WO2020224564A1 - 微通道扁管及微通道换热器 - Google Patents

微通道扁管及微通道换热器 Download PDF

Info

Publication number
WO2020224564A1
WO2020224564A1 PCT/CN2020/088554 CN2020088554W WO2020224564A1 WO 2020224564 A1 WO2020224564 A1 WO 2020224564A1 CN 2020088554 W CN2020088554 W CN 2020088554W WO 2020224564 A1 WO2020224564 A1 WO 2020224564A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
flat tube
channels
cross
microchannel
Prior art date
Application number
PCT/CN2020/088554
Other languages
English (en)
French (fr)
Inventor
蒋皓波
王立智
蒋建龙
黄宁杰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910366960.2A external-priority patent/CN111895840B/zh
Priority claimed from CN201911390699.6A external-priority patent/CN111692894B/zh
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to JP2021539127A priority Critical patent/JP7202469B2/ja
Priority to EP20802387.9A priority patent/EP3786565B1/en
Priority to US17/033,762 priority patent/US11619453B2/en
Publication of WO2020224564A1 publication Critical patent/WO2020224564A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • This application relates to the field of heat exchange, and specifically to a microchannel flat tube and a microchannel heat exchanger.
  • the micro-channel heat exchanger is a heat exchange device commonly used in automobile, household or commercial air-conditioning systems. It can be used as an evaporator or a condenser in an air-conditioning system.
  • Microchannel heat exchanger is a heat exchanger composed of flat tubes, fins, headers, etc. When the wind generated by an external fan acts on the microchannel fins and flat tubes, the flat tube flow channel of the microchannel heat exchanger The refrigerant exchanges heat with the air.
  • Each flat tube of the micro-channel heat exchanger has a flow channel composed of multiple small holes side by side.
  • the refrigerant evaporates or condenses in the side-by-side flow channel of the flat tube; when used as a condenser, the refrigerant flows side by side in the flat tube The channel is cooled; when used as an evaporator, the refrigerant is evaporated in the side-by-side flow channel of the flat tube.
  • each side-by-side flow passage follows the direction of the wind flow.
  • the refrigerant temperature is different. Therefore, along the refrigerant flow direction, the refrigerant evaporates or condenses at different positions in the side-by-side flow passages, which causes the flow distribution of the refrigerant in the flow passage to be mismatched with the heat exchange temperature difference, which reduces the heat exchange efficiency of the heat exchanger.
  • a microchannel flat tube which includes:
  • the flat tube body includes a first plane, a second plane, a first side surface, and a second side surface.
  • the first plane and the second plane are arranged on opposite sides of the flat tube body in the thickness direction.
  • the first side surface and the second side surface are arranged on opposite sides of the flat tube body in the width direction, the first side surface connects the first plane and the second plane, and the second side surface connects the first plane and the second plane;
  • a row of channels the row of channels passing through the flat tube body along the length direction, the row of channels at least including a first channel, a second channel, and a third channel arranged in the width direction, wherein the first channel, the second channel
  • the cross-sectional area of the channel and the third channel along the width direction changes exponentially, or changes in a power series, or changes in a polynomial relationship.
  • a microchannel heat exchanger including a first header, a second header, a plurality of microchannel flat tubes, and fins.
  • Two microchannel flat tubes are connected side by side between the first header and the second header, the fins are sandwiched between two adjacent microchannel flat tubes, and the row of channels communicates with the first header The inner cavity of the tube and the second header.
  • the cross-sectional area of the first channel, the second channel and the third channel in the width direction of the microchannel flat tube of the present application changes exponentially, or changes in a power series, or changes in a polynomial relationship, so that different designs can be obtained
  • the passage of the cross-sectional area of the circulation therefore, the passage can be correspondingly arranged according to the wind direction, which is beneficial to improve the heat exchange efficiency of the microchannel flat tube and the microchannel heat exchanger during operation.
  • Figure 1 is a three-dimensional schematic diagram of a microchannel heat exchanger according to an embodiment of the present application
  • Figure 2 is a schematic cross-sectional view of the microchannel flat tube shown in Figure 1;
  • Fig. 3 is a comparison table of the relationship between the channel width, the chamfer radius and the channel number of the microchannel flat tube channel shown in Fig. 2.
  • FIG. 4 is a schematic diagram of the relationship between the channel width of the microchannel flat tube channel shown in FIG. 2 and the channel number.
  • Fig. 5 is a partially enlarged schematic diagram of the microchannel flat tube shown in Fig. 2.
  • Fig. 6 is a three-dimensional schematic diagram of a microchannel flat tube and fins according to another embodiment of the application.
  • Fig. 7 is a perspective schematic view of the fin shown in Fig. 6.
  • FIG. 8 is a three-dimensional schematic diagram of a microchannel flat tube and fins according to another embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “multiple” means two or more than two, unless otherwise specifically defined.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction between two components.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • Figures 1 to 2 show a microchannel heat exchanger 100 in accordance with the present application, which includes a first header 11, a second header 12, a plurality of microchannel flat tubes 2 and a plurality of fins 3.
  • a plurality of microchannel flat tubes 2 are arranged in parallel with each other at intervals, and are connected side by side between the first header 11 and the second header 12, and each fin 3 is sandwiched between two adjacent microchannel flat tubes 2 between.
  • the microchannel flat tube 2 includes a flat tube body 21 and a row of channels 22 passing through the flat tube body 21.
  • the length of the flat tube body 21 is greater than its width, and the width is greater than its thickness.
  • the flat tube body 21 includes a first flat surface 211, a second flat surface 212, a first side surface 213, and a second side surface 214.
  • the first flat surface 211 and the second flat surface 212 are disposed on opposite sides of the flat tube body 21 in the thickness direction H.
  • the first side surface 213 and the second side surface 214 are disposed on opposite sides of the flat tube body 21 in the width direction W.
  • the first side surface 213 connects the first plane 211 and the second plane 212
  • the second side surface 214 connects the first plane 211 and the second plane 212.
  • the first side surface 213 and the second side surface 214 are arc-shaped.
  • the first side surface 213 and the second side surface 214 may also be flat or other shapes, as long as they serve to connect the first flat surface 211 and the second flat surface 214, and the present application is not limited to this shape.
  • a row of channels 22 communicates with the inner cavity of the first header 11 and the inner cavity of the second header 11, a row of channels 22 are arranged in the flat tube body 21 along the width direction W, and the row of channels 22 is arranged along the length
  • the direction L penetrates the flat tube body 21.
  • a row of channels 22 penetrates the flat tube body 21 along the length direction.
  • the row of channels 22 at least includes a first channel 221, a second channel 222, and a third channel 223 arranged in the width direction.
  • the cross-sectional area of the second channel 222 and the third channel 223 in the width direction changes exponentially, or changes in a power series, or changes in a polynomial relationship.
  • the first channel 221 is close to the first side surface 213, the third channel is close to 223 and the second side surface 214, the first side surface 213 is the windward surface, and the second side surface 214 is the leeward surface, so that the microchannel is flat
  • the first passage 221 near the windward side has a larger flow cross-sectional area, so the heat exchange is more sufficient.
  • the third passage 223 near the leeward side has a smaller flow area, so the heat exchange becomes smaller because it passes through the windward side. After the heat exchange on the side, the wind has been cooled, and the heat exchange capacity on the leeward side becomes smaller. At this time, the cross-sectional area of the circulation channel on the leeward side is reduced accordingly, so as to obtain a higher heat exchange efficiency in the same flat tube volume .
  • Each channel 22 includes a hole width 22W in the width direction W and a hole height 22H in the thickness direction H.
  • a row of channels 22 includes a first channel 221, a second channel 222, and a third channel 223 arranged in the width direction.
  • the first channel 221, the second channel 222, and the third channel 223 have the same hole height 22H, and the first channel 221
  • the hole width 22W of the second channel 222 and the third channel 223 decreases exponentially, or changes in a power series, or changes in a polynomial relationship. Keep the hole height 22H unchanged, and the hole width 22W will gradually decrease according to the law.
  • the hole height of the microchannel flat tube 2 is lower, and the microchannel flat tube 2 is thinner. As a result, the heat exchange efficiency is further improved.
  • the exponential change is a natural exponential change.
  • y may also represent the hole width 22W of the first channel 221, the second channel 222 and the third channel 223.
  • y may also represent the hole width 22W of the first channel 221, the second channel 222 and the third channel 223.
  • the total width of the flat tube body 21 ranges from 20 mm to 30 mm
  • the row of channels 22 includes 33 channels
  • the cross-sectional area of the twentieth channel to the thirty-third channel is equal, where X represents the channel Serial number, y represents the cross-sectional area of the corresponding channel, and S1, S2, S3, S4, S5, S6, S7, S8, and S9 represent optional values.
  • the use of the same cross-sectional area in the lower hole width part of the hole can reduce the manufacturing difficulty caused by the processing accuracy, and does not affect the heat exchange efficiency.
  • Cross-sectional area, S1, S2, S3, S4, S5, S6 represent optional values.
  • y may also represent the hole width 22W of the first channel 221, the second channel 222 and the third channel 223.
  • the total width of the flat tube body ranges from 15mm to 25mm
  • the row of channels includes 23 channels
  • the cross-sectional area is equal.
  • the same cross-sectional area is used in the part of the lower hole width, which can reduce the manufacturing difficulty due to the processing accuracy, and does not affect the heat exchange efficiency.
  • y may also represent the hole width 22W of the first channel 221, the second channel 222 and the third channel 223.
  • the total width of the flat tube body is 25mm
  • the row of channels includes 33 channels
  • y can also represent the width.
  • the total width of the flat tube body 21 ranges from 15 mm to 25 mm
  • the row of channels 22 includes 23 channels
  • the cross-sectional area of the twentieth channel to the twenty-third channel is equal, where X represents the channel Serial number, y represents the cross-sectional area of the corresponding channel, and S1, S2, S3, S4, S5, S6, S7, S8, and S9 represent optional values.
  • y can also represent the width.
  • the cross-sectional areas of the first channel 221, the second channel 222, and the third channel 223 are rounded rectangles.
  • the first channel 221 includes four first chamfers 231, and the second channel 222 includes four first chamfers.
  • Two chamfers 232, the third channel 223 includes four third chamfers 233.
  • the radius of the first chamfer 231, the radius of the second chamfer 232, and the radius of the third chamfer 233 are equal or decrease in a fixed ratio. In this embodiment, the radius of the first chamfer 231, the radius of the second chamfer 232, and the radius of the third chamfer 233 are equal.
  • the width of the microchannel flat tube 2 is 20 mm to 30 mm.
  • the width of the microchannel flat tube 2 is 25.4 mm, and the thickness of the microchannel flat tube 2 is 1.3 mm.
  • the first channel 221, the second channel 222, the third channel 233, the fourth channel 224, and the fifth channel 225 have the same hole height 22H, which is 0.74 mm.
  • the distance between all the channels 22 and the first plane 211 is 0.28 mm, and the distance from the second plane 212 is 0.28 mm.
  • the dimensions of the hole width 22H of all channels 22 from left to right are: 1.45, 1.36, 1.27, 1.19, 1.12, 1.05, 0.98, 0.92, 0.86, 0.81, 0.76, 0.71, 0.66, 0.62, 0.58, 0.55, 0.51, 0.48, 0.45, 0.42, 0.4mm.
  • the specific size of the hole width 22W exemplified in the present application is an optional embodiment, other specific sizes can also be selected, as long as the hole width 22W of a row of channels 22 changes in an exponential curve in sequence.
  • the hole width is 22W. As long as it conforms to this similar polynomial relationship change, this application is not limited thereto.
  • the width 22W of the passage holes near the second side surface 214 differs less than 0.03 mm, in order to avoid processing errors and the processing accuracy is not well controlled, several holes near the second side surface may have the same width.
  • the hole width 22W of the fourth channel 224 and the fifth channel 225 can be set equal, and the cross-sectional areas are equal.
  • the chamfer radii of all channels 22 are: 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.1 , 0.1, 0.1, 0.1mm.
  • the distance between adjacent channels 22 is 0.34 mm.
  • the first side surface 213 of the microchannel flat tube 2 is the windward side
  • the second side surface 214 of the microchannel flat tube 2 is the air outlet surface, that is, the channel of the microchannel flat tube 2
  • the cross-section decreases exponentially or polynomially along the direction of wind blowing, which is beneficial to improve the heat exchange performance of the heat exchanger 100.
  • the fin 3 includes a first part 31 close to the first passage 221 and a second part 32 close to the third passage 223.
  • the shape of the first part 31 is the same as that of the second part 32. different.
  • the fin 3 is a louver fin, the first part 31 is windowed, and the second part 32 is not windowed.
  • the opening of the window of the first part 31 can increase the turbulence on the windward side, thereby enhancing the heat exchange near the first channel 221, and the unopened window of the second part 32, that is, the turbulence near the leeward side is reduced,
  • the wind resistance is reduced and the heat exchange of the third channel 223 close to the leeward side is reduced, thereby improving the overall heat exchange effect and reducing the wind resistance, which is beneficial to the improvement of the heat exchange efficiency of the heat exchanger.
  • the opening density of the first portion 31 is greater than the opening density of the second portion 32 to achieve the above-mentioned function of improving the heat exchange efficiency of the heat exchanger.
  • the wind generated by the external fan passes through the first side surface 213 close to the first channel 221, passes through the fins 3, and then flows out from the position close to the third channel 223. Therefore, when the refrigerant flows in the microchannel flat tube 2, the first channel 221 close to the windward side has a larger flow cross-sectional area and heat exchange is more sufficient.
  • the third channel 223 close to the leeward side has a smaller flow area and heat exchange becomes Because the wind has been cooled after the heat exchange on the windward side, the heat exchange capacity on the leeward side becomes smaller. At this time, the cross-sectional area of the circulation channel on the leeward side is correspondingly reduced, so as to obtain better performance in the same flat tube volume. With high heat exchange efficiency, the heat exchange efficiency of the microchannel heat exchanger has been improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fuel Cell (AREA)

Abstract

本申请公开一种微通道扁管及具有其的微通道换热器,所述微通道扁管其包括:扁管本体以及一排通道,所述扁管本体包括第一平面、第二平面、第一侧面以及第二侧面,所述第一平面和第二平面在厚度方向设置于扁管本体的相对两侧,所述第一侧面和第二侧面在宽度方向设置于扁管本体的相对两侧,所述第一侧面连接第一平面和第二平面,所述第二侧面连接第一平面和第二平面;所述一排通道沿宽度方向排布于扁管本体内,所述一排通道沿长度方向贯穿扁管本体,所述一排通道沿长度方向贯穿扁管本体,所述一排通道至少包括沿宽度方向排列的第一通道、第二通道以及第三通道,其中所述第一通道、第二通道以及第三通道沿宽度方向上的横截面面积呈指数型变化。

Description

微通道扁管及微通道换热器 技术领域
本申请涉及换热领域,具体而言,涉及一种微通道扁管及微通道换热器。
背景技术
微通道换热器是汽车、家用或商用空调系统上普遍采用的换热装置,其可作为空调系统的蒸发器使用,也可作为冷凝器使用。微通道换热器是由扁管、翅片、集流管等组成的换热器,当外部风机产生的风作用于微通道翅片及扁管上,微通道换热器的扁管流道内制冷剂与空气换热。微通道换热器的每根扁管有多条并排小孔组成的流道,制冷剂在扁管的并排流道内实现蒸发或冷凝;当作为冷凝器使用时,制冷剂在扁管的并排流道内被冷却;作为蒸发器使用时,制冷剂在扁管的并排流道内被蒸发。
相关技术中使用的扁管,多个并排的流道是截面积相同的流道,风流过换热器时,由于风与制冷剂间的传热存在,并排的每个流道沿风流动方向制冷剂温度不同,因此,沿制冷剂流动方向,制冷剂在并排的流道内蒸发或冷凝位置不同,导致制冷剂在流道内流量分配与换热温差不匹配,降低了换热器换热效率。
发明内容
根据本申请的一个方面,提供一种微通道扁管,其包括:
扁管本体,所述扁管本体包括第一平面、第二平面、第一侧面以及第二侧面,所述第一平面和第二平面在厚度方向设置于扁管本体的相对两侧,所述第一侧面和第二侧面在宽度方向设置于扁管本体的相对两侧,所述第一侧 面连接第一平面和第二平面,所述第二侧面连接第一平面和第二平面;以及
一排通道,所述一排通道沿长度方向贯穿扁管本体,所述一排通道至少包括沿宽度方向排列的第一通道、第二通道以及第三通道,其中所述第一通道、第二通道以及第三通道沿宽度方向上的横截面面积呈指数型变化,或者呈幂级数变化,或者呈多项式关系变化。
根据本申请的一个方面,提供包括一种微通道换热器,所述微通道换热器包括第一集流管、第二集流管、多个微通道扁管以及翅片,所述多个微通道扁管并排连接于第一集流管和第二集流管之间,所述翅片夹设于相邻两根微通道扁管之间,所述一排通道连通第一集流管和第二集流管的内腔。
本申请微通道扁管的第一通道、第二通道以及第三通道沿宽度方向上的横截面面积呈指数型变化,或者呈幂级数变化,或者呈多项式关系变化,这样设计可以获得不同的流通截面积的通道,从而,可以根据风向对应设置通道,有利于提高微通道扁管和微通道换热器工作时的换热效率。
附图说明
图1是本申请一实施例微通道换热器的立体示意图;
图2如图1所示微通道扁管的横截面剖视示意图;
图3为图2所示微通道扁管通道的通道宽度、倒角半径与通道序号的关系对照表。
图4为图2所示微通道扁管通道的通道宽度与通道序号的关系示意图。
图5为图2所示微通道扁管的部分放大示意图。
图6为本申请另一实施例微通道扁管和翅片的立体示意图。
图7如图6所示翅片的立体示意图。
图8为本申请另一实施例微通道扁管和翅片的立体示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的 描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之 下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。下面结合附图,对本申请示例性实施例进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互补充或相互组合。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
下面结合附图,对本申请示例性实施例进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
如图1至图2所示为符合本申请的一种微通道换热器100,其包括第一集流管11、第二集流管12、多个微通道扁管2以及多个翅片3。多个微通道扁管2相互平行间隔设置,且并排连接于第一集流管11和第二集流管12之间,每一翅片3夹设于相邻两根微通道扁管2之间。
微通道扁管2包括扁管本体21和贯穿扁管本体21的一排通道22。扁管本体21的长度大于其宽度,宽度又大于其厚度。所述扁管本体21包括第一平面211、第二平面212、第一侧面213以及第二侧面214,第一平面211和第二平面212在厚度方向H设置于扁管本体21的相对两侧,第一侧面213和第二侧面214在宽度方向W设置于扁管本体21的相对两侧。第一侧面213连接第一平面211和第二平面212,第二侧面214连接第一平面211和第二平面212。在本实施例中,第一侧面213和第二侧面214呈弧形。在可选的其它实施中,第一侧面213和第二侧面214也可以是平面或者其他形状,只要起到连接第一平面211和第二平面214即可,本申请不以此形状为限。
一排通道22连通第一集流管11的内腔和第二集流管11的内腔,一排通道22沿宽度方向W排布于扁管本体21内,所述一排通道22沿长度方向L贯穿扁管本体21。一排通道22沿长度方向贯穿扁管本体21,所述一排通道22至少包括沿宽度方向排列的第一通道221、第二通道222以及第三通道223,其中所述第一通道221、第二通道222以及第三通道223道沿宽度方向 上的横截面面积呈指数型变化,或者幂级数变化,或者呈多项式关系变化。所述第一通道221靠近第一侧面213,所述第三通道靠223近第二侧面214,所述第一侧面213为迎风面,所述第二侧面214为背风面,从而当微通道扁管2内流动制冷剂时,靠近迎风面的第一通道221由于流通截面积更大,换热更加充分,靠近背风面的第三通道223由于流通面积较小,换热变小,因为经过迎风侧的换热后,风已经被冷却,在背风侧换热能力变小,此时,相应降低背风侧的流通通道的截面积,从而在相同的扁管体积内,获得更高的换热效率。
每一通道22包括沿宽度方向W的孔宽度22W和沿厚度方向H上的孔高度22H。一排通道22包括沿宽度方向排列的第一通道221、第二通道222以及第三通道223,其中第一通道221、第二通道222以及第三通道223的孔高度22H相等,第一通道221、第二通道222以及第三通道223的孔宽度22W呈指数变化减小,或者幂级数变化,或者呈多项式关系变化。保持孔高度22H不变,孔宽度22W按照规律逐渐变小,在保证微通道扁管2的较高换热效率同时,微通道扁管2的孔高度较低,微通道扁管2更薄,从而更加换热效率得到进一步提升。可选地,所述指数型变化为自然指数型变化。
可选地,所述第一通道221、第二通道222以及第三通道223的横截面面积呈y=S1x 6+S2x 5+S3x 4+S4x 3+S5x 2+S6x+S7关系,或者,呈y=S8x S9关系,其中x代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6、S7、S8、S9代表为可选数值。例如,所述第一通道221、第二通道222以及第三通道223的横截面面积呈y=0.0000006x 6–0.00005x 5+0.0015x 4-0.0245x 3+0.2162x 2-1.0246x+2.7442关系。在第一通道221、第二通道222以及第三通道223孔高度22H不变相同的情况下,y也可以代表第一通道221、第二通道222以及第三通道223的孔宽度22W。
可选地,所述第一通道221、第二通道222以及第三通道223的横截面面积呈y=me nx关系,其中x代表通道的序号,y代表相应通道的横截面面积。优选地,所述第一通道221、第二通道222以及第三通道223的横截面面积 呈y=2.0995x -0.632关系。在第一通道221、第二通道222以及第三通道223孔高度22H不变相同的情况下,y也可以代表第一通道221、第二通道222以及第三通道223的孔宽度22W。
可选地,所述扁管本体21总宽范围为20mm至30mm,所述一排通道22包括33个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=S1x 6+S2x 5+S3x 4+S4x 3+S5x 2+S6x+S7关系,或者,呈y=S8x S9关系,第二十通道至第三十三通道的横截面面积相等,其中X代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6、S7、S8、S9代表为可选数值。在较低孔宽的部分孔采用相同的横截面面积,可以降低由于加工精度引起的制造难度,又不太影响换热效率。
可选地,所述第一通道、第二通道以及第三通道呈y=S1x 5+S2x 4+S3x 3+S4x 2+S5x+S6关系,其中x代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6代表为可选数值。在第一通道221、第二通道222以及第三通道223孔高度22H不变相同的情况下,y也可以代表第一通道221、第二通道222以及第三通道223的孔宽度22W。
可选地,所述扁管本体总宽为宽范围为15mm至25mm,所述一排通道包括23个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=0.00005x 5+0.0007x 4-0.0159x 3+0.1698x 2-0.9141x+2.6628关系,其中x代表通道的序号,y代表相应通道的横截面面积,第二十通道至第二十三通道的横截面面积相等。在较低孔宽的部分孔采用相同的横截面面积,可以降低由于加工精度制造难度,又不太影响换热效率。在第一通道221、第二通道222以及第三通道223孔高度22H不变相同的情况下,y也可以代表第一通道221、第二通道222以及第三通道223的孔宽度22W。
可选地,所述扁管本体总宽为25mm,所述一排通道包括33个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=0.00005x 5+0.0007x 4-0.0159x 3+0.1698x 2-0.9141x+2.6628关系,其中x代表通道的序号,y代表相应通道的横截面面积,第二十通道至第三十三通道的横截面面 积相等。在高度相同的时候,y也可以代表宽度。
可选地,所述扁管本体21总宽范围为15mm至25mm,所述一排通道22包括23个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=S1x 6+S2x 5+S3x 4+S4x 3+S5x 2+S6x+S7关系,或者,呈y=S8x S9关系,第二十通道至第二十三通道的横截面面积相等,其中X代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6、S7、S8、S9代表为可选数值。在高度相同的时候,y也可以代表宽度。
第一通道221、第二通道222以及第三通道223的横截面积均呈圆角矩形状,所述第一通道221包括四个第一倒角231,所述第二通道222包括四个第二倒角232,所述第三通道223包括四个第三倒角233。第一倒角231的半径、第二倒角232的半径及第三倒角233的半径相等或者呈固定比率减小。在本实施例中,第一倒角231的半径、第二倒角232的半径及第三倒角233的半径相等。
本申请的可选实施例,微通道扁管2的宽度为20mm至30mm,优选地,微通道扁管2的宽度为25.4mm、微通道扁管2的厚度为1.3mm。第一通道221、第二通道222、第三通道233、第四通道224、第五通道225之孔高度22H相等,均为0.74mm。所有通道22距离第一平面211的距离为0.28mm,距离第二平面212的距离为0.28mm。所有通道22沿从左向右方向的孔宽度22H的尺寸分别为:1.45、1.36、1.27、1.19、1.12、1.05、0.98、0.92、0.86、0.81、0.76、0.71、0.66、0.62、0.58、0.55、0.51、0.48、0.45、0.42、0.4mm。这样一排通道22的孔宽度22W满足y=1.369e -0.065x的关系,其中x代表一排通道22从左向右通道的次序数,y代表相应第x个通道的孔宽度22W。
当然,由于本申请举例的孔宽度22W具体尺寸为一种可选实施例,也可以选择其他具体尺寸,只要满足一排通道22的孔宽度22W尺寸依次呈指数型曲线变化即可。另外,这种指数型曲线变化也可以用其他多项式表示:例如y=0.0017n 2-0.0879n+1.5227,其中n代表一排通道22从左向右通道的次序数,y代表相应第n个通道的孔宽度22W。只要符合这种类似多项式关系变 化即可,本申请不以此为限。
另外,由于靠近第二侧面214的通道孔宽度22W相差低于0.03mm,为了避免加工误差,导致的加工精度不好控制,也可以设置靠近第二侧面的几个孔宽度相等。例如第四通道224和第五通道225的孔宽度22W可以设置相等,同时截面积相等。
本申请的可选实施例,所有通道22的倒角半径为:0.3、0.3、0.3、0.3、0.3、0.3、0.2、0.2、0.2、0.2、0.2、0.2、0.2、0.2、0.2、0.2、0.1、0.1、0.1、0.1mm。相邻通道22之间的间距为:0.34mm。当然,由于加工误差导致的上述尺寸细微变化也在本申请的保护范围之内。
本申请的一种可选实施例,微通道扁管2的第一侧面213为迎风面,微通道扁管2的第二侧面214为出风面,也就是说,微通道扁管2的通道横截面沿风吹动方向呈指数性减小或者多项式关系减小,有利于提高换热器100的换热性能。
如图6和图7所示,所述翅片3包括靠近第一通道221的第一部分31和靠近第三通道223的第二部分32,所述第一部分31的形状与第二部分32的形状不同。所述翅片3为百叶窗翅片,所述第一部分31的开窗,所述第二部分32的未开窗。所述第一部分31的开窗可以增加迎风侧的扰流,从而增强靠近即第一通道221部分的换热,所述第二部分32的未开窗,即靠近背风侧的扰流减小,降低了风阻和减小靠近背风侧的第三通道223的热交换,从而整体上提升了换热效果和降低了风阻,有利于换热器换热效率的提升。当然,如图8所示,在其他实施例,所述第一部分31的开窗密度大于所述第二部分32的开窗密度也可以实现上述换热器换热效率提升的功能。
当换热器工作时,外部风机产生的风从靠近第一通道221的第一侧面213经过,并经过翅片3扰流,然后再从靠近第三通道223部位流出。从而当微通道扁管2内流动制冷剂时,靠近迎风面的第一通道221由于流通截面积更大,换热更加充分,靠近背风面的第三通道223由于流通面积较小,换热变小,因为经过迎风侧的换热后,风已经被冷却,在背风侧换热能力变小,此 时,相应降低背风侧的流通通道的截面积,从而在相同的扁管体积内,获得更高的换热效率,从而微通道换热器的换热效率得到了提升。
以上所述仅是本申请的较佳实施例而已,并非对本申请做任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (20)

  1. 一种微通道扁管,其包括:
    扁管本体,所述扁管本体包括第一平面、第二平面、第一侧面以及第二侧面,所述第一平面和第二平面在厚度方向设置于扁管本体的相对两侧,所述第一侧面和第二侧面在宽度方向设置于扁管本体的相对两侧,所述第一侧面连接第一平面和第二平面,所述第二侧面连接第一平面和第二平面;以及
    一排通道,所述一排通道沿长度方向贯穿扁管本体,所述一排通道至少包括沿宽度方向排列的第一通道、第二通道以及第三通道,其中所述第一通道、第二通道以及第三通道沿宽度方向上的横截面面积呈指数型变化,或者幂级数变化,或者呈多项式关系变化。
  2. 如权利要求1所述的微通道扁管,其特征在于,每一所述通道包括沿宽度方向的孔宽度和沿厚度方向上的孔高度,所述第一通道、第二通道以及第三通道的孔高度相等,所述第一通道、第二通道以及第三通道的孔宽度呈指数型变化,或者幂级数变化,或者呈多项式关系变化。
  3. 如权利要求1所述的微通道扁管,其特征在于,所述指数型变化为自然指数型变化,所述述第一通道、第二通道以及第三通道沿宽度方向上的横截面面积呈y=me nx关系,其中y代表相应通道的横截面面积,m、n代表为可选数值。
  4. 如权利要求1或者2所述的微通道扁管,其特征在于,所述第一通道、第二通道以及第三通道的横截面面积呈y=S1x 6+S2x 5+S3x 4+S4x 3+S5x 2+S6x+S7关系,或者,呈y=S8x S9关系,其中x代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6、S7、S8、S9代表为可选数值。
  5. 如权利要求4权利要求所述的微通道扁管,其特征在于,所述第一通道、第二通道以及第三通道的横截面面积呈y=0.0000006x 6–0.00005x 5+0.0015x 4-0.0245x 3+0.2162x 2-1.0246x+2.7442关系,或者,呈y= 2.0995x -0.632关系,其中x代表通道的序号,y代表相应通道的横截面面积。
  6. 如权利要求1或者2所述的微通道扁管,其特征在于,所述扁管本体总宽范围为15mm至25mm,所述一排通道包括23个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=S1x 6+S2x 5+S3x 4+S4x 3+S5x 2+S6x+S7关系,或者,呈y=S8x S9关系,第二十通道至第二十三通道的面积或者宽度相等,其中x代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6、S7、S8、S9代表为可选数值。
  7. 如权利要求1或者2所述的微通道扁管,其特征在于,所述扁管本体总宽范围为20mm至30mm,所述一排通道包括33个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=S1x 6+S2x 5+S3x 4+S4x 3+S5x 2+S6x+S7关系,或者,呈y=S8x S9关系,第二十通道至第三十三通道的横截面面积相等,其中x代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6、S7、S8、S9代表为可选数值。
  8. 如权利要求1所述的微通道扁管,其特征在于,所述第一通道、第二通道以及第三通道的横截面面积呈y=S1x 5+S2x 4+S3x 3+S4x 2+S5x+S6关系,其中x代表通道的序号,y代表相应通道的横截面面积,S1、S2、S3、S4、S5、S6代表为可选数值。
  9. 如权利要求8所述的微通道扁管,其特征在于,所述扁管本体总宽范围为15mm至25mm,所述一排通道包括23个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面或者宽度面积呈y=0.00005x 5+0.0007x 4-0.0159x 3+0.1698x 2-0.9141x+2.6628关系,其中x代表通道的序号,y代表相应通道的横截面面积,第二十通道至第二十三通道的横截面面积相等。
  10. 如权利要求1所述的微通道扁管,其特征在于,所述扁管本体总宽为25mm,所述一排通道包括33个通道,其中沿宽度方向排列的第一通道至第十九通道的横截面面积呈y=0.00005x 5+0.0007x 4-0.0159x 3+0.1698x 2-0.9141x+2.6628关系,其中x代表通道的序号,y代表相应通道的横截面面积,第二十通道至第三十三通道的横截面面积相等。
  11. 如权利要求1权利要求所述的微通道扁管,其特征在于,所述第一通道、第二通道以及第三通道的横截面积均呈圆角矩形状,所述第一通道包括四个第一倒角,所述第二通道包括四个第二倒角,所述第三通道包括四个第三倒角。
  12. 如权利要求11所述的微通道扁管,其特征在于,所述第一倒角的半径、第二倒角的半径及第三倒角的半径相等或者以固定比率减小。
  13. 如权利要求1所述的微通道扁管,其特征在于,所述一排通道还包括沿宽度排列的第四通道和第五通道,所述第一通道靠近第一侧面,所述第五通道靠近第二侧面,所述第四通道位于第三通道和第五通道之间,所述第四通道和第五通道沿宽度方向的横截面积相等。
  14. 如权利要求1所述的微通道扁管,其特征在于,所述第一通道和第二通道之间的间距与第二通道和第三通道之间的间距相等。
  15. 如权利要求1所述的微通道扁管,其特征在于,每一所述通道包括沿宽度方向的孔宽度和沿厚度方向上的孔高度,所述第一通道、第二通道以及第三通道的孔高度相等,所述第一通道、第二通道以及第三通道的孔宽度呈指数型变化,或者幂级数变化,或者多项式关系变化。
  16. 一种微通道换热器,其包括包括微通道扁管、第一集流管、第二集流管以及翅片;
    所述微通道扁管包括扁管本体和一排通道;
    所述扁管本体包括第一平面、第二平面、第一侧面以及第二侧面,所述第一平面和第二平面在厚度方向设置于扁管本体的相对两侧,所述第一侧面和第二侧面在宽度方向设置于扁管本体的相对两侧,所述第一侧面连接第一平面和第二平面,所述第二侧面连接第一平面和第二平面;
    所述一排通道沿长度方向贯穿扁管本体,所述一排通道至少包括沿宽度方向排列的第一通道、第二通道以及第三通道,其中所述第一通道、第二通道以及第三通道沿宽度方向上的横截面面积呈指数型变化,或者幂级数变化,或者呈多项式关系变化;
    所述多个微通道扁管并排连接于第一集流管和第二集流管之间,所述翅片夹设于相邻两根微通道扁管之间,所述一排通道连通第一集流管和第二集流管的内腔。
  17. 如权利要求16所述的微通道扁管,其特征在于,所述翅片包括靠近第一通道的第一部分和靠近第三通道的第二部分,所述第一部分的形状与第二部分的形状不同。
  18. 如权利要求17所述的微通道换热器,其特征在于,所述翅片为百叶窗翅片,所述第一部分的开窗,所述第二部分未开窗。
  19. 如权利要求16所述的微通道换热器,其特征在于,所述翅片包括靠近第一通道的第一部分和靠近第三通道的第二部分,所述第一部分的开窗密度与第二部分的开窗密度不同,所述第一部分的开窗密度大于所述第二部分的开窗密度。
  20. 如权利要求16所述的微通道换热器,所述第一通道靠近第一侧面,所述第三通道靠近第二侧面,当微通道换热器工作时,外部风机产生的凤从靠近第一通道的第一侧面经过,并经过翅片扰流,然后再从靠近第三通道部位流出。
PCT/CN2020/088554 2019-05-05 2020-05-02 微通道扁管及微通道换热器 WO2020224564A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021539127A JP7202469B2 (ja) 2019-05-05 2020-05-02 マイクロチャンネル扁平管及びマイクロチャンネル熱交換器
EP20802387.9A EP3786565B1 (en) 2019-05-05 2020-05-02 Microchannel flat tube and microchannel heat exchanger
US17/033,762 US11619453B2 (en) 2019-05-05 2020-09-26 Microchannel flat tube and microchannel heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910366960.2A CN111895840B (zh) 2019-05-05 2019-05-05 微通道扁管及微通道换热器
CN201910366960.2 2019-05-05
CN201911390699.6 2019-12-30
CN201911390699.6A CN111692894B (zh) 2019-12-30 2019-12-30 微通道扁管及微通道换热器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/033,762 Continuation US11619453B2 (en) 2019-05-05 2020-09-26 Microchannel flat tube and microchannel heat exchanger

Publications (1)

Publication Number Publication Date
WO2020224564A1 true WO2020224564A1 (zh) 2020-11-12

Family

ID=73051405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088554 WO2020224564A1 (zh) 2019-05-05 2020-05-02 微通道扁管及微通道换热器

Country Status (4)

Country Link
US (1) US11619453B2 (zh)
EP (1) EP3786565B1 (zh)
JP (1) JP7202469B2 (zh)
WO (1) WO2020224564A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7202469B2 (ja) * 2019-05-05 2023-01-11 杭州三花研究院有限公司 マイクロチャンネル扁平管及びマイクロチャンネル熱交換器
US20220299272A1 (en) * 2021-03-17 2022-09-22 Carrier Corporation Microchannel heat exchanger
CN113739610A (zh) * 2021-09-24 2021-12-03 珠海格力电器股份有限公司 蓄热装置及空调机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570700A (en) * 1983-01-10 1986-02-18 Nippondenso Co., Ltd. Flat, multi-luminal tube for cross-flow-type indirect heat exchanger, having greater outer wall thickness towards side externally subject to corrosive inlet gas such as wet, salty air
CN1363818A (zh) * 2000-12-01 2002-08-14 Lg电子株式会社 微型多通道热交换器的管板结构
JP2005127597A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 熱交換器
WO2009088796A2 (en) * 2007-12-30 2009-07-16 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
CN101526322A (zh) * 2009-04-13 2009-09-09 三花丹佛斯(杭州)微通道换热器有限公司 一种扁管及热交换器
CN202630766U (zh) * 2012-05-11 2012-12-26 浙江盾安人工环境股份有限公司 一种应用于微通道换热器的新型扁管
CN204665753U (zh) * 2015-03-27 2015-09-23 重庆超力高科技股份有限公司 一种用于微通道换热器的变径扁管

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068761B2 (ja) * 1994-12-21 2000-07-24 シャープ株式会社 熱交換器
JP3580942B2 (ja) * 1996-04-05 2004-10-27 昭和電工株式会社 熱交換器用扁平チューブおよび同チューブを備えた熱交換器
US5941303A (en) * 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
JPWO2002042706A1 (ja) 2000-11-24 2004-04-02 昭和電工株式会社 熱交換器用チューブ及び熱交換器
KR100518856B1 (ko) 2003-09-04 2005-09-30 엘지전자 주식회사 플랫 튜브 열 교환기
US8234881B2 (en) 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
WO2011034633A1 (en) * 2009-09-16 2011-03-24 Carrier Corporation Free-draining finned surface architecture for a heat exchanger
US20130153174A1 (en) * 2010-08-24 2013-06-20 Carrier Corporation Microchannel heat exchanger fin
JP5562769B2 (ja) 2010-09-01 2014-07-30 三菱重工業株式会社 熱交換器およびこれを備えた車両用空調装置
JP5257485B2 (ja) * 2011-05-13 2013-08-07 ダイキン工業株式会社 熱交換器
CN206847460U (zh) 2017-04-13 2018-01-05 昆山永盛耀机械制造有限公司 一种换热用扁管
CN207963600U (zh) 2017-11-02 2018-10-12 珠海格力电器股份有限公司 换热扁管和微通道换热器
KR20190072413A (ko) 2017-12-15 2019-06-25 한온시스템 주식회사 열교환기
JP7202469B2 (ja) * 2019-05-05 2023-01-11 杭州三花研究院有限公司 マイクロチャンネル扁平管及びマイクロチャンネル熱交換器
CN113720174A (zh) * 2019-05-05 2021-11-30 浙江三花智能控制股份有限公司 微通道换热器
US11592244B2 (en) * 2020-02-20 2023-02-28 Carrier Corporation Multiport fluid distributor and microchannel heat exchanger having the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570700A (en) * 1983-01-10 1986-02-18 Nippondenso Co., Ltd. Flat, multi-luminal tube for cross-flow-type indirect heat exchanger, having greater outer wall thickness towards side externally subject to corrosive inlet gas such as wet, salty air
CN1363818A (zh) * 2000-12-01 2002-08-14 Lg电子株式会社 微型多通道热交换器的管板结构
JP2005127597A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 熱交換器
WO2009088796A2 (en) * 2007-12-30 2009-07-16 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
CN101526322A (zh) * 2009-04-13 2009-09-09 三花丹佛斯(杭州)微通道换热器有限公司 一种扁管及热交换器
CN202630766U (zh) * 2012-05-11 2012-12-26 浙江盾安人工环境股份有限公司 一种应用于微通道换热器的新型扁管
CN204665753U (zh) * 2015-03-27 2015-09-23 重庆超力高科技股份有限公司 一种用于微通道换热器的变径扁管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786565A4 *

Also Published As

Publication number Publication date
US11619453B2 (en) 2023-04-04
EP3786565B1 (en) 2022-08-31
JP7202469B2 (ja) 2023-01-11
EP3786565A4 (en) 2021-08-18
JP2022516638A (ja) 2022-03-01
US20210033350A1 (en) 2021-02-04
EP3786565A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2020224564A1 (zh) 微通道扁管及微通道换热器
JP7026830B2 (ja) アルミニウム製押出扁平多穴管及び熱交換器
US9328973B2 (en) Heat exchanger and air conditioner
WO2020224563A1 (zh) 微通道扁管及微通道换热器
WO2013161802A1 (ja) 熱交換器、及び空気調和機
WO2020250624A1 (ja) 熱交換器
JP3068761B2 (ja) 熱交換器
CN111895840B (zh) 微通道扁管及微通道换热器
US11988452B2 (en) Heat exchanger
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
WO2012098913A1 (ja) 熱交換器及び空気調和機
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
CN111692894B (zh) 微通道扁管及微通道换热器
JP2020190383A (ja) 熱交換器
JPH11230638A (ja) 熱交換器
JP7006376B2 (ja) 熱交換器
WO2009103222A1 (zh) 一种微间距平行流热交换器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20802387.9

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020802387

Country of ref document: EP

Effective date: 20201124

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE