WO2020224330A1 - 微流控装置、用于微流控装置的操作方法及控制装置 - Google Patents

微流控装置、用于微流控装置的操作方法及控制装置 Download PDF

Info

Publication number
WO2020224330A1
WO2020224330A1 PCT/CN2020/079596 CN2020079596W WO2020224330A1 WO 2020224330 A1 WO2020224330 A1 WO 2020224330A1 CN 2020079596 W CN2020079596 W CN 2020079596W WO 2020224330 A1 WO2020224330 A1 WO 2020224330A1
Authority
WO
WIPO (PCT)
Prior art keywords
target droplet
microfluidic chip
touch panel
microfluidic
touch
Prior art date
Application number
PCT/CN2020/079596
Other languages
English (en)
French (fr)
Inventor
李成前
范嘉琪
谷朝芸
王薇
张超
宗少雷
王洁琼
陆政华
申晓阳
焦辉
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020224330A1 publication Critical patent/WO2020224330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the embodiments of the present disclosure relate to a microfluidic device, an operation method and a control device for the microfluidic device.
  • the microfluidic chip has a path for the droplet movement designed in advance, so after the design is completed, the microfluidic drive circuit can only drive processing for the existing path.
  • the microfluidic drive circuit can only drive processing for the existing path.
  • several buttons with specific functions are designed in advance. When the microfluidic chip is used, only one of these functions can be selected, so that relatively limited functions can be realized.
  • At least one embodiment of the present disclosure provides a microfluidic device, which includes:
  • a touch panel wherein the touch panel is configured to detect contact actions on a touch surface of the touch panel
  • the microfluidic chip is configured to perform a preset operation on the target droplet according to the detected contact action.
  • the microfluidic device further includes a display panel, wherein the display panel is configured to display the target droplet,
  • the touch panel is located on the display side of the display panel, and
  • the microfluidic chip is configured to perform the preset operation on the target droplet according to the operation of the contact action on the target droplet displayed on the display panel.
  • the microfluidic device further includes an image capture device, wherein the image capture device is configured to capture image information of the target droplet and transmit the image information of the target droplet To the display panel, and
  • the display panel is configured to display the target droplet based on image information of the target droplet.
  • the microfluidic device further includes a controller, wherein the controller is signally connected to the touch panel and the microfluidic chip, and is configured to respond to the touch panel detecting The reached contact action controls the microfluidic chip to perform the preset operation on the target droplet.
  • the controller is further configured to plan the movement route of the target droplet according to the contact action, and control the microfluidic chip to drive The target droplet moves according to the movement route.
  • any two of the touch panel, the microfluidic chip, and the controller can be detachably connected.
  • the detection area of the touch panel corresponds to the operation area of the microfluidic chip.
  • the touch panel and the microfluidic chip overlap in a direction perpendicular to the touch surface of the touch panel, and the touch panel
  • the detection area is at least partially transparent, so that the operating area of the microfluidic chip is visible.
  • At least one embodiment of the present disclosure further provides a control device, which includes: a controller, a first interface, and a second interface, wherein the first interface is configured to be signal-connected to the touch panel, and the second interface is configured to Signal connection with microfluidic chip,
  • the controller is configured to obtain the detection result of the touch action by the touch panel, and control the microfluidic chip to perform a preset operation on the target droplet according to the detection result.
  • the controller includes:
  • a system-on-chip configured to connect to the first interface signal and determine touch information according to the touch signal from the touch panel received by the first interface
  • the micro control unit is configured to be connected to the second interface signal, generate a driving signal according to the touch information provided by the system on chip, and output to the microfluidic chip through the second interface.
  • At least one embodiment of the present disclosure also provides an operating method for a microfluidic device, the microfluidic device including a touch panel and a microfluidic chip, and the method includes:
  • the microfluidic chip performs a preset operation on the target droplet according to the detected contact action.
  • the microfluidic device further includes a display panel configured to display the target droplet
  • the method further includes: displaying the target droplet through the display panel.
  • the step of performing a preset operation on the target droplet by the microfluidic chip according to the detected contact action includes:
  • the preset operation is performed on the target droplet.
  • the microfluidic device further includes an image acquisition device, and
  • the displaying the target droplet on the display panel includes:
  • the microfluidic device further includes a controller, and the controller is in signal connection with the touch panel and the microfluidic chip, and
  • the performing the preset operation on the target droplet according to the detected contact action by the microfluidic chip includes: in response to the contact action detected by the touch panel, controlling by the controller The microfluidic chip performs the preset operation on the target droplet according to the detected contact action.
  • the preset operation includes at least one of the following: moving, separating, polymerizing, applying voltage, and heating.
  • the contact action includes a click action
  • the target droplet is a droplet located at a corresponding position on the microfluidic chip where the click action occurs.
  • the contact action includes: a sliding action starting from a first position on the touch panel and continuing to a second position on the touch panel, as well as
  • the target droplet is a droplet located on a corresponding track on the microfluidic chip on the track of the sliding motion.
  • the step of performing a preset operation on the target droplet by the microfluidic chip according to the detected contact action includes:
  • the movement route of the target droplet is planned according to the trajectory of the sliding motion detected by the touch panel, and the microfluidic chip is controlled to drive the target droplet to move according to the movement route.
  • Fig. 1 is a schematic structural block diagram of a microfluidic device according to at least one embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of a touch panel according to at least one embodiment of the present disclosure.
  • Fig. 3 is a top view of a microfluidic chip according to at least one embodiment of the present disclosure.
  • Fig. 4 is a cross-sectional view taken along the line L-L' in Fig. 3.
  • Fig. 5 is a schematic structural diagram of a control device according to at least one embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an example of a trajectory of a contact action on a touch panel according to at least one embodiment of the present disclosure.
  • Fig. 7 is another structural diagram of a control device according to at least one embodiment of the present disclosure.
  • Fig. 8 is a schematic structural block diagram of a microfluidic device according to at least one embodiment of the present disclosure.
  • Fig. 9 is a schematic structural block diagram of a microfluidic device according to at least one embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of an operating method for a microfluidic device according to at least one embodiment of the present disclosure.
  • the microfluidic chip has a path for the droplet movement designed in advance, so after the design is completed, the microfluidic drive circuit can only drive processing for the existing path.
  • At least one embodiment of the present disclosure provides a microfluidic device, an operation method for the microfluidic device, and a control device, which can control the microfluidic chip through a touch panel to operate the liquid to be detected , So the operation mode is more flexible and the function is richer.
  • Fig. 1 is a schematic structural block diagram of a microfluidic device according to at least one embodiment of the present disclosure.
  • the microfluidic device 100 according to at least one embodiment of the present disclosure includes a touch panel 110, a microfluidic chip 120 and a control device 130.
  • the touch panel 110 is used to detect contact actions on the touch surface of the touch panel 110, and these contact actions may include a tap, a double tap, a long touch, a slide, and the like.
  • the touch panel 110 may generate a detection signal according to a contact action on the touch surface of the touch panel 110.
  • the detection signal may include a signal representing position information of the contact action on the touch panel 110, a signal representing pressing strength information of the contact action on the touch panel 110, a signal representing duration information of the contact action on the touch panel 110, and the like.
  • the aforementioned position information may include, for example, coordinate information of a contact action on the touch panel 110.
  • the touch panel 110 may include, but is not limited to, a resistive touch panel, an infrared touch panel, a surface acoustic wave touch panel, and a capacitive touch panel, for example, which is not limited in the embodiments of the present disclosure.
  • the detection area of the touch panel 110 corresponds to the operation area of the microfluidic chip 120.
  • the detection area of the touch panel 110 is The projection on the chip 120 is greater than or equal to the operating area of the microfluidic chip 120, so that the user's operations on the microfluidic chip 120 seen through the touch panel 110 can be detected;
  • the microfluidic device 100 also includes a display panel for displaying an image of the microfluidic chip 120 and when the display panel overlaps the touch panel 110, the projection of the detection area of the touch panel 110 on the display panel is greater than or equal to that displayed on the display panel The operating area of the microfluidic chip 120 on the upper side, so that the user's operations on the microfluidic chip 120 seen through the touch panel 110 can be detected.
  • the touch panel 110 can overlap the microfluidic chip 120 up and down, and the touch panel 110 is on the side facing the user, so that the user can perform touch operations.
  • the touch panel The detection area of 110 can cover the operating area of the microfluidic chip 120 so as to overlap with the operating area of the microfluidic chip 120.
  • the detection area of the touch panel 110 may be at least partially transparent, so that the operating area of the microfluidic chip 120 located on the back side of the touch panel 110 is visible, so that the user can intuitively observe and control the movement of the target droplet.
  • the detection area of the touch panel 110 may have different degrees of transmittance, such as 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, or 5%
  • the transmittance is not limited in the embodiments of the present disclosure.
  • Fig. 2 is a schematic structural diagram of a touch panel according to at least one embodiment of the present disclosure.
  • the touch panel 110 is a capacitive touch panel, which is a mutual capacitance type, and includes a substrate 111, a plurality of first electrode bars 112, a plurality of second electrode bars 113, and a second signal line 114 and the first signal line 115.
  • the substrate 111 includes a detection area 1111 and a lead area 1112 located around the detection area 1111; a plurality of first electrode strips 112 are arranged in parallel on the substrate 111 of the detection area 1111, and each first electrode strip 112 includes a plurality of spaced apart The first sub-electrode; a plurality of second electrode strips 113 are arranged in parallel on the substrate 111 of the detection area 1111, each second electrode strip 113 includes a plurality of second sub-electrodes arranged at intervals, and the second electrode strip 113 is located The extension line of ⁇ and the extension line where the first electrode strip 112 is located cross each other; the first signal line 115 is correspondingly connected to the first electrode strip 112, and the second signal line 114 is correspondingly connected to the second electrode strip 113.
  • the first electrode bar 112 and the second electrode bar 113 are located in the detection area, and the second signal line 114 and the first signal line 115 are located in the lead area 1112.
  • one of the first sub-electrode and the second sub-electrode may be a driving electrode, and the other may be a sensing electrode.
  • the first sub-electrode and the second sub-electrode intersecting with it can form an induction capacitor at the intersection position, whereby a plurality of first sub-electrodes and a plurality of second sub-electrodes cross each other to obtain an array of inductive capacitors in the detection area , Used to detect touch operation.
  • a foreign object such as a finger, etc.
  • the second signal line 114 and the first signal line 115 detect the position of the corresponding inductive capacitor whose capacitance changes, and the contact can be located.
  • the first signal line 115 and the second signal line 114 may be converged to the port area B so as to be electrically connected to an external control unit such as a control device through, for example, a flexible circuit board.
  • the substrate 111 may be a separate transparent substrate, such as a glass substrate, a plastic substrate, etc., or it may reuse, for example, the surface layer of the microfluidic chip 120, such as a protective cover plate of the microfluidic chip 120 (for example, a glass substrate, Plastic substrate, etc.) or encapsulation layer, etc.
  • the first electrode strip 112 and the second electrode strip 113 can be prepared by, for example, a transparent conductive material (such as ITO); the first electrode strip 112 and the second electrode strip 113 can be located in different layers on the substrate 111 and are composed of at least one insulating layer.
  • the first electrode strip 112 and the second electrode strip 113 can be located in the same layer on the substrate 111, but cross each other at a position where they cross each other by bridging. insulation.
  • the second signal line 114 and the first signal line 115 may be made of aluminum or aluminum alloy, copper or copper alloy, for example.
  • touch panel 110 shown in FIG. 2 is only exemplary, and the comparison of the embodiments of the present disclosure is not limited.
  • the microfluidic chip 120 is configured to perform a preset operation on the target droplet according to the detected contact action, where the target droplet is on the microfluidic chip 120 or in the microfluidic chip 120.
  • the preset operation may include, but is not limited to, moving the target droplet, separating the target droplet, polymerizing the target droplet, applying voltage to the target droplet, heating the target droplet, etc., which are not limited in the embodiments of the present disclosure.
  • FIG. 3 is a top view of a microfluidic chip according to at least one embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view taken along the line L-L' in FIG. 3.
  • the microfluidic chip 120 includes an operating area 1221 shown by a dashed frame.
  • the operating area 1221 includes a drive array.
  • the drive array includes a plurality of drive units 1222 distributed in an array. Each drive unit 1222 is configured to be powered on. Operate the droplet under the control of the signal.
  • the driving unit 1222 is located on the base substrate 401.
  • the driving unit 1222 may be directly formed on the base substrate 401, or may be prepared as an independent device and then bonded to the base substrate 401 by means of bonding.
  • the base substrate 401 may also be a glass substrate, a plastic substrate, or the like.
  • the microfluidic chip 120 may adopt a passive driving method or an active driving method, which is not limited in the embodiment of the present disclosure.
  • the following article will take the active driving mode as an example for description.
  • each driving unit 1222 may include a switching element and a driving electrode 409 electrically connected to the switching element.
  • the driving electrode 409 operates the liquid droplet when a voltage is applied.
  • Each switching element is used to provide a driving signal to one or more driving electrodes 409.
  • the switching elements and the driving electrodes 409 correspond one-to-one.
  • the switching element is shown in the form of a thin film transistor, but those skilled in the art will understand that the switching element can also be implemented in other forms, such as a field effect transistor, which is not limited in the embodiments of the present disclosure.
  • the driving electrode 409 can be formed of, for example, any suitable material such as metal (such as alloy), doped semiconductor material (such as polysilicon), oxide conductive material (such as indium tin oxide (ITO), indium tin oxide (IZO)), etc.
  • metal such as alloy
  • doped semiconductor material such as polysilicon
  • oxide conductive material such as indium tin oxide (ITO), indium tin oxide (IZO)
  • ITO indium tin oxide
  • IZO indium tin oxide
  • a switching element taking a thin film transistor may include a gate 402, a gate insulating layer 403, an active layer 404, a first electrode 405, and a second electrode 406.
  • the first electrode 405 is a source electrode and the second electrode 406 is a drain electrode.
  • the first electrode 405 may also be a drain electrode, and the second electrode 406 is also a drain electrode. It may be a source electrode, which is not limited in the embodiments of the present disclosure.
  • An insulating layer or a dielectric layer 407 is formed between the driving electrode 409 and the thin film transistor. The driving electrode 409 is in electrical contact with the second electrode 406 through the through hole 408 in the insulating layer 407 to receive the electrical signal from the second electrode 406.
  • the microfluidic chip 120 may further include a hydrophobic layer 411 formed on the surface of the microfluidic chip 120 for carrying liquid droplets.
  • the hydrophobic layer 411 can prevent the droplets from penetrating into the microfluidic chip 120, reduce the loss of the droplets, and help the droplets move on the microfluidic chip 120.
  • the hydrophobic layer 411 is located on the surface of the driving electrode 409 away from the base substrate 401.
  • the hydrophobic layer 411 can increase the surface tension gradient, thereby facilitating the movement of liquid droplets on the microfluidic chip 120.
  • the hydrophobic layer 411 may be directly formed on the surface of the driving electrode 409, or an insulating layer 410 may be formed between the hydrophobic layer 411 and the driving electrode 409, thereby electrically insulating the driving electrode 409 from the droplet.
  • the insulating layer 410 can also function as a flat layer, so that the microfluidic chip 120 has a flat surface.
  • the hydrophobic layer 411 may be passed through Teflon, (perfluoro (1-butenylvinylether) polymer) and other materials, the insulating layer 410 may be formed of an inorganic insulating material or an organic insulating material, such as a resin, but the embodiment of the present disclosure does not limit this.
  • the microfluidic chip 120 may also include a controller, a gate driving circuit, and a data driving circuit.
  • the controller is coupled to the gate drive circuit and the data drive circuit, receives input signals and provides timing signals, drive signals, etc. to the gate drive circuit and the data drive circuit according to the input signals to control the gate drive circuit and the data drive circuit to work synchronously .
  • the gate driving circuit may apply scan signals to the driving array, for example row by row, through the gate lines to control the on or off of the switching elements, and the data driving circuit may apply driving signals to the driving array through the data lines.
  • the gate of the switching element of each driving unit 1222 is electrically connected to the gate line corresponding to the row where the driving unit is located, and the first pole 405 of the switching element is electrically connected to the data line of the column where the driving unit is located, thereby electrically connecting to the data driving circuit
  • the driving signal can be provided to the driving electrode 409 when the switching element is turned on.
  • the microfluidic chip 120 may further include a port part that is connected to an external signal through, for example, a flexible circuit board to receive an input signal (control signal) and provide the input signal to the controller of the microfluidic chip 120 to Generate corresponding signals for the gate drive circuit and the data drive circuit.
  • microfluidic chip 120 shown in FIG. 3 and FIG. 4 is only exemplary, and the comparison of the embodiments of the present disclosure is not limited.
  • the microfluidic device 100 may further include a control device 130.
  • the control device 130 is signally connected to the touch panel 110 and the microfluidic chip 120 to generate a control signal for controlling the microfluidic chip 120 according to the detection signal provided by the touch panel 110 to perform a preset operation on the target droplet.
  • the control device 130 may include: a first interface 1311, a controller 1312, and a second interface 1313.
  • the first interface 1311 is configured for signal connection with the touch panel 110
  • the second interface 1313 is configured for signal connection with the microfluidic chip 120
  • the controller 1312 is configured to obtain the detection of the touch panel 110 on the touch surface of the touch panel 110
  • the microfluidic chip 120 is controlled to perform a preset operation on the target droplet according to the detection result.
  • the first interface 1311 may be electrically connected to the port area B of the touch panel 110 shown in FIG.
  • the second interface 1313 may be through, for example, the port of the flexible circuit board and the microfluidic chip 120
  • the areas are electrically connected to send input signals required by the microfluidic chip 120, so that a driving signal can be provided to the first pole 405 of the switching element of the corresponding driving unit in the driving array of the microfluidic chip 120, that is, the The driving electrode 409 of the driving unit provides a driving signal to perform a driving operation corresponding to the touch signal on the liquid drop.
  • the first interface 1311 may be configured to be directly or indirectly coupled to the touch panel 110 through a network (such as the Internet, wireless LAN, etc.) to receive touch signals.
  • the second interface 1313 may be configured to be directly or indirectly coupled to the microfluidic chip 120 through a network (such as the Internet, wireless LAN, etc.) to provide a driving signal to the microfluidic chip 120.
  • the first interface 1311 and the second interface 1313 may be I 2 C (Inter-Integrated Circuit, inter-integrated circuit) interfaces, SPI (Serial Peripheral Interface, serial peripheral interface) interfaces, or universal serial interfaces.
  • I 2 C Inter-Integrated Circuit, inter-integrated circuit
  • SPI Serial Peripheral Interface, serial peripheral interface
  • any two of the control device 130, the touch panel 110 and the microfluidic chip 120 can be detachably connected to facilitate maintenance and replacement of the microfluidic device.
  • any two of the control device 130, the touch panel 110 and the microfluidic chip 120 may also be fixedly connected, which is not limited in the embodiment of the present disclosure.
  • the touch panel 110 and the microfluidic chip 120 may be connected by a detachable fastening device, such as a snap-fit fastening device or a magnetic fastening device.
  • the touch panel 110 and the microfluidic chip 120 may be fixedly connected by an adhesive or the like.
  • the detachable connection between the control device 130 and the touch panel 110 and/or the microfluidic chip 120 can be realized by, for example, a plug and a socket.
  • the controller 1312 may include, for example, a field programmable gate array (FPGA), a program-specific integrated circuit (ASIC), a program-specific standard product (ASSP), a system on chip (SOC), a complex programmable logic device (CPLD), and digital signal The processor (DSP), etc., the embodiment of the present disclosure does not limit this.
  • the controller 1312 may be connected to the first interface 1311 and the second interface 1313 by signals, for example, via a bus.
  • the controller 1312 can also be configured to plan the movement route of the target droplets in the microfluidic chip 120 or on the microfluidic chip 120 according to the contact action on the touch surface of the touch panel 110, and control the microfluidic chip 120 to drive The target droplet moves according to the movement route.
  • the controller 1312 may be configured to: in the case that the contact action is a click action, determine the droplet located at the corresponding position on the microfluidic chip 120 where the click action occurs as the target droplet and to select the selected target The droplet performs a preset operation.
  • the controller 1312 may be configured to: in the case where the contact action is a sliding action starting from the first position on the touch panel 110 and continuing to the second position on the touch panel 110, the first position is located in the micro
  • the droplet at the corresponding position on the fluidic chip 120 is determined as the target droplet, the trajectory of the sliding motion is identified, and the movement route of the target droplet is planned according to the trajectory, and the microfluidic chip 120 is controlled to drive the target droplet according to the planned Movement route moves.
  • the controller 1312 may be configured to plan the movement route of the target droplet as the trajectory of the sliding motion, so that the target droplet moves along the trajectory of the sliding motion.
  • the controller 1312 can also be configured to control the microfluidic chip 120 so that the target droplet moves at the speed of the sliding motion.
  • FIG. 6 is a schematic diagram of an example of the trajectory of a contact action on a touch panel according to at least one embodiment of the present disclosure.
  • an exemplary liquid in the microfluidic chip 120 or on the microfluidic chip 120 is also shown.
  • D1-D4 and the driving unit 1222 of the microfluidic chip 120.
  • the sliding motion starts from the first position P1 on the touch panel 110 and continues to the second position P2 on the touch panel 110.
  • the controller 1312 can be configured to place the first position P1 in the microfluidic chip
  • the droplet D1 at the corresponding position on the 120 is determined as the target droplet, the trajectory T of the sliding motion is recognized, and the microfluidic chip 120 is controlled to drive the droplet S1 to move according to the trajectory T.
  • the controller 1312 may be configured to: in the case where the contact action is a sliding action starting from a first position on the touch panel 110 and continuing to a second position on the touch panel 110, set the trajectory of the sliding action to The droplet on the corresponding trajectory on the microfluidic chip is determined to be the target droplet, the trajectory of the sliding motion is identified and the movement route of the target droplet is planned according to the trajectory, and the microfluidic chip 120 is controlled to drive the target droplet to follow The planned movement route moves.
  • the controller 1312 may be configured to plan the movement route of the target droplet as the trajectory of the sliding motion, so that the target droplet moves along the trajectory of the sliding motion.
  • the controller 1312 may also be configured to control the microfluidic chip 120 so that the target droplet moves at the speed of the sliding motion. As shown in FIG. 6, the sliding motion starts from the first position P1 on the touch panel 110 and continues to the second position P2 on the touch panel 110.
  • the controller 1312 can be configured to set the trajectory T of the sliding motion in the microfluidic control
  • the droplets D1 to D4 on the corresponding track on the chip 120 are determined as target droplets, and the microfluidic chip 120 is controlled to drive the droplets D1 to D4 to move according to the track T.
  • the droplets in the operation area of the microfluidic chip 120 may also include droplets of various reagents (such as diluents, stains, etc.), so as to The droplets of the liquid to be tested are mixed with the reagents to facilitate subsequent analysis and detection.
  • various reagents such as diluents, stains, etc.
  • the controller 1312 may include a system on chip (SoC) 13121 signally connected to the first interface 1311 and a micro control unit (MCU) signally connected to the second interface 1313 131122.
  • SoC system on chip
  • MCU micro control unit
  • the system-on-chip 13121 is configured to process the touch signals received by the first interface 1311 to determine touch information, where the touch information includes but is not limited to the position information of the contact action on the touch panel 110, and the contact action on the touch panel 110. Information on the intensity of the pressing on the 110, the duration of the contact action on the touch panel 110, and so on.
  • the micro control unit 13122 is configured to generate and output a driving signal for the microfluidic chip according to the touch information provided by the system on chip 13121.
  • control device 130 may be provided on a flexible circuit board (FPC), for example, to reduce the size of the microfluidic device 100.
  • FPC flexible circuit board
  • Fig. 8 is a schematic structural block diagram of a microfluidic device according to at least one embodiment of the present disclosure.
  • the microfluidic device 200 may further include a display panel 140.
  • the display panel 140 is used to display target droplets on or in the microfluidic chip 120, and the display panel 140 is arranged such that the touch panel 110 is located on the display side of the display panel 140.
  • the display panel 140 may include, for example, a liquid crystal display panel, an organic light emitting diode display panel, an electronic paper display panel, etc., which are not limited in the embodiments of the present disclosure.
  • the display area of the display panel 140 can display liquid droplets in the operation area of the microfluidic chip 120, and the detection area of the touch panel 110 can overlap the display area of the display panel 140, and correspond to the operation area of the microfluidic chip 120.
  • the shapes of the two are in a similar relationship, so geometrically, the points in the detection area of the touch panel 110 and the points in the operation area of the microfluidic chip 120 have a one-to-one correspondence.
  • the microfluidic chip 120 is used to operate the target droplet displayed on the display panel 140 according to the contact action on the touch surface of the touch panel 110, and perform the aforementioned preset operation on the target droplet .
  • the display panel 140 can magnify and display the droplets in the operation area of the microfluidic chip 120, so that the droplets can be operated more accurately.
  • the microfluidic chip 120 is in an environment that is not suitable for human entry such as high temperature or dust-free, the touch panel 110 and the display panel 140 can be arranged separately from the microfluidic chip 120, so that the microfluidic The droplets in the control chip 120 or on the microfluidic chip 120 are operated remotely.
  • the display panel 140 may be signally connected to the control device 130 (for example, the wired connection shown in FIG. 8), so that display can be performed under the control of the control device 130, for example, the display panel 140 may be
  • the control device 130 receives signals such as an opening signal, a closing signal, and a data signal of the image of the microfluidic chip 120 to be displayed.
  • the display panel 140 may not be connected to the control device 130, but may be signal-connected to other control devices provided separately to receive, for example, a turn-on signal, a turn-off signal, a data signal of the image of the microfluidic chip 120 to be displayed, etc. Signal, the embodiment of the present disclosure does not limit this.
  • Fig. 9 is a schematic structural block diagram of a microfluidic device according to at least one embodiment of the present disclosure.
  • the microfluidic device 300 may further include an image acquisition device 150.
  • the image acquisition device 150 is used to collect the image information of the target droplet on the microfluidic chip 120 or in the microfluidic chip 120, and provide the image information of the target droplet to the control device 130, and the control device 130 is checking the image information After necessary processing, it is transmitted to the display panel 140, and the display panel 140 is used to display the target droplet based on the image information of the target droplet.
  • the image acquisition device 150 may be configured to capture an image of the operating area of the microfluidic chip 120 to obtain droplet image information in the operating area of the microfluidic chip 120.
  • the image capture device 150 may include, for example, a camera, etc., which is not limited in the embodiment of the present disclosure.
  • the image capture device 150 may be signally connected to the control device 130 (for example, the wired connection shown in FIG. 9), so that the microfluidic chip 120 can be captured under the control of the control device 130.
  • the image capture device 150 may receive an on signal from the control device 130, a control signal for instructing the image capture device 150 to capture an image, and other signals, and the image capture device 150 may send an image of the target droplet on the microfluidic chip 120.
  • the control device 130 transmits the data signal of the collected image so that the control device 130 can process the data signal (for example, identify, filter, denoise, etc.) and transmit the processed data signal to the display panel 140.
  • the image capture device 150 may not be connected to the control device 130, but may be signal-connected to other control devices provided separately to receive signals such as a turn-on signal, a control signal instructing the image capture device 150 to capture images, etc.
  • the embodiment does not limit this.
  • the image capture device 150 may also be directly signal connected with the display panel 140 to directly transmit the data signal of the captured image to the display panel 140, which is not limited in the embodiments of the present disclosure.
  • the microfluidic device can realize the control of the microfluidic chip through the touch panel to operate the liquid to be detected, which improves the interactivity and operability.
  • At least one embodiment of the present disclosure also provides an operating method for a microfluidic device, which can be implemented in the microfluidic device according to any of the above-mentioned embodiments.
  • an operating method 1000 for a microfluidic device according to at least one embodiment of the present disclosure may include:
  • S1400 Perform a preset operation on the target droplet through the microfluidic chip according to the detected contact action.
  • the microfluidic device may further include a display panel, wherein the display panel is used to display target droplets, wherein the target droplets are on or in the microfluidic chip.
  • the method may further include: displaying the target droplet on the display panel, and the above-mentioned step S940 may include: contacting the target displayed on the display panel by the microfluidic chip according to the contact action.
  • Droplet operations perform preset operations on target droplets.
  • the microfluidic device may further include an image capture device, wherein the image capture device is used to capture image information of the target droplet on or in the microfluidic chip, and provide the target fluid The image information of the drop is transmitted to the display panel so that the display panel displays the target drop based on the image information of the target drop.
  • the above step of displaying the target droplet through the display panel may include: acquiring image information of the target droplet through the image acquisition device, and transmitting the image information of the target droplet to the display panel And displaying the target droplet based on the image information of the target droplet through the display panel.
  • the microfluidic device may further include a control device, wherein the control device is signally connected to the touch panel and the microfluidic chip.
  • the control device can receive the detection result of the touch action on the touch surface of the touch panel by the touch panel, and based on the detection result, generate the input signal required for controlling the microfluidic chip, thereby enabling the drive array of the microfluidic chip
  • the first pole of the switch element of the corresponding drive unit in the drive unit provides a drive signal, that is, a drive signal can be provided to the drive electrode of the drive unit, so as to drive the liquid droplet corresponding to the touch signal.
  • the above-mentioned step S1400 may include: in response to the contact action detected by the touch panel, controlling the microfluidic chip by the controller to perform pre-processing on the target droplet according to the detected contact action. Set up operation.
  • the above-mentioned contact action on the touch surface of the touch panel may include a click action
  • the method may include: setting the position of the click action to the corresponding position on the microfluidic chip. Determined as the target drop.
  • the above-mentioned contact action on the touch surface of the touch panel may include: a sliding action starting from the first position on the touch panel and continuing to the second position on the touch panel, and the method It may include: determining the droplet located on the trajectory of the sliding motion on the corresponding trajectory on the microfluidic chip as the target droplet.
  • the foregoing preset operations may include, but are not limited to: moving the target droplet, separating the target droplet, polymerizing the target droplet, applying a voltage to the target droplet, heating the target droplet, etc.
  • the embodiments of the present disclosure are to this No restrictions.
  • the above step S1400 may include: planning the movement route of the target droplet according to the trajectory of the sliding motion detected by the touch panel, and controlling the microfluidic chip to drive the target droplet to move according to the movement. The route moves.
  • the movement route of the target droplet can be planned according to the user's contact action, so that the target droplet moves according to the user's contact action.
  • this step please refer to the description of the above embodiment of the microfluidic device, which will not be repeated here.
  • the operating method for a microfluidic device can realize the control of the microfluidic chip through the touch panel to operate the liquid to be detected, which improves the interactivity and operability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种微流控装置、用于微流控装置的操作方法、及控制装置。该微流控装置包括:触摸面板,其中,所述触摸面板配置为检测所述触摸面板的触摸面上的接触动作;以及微流控芯片,配置为根据检测到的所述接触动作对目标液滴执行预设操作。

Description

微流控装置、用于微流控装置的操作方法及控制装置
相关申请的交叉引用
本申请要求于2019年5月5日递交的第201910368331.3号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种微流控装置、用于微流控装置的操作方法及控制装置。
背景技术
目前,微流控芯片具有提前设计好液滴运动的路径,所以设计完成之后,微流控驱动电路只能针对已有的路径进行驱动处理。举例来说,为一个成品的微流控芯片使用,预先设计好几个特定功能的按钮,微流控芯片使用的时候,只能在这些功能中选择一项,这样实现比较有限的功能。
发明内容
本公开至少一个实施例提供了一种微流控装置,其包括:
触摸面板,其中,所述触摸面板配置为检测所述触摸面板的触摸面上的接触动作;以及
微流控芯片,配置为根据检测到的所述接触动作对目标液滴执行预设操作。
例如,根据本公开至少一个实施例的微流控装置还包括显示面板,其中,所述显示面板配置为显示所述目标液滴,
所述触摸面板位于所述显示面板的显示侧,以及
所述微流控芯片配置为根据所述接触动作对显示在所述显示面板上的所述目标液滴的操作,对所述目标液滴执行所述预设操作。
例如,根据本公开至少一个实施例的微流控装置还包括图像采集装置,其中,所述图像采集装置配置为采集所述目标液滴的图像信息,并将所述目 标液滴的图像信息传输至所述显示面板,以及
所述显示面板配置为基于所述目标液滴的图像信息显示所述目标液滴。
例如,根据本公开至少一个实施例的微流控装置还包括控制器,其中,所述控制器与所述触摸面板和所述微流控芯片信号连接,并配置为响应于所述触摸面板检测到的所述接触动作,控制所述微流控芯片对所述目标液滴执行所述预设操作。
例如,在根据本公开至少一个实施例的微流控装置中,所述控制器还配置为根据所述接触动作来规划所述目标液滴的运动路线,并控制所述微流控芯片以驱动所述目标液滴按照所述运动路线进行移动。
例如,在根据本公开至少一个实施例的微流控装置中,所述触摸面板、所述微流控芯片以及所述控制器中任意两者均可拆卸地连接。
例如,在根据本公开至少一个实施例的微流控装置中,所述触摸面板的检测区与所述微流控芯片的操作区域相对应。
例如,在根据本公开至少一个实施例的微流控装置中,所述触摸面板和所述微流控芯片在垂直于所述触摸面板的所述触摸面的方向上重叠,且所述触摸面板的检测区至少是部分透明的,使得所述微流控芯片的操作区域可见。
本公开至少一个实施例还提供了一种控制装置,其包括:控制器、第一接口和第二接口,其中,所述第一接口配置为与触摸面板信号连接,所述第二接口配置为与微流控芯片信号连接,
所述控制器配置为获取所述触摸面板对接触动作的检测结果,控制所述微流控芯片根据所述检测结果对目标液滴执行预设操作。
例如,在根据本公开至少一个实施例的控制装置中,所述控制器包括:
片上系统,配置为与所述第一接口信号连接并根据所述第一接口接收的来自所述触摸面板的触控信号确定出触控信息;以及
微控制单元,配置为与所述第二接口信号连接,根据所述片上系统提供的所述触控信息生成驱动信号,并通过所述第二接口输出至所述微流控芯片。
本公开至少一个实施例还提供了一种用于微流控装置的操作方法,所述微流控装置包括触摸面板和微流控芯片,所述方法包括:
通过所述触摸面板对所述触摸面板的触摸面上的接触动作进行检测;以及
通过所述微流控芯片根据检测到的所述接触动作对目标液滴执行预设操 作。
例如,在根据本公开至少一个实施例的操作方法中,所述微流控装置还包括显示面板,所述显示面板配置为显示所述目标液滴,以及
所述方法还包括:通过所述显示面板显示所述目标液滴。
例如,在根据本公开至少一个实施例的操作方法中,所述通过所述微流控芯片根据检测到的所述接触动作对目标液滴执行预设操作的步骤,包括:
通过所述微流控芯片根据所述接触动作对显示在所述显示面板上的所述目标液滴的操作,对所述目标液滴执行所述预设操作。
例如,在根据本公开至少一个实施例的操作方法中,所述微流控装置还包括图像采集装置,以及
所述通过所述显示面板显示所述目标液滴,包括:
通过所述图像采集装置采集所述目标液滴的图像信息,并将将所述目标液滴的图像信息传输至所述显示面板;以及
通过所述显示面板基于所述目标液滴的图像信息显示所述目标液滴。
例如,在根据本公开至少一个实施例的操作方法中,所述微流控装置还包括控制器,所述控制器与所述触摸面板和所述微流控芯片信号连接,以及
所述通过所述微流控芯片根据检测到的所述接触动作对目标液滴执行所述预设操作,包括:响应于所述触摸面板检测到的所述接触动作,通过所述控制器控制所述微流控芯片以根据检测到的所述接触动作对目标液滴执行所述预设操作。
例如,在根据本公开至少一个实施例的操作方法中,所述预设操作包括以下中至少之一:移动、分离、聚合、施加电压、加热。
例如,在根据本公开至少一个实施例的操作方法中,所述接触动作包括点击动作,以及
所述目标液滴为位于所述点击动作的发生位置在所述微流控芯片上的对应位置处的液滴。
例如,在根据本公开至少一个实施例的操作方法中,所述接触动作包括:从所述触摸面板上的第一位置处开始接触并持续到所述触摸面板上的第二位置的滑行动作,以及
所述目标液滴为位于所述滑行动作的轨迹在所述微流控芯片上的对应轨 迹上的液滴。
例如,在根据本公开至少一个实施例的操作方法中,所述通过微流控芯片根据检测到的所述接触动作对目标液滴执行预设操作的步骤,包括:
根据所述触摸面板检测到的所述滑行动作的轨迹来规划所述目标液滴的运动路线,并控制所述微流控芯片以驱动所述目标液滴按照所述运动路线进行移动。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是根据本公开至少一个实施例的微流控装置的示意性结构框图。
图2是根据本公开至少一个实施例的触摸面板的结构示意图。
图3是根据本公开至少一个实施例的微流控芯片的俯视图。
图4是沿图3中的线L-L’的剖视图。
图5是根据本公开至少一个实施例的控制装置的结构示意图。
图6是根据本公开至少一个实施例的触摸面板上的接触动作的轨迹的示例的示意图。
图7是根据本公开至少一个实施例的控制装置的另一结构示意图。
图8是根据本公开至少一个实施例的微流控装置的示意性结构框图。
图9是根据本公开至少一个实施例的微流控装置的示意性结构框图。
图10是根据本公开至少一个实施例的用于微流控装置的操作方法的示意性流程图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属 领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
如上所述,目前,微流控芯片具有提前设计好液滴运动的路径,所以设计完成之后,微流控驱动电路只能针对已有的路径进行驱动处理。
本公开的至少一个实施例提供了一种微流控装置、用于微流控装置的操作方法以及一种控制装置,可以实现通过触控面板来控制微流控芯片,以对待检测液体进行操作,由此操作方式更灵活、功能更丰富。
图1是根据本公开至少一个实施例的微流控装置的示意性结构框图。如图1所示,根据本公开至少一个实施例的微流控装置100包括触摸面板110、微流控芯片120和控制装置130。
触摸面板110用于检测触摸面板110的触摸面上的接触动作,这些接触动作可以包括点击、双击、长触、滑动等。触摸面板110根据触摸面板110的触摸面上的接触动作可生成检测信号。检测信号可包括表示接触动作在触摸面板110上的位置信息的信号、表示接触动作在触摸面板110上的按压强度信息的信号、表示接触动作在触摸面板110上的持续时长信息的信号等。上述的位置信息例如可包括接触动作在触摸面板110上的坐标信息。
触摸面板110例如可以包括但不限于电阻式触摸面板、红外式触摸面板、表面声波式触摸面板、电容式触摸面板,本公开的实施例对此不作限制。
在一些实施例中,触摸面板110的检测区与微流控芯片120的操作区域相对应,例如在触摸面板110与微流控芯片120重叠的情况下,触摸面板110的检测区在微流控芯片120上的投影大于或等于微流控芯片120的操作区域,以使得用户对透过触摸面板110看到的微流控芯片120的操作均能够被检测到;又例如,在微流控装置100还包括用于显示微流控芯片120的图像的显 示面板且该显示面板与触摸面板110重叠的情况下,触摸面板110的检测区在该显示面板上的投影大于或等于显示在该显示面板上的微流控芯片120的操作区域,以使得用户对透过触摸面板110看到的微流控芯片120的操作均能够被检测到。例如,在图1所示的微流控装置100中,触摸面板110可与微流控芯片120上下重叠,触摸面板110在朝向用户一侧,以使得用户可以进行触摸操作,具体地,触摸面板110的检测区可覆盖微流控芯片120的操作区域,从而与微流控芯片120的操作区域相重叠。触摸面板110的检测区至少可以是部分透明的,使得位于触摸面板110背侧的微流控芯片120的操作区域可见,从而用户能够直观观察和控制目标液滴的运动。例如,触摸面板110的检测区可具有不同程度的透射率,例如100%、90%、80%、70%、60%、50%、40%、30%、20%、10%、或5%的透射率,本公开的实施例对此不作限制。
图2是根据本公开至少一个实施例的触摸面板的结构示意图。如图2所示,触摸面板110为电容式触摸面板,该电容式触摸面板为互电容型,包括衬底111、多个第一电极条112、多个第二电极条113、第二信号线114和第一信号线115。衬底111包括检测区1111和位于检测区1111周围的引线区1112;多个第一电极条112并列设置于检测区1111的衬底111上,每个第一电极条112包括多个间隔设置的第一子电极;多个第二电极条113并列设置于检测区1111的衬底111上,每个第二电极条113包括多个间隔设置的第二子电极,并且,第二电极条113所在的延伸线和第一电极条112所在的延伸线彼此交叉设置;第一信号线115与第一电极条112对应连接,第二信号线114与第二电极条113对应连接。第一电极条112和第二电极条113位于检测区内,而第二信号线114和第一信号线115位于引线区1112内。
在触摸面板中,第一子电极和第二子电极中的一方可以为驱动电极,另一方可以为感应电极。第一子电极和与其交叉的第二子电极之间可以在交叉位置形成感应电容,由此,多个第一子电极和多个第二子电极彼此交叉,在检测区内得到感应电容的阵列,用于检测触控操作。外物(例如手指等)靠近某一感应电容所在处,则会改变相应区域的第一子电极和第二子电极之间的感应电容的电容量。通过第二信号线114和第一信号线115检测电容量发生变化的相应感应电容的位置,可以定位触点。
第一信号线115和第二信号线114可以汇聚至端口区域B处,以便于通 过例如柔性电路板与外界的控制单元例如控制装置等电连接。
例如,衬底111可以为单独的透明基板,例如玻璃基板、塑料基板等,也可以复用例如微流控芯片120的表面层,例如微流控芯片120的保护盖板(例如,玻璃基板、塑料基板等)或封装层等。第一电极条112和第二电极条113可以通过例如透明导电材料(例如ITO)制备;第一电极条112和第二电极条113可以位于衬底111上的不同层中,由至少一个绝缘层间隔开,由此实现沿不同方向延伸并彼此交叉,或者第一电极条112和第二电极条113可以位于衬底111上的相同层中,但是在彼此交叉的位置通过桥接方式实现交叉而绝缘。第二信号线114和第一信号线115例如可以通过铝或铝合金、铜或铜合金等制备。
应理解,图2示出的触摸面板110仅为示例性的,本公开的实施例对比不作限制。
微流控芯片120用于根据检测到的接触动作对目标液滴执行预设操作,其中,该目标液滴在微流控芯片120上或在微流控芯片120中。预设操作可包括但不限于使目标液滴移动、使目标液滴分离、使目标液滴聚合、对目标液滴施加电压、对目标液滴加热等,本公开的实施例对此不作限制。
图3是根据本公开至少一个实施例的微流控芯片的俯视图,图4是沿图3中的线L-L’的剖视图。如图3所示,微流控芯片120包括由虚线框示出的操作区域1221,操作区域1221包括驱动阵列,驱动阵列包括阵列分布的多个驱动单元1222,每个驱动单元1222配置为在电信号的控制下对液滴进行操作。
如图4所示,驱动单元1222位于衬底基板401上。驱动单元1222可直接形成在衬底基板401上,也可制备为独立器件然后通过绑定(bonding)的方式结合到衬底基板401上。衬底基板401同样可以为玻璃基板、塑料基板等。
例如,微流控芯片120可以采用无源驱动方式或有源驱动方式,本公开的实施例对此不作限制。下面本文就以有源驱动方式为例进行说明。
对于有源驱动方式,例如,每个驱动单元1222可包括开关元件和与该开关元件电连接的驱动电极409。驱动电极409在施加有电压的情况下对液滴进行操作。每个开关元件用于向一个或多个驱动电极409提供驱动信号。例如,开关元件与驱动电极409一一对应。作为示例,在图4中,开关元件以薄膜晶体管的形式示出,然而本领域技术人员可理解开关元件还可实施为其他形 式,例如场效应晶体管,本公开的实施例对此不作限制。驱动电极409例如可通过金属(例如合金)、掺杂的半导体材料(例如多晶硅)、氧化物导电材料(例如氧化铟锡(ITO)、氧化铟锡(IZO))等任何合适的材料形成,然而本公开的实施例对此不作限制。
如图4所示,以薄膜晶体管为例的开关元件可包括栅极402、栅绝缘层403、有源层404、第一极405和第二极406。作为示例,在本公开的一些实施例中,第一极405为源电极以及第二极406为漏电极,然而在其他实施例中,第一极405也可以是漏电极,第二极406也可以是源电极,本公开的实施例对此不作限制。驱动电极409与该薄膜晶体管之间形成有绝缘层或介电层407。驱动电极409通过绝缘层407中的通孔408与第二极406电接触,以接收来自第二极406的电信号。
如图4所示,微流控芯片120还可包括疏水层411,疏水层411形成在微流控芯片120的用于承载液滴的表面上。通过疏水层411可防止液滴渗透进微流控芯片120内部,减少液滴的损耗,并有助于液滴在微流控芯片120上移动。疏水层411位于驱动电极409远离衬底基板401的表面之上。疏水层411可增大表面张力梯度,从而有助于在微流控芯片120上的液滴的移动。疏水层411可以直接形成在驱动电极409的表面上,或者在疏水层411与驱动电极409之间还可形成有绝缘层410,由此可以使得驱动电极409与液滴电绝缘。该绝缘层410还可以起到平坦层的作用,以使得微流控芯片120具有平坦的表面。在一些示例性实施例中,疏水层411可通过特氟龙(teflon)、
Figure PCTCN2020079596-appb-000001
(perfluoro(1-butenylvinylether)polymer)等材料形成,绝缘层410可通过无机绝缘材料或有机绝缘材料形成,例如通过树脂形成,然而本公开的实施例对此不作限制。
此外,微流控芯片120还可包括控制器、栅极驱动电路和数据驱动电路。控制器与栅极驱动电路和数据驱动电路耦接,接收输入信号并且根据输入信号为栅极驱动电路和数据驱动电路提供时序信号、驱动信号等,以控制栅极驱动电路和数据驱动电路同步工作。栅极驱动电路可以通过栅线向驱动阵列例如逐行施加扫描信号,以控制开关元件的开启或截止,数据驱动电路可以通过数据线向驱动阵列施加驱动信号。每个驱动单元1222的开关元件的栅极与该驱动单元所在行对应的栅线电连接,开关元件的第一极405与该驱动单元所在列的数据线电连接,从而与数据驱动电路电连接以接收驱动信号,因 此可以在开关元件开启时向驱动电极409提供驱动信号。微流控芯片120还可包括端口部分,该端口部分通过例如柔性电路板与外部信号连接,以接收输入信号(控制信号),并将该输入信号提供该微流控芯片120的控制器,以产生用于栅极驱动电路和数据驱动电路的相应信号。
应理解,图3和图4示出的微流控芯片120仅为示例性的,本公开的实施例对比不作限制。
在本公开的至少一个实施例中,微流控装置100还可包括控制装置130。控制装置130与触摸面板110和微流控芯片120信号连接,以根据触摸面板110提供的检测信号生成用于控制微流控芯片120的控制信号,以对目标液滴执行预设操作。
如图5所示,控制装置130可包括:第一接口1311、控制器1312和第二接口1313。第一接口1311配置为与触摸面板110信号连接,第二接口1313配置为与微流控芯片120信号连接,控制器1312配置为获取触摸面板110对触摸面板110的触摸面上的接触动作的检测结果,控制微流控芯片120根据检测结果对目标液滴执行预设操作。例如第一接口1311可通过例如柔性电路板与图2所示的触摸面板110的端口区域B电连接,以接收触摸信号;第二接口1313可通过例如柔性电路板与微流控芯片120的端口区域电连接,以发送微流控芯片120所需的输入信号,由此可以向微流控芯片120的驱动阵列中相应的驱动单元的开关元件的第一极405提供驱动信号,即可以向该驱动单元的驱动电极409提供驱动信号,从而对液滴进行与触摸信号对应的驱动操作。
第一接口1311可配置为直接或通过网络(例如因特网、无线LAN等)间接耦接至触摸面板110,以接收触摸信号。第二接口1313可配置为直接或通过网络(例如因特网、无线LAN等)间接耦接至微流控芯片120,以向微流控芯片120提供驱动信号。例如,在一些实施例中,第一接口1311和第二接口1313可以是I 2C(Inter-Integrated Circuit,集成电路间)接口、SPI(Serial Peripheral Interface,串行外设接口)接口或通用串行总线(USB)接口等,然而应理解,本公开的实施例对此不作限制。
在一些实施例中,控制装置130、触摸面板110和微流控芯片120之间任意两者均可拆卸地连接,以便于对微流控装置进行维护和更换。然而,应理解,控制装置130、触摸面板110和微流控芯片120之间任意两者之间也可以 是固定连接,本公开的实施例对此不作限制。例如,在一些实施例中,触摸面板110与微流控芯片120之间可通过可拆卸的紧固装置连接,例如卡扣配合式的紧固装置、磁吸式的紧固装置。在另一些实施例中,触摸面板110与微流控芯片120之间可通过粘合剂等固定连接。控制装置130与触摸面板110和/或微流控芯片120之间的可拆卸连接例如可通过插头和插座等来实现。
控制器1312例如可以包括现场可编程门阵列(FPGA)、程序专用的集成电路(ASIC)、程序专用的标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD)、数字信号处理器(DSP)等,本公开的实施例对此不作限制。控制器1312与第一接口1311和第二接口1313之间例如可通过总线进行信号连接。
控制器1312还可配置为根据触摸面板110的触摸面上的接触动作来规划微流控芯片120中或微流控芯片120上的目标液滴的运动路线,并控制微流控芯片120以驱动目标液滴按照该运动路线进行移动。
例如,控制器1312可配置为:在接触动作为点击动作的情况下,将位于点击动作的发生位置在微流控芯片120上的对应位置处的液滴确定为目标液滴并对选中的目标液滴执行预设操作。
例如,控制器1312可配置为:在接触动作为从触摸面板110上的第一位置处开始接触并持续到触摸面板110上的第二位置的滑行动作的情况下,将位于第一位置在微流控芯片120上的对应位置处的液滴确定为目标液滴,识别滑行动作的轨迹并根据该轨迹规划目标液滴的运动路线,以及控制微流控芯片120以驱动目标液滴按照规划的运动路线移动。例如,控制器1312可配置为将目标液滴的运动路线规划为该滑行动作的轨迹,以使得目标液滴沿该滑行动作的轨迹移动。此外,控制器1312还可配置为控制微流控芯片120以使得目标液滴以该滑行动作的速度移动。
图6是根据本公开至少一个实施例的触摸面板上的接触动作的轨迹的示例的示意图,其中为了便于描述,还示出了微流控芯片120中或微流控芯片120上的示例性液滴D1-D4,以及微流控芯片120的驱动单元1222。如图6所示,滑行动作从触摸面板110上的第一位置P1开始接触并持续到触摸面板110上的第二位置P2,控制器1312可配置为将位于第一位置P1在微流控芯片120上的对应位置处的液滴D1确定为目标液滴,识别出滑行动作的轨迹T,并控制微流控芯片120以驱动液滴S1按照轨迹T移动。
例如,控制器1312可配置为:在接触动作为从触摸面板110上的第一位置处开始接触并持续到触摸面板110上的第二位置的滑行动作的情况下,将位于滑行动作的轨迹在所述微流控芯片上的对应轨迹上的液滴确定为目标液滴,识别滑行动作的轨迹并根据该轨迹规划目标液滴的运动路线,以及控制微流控芯片120以驱动目标液滴按照规划的运动路线移动。例如,控制器1312可配置为将目标液滴的运动路线规划为该滑行动作的轨迹,以使得目标液滴沿该滑行动作的轨迹移动。此外,控制器1312还可配置为控制微流控芯片120以使得目标液滴以该滑行动作的速度移动。如图6所示,滑行动作从触摸面板110上的第一位置P1开始接触并持续到触摸面板110上的第二位置P2,控制器1312可配置为将位于滑行动作的轨迹T在微流控芯片120上的对应轨迹上的液滴D1至D4确定为目标液滴,并控制微流控芯片120以驱动液滴D1至D4按照轨迹T移动。
应理解,根据实际要求,可预先定义其他的接触动作,以对目标液滴执行各种预设操作,本公开的实施例对此不作限制。
在一些实施例中,除了待测液体的液滴之外,微流控芯片120的操作区域内的液滴还可包括各种试剂的液滴(例如稀释剂、染色剂等),以可将待测液体的液滴与试剂相混合,以便于后续的分析和检测。
如图7所示,在本公开的至少一个实施例中,控制器1312可包括与第一接口1311信号连接的片上系统(SoC)13121和与第二接口1313信号连接的微控制单元(MCU)131122。片上系统13121配置为对第一接口1311接收的触控信号进行处理,以确定出触控信息,其中,触控信息包括但不限于接触动作在触摸面板110上的位置信息、接触动作在触摸面板110上的按压强度信息、接触动作在触摸面板110上的持续时长信息等。微控制单元13122配置为根据片上系统13121提供的触控信息生成并输出用于微流控芯片的驱动信号。
在一些实施例中,控制装置130例如可设置在柔性电路板(FPC)上,以缩小微流控装置100的体积。
图8是根据本公开至少一个实施例的微流控装置的示意性结构框图。如图8所示,在图1所示的微流控装置100的基础上,根据本公开至少一个实施例的微流控装置200还可包括显示面板140。显示面板140用于显示在微流控芯片120上或在微流控芯片120中的目标液滴,并且显示面板140设置成 使得触摸面板110位于显示面板140的显示侧。显示面板140例如可包括液晶显示面板、有机发光二极管显示面板、电子纸显示面板等,本公开的实施例对此不作限制。
显示面板140的显示区域可显示微流控芯片120的操作区域内的液滴,并且触摸面板110的检测区可与显示面板140的显示区域相重叠,同时与微流控芯片120的操作区域对应,例如,二者的形状呈相似关系,由此几何上触摸面板110的检测区中的点与微流控芯片120的操作区域中的点呈一一对应关系。
在微流控装置200中,微流控芯片120用于根据触摸面板110的触摸面上的接触动作对显示在显示面板140上的目标液滴的操作,对目标液滴执行上述的预设操作。
在一些实施例中,显示面板140可对微流控芯片120的操作区域内的液滴进行放大显示,从而可更准确地对液滴进行操作。
在另一些实施例中,例如微流控芯片120在高温或无尘等不适于人进入的环境中,触摸面板110和显示面板140可与微流控芯片120分离地设置,从而可对微流控芯片120中或微流控芯片120上的液滴进行远程操作。
如图8所示,在一些实施例中,显示面板140可与控制装置130信号连接(例如,图8所示的有线连接),从而可在控制装置130的控制进行显示,例如显示面板140可从控制装置130接收开启信号、关闭信号、待显示的微流控芯片120的图像的数据信号等信号。然而,应理解,显示面板140还可不与控制装置130连接,而与单独设置的其他控制装置信号连接,以接收例如开启信号、关闭信号、待显示的微流控芯片120的图像的数据信号等信号,本公开的实施例对此不作限制。
图9是根据本公开至少一个实施例的微流控装置的示意性结构框图。如图9所示,在图8所示的微流控装置200的基础上,根据本公开至少一个实施例的微流控装置300还可包括图像采集装置150。图像采集装置150用于采集在微流控芯片120上或在微流控芯片120中的目标液滴的图像信息,并提供目标液滴的图像信息至控制装置130,控制装置130在对图像信息进行必要处理之后将其传输至显示面板140,显示面板140用于基于目标液滴的图像信息显示目标液滴。在一些实施例中,图像采集装置150可配置为能够捕获微流控芯片120的操作区域的图像,以获取微流控芯片120的操作区域内的液 滴图像信息。图像采集装置150例如可以包括相机等,本公开的实施例对此不作限制。
如图9所示,在一些实施例中,图像采集装置150可与控制装置130信号连接(例如,图9所示的有线连接),从而可在控制装置130的控制下采集微流控芯片120上或微流控芯片120中的目标液滴的图像,例如,图像采集装置150可从控制装置130接收开启信号、指示图像采集装置150采集图像的控制信号等信号,并且图像采集装置150可向控制装置130传输所采集的图像的数据信号,以使得控制装置130可对该数据信号进行处理(例如,识别、滤波、去噪等)并将处理后的数据信号传输给显示面板140。然而,应理解,图像采集装置150还可不与控制装置130连接,而与单独设置的其他控制装置信号连接,以接收例如开启信号、指示图像采集装置150采集图像的控制信号等信号,本公开的实施例对此不作限制。在一些实施例中,图像采集装置150还可与显示面板140直接信号连接,以将所采集的图像的数据信号直接传输给显示面板140,本公开的实施例对此不作限制。
根据本公开至少一个实施例的微流控装置可实现通过触控面板控制微流控芯片,以对待检测液体进行操作,提高了互动性和可操作性。
本公开至少一个实施例还提供了一种用于微流控装置的操作方法,该操作方法可实施在根据上述任一实施例的微流控装置中。如图10所示,根据本公开至少一个实施例的用于微流控装置的操作方法1000可包括:
S1200、通过触摸面板对触摸面板的触摸面上的接触动作进行检测;以及
S1400、通过微流控芯片根据检测到的接触动作对目标液滴执行预设操作。
在一些实施例中,微流控装置还可包括显示面板,其中,显示面板用于显示目标液滴,其中该目标液滴在微流控芯片上或在微流控芯片中。
在微流控装置包括显示面板的情况下,该方法还可包括:通过显示面板显示目标液滴,以及上述的步骤S940可包括:通过微流控芯片根据接触动作对显示在显示面板上的目标液滴的操作,对目标液滴执行预设操作。
在一些实施例中,微流控装置还可包括图像采集装置,其中,图像采集装置用于采集在微流控芯片上或在微流控芯片中的目标液滴的图像信息,并提供目标液滴的图像信息传输至显示面板,以使得显示面板基于目标液滴的图像信息显示目标液滴。
在微流控装置包括图像采集装置的情况下,上述的通过显示面板显示目标液滴步骤可包括:通过图像采集装置采集目标液滴的图像信息,并将目标液滴的图像信息传输至显示面板;以及通过显示面板基于目标液滴的图像信息显示目标液滴。
在一些实施例中,微流控装置还可包括控制装置,其中,控制装置与触摸面板和微流控芯片信号连接。控制装置可接收触摸面板对触摸面板的触摸面上的接触动作的检测结果,并基于该检测结果生成用于控制微流控芯片所需的输入信号,由此可以向微流控芯片的驱动阵列中相应的驱动单元的开关元件的第一极提供驱动信号,即可以向该驱动单元的驱动电极提供驱动信号,从而对液滴进行与触摸信号对应的驱动操作。在微流控装置包括控制器的情况下,上述的步骤S1400可包括:响应于触摸面板检测到的接触动作,通过控制器控制微流控芯片以根据检测到的接触动作对目标液滴执行预设操作。
例如,在一些实施例中,上述的触摸面板的触摸面上的接触动作可包括点击动作,并且该方法可包括:将位于点击动作的发生位置在微流控芯片上的对应位置处的液滴确定为目标液滴。
例如,在一些实施例中,上述的触摸面板的触摸面上的接触动作可包括:从触摸面板上的第一位置处开始接触并持续到触摸面板上的第二位置的滑行动作,并且该方法可包括:将位于滑行动作的轨迹在微流控芯片上的对应轨迹上的液滴确定为目标液滴。
应理解,根据实际要求,可预先定义其他的接触动作,以对目标液滴执行各种预设操作,本公开的实施例对此不作限制。
上述的预设操作可包括但不限于:使目标液滴移动、使目标液滴分离、使目标液滴聚合、对目标液滴施加电压、对目标液滴加热等,本公开的实施例对此不作限制。
在本公开的一些实施例中,上述的步骤S1400可包括:根据触摸面板检测到的滑行动作的轨迹来规划目标液滴的运动路线,并控制微流控芯片以驱动目标液滴按照所述运动路线进行移动。
这样可根据用户的接触动作来规划目标液滴的运动路线,从而使得目标液滴按照用户的接触动作进行移动。关于该步骤的详细描述可参见上文中微流控装置的实施例的描述,在此将不再赘述。
根据本公开至少一个实施例的用于微流控装置的操作方法可实现通过触 控面板控制微流控芯片,以对待检测液体进行操作,提高了互动性和可操作性。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种微流控装置,包括:
    触摸面板,其中,所述触摸面板配置为检测所述触摸面板的触摸面上的接触动作;以及
    微流控芯片,配置为根据检测到的所述接触动作对目标液滴执行预设操作。
  2. 根据权利要求1所述的微流控装置,还包括显示面板,其中,所述显示面板配置为显示所述目标液滴,
    所述触摸面板位于所述显示面板的显示侧,以及
    所述微流控芯片配置为根据所述接触动作对显示在所述显示面板上的所述目标液滴的操作,对所述目标液滴执行所述预设操作。
  3. 根据权利要求2所述的微流控装置,还包括图像采集装置,其中,所述图像采集装置配置为采集所述目标液滴的图像信息,并将所述目标液滴的图像信息传输至所述显示面板,以及
    所述显示面板配置为基于所述目标液滴的图像信息显示所述目标液滴。
  4. 根据权利要求1至3任一所述的微流控装置,还包括控制器,其中,所述控制器与所述触摸面板和所述微流控芯片信号连接,并配置为响应于所述触摸面板检测到的所述接触动作,控制所述微流控芯片对所述目标液滴执行所述预设操作。
  5. 根据权利要求4所述的微流控装置,其中,
    所述控制器还配置为根据所述接触动作来规划所述目标液滴的运动路线,并控制所述微流控芯片以驱动所述目标液滴按照所述运动路线进行移动。
  6. 根据权利要求4或5所述的微流控装置,其中,
    所述触摸面板、所述微流控芯片以及所述控制器中任意两者均可拆卸地连接。
  7. 根据权利要求1至6任一所述的微流控装置,其中,
    所述触摸面板的检测区与所述微流控芯片的操作区域相对应。
  8. 根据权利要求1至7任一项所述的微流控装置,其中,所述触摸面板和所述微流控芯片在垂直于所述触摸面板的所述触摸面的方向上重叠,且所述触摸面板的检测区至少是部分透明的,使得所述微流控芯片的操作区域可 见。
  9. 一种控制装置,包括:控制器、第一接口和第二接口,其中,所述第一接口配置为与触摸面板信号连接,所述第二接口配置为与微流控芯片信号连接,
    所述控制器配置为获取所述触摸面板对接触动作的检测结果,控制所述微流控芯片根据所述检测结果对目标液滴执行预设操作。
  10. 根据权利要求9所述的控制装置,其中,所述控制器包括:
    片上系统,配置为与所述第一接口信号连接并根据所述第一接口接收的来自所述触摸面板的触控信号确定出触控信息;以及
    微控制单元,配置为与所述第二接口信号连接,根据所述片上系统提供的所述触控信息生成驱动信号,并通过所述第二接口输出至所述微流控芯片。
  11. 一种用于微流控装置的操作方法,所述微流控装置包括触摸面板和微流控芯片,所述方法包括:
    通过所述触摸面板对所述触摸面板的触摸面上的接触动作进行检测;以及
    通过所述微流控芯片根据检测到的所述接触动作对目标液滴执行预设操作。
  12. 根据权利要求11所述的方法,其中,
    所述微流控装置还包括显示面板,所述显示面板配置为显示所述目标液滴,以及
    所述方法还包括:通过所述显示面板显示所述目标液滴。
  13. 根据权利要求12所述的方法,其中,
    所述通过所述微流控芯片根据检测到的所述接触动作对目标液滴执行预设操作的步骤,包括:
    通过所述微流控芯片根据所述接触动作对显示在所述显示面板上的所述目标液滴的操作,对所述目标液滴执行所述预设操作。
  14. 根据权利要求12或13所述的方法,其中,
    所述微流控装置还包括图像采集装置,以及
    所述通过所述显示面板显示所述目标液滴,包括:
    通过所述图像采集装置采集所述目标液滴的图像信息,并将将所述目标液滴的图像信息传输至所述显示面板;以及
    通过所述显示面板基于所述目标液滴的图像信息显示所述目标液滴。
  15. 根据权利要求11至14任一项所述的方法,其中,
    所述微流控装置还包括控制器,所述控制器与所述触摸面板和所述微流控芯片信号连接,以及
    所述通过所述微流控芯片根据检测到的所述接触动作对目标液滴执行所述预设操作,包括:
    响应于所述触摸面板检测到的所述接触动作,通过所述控制器控制所述微流控芯片以根据检测到的所述接触动作对目标液滴执行所述预设操作。
  16. 根据权利要求11至15任一项所述的方法,其中,所述预设操作包括以下中至少之一:移动、分离、聚合、施加电压、加热。
  17. 根据权利要求11至16任一项所述的方法,其中,
    所述接触动作包括点击动作,以及
    所述目标液滴为位于所述点击动作的发生位置在所述微流控芯片上的对应位置处的液滴。
  18. 根据权利要求11至16任一项所述的方法,其中,
    所述接触动作包括:从所述触摸面板上的第一位置处开始接触并持续到所述触摸面板上的第二位置的滑行动作,以及
    所述目标液滴为位于所述滑行动作的轨迹在所述微流控芯片上的对应轨迹上的液滴。
  19. 根据权利要求18所述的方法,其中,
    所述通过微流控芯片根据检测到的所述接触动作对目标液滴执行预设操作的步骤,包括:
    根据所述触摸面板检测到的所述滑行动作的轨迹来规划所述目标液滴的运动路线,并控制所述微流控芯片以驱动所述目标液滴按照所述运动路线进行移动。
PCT/CN2020/079596 2019-05-05 2020-03-17 微流控装置、用于微流控装置的操作方法及控制装置 WO2020224330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910368331.3A CN110069168B (zh) 2019-05-05 2019-05-05 微流控装置、用于微流控装置的操作方法及控制装置
CN201910368331.3 2019-05-05

Publications (1)

Publication Number Publication Date
WO2020224330A1 true WO2020224330A1 (zh) 2020-11-12

Family

ID=67369935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079596 WO2020224330A1 (zh) 2019-05-05 2020-03-17 微流控装置、用于微流控装置的操作方法及控制装置

Country Status (2)

Country Link
CN (1) CN110069168B (zh)
WO (1) WO2020224330A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069168B (zh) * 2019-05-05 2022-09-30 京东方科技集团股份有限公司 微流控装置、用于微流控装置的操作方法及控制装置
CN110441940B (zh) * 2019-08-01 2022-07-19 上海闻泰信息技术有限公司 显示面板的制作方法、显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100249965A1 (en) * 2009-03-31 2010-09-30 Agamatrix, Inc. Integrated Blood Glucose Measurement Device
CN104166008A (zh) * 2014-08-11 2014-11-26 江苏大学 一种微流控芯片自动同步进样方法与装置
CN104525284A (zh) * 2012-05-02 2015-04-22 李木 一种分立式数字微流控系统及其控制方法
CN107703320A (zh) * 2017-10-27 2018-02-16 大连量子流体控制技术有限公司 全集成多通道多功能微流控分析实验系统
CN109107624A (zh) * 2018-10-16 2019-01-01 长春技特生物技术有限公司 一种全封闭微流控芯片和乳液微滴制备系统
CN110069168A (zh) * 2019-05-05 2019-07-30 京东方科技集团股份有限公司 微流控装置、用于微流控装置的操作方法及控制装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500694B (zh) * 2006-05-09 2012-07-18 先进液体逻辑公司 液滴操纵系统
WO2009004533A1 (en) * 2007-07-03 2009-01-08 Nxp B.V. A microfluidic chip for and a method of handling fluidic droplets
KR20130132529A (ko) * 2010-12-09 2013-12-04 아서 퀘밸 유체 샘플의 분석을 위한 미세-유체 장치
US20130044100A1 (en) * 2011-08-17 2013-02-21 Samsung Electronics Co. Ltd. Portable device with integrated user interface for microfluidic display
JP2015020104A (ja) * 2013-07-18 2015-02-02 日本写真印刷株式会社 マイクロ流体デバイス及びマイクロ流体装置
US9916008B2 (en) * 2015-01-12 2018-03-13 International Business Machines Corporation Microfluidics three-dimensional touch screen display
CN105863985B (zh) * 2016-04-21 2018-02-27 北京航空航天大学 磁响应复合界面驱动液体运动器件及其制备方法和应用
US10223251B2 (en) * 2016-10-25 2019-03-05 International Business Machines Corporation Testing apps in micro-fluidics based devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100249965A1 (en) * 2009-03-31 2010-09-30 Agamatrix, Inc. Integrated Blood Glucose Measurement Device
CN104525284A (zh) * 2012-05-02 2015-04-22 李木 一种分立式数字微流控系统及其控制方法
CN104166008A (zh) * 2014-08-11 2014-11-26 江苏大学 一种微流控芯片自动同步进样方法与装置
CN107703320A (zh) * 2017-10-27 2018-02-16 大连量子流体控制技术有限公司 全集成多通道多功能微流控分析实验系统
CN109107624A (zh) * 2018-10-16 2019-01-01 长春技特生物技术有限公司 一种全封闭微流控芯片和乳液微滴制备系统
CN110069168A (zh) * 2019-05-05 2019-07-30 京东方科技集团股份有限公司 微流控装置、用于微流控装置的操作方法及控制装置

Also Published As

Publication number Publication date
CN110069168B (zh) 2022-09-30
CN110069168A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
US10055054B2 (en) Touch device with adjustable grid distance
CN105867699B (zh) 显示面板及触控压力检测方法
WO2014153862A1 (zh) 电容内嵌式触摸屏和显示装置
TWI480785B (zh) 具有觸摸偵測功能之顯示裝置,驅動電路,具有觸摸偵測功能之顯示裝置之驅動方法,以及電子器件
US20180376040A1 (en) Method for operating camera underwater
US9651815B2 (en) Self-capacitance in-cell touch screen and method of manufacturing the same, liquid crystal display
WO2020224330A1 (zh) 微流控装置、用于微流控装置的操作方法及控制装置
JP5845204B2 (ja) 電子機器および電子機器の制御方法
TW201248249A (en) Display panel with touch detection function, drive circuit, and electronic unit
US9250492B2 (en) In-cell touch panel structure of narrow border
JP5865286B2 (ja) 電子機器および電子機器の制御方法
CN103699264B (zh) 一种触控电路、触控基板及触控显示装置
WO2017107293A1 (zh) 带触感反馈功能的触控显示装置及其驱动方法
US10133427B2 (en) Embedded touch-screen display panel
WO2019218588A1 (zh) 触控基板和触控显示面板
CN103412671B (zh) 显示及触控感测方法及应用该方法的装置
CN108513653A (zh) 触摸屏及具有触摸屏的终端设备
WO2022174453A1 (zh) 虚拟按键的触觉反馈方法、装置及电子设备
KR20220094657A (ko) 터치패널과 이를 구비한 표시장치 및 터치검출방법
JP6082799B2 (ja) 電子機器、検知回路の制御方法および検知回路
KR102112674B1 (ko) 터치 스크린 일체형 표시패널의 검사장치 및 검사방법
JP5797950B2 (ja) マルチタッチパネル装置
TWI412860B (zh) 電子紙裝置
JPS63156226A (ja) 座標情報入力装置
CN106325641A (zh) 一种触控电极结构、触控面板及触控显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802118

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20802118

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.06.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20802118

Country of ref document: EP

Kind code of ref document: A1