WO2020225459A1 - Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante - Google Patents

Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante Download PDF

Info

Publication number
WO2020225459A1
WO2020225459A1 PCT/ES2019/070301 ES2019070301W WO2020225459A1 WO 2020225459 A1 WO2020225459 A1 WO 2020225459A1 ES 2019070301 W ES2019070301 W ES 2019070301W WO 2020225459 A1 WO2020225459 A1 WO 2020225459A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
slurry
proportion
additive
Prior art date
Application number
PCT/ES2019/070301
Other languages
English (en)
French (fr)
Inventor
Sergio Atares Real
Joaquín ROMERO LOPEZ
Ignasi SALAET MADORRAN
María FERRER GINES
Marcos CABALLERO MOLADA
Tula del Carmen YANCE CHAVEZ
Carlos FUERTES DOÑATE
Original Assignee
Fertinagro Biotech, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fertinagro Biotech, S.L. filed Critical Fertinagro Biotech, S.L.
Priority to EP19927671.8A priority Critical patent/EP3912967A4/en
Priority to PCT/ES2019/070301 priority patent/WO2020225459A1/es
Priority to BR112021014676A priority patent/BR112021014676A2/pt
Publication of WO2020225459A1 publication Critical patent/WO2020225459A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to an additive that enhances the efficiency of pig slurry as a fertilizer.
  • the invention provides an additive that enhances the efficiency of slurry as a fertilizer based on quinic acid, the additive reducing the phytotoxic effects of heavy metals and xenobiotic substances, in particular antibiotics, usually present in slurry applied as fertilizers in agricultural soils, which improves the efficiency of use of these in their application to said soils.
  • Spain is the second European country (after Germany) in pig herd, with more than 28 million head in November 2015 (Eurostat, 2016) that generate approximately 50 million tons of slurry per year.
  • Eurostat, 2016 the efficient recycling of such large amounts of pig slurry is a difficult challenge, mainly due to the spatial separation between livestock and agriculture and the high water content of slurry, which makes it more expensive to transport it to areas far from where it is produced. .
  • Pork cuffs have highly variable chemical compositions depending on various factors, such as the farm of origin (breeding stock, piglet producers, fattening, breeding, full cycle), the type of feeding of the pigs, the form of separation, the storage of the excrement and the management of the water of the farm.
  • the inadequate management of the treatment and subsequent application of the spray in agricultural fields contributes to the emission of greenhouse gases and the eutrophication of aquifers, mainly due to the leaching of NO3 and PO4 3 , (Brockman et al., 2014, “ Environmental assessment of nut ⁇ ent recycling from biological pig slurry treatment - impact of fertilizer substitution and field emissions ”, Bioresour Technol. 163: 270-9; Yuan et al., 2017,“ Evaluating environmental impacts of pig slurry treatment technologies with a life- cycle perspective ", J Clean Prod. 188: 840-850).
  • pu ⁇ nes are contaminated with antibiotics used for veterinary purposes or with cleaning and disinfection agents used on farms (Bloem and Kratz, 2016, “Organic xenobiotics” in: E. Schnug and LJ De Kok (eds. ), Phosphorus in Agriculture: 100% Zero).
  • plants exude a considerable part of the organic compounds generated in photosynthesis through their roots (between 11 and 40%) in order to regulate the chemical composition of the zosphere and promote the growth of microorganisms that can bring benefits to the plant in a given ecosystem (Badri and Vivanco, 2009, “Regulation and function of root exudates”, Plant, Cell and Environment 32, 666-681; Zhalnina et al., 2018, “Dynamic root ex ⁇ date chemistry and microbial substrate preferences drive patterns in microbial rhizosphere community assembly ", Nat Microbiol, 3 (4): 470-480).
  • Root exudates include sugars, amino acids, organic acids, fatty acids and secondary metabolites (Bais et al., 2006, “The role of root exudates in rhizosphere interactions with plants and other organisms”, Annu Rev Plant Biol. 57 : 233-66).
  • the composition and quantity of these exudates are mainly influenced by environmental signals, for example, the availability of nutrients in the soil or the presence of phytotoxic substances.
  • plants have adaptation mechanisms to soils contaminated with phytotoxic compounds such as heavy metals, among which is the release at the root level of root exudates (Montiel-Rozas et al., 2016, “Effect of heavy metais and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination ”, Environ Pollut. 216: 273-281) and the microorganisms associated with plants play a vital role in the adaptation of plants to these environments (Tiwari and Lata, 2018, “Heavy Metal Stress, Signaling, and Tolerance Due to Plant- Associated Microbes: An OverView”, Front Plant Sci. 9: 452).
  • the mechanism of action of root exudates in conferring tolerance to stresses caused by phytotoxic substances may be due to their direct inactivation (for example, chelation in the case of heavy metals or chemical modification in the case of antibiotics) or to stimulation of microorganisms that confer tolerance to stress caused by said compounds.
  • the present invention is based on the aforementioned approaches so that root exudates can reduce the phytotoxic effects of heavy metals and antibiotics contained in slurry on agricultural crops.
  • slurry additives that mimic root exudates and have an analogous effect that allows increasing the tolerance of crops to heavy metals and antibiotics contained in slurry and, at the same time, increasing efficiency in their use. and crop productivity.
  • the present invention meets the two objectives mentioned above, providing an additive applicable to pig slurry that includes quinic acid as a protector against phytotoxic compounds, such as heavy metals, in particular cadmium and lead, and antibiotics, in particular sulfamethoxazole and sulfamethazine, commonly contained in slurry, where quinic acid reduces the phytotoxic effects of heavy metals and antibiotics in slurry and improves their agronomic efficiency.
  • quinic acid as a protector against phytotoxic compounds, such as heavy metals, in particular cadmium and lead
  • antibiotics in particular sulfamethoxazole and sulfamethazine
  • Quinic acid or (1S, 3R, 4S, 5R) -1, 3,4,5- tetrahydroxycyclohexanecarboxylic acid, is a cyclic polyol and cyclohexanecarboxylic acid that occurs naturally in plant tissues (Pero et al. , 2009, "Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide", Phytother Res. 23: 335-46).
  • the present invention provides an additive enhancing the efficiency of pig slurry as a fertilizer including quinic acid.
  • the slurry additive object of the invention consists of 100% by weight of quinic acid in the form of a water-soluble powder.
  • the slurry additive object of the invention comprises between 40 and 85% by weight of quinic acid and between 15% and 60% by weight of other components selected from the group consisting of sugars, amino acids, organic acids, polyamines, alcohols and combinations thereof, the additive being in the form of a water soluble powder.
  • the sugars are preferably selected from mono- and di-saccharides such as sucrose, fructose, trehalose, glucose, arabinose, lactose, maltose, as well as mixtures thereof.
  • the amino acids are preferably selected from threonine, sine, glutamine, glutamic acid, phenylalanine, methionine, GABA, ornithine, glycine, aspartic acid, serine, asparagine, tyrosine, tryptophan, valine, leucine, isoleucine, proline, 4-hydroxyproline, arginine, histidine, alanine, cistern, and their mixtures.
  • the organic acids are preferably selected from lactic acid, succinic acid, oxalic acid, gluconic acid, threonic acid, citric acid, acetic acid, fumaric acid, and mixtures thereof.
  • the alcohols are preferably selected from glycerol, sorbitol, mannitol, myoinositol, and mixtures thereof.
  • the polyamines, if they are present in the additive, are preferably selected from putrescine, spermidine, spermine and mixtures thereof.
  • the slurry additive object of the invention is formulated in the form of a water-soluble powder, as indicated above, but it can also be formulated as a liquid composition by dissolving it in water.
  • the invention refers to a pig slurry that includes an additive such as that described above in combination with another additional substance capable of being applied in the slurry and selected from inorganic acids, organic acids, humic substances , animal and vegetable organic residues, micronutrients, leonardite, wetting agents, dispersing agents, phytase enzyme, as well as combinations thereof, and / or in combination with one or more biostimulants selected from the group consisting of protein hydrolysates and amino acid mixtures, extracts of algae, live microorganisms, extracts of microorganisms and combinations thereof.
  • the additive of the invention is present in a proportion of 0.5 to 10% with respect to the weight of the slurry.
  • the additional inorganic acid is present in the blend in a proportion of 5 to 90% by weight and is selected from sulfuric and phosphoric acids.
  • the additional organic acid is present in the combination in a proportion of 5 to 90% by weight and is selected from lactic acid, succinic acid, oxalic acid, gluconic acid, threonic acid, citric acid, acetic acid, acid fumaric.
  • the additional humic substances are present in the combination in a proportion of 5 to 90% by weight and are selected from humic acids, fulvic acids and derivatives thereof.
  • the organic animal or plant residues are present in the combination in a proportion of 5 to 90% by weight.
  • the additional micronutrients are present in the combination in a proportion of 1 to 30% by weight and are selected from among ferric sulfate, magnesium sulfate, zinc sulfate, manganese sulfate, copper sulfate, ammonium molybdate, Cobalt chloride.
  • the additional leonardite is present in the blend in a proportion of 5 to 90% by weight.
  • the additional wetting agent is present in the combination in a proportion of 0.1 to 2% by weight.
  • the additional dispersing agent is present in the combination in a proportion of 0.1 to 2% by weight.
  • the additional phytase enzyme is present in the combination in a proportion of 0.1 to 2% by weight.
  • the biostimulants are present in the combination in a proportion of 5 to 90% by weight.
  • Another object of the invention is the use of the additive alone or in the combinations described above in the form of a water-soluble powder or in liquid form after dissolving water for its application in slurry.
  • the Applicant analyzed the differential profile of corn root exudates in the presence of slurry from piglets (bait) and adult females (mother). Next, the test to determine the root exudates emitted in the presence of slurry is briefly described.
  • corn seeds were used (variety LG 34.90).
  • the seeds were surface sterilized by performing a 5-minute wash with 96% ethanol, followed by 10 minutes in 5% bleach. The seeds were then washed extensively and allowed to hydrate in sterile MilliQ water for 4 hours. For their germination, the seeds were placed in a filter paper bed moistened with sterile MilliQ water. The seeds were allowed to germinate in the dark for 4 days, after which the seedlings were placed in hydroponic cultivation trays, immersing the roots in standard Hoagland nutrient solution.
  • each tray 12 plants were placed, three trays (each corresponding to a biological repetition) being used for the control treatment, three for the treatment with mother slurry and three for the treatment with bait slurry.
  • the dose of slurry from both mother and fattening was applied of 1 ml per liter of nutrient solution.
  • the plants grew with a temperature and photoperiod of 25 ° C and 16 h light / 22 ° C and 8 h darkness and a light intensity of 4,000 lux on the surface.
  • the nutrient solution was replaced by fresh solution every three days, including the appropriate supplements, and was kept aerated at all times by means of bubble tubes. After 10 days of growth, the incubation ended and the root exudates were obtained.
  • the plants were carefully removed from the culture trays and washed with abundant water, applying a final wash with distilled water.
  • the plants corresponding to each tray were placed in wide neck flasks containing 200 ml of MilliQ water, the roots being immersed in the water.
  • the plants were incubated in the flasks for 6 h. Subsequently, the plants were removed and the insoluble material was removed from the solution by filtering with 0.20 pm filters.
  • the filtrate was deep-frozen in liquid nitrogen and lyophilized.
  • the dry material obtained was weighed and analyzed by Gas-Mass Chromatography after derivatization with methoxyamine and N-methyl- (thmethylsilylthfluoroacetamide).
  • Table 1 and Figure 1 show the metabolites whose exudation increases in the presence of both types of slurry, showing a two-fold increase in at least one of the two treatments with respect to the control conditions.
  • Table 1. Increase in metabolites emitted in the presence of slurry compared to the control
  • A 100% by weight of quinic acid.
  • B a combination of 40 to 85% by weight quinic acid and 5 to 20% maltose, 5 to 20% proline and 5 to 20% threonic acid.
  • the biological degradation of the antibiotic sulfamethazine in the soil was studied by performing an analysis of its mineralization, decomposition mediated by edaphic microorganisms that can be determined by qualifying the C02 released by microbial metabolism from sulfamethazine labeled with radioisotope 14 C (Topp et al. ., 2013, "Accelerated Biodegradation of Veterinary Antibiotics in Agriculture! Soil following Long-Term Exposure, and Isolation of a Sulfamethazine-degrading sp", J Environ Qual.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

La invención proporciona un aditivo potenciador de la eficiencia del purín como fertilizante basado en ácido quínico, reduciendo el aditivo los efectos fitotóxicos de los metales pesados y de las sustancias xenobióticas, en particular antibióticos, habitualmente presentes en los purines aplicados como fertilizantes en los suelos agrícolas, lo que mejora la eficiencia de aprovechamiento de éstos en su aplicación a dichos suelos.

Description

DESCRIPCIÓN
ADITIVO POTENCIADOR DE LA EFICIENCIA DEL PURÍN DE CERDO
COMO FERTILIZANTE
La presente invención se refiere a un aditivo potenciador de la eficiencia del purín de cerdo como fertilizante.
Más concretamente, la invención proporciona un aditivo potenciador de la eficiencia del purín como fertilizante basado en ácido quínico, reduciendo el aditivo los efectos fitotóxicos de los metales pesados y de las sustancias xenobióticas, en particular antibióticos, habitualmente presentes en los purines aplicados como fertilizantes en los suelos agrícolas, lo que mejora la eficiencia de aprovechamiento de éstos en su aplicación a dichos suelos.
En las últimas décadas el crecimiento de la ganadería porcina intensiva ha acarreado un importante incremento en la generación de purines, los cuales se pueden utilizar en suelos áridos y sem ¡áridos como fuente de nutrientes y de materia orgánica, constituyendo una oportunidad de valorizar este tipo de residuos.
Concretamente, España es el segundo país europeo (después de Alemania) en cabaña porcina, con más de 28 millones de cabezas en noviembre de 2015 (Eurostat, 2016) que generan aproximadamente 50 millones de toneladas de purín por año. En algunas áreas, el reciclado eficiente de tales grandes cantidades de purín porcino supone un difícil reto, debido fundamentalmente a la separación espacial entre ganadería y agricultura y al elevado contenido en agua del purín, lo que encarece su transporte a zonas alejadas de donde es producido.
La elevada concentración de granjas de porcino en algunas zonas de España y Europa ha conducido a la existencia de zonas excedentarias de purín en las que existen verdaderos problemas para su manejo, provocando efectos negativos sobre los recursos hídricos y la atmósfera. Hasta el momento, la mejor solución para evitar o reducir estos problemas pasa por la aplicación eficiente del purín al terreno como abono orgánico, especialmente en regiones como el nordeste español, donde existe, salvo en algunas zonas específicas, una extensa superficie agrícola tanto de secano como de regadío disponible para el reciclaje de los nutrientes del purín porcino.
Los puñnes de cerdo tienen composiciones químicas altamente variables dependiendo de diversos factores, tales como la granja de procedencia (de pie de cría, productoras de lechones, de engorde, de mejora, de ciclo completo), el tipo de alimentación de los cerdos, la forma de separación, el almacenamiento de los excrementos y la gestión del agua de la explotación. La inadecuada gestión del tratamiento y posterior aplicación de los puñnes en los campos agrícolas contribuye a la emisión de gases de efecto invernadero y a la eutrofización de los acuíferos, principalmente por la lixiviación de NO3 y PO43 , (Brockman et al., 2014,“Environmental assessment of nutñent recycling from biological pig slurry treatment--impact of fertilizer substitution and field emissions”, Bioresour Technol. 163:270-9; Yuan et al., 2017, “Evaluating environmental impacts of pig slurry treatment technologies with a life-cycle perspective”, J Clean Prod. 188: 840-850).
Además, a pesar del valor fertilizante del purín, existe cierto riesgo de contaminar los suelos agrícolas con metales pesados y xenobióticos, principalmente con antibióticos empleados en la cría de los cerdos, sustancias potencialmente tóxicas para el ser humano y el medio ambiente (L’Herroux et al., 1997, “Behaviour of metáis following intensive pig slurry applications to a natural field treatment process in Bñttany (France)”, Environ Pollut. 97:119-30; De la Torre et al., 2000,“Ecotoxicological evaluation of pig slurry”, Chemosphere. 41 : 1629-35; Kumar et al., 2005,“Antibiotic Uptake by Plants from Soil Fertilized with Animal Manure”, J. Environ. Qual. 34:2082-2085). En España, se estima que el Cu y el Zn son los metales que se acumulan en mayores cantidades (4 y 15 kg/ha y año) en los suelos donde habitualmente se aplican puñnes, mientras que metales pesados como el Cd, Co, Cr, Ni y Pb se introducen en el orden de 260 g/ha y año (Moral et al., 2008,“Salinity, organic contení, micronutrients and heavy metáis in pig slurries from South-eastern Spain”, Waste Manag. 28:367-71 ). Por otra parte, los puñnes están contaminados con los antibióticos empleados con propósitos veterinarios o con los agentes de limpieza y desinfección usados en las granjas (Bloem y Kratz, 2016,“Organic xenobiotics” en: E. Schnug and L.J. De Kok (eds.), Phosphorus in Agñculture: 100% Zero).
La acumulación de metales pesados y de compuestos xenobióticos contribuye a la degradación de los suelos y limita el crecimiento de los cultivos agrícolas (Liu et al., 2009,“Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities”, Environ Pollut. 157:1636-42; Tiwañ y Lata, 2018, “Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An OverView”, Plant Sci. 9:452). Asimismo, la aparición de bacterias resistentes a antibióticos y la presencia de metales pesados en los cultivos pueden llegar a suponer un riesgo para la salud humana.
Por los motivos expuestos, existe actualmente en el sector de la nutrición vegetal la necesidad de buscar tecnologías de carácter sostenible que reduzcan los efectos fitotóxicos de los metales pesados y xenobióticos presentes en los puñnes aplicados en los suelos agrícolas, lo que mejoraría la eficiencia de aprovechamiento de estos como fertilizante y minimizaría posibles riesgos para la salud humana.
Por otra parte, las plantas exudan a través de las raíces una parte considerable de los compuestos orgánicos generados en la fotosíntesis (entre un 11 y un 40%) con el fin de regular la composición química de la ñzosfera y promover el crecimiento de microorganismos que pueden aportar beneficios a la planta en un ecosistema dado (Badri y Vivanco, 2009, “Regulation and function of root exudates”, Plant, Cell and Environment 32, 666-681 ; Zhalnina et al., 2018, “Dynamic root exúdate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly”, Nat Microbiol, 3(4):470- 480). Los compuestos presentes en los exudados radiculares incluyen azúcares, aminoácidos, ácidos orgánicos, ácidos grasos y metabolitos secundarios (Bais et al., 2006,“The role of root exudates in rhizosphere interactions with plants and other organisms”, Annu Rev Plant Biol. 57:233-66). Además de la especie cultivada y su estadio fenológico, en la composición y cantidad de estos exudados influyen principalmente señales ambientales, por ejemplo, la disponibilidad de nutrientes en el suelo o la presencia de sustancias fitotóxicas.
De hecho, las plantas cuentan con mecanismos de adaptación a los suelos contaminados con compuestos fitotóxicos tales como los metales pesados, entre los que se encuentra la liberación a nivel radicular de exudados radiculares (Montiel-Rozas et al., 2016,“Effect of heavy metáis and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination”, Environ Pollut. 216:273-281 ) y los microorganismos asociados a las plantas juegan un papel vital en la adaptación de las plantas a dichos ambientes (Tiwari y Lata, 2018, “Heavy Metal Stress, Signaling, and Tolerance Due to Plant- Associated Microbes: An OverView”, Front Plant Sci. 9:452). El mecanismo de acción de los exudados radiculares a la hora de conferir tolerancia a estreses causados por sustancias fitotóxicas puede deberse a su inactivación directa (por ejemplo, quelación en el caso de los metales pesados o modificación química en el caso de los antibióticos) o a la estimulación de microorganismos que confieren tolerancia al estrés causado por dichos compuestos.
A la vista de lo anterior, la presente invención parte de los enfoques citados de forma que los exudados radiculares pueden disminuir los efectos fitotóxicos de los metales pesados y antibióticos contenidos en los purines sobre los cultivos agrícolas. Así, sería deseable disponer de aditivos de purines que mimeticen a los exudados radiculares y tengan un efecto análogo que permita aumentar la tolerancia de los cultivos a los metales pesados y antibióticos contenidos en los purines y, a la vez, incrementar la eficiencia en su uso y la productividad de los cultivos.
La presente invención cumple los dos objetivos citados anteriormente, proporcionando un aditivo aplicable a los purines de cerdo que incluye ácido quínico como protector frente a compuestos fitotóxicos, tales como metales pesados, en particular cadmio y plomo, y antibióticos, en particular sulfametoxazol y sulfametazina, comúnmente contenidos en los purines, donde el ácido quínico reduce los efectos fitotóxicos de los metales pesados y antibióticos de los purines y mejora la eficiencia agronómica de los mismos.
El ácido quínico, o ácido (1 S,3R,4S,5R)-1 ,3,4,5- tetrahidroxiciclohexanocarboxílico, es un poliol cíclico y un ácido ciclohexanocarboxílico que se encuentra de forma natural en los tejidos vegetales (Pero et al., 2009,“Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide”, Phytother Res. 23:335-46).
Figure imgf000006_0001
Ácido quínico Tal como se ha mencionado anteriormente, en un primer aspecto, la presente invención proporciona un aditivo potenciador de la eficiencia del purín de cerdo como fertilizante que incluye ácido quínico. En una forma de realización, el aditivo de purines objeto de la invención consiste en un 100% en peso de ácido quínico en forma de un polvo hidrosoluble.
En otra forma de realización, el aditivo de purines objeto de la invención comprende entre un 40 y un 85% en peso de ácido quínico y entre un 15% y un 60% en peso de otros componentes seleccionados del grupo consistente en azúcares, aminoácidos, ácidos orgánicos, poliaminas, alcoholes y combinaciones de los mismos, estando el aditivo en forma de un polvo hidrosoluble.
Cuando están presentes en el aditivo de purines, los azúcares se seleccionan preferentemente de entre mono- y di-sacáridos tales como sacarosa, fructosa, trehalosa, glucosa, arabinosa, lactosa, maltosa, así como mezclas de los mismos.
Cuando están presentes en el aditivo, los aminoácidos se seleccionan preferentemente de entre treonina, sina, glutamina, ácido glutámico, fenilalanina, metionina, GABA, ornitina, glicina, ácido aspártico, serina, asparagina, tirosina, triptófano, valina, leucina, isoleucina, prolina, 4- hidroxiprolina, arginina, histidina, alanina, cisterna, y sus mezclas.
Cuando están presentes en el aditivo, los ácidos orgánicos se seleccionan preferentemente de entre ácido láctico, ácido succínico, ácido oxálico, ácido glucónico, ácido treónico, ácido cítrico, ácido acético, ácido fumárico y mezclas de los mismos.
Cuando están presentes en el aditivo, los alcoholes se seleccionan preferentemente de entre glicerol, sorbitol, manitol, mioinositol y mezclas de los mismos. Las poliaminas, en caso de estar presentes en el aditivo, preferentemente se seleccionan de entre putrescina, espermidina, espermina y mezclas de las mismas. La presencia de estos otros componentes diferentes al ácido quínico en el aditivo de la invención se basa en el hecho de que tales componentes forman parte de los exudados radiculares en los cultivos ensayados en presencia de purines que se describen posteriormente o bien se encuentran descritos en la literatura como componentes de dichos exudados en condiciones normales para el desarrollo de la planta (Zhalnina et al., 2018,“Dynamic root exúdate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly”, Nat Microbiol, 3(4):470-480), siendo por ello deseables con el objeto antes mencionado de disponer de un aditivo cuyo uso que mimetice los exudados radiculares con un efecto análogo que pueda permitir aumentar el aprovechamiento de los purines.
El aditivo de purines objeto de la invención se formula en forma de polvo hidrosoluble, como se ha indicado anteriormente, pero también puede formularse como una composición líquida mediante su disolución en agua.
De acuerdo con un segundo aspecto, la invención se refiere a un purín de cerdo que incluye un aditivo tal como el descrito anteriormente en combinación con otra sustancia adicional susceptible de ser aplicada en los purines y seleccionada de entre ácidos inorgánicos, ácidos orgánicos, sustancias húmicas, residuos orgánicos animales y vegetales, micronutrientes, leonardita, agentes mojantes, agentes dispersantes, enzima fitasa, así como combinaciones de los mismos, y/o en combinación con uno o más bioestimulantes seleccionados del grupo consistente en hidrolizados de proteínas y mezclas de aminoácidos, extractos de algas, microorganismos vivos, extractos de microorganismos y combinaciones de los mismos. En este caso, el aditivo de la invención está presente en una proporción del 0,5 al 10% con respeto al peso del purín.
En una realización, el ácido inorgánico adicional está presente en la combinación en una proporción del 5 al 90% en peso y se selecciona de entre los ácidos sulfúrico y fosfórico.
En otra realización, el ácido orgánico adicional está presente en la combinación en una proporción del 5 al 90% en peso y se selecciona de entre ácido láctico, ácido succínico, ácido oxálico, ácido glucónico, ácido treónico, ácido cítrico, ácido acético, ácido fumárico.
Aún en otra realización, las sustancias húmicas adicionales están presentes en la combinación en una proporción del 5 al 90% en peso y se seleccionan de entre ácidos húmicos, ácidos fúlvicos y derivados de los mismos.
En otra realización, los residuos orgánicos animales o vegetales están presentes en la combinación en una proporción del 5 al 90% en peso. Aún en otra realización, los micronutrientes adicionales están presentes en la combinación en una proporción del 1 al 30% en peso y se seleccionan de entre sulfato férrico, sulfato de magnesio, sulfato de zinc, sulfato de manganeso, sulfato de cobre, molibdato amónico, cloruro de cobalto. En otra realización, la leonardita adicional está presente en la combinación en una proporción del 5 al 90% en peso.
En otra realización adicional, el agente mojante adicional está presente en la combinación en una proporción del 0,1 al 2% en peso.
En otra realización adicional, el agente dispersante adicional está presente en la combinación en una proporción del 0,1 al 2% en peso. En otra realización adicional, la enzima fitasa adicional está presente en la combinación en una proporción del 0,1 al 2% en peso. En el caso de la combinación del purín y el aditivo de la invención con bioestimulantes tal como se ha descrito anteriormente, preferentemente los bioestimulantes están presentes en la combinación en una proporción del 5 al 90% en peso. Es también objeto de la invención el uso del aditivo solo o en las combinaciones antes descritas en forma de polvo hidrosoluble o en forma líquida previa disolución de agua para su aplicación en el purín.
Ejemplos
1. Ensayo de obtención e identificación de exudados radiculares en presencia de purín de cerdo
Con el objetivo caracterizar en detalle la respuesta de los cultivos a la presencia de purín de cerdo e identificar los metabolitos exudados por las raíces, la Solicitante analizó el perfil diferencial de exudados radiculares de maíz en presencia de purines procedentes de crías de cerdo (cebo) y de hembras adultas (madre). A continuación, se describe brevemente el ensayo para determinar los exudados radiculares emitidos en presencia de purines.
En el procedimiento, similar al usado por otros autores (Naveed et al., 2017, “Plant exudates may stabilize or weaken soil depending on species, origin and time”, European Journal of Soil Science), se emplearon semillas de maíz (variedad LG 34.90). Las semillas se esterilizaron superficialmente realizando un lavado de 5 minutos con etanol al 96%, seguido de 10 minutos en lejía al 5%. A continuación, las semillas se lavaron extensamente y se dejaron hidratar en agua MilliQ estéril durante 4 horas. Para su germinación, las semillas se colocaron en un lecho de papel de filtro humedecido con agua MilliQ estéril. Las semillas se dejaron germinar en oscuridad durante 4 días, tras lo cual se dispusieron las plántulas en bandejas de cultivo hidropónico, sumergiendo las raíces en solución nutritiva Hoagland estándar. En cada bandeja se colocaron 12 plantas, destinándose tres bandejas (cada una correspondiente a una repetición biológica) al tratamiento control, tres al tratamiento con purines de madre y tres al tratamiento con purines de cebo. Se aplicó la dosis de purín tanto de madre como de cebo de 1 mi por litro de solución nutritiva. Las plantas crecieron con una temperatura y fotoperiodo de 25°C y 16 h luz/22°C y 8 h oscuridad y una intensidad lumínica de 4.000 luxes en superficie.
La solución nutritiva se reemplazó por solución fresca cada tres días, incluyendo los suplementos adecuados, y se mantuvo en todo momento aireada mediante sondas de burbujeo. Después de 10 días de crecimiento, concluyó la incubación y se procedió a la obtención de los exudados radiculares.
Las plantas se retiraron cuidadosamente de las bandejas de cultivo y se lavaron con abundante agua, aplicándose un último lavado con agua destilada. Las plantas correspondientes a cada bandeja se dispusieron en matraces de cuello ancho conteniendo 200 mi de agua MilliQ, quedando las raíces inmersas en el agua. Las plantas se incubaron en los matraces durante 6 h. Posteriormente, se retiraron las plantas y se eliminó el material insoluble de la solución filtrando con filtros de 0,20 pm. El material filtrado se ultracongeló en nitrógeno líquido y se sometió a liofilización. El material seco obtenido se pesó y se analizó mediante Cromatografía de Gases-Masas previa derivatización con metoxiamina y N- metil-(thmetilsililthfluoroacetamida).
En la Tabla 1 y la figura 1 se muestran los metabolitos cuya exudación aumenta en presencia de ambos tipos de purín, mostrando un aumento de dos veces en, al menos, uno de los dos tratamientos respecto a las condiciones control. Tabla 1. Aumento de metabolitos emitidos en presencia de purín respecto al control
Figure imgf000012_0001
Se aplicó cada uno de los metabolitos a una dosis de 1 kg/ha en una maceta con 3 kg de tierra, se sembraron plantas de trigo (3 macetas por tratamiento con 10 plantas por maceta) y se observó el efecto sobre su peso seco a las 6 semanas. Asimismo, se observó el efecto de los metabolitos a la misma dosis después de haberlos mezclado previamente en un purín de madre aplicado a razón de 20 m3/ha. Tal y como se muestra a continuación en la Tabla 2, el ácido quínico es el metabolito que más potencia el efecto beneficioso de la aplicación de purín.
Tabla 2. Biomasa seca de trigo a las 6 semanas de crecimiento
Figure imgf000012_0002
Figure imgf000013_0001
2. Ensayo de protección frente a los metales pesados y antibióticos del purín Se prepararon tres aditivos (A, B, C) de purín en forma de polvo hidrosoluble de acuerdo con la invención con la siguiente composición:
A: un 100% en peso de ácido quínico.
B: una combinación de entre un 40 y un 85% en peso de ácido quínico y entre un 5 y un 20% de maltosa, entre un 5 y un 20% de prolina y entre un 5 y un 20% de ácido treónico.
C: una combinación de entre un 40 y un 85% en peso de ácido quínico y entre un 5 y un 20% de arabinosa, entre un 5 y un 20% de triptófano y entre un 5 y un 20% de ácido nicotínico. Estos aditivos (A, B, C) se probaron en ensayos de invernadero con plantas de trigo en combinación con un purín de hembra adulta (Purín 1 ) con la siguiente composición en metales pesados y de los antibióticos sulfametoxazol y sulfametazina:
Figure imgf000013_0002
Los mismos aditivos se ensayaron con el mismo Purín al que se le adicionaron metales pesados hasta alcanzar las siguientes concentraciones (Purín 2):
Figure imgf000014_0001
Los mismos productos se ensayaron con el mismo Purín al que se le adicionaron los antibióticos sulfametoxazol y sulfametazina hasta alcanzar las siguientes concentraciones (Purín 3):
Figure imgf000014_0002
Los aditivos y el purín se aplicaron en las siguientes dosis:
• A: 5,0 kg/ha en mezcla con el purín.
• B: 5,0 kg/ha en mezcla con el purín.
• C: 5,0 kg/ha en mezcla con el purín.
• Purín: 40 m3/ha
El rendimiento del trigo se muestra en la siguiente Tabla 3 y en la figura 2: Tabla 3
Figure imgf000015_0001
Tal como se observa en la tabla anterior y en la figura 2, la presencia de altas concentraciones de metales pesados y antibióticos en el purín (purines 2 y 3) tuvo efectos negativos sobre el rendimiento del trigo. La aplicación de los tres aditivos diseñados (A, B y C) mejoró la productividad del cultivo, siendo dicha mejora más pronunciada en los purines 2 y 3, con mayores concentraciones de metales pesados y antibióticos, respectivamente. Estos resultados demuestran que los aditivos basados en ácido quínico contrarrestan los efectos fitotóxicos de los metales pesados cadmio y plomo y de los antibióticos sulfametazina y sulfametoxazol presentes en el purín de cerdo, mejorando notablemente su capacidad fertilizante. 3. Ensayo de degradación de antibióticos
Es sabido que determinados microorganismos edáficos tienen capacidad de degradar antibióticos (Massé et al., 2014,“Potential of Biological Processes to Elimínate Antibiotics in Livestock Manure: An OverView Animáis (Basel)”, 4(2): 146-163; Kumar et al. , 2019,“Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance”, Environ Int. , 124:448-461 ). Por ello, se estudió la capacidad del aditivo de purines para incrementar la degradación de dos antibióticos presentes de forma frecuente en los purines: sulfametazina y sulfametoxazol.
Sulfametazina
Se estudió la degradación biológica del antibiótico sulfametazina en el suelo realizando un análisis de su mineralización, descomposición mediada por los microorganismos edáficos que se puede determinar cualificando el C02 liberado por el metabolismo microbiano a partir de sulfametazina marcada con el radioisótopo 14C (Topp et al., 2013,“Accelerated Biodegradation of Veterinary Antibiotics in Agricultura! Soil following Long-Term Exposure, and Isolation of a Sulfamethazine-degrading sp”, J Environ Qual. 42(1 ): 173-8; Hirth et al., 2016, “An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultura! soil”, Chem. Biol. Technol. Agrie. (2016) 3:29). La 14C-sulfametazina se aplicó en una concentración de 1 mg/kg en un suelo agrícola. Posteriormente se aplicaron 40 m3/ha de los siguientes tratamientos:
- A: 5,0 kg/ha en mezcla con agua.
- B: 5,0 kg/ha en mezcla con agua.
- C: 5,0 kg/ha en mezcla con agua.
- D: agua (control negativo) Finalmente se determinó la mineralización de la 14C-sulfametazina en función del tiempo empleando un contador de centelleo líquido. Los resultados se muestran en la siguiente Tabla 4 y en la figura 3.
Tabla 4. Mineralización de 14C-sulfametazina en suelo agrícola expuesto a 1 mg/kg del antibiótico y a los tratamientos A-D
Figure imgf000016_0001
Figure imgf000017_0001
Los resultados mostrados en la Tabla 4 y la figura 3 demuestran que los tratamientos incrementan notablemente la degradación biológica del antibiótico sulfametazina, en especial el tratamiento B.
Sulfametoxazol
Para determinar la biodegradación de este antibiótico en el suelo, se realizó un ensayo de disipación basado en el de Wu et al., 2012 (“Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils”, J Environ Sci Health B., 47(4):240-9). Se aplicaron 10 mg/kg de sulfametoxazol y se fue midiendo la concentración que permanecía en el suelo a lo largo del tiempo empleando SPE-HPLC-MS/MS.
Los resultados del ensayo se muestran en la siguiente Tabla 5 y la figura 4. Tabla 5. Disipación de sulfametoxazol en suelo agrícola expuesto a 10 mg/kg del antibiótico y a los tratamientos A-D.
Figure imgf000018_0001
Los resultados indican que los tratamientos, en especial el tratamiento B, aumentan la degradación del antibiótico sulfametoxazol en un proceso que es mediado por microorganismos del suelo (Wu et al., 2012, supra).
4. Ensayo de disponibilidad de metales pesados Numerosos géneros bacterianos tienen la capacidad de mejorar la tolerancia de las plantas a metales pesados mediante diversos mecanismos, entre los que se encuentran la sorción de los metales, la bioacumulación, y la oxidación/reducción a formas no tóxicas (Tiwari y Lata, 2018,“Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An OverView”, Frontiers in Plant Science 9(452)).
Se determinó el efecto de los tratamientos A-D sobre la disponibilidad de dos metales pesados (Cd y Pb), midiendo su concentración en estados asimilables por las plantas.
Los resultados del ensayo se muestran en la Tabla 6 siguiente. Tabla 6
Figure imgf000019_0001
Tal como se desprende de los datos indicados, la aplicación de los tratamientos disminuye las concentraciones de cadmio y cromo en formas asimilables por las plantas. El efecto del tratamiento B es más acentuado que los tratamientos A y C.

Claims

REIVINDICACIONES
1. Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante caracterizado porque incluye ácido quínico.
2. Aditivo según la reivindicación 1 , caracterizado porque consiste en un 100% en peso de ácido quínico en forma de un polvo hidrosoluble o en forma disuelta en agua.
3. Aditivo según la reivindicación 1 , caracterizado porque consiste en entre un 40 y un 85% en peso de ácido quínico y entre un 15% y un 60% en peso de otros componentes seleccionados del grupo consistente en azúcares, aminoácidos, ácidos orgánicos, poliaminas, alcoholes y combinaciones de los mismos, estando el aditivo en forma de un polvo hidrosoluble.
4. Aditivo según la reivindicación 3, caracterizado porque los azúcares se seleccionan preferentemente de entre sacarosa, fructosa, trehalosa, glucosa, arabinosa, lactosa, maltosa, así como mezclas de los mismos.
5. Aditivo según la reivindicación 3, caracterizado porque los aminoácidos se seleccionan preferentemente de entre treonina, sina, glutamina, ácido glutámico, fenilalanina, metionina, GABA, ornitina, glicina, ácido aspártico, serina, asparagina, tirosina, triptófano, valina, leucina, isoleucina, prolina, 4-hidroxiprolina, arginina, histidina, alanina, cisterna, y sus mezclas.
6. Aditivo según la reivindicación 3, caracterizado porque los ácidos orgánicos se seleccionan preferentemente de entre ácido láctico, ácido succínico, ácido oxálico, ácido glucónico, ácido treónico, ácido cítrico, ácido acético, ácido fumárico y mezclas de los mismos.
7. Aditivo según la reivindicación 3, caracterizado porque los alcoholes se seleccionan preferentemente de entre glicerol, sorbitol, manitol, mioinositol y mezclas de los mismos.
8. Aditivo según la reivindicación 3, caracterizado porque las poliaminas preferentemente se seleccionan de entre putrescina, espermidina, espermina y mezclas de las mismas.
9. Purín de cerdo que incluye un aditivo según cualquiera de las reivindicaciones 1 a 8 en una proporción del 0,5 al 10% en peso.
10. Purín de cerdo según la reivindicación 9, en combinación con otra sustancia adicional susceptible de ser aplicada en los purines y seleccionada de entre ácidos inorgánicos, ácidos orgánicos, sustancias húmicas, residuos orgánicos animales y vegetales, micronutrientes, leonardita, agentes mojantes, agentes dispersantes, enzima fitasa, así como combinaciones de los mismos.
11. Purín de cerdo según la reivindicación 9, en combinación con uno o más bioestimulantes seleccionados del grupo consistente en hidrolizados de proteínas y mezclas de aminoácidos, extractos de algas, microorganismos vivos, extractos de microorganismos y combinaciones de los mismos.
12. Purín de cerdo según la reivindicación 10, caracterizado porque el ácido inorgánico adicional está presente en una proporción del 5 al 90% en peso y se selecciona de entre los ácidos sulfúrico y fosfórico.
13. Purín de cerdo según la reivindicación 10, caracterizado porque el ácido orgánico adicional está presente en una proporción del 5 al 90% en peso y se selecciona de entre ácido láctico, ácido succínico, ácido oxálico, ácido glucónico, ácido treónico, ácido cítrico, ácido acético, ácido fumárico.
14. Purín de cerdo según la reivindicación 10, caracterizado porque las sustancias húmicas adicionales están presentes en una proporción del 5 al 90% en peso y se seleccionan de entre ácidos húmicos, ácidos fúlvicos y derivados de los mismos.
15. Purín de cerdo según la reivindicación 10, caracterizado porque los residuos orgánicos animales o vegetales están presentes en una proporción del 5 al 90% en peso.
16. Purín de cerdo según la reivindicación 10, caracterizado porque los micronutrientes adicionales están presentes en una proporción del 1 al 30% en peso y se seleccionan de entre sulfato férrico, sulfato de magnesio, sulfato de zinc, sulfato de manganeso, sulfato de cobre, molibdato amónico, cloruro de cobalto.
17. Purín de cerdo según la reivindicación 10, caracterizado porque la leonardita adicional está presente en una proporción del 5 al 90% en peso.
18. Purín de cerdo según la reivindicación 10, caracterizado porque el agente mojante adicional está presente en una proporción del 0,1 al 2% en peso.
19. Purín de cerdo según la reivindicación 10, caracterizado porque el agente dispersante está presente en una proporción del 0,1 al 2% en peso.
20. Purín de cerdo según la reivindicación 10, caracterizado porque la enzima fitasa está presente en una proporción del 0,1 al 2% en peso.
21. Purín de cerdo según la reivindicación 11 , caracterizado porque los bioestimulantes están presentes en una proporción del 5 al 90% en peso.
PCT/ES2019/070301 2019-05-08 2019-05-08 Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante WO2020225459A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19927671.8A EP3912967A4 (en) 2019-05-08 2019-05-08 ADDITIVE TO BOOST THE EFFECTIVENESS OF PORK MANURE AS A FERTILIZER
PCT/ES2019/070301 WO2020225459A1 (es) 2019-05-08 2019-05-08 Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante
BR112021014676A BR112021014676A2 (pt) 2019-05-08 2019-05-08 Aditivo para aumentar a eficiência do chorume de porco como fertilizante

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070301 WO2020225459A1 (es) 2019-05-08 2019-05-08 Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante

Publications (1)

Publication Number Publication Date
WO2020225459A1 true WO2020225459A1 (es) 2020-11-12

Family

ID=73050655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070301 WO2020225459A1 (es) 2019-05-08 2019-05-08 Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante

Country Status (3)

Country Link
EP (1) EP3912967A4 (es)
BR (1) BR112021014676A2 (es)
WO (1) WO2020225459A1 (es)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1854356A4 (en) * 2005-02-22 2011-07-20 Maruo Calcium MEANS FOR IMPROVING THE PLANT QUALITY AND METHOD FOR THE PRODUCTION THEREOF
JP4096207B2 (ja) * 2005-07-29 2008-06-04 愛知製鋼株式会社 植物用鉄供給剤及びその製造方法
WO2017027606A1 (en) * 2015-08-10 2017-02-16 Beem Biologics Inc. Compositions and their use for pest control and to induce plant hormone and gene regulation for improved plant production and defense
MX2020001769A (es) * 2017-08-15 2020-11-06 Ocean Spray Cranberries Inc Composiciones y metodos para inhibir patogenos de plantas.

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
BADRIVIVANCO: "Regulation and function of root exudates", PLANT, CELL AND ENVIRONMENT, vol. 32, 2009, pages 666 - 681
BAIS ET AL.: "The role of root exudates in rhizosphere interactions with plants and other organisms", ANNU REV PLANT BIOL., vol. 57, 2006, pages 233 - 66
BLOEMKRATZ: "Phosphorus in Agriculture: 100% Zero", 2016, article "Organic xenobiotics"
BROCKMAN ET AL.: "Environmental assessment of nutrient recycling from biological pig slurry treatment--impact of fertilizer substitution and field emissions", BIORESOUR TECHNOL., vol. 163, 2014, pages 270 - 9
DE LA TORRE ET AL.: "Ecotoxicological evaluation of pig slurry", CHEMOSPHERE, vol. 41, 2000, pages 1629 - 35, XP027273284
HIRTH ET AL.: "An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil", CHEM. BIOL. TECHNOL. AGRIC., vol. 3, 2016, pages 29
KUMAR ET AL.: "Antibiotic Uptake by Plants from Soil Fertilized with Animal Manure", J. ENVIRON. QUAL., vol. 34, 2005, pages 2082 - 2085
KUMAR ET AL.: "Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance", ENVIRON INT., vol. 124, 2019, pages 448 - 461
L'HERROUX ET AL.: "Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France", ENVIRON POLLUT., vol. 97, 1997, pages 119 - 30
LIU ET AL.: "Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities", ENVIRON POLLUT., vol. 157, 2009, pages 1636 - 42, XP026081691, DOI: 10.1016/j.envpol.2008.12.021
MASSE ET AL., POTENTIAL OF BIOLOGICAL PROCESSES TO ELIMINATE ANTIBIOTICS IN LIVESTOCK MANURE: AN OVERVIEW ANIMALS (BASEL, vol. 4, no. 2, 2014, pages 146 - 163
MONTIEL-ROZAS ET AL.: "Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination", ENVIRON POLLUT., vol. 216, 2016, pages 273 - 281, XP029713482, DOI: 10.1016/j.envpol.2016.05.080
MORAL ET AL.: "Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain", WASTE MANAG., vol. 28, 2008, pages 367 - 71, XP022370802
NAHM K H.: "Environmental Effects of Chemical Additives Used In Poultry Litter and Swine Manure", CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 35, no. 5, September 2005 (2005-09-01), pages 487 - 513, XP055759458, ISSN: 1064-3389, DOI: 10.1080/10643380590966208 *
NAVEED ET AL.: "Plant exudates may stabilize or weaken soil depending on species, origin and time", EUROPEAN JOURNAL OF SOIL SCIENCE, 2017
NAVEEDM ET AL.: "Plant exudates may stabilize or weaken soil depending on species, origin and time", EUROPEAN JOURNAL OF SOIL SCIENCE, vol. 68, no. 6, November 2017 (2017-11-01), pages 806 - 816, XP055759464, Retrieved from the Internet <URL:https://www.researchgatenet/publication/320675692> [retrieved on 20200120], DOI: 10.1111/ejss.12487 *
O' FLYNN, C J ET AL.: "Impact of pig slurry amendments on phosphorus, suspended sediment and metal losses in laboratory runoff Boxes under simulated rainfall", JOURNAL OF ENVIRONMENTAL MANAGEMENT, vol. 113, 2012, pages 78 - 84, XP028958711, Retrieved from the Internet <URL:http://www.muigalway.ie/media/gene/files/ARANO'-Hynn-et-al.-2012JEM-pdf> [retrieved on 20200117], DOI: 10.1016/j.jenvman.2012.08.0 *
PERO ET AL.: "Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide", PHYTOTHER RES., vol. 23, 2009, pages 335 - 46
ROMERO-GUIZA MS ET AL.: "Reagent use efficiency with removal of nitrogen from pig slurry via struvite: A study on magnesium oxide and related by-products", WATER RESEARCH, vol. 84, 2015, pages 286 - 294, XP029271356, Retrieved from the Internet <URL:htttps://www.sciencedirect.com/science/article/pii/S004315301457> [retrieved on 20200120], DOI: 10.1016/j.watres. 2015.07.04 3 *
See also references of EP3912967A4
TIWARILATA: "Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview", FRONT PLANT SCI., vol. 9, 2018, pages 452
TIWARILATA: "Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview", FRONTIERS IN PLANT SCIENCE, vol. 9, no. 452, 2018
TIWARILATA: "Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview", PLANT SCI., vol. 9, 2018, pages 452
TOPP ET AL.: "Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil following Long-Term Exposure, and Isolation of a Sulfamethazine-degrading sp", J ENVIRON QUAL., vol. 42, no. 1, 2013, pages 173 - 8
WU ET AL.: "Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils", J ENVIRON SCI HEALTH B, vol. 47, no. 4, 2012, pages 240 - 9
YUAN ET AL.: "Evaluating environmental impacts of pig slurry treatment technologies with a life-cycle perspective", J CLEAN PROD., vol. 188, 2017, pages 840 - 850, XP085386040, DOI: 10.1016/j.jclepro.2018.04.021
ZHALNINA ET AL.: "Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly", NAT MICROBIOL, vol. 3, no. 4, 2018, pages 470 - 480, XP036467269, DOI: 10.1038/s41564-018-0129-3
ZHALNINA K ET AL.: "Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly", NATURE MICROBIOLOGY, vol. 3, 2018, pages 470 - 480, XP036467269, Retrieved from the Internet <URL:https://escholarship.org/content/qt57f5059w/qt57f5059w.pdf> [retrieved on 20200117], DOI: 10.1038/s41564-018-0129-3 *
ZULET A ET AL.: "S8-04 Relación entre el quinato y los efectos herbicidas", SEFV 2009: XVIII REUNIÓN DE LA SOCIEDAD ESPAÑOLA DE FISIOLOGÍA VEGETAL, 8 September 2009 (2009-09-08) - 11 September 2009 (2009-09-11), pages 271, XP055759469 *

Also Published As

Publication number Publication date
EP3912967A1 (en) 2021-11-24
BR112021014676A2 (pt) 2021-11-16
EP3912967A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
Yang et al. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil
Velthof et al. Nitrous oxide emission from animal manures applied to soil under controlled conditions
Tagoe et al. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean
Sarwar et al. Impact of integrated nutrient management on yield and nutrient uptake by maize under rain-fed conditions
Jensen Animal manure fertiliser value, crop utilisation and soil quality impacts
CN102653680A (zh) 一种土壤用重金属处理剂
Müller-Stöver et al. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response
Cabanillas et al. Production and income of basil in and out of season with vermicomposts from rabbit manure and bovine ruminal contents alternatives to urea
CN105565959A (zh) 修复土壤生态系统有机肥
Gohain et al. Optimization of organic nutrient sources for green gram (Vigna radiata L. Welczek) under rainfed conditions
Takeda et al. Phosphorus transformation in a soybean-cropping system in Andosol: effects of winter cover cropping and compost application
Utami et al. Study on the npk uptake and growth of rice under two different cropping systems with different doses of organic fertilizer in the imogiri subdistrict, Yogyakarta province, Indonesia.
WO2020225459A1 (es) Aditivo potenciador de la eficiencia del purín de cerdo como fertilizante
Fouda Effect of foliar application of humic acid, Em and mineral fertilization on yield and quality of carrot under organic fertilization
Bhoi et al. Changes in Bacterial Density, CO 2 Evolution and Enzyme Activities in Poultry Dung Amended Soil
BR102017000644A2 (pt) condicionador de solo organomineral fluído
Verma et al. 12. Agriculture Practices to Reduce In-Field Greenhouse Gas Emissions
Rahman et al. Nutritional status of organically amended soils of subtropical humid climate of Tripura
Kamaruddin et al. Effects of Chicken Manure and Shrimp Paste on Chili Pepper (Capsicum Frustescens) Growth
Saeedi et al. Agro-physiological responses of Carthamus tinctorius L. to sources of nitrogen fertilizer and organic manure
PORZUC et al. Fertilisation potential of digestate obtained from Zophobas Morio Frass
RU2796126C2 (ru) Удобрительная композиция, которая включает в себя потенцирующее средство усваиваемого растением фосфора и кальция, и ее применение
JP7317980B2 (ja) 植物吸収可能なリン及びカルシウム増強剤を含む施肥組成物及びその使用
Kannan et al. Effect of growing media and fertilization methods on growth and yield of snake gourd grown under matric suction irrigation
Arifin et al. Application of biological organic fertilizers towards P dosage reduction in shallot cultivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927671

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014676

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019927671

Country of ref document: EP

Effective date: 20210816

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021014676

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210726