WO2020224202A1 - 一种旋飞结构的动态扭矩感应装置 - Google Patents

一种旋飞结构的动态扭矩感应装置 Download PDF

Info

Publication number
WO2020224202A1
WO2020224202A1 PCT/CN2019/114277 CN2019114277W WO2020224202A1 WO 2020224202 A1 WO2020224202 A1 WO 2020224202A1 CN 2019114277 W CN2019114277 W CN 2019114277W WO 2020224202 A1 WO2020224202 A1 WO 2020224202A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction
rotating
sensor
spinning
control circuit
Prior art date
Application number
PCT/CN2019/114277
Other languages
English (en)
French (fr)
Inventor
康献兵
Original Assignee
昆山攀登电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山攀登电子科技有限公司 filed Critical 昆山攀登电子科技有限公司
Priority to JP2022512474A priority Critical patent/JP7473242B2/ja
Priority to EP19927813.6A priority patent/EP3967589A4/en
Priority to US17/608,200 priority patent/US20220299388A1/en
Publication of WO2020224202A1 publication Critical patent/WO2020224202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1435Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/411Torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/08Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving optical means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/108Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/225Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to foot actuated controls, e.g. brake pedals

Definitions

  • This application relates to the application field of torque sensors, for example, to a dynamic torque sensing device with a rotating flying structure.
  • the present application provides a dynamic torque sensing device with a spinning structure. Since the device is not affected by the weight of the human body and the entire vehicle, it can truly reflect the strength of the pedals.
  • the spinning induction main body includes a relative fixed part of the spinning induction main body, a relative rotation part of the spinning induction main body, a rotation induction main body transition part; the relative fixed part of the rotation induction main body, the rotation induction main transition part, and The relative rotation parts of the spinning induction body are sequentially arranged along the axial direction of the spinning induction body, and the transition part of the spinning induction body connects the relatively fixed part of the spinning induction body and the relative rotation part of the spinning induction body .
  • the relative fixed part of the spinning induction body, the relative rotation part of the spinning induction body, and the transition part of the spinning induction body are coaxial ring structures.
  • the inner cavity of the rotating flight induction main body opposite to the fixed part is provided with a bearing.
  • the inner cavity of the relative rotating part of the spinning induction main body is provided with a bearing.
  • the sensor is a deformation sensing sensor, and the deformation sensing sensor is arranged at the transition part of the rotating flight sensing body.
  • the sensor includes a torque-sensitive Hall and a torque-sensitive magnet.
  • the torque-sensitive Hall and the torque-sensitive magnet are respectively arranged on the relatively fixed part and the relatively rotating part of the spinning body, or the torque-sensitive Hall and the torque-sensitive magnet are respectively provided It is arranged at the relative rotation part of the spinning induction main body and the relative fixed part of the spinning induction main body.
  • the dynamic torque sensing device of the spinning structure further includes an inductor primary control circuit and an inductor secondary control circuit.
  • the sensor primary control circuit is fixed to the fixed housing, the sensor primary control circuit is provided with an infrared receiving element, the rotary fly induction main body is connected with the sensor secondary control circuit, and the sensor secondary control circuit Equipped with infrared emitting elements.
  • the dynamic torque induction device of the spinning structure further includes a primary induction coil and a secondary induction coil, the primary induction coil is electrically connected to the inductor primary control circuit, and the secondary induction coil is electrically connected to the inductor secondary control circuit .
  • the dynamic torque induction device of the spinning structure further includes two electromagnetic shielding bodies, and the two electromagnetic shielding bodies are respectively located outside the secondary induction coil and the primary induction coil.
  • the sensor is electrically connected with the secondary control circuit of the sensor.
  • the outer surface of the fixed shell is provided with a signal wire hole, and the signal wire is electrically connected with the primary control circuit of the sensor through the signal wire hole.
  • the two ends of the spinning induction main body are connected with the shaft rod through the bearing, and the inner surface of the hole in the fixed shell matched with the shaft rod is provided with a fixed shell positioning portion.
  • the dynamic torque sensing device of the spinning structure provided in the present application is designed as a modular device as a whole.
  • the transition part of the spinning sensor body is not affected by the weight of the human body and the entire vehicle. , So it can truly reflect the strength of the pedal; the device has a simpler structure, and can be assembled on the rear motor or on the rear hub of the bicycle, with stronger universality.
  • FIG. 1 is a schematic structural diagram of a dynamic torque sensing device with a spinning structure provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram from another angle of Fig. 1;
  • Fig. 3 is a partial structural diagram of Fig. 1;
  • FIG. 4 is a schematic diagram of an explosive structure of a dynamic torque sensing device with a rotating structure provided by an embodiment of the present application
  • FIG. 5 is a schematic cross-sectional structure diagram of a dynamic torque sensing device with a rotating structure provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of an installation method of a dynamic torque sensing device with a rotating structure provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of the usage mode of the dynamic torque sensing device of the rotating structure provided by an embodiment of the present application.
  • Rotary flying induction main body 101- Rotary flying induction main body relative fixed part; 102- Rotary flying induction main body relative rotation part; 103- Rotary flying induction main body transition part; 104- Threaded hole; 2- Fixed housing; 201- Fixed housing Positioning part; 202-signal wire hole; 3-inductor primary control circuit; 4-infrared receiving element; 5-electromagnetic shielding body; 6-primary induction coil; 7-secondary induction coil; 8-signal wire; 9-induction The secondary control circuit of the device; 10-infrared emitting element; 11a-bearing; 11b-bearing; 12-sensor;
  • the dynamic torque sensing device of the rotating flying structure of this example includes a rotating flying sensing body 1, a fixed housing 2 and a sensor 12.
  • the sensor 12 is configured to sense the torque of the spinning induction body 1.
  • the rotation induction main body 1 and the fixed housing 2 rotate relatively.
  • the spinning induction body 1 is connected to the motor rotor, and the spinning induction body 1 rotates with the motor rotor;
  • the fixed housing 2 is connected to the motor stator, and the fixed housing 2 is opposite Immobile.
  • the dynamic torque sensing device of the spinning structure in this example can also be installed on the rear hub of a bicycle, an electric bicycle, or fitness equipment.
  • the rotating flight induction main body 1 includes a rotating flight induction main body relative fixed part 101, a rotating flight induction main body relative rotation part 102, and a rotating flight induction main body transition part 103.
  • the relative fixed portion 101 of the rotating flight induction body, the relative rotation portion 102 of the rotating flight induction body and the transition portion 103 of the rotating flight induction body are all annular structures.
  • the relative fixed part 101 of the spinning induction body, the transition part 103 of the spinning induction body, and the relative rotation part 102 of the spinning induction body are arranged in sequence along the axial direction of the spinning induction body 1, and the transition part 103 of the spinning induction body is arranged to connect with the spinning
  • the sensing body is relatively fixed part 101 and the spinning sensing body is relatively rotating part 102.
  • a bearing 11a is provided in the inner cavity of the rotating flight induction main body relative to the fixed portion 101, and a bearing 11b is provided in the inner cavity of the rotating flight induction main body relative to the rotating portion 102. Both the relative fixed part 101 of the rotating induction main body and the relative rotating part 102 of the rotating induction main body rotate with the bearing.
  • the rotation induction body 1 When the rotation induction body 1 receives external forces such as the human body, the weight of the vehicle, the chain tension, etc., the external forces received by the rotation induction body relative to the fixed part 101 and the rotation induction body relative to the rotation part 102 are all transmitted to the rear by the two bearings.
  • the axle rod 20 of the wheel makes the transition part 103 of the rotating induction main body not affected by external forces such as the human body, the weight of the whole vehicle, and the pulling force of the chain.
  • the rotating induction body is provided with a bolt hole 104 relative to the fixed part 101 for connecting with an external rotating mechanism.
  • the rotating mechanism may be a motor end cover or a rear wheel hub.
  • the rotating induction body is relatively fixed to the fixed part 101 It can also be connected to an external rotating mechanism by means of spline connection.
  • the rotating fly induction main body is provided with threads on the outer surface of the rotating part 102 as a load connection part for connecting with external loads.
  • the load may be a rotating flywheel.
  • the rotating fly induction The main body relative rotation part 102 can also be connected to an external load through a spline connection or the like.
  • the senor 12 is a deformation sensing sensor
  • the deformation sensing sensor is disposed at the transition portion 103 of the rotating fly sensing body
  • the deformation sensing sensor may be a resistance strain gauge.
  • the senor 12 may be a combination of a torque-sensitive Hall and a torque-sensitive magnet.
  • the torque-sensitive Hall and the torque-sensitive magnet are respectively disposed on the relative fixed part 101 and the relative rotating part 102 of the rotating flight induction body.
  • the torque-sensing hall and the torque-sensing magnet are respectively arranged in the relative rotation part 102 of the rotating flight induction body and the relative fixed part 101 of the rotating flight induction body.
  • the torque induction hall can be used.
  • the change in the magnetic field of the torque sensing magnet is sensed and converted into an electrical signal.
  • the fixed housing 2 is an annular housing.
  • the inner surface of the hole where the annular housing matches the shaft rod 20 is provided with a fixed housing positioning portion 201, the fixed housing positioning portion 201 is elongated, and the fixed housing positioning portion 201 It is configured to restrict the rotation of the fixed housing 2.
  • the outer surface of the fixed housing 2 is provided with a signal line hole 202.
  • the signal line 8 is electrically connected to the sensor primary control circuit 3 through the signal line hole 202.
  • the dynamic torque sensing device of the spinning structure of this embodiment further includes an inductor primary control circuit 3 and an inductor secondary control circuit 9.
  • the sensor primary control circuit 3 is fixed to the fixed housing 2, and the sensor primary control circuit 3 is provided with an infrared receiving element 4.
  • the rotating flying induction main body 1 is connected to the sensor secondary control circuit 9, and the sensor secondary control circuit 9 is provided with an infrared emitting element 10.
  • the sensor primary control circuit 3 and the sensor secondary control circuit 9 transmit signals through the infrared receiving element 4 and the infrared emitting element 10.
  • the emitted light is visible light or invisible light. In this embodiment, the emitted light is Invisible light, that is, infrared light, is used for data transmission. This data transmission method has low cost.
  • the inductor primary control circuit 3 is electrically connected to the signal line 8.
  • the dynamic torque induction device of the spinning structure includes a primary induction coil 6 and a secondary induction coil 7.
  • the secondary induction coil 7 and the primary induction coil 6 are arranged adjacently.
  • the primary induction coil 6 is electrically connected to the inductor primary control circuit 3 and the secondary induction coil 7 is electrically connected to the inductor secondary control circuit 9.
  • Wireless signal transmission is performed between the primary induction coil 6 and the secondary induction coil 7.
  • the power supply mode of the inductor secondary control circuit 9 includes: the inductor secondary control circuit 9 provides electric energy through its own power generation device, battery power, or through a wireless transmission mode; or the inductor secondary control circuit 9 uses the secondary induction coil 7 and
  • the wireless power transmission method between the primary induction coils 6 provides electrical energy.
  • the resonant coupling method can be used to wirelessly transmit electrical energy.
  • the dynamic torque induction device of the spinning structure of this embodiment further includes an electromagnetic shielding body 5.
  • the electromagnetic shielding body 5 is respectively arranged to isolate the electromagnetic interference between the primary induction coil 6 and the secondary induction coil 7 and the outside, so as to improve the transmission of coil energy.
  • the sensor 12 is electrically connected to the sensor secondary control circuit 9. After the sensor 12 senses the torque signal of the rotating sensor body 1, it is first received by the sensor secondary control circuit 9, and then through the infrared emitting element 10 and the infrared receiving element 4. Data transmission, or data transmission through the secondary induction coil 7 and the primary induction coil 6; the inductor primary control circuit 3 performs data processing after receiving the signal, and then outputs the torque signal through the signal line 8.
  • the working principle of the dynamic torque sensing device of the spinning structure is: when riding, the user drives the pedal plate to rotate through the pedal, and the pedal plate drives the sensing body to face each other through a transmission structure such as a chain or a belt or a spinning mechanism.
  • the rotating part 102 rotates, and the sensor 12 senses the displacement between the rotating part 102 relative to the rotating part 102 and the relative fixed part 101 of the rotating flying induction body or the deformation of the transition part 103 of the rotating flying induction body, and then passes through the sensor successively.
  • the stage control circuit 9 and the sensor primary control circuit 3 convert the pedal torque signal that the user needs.
  • the dynamic torque sensing device of the rotating fly structure is designed as a modular device.
  • the transition part 103 of the rotating fly sensing main body is not affected by the weight of the human body and the entire vehicle, and the pulling force of the chain. Wait for the influence of external force, which can truly reflect the torsion of the pedals.
  • the device has a simpler structure, and can be assembled to the rear motor or the rear hub of the bicycle, which has stronger universality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一种旋飞结构的动态扭矩感应装置,包括旋飞感应主体(1)、固定外壳(2)和传感器(12),旋旋飞感应主体与固定外壳相对转动,传感器被设置为感应旋飞感应主体的扭矩;旋飞感应主体包括旋飞感应主体相对固定部(101)、旋飞感应主体相对旋转部(102)、旋飞感应主体过渡部(103);旋飞感应主体相对固定部、旋飞感应主体过渡部和旋飞感应主体相对旋转部沿旋飞感应主体的轴向依次设置,旋飞感应主体过渡部连接旋飞感应主体相对固定部和旋飞感应主体相对旋转部。该动态扭矩感应装置结构简单,可真实地反应脚踏的力量大小。

Description

一种旋飞结构的动态扭矩感应装置
本申请要求在2019年05月05日提交中国专利局、申请号为201920625117.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及力矩传感器应用领域,例如涉及一种旋飞结构的动态扭矩感应装置。
背景技术
随着人们对智能出行不断提出更高要求,力矩传感器越来越多受到人们的青睐,现阶段力矩传感器的发展越来越倾向于设置在电机内部,这样整车走线和装配更简单美观。例如,2018年7月10日公开的申请号为2017214339570的中国专利:一种内置动态扭力感应测量装置的电机,采用将动态扭力传感器内置电机内部。但是这种技术方案存在以下问题:传感器被装配到整车后,人们骑行电动车过程中,不同重量的人体和传感器转动的不同角度都会影响力矩传感器信号变化,使传感器无法真实反映脚踏的力量的大小。
发明内容
本申请提供一种旋飞结构的动态扭矩感应装置,由于该装置不受人体和整车的重量的影响,因此可真实反映脚踏的力量大小。
一种旋飞结构的动态扭矩感应装置,旋飞感应主体、固定外壳和传感器,所述旋飞感应主体与所述固定外壳相对转动,所述传感器被设置为感应所述旋飞感应主体的扭矩;
所述旋飞感应主体包括旋飞感应主体相对固定部、旋飞感应主体相对旋转部、旋飞感应主体过渡部;所述旋飞感应主体相对固定部、所述旋飞感应主体过渡部、和所述旋飞感应主体相对旋转部沿所述旋飞感应主体的轴向依次设置,所述旋飞感应主体过渡部连接所述旋飞感应主体相对固定部和所述旋飞感应主体相对旋转部。
所述旋飞感应主体相对固定部、旋飞感应主体相对旋转部和旋飞感应主体过渡部为同轴的环状结构。
所述旋飞感应主体相对固定部的内腔设有轴承。
所述旋飞感应主体相对旋转部的内腔设有轴承。
所述传感器为形变感应传感器,所述形变感应传感器设置于旋飞感应主体过渡部。
所述传感器包括扭矩感应霍尔和扭矩感应磁石,扭矩感应霍尔和扭矩感应磁石分别设置在旋飞感应主体相对固定部和旋飞感应主体相对旋转部,或者扭矩感应霍尔和扭矩感应磁石分别设置在旋飞感应主体相对旋转部和旋飞感应主体相对固定部。
所述旋飞结构的动态扭矩感应装置还包括感应器初级控制电路和感应器次级控制电路。
所述感应器初级控制电路固定于所述固定外壳,所述感应器初级控制电路设有红外接收元件,所述旋飞感应主体连接有感应器次级控制电路,所述感应器次级控制电路设有红外发射元件。
所述旋飞结构的动态扭矩感应装置还包括初级感应线圈和次级感应线圈,所述初级感应线圈与感应器初级控制电路电气连接,所述次级感应线圈与感应器次级控制电路电气连接。
所述旋飞结构的动态扭矩感应装置还包括两个电磁屏蔽体,所述两个电磁屏蔽体分别位于所述次级感应线圈和所述初级感应线圈的外侧。
所述传感器与所述感应器次级控制电路电气连接。
所述固定外壳的外表面设有信号线孔,信号线通过信号线孔与感应器初级控制电路电气连接。所述旋飞感应主体的两端通过所述轴承与轴棍相连,所述固定外壳中与所述轴棍配合的孔的内表面设有固定外壳定位部。
本申请提供的旋飞结构的动态扭矩感应装置,整体设计成一个模块化的装置,通过对旋飞感应主体的结构改进,使得旋飞感应主体的过渡部不受人体和整车的重量的影响,因此可真实的反映脚踏的力量大小;该装置结构更简单,可以装配到后置电机上也可以装配到自行车的后花鼓上,通配性更强。
附图说明
图1是本申请一实施例提供的旋飞结构的动态扭矩感应装置的结构示意图;
图2是图1的另一角度示意图;
图3是图1的部分结构示意图;
图4是本申请一实施例提供的旋飞结构的动态扭矩感应装置的爆炸结构示意图;
图5是本申请一实施例提供的旋飞结构的动态扭矩感应装置的剖视结构示意图;
图6是本申请一实施例提供的旋飞结构的动态扭矩感应装置的安装方式示意图;
图7是本申请一实施例提供的旋飞结构的动态扭矩感应装置的使用方式示意图。
图中标号如下:
1-旋飞感应主体;101-旋飞感应主体相对固定部;102-旋飞感应主体相对旋转部;103-旋飞感应主体过渡部;104-螺纹孔;2-固定外壳;201-固定外壳定位部;202-信号线孔;3-感应器初级控制电路;4-红外接收元件;5-电磁屏蔽体;6-初级感应线圈;7-次级感应线圈;8-信号线;9-感应器次级控制电路;10-红外发射元件;11a-轴承;11b-轴承;12-传感器;
20、轴棍。
具体实施方式
以下结合附图和具体实施例对本申请中的技术方案进行阐述。
如图1至图7所示,本示例旋飞结构的动态扭矩感应装置,包括旋飞感应主体1、固定外壳2和传感器12。传感器12被设置为感测旋飞感应主体1的扭矩。旋飞感应主体1与固定外壳2相对转动。例如,的旋飞结构的动态扭矩感应装置被安装在电机上时,旋飞感应主体1与电机转子连接,旋飞感应主体1随电机转子转动;固定外壳2与电机定子连接,固定外壳2相对固定不动。
本示例中的旋飞结构的动态扭矩感应装置还能够安装在自行车、电动自行车或健身运动器材等的后花鼓上。
旋飞感应主体1包括旋飞感应主体相对固定部101、旋飞感应主体相对旋转部102、旋飞感应主体过渡部103。旋飞感应主体相对固定部101、旋飞感应主体相对旋转部102和旋飞感应主体过渡部103均为环状结构。旋飞感应主体相对固定部101、旋飞感应主体过渡部103和旋飞感应主体相对旋转部102沿旋飞感应主体1的轴向依次设置,旋飞感应主体过渡部103被设置成连接旋飞感应主体相对固定部101和旋飞感应主体相对旋转部102。旋飞感应主体相对固定部101内腔设有轴承11a,旋飞感应主体相对旋转部102的内腔设有轴承11b。旋飞感应主体相对固定部101和旋飞感应主体相对旋转部102均随轴承转动。
当旋飞感应主体1受到人体、整车重量、链条拉力等外力时,由于旋飞感应主体相对固定部101和旋飞感应主体相对旋转部102所受的外力,全部由两 个轴承传递给后轮的轴棍20,使得旋飞感应主体过渡部103能够不受人体、整车重量、链条拉力等外力影响。旋飞感应主体相对固定部101设有螺栓孔104,用于与外界的旋转机构连接,所述旋转机构可为电机端盖或后轮花鼓,其他实施例中,旋飞感应主体相对固定部101也可以通过花键连接等方式与外界的旋转机构连接。本实施例中,旋飞感应主体相对旋转部102的外表面设有螺纹,作为负载连接部,用于与外界的负载连接,所述负载可为旋式飞轮,其他实施例中,旋飞感应主体相对旋转部102还可以通过花键连接等方式与外界的负载连接。
本实施例中,传感器12为形变感应传感器,形变感应传感器设置于旋飞感应主体过渡部103,形变感应传感器可以为电阻式应变计。
在其他实施例中,传感器12可以为扭矩感应霍尔和扭矩感应磁石结合方式,扭矩感应霍尔和扭矩感应磁石分别设置在旋飞感应主体相对固定部101和旋飞感应主体相对旋转部102,或者扭矩感应霍尔和扭矩感应磁石分别设置在旋飞感应主体相对旋转部102和旋飞感应主体相对固定部101,只要扭矩感应霍尔和扭矩感应磁石有微小相对移动,扭矩感应霍尔即可以感应到扭矩感应磁石的磁场变化并将其转为电信号。
如图2所示,固定外壳2为环形壳体,环形壳体与轴棍20配合的孔的内表面设有固定外壳定位部201,固定外壳定位部201为长条形,固定外壳定位部201被设置为限制固定外壳2的转动。如图4所示,固定外壳2的外表面设有信号线孔202。信号线8通过信号线孔202与感应器初级控制电路3电气连接。
本实施例的旋飞结构的动态扭矩感应装置还包括感应器初级控制电路3和感应器次级控制电路9。
感应器初级控制电路3固定于固定外壳2,感应器初级控制电路3设有红外接收元件4。旋飞感应主体1与感应器次级控制电路9连接,感应器次级控制电路9设有红外发射元件10。感应器初级控制电路3和感应器次级控制电路9之间通过红外接收元件4和红外发射元件10进行信号传递,发射的光为可见光也可为不可见光,本实施例中,发射的光为不可见光,即红外线做数据传输,这种数据传输方式成本低。感应器初级控制电路3与信号线8电气连接。
另一实施例中,旋飞结构的动态扭矩感应装置包括初级感应线圈6和次级感应线圈7。次级感应线圈7和初级感应线圈6相邻设置。初级感应线圈6与感应器初级控制电路3电气连接,次级感应线圈7与感应器次级控制电路9电气连接。初级感应线圈6和次级感应线圈7之间进行无线信号传递。感应器次级控制电路9的供电方式包括:感应器次级控制电路9通过自身发电装置、电池 供电或通个无线传递方式提供电能;或者感应器次级控制电路9通过次级感应线圈7和初级感应线圈6之间的无线电能传递方式提供电能,具体的,可以采用谐振耦合方式无线传递电能。
本实施例的旋飞结构的动态扭矩感应装置还包括电磁屏蔽体5,电磁屏蔽体5有两个,两个电磁屏蔽体5分别位于次级感应线圈7和初级感应线圈6的外侧,两个电磁屏蔽体5分别被设置为隔离初级感应线圈6和次级感应线圈7与外界的电磁干扰,以提高线圈能量的传递。
传感器12与感应器次级控制电路9电气连接,传感器12感应到旋飞感应主体1的扭矩信号后,先通过感应器次级控制电路9接收,然后通过红外发射元件10和红外接收元件4进行数据传输,或者通过次级感应线圈7和初级感应线圈6进行数据传输;感应器初级控制电路3接收到信号后进行数据处理,然后将扭矩信号通过信号线8进行输出。
本申请提供的旋飞结构的动态扭矩感应装置的工作原理为:骑行时,用户通过登脚踏板带动脚踏盘转动,脚踏盘通过链条或皮带、旋飞等传动结构带动感应主体相对旋转部102转动,传感器12感测到旋飞感应主体相对旋转部102相对于旋飞感应主体相对固定部101之间位移大小或旋飞感应主体过渡部103的形变大小,再依次通过感应器次级控制电路9、感应器初级控制电路3转换为用户需要得到的脚踏的扭矩信号。
本申请实施例将旋飞结构的动态扭矩感应装置设计成一个模块化的装置,通过对旋飞感应主体的结构改进,使得旋飞感应主体过渡部103不受人体和整车的重量、链条拉力等外力的影响,从而可真实的反映脚踏的扭力大小,该装置结构更简单,同时可以装配到后置电机也可以装配到自行车的后花鼓上,通配性更强。

Claims (13)

  1. 一种旋飞结构的动态扭矩感应装置,包括:旋飞感应主体、固定外壳和传感器,所述旋旋飞感应主体与所述固定外壳相对转动,所述传感器被设置为感应所述旋飞感应主体的扭矩;
    所述旋飞感应主体包括旋飞感应主体相对固定部、旋飞感应主体相对旋转部、旋飞感应主体过渡部;所述旋飞感应主体相对固定部、所述旋飞感应主体过渡部、和所述旋飞感应主体相对旋转部沿所述旋飞感应主体的轴向依次设置,所述旋飞感应主体过渡部连接所述旋飞感应主体相对固定部和所述旋飞感应主体相对旋转部。
  2. 根据权利要求1所述的旋飞结构的动态扭矩感应装置,其中:所述旋飞感应主体相对固定部、所述旋飞感应主体相对旋转部和所述旋飞感应主体过渡部为同轴的环状结构。
  3. 根据权利要求1或2所述的旋飞结构的动态扭矩感应装置,其中:所述旋飞感应主体相对固定部的内腔设有轴承。
  4. 根据权利要求3所述的旋飞结构的动态扭矩感应装置,其中:所述旋飞感应主体相对旋转部的内腔设有轴承。
  5. 根据权利要求1所述的旋飞结构的动态扭矩感应装置,其中:所述传感器为形变感应传感器,所述形变感应传感器设置于所述旋飞感应主体过渡部。
  6. 根据权利要求1所述的旋飞结构的动态扭矩感应装置,其中:所述传感器包括扭矩感应霍尔和扭矩感应磁石;
    所述扭矩感应霍尔和所述扭矩感应磁石分别设置在所述旋飞感应主体相对固定部和所述旋飞感应主体相对旋转部,或者,所述扭矩感应霍尔和所述扭矩感应磁石分别设置在所述旋飞感应主体相对旋转部和所述旋飞感应主体相对固定部。
  7. 根据权利要求1至6任一权利要求所述的旋飞结构的动态扭矩感应装置,还包括:感应器初级控制电路和感应器次级控制电路。
  8. 根据权利要求7所述的旋飞结构的动态扭矩感应装置,其中:所述感应器初级控制电路固定于所述固定外壳,并且所述感应器初级控制电路上设有红外接收元件;
    所述感应器次级控制电路与所述旋飞感应主体连接,并且所述感应器次级控制电路上设有红外发射元件。
  9. 根据权利要求7或8所述的旋飞结构的动态扭矩感应装置,还包括:初 级感应线圈和次级感应线圈,所述初级感应线圈与所述感应器初级控制电路电气连接,所述次级感应线圈与所述感应器次级控制电路电气连接。
  10. 根据权利要求9所述的旋飞结构的动态扭矩感应装置,还包括:两个电磁屏蔽体,所述两个电磁屏蔽体分别位于所述次级感应线圈和所述初级感应线圈的外侧。
  11. 根据权利要求7所述的旋飞结构的动态扭矩感应装置,其中:所述传感器与所述感应器次级控制电路电气连接。
  12. 根据权利要求7所述的旋飞结构的动态扭矩感应装置,其中:所述固定外壳的外表面设有信号线孔,信号线通过所述信号线孔与所述感应器初级控制电路电气连接。
  13. 根据权利要求4所述的旋飞结构的动态扭矩感应装置,其中:所述旋飞感应主体的两端通过所述轴承与轴棍相连,所述固定外壳中与所述轴棍配合的孔的内表面设有固定外壳定位部。
PCT/CN2019/114277 2019-05-05 2019-10-30 一种旋飞结构的动态扭矩感应装置 WO2020224202A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512474A JP7473242B2 (ja) 2019-05-05 2019-10-30 スピンナ構造の動的トルク誘導装置
EP19927813.6A EP3967589A4 (en) 2019-05-05 2019-10-30 DYNAMIC TORQUE SENSING DEVICE OF A THREADED FREE WHEEL STRUCTURE
US17/608,200 US20220299388A1 (en) 2019-05-05 2019-10-30 Dynamic torque sensing device of thread-on freewheel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920625117.7 2019-05-05
CN201920625117.7U CN209852517U (zh) 2019-05-05 2019-05-05 一种电动自行车旋飞结构的动态扭矩感应装置

Publications (1)

Publication Number Publication Date
WO2020224202A1 true WO2020224202A1 (zh) 2020-11-12

Family

ID=68940070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114277 WO2020224202A1 (zh) 2019-05-05 2019-10-30 一种旋飞结构的动态扭矩感应装置

Country Status (5)

Country Link
US (1) US20220299388A1 (zh)
EP (1) EP3967589A4 (zh)
JP (1) JP7473242B2 (zh)
CN (1) CN209852517U (zh)
WO (1) WO2020224202A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001979A (zh) * 2021-11-01 2022-02-01 苏州摩腾电子科技有限公司 电动自行车旋飞结构的动态扭矩及踏频速度一体感应装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203581299U (zh) * 2013-08-07 2014-05-07 苏州盛亿电机有限公司 电动自行车扭力传感装置
US20140202262A1 (en) * 2013-01-18 2014-07-24 Mavic S.A.S. Torque-measuring hub, power-measuring system, cycle wheel equipped with such a hub or system, and measuring method using such a hub
CN106627964A (zh) * 2016-11-22 2017-05-10 昆山朗德森机电科技有限公司 用于电动自行车的扭矩传感器及检测系统
CN109421882A (zh) * 2017-08-31 2019-03-05 北京轻客智能科技有限责任公司 扭力采集总成、中置电机及自行车
CN109572916A (zh) * 2019-01-14 2019-04-05 昆山攀登电子科技有限公司 一种电动自行车塔基扭矩速度感应装置
CN109649569A (zh) * 2019-02-20 2019-04-19 康献兵 塔基扭矩传感装置及电动自行车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047080A (ja) * 2011-08-29 2013-03-07 Shimano Inc 自転車用リアハブ
EP3104495B1 (en) * 2014-01-20 2018-09-26 Hitachi Automotive Systems, Ltd. Rotating body noncontact power feeding device and torque sensor
CN207603394U (zh) * 2017-11-01 2018-07-10 昆山攀登电子科技有限公司 一种内置动态扭力感应测量装置的电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140202262A1 (en) * 2013-01-18 2014-07-24 Mavic S.A.S. Torque-measuring hub, power-measuring system, cycle wheel equipped with such a hub or system, and measuring method using such a hub
CN203581299U (zh) * 2013-08-07 2014-05-07 苏州盛亿电机有限公司 电动自行车扭力传感装置
CN106627964A (zh) * 2016-11-22 2017-05-10 昆山朗德森机电科技有限公司 用于电动自行车的扭矩传感器及检测系统
CN109421882A (zh) * 2017-08-31 2019-03-05 北京轻客智能科技有限责任公司 扭力采集总成、中置电机及自行车
CN109572916A (zh) * 2019-01-14 2019-04-05 昆山攀登电子科技有限公司 一种电动自行车塔基扭矩速度感应装置
CN109649569A (zh) * 2019-02-20 2019-04-19 康献兵 塔基扭矩传感装置及电动自行车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3967589A4

Also Published As

Publication number Publication date
EP3967589A4 (en) 2023-01-11
US20220299388A1 (en) 2022-09-22
JP7473242B2 (ja) 2024-04-23
EP3967589A1 (en) 2022-03-16
CN209852517U (zh) 2019-12-27
JP2022538194A (ja) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2020147370A1 (zh) 塔基扭矩速度感应装置
WO2012055129A1 (zh) 电动自行车力矩和速度传感器
EP1978342A2 (en) Instrument-equipped bicycle component and detection unit for equipping such a component
US20140051548A1 (en) Bicycle drive unit
JP6408150B2 (ja) 電動自転車中心モーター及びそのトルク検知デバイス
CN104276251A (zh) 一种电动车中轴力矩传感系统
CN104709430A (zh) 一种用于电动自行车中轴力矩传感系统的采用两级花键连接的踩踏力输出装置
US10858059B2 (en) Combined torque, direction, and cadence sensing system for electric bicycles
CN102464080A (zh) 自行车中轴的力矩感测系统及其二次式信号传输方法
WO2020224202A1 (zh) 一种旋飞结构的动态扭矩感应装置
WO2022011831A1 (zh) 一种磁通式扭力传感器
CN207603394U (zh) 一种内置动态扭力感应测量装置的电机
CN209634670U (zh) 一种电动自行车塔基扭矩速度感应装置
WO2019091180A1 (zh) 一种应用动态传感器电路组合的中置电机
JP3428497B2 (ja) 補助動力付き自転車
CN107733167A (zh) 一种内置动态扭力感应测量装置的电机
CN220595087U (zh) 电动助力车改装中置电机的力矩传感器装置
CN210634699U (zh) 电助力自行车的动力输出机构
CN204368387U (zh) 电动自行车中置电机及其力矩传感装置
TWM589678U (zh) 電助力自行車的動力輸出機構
CN206476041U (zh) 带力矩传感功能的轮毂电机和采用该电机的电动自行车
CN219770097U (zh) 一种中轴力矩传感器装置及电助力自行车
CN211391588U (zh) 塔基和电动助力自行车
WO2023245506A1 (en) A torque sensing system, a power control system, a conversion kit with a torque sensing system, and a vehicle with a torque sensing system
CN221162978U (zh) 一种电动转向器驱动机构、转向系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019927813

Country of ref document: EP

Effective date: 20211206