WO2020224624A1 - 无创微循环量化诊断系统及其量化处理方法 - Google Patents

无创微循环量化诊断系统及其量化处理方法 Download PDF

Info

Publication number
WO2020224624A1
WO2020224624A1 PCT/CN2020/089062 CN2020089062W WO2020224624A1 WO 2020224624 A1 WO2020224624 A1 WO 2020224624A1 CN 2020089062 W CN2020089062 W CN 2020089062W WO 2020224624 A1 WO2020224624 A1 WO 2020224624A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcirculation
body surface
predetermined part
quantification
module
Prior art date
Application number
PCT/CN2020/089062
Other languages
English (en)
French (fr)
Inventor
李茂全
谢晓云
廉维帅
程杰
陆骊工
殷世武
陈硕
张孝军
李雪
Original Assignee
依奈德医疗技术(上海)有限公司
李茂全
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 依奈德医疗技术(上海)有限公司, 李茂全 filed Critical 依奈德医疗技术(上海)有限公司
Publication of WO2020224624A1 publication Critical patent/WO2020224624A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • A61B2560/0247Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
    • A61B2560/0252Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using ambient temperature

Definitions

  • the invention relates to the field of medicine and detection, and more specifically, to a non-invasive microcirculation quantitative diagnosis system and a quantitative processing method thereof.
  • Microcirculation refers to the blood circulation between arterioles and venules.
  • the microcirculation is composed of arterioles, posterior arterioles, capillary sphincter, true capillaries, arteriovenous anastomoses, venules and the fluid flowing through them. It is the basic structure of the circulatory system.
  • Microcirculation function is very important to maintain normal physiological conditions. If microcirculation is impaired, it will directly affect the physiological functions of various organs.
  • microcirculation disorder is one of the important pathophysiological basis for the occurrence of chronic complications of diabetes. Early intervention is helpful to the prevention and treatment of diabetes and its vascular complications. Microcirculation disorders caused by diabetes-related factors are called diabetic microcirculation disorders.
  • the current detection of microcirculation mainly includes the following methods:
  • Vascular detection Count the number of vascular involvement through vascular anatomy; evaluate the degree of vascular stenosis and occlusion through vascular anatomy.
  • the disadvantage of this type of method is that it is invasive and can only obtain detection information of part of the site or blood vessel.
  • Functional testing evaluate the patient's walking distance, ABI, TBI, peripheral nerve evaluation and other functional indicators.
  • the disadvantage of this method is that although each evaluation index is graded according to clinical standards, it is time-consuming, has low accuracy, and cannot achieve early diagnosis.
  • Blood flow velocity detection The blood flow velocity of the microcirculation is detected by ultrasonic microbubbles. This method cannot effectively detect the microcirculation in multiple locations, is time-consuming, and cannot be effectively used for early diagnosis.
  • Laser Doppler detection Although this laser Doppler can provide the microcirculation detection of fingertips and other peripheral parts, it cannot effectively detect the microcirculation situation where the laser is not easy to irradiate deep parts. In addition, this method cannot be effective in multiple sites of microcirculation, and it cannot be effectively used for early diagnosis.
  • the purpose of the present invention is to provide a simple, rapid, and non-invasive method and system for quantifying microcirculation.
  • a non-invasive microcirculation quantitative diagnosis system includes:
  • a non-contact thermometer which is used to measure the body surface of a predetermined part of an object and obtain the body surface temperature data of the predetermined part
  • Microcirculation quantification processor the processor is used to quantify the obtained body surface temperature data and obtain a microcirculation quantitative diagnosis result
  • the microcirculation quantification processor includes: a body surface temperature data receiving module, a body surface temperature data quantization processing module, a control processor, an input module and a display module.
  • control processor is used to control the body surface temperature data receiving module and the body surface temperature data quantization processing module.
  • the input module, the body surface temperature data receiving module, the body surface temperature data quantization processing module, the control processor, and the display module are connected in sequence or connected to each other.
  • the microcirculation quantization processor further includes a 3D positioning standardization module, and the 3D positioning standardization module is used to determine and/or correct the position of the predetermined part of the object.
  • the non-contact thermometer and the microcirculation quantification processor communicate through a data interface.
  • the non-contact thermometer includes a non-contact infrared thermometer.
  • the non-contact infrared thermometer determines the surface temperature by measuring the infrared energy radiated by the body surface of a predetermined part.
  • the non-contact thermometer further includes a real-time ambient temperature compensation unit, which is used to perform temperature compensation on the temperature measurement value of the body surface based on the real-time ambient temperature during measurement, so as to obtain more accurate The body surface temperature of a predetermined part after real-time environmental temperature compensation.
  • a real-time ambient temperature compensation unit which is used to perform temperature compensation on the temperature measurement value of the body surface based on the real-time ambient temperature during measurement, so as to obtain more accurate The body surface temperature of a predetermined part after real-time environmental temperature compensation.
  • the real-time ambient temperature compensation unit includes an ambient temperature compensation circuit and a negative temperature coefficient (NTC) thermistor for sensing ambient temperature.
  • NTC negative temperature coefficient
  • the diagnostic system further includes:
  • a predetermined part automatic recognition module the predetermined part automatic recognition module is used to recognize the predetermined part of the object, and obtain the coordinate position and/or image of the predetermined part.
  • the automatic identification module for the predetermined part includes:
  • An imaging unit for acquiring a body surface image of the object
  • a predetermined part calibration unit the calibration unit is used to calibrate the 3D coordinate position of each predetermined part based on the body surface image.
  • the non-contact thermometer is arranged on a mobile platform so that it can be moved to a set position to measure the temperature of a predetermined part.
  • the mobile platform includes an omnidirectional mobile platform.
  • the omni-directional mobile platform can enable the non-contact thermometer mounted on the mobile platform to achieve omni-directional movement of at least three degrees of freedom, namely the translation in the X-axis direction and the Y-axis Direction translation, and rotation around the Z axis).
  • the mobile platform includes a mobile support, and the non-contact thermometer is arranged on the mobile support, so that the movement of the mobile support makes the non-contact thermometer The thermometer is moved to the measurement position, and non-contact measurement is performed on the body surface of the predetermined part.
  • the mobile support includes a mobile base and an arch-shaped support arranged on the mobile base.
  • the mobile base is used to drive the mobile support to move along the longitudinal direction (that is, the direction of the central axis of the object or the direction from head to toe).
  • the arched support is provided with an arched sliding rail, and at least one of the non-contact thermometers is installed on the arched sliding rail.
  • thermometers are installed on the arch slide rail.
  • the mobile platform includes a mechanical arm.
  • the robotic arm includes an articulated robotic arm (or a six-axis robotic arm).
  • the six-axis mechanical arm is provided with six sets of motors at different positions, each of which can provide rotational movement around an axis.
  • the mobile support includes a mobile base and a mechanical arm arranged on the mobile base, wherein the non-contact thermometer is arranged at the moving end of the mechanical arm.
  • diagnosis system further includes:
  • a pyrometer calibration module the pyrometer calibration module is used to calibrate the non-contact pyrometer.
  • thermometer calibration module includes a constant temperature zone, and the constant temperature zone is used to provide one or more constant calibration temperatures for calibrating the non-contact thermometer.
  • the calibration temperature is 30-40°C, or 33-38°C (such as 35, 36, 37, 38°C).
  • the calibration temperature includes a temperature gradient formed by adjacent temperatures with a difference of t1, where t1 is 0.01-1°C, or 0.1-0.5 (such as 0.1, 0.2, etc.).
  • the temperature gradient includes 2-20 (such as 2, 3, 4, 5, 6, 7, 8, 9, 10) reference temperatures.
  • the temperature gradient includes 35.0, 35.5, 36.0, 36.5, 37.0, 37.5, and 38.0°C.
  • the temperature gradient includes 35.0, 35.2, 35.4, 35.6, 35.8, 36.0, 36.2, 36.4, 36.6, 36.8, and 37.0°C.
  • the predetermined site includes at least one reference site and at least one microcirculation measurement site.
  • the reference site includes the forehead.
  • the reference site is the center of the forehead.
  • the microcirculation measurement site includes n measurement sites, where n is a positive integer ⁇ 1.
  • n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
  • the microcirculation measurement site is selected from the group consisting of the lower edge of the patella, the medial malleolus, the lateral malleolus, the back of the foot, and the sole of the foot.
  • the measurement locations include the lower edge of the patella, the inner malleolus, the lateral malleolus, the dorsum of the foot and the sole of the left lower limb and/or the right lower limb.
  • the medial malleolus, lateral malleolus and instep are the most protruding parts of each part.
  • the sole of the foot is the deepest part of the sole or the middle part of the sole.
  • the microcirculation measurement site further includes a measurement site selected from the following group: the back of the hand, the palm of the hand, one or more finger ends, and one or more toe ends.
  • the measurement site includes the back of the left upper limb and/or the right upper limb, the palm of the hand, and one or more finger ends.
  • the back of the hand is the middle part of the back of the hand.
  • the palm is the middle of the palm.
  • the microcirculation quantification processor determines the quantification score S of the microcirculation by applying the following formula:
  • S is the quantitative score value
  • ⁇ st is the difference between the skin temperature of the predetermined part of the normal population and the skin temperature of the reference part (usually an average value); or the skin temperature of the predetermined part of a certain population (diabetics or normal people) and the skin temperature of the reference part Temperature difference
  • ⁇ m is the difference between the skin temperature of the predetermined part of the subject and the skin temperature of its own reference part
  • ⁇ max is the largest difference (negative value) between the measured skin temperature of the predetermined part and the skin temperature of the reference part in a group of people;
  • ⁇ min is the smallest difference between the measured skin temperature of the predetermined part and the skin temperature of the reference part in a group of people.
  • the subject includes diabetic patients or diabetic microcirculatory disorders.
  • a non-invasive microcirculation quantitative diagnosis method which includes the following steps:
  • non-invasive microcirculation quantitative diagnosis system non-contact measurement of the body surface temperature data of a predetermined part of a subject, the predetermined part including at least one reference part and at least one microcirculation measurement part;
  • the microcirculation quantification result includes a quantification score S.
  • the quantitative score value S is a graded score value (for example, 0-5 points, 0-10 points, or 0-100 points).
  • the predetermined site includes at least one reference site and at least one microcirculation measurement site.
  • the reference site includes the forehead.
  • the reference site is the center of the forehead.
  • the microcirculation measurement site includes n measurement sites, where n is a positive integer ⁇ 1 (such as 1-50, 1-25, or 1-20).
  • n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
  • the microcirculation measurement site is selected from the group consisting of the lower edge of the patella, the medial malleolus, the lateral malleolus, the back of the foot, and the sole of the foot.
  • step (c) the method further includes: obtaining quantified microcirculation results of the left lower limb, right lower limb, and left and right lower limbs of the subject through quantification processing.
  • the microcirculation measurement site further includes a measurement site selected from the following group: the back of the hand, the palm of the hand, one or more finger ends, and one or more toe ends.
  • the measurement site includes the back of the left upper limb and/or the right upper limb, the palm of the hand, and one or more finger ends.
  • step (c) the method further includes: obtaining quantified microcirculation results of the left upper limb, right upper limb, and left and right upper limbs of the subject through quantification processing.
  • Fig. 1 is a schematic diagram of a non-invasive microcirculation quantitative diagnosis system according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a non-invasive microcirculation quantitative diagnosis system according to another embodiment of the present invention.
  • Figure 3 shows a schematic structural diagram of a non-invasive microcirculation quantitative diagnosis system of the present invention.
  • the labels are as follows:
  • Figure 4 shows the relationship between skin temperature and blood flow rate before and after surgery in one embodiment of the present invention.
  • Figure 5 shows that body surface temperature before and after interventional surgery can be used to evaluate the efficacy.
  • Figure 7 shows the ratio of the TTP peak time at each predetermined site after surgery and before surgery
  • the diagnostic system of the present invention can not only non-invasively obtain the quantitative score value of the microcirculation through the quantitative processing of the body surface temperature data, but also is fast, simple and accurate.
  • the present invention has been completed on this basis.
  • noninvasive microcirculation quantitative diagnosis system of the present invention As used herein, the terms “noninvasive microcirculation quantitative diagnosis system of the present invention”, “diagnosis system of the present invention”, “noninvasive microcirculation quantitative diagnosis device of the present invention” and the like are used interchangeably, and all refer to the first aspect of the present invention The non-invasive microcirculation quantitative diagnosis system.
  • skin temperature refers to the body surface temperature of a certain part of the human body.
  • a non-invasive microcirculation quantitative diagnosis system of the present invention includes: a non-contact thermometer for measuring the body surface of a predetermined part of a subject and obtaining body surface temperature data of the predetermined part ; And the microcirculation quantification processor, which is used to quantify the obtained body surface temperature data and obtain the quantitative score of the microcirculation;
  • the microcirculation quantization processor includes: a body surface temperature data receiving module, a body surface temperature data quantization processing module, a control processor, an input module, and a display module.
  • the body surface temperature data receiving module is used to receive and collect body surface temperature data;
  • the body surface temperature data quantification processing module is used to extract relative temperature difference ( ⁇ T) and apply formulas to obtain the quantitative score value of the microcirculation;
  • the control processor is used to control Body surface temperature data receiving module and body surface temperature data quantization processing module.
  • the non-contact thermometer suitable for the present invention is not particularly limited, and can be conventional or commercially available non-contact thermometers.
  • Fig. 2 it is another embodiment of the present invention. Its structure is basically the same as that of the first embodiment of the present invention shown in Fig. 1, except that the contact thermometer and the microcirculation quantification process
  • a 3D positioning standardization module for determining and/or correcting the position of the predetermined part of the object. For example, the 3D coordinates of each predetermined part are calibrated to facilitate subsequent skin temperature measurement.
  • the present invention has no special restrictions on the applicable non-contact thermometers, which can be conventional or commercially available non-contact thermometers.
  • a structure of the non-invasive microcirculation quantitative diagnosis system (10) of the present invention includes: a test bed body (20) for the test object to lie down; a test bed base (22) for supporting The detection bed body (20).
  • a mobile platform (30) is also provided on the base of the detection bed, and the mobile platform (30) can move along the longitudinal direction (that is, the direction of the central axis of the object or the direction from head to toe).
  • the mobile platform is a mobile support
  • the non-contact thermometer is arranged on the mobile support, so that the movement of the mobile support makes the non-contact measurement
  • the thermometer is moved to the measurement position, and non-contact measurement is performed on the body surface of the predetermined part.
  • the mobile support includes a mobile base (not shown) and an arched support (32) arranged on the mobile base.
  • the mobile base is used to drive the mobile support to move along the longitudinal direction (that is, the direction of the central axis of the object or the direction from head to toe).
  • An arched sliding rail (not shown) is provided at the lower part of the arched support, and at least one non-contact thermometer (50) is installed on the arched sliding rail.
  • one, two or three non-contact thermometers can be installed on the arched slide rail.
  • the mobile platform includes a mechanical arm.
  • the structure of the non-invasive microcirculation quantitative diagnosis system (10) further includes: an input module (40), such as a touch input screen, and a display module (60), such as an LCD or LED fluorescent screen.
  • an input module such as a touch input screen
  • a display module such as an LCD or LED fluorescent screen.
  • thermometer for measuring the temperature of the human body with a predetermined accuracy (for example, ⁇ 0.1°C, or) can be used.
  • the predetermined accuracy may be, for example, ⁇ 0.2°C, or ⁇ 0.1°C, or ⁇ 0.05°C.
  • a preferred non-contact thermometer is provided with a Fresnel lens, a thermopile infrared temperature sensor and a signal amplification processing circuit board in the lens barrel in sequence, and an aluminum heat dissipation shield is also arranged behind the lens barrel, and the outer surface of the lens barrel is wrapped Aluminum foil.
  • the signal light (infrared) entering the lens barrel in parallel passes through the Fresnel lens and is focused on the thermopile infrared temperature sensor, the signal-to-noise ratio and the distance coefficient ratio of the measurement can be improved.
  • the non-contact thermometer should also be provided with a fence structure to eliminate stray light.
  • the non-contact thermometer preferably further includes a real-time ambient temperature compensation unit for measuring the real-time ambient temperature during measurement.
  • the temperature measurement value of the watch is temperature-compensated, so as to obtain a more accurate body surface temperature of a predetermined part after real-time environmental temperature compensation.
  • the ambient temperature compensation circuit and a negative temperature coefficient (NTC) thermistor for sensing ambient temperature.
  • NTC negative temperature coefficient
  • NTC thermistor refers to a negative temperature coefficient thermistor.
  • NTC thermistor is a ceramic material made of metal oxides such as manganese, cobalt, nickel, and copper.
  • the NTC thermistor varies from 100 to 1,000,000 ohms at room temperature, and the temperature coefficient is -2% to -6.5%.
  • the blood In the human body circulatory system, after the blood is ejected from the left ventricle, it flows through the aorta and its derived branches to send the blood to the corresponding organs.
  • the arteries branch several times, the diameter of the tube gradually becomes smaller, the number of blood vessels gradually increases, and finally reaches the capillaries.
  • the water transport channel inside the tree Similar to the human blood circulatory system, the water transport channel inside the tree also shows a gradual change rule. Similar to the existing bifurcation structure model of water transport inside the tree, a hierarchical transport model of the human body circulation arterial system can be established. Studies have shown that the flow resistance is mainly concentrated at the end.
  • the heart is the pumping station, from the main blood vessel to the branch blood vessels, and then to the capillaries, forming the branches of the branched pipe network.
  • fluid mechanics pipe network system design and analysis principles it can analyze the blood velocity, flow resistance and local resistance in the human body circulatory system, and study the heat transfer process involved, so as to obtain the intravascular flow and Correspondence of body surface temperature.
  • the microcirculation state of the object can be effectively quantitatively evaluated.
  • This method has the advantages of fast, non-invasive, early and accurate.
  • the predetermined site includes at least one reference site and at least one microcirculation measurement site.
  • the reference site includes the forehead.
  • the reference temperature or reference skin temperature is the forehead temperature, such as the skin temperature at the center of the forehead.
  • the microcirculation measurement site when used to assess the microcirculation of the lower extremities, may include at least multiple or all sites selected from the group consisting of the lower edge of the patella, the medial malleolus, lateral malleolus, the back of the foot, and the sole of the foot. .
  • the measurement locations include the lower edge of the patella, the medial malleolus, lateral malleolus, the dorsal of the foot, and the sole of the left lower limb and the right lower limb.
  • the medial malleolus, lateral malleolus, and instep are the most protruding places of each part; and the sole of the foot is the most depressed place (or central depression) of the sole.
  • 5-point skin temperature method As used herein, “5-point skin temperature method”, “Tongji 5-point method”, “five-point method for microcirculation evaluation method”, etc. are used interchangeably, and refer to the measurement of 5 specific sites (ie, measurement points) or positions.
  • the skin temperature is compared with the reference skin temperature (such as forehead temperature) to quantitatively analyze and evaluate the microcirculation of the lower limbs of a subject (such as diabetic patients).
  • the relative temperature difference between each point and the reference part can be calculated according to the following table.
  • the method of the present invention is tested as follows: under uniform conditions (patient lying still, room temperature 25°C, 30 seconds after removing the clothing covering the measuring point), use a non-contact thermometer to detect the lower edge of the patient's bilateral patella
  • the skin temperature at five points of, medial malleolus, lateral malleolus, back of foot and sole, forehead temperature is used as reference skin temperature, reflecting the patient's lower limb microcirculation.
  • the present invention also provides early auxiliary quantitative evaluation of subjects based on a noninvasive microcirculation quantitative evaluation method, so as to screen early diabetic vascular diseases or provide auxiliary diagnostic information.
  • the present invention also provides a non-invasive microcirculation quantitative evaluation method to evaluate the curative effect of patients.
  • the quantitative evaluation method can provide a basis for evaluating the efficacy of treatment methods such as vascular intervention, and be used for follow-up and functional evaluation of the efficacy of patients with diabetic vascular disease before and after treatment.
  • the present invention can perform rapid quantitative analysis of microcirculation and has high sensitivity.
  • the subjects participating in the evaluation (481 diabetic patients undergoing interventional therapy) were evaluated based on the following criteria and methods
  • Diabetic vascular disease is divided into four stages and six grades, as follows:
  • Phase II, 4-12 points including Phase IIa, 4-6 points; Phase IIb, 7-9 points; Phase IIc, 10-12 points
  • each patient was scored before and after treatment.
  • Vascular anatomy A refers to the number of blood vessels involved
  • Vascular anatomy B refers to the degree of stenosis and occlusion of the vessel lumen; functional testing:
  • each evaluation index refers to the existing clinical standard classification
  • Routine microcirculation detection ultrasonic microbubbles of the affected limb, laser Doppler scanning, and i-flow software measurement.
  • Each evaluation index refers to the existing clinical standard classification.
  • the measurement data of patients with lower extremity arterial disease suggest that skin temperature is related to peak time.
  • the body surface temperature of a predetermined part is related to the blood flow velocity inside the blood vessel, and the blood flow speed inside the blood vessel or the microcirculation can be quantitatively evaluated by the body surface temperature of the predetermined part.
  • the skin temperature of 300 diabetic patients at a predetermined site before and 1 day and 2 days after the vascular intervention operation was measured and analyzed.
  • the predetermined part includes the reference part (forehead) and the following measurement parts: the left and right lower limbs. Lower edge of patella, medial malleolus, lateral malleolus, back of feet, and soles of feet.
  • the results show that the skin temperature data of the predetermined parts of the lower edge of the patella, medial malleolus, lateral malleolus, instep, and sole are particularly suitable for providing quantitative evaluation results of microcirculation.
  • the non-invasive microcirculation quantitative diagnosis method of the present invention can not only be used to quantitatively evaluate the curative effect of treatment programs (such as surgery), for example, As an effective way to evaluate the microcirculation of diabetic peripheral vascular disease before and after surgery, it can also be used to quantitatively evaluate the microcirculation.
  • the non-invasive microcirculation quantitative diagnosis system shown in Fig. 2 of the present invention was used to perform non-invasive microcirculation quantitative evaluation on 23 diabetic patients (as the test objects).
  • ⁇ st is the difference between the skin temperature of the predetermined part of the normal population and the skin temperature of the reference part (such as the forehead) (usually the average value); or the skin temperature of the predetermined part of a certain population (diabetics or normal population)
  • the difference in skin temperature of the reference site (such as the forehead) (as in Table 3, for the lower edge of the left patella, -3.5 can be used)
  • ⁇ m is the difference between the skin temperature of the predetermined part of the subject and the skin temperature of its own reference part (such as the forehead);
  • ⁇ max is the maximum difference (negative value) between the measured skin temperature of the predetermined part and the skin temperature of the reference part (such as the forehead) in a group of people (as shown in Table 3, for the lower edge of the left patella, it can be Choose -5.5);
  • ⁇ min is the smallest difference (usually a negative value or 0) between the measured skin temperature of the predetermined part and the skin temperature of the reference part (such as the forehead) in a group of people (as shown in Table 3, for the left patella For the lower edge, -1.5 can be used.
  • can also be replaced by the amplitude of the difference between the skin temperature of the predetermined part and the skin temperature of the reference part (such as the forehead), or replaced by a ⁇ standard deviation, where a is Constant, usually 2-5.
  • Subject No. 2 has extremely severe or very severe microcirculation lesions in the left and right lower limbs. Therefore, the microcirculation lesions in the total lower limbs are also extremely serious (left lower limb score, right lower limb score, and total lower limb score, respectively 9.8, 7.5, 8.6).
  • Subject No. 16 has extremely severe microcirculation lesions in his left lower limb, and the degree of lesions is much higher than that of the left lower limb (severe).
  • the microcirculation lesions of the total lower extremities are also between severe and extremely severe (left lower extremity score, right lower extremity score and total lower extremity score are 9.3, 5.8, 7.5, respectively).
  • the present inventors used the non-invasive microcirculation quantitative diagnosis system and method of the present invention to perform quantitative scores, and the quantitative scores showed extremely severe, severe, severe, and diseased objects, and then used the conventional method in Example 1 to classify them, and To compare.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种无创微循环量化诊断系统(10)及其量化处理方法,其中无创微循环量化诊断系统(10)包括:非接触式测温仪(50),用于对一对象的预定部位的体表进行测量并获得该预定部位的体表温度数据;微循环量化处理器,用于对获得的体表温度数据进行量化处理并得到微循环量化诊断结果。其中,该微循环量化处理器包括体表温度数据接收模块、体表温度数据量化处理模块、控制处理器、输入模块和显示模块(60)。该无创微循环量化诊断系统及其量化处理方法能够无创地获得微循环量化诊断结果,具有经济、简便、快速、早期、灵敏等优点。

Description

无创微循环量化诊断系统及其量化处理方法 技术领域
本发明涉及医学和检测领域,更具体地,涉及一种无创微循环量化诊断系统及其量化处理方。
背景技术
微循环指微动脉和微静脉之间的血液循环。微循环由微动脉、后微动脉、毛细血管前括约肌、真毛细血管、动-静脉吻合支和微静脉及其流经其内的液体所组成,是循环系统的基础结构。
微循环功能对于维持正常的生理状况至关重要,如果微循环发生障碍,将会直接影响各器官的生理功能。
以糖尿病为例,微循环障碍是糖尿病慢性并发症发生的重要病理生理基础之一,早期对其进行干预有助于糖尿病及其血管并发症的防治。由糖尿病相关因素导致的微循环障碍称之为糖尿病微循环障碍。
对于微循环障碍,在临床实践中实现早期识别、早期诊断,有助于进行早期预防和治疗,从而改善患者的预后。
然而,目前的微循环的检测主要有以下方法:
血管检测:通过血管解剖统计血管受累数目;通过血管解剖评价血管腔狭窄闭塞的程度。这类方法的缺点是有创,且仅可获得部分部位或血管的检测信息。
功能检测:通过患者的步行距离、ABI、TBI、外周神经评价等功能指标,进行评价。该方法的缺点是虽然各评价指标参考临床标准分级,但是费时,且准确性较低,且无法实现早期诊断。
血流速度检测:通过超声微泡检测微循环的血流速度,该方法无法有效检测多个部位的微循环,费时,且无法有效地进行早期诊断。
激光多普勒检测:虽然该激光多普勒可以提供指尖等末梢部位的微循环检测,但是无法有效检测激光不易照射到深部的微循环情况。此外,该方法无法有效多个部位的微循环,且无法有效地进行早期诊断。
综上所述,本领域尚缺乏简便、快速、无创地对微循环进行量化评价的技术。因此,本领域迫切需要寻找开发简便、快速、无创地对微循环进行量化的方法和系统。
发明内容
本发明的目的就是提供一种简便、快速、无创地对微循环进行量化的方法和系统。
在本发明的第一方面,提供了一种无创微循环量化诊断系统,所述系统包括:
非接触式测温仪,所述非接触式测温仪用于对一对象的预定部位的体表进行测量并获得所述预定部位的体表温度数据;
微循环量化处理器,所述处理器用于对获得的体表温度数据进行量化处理,并得出微循环量化诊断结果;
其中,所述的微循环量化处理器包括:体表温度数据接收模块、体表温度数据量化处理模块、控制处理器、输入模块和显示模块。
在另一优选例中,所述控制处理器用于控制体表温度数据接收模块和体表温度数据量化处理模块。
在另一优选例中,所述输入模块、体表温度数据接收模块、体表温度数据量化处理模块、控制处理器、显示模块依次或相互连接。
在另一优选例中,微循环量化处理器还包括3D定位标准化模块,所述3D定位标准化模块用于确定和/或校正所述对象的预定部位的位置。
在另一优选例中,所述的非接触式测温仪和微循环量化处理器通过数据接口进行通信。
在另一优选例中,所述的非接触式测温仪包括非接触式红外测温仪。
在另一优选例中,所述的非接触式红外测温仪通过测量预定部位的体表所辐射的红外能量来确定表面温度。
在另一优选例中,所述的非接触式测温仪还包括一实时环境温度补偿单元,用于基于测量时的实时环境温度,对体表的温度测量值进行温度补偿,从而获得更准确的、经实时环境温度补偿后的预定部位的体表温度。
在另一优选例中,所述的实时环境温度补偿单元包括环境温度补偿电路和感知环境温度的负温度系数(Negative Temperature Coefficient,NTC)热敏电阻。
在另一优选例中,所述的诊断系统还包括:
一预定部位自动识别模块,所述预定部位自动识别模块用于识别所述对象的预定部位,并获得所述预定部位的坐标位置和/或图像。
在另一优选例中,所述预定部位自动识别模块包括:
一成像单元,所述成像单元用于获取所述对象的体表图像;和
一预定部位标定单元,所述标定单元用于基于所述体表图像,标定各预定部位的3D坐标位置。
在另一优选例中,所述的非接触式测温仪设置于移动平台上,从而可移动至设定的位置,对预定部位进行测温。
在另一优选例中,所述的移动平台包括全方位移动平台。
在另一优选例中,所述的全方位移动平台可使得安装于所述移动平台上的非接触式测温仪实现至少三个自由度的全方位移动,即X轴方向的平移、Y轴方向的平移、和绕Z轴转动)。
在另一优选例中,所述的移动平台包括一移动支架,所述的非接触式测温仪设置于所述的移动支架上,从而通过所述移动支架的移动,使得所述非接触式测温仪移动至测量位置,对预定部位的体表进行非接触式测量。
在另一优选例中,所述移动支架包括一移动底座和一设置于所述移动底座上的拱形支架。
在另一优选例中,所述的移动底座用于驱动所述移动支架沿着纵向(即对象的中轴线方向或从头至脚方向)移动。
在另一优选例中,所述的拱形支架设有一拱形滑轨,所述拱形滑轨上安装有至少一个所述非接触式测温仪。
在另一优选例中,所述拱形滑轨上安装有2个或3个所述非接触式测温仪。
在另一优选例中,所述的移动平台包括机械臂。
在另一优选例中,所述的机械臂包括关节型机械手臂(或六轴机械臂)。
在另一优选例中,所述的六轴机械臂设有六组不同位置的马达驱动,其中每个马达都能提供绕一轴向的旋转运动。
在另一优选例中,所述移动支架包括一移动底座和一设置于所述移动底座上的机械臂,其中所述的非接触式测温仪设置于所述机械臂的运动端。
在另一优选例中,所述诊断系统还包括:
一测温仪校准模块,所述测温仪校准模块用于对非接触式测温仪进行校准。
在另一优选例中,所述的测温仪校准模块包括一恒温区,所述恒温区用于提供用于校准所述非接触式测温仪的一个或多个恒定的校准温度。
在另一优选例中,所述的校准温度为30-40℃,或33-38℃(如35、36、37、38℃)。
在另一优选例中,所述的校准温度包括相邻温差为t1的多个温度构成的温度 梯度,其中,t1为0.01-1℃,或0.1-0.5(如0.1、0.2等)。
在另一优选例中,所述的温度梯度包括2-20个(如2、3、4、5、6、7、8、9、10个)基准温度。
在另一优选例中,所述的温度梯度包括35.0、35.5、36.0、36.5、37.0、37.5、和38.0℃。
在另一优选例中,所述的温度梯度包括35.0、35.2、35.4、35.6、35.8、36.0、36.2、36.4、36.6、36.8、和37.0℃。
在另一优选例中,所述的预定部位包括至少一个基准部位和至少一个微循环测量部位。
在另一优选例中,所述的基准部位包括额头。
在另一优选例中,所述的基准部位为额头中央部位。
在另一优选例中,所述的微循环测量部位包括n个测量部位,其中n为≥1的正整数。
在另一优选例中,n为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20。
在另一优选例中,所述的微循环测量部位选自下组:髌骨下缘、内踝、外踝、足背、足底。
在另一优选例中,所述的测量部位包括左下肢和/或右下肢的髌骨下缘、内踝、外踝、足背、足底。
在另一优选例中,所述的内踝、外踝和足背为各部位的最凸起处。
在另一优选例中,所述的足底为足底的最凹陷处或足底中部。
在另一优选例中,所述的微循环测量部位还包括选自下组的测量部位:手背、手心、一个或多个手指端、一个或多个脚趾端。
在另一优选例中,所述的测量部位包括左上肢和/或右上肢的手背、手心、一个或多个手指端。
在另一优选例中,所述的手背为手背中部。
在另一优选例中,所述的手心为手心中部。
在另一优选例中,所述的微循环量化处理器通过应用以下公式而确定微循环的量化评分值S:
S=INT((Δst-Δm)*10/(|Δmax|-|Δmin|))+5     公式I
式中,
S为量化评分值;
Δst为正常人群的该预定部位的皮温与基准部位的皮温之差(通常取平均值);或为某一人群(糖尿病人群或正常人群)的该预定部位的皮温与基准部位的皮温之差;
Δm为该对象的该预定部位的皮温与自身基准部位的皮温之差;
Δmax为一人群体中,已测定的该预定部位的皮温与基准部位的皮温之差中的最大差值(负值);
Δmin为一人群体中,已测定的该预定部位的皮温与基准部位的皮温之差中的最小差值。
在另一优选例中,所述的对象包括糖尿病患者或糖尿病微循环障碍患者。
在本发明的第二方面,提供一种无创微循环量化诊断方法,包括以下步骤:
(a)提供本发明第一方面中所述的无创微循环量化诊断系统;
(b)用所述的无创微循环量化诊断系统,非接触地测定一对象的预定部位的体表温度数据,所述的预定部位包括至少一个基准部位和至少一个微循环测量部位;
(c)对所述测定的预定部位的体表温度数据进行量化处理,从而获得所述对象的测量部位的微循环量化结果。
在另一优选例中,所述的微循环量化结果包括量化评分值S。
在另一优选例中,所述的量化评分值S是分级的评分值(例如0-5分、0-10分,或0-100分)。
在另一优选例中,所述的预定部位包括至少一个基准部位和至少一个微循环测量部位。
在另一优选例中,所述的基准部位包括额头。
在另一优选例中,所述的基准部位为额头中央部位。
在另一优选例中,所述的微循环测量部位包括n个测量部位,其中n为≥1的正整数(如1-50,1-25,或1-20)。
在另一优选例中,n为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20。
在另一优选例中,所述的微循环测量部位选自下组:髌骨下缘、内踝、外踝、足背、足底。
在另一优选例中,在步骤(c)中,还包括:经过量化处理,获得所述对象的左下肢、右下肢、左右下肢的微循环量化结果。
在另一优选例中,所述的微循环测量部位还包括选自下组的测量部位:手背、手心、一个或多个手指端、一个或多个脚趾端。
在另一优选例中,所述的测量部位包括左上肢和/或右上肢的手背、手心、一个或多个手指端。
在另一优选例中,在步骤(c)中,还包括:经过量化处理,获得所述对象的左上肢、右上肢、左右上肢的微循环量化结果。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1是本发明一个实施方式的无创微循环量化诊断系统的示意图。
图2是本发明另一个实施方式的无创微循环量化诊断系统的示意图。
图3显示了本发明一种无创微循环量化诊断系统的结构示意图。图中,各标识如下:
10:无创微循环量化诊断系统
20:检测床本体
22:检测床底座
30:移动平台
32:拱形支架
40:输入模块
50:非接触式测温仪
60:显示模块。
图4显示了在本发明一个实施例中,术前、术后皮温与血液流速关系图。其中,术后的血流速度与皮温变化关系如下:T=2116u2-576u+71(脚外踝)。
图5显示了介入手术前后体表温度可用于评价疗效。
图6显示了术前、术后各预定部位处的TTP峰值时间。结果表明,术后TTP峰值时间明显小于术前(n=300)。
图7显示了术后和术前各预定部位处的TTP峰值时间的比值
Figure PCTCN2020089062-appb-000001
具体实施方式
本发明人经过广泛而深入的研究,首次开发了一种无创微循环量化诊断系统,所述诊断系统利用体表温度数据进行微循环的量化诊断。本发明的诊断系统通过对体表温度数据的量化处理,不仅可以无创地获得微循环的量化评分值,而且快速、简便、准确性高。在此基础上完成了本发明。
术语
如本文所用,术语“本发明的无创微循环量化诊断系统”、“本发明的诊断系统”、“本发明的无创微循环量化诊断装置”等可互换使用,均指本发明第一方面中所述的无创微循环量化诊断系统。
如本文所用,术语“皮温”指人体的某一部位的体表温度。
无创微循环量化诊断系统
下面结合附图,对本发明的无创微循环量化诊断系统的具体实施方式作详细说明。
如图1所示,本发明的一种无创微循环量化诊断系统包括:非接触式测温仪,用于对一对象的预定部位的体表进行测量并获得所述预定部位的体表温度数据;和微循环量化处理器,用于对获得的体表温度数据进行量化处理,并得出微循环的量化评分值;
其中,微循环量化处理器包括:体表温度数据接收模块、体表温度数据量化处理模块、控制处理器、输入模块和显示模块。
体表温度数据接收模块用于接收和采集体表温度数据;体表温度数据量化处理模块用于相对温度差(ΔT)的提取、并应用公式获得微循环的量化评分值;控制处理器用于控制体表温度数据接收模块和体表温度数据量化处理模块。
适用于本发明的非接触式测温仪没有特别限制,可以是常规的或市售的各种非接触式测温仪。
如图2所示,为本发明的另一种实施方式,其结构与图1所示的本发明的第一种实施方式基本相同,其区别在于,除非接触式测温仪和微循环量化处理器之外,还包括3D定位标准化模块,用于确定和/或校正所述对象的预定部位的位置。例如,标定各预定部位的3D坐标,以便于后续进行皮温测定。
本发明对于适用的非接触式测温仪没有特别限制,可以是常规的或市售的各种非接触式测温仪。
如图3所示,一种本发明无创微循环量化诊断系统(10)的结构包括:一检测床 本体(20),用于供检测对象平躺;一检测床底座(22),用于支承所述检测床本体(20)。在所述检测床底座上还设有一移动平台(30),移动平台(30)可沿着纵向(即对象的中轴线方向或从头至脚方向)移动。
在该实施例中,所述的移动平台为一移动支架,所述的非接触式测温仪设置于所述的移动支架上,从而通过所述移动支架的移动,使得所述非接触式测温仪移动至测量位置,对预定部位的体表进行非接触式测量。
具体地,所述移动支架包括一移动底座(未示出)和一设置于所述移动底座上的拱形支架(32)。所述的移动底座用于驱动所述移动支架沿着纵向(即对象的中轴线方向或从头至脚方向)移动。所述的拱形支架的下部设有一拱形滑轨(未示出),所述拱形滑轨上安装有至少一个所述非接触式测温仪(50)。通常,可在所述拱形滑轨上安装有1个、2个或3个所述非接触式测温仪。
在另一优选例中,所述的移动平台包括机械臂。
在该实施例中,所述无创微循环量化诊断系统(10)的结构还包括:一输入模块(40),如触摸式输入屏,和一显示模块(60),如LCD或LED荧光屏。
非接触式测温仪
在本发明中,可以采用具有预定精度(例如±0.1℃,或)的非接触式测量人体温度的红外测温仪。
典型地,所述的预定精度可以为例如±0.2℃,或±0.1℃,或±0.05℃。
一种优选的非接触式测温仪在镜筒内依次设置菲涅尔透镜、热电堆红外温度传感器和信号放大处理电路板,并且在镜筒后面还设置铝散热屏蔽件,镜筒外表面包裹铝箔。当平行进入镜筒的信号光(红外线)透过菲涅尔透镜后聚焦在热电堆红外温度传感器上,可提高测量的信噪比与距离系数比。
优选地,非接触式测温仪还宜设有消除杂光的栅栏结构。
由于受环境温度的影响,红外传感器所感应到的红外信号会有所变化,因此非接触式测温仪优选地还包括一实时环境温度补偿单元,用于基于测量时的实时环境温度,对体表的温度测量值进行温度补偿,从而获得更准确的、经实时环境温度补偿后的预定部位的体表温度。
在另一优选例中,所述的环境温度补偿电路和感知环境温度的负温度系数(Negative Temperature Coefficient,NTC)热敏电阻。
如本文所用,术语“NTC热敏电阻”指负温度系数热敏电阻。通常NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料制备的陶瓷材料。温度低时, 这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。典型地,NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2%~-6.5%。
理论模型
为了便于理解本发明,本发明人提供了以下机理供参考。应理解,本发明的保护并不受这些机理的影响。
(1)树状理论:
人体体循环系统中,血液从左心室搏出后,流经主动脉及其派生的若干动脉分支,将血液送入相应的器官。动脉再经多次分支,管径逐渐变细,血管数目逐渐增多,最终到达毛细血管。
树内部的水分输运系统中,水在导管内部从根部输送到叶梢。与人体血液循环系统类似,树内部的水分输运通道也呈现出逐步变细的变化规律。与现有的树内部水分输运的分岔结构模型相类似,可以建立人体体循环动脉系统的分级输运模型。研究表明,流动的阻力主要集中在末端。
(2)分系统理论:
建立人体体循环的血液流体分系统,心脏为泵站,从主血管到分支血管,再到毛细血管,形成枝状管网各分系统。采用流体力学管网系统设计、分析原理,可对人体体循环系统中血液流速、流动的沿程阻力和各局部阻力进行分析,并研究其中所涉及的传热过程,从而可获得血管内流动情况与体表温度的对应关系。
基于本发明人的研究,对于人体而言,基于某一对象的一些特定的预定部位的体表温度的准确测量数据,可以有效地定量评价该对象的微循环状态。该方法具有快速、无创、早期、准确等优点。
在本发明的一个优选例中,所述的预定部位包括至少一个基准部位和至少一个微循环测量部位。
优选地,所述的基准部位包括额头。这样,基准温度或参照皮温就是额温,例如额头中央部位的表皮温度。
在本发明中,当用于评估下肢的微循环时,所述的微循环测量部位可包括选自下组的至少多个或全部部位:髌骨下缘、内踝、外踝、足背、和足底。
应理解,所述的测量部位包括左下肢和右下肢的髌骨下缘、内踝、外踝、足背、足底。优选地,所述的内踝、外踝和足背为各部位的最凸起处;而所述的足 底为足底的最凹陷处(或中部凹陷处)。
如本文所用,“5点皮温法”、“同济5点法”、“五点法微循环评价方法”等可互换使用,指通过测定5个特定位点(即测量点)或部位的皮温,并与参照皮温(如额温)进行比较,从而定量分析和评价某对象(如糖尿病患者)的下肢微循环情况。
在一个优选例中,在对一个对象测得多个(如5个)测量点和基准部位的体表温度(即皮温)后,可按下表计算各位点与基准部位的相对温度差。
  实测皮温 相对温度差
额头 T0 0
髌骨下缘 T1 ΔT1=T1-T0
内踝 T2 ΔT2=T2-T0
外踝 T3 ΔT3=T3-T0
足背 T4 ΔT4=T4-T0
足底 T5 ΔT5=T5-T0
在一个优选例中,本发明方法如下进行测试:在统一条件下(患者静卧,室温25℃,去除覆盖测量点衣物30秒后),运用非接触式测温仪检测患者双侧髌骨下缘、内踝、外踝、足背及足底五个点的皮温,额温作为参照皮温,反映患者下肢微循环情况。
在一个优选例中,本发明还提供了基于无创微循环量化评价方法对对象进行早期辅助量化评价,以便对早期糖尿病血管病变进行筛选或提供辅助诊断信息。
在一个优选例中,本发明还提供了基于无创微循环量化评价方法对患者的疗效进行评价。例如,该量化评价方法可为例如血管介入术等治疗手段提供疗效评价依据,用于糖尿病血管病变患者治疗前后的疗效随访和功能评价。
本发明的主要优点包括:
(a)本发明能够对微循环的进行快速定量分析,敏感度高。
(b)采用非接触式测温,具有安全、对人体无创等优点。
(c)检查时间短,对象(如糖尿病患者)的适应性高。
(d)可以在早期提供更有价值的辅助性定量评价结果,从而实现“早诊断、早 治疗”。
(e)可以对病人进行多次或定期的微循环的定量评价,从而为评价疗效提供有效依据。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1
在本实施例中,对于参加评价的对象(481位进行介入治疗的糖尿病患者)基于以下标准和方法进行疗效评价
1.1分级标准
将糖尿病血管病为四期六级,具体如下:
0期,正常;
I期<4分,轻度;
II期,4-12分,其中包括IIa期,4-6分;IIb期,7-9分;IIc期,10-12分
III期>12分;
1.2评价标准及项目:
按照表1所示的血管解剖、功能检测、常规微循环检测,对各患者在治疗前和治疗后分别进行评分。
表1评价标准及项目
评价项目 标准一 标准二 标准三 标准四
血管解剖A 正常0 单一病变1 两个病变2 3个以上3
血管解剖B 正常0 轻度狭窄1 中度狭窄2 重度或闭塞3
功能检测 正常0 轻度异常1 中度病变2 重度异常3
微循环检测 正常0 轻度异常1 中度病变2 重度异常3
注:
血管解剖A,是指血管受累数目;
血管解剖B,是指血管腔狭窄闭塞的程度;功能检测:
患者步行距离,ABI,TBI,外周神经评价,各评价指标参考现有临床标准分级;
常规微循环检测:患肢超声微泡,激光多普勒扫描,i-flow软件测定,各评价指标参考现有临床标准分级。
1.3结果
根据上述评价体系,对481例糖尿病周围血管病患者治疗前后进行比较,通过进行正态性检验发现,患者治疗前后评分差值不符合正态分布,因此对其进行Wilcoxon符号秩检验,p<0.0001,按照α=0.05检验水准,差异有统计学意义,可以认为治疗前后患者评分不同。
结果表明,治疗后评分相较于治疗前平均下降的中位数为7.5(下降幅度为6~10)。
实施例2
体表温度与血管内部血流速度的相关性
在本实施例中,对120位下肢动脉病变患者,通过造影法测定其血流速度。此外,综合考虑测温部位与心脏距离等因素的影响,估算皮温与血流速度之间的关系。
根据流体力学原理,选取脚踝处的数据结果,以y=a*x^2+b*x^1+c形式两次拟合出T-u关系曲线,式中,u为基于血流编码程序计算出的造影剂通过血管时间内最高浓度的时间(达峰时间),T为体表温度(皮温)。
对下肢动脉病变患者的测量数据提示,皮温与达峰时间相关。
皮温与血液流速之间的关系如图4所示:术后随血液流速的增大,皮温增加较快,其变化关系可表达为T=2116u2-576u+71。上述公式一方面表明血液流速与预定部位的体表温度有关,另一方面表明预定部位的皮温可反映血液流速。
这表明,预定部位的体表温度与血管内部血流速度的相关性,可以通过预定部位的体表温度来定量评估血管内部血流速度或定量评估微循环。
实施例3
介入手术前后体表温度与微循环改善的相关性
在本实施例中,对300位糖尿病患者在血管介入手术前和手术后1天和2 天时的预定部位的皮温进行测定,并进行分析。
结果如图5和6所示。
图5的结果显示:
(a)术前和术后的额温基本相同。
(b)与术前相比,术后各点皮温明显上升。
(c)术后第二天各点皮温高于术后第一天,足部区域尤其明显。
(d)术后各样本之间的皮温统计标准差明显小于术前值,说明术后不同患者的各点皮温均趋向于单一稳定值,即接近额温。
(e)术后各点皮温趋于稳定,样本之间的标准差不再变化。
这表明,介入手术前后,预定部位的体表温度数据可用于评价疗效。
图6的结果显示:
(a)术后TTP峰值时间小于术前。
(b)术后TTP峰值时间标准差明显小于术前,说明各患者血液流速趋于稳定,达到手术效果。
与术前相比,术后TTP峰值时间明显小于术前(n=300)。
Figure PCTCN2020089062-appb-000002
是术后TTP峰值时间T2与术后TTP峰值时间T1的比值。通过
Figure PCTCN2020089062-appb-000003
消除个体差异对数据的影响。术后和术前各预定部位处的TTP峰值时间的比值如图7所示。
图7的结果显示:
(a)各预定部位的
Figure PCTCN2020089062-appb-000004
基本处于0.6-0.7范围,说明术后血流流速与术前相比提高幅度为约为43-67%。
(b)
Figure PCTCN2020089062-appb-000005
最小值显示,相对应的患者术后髌骨、脚踝、足背处的血液流速分别提高了163%,525%和614%(注:此患者年龄为85周岁)。
这些结果一方面说明了,DSA手术可有效改善血液流速,从而改善微循环。另一方面,由于本发明的基于预定部位的皮温可以定量反映对象相应部位处或总体的微循环情况(例如,可定量地与血液流速相关联),因此这表明,本发明的无创微循环量化诊断方法不仅可用于定量评价微循环,还可用于定量评价治疗方案(如手术)的疗效。
实施例4
基于预定部位的皮温进行无创微循环的量化诊断
4.1在本实施例中,对近500例糖尿病周围血管病治疗前后皮温,采用配 对样本t检验进行分析,其中,预定部位包括基准部位(额头),以及以下测量部位:左下肢和右下肢的髌骨下缘、内踝、外踝、足背、足底。
4.2结果
结果表明,髌骨下缘、内踝、外踝、足背、足底这些预定部位的皮温数据特别适合用于提供微循环的量化评价结果。
4.2.1.术前术后额温相比,差异无统计学意义。
Figure PCTCN2020089062-appb-000006
4.2.2.术前术后髌骨下缘左温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000007
4.2.3.术前术后髌骨下缘右温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000008
4.2.4.术前术后外踝左温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000009
4.2.5.术前术后外踝右温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000010
4.2.6.术前术后足背右温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000011
4.2.7.术前术后足底左温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000012
4.2.8.术前术后足底右温相比,差异有统计学意义。
Figure PCTCN2020089062-appb-000013
综上,除额温在术前、术后无统计学差异外,其余都有统计学差异,本发明的无创微循环量化诊断方法不仅可用于定量评价治疗方案(如手术)的疗效,例如,作为评价术前、术后糖尿病外周血管病微循环的有效方式,还可用于定量评价微循环。
实施例5
无创微循环量化诊断
在本实施例中,采用本发明图2中所示的无创微循环量化诊断系统,对23位糖尿病患者(作为检测对象)进行无创微循环量化评估。
结果如表2所示。
表2预定部位和基准部位的皮温
Figure PCTCN2020089062-appb-000014
Figure PCTCN2020089062-appb-000015
表3预定部位相对于基准部位的相对温度差
Figure PCTCN2020089062-appb-000016
Figure PCTCN2020089062-appb-000017
基于表3和表4的预定部位的皮温和相对温差,按以下公式I计算对各对象的预定部位处微循环的量化评分值S(以0-10分为例),
S=INT((Δst-Δm)*10/(|Δmax|-|Δmin|))+5      公式I
式中,
S为评分值;
Δst为正常人群的该预定部位的皮温与基准部位(如额头)的皮温之差(通常取平均值);或为某一人群(糖尿病人群或正常人群)的该预定部位的皮温与基准部位(如额头)的皮温之差(如表3中,对于左侧髌骨下缘,可选用-3.5);
Δm为该对象的该预定部位的皮温与自身基准部位(如额头)的皮温之差;
Δmax为一人群体中,已测定的该预定部位的皮温与基准部位(如额头)的皮温之差中的最大差值(负值)(如表3中,对于左侧髌骨下缘,可选用-5.5);
Δmin为一人群体中,已测定的该预定部位的皮温与基准部位(如额头)的皮温之差中的最小差值(通常为负值或0)(如表3中,对于左侧髌骨下缘,可选用-1.5)。
此外,在公式I中,|Δmax|-|Δmin|也可用该预定部位的皮温与基准部位(如额头)的皮温之差的波幅替换,或者用a×标准差替换,其中,a为常数,通常为2-5。
在获得各预定部位处微循环的量化评分值S后,相应计算各对象的左下肢(评分=(髌左+外踝左+足背左+足底左)/4)、右下肢(评分=(髌右+外踝右+足背右+足底右)/4)以及左右下肢的微循环(评分=(髌左+髌右+外踝左+外踝右+足背左+足背右+足底左+足底右)/8)的量化评分,结果如表4所示。
表4对预定部位处、左下肢、右下肢以及左右下肢的微循环的量化评分
对象 髌左 髌右 外踝左 外踝右 足背左 足背右 足底左 足底右 左下肢 右下肢 总下肢
编号                 评分 评分 评分
1 3.0 5.0 0.0 3.0 1.0 6.0 1.0 1.0 1.3 3.8 2.5
2 9.0 7.0 10.0 9.0 9.0 8.0 11.0 6.0 9.8 7.5 8.6
3 9.0 7.0 3.0 4.0 2.0 4.0 3.0 3.0 4.3 4.5 4.4
4 8.0 5.0 5.0 5.0 1.0 1.0 2.0 3.0 4.0 3.5 3.8
5 9.0 9.0 5.0 6.0 2.0 2.0 2.0 2.0 4.5 4.8 4.6
6 7.0 5.0 7.0 6.0 11.0 5.0 6.0 6.0 7.8 5.5 6.6
7 3.0 3.0 5.0 6.0 6.0 6.0 2.0 2.0 4.0 4.3 4.1
8 3.0 1.0 3.0 3.0 3.0 2.0 3.0 2.0 3.0 2.0 2.5
9 4.0 3.0 5.0 4.0 4.0 3.0 2.0 1.0 3.8 2.8 3.3
10 7.0 6.0 5.0 4.0 5.0 7.0 5.0 6.0 5.5 5.8 5.6
11 8.0 9.0 2.0 3.0 1.0 5.0 1.0 6.0 3.0 5.8 4.4
12 5.0 8.0 9.0 9.0 6.0 10.0 9.0 8.0 7.3 8.8 8.0
13 10.0 6.0 2.0 3.0 5.0 6.0 7.0 6.0 6.0 5.3 5.6
14 7.0 6.0 5.0 5.0 6.0 7.0 9.0 8.0 6.8 6.5 6.6
15 6.0 7.0 5.0 7.0 3.0 3.0 3.0 5.0 4.3 5.5 4.9
16 10.0 7.0 9.0 6.0 8.0 7.0 10.0 3.0 9.3 5.8 7.5
17 3.0 5.0 5.0 6.0 1.0 0.0 8.0 6.0 4.3 4.3 4.3
18 0.0 0.0 1.0 0.0 2.0 2.0 3.0 2.0 1.5 1.0 1.3
19 0.0 0.0 1.0 3.0 5.0 4.0 7.0 5.0 3.3 3.0 3.1
20 5.0 4.0 3.0 4.0 2.0 2.0 3.0 5.0 3.3 3.8 3.5
21 4.0 2.0 4.0 5.0 8.0 6.0 8.0 11.0 6.0 6.0 6.0
22 3.0 3.0 8.0 9.0 9.0 7.0 9.0 10.0 7.3 7.3 7.3
23 2.0 1.0 4.0 4.0 8.0 8.0 8.0 10.0 5.5 5.8 5.6
在本实施例中,设定的微循环的量化标准如下表5所示:
表5微循环的量化诊断标准
微循环病变等级 单一预定部位 左下肢 右下肢 左右下肢
极其严重 9-10 9-10 9-10 7.5-10
很严重 7-9 7-9 7-9 6.0-7.5
严重 5-7 5-7 5-7 5.0-6.0
病变 3-5 3-5 3-5 3.5-5.0
轻度病变或存在病变倾向 1-3 1-3 1-3 1.5-3.5
正常或无可见的病变 0-1 0-1 0-1 0-1.5
注:在表5中,因为Δst采用是糖尿病人群的平均值,因此将3-5分也界定为“病变”。如果Δst采用是正常人群的平均值(或标准值),则需要对表5的量化标准作相应调整。
基于表5所示的量化诊断标准,可以看出在表4中标注了下划线的评分分别表示所述对象的左下肢、右下肢、左右下肢存在严重、很严重、或极其严重的微循环病变。例如,部分量化诊断结果如下:
(a)第2号对象,其左下肢、右下肢均存在极其严重或很严重的微循环病变,因此,总下肢的微循环病变也极其严重(左下肢评分、右下肢评分和总下肢评分分别为9.8、7.5、8.6)。
(b)第16号对象,其左下肢存在极其严重的微循环病变,病变程度远高于左下肢的微循环病变程度(严重)。此外,总下肢的微循环病变也介于严重和极其严重之间(左下肢评分、右下肢评分和总下肢评分分别为9.3、5.8、7.5)。
此外,本发明人对于采用本发明无创微循环量化诊断系统和方法进行量化评分,且量化评分显示极其严重、很严重、严重、病变的对象,再采用实施例1中的常规方法进行分级,并加以比较。
结果显示,两者存在极高的吻合度,“极其严重”对应于“III期病变”;“很严重”对应于“IIc期病变”;“严重”对应于“IIb期”;“病变”对应于“IIa期”。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种无创微循环量化诊断系统,其特征在于,包括:
    非接触式测温仪,所述非接触式测温仪用于对一对象的预定部位的体表进行测量并获得所述预定部位的体表温度数据;
    微循环量化处理器,所述处理器用于对获得的体表温度数据进行量化处理,并得出微循环量化诊断结果;
    其中,所述的微循环量化处理器包括:体表温度数据接收模块、体表温度数据量化处理模块、控制处理器、输入模块和显示模块。
  2. 根据权利要求1所述的诊断系统,其特征在于,所述控制处理器用于控制体表温度数据接收模块和体表温度数据量化处理模块。
  3. 根据权利要求1所述的诊断系统,其特征在于,所述输入模块、体表温度数据接收模块、体表温度数据量化处理模块、控制处理器、显示模块依次或相互连接。
  4. 根据权利要求1所述的诊断系统,其特征在于,微循环量化处理器还包括3D定位标准化模块,所述3D定位标准化模块用于确定和/或校正所述对象的预定部位的位置。
  5. 根据权利要求1所述的诊断系统,其特征在于,所述的非接触式测温仪和微循环量化处理器通过数据接口进行通信。
  6. 根据权利要求1所述的诊断系统,其特征在于,所述的非接触式测温仪包括非接触式红外测温仪。
  7. 根据权利要求1所述的诊断系统,其特征在于,所述的诊断系统还包括:
    一预定部位自动识别模块,所述预定部位自动识别模块用于识别所述对象的预定部位,并获得所述预定部位的坐标位置和/或图像。
  8. 根据权利要求7所述的诊断系统,其特征在于,所述预定部位自动识别模块 包括:
    一成像单元,所述成像单元用于获取所述对象的体表图像;和
    一预定部位标定单元,所述标定单元用于基于所述体表图像,标定各预定部位的3D坐标位置。
  9. 根据权利要求1所述的诊断系统,其特征在于,所述诊断系统还包括:
    一测温仪校准模块,所述测温仪校准模块用于对非接触式测温仪进行校准。
  10. 根据权利要求1所述的诊断系统,其特征在于,
    所述的微循环量化处理器通过应用以下公式而确定微循环的量化评分值S:
    S=INT((Δst-Δm)*10/(|Δmax|-|Δmin|))+5  公式I
    式中,
    S为量化评分值;
    Δst为正常人群的该预定部位的皮温与基准部位的皮温之差(通常取平均值);或为某一人群(糖尿病人群或正常人群)的该预定部位的皮温与基准部位的皮温之差;
    Δm为该对象的该预定部位的皮温与自身基准部位的皮温之差;
    Δmax为一人群体中,已测定的该预定部位的皮温与基准部位的皮温之差中的最大差值(负值);
    Δmin为一人群体中,已测定的该预定部位的皮温与基准部位的皮温之差中的最小差值。
PCT/CN2020/089062 2019-05-07 2020-05-07 无创微循环量化诊断系统及其量化处理方法 WO2020224624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910377179.5 2019-05-07
CN201910377179.5A CN111904408A (zh) 2019-05-07 2019-05-07 无创微循环量化诊断系统及其量化处理方法

Publications (1)

Publication Number Publication Date
WO2020224624A1 true WO2020224624A1 (zh) 2020-11-12

Family

ID=73051228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089062 WO2020224624A1 (zh) 2019-05-07 2020-05-07 无创微循环量化诊断系统及其量化处理方法

Country Status (2)

Country Link
CN (1) CN111904408A (zh)
WO (1) WO2020224624A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1530639A (zh) * 2003-03-17 2004-09-22 财团法人工业技术研究院 整合影像显示的体温计
US20110071598A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Photoacoustic Spectroscopy Method And System To Discern Sepsis From Shock
CN107773217A (zh) * 2017-09-29 2018-03-09 天津大学 活体组织微循环代谢动态测量装置及方法
CN108309302A (zh) * 2018-03-20 2018-07-24 中南大学湘雅医院 一种外科手术微循环监测方法及装置
WO2018144948A1 (en) * 2017-02-03 2018-08-09 Avacen Medical, Inc. Systems and methods for evaluating blood circulation and early detection of cardiovascular issues
CN108836279A (zh) * 2018-05-04 2018-11-20 安徽大学 一种智能温度测量及可视化系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1530639A (zh) * 2003-03-17 2004-09-22 财团法人工业技术研究院 整合影像显示的体温计
US20110071598A1 (en) * 2009-09-24 2011-03-24 Nellcor Puritan Bennett Llc Photoacoustic Spectroscopy Method And System To Discern Sepsis From Shock
WO2018144948A1 (en) * 2017-02-03 2018-08-09 Avacen Medical, Inc. Systems and methods for evaluating blood circulation and early detection of cardiovascular issues
CN107773217A (zh) * 2017-09-29 2018-03-09 天津大学 活体组织微循环代谢动态测量装置及方法
CN108309302A (zh) * 2018-03-20 2018-07-24 中南大学湘雅医院 一种外科手术微循环监测方法及装置
CN108836279A (zh) * 2018-05-04 2018-11-20 安徽大学 一种智能温度测量及可视化系统

Also Published As

Publication number Publication date
CN111904408A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Gatt et al. Thermographic patterns of the upper and lower limbs: baseline data
US20190150763A1 (en) Obtaining cardiovascular parameters using arterioles related transient time
Chen et al. Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities
Puissant et al. Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging
US10517487B2 (en) Methods and apparatus for assessing vascular health
Park et al. Utility of toe-brachial index for diagnosis of peripheral artery disease
WO2014027293A2 (en) Estimations of equivalent inner diameter of arterioles
Koch et al. Exercise transcutaneous oxygen pressure measurement has good sensitivity and specificity to detect lower extremity arterial stenosis assessed by computed tomography angiography
Vega et al. Peripheral arterial disease: efficacy of the oscillometric method
Wallace et al. The use of smart phone thermal imaging for assessment of peripheral perfusion in vascular patients
JP5685798B2 (ja) 有病体検出装置および有病体検出システム
WO2019242160A1 (zh) 基于特定的生理参数获取血管压力值的方法及装置
CN109200402A (zh) 基于红外热成像技术的静脉穿刺系统
US20220218272A1 (en) Systems and methods for detection of pressure ulcers
Tavares et al. Do maximalist shoes mitigate risk factors for tibial stress fractures better than stability or flexible (marketed as minimalist) shoes?
Jóhannesson et al. Age-dependency of ocular parameters: a cross sectional study of young and elderly healthy subjects
WO2020224624A1 (zh) 无创微循环量化诊断系统及其量化处理方法
US20180192895A1 (en) Detection of peripheral arterial disease
CN109567908A (zh) 基于温度场检测的静脉穿刺系统
Wang et al. Comparison between reflection-mode photoplethysmography and arterial diameter change detected by ultrasound at the region of radial artery
Schell et al. Clinical comparison of automatic, noninvasive measurements of blood pressure in the forearm and upper arm with the patient supine or with the head of the bed raised 45: a follow-up study
Cooke et al. Digital infrared thermographic imaging for remote assessment of traumatic injury
CN211409055U (zh) 无创微循环量化诊断设备
Jaff Lower extremity arterial disease: diagnostic aspects
van Velzen et al. Comparison between pulse wave velocities measured using Complior and measured using Biopac

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20801483

Country of ref document: EP

Kind code of ref document: A1