WO2020224534A1 - 一种油浸式电力变压器非电量保护故障录波装置及方法 - Google Patents
一种油浸式电力变压器非电量保护故障录波装置及方法 Download PDFInfo
- Publication number
- WO2020224534A1 WO2020224534A1 PCT/CN2020/088304 CN2020088304W WO2020224534A1 WO 2020224534 A1 WO2020224534 A1 WO 2020224534A1 CN 2020088304 W CN2020088304 W CN 2020088304W WO 2020224534 A1 WO2020224534 A1 WO 2020224534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- signal
- oil
- transient
- digital
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/40—Structural association with built-in electric component, e.g. fuse
- H01F27/402—Association of measuring or protective means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00001—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/40—Structural association with built-in electric component, e.g. fuse
- H01F27/402—Association of measuring or protective means
- H01F2027/404—Protective devices specially adapted for fluid filled transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/124—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
Definitions
- the invention belongs to the field of power systems, and relates to a non-electrical protection fault recording device and method for an oil-immersed power transformer, which is used to measure and record the transient oil flow and oil pressure of the oil-immersed power transformer in a fault or disturbance state. Change characteristics and the action of non-electrical protection devices such as Buchholz relay and pressure release valve.
- the transformer occupies a pivotal position in the power system. Its stable operation is an important prerequisite to ensure the reliable transmission, flexible distribution, and safe use of the entire power system.
- a serious fault occurs inside the transformer, the vaporization and decomposition of the insulating oil will produce a large amount of gas.
- the main oil tank of an oil-immersed power transformer is similar to a closed container, once the internal fault causes the oil pressure to exceed the pressure limit of the transformer body, the transformer oil tank may deform, rupture, even explode, or catch fire, which will seriously threaten the operating personnel and others in the substation.
- Safety of electrical equipment The internal fault process of the transformer is accompanied by three main characteristics: phase current increase, differential current increase, and fault gas generation.
- relay protection workers have designed over-current protection, differential protection and gas protection.
- gas protection has been installed on the connecting pipe between the main oil tank and the oil pillow of the transformer to sense the dynamic surge of insulating oil due to the generation of faulty gas, and to identify various minor faults inside the transformer tank through the difference in oil flow velocity characteristics .
- the oil pressure inside the transformer tank will also rise sharply. Therefore, the current large-scale power transformers are equipped with pressure relief valves while installing Buchholz relays.
- the pressure release valve senses the oil pressure at the installation position through the spring structure. Once the oil pressure exceeds its opening pressure, the pressure release valve will open in time to release the oil pressure inside the tank by discharging insulating oil. Therefore, the transformer Buchholz relay and the pressure release valve are often collectively referred to as the non-electricity protection of the transformer.
- the transformer non-electricity protection has successfully protected tens of thousands of transformer tanks from damage due to the sudden rise of internal fault oil pressure, it is due to theoretical modeling difficulties, theoretical defects, threshold values based on experience, and mechanical With problems such as insufficient structural performance, the widely used non-electrical protection is increasingly difficult to meet the higher requirements of current large-capacity, high-voltage power transformers. System power outages and transformer explosion accidents caused by misoperation accidents occur from time to time, which seriously affect the safe and reliable operation of the power system.
- the pressure release valve injection event occurs from time to time under non-internal fault conditions. Because the pressure release valve fault recording device or similar dynamic recording equipment for transient oil pressure characteristics is not installed at the operation site, it is not an internal fault. The reason for fuel injection under conditions is still unknown. In addition, even if the pressure release valve injects fuel correctly under internal fault conditions, due to the lack of a pressure release valve fault recorder or similar dynamic recording equipment for transient oil pressure characteristics, on-site operators cannot check the oil in the fault transient process. Analysis and research on pressure characteristics. Therefore, it is urgent to equip the pressure release valve with corresponding digital fault recorder equipment to realize real-time collection and record analysis of oil pressure characteristics, find out the cause of the pressure release valve misoperation, and propose corresponding anti-accident measures.
- Smart grid is the direction of my country's power grid development.
- the development, transmission, conversion, transmission, and storage of energy resources are connected with various electrical equipment and other energy-consuming facilities of energy end users through a digital information network system, through intelligent control Realize precise energy supply, corresponding energy supply, mutual assistance energy supply and complementary energy supply, and raise energy utilization efficiency and energy supply security to a whole new level.
- An important prerequisite for the realization of a smart grid is related data collection and information integration and sharing in power production.
- the digital substation is in line with the standards required by the smart grid. In the digital substation, the digital wave recording device plays an important role in the information collection link.
- Disturbance recorder is an automatic recording device used to record electrical and non-electrical quantities and switch quantities in the power system. Generate fault characteristic waveforms for faults and abnormal events that occur in the system by recording and monitoring the analog and switch values in the system, store and send them to the remote master station, and analyze and calculate the waveforms to determine the type of fault and the occurrence of the fault Make accurate judgments on the cause and severity of the fault.
- power system behavior will become more and more complex, rich and detailed on-site measured data, especially recorded data under fault or abnormal operation, undoubtedly Will have increasingly important value. They are not only the basis for analyzing the causes of failures and testing the behavior of relay protection, but also provide valuable information for power workers to study and understand the true behavior of complex systems and discover its laws.
- microprocessor-based fault recorders Since the mid-1980s, with the rapid development of computer technology, communication technology, and digital processing technology, microprocessor-based fault recorders have completely replaced the early photoelectric recorders and become the carrier of power grid fault information records. It plays an important role in accident investigation and analysis. However, since there has not yet been a comprehensive wave recording device for transient oil flow, oil pressure change characteristics and non-electrical protection action signals such as Buchholz relays and pressure release valves under power transformer failure or disturbance conditions, the industry has targeted non-electrical protection devices for misoperation and rejection. Research on the action mechanism and its anti-accident measures is difficult.
- non-electrical protection fault recorders or similar oil flow and oil pressure characteristic recording devices are not installed on site, the essential causes of non-electrical protection refusal to operate and misoperation cannot be investigated. On-site operators can only determine by experience analysis. Therefore, there is an urgent need to equip non-electrical protection devices such as Buchholz relays and pressure release valves with corresponding digital fault recording equipment to achieve real-time collection, recording and analysis of oil flow and oil pressure characteristics under faults or disturbances. Identify the reasons for non-electricity protection refusal and misoperation, and propose corresponding anti-accident measures to provide basic data and analysis basis.
- the purpose of the present invention is to provide a non-electrical protection fault recording device and method for oil-immersed power transformers, which are used to measure and record the transient oil flow and oil pressure change characteristics of oil-immersed power transformers under fault or disturbance conditions. And the action of non-electrical protection devices such as Buchholz relay and pressure release valve.
- An oil-immersed power transformer non-electricity protection fault recorder including: transient oil flow characteristic quantity measurement module, transient oil pressure characteristic quantity measurement module, non-electricity protection switch input module, signal conditioning and acquisition module, and digital Core processing module; among them, the transient oil flow characteristic quantity measurement module and the transient oil pressure characteristic quantity measurement module are both connected to the signal conditioning and acquisition module, and the non-electricity protection switch input module and the signal conditioning and acquisition module are all connected to the digital core processing Module connection;
- the transient oil flow characteristic quantity measurement module is used for real-time measurement of the transient oil flow change characteristics inside the oil conservator connecting pipe of the transformer, and output the corresponding analog voltage/current signal;
- the transient oil pressure characteristic quantity measurement module is used to measure the oil pressure change characteristic at the installation location of the pressure release valve and output the corresponding analog voltage/current signal;
- the signal conditioning and acquisition module is used to receive the analog voltage/current signal output by the transient oil flow characteristic measurement module and the transient oil pressure characteristic measurement module, convert it into a standard digital signal that can be recognized by the digital core processing module, and output it Standard digital signal;
- the non-electricity protection switch input module is connected to the signal terminals of the Buchholz relay and pressure release valve, receives the switch value signals of the Buchholz relay and pressure release valve action, and outputs digital signals;
- the digital core processing module is used to receive the standard digital signal output by the signal conditioning and acquisition module and the digital signal output by the pressure release valve switch input module, and perform digital signal processing to realize the transient oil pressure signal and pressure release valve of the tested transformer Calculation and fault recording of switch signal.
- a further improvement of the present invention is that the transient oil flow characteristic quantity measurement module is composed of an externally bundled high-frequency ultrasonic flowmeter, a flowmeter transmitter and a communication cable, and the externally bundled high-frequency ultrasonic flowmeter is installed in the transformer oil pillow connection On the pipe, the externally bundled high-frequency ultrasonic flowmeter is connected with the flowmeter transmitter, and the flowmeter transmitter is connected with the communication cable.
- the further improvement of the present invention is that the measurement frequency of the high-frequency ultrasonic flowmeter reaches more than 100 Hz, the measurement error is less than 1%, the working temperature reaches -30 to 80°C, and the flow rate range reaches -20 to 20 m/s.
- a further improvement of the present invention is that the transient oil pressure characteristic quantity measurement module is composed of a plurality of high frequency dynamic oil pressure sensors and their communication cables; the high frequency dynamic oil pressure sensor is installed on the adjacent shell of the pressure release valve, and the sensor end The probe is directly in contact with the insulating oil of the transformer to measure the characteristics of the oil pressure change where the pressure release valve is installed, and use the communication cable to output an analog voltage signal.
- the further improvement of the present invention is that the measurement frequency of the high-frequency dynamic oil pressure sensor is above 20kHz, the measurement error is less than 1%, the working temperature is -45 ⁇ 120°C, and the range is -0.1 ⁇ 6Mpa;
- the signal conditioning and acquisition module consists of terminal blocks, signal conditioning circuit, low-pass filter, signal sampling circuit and analog-to-digital A/D conversion circuit, terminal blocks and transient oil flow characteristic quantity measurement module and transient oil pressure characteristic quantity measurement
- the module is connected, the terminal is connected to the signal conditioning circuit, the signal conditioning circuit is connected to the low-pass filter, the low-pass filter is connected to the signal sampling circuit, the signal sampling circuit is connected to the analog-to-digital A/D conversion circuit, and the analog-to-digital A/D conversion
- the circuit is connected to the digital core processing module.
- the digital core processing module is composed of a bus, a central processing unit, a GPS synchronous clock, a random access memory, and a control circuit;
- the bus includes a data bus, an address bus, and a control bus to realize data exchange and operation control;
- the central processing unit Use single-chip microprocessor, general-purpose microprocessor or digital signal processor to realize real-time digital signal processing; use GPS synchronous clock to achieve strict synchronous sampling requirements in substations and stations in the system; random access memory for temporary storage requires fast
- the large amount of temporary data exchanged includes the data information input by the signal conditioning and acquisition modules, and the intermediate results of the calculation process; the control circuit realizes the effective connection and coordination of the entire digital circuit through complex programmable logic devices or field programmable gate arrays.
- a further improvement of the present invention is that it also includes a data storage module, a man-machine dialogue module and a data communication interface module connected to the digital core processing module;
- the data storage module is used to store fault recording data
- the man-machine dialogue module is used to establish the information connection between the fault recorder and the user;
- the data communication interface module uses Ethernet to realize information interaction, data transmission, remote operation and remote maintenance with other equipment and the main station.
- a further improvement of the present invention is that the data storage module is composed of a flash memory, an SD card and a U disk; the flash memory is used as the main memory for recording data, the SD card is used as a backup memory, and the U disk is used as a data export memory;
- the man-machine dialogue module includes a compact keyboard, display, indicator lights, buttons and printer interface;
- the data communication interface module follows the IEC 61850 communication protocol, and uses Ethernet to realize information exchange, data transmission, remote operation and remote maintenance with other equipment and the main station.
- a wave recording method based on the above device includes the following steps:
- the transient oil flow characteristic quantity measurement module measures the transient oil flow change characteristics inside the transformer oil pillow connecting pipe in real time, that is, the transient oil flow v(t) at the current time t, and outputs the corresponding analog voltage /Current signal;
- the transient oil pressure characteristic quantity measurement module measures the oil pressure change characteristic at the installation location of the pressure release valve, and outputs the corresponding analog voltage/current signal;
- the signal conditioning and acquisition module is used to receive the analog voltage/current signal output by the transient oil flow characteristic measurement module and the transient oil pressure characteristic measurement module, convert it into a standard digital signal that can be recognized by the digital core processing module, and output it Standard digital signal;
- the non-electricity protection switch input module receives the switch signal of the Buchholz relay and the pressure release valve, and outputs the digital signal
- the digital core processing module After the digital core processing module receives the standard digital signal output by the signal conditioning and acquisition module and the digital signal output by the non-electricity protection switch input module, it judges the light gas action switch signal S q (t), gas at the current moment. Whether the switch quantity signal S z (t) of the relay heavy gas action or the pressure release valve action switch signal S prv (t) is set to 1, if any switch signal is set to 1, go to step (7), otherwise go to step (3);
- step (10) Determine the current working mode of the fault recorder, whether it is in the debugging mode or the running mode, if it is in the debugging mode, execute the debugging task, otherwise go to step (11);
- the present invention has the following beneficial effects:
- the present invention is capable of physically connecting and cooperating with the transient oil flow characteristic quantity measurement module, the transient oil pressure characteristic quantity measurement module, the non-electricity protection switch input module, the signal conditioning and acquisition module, and the digital core processing module.
- the wave recording device of the present invention is independent of the power network, and the measurement of oil flow and oil pressure characteristics and signal transmission suffer less interference, and it does not inject harmonics into the power system; the signal conditioning and acquisition module and the digital core processing module can fully meet the requirements Fast, real-time processing of multi-channel, high-frequency data processing requirements.
- the externally bundled high-frequency ultrasonic flowmeter used in the present invention has a measurement frequency of more than 100 Hz, a measurement error of less than 1%, a working temperature of -30 to 80°C, and a flow rate range of -20 to 20 m/s;
- the present invention uses a high-frequency dynamic oil pressure sensor with a measurement frequency of 20kHz or more, a measurement error of less than 1%, a working temperature of -45-120°C, and a range of -0.1-6MPa to induce transient oil pressure changes inside the transformer.
- High-frequency ultrasonic flowmeter and high-frequency dynamic oil pressure sensor can meet the requirements of high temperature, oil pollution and strong electromagnetic environment inside the power transformer in terms of accuracy and range of use.
- the invention controls the device in accordance with the principle and functional requirements of the wave recording, completes the measurement, calculation, recording, communication and other operations of the measured transformer oil flow, oil pressure and non-electricity protection action information, and realizes the transformer under the condition of fault or disturbance Non-electricity characteristics and fault recording function of protection devices.
- the invention has the advantages of simple structure, easy implementation, reliability and high efficiency.
- the application of the device of the invention provides a software and hardware platform for transformer operation and maintenance personnel to obtain transient oil pressure and oil flow data, analyze accident causes, and propose corresponding anti-accident measures.
- Figure 1 is a schematic diagram of the device structure of the present invention.
- Figure 2 is a logic flow diagram of the present invention.
- Figure 3 shows the oil flow information results of the non-electrical protection fault recorder of the oil-immersed power transformer.
- Figure 4 shows the record result of the fault gas protection action of the oil-immersed power transformer non-electricity protection fault recorder.
- Figure 5 shows the oil pressure information result of the non-electrical protection fault recorder of the oil-immersed power transformer.
- Figure 6 shows the recording results of the action of the failure pressure release valve of the oil-immersed power transformer non-electrical protection fault recording device.
- an oil-immersed power transformer non-electricity protection fault recording device including: transient oil flow characteristic quantity measurement module, transient oil pressure characteristic quantity measurement module, non-electricity protection switch input module, signal conditioning and Acquisition module, digital core processing module, data storage module, man-machine dialogue module and data communication interface module.
- the transient oil flow characteristic measurement module and the transient oil pressure characteristic measurement module are both connected to the signal conditioning and acquisition module, the non-electricity protection switch input module, the signal conditioning and acquisition module, the data storage module, and the man-machine dialogue module And the data communication interface module is connected with the digital core processing module.
- the transient oil flow characteristic quantity measurement module is composed of an externally bundled high-frequency ultrasonic flowmeter, a flowmeter transmitter and a communication cable.
- the externally bundled high-frequency ultrasonic flowmeter is installed on the connecting pipe of the transformer oil pillow.
- the high-frequency ultrasonic flowmeter is connected with the flowmeter transmitter, and the flowmeter transmitter is connected with the communication cable.
- the transient oil flow characteristic quantity measurement module is used for real-time and high-speed measurement of the transient oil flow change characteristics inside the connecting pipe of the transformer oil pillow, and output the corresponding analog voltage/current signal.
- the measurement frequency of the high-frequency ultrasonic flowmeter must be above 100Hz, the measurement error must be less than 1%, the operating temperature must reach -30 ⁇ 80°C, and the flow rate range must reach -20 ⁇ 20m /s.
- the transient oil pressure characteristic quantity measurement module is used to measure the oil pressure change characteristics at the installation of the pressure release valve, and output the corresponding analog voltage/current signal;
- the transient oil pressure characteristic quantity measurement module consists of n high-frequency dynamic oils Composed of pressure sensor and its communication cable; high-frequency dynamic oil pressure sensor is installed on the adjacent shell of the pressure release valve, and the sensor end probe is directly in contact with the transformer insulating oil to measure the characteristics of the oil pressure change at the installation location of the pressure release valve , And use the communication cable to output analog voltage signals.
- the measurement frequency of the high-frequency dynamic oil pressure sensor is above 20kHz, the measurement error is less than 1%, the working temperature is -45 ⁇ 120°C, and the range is -0.1 ⁇ 6MPa.
- the non-electricity protection switch input module is connected to the signal terminals of the Buchholz relay and pressure release valve, receives the switch value signals of the Buchholz relay and pressure release valve, and outputs digital signals through the photoelectric isolation circuit.
- the signal conditioning and acquisition module is composed of terminal blocks, signal conditioning circuits, low-pass filters, signal sampling circuits, and analog-to-digital (A/D) conversion circuits.
- the signal conditioning and acquisition module is used to receive transient oil flow characteristic measurement modules and The analog voltage/current signal output by the transient oil pressure characteristic measurement module is converted into a standard digital signal that can be recognized by the digital core processing module.
- the terminal is connected to the transient oil flow characteristic quantity measurement module and the transient oil pressure characteristic quantity measurement module, the terminal is connected to the signal conditioning circuit, the signal conditioning circuit is connected to the low-pass filter, and the low-pass filter is connected to the signal sampling circuit.
- the signal sampling circuit is connected with the analog-digital A/D conversion circuit, and the analog-digital A/D conversion circuit is connected with the digital core processing module.
- the digital core processing module is used to receive the standard digital signal output by the signal conditioning and acquisition module and the digital signal output by the pressure release valve switch input module, and perform digital signal processing to realize the transient oil pressure signal and pressure release valve of the tested transformer Calculation and fault recording of switch signal.
- the digital core processing module is composed of bus, central processing unit (CPU), GPS synchronous clock, random access memory (RAM), read-only memory (ROM) and control circuit.
- the bus includes a data bus, an address bus, and a control bus to realize data exchange and operation control.
- the central processing unit (CPU) is the command center of the digital core processing module. It can use single-chip microprocessors, general-purpose microprocessors or digital signal processors (DSP) to quickly realize digital signal processing in real time.
- the GPS synchronization clock is adopted to realize the strict synchronous sampling requirements of the equipment in the substation and in the system.
- Random Access Memory (RAM) is used to temporarily store a large amount of temporary data that needs to be exchanged quickly, including data information input by signal conditioning and acquisition modules, and intermediate results of calculation processing.
- Read-only memory (ROM) is mainly used to store data.
- the control circuit can realize the effective connection and coordination of the entire digital circuit through a complex programmable logic device (CPLD) or field programmable gate array
- the data storage module is composed of flash memory (Flash Memory), SD card and U disk.
- flash memory Flash Memory
- SD card is used as the backup memory
- U disk is used as the data export memory.
- the man-machine dialogue module includes a compact keyboard, display, indicator lights, buttons, and printer interface. It is used to establish the information connection between the fault recorder and the user, so that the operator can manually operate, debug and obtain information feedback on the recorder.
- the data communication interface module complies with the IEC 61850 communication protocol, and uses Ethernet to realize information exchange, data transmission, remote operation, and remote maintenance with other equipment and the main station.
- the fault recording device is controlled according to the recording principle and functional requirements, and the operation information of the oil pressure and pressure relief valve of the tested transformer is completed. Measurement, calculation, recording, communication and other operations. Specifically include the following steps:
- step (3) Perform a comprehensive self-inspection after power-on, check the correctness and completeness of its own working state, if a device defect is found, an alarm signal will be issued and the entire device will be locked, waiting for the technician to remove the fault and reset it manually; Check, go to step (3)
- the main function is to allocate the address of the storage area where the sampling data is stored cyclically, and set the dynamic address pointer that marks the current latest data;
- the transient oil flow characteristic quantity measurement module measures real-time and high-speed transient oil flow change characteristics inside the transformer oil pillow connecting pipe, that is, the transient oil flow v(t) at the current time t, and outputs the corresponding simulation Voltage/current signal;
- the transient oil pressure characteristic quantity measuring module measures the oil pressure change characteristic at the installation location of the pressure release valve, namely the oil pressure p(t), and outputs the corresponding analog voltage/current signal;
- the signal conditioning and acquisition module is used to receive the analog voltage/current signals output by the transient oil flow characteristic measurement module and the transient oil pressure characteristic measurement module, and convert them into standard digital signals that can be recognized by the digital core processing module;
- the non-electricity protection switch input module receives the switch signal of the Buchholz relay, the pressure release valve action, that is, the Buchholz relay light gas action switch signal S q (t), the Buchholz relay heavy gas action switch signal S z (t) and pressure Release the valve action switch signal S prv (t), and output a digital signal;
- the digital core processing module After the digital core processing module receives the standard digital signal output by the signal conditioning and acquisition module and the digital signal output by the non-electricity protection switch input module, it judges the current time non-electricity protection (Buchholz relay or pressure release valve), Buchholz relay, light gas Whether the action switch signal S q (t), the Buchholz relay heavy gas action switch signal S z (t) or the pressure release valve action switch signal S prv (t) is set to 1 or not (fuel injection action), if any Set a switch value signal to 1 and go to step (10), otherwise go to step (6);
- the digital core processing module judges the current time non-electricity protection (Buchholz relay or pressure release valve), Buchholz relay, light gas Whether the action switch signal S q (t), the Buchholz relay heavy gas action switch signal S z (t) or the pressure release valve action switch signal S prv (t) is set to 1 or not (fuel injection action), if any Set a switch value signal to 1 and go to step (10), otherwise go to step (6);
- step (12) Determine in sequence whether the recording data of period A, period B, and period C are full, if it is full, go to step (12); otherwise, continue to store the recording data;
- step (13) Determine the current working mode of the fault recorder, that is, whether it is in the debugging mode or the running mode. If it is in the debugging mode, execute the debugging task processing, otherwise go to step (14);
- the invention is composed of a transient oil pressure characteristic quantity measurement module, a pressure release valve switch input module, a signal conditioning and acquisition module, a digital core processing module, a data storage module, a man-machine dialogue module, and a data communication interface module; according to the principle of wave recording And functional requirements to control the device, complete the measurement, calculation, recording, communication and other operations of the measured transformer oil pressure and pressure release valve action information, and realize the transient oil pressure change characteristics and pressure release of the transformer under fault or disturbance. Fault recording function of valve action.
- the invention has the advantages of simple structure, easy realization, reliability and high efficiency.
- the application of the invention device provides a software and hardware platform for transformer operators to obtain fault oil pressure data, analyze accident causes, and propose anti-accident measures.
- the invention realizes real-time measurement of the oil flow inside the oil conservator connecting pipe through the externally bundled high-frequency ultrasonic flowmeter without damaging the existing structural integrity of the transformer.
- the externally bundled high-frequency ultrasonic flowmeter is independent of the power network, and the measurement of oil flow characteristics and signal transmission suffer little interference, and it does not inject harmonics into the power system; data acquisition components and oil flow calculation and analysis components can fully meet the requirements of fast, Real-time processing of multi-channel, high-frequency data requirements.
- the present invention adopts an externally bundled high frequency ultrasonic flowmeter with a measurement frequency of 100 Hz or more, a measurement error of less than 1%, a working temperature of -30 to 80°C, and a flow rate range of -20 to 20 m/s.
- the high-frequency ultrasonic flowmeter can meet the requirements of high temperature, oil pollution and strong electromagnetic environment inside the power transformer in terms of accuracy and range of use.
- the invention adopts a silicon piezoresistive high-frequency dynamic pressure sensor with a measuring frequency of 20 kHz, a measuring error of less than 1%, a working temperature of -45 to 120°C, and a range of -0.1 to 6 MPa.
- the measurement and transmission of pressure characteristics suffer from less interference, and it does not inject harmonics into the power system. It can also meet the requirements of high temperature, oil pollution and strong electromagnetic environment inside the power transformer.
- the SFSZ8-40000/110 three-phase three-winding transformer was used as a test platform to conduct field tests to illustrate the effect of the present invention.
- the main geometric structure and nameplate parameters of this type of transformer are shown in Table 1.
- the test set a sudden internal arc short circuit fault of the transformer. Due to the injection of fault energy, the generation of fault gas causes the directional flow of insulating oil inside the oil conservator connection pipe, and the device of the present invention starts to perform gas protection. Wave recording. As shown in Figure 3 and Figure 4, this fault recorder records the oil flow velocity data and the action signal of the Buchholz relay 100ms before the short-circuit fault and 500ms after the fault.
- Field test results show that the device of the present invention can measure, record, communicate and perform operations such as the oil flow velocity inside the oil conservator connection pipe of the tested transformer and the action information of the Buchholz relay, and realize the transient oil flow surge of the transformer under fault or disturbance.
- Features and fault recording function of gas protection action Provide recorder data for transformer operators to obtain fault oil flow characteristics, analyze the cause of the accident, and propose corresponding anti-accident measures.
- Table 1 The main geometric structure and nameplate parameters of SFSZ8-40000/110 transformer
- this fault recorder records the transient oil pressure data at multiple oil pressure measurement points and pressure release valve installation locations in the transformer 100ms before the short-circuit fault and 500ms after the fault, as well as the pressure release. Valve action signal.
- Field test results show that the device of the present invention can complete the measurement, calculation, recording, communication and other operations of the internal oil pressure of the tested transformer and the action information of the pressure release valve, and realize the transient oil pressure change characteristics of the transformer under fault or disturbance. Disturbance recording function with the action of the pressure release valve. Provide recorder data for transformer operators to obtain fault oil pressure characteristics, analyze accident causes, and propose corresponding anti-accident measures.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Housings And Mounting Of Transformers (AREA)
Abstract
一种油浸式电力变压器非电量保护故障录波装置及方法,包括瞬态油流特征量测量模块、瞬态油压特征量测量模块、非电量保护开关量输入模块、信号调理与采集模块以及数字核心处理模块;瞬态油流特征量测量模块和瞬态油压特征量测量模块均与信号调理与采集模块相连,非电量保护开关量输入模块、信号调理与采集模块均与数字核心处理模块相连。本发明基于录波原理及功能要求对装置进行控制,完成对被测变压器油流、油压以及非电量保护动作信息的测量、运算、记录、通信等操作,实现在故障或扰动情况下的变压器非电量特征及其保护装置的故障录波功能。本发明具有构成简单、易于实现、可靠高效等优点。
Description
本发明属于电力系统领域,涉及一种油浸式电力变压器非电量保护故障录波装置及方法,用于测量、记录油浸式电力变压器在故障或扰动状态下的瞬态油流、油压的变化特征以及瓦斯继电器、压力释放阀等非电量保护装置的动作情况。
作为一种关键的电力主设备,变压器在电力系统中占有举足轻重的地位,它的稳定运行是保证整个电力系统电能可靠传输、灵活分配、安全使用的重要前提。当变压器内部发生严重故障时,绝缘油汽化、分解将产生大量瓦斯气体。由于油浸式电力变压器主油箱近似于密闭容器,内部故障导致油压一旦超过变压器本体的承压极限,变压器油箱将可能发生形变、破裂甚至爆炸、起火等事故,严重威胁变电站内运行人员、其他电力设备安全。变压器内部故障过程伴随有三个主要特征:相电流增加、差电流增加以及故障气体的产生。针对这三个显著特征,继电保护工作者们设计了过电流保护、差动保护以及瓦斯保护等。长期以来,瓦斯保护安装在变压器主油箱与油枕之间的连接管上,以感应由于故障气体产生而出现的绝缘油动态涌动,通过油流流速特征差异来甄别变压器油箱内部各种轻微故障。此外,伴随着故障气体的产生,变压器油箱内部油压也将急剧升高,因此目前的大型电力变压器在安装瓦斯继电器的同时还安装有压力释放阀。压力释放阀通过弹簧结构感应安装位置的油压大小,一旦油压超过其开启压力,压力释放阀将及时打开,通过排出绝缘油的方式实现对油箱内部油压的释放。因此,常将变压器瓦斯继电器与压力释放阀统称为变压器的非电量保护。
长期以来,变压器非电量保护虽然成功保护了数以万计的变压器油箱不因内部故障油压的骤升而发生损坏,但由于存在理论建模困难、原理性缺陷、凭经验取门槛值以及机械结构动作性能不足等问题,广泛使用的非电量保护越来越难以满足当前大容量、高电压等级电力 变压器的更高要求。因误动事故引起的系统停电、变压器爆炸事故时有发生,严重影响到电力系统的安全、可靠运行。
一方面,根据南方电网运行事故统计,仅在2011年~2014年的4年时间里,南方电网范围内就发生了8起500kV变压器瓦斯保护因外部短路发生误动作跳闸事故。其中,尤其以发生在2014年4月11日东莞横沥站的瓦斯保护误动事故最为严重。该站500kV主变重瓦斯保护误动事故共损失负荷604MW,占东莞市总负荷9.44%,损失用电客户203850户,占东莞市总客户9.6%,失压重要用户2个。事故严重影响电网安全稳定运行,造成重大经济损失。由于现场并未安装瓦斯保护故障录波器或类似的油流流速特征记录装置,时至今日,重瓦斯保护误动原因依旧不明。运行人员只能人为延迟重瓦斯保护动作时间至1s,该策略虽然减低了瓦斯保护在外部短路故障条件下的误动风险,但是一旦发生内部故障,瓦斯保护将因无法及时、可靠动作而失去作用。因此,迫切需要针对瓦斯保护配备相应的数字式故障录波装置,以实现对故障油流特征的实时采集与记录分析,查明瓦斯保护误动原因,提出相应反事故措施。
另一方面,在非内部故障条件下压力释放阀喷油事件时有发生,由于运行现场并未安装压力释放阀故障录波装置或类似的瞬态油压特征动态记录设备,其在非内部故障条件下的喷油原因始终不为人们所知。此外,即使压力释放阀在内部故障条件下正确喷油动作,由于同样缺少压力释放阀故障录波装置或类似的瞬态油压特征动态记录设备,现场运行人员无法对故障暂态过程中的油压特征进行分析和研究。因此,迫切需要针对压力释放阀配备相应的数字式故障录波设备,以实现对油压特征的实时采集与记录分析,查明压力释放阀的误动原因,并提出相应反事故措施。
智能电网是我国电网发展的方向,通过数字化信息网络系统将能源资源开发、输送、转换、输电、以及蓄能与能源终端用户的各种电气设备和其它用能设施连接在一起,通过智能 化控制实现精确供能、对应供能、互助供能和互补供能,将能源利用效率和能源供应安全提高到全新的水平。实现智能电网的重要前提是电力生产中相关数据采集和信息集成和共享,数字化变电站正符合智能电网所要求达到的标准。在数字化变电站中,数字化录波装置在信息收集环节起着重要作用。
故障录波器是用来记录电力系统中电气量和非电气量以及开关量的自动记录装置。通过记录和监视系统中模拟量和开关量来对系统中发生的故障和异常等事件生成故障特征波形,储存并发送至远方主站,通过对波形进行分析和计算,从而对故障类型、故障发生原因、故障严重程度等进行准确地判断。随着电力系统网络的复杂化、扩大化和区域网互联趋势的到来,电力系统的行为将会越来越复杂,丰富详尽的现场实测数据尤其是故障或非正常运行下的录波数据,无疑将具有越来越重要的价值。它们不仅是分析故障原因、检验继电保护动作行为的依据,也为电力工作者研究了解复杂系统的真实行为、发现其规律提供了宝贵资料。
80年代中期以来,伴随着计算机技术、通信技术、数字处理技术的飞速发展,微机型故障录波器已完全取代了早期的光电式录波器,成为电网故障信息记录的载体,在许多重大事故的调查和分析中发挥着重要的作用。但由于尚未出现针对电力变压器故障或扰动条件下瞬态油流、油压变化特征以及瓦斯继电器、压力释放阀等非电量保护动作信号的综合录波装置,业界针对非电量保护装置误动、拒动作机理及其反事故措施的研究举步维艰。
传统非电量保护(瓦斯继电器、压力释放阀)在近百年的使用过程中虽然成功保护了数以万计的油浸式变压器,但由于存在理论建模困难、原理性缺陷、凭经验取门槛值以及机械结构动作性能不足等问题,越来越难以满足当前大容量、高电压等级电力变压器的更高要求。因保护拒动、误动事故引起的系统停电、变压器爆炸事故时有发生,严重影响到电力系统的安全、可靠运行,严重威胁变电站运行人员及周围人民群众生命财产安全。但由于现场并未安装非电量保护故障录波器或类似的油流、油压特征记录装置,非电量保护拒动、误动事故 的本质原因无从查起,现场运行人员只能凭经验进行定性分析。因此,迫切需要针对瓦斯继电器、压力释放阀等非电量保护装置配备相应的数字式故障录波设备,以实现对故障或扰动情况下的油流、油压特征的实时采集与记录分析,为查明非电量保护拒动、误动原因,并提出相应反事故措施提供基础数据和分析依据。
发明内容
本发明的目的是提供一种油浸式电力变压器非电量保护故障录波装置及方法,用于测量、记录油浸式电力变压器在故障或扰动状态下的瞬态油流、油压的变化特征以及瓦斯继电器、压力释放阀等非电量保护装置的动作情况。
为实现上述目的,本发明采用如下的技术方案:
一种油浸式电力变压器非电量保护故障录波装置,包括:瞬态油流特征量测量模块、瞬态油压特征量测量模块、非电量保护开关量输入模块、信号调理与采集模块以及数字核心处理模块;其中,瞬态油流特征量测量模块和瞬态油压特征量测量模块均与信号调理与采集模块相连,非电量保护开关量输入模块与信号调理与采集模块均与数字核心处理模块相连;
瞬态油流特征量测量模块用于实时测量变压器油枕连接管内部瞬态油流变化特征,并输出与之相对应的模拟电压/电流信号;
瞬态油压特征量测量模块用于测量压力释放阀安装处的油压变化特征,并输出与之相对应的模拟电压/电流信号;
信号调理与采集模块用于接收瞬态油流特征量测量模块与瞬态油压特征量测量模块输出的模拟电压/电流信号,将其转换为数字核心处理模块能够识别的标准数字信号,并输出标准数字信号;
非电量保护开关量输入模块与瓦斯继电器、压力释放阀的信号端子相连,接收瓦斯继电器、压力释放阀动作的开关量信号,并输出数字信号;
数字核心处理模块用于接收信号调理与采集模块输出的标准数字信号以及压力释放阀开关量输入模块输出的数字信号,并进行数字信号处理,实现对被测变压器瞬态油压信号、压力释放阀开关量信号的运算及故障录波。
本发明进一步的改进在于,瞬态油流特征量测量模块由外捆式高频超声波流量计、流量计变送器以及通信线缆组成,外捆式高频超声波流量计安装在变压器油枕连接管上,外捆式高频超声波流量计与流量计变送器相连,流量计变送器与通信线缆相连。
本发明进一步的改进在于,高频超声波流量计的测量频率达到100Hz以上,测量误差小于1%,工作温度达到-30~80℃,流速量程达到-20~20m/s。
本发明进一步的改进在于,瞬态油压特征量测量模块由多个高频动态油压传感器及其通信线缆组成;高频动态油压传感器安装在压力释放阀相邻壳体上,传感器端部探头直接与变压器绝缘油相接触,以测量压力释放阀安装处的油压变化特征,并利用通信线缆输出模拟电压信号。
本发明进一步的改进在于,高频动态油压传感器的测量频率为20kHz以上,测量误差小于1%,工作温度为-45~120℃,量程为-0.1~6Mpa;
信号调理与采集模块由接线端子、信号调理电路、低通滤波器、信号采样电路以及模数A/D转换电路组成,接线端子与瞬态油流特征量测量模块和瞬态油压特征量测量模块相连,接线端子与信号调理电路相连,信号调理电路与低通滤波器相连,低通滤波器与信号采样电路想,信号采样电路与模数A/D转换电路相连,模数A/D转换电路与数字核心处理模块相连。
本发明进一步的改进在于,数字核心处理模块由总线、中央处理器、GPS同步时钟、随机存储器以及控制电路组成;总线包括数据总线、地址总线、控制总线,实现数据交换和操作控制;中央处理器利用单片微处理器、通用微处理器或数字信号处理器实时快速实现数字信号处理;采用GPS同步时钟,实现变电站内、系统各场站装置严格同步采样要求;随机存 储器用于暂存需要快速交换的大量临时数据,包括信号调理与采集模块输入的数据信息、计算处理过程的中间结果;控制电路通过复杂可编程逻辑器件或现场可编程门阵列实现整个数字电路的有效连接和协调工作。
本发明进一步的改进在于,还包括与数字核心处理模块相连的数据存储模块、人机对话模块以及数据通信接口模块;
数据存储模块用于存储故障录波数据;
人机对话模块用于建立故障录波装置与使用者之间的信息联系;
数据通信接口模块利用以太网实现与其他设备以及总站之间的信息交互、数据传输、远方操作以及远程维护。
本发明进一步的改进在于,数据存储模块由闪存存储器、SD卡以及U盘组成;闪存存储器作为录波数据的主存储器使用,SD卡作为备份存储器,U盘作为数据的导出存储器;
人机对话模块包括紧凑键盘、显示屏、指示灯、按钮以及打印机接口;
数据通信接口模块遵循IEC 61850通信协议,利用以太网实现与其他设备以及总站之间的信息交互、数据传输、远方操作以及远程维护。
一种基于上述装置的录波方法,包括以下步骤:
(1)瞬态油流特征量测量模块实时测量变压器油枕连接管内部瞬态油流变化特征,即,当前t时刻下瞬态油流v(t),并输出与之相对应的模拟电压/电流信号;
瞬态油压特征量测量模块测量压力释放阀安装处的油压变化特征,并输出与之相对应的模拟电压/电流信号;
信号调理与采集模块用于接收瞬态油流特征量测量模块与瞬态油压特征量测量模块输出的模拟电压/电流信号,将其转换为数字核心处理模块能够识别的标准数字信号,并输出标准数字信号;
非电量保护开关量输入模块接收瓦斯继电器、压力释放阀动作的开关量信号,并输出数字信号;
(2)数字核心处理模块接收信号调理与采集模块输出的标准数字信号以及非电量保护开关量输入模块输出的数字信号后,判断当前时刻瓦斯继电器轻瓦斯动作开关量信号S
q(t)、瓦斯继电器重瓦斯动作开关量信号S
z(t)或压力释放阀动作开关量信号S
prv(t)是否置1,若任一开关量信号置1进入步骤(7),否则进入步骤(3);
(3)判断当前时刻油流v(t)与瓦斯继电器重瓦斯门槛v
set的大小,若v(t)-v
set≥0时,进入步骤(7),否则进入步骤(4);
(4)判断当前时刻油压p(t)与压力释放阀启动门槛p
set的大小,若p(t)-p
set≥0时,进入步骤(7),否则进入步骤(5);
(5)判断当前时刻是否收到网络远程启动指令,若收到进入步骤(7),否则进入步骤(6);
(6)判断当前是否收到人工自启动指令,若收到进入步骤(7),否则进入步骤(9);
(7)进入故障录波运行状态,并依次记录故障前、故障中、故障后油流、油压、瓦斯继电器重瓦斯动作开关量信号、瓦斯继电器重瓦斯动作开关量信号以及压力释放阀动作开关量信号;
(8)依次判断故障前、故障中、故障后的录波数据是否存满,若已存满进入步骤(9);否则,继续进行录波数据存储;
(9)执行通信任务处理和人机对话处理,为信息发送和接收进行数据准备,按照键盘、按钮操作进行相应的任务处理;
(10)判别故障录波装置当前的工作方式,处于调试方式还是运行方式,若处于调试方式执行调试任务,否则进入步骤(11);
(11)执行运行自检,对运行状态下进行自检,若发现装置故障则发出告警信号并闭锁 整个装置,等待技术人员排除故障、人工复位;否则返回步骤(1)。
与现有技术相比,本发明具有的有益效果:
本发明通过对瞬态油流特征量测量模块、瞬态油压特征量测量模块、非电量保护开关量输入模块、信号调理与采集模块、数字核心处理模块之间的物理连接及相互配合,能够准确测量、记录油浸式电力变压器故障或扰动状态下的暂态油流、油压变化特征以及瓦斯继电器、压力释放阀的动作情况,填补国内外在该领域的技术空白,为分析变压器故障、非正常运行条件下内部瞬态油流、油压特征,并查明压力释放阀误动原因并提出相应反事故措施,提供重要数据来源及参考依据。
本发明的录波装置独立于电力网络,油流、油压特征的测量和信号传输所受干扰较小,亦不向电力系统注入谐波;信号调理与采集模块、数字核心处理模块完全能够满足快速、实时处理多通路、高频数据的处理要求。
进一步的,本发明中采用的外捆式高频超声波流量计,测量频率可以达到100Hz以上,测量误差小于1%,工作温度为-30~80℃,流速量程为-20~20m/s;同时,本发明利用测量频率为20kHz以上,测量误差小于1%,工作温度为-45~120℃,量程为-0.1~6MPa的高频动态油压传感器感应变压器内部瞬态油压变化。高频超声波流量计与高频动态油压传感器无论从精度还是使用范围都能满足电力变压器内部高温、油污、强电磁环境要求。
本发明按照录波原理及功能要求对装置进行控制,完成对被测变压器油流、油压以及非电量保护动作信息的测量、运算、记录、通信等操作,实现在故障或扰动情况下的变压器非电量特征及其保护装置的故障录波功能。本发明具有构成简单、易于实现、可靠高效等优点,本发明装置的应用为变压器运维人员获取瞬态油压、油流数据、分析事故原因、提出相应的反事故措施提供软硬件平台。
图1为本发明的装置结构原理图。
图2为本发明的逻辑流程图。
图3为油浸式电力变压器非电量保护故障录波装置故障油流信息结果。
图4为油浸式电力变压器非电量保护故障录波装置故障瓦斯保护动作录波结果。
图5为油浸式电力变压器非电量保护故障录波装置故障油压信息结果。
图6为油浸式电力变压器非电量保护故障录波装置故障压力释放阀动作录波结果。
下面结合附图对本发明进行详细描述。
参见图1,一种油浸式电力变压器非电量保护故障录波装置,包括:瞬态油流特征量测量模块、瞬态油压特征量测量模块、非电量保护开关量输入模块、信号调理与采集模块、数字核心处理模块、数据存储模块、人机对话模块以及数据通信接口模块。
其中,瞬态油流特征量测量模块和瞬态油压特征量测量模块均与信号调理与采集模块相连,非电量保护开关量输入模块、信号调理与采集模块、数据存储模块、人机对话模块以及数据通信接口模块均与数字核心处理模块相连。
瞬态油流特征量测量模块由外捆式高频超声波流量计、流量计变送器以及通信线缆组成,外捆式高频超声波流量计安装在变压器油枕连接管上,外捆式高频超声波流量计与流量计变送器相连,流量计变送器与通信线缆相连。瞬态油流特征量测量模块用于实时高速测量变压器油枕连接管内部瞬态油流变化特征,并输出与之相对应的模拟电压/电流信号。为确保对变压器油流的准确、实时获取,高频超声波流量计的测量频率需达到100Hz以上,测量误差需小于1%,工作温度需达到-30~80℃,流速量程需达到-20~20m/s。
瞬态油压特征量测量模块用于测量压力释放阀安装处的油压变化特征,并输出与之相对应的模拟电压/电流信号;瞬态油压特征量测量模块由n个高频动态油压传感器及其通信线缆 组成;高频动态油压传感器安装在压力释放阀相邻壳体上,传感器端部探头直接与变压器绝缘油相接触,以测量压力释放阀安装处的油压变化特征,并利用通信线缆输出模拟电压信号。高频动态油压传感器的测量频率为20kHz以上,测量误差小于1%,工作温度为-45~120℃,量程为-0.1~6MPa。
非电量保护开关量输入模块与瓦斯继电器、压力释放阀的信号端子相连,接收瓦斯继电器、压力释放阀动作的开关量信号,并通过光电隔离电路输出数字信号。
信号调理与采集模块由接线端子、信号调理电路、低通滤波器、信号采样电路以及模数(A/D)转换电路组成,信号调理与采集模块用于接收瞬态油流特征量测量模块与瞬态油压特征量测量模块输出的模拟电压/电流信号,并将其转换为数字核心处理模块能够识别的标准数字信号。其中,接线端子与瞬态油流特征量测量模块和瞬态油压特征量测量模块相连,接线端子与信号调理电路相连,信号调理电路与低通滤波器相连,低通滤波器与信号采样电路想,信号采样电路与模数A/D转换电路相连,模数A/D转换电路与数字核心处理模块相连。
数字核心处理模块用于接收信号调理与采集模块输出的标准数字信号以及压力释放阀开关量输入模块输出的数字信号,并进行数字信号处理,实现对被测变压器瞬态油压信号、压力释放阀开关量信号的运算及故障录波。
数字核心处理模块由总线、中央处理器(CPU)、GPS同步时钟、随机存储器(RAM)、只读存储器(ROM)以及控制电路组成。总线包括数据总线、地址总线、控制总线,实现数据交换和操作控制等。中央处理器(CPU)是数字核心处理模块的指挥中枢,可以利用单片微处理器、通用微处理器或数字信号处理器(DSP)等器件实时快速实现数字信号处理。采用GPS同步时钟,实现变电站内、系统各场站装置严格同步采样要求。随机存储器(RAM)用于暂存需要快速交换的大量临时数据,包括信号调理与采集模块输入的数据信息、计算处理过程的中间结果等。只读存储器(ROM)主要用于保存数据。控制电路可以通过复杂可编 程逻辑器件(CPLD)或现场可编程门阵列(FPGA)等实现整个数字电路的有效连接和协调工作。
数据存储模块由闪存存储器(Flash Memory)、SD卡以及U盘组成。闪存存储器作为录波数据的主存储器使用,SD卡作为备份存储器,U盘作为数据的导出存储器。
人机对话模块包括紧凑键盘、显示屏、指示灯、按钮以及打印机接口等。用于建立故障录波装置与使用者之间的信息联系,以便运行人员对录波装置的人工操作、调试以及得到信息反馈等。
数据通信接口模块遵循IEC 61850通信协议,利用以太网实现与其他设备以及总站之间的信息交互、数据传输、远方操作以及远程维护等。
参见图2,基于上述油浸式电力变压器压力释放阀故障录波装置的方法,按照录波原理及功能要求对故障录波装置进行控制,完成对被测变压器油压与压力释放阀动作信息的测量、运算、记录、通信等操作。具体包括以下步骤:
(1)故障录波装置在合上电源(简称上电)或硬件复位(简称复位)后,首先执行系统初始化,使整个故障录波装置处于正常工作状态;
(2)执行上电后的全面自检,对自身的工作状态进行正确性、完整性检测,若发现装置缺陷则发出告警信号并闭锁整个装置,等待技术人员排除故障、人工复位;若通过自检,进入步骤(3)
(3)执行数据采集初始化,主要作用是对循环保存采样数据的存储区进行地址分配,设置标志当前最新数据的动态地址指针;
(4)瞬态油流特征量测量模块实时高速测量变压器油枕连接管内部瞬态油流变化特征,即,当前t时刻下瞬态油流v(t),并输出与之相对应的模拟电压/电流信号;
瞬态油压特征量测量模块测量压力释放阀安装处的油压变化特征,即油压p(t),并输出 与之相对应的模拟电压/电流信号;
信号调理与采集模块用于接收瞬态油流特征量测量模块与瞬态油压特征量测量模块输出的模拟电压/电流信号,并将其转换为数字核心处理模块能够识别的标准数字信号;
非电量保护开关量输入模块接收瓦斯继电器、压力释放阀动作的开关量信号,即瓦斯继电器轻瓦斯动作开关量信号S
q(t)、瓦斯继电器重瓦斯动作开关量信号S
z(t)以及压力释放阀动作开关量信号S
prv(t),并输出数字信号;
(5)数字核心处理模块接收信号调理与采集模块输出的标准数字信号以及非电量保护开关量输入模块输出的数字信号后,判断当前时刻非电量保护(瓦斯继电器或压力释放阀)瓦斯继电器轻瓦斯动作开关量信号S
q(t)、瓦斯继电器重瓦斯动作开关量信号S
z(t)或压力释放阀动作开关量信号S
prv(t)是否置1是否置1(喷油动作),若任一开关量信号置1进入步骤(10),否则进入步骤(6);
(6)判断当前时刻油流v(t)与瓦斯继电器重瓦斯门槛v
set的大小,若v(t)-v
set≥0时,进入步骤(10),否则进入步骤(7);
(7)判断当前时刻油压p(t)与压力释放阀启动门槛p
set的大小,若p(t)-p
set≥0时,进入步骤(10),否则进入步骤(8);
(8)判断当前时刻是否收到网络远程启动指令,若收到进入步骤(10),否则进入步骤(9);
(9)判断当前是否收到人工自启动指令,若收到进入步骤(10),否则进入步骤(12);
(10)进入故障录波运行状态,并依次记录故障前(A时段)、故障中(B时段)、故障后(C时段)油流数据、瓦斯继电器重瓦斯动作开关量信号、瓦斯继电器重瓦斯动作开关量信号以及压力释放阀动作开关量信号;
(11)依次判断A时段、B时段、C时段的录波数据是否存满,若已存满进入步骤(12); 否则,继续进行录波数据存储;
(12)执行通信任务处理和人机对话处理,为信息发送和接收进行数据准备,按照键盘、按钮操作进行相应的任务处理;
(13)判别故障录波装置当前的工作方式,即处于调试方式还是运行方式,若处于调试方式执行调试任务处理,否则进入步骤(14);
(14)执行运行自检,对运行状态下进行自检,若发现装置故障则发出告警信号并闭锁整个装置,等待技术人员排除故障、人工复位;否则,返回步骤(3)。
本发明由瞬态油压特征量测量模块、压力释放阀开关量输入模块、信号调理与采集模块、数字核心处理模块、数据存储模块、人机对话模块以及数据通信接口模块组成;按照录波原理及功能要求对装置进行控制,完成对被测变压器油压与压力释放阀动作信息的测量、运算、记录、通信等操作,实现在故障或扰动情况下的变压器暂态油压变化特征以及压力释放阀动作情况的故障录波功能。本发明具有构成简单、易于实现、可靠高效等优点,发明装置的应用为变压器运行人员获取故障油压数据、分析事故原因、提出反事故措施提供软硬件平台。
本发明通过外捆式高频超声波流量计在不破坏变压器现有结构完整性的前提下实现对油枕连接管内部油流进行实时测量。外捆式高频超声波流量计独立于电力网络,油流特征的测量和信号传输所受干扰较小,亦不向电力系统注入谐波;数据采集元件、油流运算分析元件完全能够满足快速、实时处理多通路、高频数据的要求。进一步的,本发明采用测量频率为100Hz以上,测量误差小于1%,工作温度为-30~80℃,流速量程为-20~20m/s的外捆式高频超声波流量计,外捆式高频超声波流量计无论从精度还是使用范围都能满足电力变压器内部高温、油污、强电磁环境要求。
同时,本发明中采用测量频率为20kHz,测量误差小于1%,工作温度为-45~120℃,量程为-0.1~6MPa的硅压阻式高频动态压力传感器。压力特征的测量和传输所受干扰较小,亦 不向电力系统注入谐波,亦能够满足电力变压器内部高温、油污、强电磁环境要求。
以SFSZ8-40000/110三相三绕组变压器为测试平台进行现场试验,说明本发明效果,该型变压器主要几何结构及铭牌参数如表1所示。当在t=0ms时,试验设定变压器突发内部电弧短路故障,由于故障能量的注入,故障气体产生导致油枕连接管内部绝缘油发生定向流动,本发明装置启动进行瓦斯保护故障油流流速录波。如图3和图4所示,本故障录波装置记录了短路故障前100ms及故障后500ms流经瓦斯继电器的油流流速数据及瓦斯继电器动作信号。现场测试结果表明:本发明装置能够对被测变压器油枕连接管内部油流流速与瓦斯继电器动作信息的测量、记录、通信等操作,实现在故障或扰动情况下的变压器暂态油流涌动特征以及瓦斯保护动作情况的故障录波功能。为变压器运行人员获取故障油流特征、分析事故原因、提出相应的反事故措施提供录波数据。
表1 SFSZ8-40000/110型变压器主要几何结构及铭牌参数
与此同时,由于故障电弧汽化绝缘油产生故障气体导致变压器油箱内部油压骤升,当测 量油压大于装置启动门槛或压力释放阀喷油动作时,本发明装置启动进行压力释放阀压力信息故障录波。如图5和图6所示,本故障录波装置记录了短路故障前100ms及故障后500ms变压器内部多个油压测点与压力释放阀安装处的瞬态油压数据,同时记录了压力释放阀的动作信号。
现场测试结果表明:本发明装置能够完成对被测变压器内部油压与压力释放阀动作信息的测量、运算、记录、通信等操作,实现在故障或扰动情况下的变压器内部暂态油压变化特征与压力释放阀动作情况的故障录波功能。为变压器运行人员获取故障油压特征、分析事故原因、提出相应的反事故措施提供录波数据。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。
Claims (9)
- 一种油浸式电力变压器非电量保护故障录波装置,其特征在于,包括:瞬态油流特征量测量模块、瞬态油压特征量测量模块、非电量保护开关量输入模块、信号调理与采集模块以及数字核心处理模块;其中,瞬态油流特征量测量模块和瞬态油压特征量测量模块均与信号调理与采集模块相连,非电量保护开关量输入模块与信号调理与采集模块均与数字核心处理模块相连;瞬态油流特征量测量模块用于实时测量变压器油枕连接管内部瞬态油流变化特征,并输出与之相对应的模拟电压/电流信号;瞬态油压特征量测量模块用于测量压力释放阀安装处的油压变化特征,并输出与之相对应的模拟电压/电流信号;信号调理与采集模块用于接收瞬态油流特征量测量模块与瞬态油压特征量测量模块输出的模拟电压/电流信号,将其转换为数字核心处理模块能够识别的标准数字信号,并输出标准数字信号;非电量保护开关量输入模块与瓦斯继电器、压力释放阀的信号端子相连,接收瓦斯继电器、压力释放阀动作的开关量信号,并输出数字信号;数字核心处理模块用于接收信号调理与采集模块输出的标准数字信号以及压力释放阀开关量输入模块输出的数字信号,并进行数字信号处理,实现对被测变压器瞬态油压信号、压力释放阀开关量信号的运算及故障录波。
- 根据权利要求1所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于,瞬态油流特征量测量模块由外捆式高频超声波流量计、流量计变送器以及通信线缆组成,外捆式高频超声波流量计安装在变压器油枕连接管上,外捆式高频超声波流量计与流量计变送器相连,流量计变送器与通信线缆相连。
- 根据权利要求2所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于, 高频超声波流量计的测量频率达到100Hz以上,测量误差小于1%,工作温度达到-30~80℃,流速量程达到-20~20m/s。
- 根据权利要求1所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于,瞬态油压特征量测量模块由多个高频动态油压传感器及其通信线缆组成;高频动态油压传感器安装在压力释放阀相邻壳体上,传感器端部探头直接与变压器绝缘油相接触,以测量压力释放阀安装处的油压变化特征,并利用通信线缆输出模拟电压信号。
- 根据权利要求4所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于,高频动态油压传感器的测量频率为20kHz以上,测量误差小于1%,工作温度为-45~120℃,量程为-0.1~6Mpa;信号调理与采集模块由接线端子、信号调理电路、低通滤波器、信号采样电路以及模数A/D转换电路组成,接线端子与瞬态油流特征量测量模块和瞬态油压特征量测量模块相连,接线端子与信号调理电路相连,信号调理电路与低通滤波器相连,低通滤波器与信号采样电路想,信号采样电路与模数A/D转换电路相连,模数A/D转换电路与数字核心处理模块相连。
- 根据权利要求1所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于,数字核心处理模块由总线、中央处理器、GPS同步时钟、随机存储器以及控制电路组成;总线包括数据总线、地址总线、控制总线,实现数据交换和操作控制;中央处理器利用单片微处理器、通用微处理器或数字信号处理器实时快速实现数字信号处理;采用GPS同步时钟,实现变电站内、系统各场站装置严格同步采样要求;随机存储器用于暂存需要快速交换的大量临时数据,包括信号调理与采集模块输入的数据信息、计算处理过程的中间结果;控制电路通过复杂可编程逻辑器件或现场可编程门阵列实现整个数字电路的有效连接和协调工作。
- 根据权利要求1所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于,还包括与数字核心处理模块相连的数据存储模块、人机对话模块以及数据通信接口模块;数据存储模块用于存储故障录波数据;人机对话模块用于建立故障录波装置与使用者之间的信息联系;数据通信接口模块利用以太网实现与其他设备以及总站之间的信息交互、数据传输、远方操作以及远程维护。
- 根据权利要求7所述的一种油浸式电力变压器非电量保护故障录波装置,其特征在于,数据存储模块由闪存存储器、SD卡以及U盘组成;闪存存储器作为录波数据的主存储器使用,SD卡作为备份存储器,U盘作为数据的导出存储器;人机对话模块包括紧凑键盘、显示屏、指示灯、按钮以及打印机接口;数据通信接口模块遵循IEC 61850通信协议,利用以太网实现与其他设备以及总站之间的信息交互、数据传输、远方操作以及远程维护。
- 一种基于权利要求1-8中的任意一项所述装置的录波方法,其特征在于,包括以下步骤:(1)瞬态油流特征量测量模块实时测量变压器油枕连接管内部瞬态油流变化特征,即,当前t时刻下瞬态油流v(t),并输出与之相对应的模拟电压/电流信号;瞬态油压特征量测量模块测量压力释放阀安装处的油压变化特征,并输出与之相对应的模拟电压/电流信号;信号调理与采集模块用于接收瞬态油流特征量测量模块与瞬态油压特征量测量模块输出的模拟电压/电流信号,并将其转换为数字核心处理模块能够识别的标准数字信号;非电量保护开关量输入模块接收瓦斯继电器、压力释放阀动作的开关量信号,并输出数字信号;(2)数字核心处理模块接收信号调理与采集模块输出的标准数字信号以及非电量保护开关量输入模块输出的数字信号后,判断当前时刻瓦斯继电器轻瓦斯动作开关量信号S q(t)、瓦斯继电器重瓦斯动作开关量信号S z(t)或压力释放阀动作开关量信号S prv(t)是否置1,若任一开 关量信号置1进入步骤(7),否则进入步骤(3);(3)判断当前时刻油流v(t)与瓦斯继电器重瓦斯门槛v set的大小,若v(t)-v set≥0时,进入步骤(7),否则进入步骤(4);(4)判断当前时刻油压p(t)与压力释放阀启动门槛p set的大小,若p(t)-p set≥0时,进入步骤(7),否则进入步骤(5);(5)判断当前时刻是否收到网络远程启动指令,若收到进入步骤(7),否则进入步骤(6);(6)判断当前是否收到人工自启动指令,若收到进入步骤(7),否则进入步骤(9);(7)进入故障录波运行状态,并依次记录故障前、故障中、故障后油流、油压、瓦斯继电器重瓦斯动作开关量信号、瓦斯继电器重瓦斯动作开关量信号以及压力释放阀动作开关量信号;(8)依次判断故障前、故障中、故障后的录波数据是否存满,若已存满进入步骤(9);否则,继续进行录波数据存储;(9)执行通信任务处理和人机对话处理,为信息发送和接收进行数据准备,按照键盘、按钮操作进行相应的任务处理;(10)判别故障录波装置当前的工作方式,处于调试方式还是运行方式,若处于调试方式执行调试任务,否则进入步骤(11);(11)执行运行自检,对运行状态下进行自检,若发现装置故障则发出告警信号并闭锁整个装置,等待技术人员排除故障、人工复位;否则返回步骤(1)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910375850.2 | 2019-05-07 | ||
CN201910375850.2A CN110165778B (zh) | 2019-05-07 | 2019-05-07 | 一种油浸式电力变压器非电量保护故障录波装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020224534A1 true WO2020224534A1 (zh) | 2020-11-12 |
Family
ID=67633561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/088304 WO2020224534A1 (zh) | 2019-05-07 | 2020-04-30 | 一种油浸式电力变压器非电量保护故障录波装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110165778B (zh) |
WO (1) | WO2020224534A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113030644A (zh) * | 2021-03-09 | 2021-06-25 | 东北电力大学 | 多数据源信息融合的配电网故障定位方法 |
CN115032491A (zh) * | 2022-08-12 | 2022-09-09 | 国网山东省电力公司电力科学研究院 | 一种变压器非电量保护测试方法 |
CN118655458A (zh) * | 2024-08-20 | 2024-09-17 | 中国长江电力股份有限公司 | 双浮球瓦斯继电器重瓦斯防误动方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110165778B (zh) * | 2019-05-07 | 2021-01-19 | 西安交通大学 | 一种油浸式电力变压器非电量保护故障录波装置及方法 |
CN111751719B (zh) * | 2020-06-29 | 2021-11-16 | 深圳供电局有限公司 | 基于电网故障录波图判断变压器保护跳闸缘由方法及系统 |
CN113571379B (zh) * | 2021-07-27 | 2023-12-01 | 广东电网有限责任公司 | 一种数字式变压器用油压速动继电器及控制方法 |
CN113835043B (zh) * | 2021-09-03 | 2024-01-16 | 深圳供电局有限公司 | 一种变压器故障处理方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103855685A (zh) * | 2014-03-13 | 2014-06-11 | 国家电网公司 | 通过变压器非电量保护启动电气量保护进行故障录波的方法 |
CN104614018A (zh) * | 2015-01-22 | 2015-05-13 | Abb技术有限公司 | 一种变压器在线综合监测方法及系统 |
CN110165778A (zh) * | 2019-05-07 | 2019-08-23 | 西安交通大学 | 一种油浸式电力变压器非电量保护故障录波装置及方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551440B (zh) * | 2009-05-15 | 2011-08-24 | 东北大学 | 一种发电机变压器组故障录波分析装置 |
CN102981084B (zh) * | 2012-12-07 | 2015-04-22 | 深圳市双合电气股份有限公司 | 一种电力系统变压器综合监控系统 |
CN204241498U (zh) * | 2014-05-28 | 2015-04-01 | 国网山西省电力公司电力科学研究院 | 变压器油流流速的监测装置 |
CN105301281A (zh) * | 2014-05-28 | 2016-02-03 | 国网山西省电力公司电力科学研究院 | 变压器油流流速的监测方法及监测装置 |
CN104569258A (zh) * | 2014-12-24 | 2015-04-29 | 特变电工湖南智能电气有限公司 | 变压器油中气体在线监测方法及装置 |
US10330704B2 (en) * | 2016-08-25 | 2019-06-25 | Karl E. Hase | System of electrical fixtures with integral current monitoring, telemetry, remote control, safety and sensory features |
-
2019
- 2019-05-07 CN CN201910375850.2A patent/CN110165778B/zh active Active
-
2020
- 2020-04-30 WO PCT/CN2020/088304 patent/WO2020224534A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103855685A (zh) * | 2014-03-13 | 2014-06-11 | 国家电网公司 | 通过变压器非电量保护启动电气量保护进行故障录波的方法 |
CN104614018A (zh) * | 2015-01-22 | 2015-05-13 | Abb技术有限公司 | 一种变压器在线综合监测方法及系统 |
CN110165778A (zh) * | 2019-05-07 | 2019-08-23 | 西安交通大学 | 一种油浸式电力变压器非电量保护故障录波装置及方法 |
Non-Patent Citations (2)
Title |
---|
ZHANG, CHAO: "Engineering Design and Application of Intelligent 220kV Substation", ENGINEERING TECHNOLOGY II, CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 04, 15 April 2017 (2017-04-15), ISSN: 1674-0246, DOI: 20200604173303X * |
ZHANG, CHAO: "Engineering Design and Application of Intelligent 220kV Substation", ENGINEERING TECHNOLOGY II, CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 04, 15 April 2017 (2017-04-15), ISSN: 1674-0246, DOI: 20200608101431X * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113030644A (zh) * | 2021-03-09 | 2021-06-25 | 东北电力大学 | 多数据源信息融合的配电网故障定位方法 |
CN113030644B (zh) * | 2021-03-09 | 2024-03-12 | 东北电力大学 | 多数据源信息融合的配电网故障定位方法 |
CN115032491A (zh) * | 2022-08-12 | 2022-09-09 | 国网山东省电力公司电力科学研究院 | 一种变压器非电量保护测试方法 |
CN115032491B (zh) * | 2022-08-12 | 2022-11-01 | 国网山东省电力公司电力科学研究院 | 一种变压器非电量保护测试方法 |
CN118655458A (zh) * | 2024-08-20 | 2024-09-17 | 中国长江电力股份有限公司 | 双浮球瓦斯继电器重瓦斯防误动方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110165778B (zh) | 2021-01-19 |
CN110165778A (zh) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020224534A1 (zh) | 一种油浸式电力变压器非电量保护故障录波装置及方法 | |
CN102937685B (zh) | 一种变电站用基于实时仿真技术的一体化测试平台 | |
CN110057443B (zh) | 一种基于瞬态加速度特征的变压器在线监测装置及方法 | |
WO2020224537A1 (zh) | 一种基于压力特征的变压器数字式自适应保护装置及方法 | |
CN110071481B (zh) | 一种电力变压器数字式瓦斯保护装置及方法 | |
WO2020224536A1 (zh) | 变压器数字式瓦斯保护与油流涌动监测一体化装置及方法 | |
CN110018328B (zh) | 一种基于瞬态油流特征的电力变压器在线监测装置及方法 | |
WO2023116650A1 (zh) | 矿山防爆电器安全参数智能化检验系统及方法 | |
CN104124916A (zh) | 高海拔光伏电站电网故障模拟测试系统移动检测设备 | |
CN110161357B (zh) | 一种油浸式电力变压器压力释放阀故障录波装置及方法 | |
CN204463622U (zh) | 一种智能变电站实验装置 | |
CN203164360U (zh) | 一种变电设备绝缘在线监测系统 | |
CN110231523B (zh) | 一种油浸式电力变压器瓦斯保护故障录波装置及方法 | |
CN110057489B (zh) | 一种基于瞬态油压特征的电力变压器在线监测装置及方法 | |
CN105785149A (zh) | 智能变电站小电流接地选线装置的网络测试仪及方法 | |
GUILIN et al. | Research on positioning the fault locations automatically in a multi branch transmission line network | |
Jia et al. | Research on characteristics and calibration method of gas relay of power transformer in power grid | |
Hong et al. | Research on Intelligent Diagnosis Strategy of Secondary Device Abnormity in Smart Substation | |
CN105119367A (zh) | 一种基于动态拓扑的数字化备自投仿真方法 | |
CN202957663U (zh) | 一种复合组网通讯的智能变电站测试系统 | |
CN216848089U (zh) | 变电站避雷器在线监测数据仿真的系统 | |
Li et al. | Research on Software Simulation Technology of New Generation Smart Substation Secondary System | |
CN204389604U (zh) | 智能变电站小电流接地选线装置的网络测试仪 | |
Zhou et al. | Near real time system short-circuit current Online monitoring platform and its application | |
Wang et al. | Substation Point-to-Point Closed-Loop Intelligent Debugging Scheme Using Substation Telecontrol Automation Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20802799 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20802799 Country of ref document: EP Kind code of ref document: A1 |