non-sintered magnet having an absolute dimensional change rate of 1.4% or less when heat-treated at 200 ° C. for 504 hours in an air atmosphere.
  3.  前記磁性材粒子が前記希土類元素としてサマリウム(Sm)を含む請求項1又は請求項2に記載の希土類非焼結磁石。 The rare earth non-sintered magnet according to claim 1 or 2, wherein the magnetic material particles contain samarium (Sm) as the rare earth element.
  4.  前記磁性材粒子に含まれる成分の酸化物及び水酸化物の少なくとも一方を含む請求項1~請求項3のいずれか1項に記載の希土類非焼結磁石。 The rare earth non-sintered magnet according to any one of claims 1 to 3, which contains at least one of an oxide and a hydroxide as a component contained in the magnetic material particles.
  5.  前記磁性材粒子以外の金属粒子をさらに含む請求項1~請求項4のいずれか1項に記載の希土類非焼結磁石。 The rare earth non-sintered magnet according to any one of claims 1 to 4, further containing metal particles other than the magnetic material particles.
  6.  樹脂成分を含まないか、又は前記樹脂成分の含有率が10質量%以下である請求項1~請求項5のいずれか1項に記載の希土類非焼結磁石。 The rare earth non-sintered magnet according to any one of claims 1 to 5, which does not contain a resin component or has a content of the resin component of 10% by mass or less.
PCT/JP2019/018585 2019-05-09 2019-05-09 Rare earth non-sintered magnet WO2020225909A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/018585 WO2020225909A1 (en) 2019-05-09 2019-05-09 Rare earth non-sintered magnet
JP2021518280A JP7294413B2 (en) 2019-05-09 2019-05-09 Rare earth non-sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018585 WO2020225909A1 (en) 2019-05-09 2019-05-09 Rare earth non-sintered magnet

Publications (1)

Publication Number Publication Date
WO2020225909A1 true WO2020225909A1 (en) 2020-11-12

Family

ID=73051336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018585 WO2020225909A1 (en) 2019-05-09 2019-05-09 Rare earth non-sintered magnet

Country Status (2)

Country Link
JP (1) JP7294413B2 (en)
WO (1) WO2020225909A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203922A (en) * 2013-04-03 2014-10-27 株式会社ジェイテクト Production method of magnet and magnet
JP2016194140A (en) * 2015-04-01 2016-11-17 住友金属鉱山株式会社 Rare earth magnetic powder and production method therefor, and resin composition for bond magnet, bond magnet
JP2017033980A (en) * 2015-07-29 2017-02-09 株式会社ジェイテクト Manufacturing method of magnet, and magnet
JP2017135372A (en) * 2016-01-25 2017-08-03 ミネベアミツミ株式会社 Rare earth bond magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203922A (en) * 2013-04-03 2014-10-27 株式会社ジェイテクト Production method of magnet and magnet
JP2016194140A (en) * 2015-04-01 2016-11-17 住友金属鉱山株式会社 Rare earth magnetic powder and production method therefor, and resin composition for bond magnet, bond magnet
JP2017033980A (en) * 2015-07-29 2017-02-09 株式会社ジェイテクト Manufacturing method of magnet, and magnet
JP2017135372A (en) * 2016-01-25 2017-08-03 ミネベアミツミ株式会社 Rare earth bond magnet

Also Published As

Publication number Publication date
JP7294413B2 (en) 2023-06-20
JPWO2020225909A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US9082538B2 (en) Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
US8172956B2 (en) Sintered soft magnetic powder molded body
WO2016010098A1 (en) Magnetic core, method for producing magnetic core, and coil component
WO2015199096A1 (en) Method for manufacturing rare earth magnetic mold
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
JP2012015168A (en) R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
JP6044866B2 (en) Method for producing RTB-based sintered magnet
CN104112559A (en) R-t-b based sintered magnet
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
JP6476989B2 (en) Method of manufacturing dust core
CN110895985A (en) Mixed rare earth sintered neodymium-iron-boron permanent magnet and preparation method thereof
JP2019201155A (en) Powder magnetic core and inductor element
JP6613730B2 (en) Rare earth magnet manufacturing method
WO2017159366A1 (en) Mixed powder for dust core and production method for mixed powder for dust core
JP2016213306A (en) Powder-compact magnetic core, and method for manufacturing powder-compact magnetic core
JP7294413B2 (en) Rare earth non-sintered magnet
JP4825902B2 (en) Manufacturing method of dust core
JP7156003B2 (en) Rare earth magnet manufacturing method and rare earth magnet
CN111566766B (en) Method for producing rare earth metal bonded magnet and rare earth metal bonded magnet
JP7294414B2 (en) Magnet composite and method for manufacturing magnet composite
WO2020208721A1 (en) Method for manufacturing rare earth non-sintered magnet and rare earth non-sintered magnet
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JP5088277B2 (en) Method for producing rare earth-iron-nitrogen alloy powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927630

Country of ref document: EP

Kind code of ref document: A1