WO2020224076A1 - Robot control method and related product - Google Patents

Robot control method and related product Download PDF

Info

Publication number
WO2020224076A1
WO2020224076A1 PCT/CN2019/099639 CN2019099639W WO2020224076A1 WO 2020224076 A1 WO2020224076 A1 WO 2020224076A1 CN 2019099639 W CN2019099639 W CN 2019099639W WO 2020224076 A1 WO2020224076 A1 WO 2020224076A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
robot
control parameter
target control
parameter
Prior art date
Application number
PCT/CN2019/099639
Other languages
French (fr)
Chinese (zh)
Inventor
邓朝阳
叶佩森
黎钊洪
招俊健
Original Assignee
深圳市工匠社科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市工匠社科技有限公司 filed Critical 深圳市工匠社科技有限公司
Publication of WO2020224076A1 publication Critical patent/WO2020224076A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators

Definitions

  • This application relates to the field of control technology, in particular to a robot control method and related products.
  • the control method usually used to control the robot is: directly issue a fixed motion instruction number through a traditional handle, etc., and transmit it to the robot processor through wired or wireless communication methods, and find the fixed number written in the robot processor. Action number, and then convert the instruction data corresponding to the number into a corresponding control signal to control the robot movement. Because the existing solution only uses fixed action instructions for control, the accuracy of robot control is low.
  • the embodiments of the present application provide a robot control method and related products, which can improve the convenience of robot control.
  • the first aspect of the embodiments of the present application provides a robot control method, which includes:
  • a preset target control parameter determination method is adopted to determine the target control parameter of the robot
  • the target control parameter is sent to the robot.
  • a second aspect of the embodiments of the present application provides a robot control device, which includes an acquiring unit, a determining unit, and a sending unit, wherein:
  • the acquiring unit is configured to acquire a target parameter set of the robot controller in a preset time period
  • the determining unit is configured to determine the target control parameter of the robot by using a preset target control parameter determination method according to the target parameter set;
  • the sending unit is configured to send the target control parameter to the robot.
  • a third aspect of the embodiments of the present application provides a terminal, including a processor, an input device, an output device, and a memory.
  • the processor, input device, output device, and memory are connected to each other, wherein the memory is used to store a computer program
  • the computer program includes program instructions, and the processor is configured to call the program instructions to execute instructions as in the first aspect of the embodiments of the present application.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, wherein the foregoing computer-readable storage medium stores a computer program for electronic data exchange, wherein the foregoing computer program enables a computer to execute Some or all of the steps described in one aspect.
  • the fifth aspect of the embodiments of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to make a computer execute Example part or all of the steps described in the first aspect.
  • the computer program product may be a software installation package.
  • the preset target control parameter determination method is adopted to determine the target control parameter of the robot, and the The target control parameters are sent to the robot. Therefore, compared with the existing solution, only a fixed control command is used to control the robot.
  • the target parameter set of the robot controller can be collected, and the target control parameter can be determined according to the parameter, and the target control parameter can be sent to the robot.
  • the target parameter set can be used to determine the target control parameter, which can improve the accuracy of robot control to a certain extent.
  • FIG. 1 provides a schematic structural diagram of a robot control system according to an embodiment of the application
  • FIG. 2A provides a schematic flowchart of a robot control method according to an embodiment of this application
  • 2B is a schematic diagram of a rotating shaft of an electronic device according to an embodiment of the application.
  • FIG. 3 is a schematic flowchart of another robot control method according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of another robot control method according to an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a robot control device provided in an embodiment of the application.
  • the parameter set of the controller is analyzed and the target control parameters are determined. It can improve the accuracy of robot control.
  • FIG. 1 provides a schematic structural diagram of a robot control system according to an embodiment of the present application.
  • the robot control system includes a robot controller 101 and a robot 102.
  • the robot controller 101 obtains its own target parameter set, and then the robot controller 101 uses the target parameter set according to the target parameter set.
  • the preset method for determining target control parameters determines the target control parameters of several people; the robot controller 101 sends the target control parameters to the robot 102. Therefore, compared with the existing solution, only a fixed control command is used to control the robot.
  • the target parameter set of the robot controller can be collected, and the target control parameter can be determined according to the parameter, and the target control parameter can be sent to the robot.
  • the target parameter set can be used to determine the target control parameter, which can improve the accuracy of robot control to a certain extent.
  • FIG. 2A is a schematic flowchart of a robot control method according to an embodiment of the application. As shown in Figure 2A, the robot control method includes steps 201-203, which are specifically as follows:
  • the target parameter set includes at least one of the following: target angular velocity, target gravitational acceleration, and target magnetic field strength.
  • the parameters in the above-mentioned target parameter set may be a parameter set possessed by the robot when the user manipulates the robot controller, and this set may reflect the user's manipulation action on the robot controller.
  • the preset time period is set by experience values or historical data.
  • the robot controller may be a humanoid robotic arm or an electronic device.
  • Humanoid robotic arm can be understood as a robotic arm similar in appearance to the human body.
  • a possible method for acquiring the target parameter set is: acquiring the target angular velocity through a gyroscope or an acceleration sensor, acquiring the target gravitational acceleration through an acceleration sensor, and acquiring the target magnetic field intensity through a magnetic field intensity detection sensor.
  • the above-mentioned target parameter set can be stored in a nine-axis chip and can be directly read from the chip.
  • the data needs to be calibrated.
  • the signal acquisition sensor can be a three-axis gyroscope.
  • calibrating the following methods can be used to calibrate.
  • the data is collected at a preset time interval within a preset time period, and the arithmetic average of the collected data is calculated.
  • the arithmetic mean value is used as the deviation value, and then the deviation value is used as the basic value.
  • the basic value can be a set reference value.
  • the reference value is understood as: taking the magnetic field as an example, taking the true north direction as the original reference value, then offset the original direction to the direction of the deviation value, and use this direction as the reference value .
  • the preset time period and the preset time interval are set by experience values or historical data.
  • the target parameter set use a preset target control parameter determination method to determine the target control parameter of the robot.
  • a possible method of determining the target control parameter of the robot based on the target parameter set is: according to the target angular velocity, target gravitational acceleration, and target magnetic field strength, using a preset target control parameter determination algorithm to determine The target control parameter.
  • using a preset target control parameter determination algorithm to determine the target control parameter may include steps A1-A4, which are specifically as follows:
  • offset value can be expressed by clockwise offset, clockwise is positive, counterclockwise is negative.
  • clockwise offset clockwise is positive
  • counterclockwise negative
  • Filtering is performed according to the target angular velocity and the target gravitational acceleration by using a preset filtering method to obtain the angular velocity change curve of the robot controller in the preset time period;
  • the preset filtering method may be a complementary filtering method.
  • One possible method for filtering based on the target angular velocity and the target gravitational acceleration using complementary filtering methods may be: the complementary filtering method may include low-pass filtering and high-pass filtering, specifically: the high-pass filtering method is used to filter the target angular velocity to obtain the first filter Signal; using a low-pass filtering method to filter the target gravitational acceleration value to obtain a second filtered signal; combine the first filtered signal and the second filtered signal to obtain the angular velocity change curve within a preset time period.
  • the angular velocity change curve is a curve in the space coordinate system.
  • the preset time period is set by experience value or historical data.
  • the method for combining the first filter signal and the second filter signal is to splice the high frequency signal of the first filter signal and the low frequency signal of the second filter signal to obtain the angular velocity variation curve.
  • the pass band is set by empirical values or historical data.
  • is the rotation angle
  • ⁇ ib is the angular velocity change curve.
  • the rotation angle is the rotation angle between the rotation vector of the robot controller relative to the reference coordinate system.
  • the rotation axis of the robot controller may be the straight line where the arm of the robot controller is in the extended state, the vertical rotation axis of the robot controller, and the like.
  • the reference coordinate system may be a preset coordinate system, for example, a spatial rectangular coordinate system set with the center of gravity of the robot controller as the origin, or a spatial polar coordinate system.
  • A4 Determine a reference control parameter according to the rotation angle.
  • the reference control parameters may include yaw angle, pitch angle and roll angle, and the rotation axis satisfies the following vector relationship:
  • R is the direction vector matrix of the rotation axis
  • R' is the inverse matrix of R
  • q' is the inverse matrix of q, which can be expressed by the following formula:
  • cos ⁇ is the direction cosine of the rotation axis relative to the reference coordinate system x
  • axis cos ⁇ is the direction cosine of the rotation axis relative to the reference coordinate system y
  • cos ⁇ is the direction cosine of the rotation axis relative to the reference coordinate system z
  • i is the direction cosine of the x axis
  • the direction vector, j is the direction vector of the y-axis
  • k is the direction vector of the z-axis
  • is the rotation angle, which is ⁇ .
  • the rotation axis can be understood as the direction in which the center line of the electronic device is located, as shown in FIG. 2B.
  • the target control parameters may include yaw angle, pitch angle, and roll angle.
  • a possible method of determining the target control parameter based on the rotation angle is to determine the target control parameter by the following formula:
  • Y is the yaw angle
  • P is the pitch angle
  • R is the roll angle
  • q 0 is the scalar part of the vector R, which is ⁇
  • q 1 is the vector R and the x-axis vector part is p 1
  • q 2 is the vector R
  • the y-axis vector part is p 2
  • q 3 is the vector R and the z-axis vector part is p 3
  • arctan() is the arctangent function
  • arcsin() is the arcsine function.
  • the target control parameters include target yaw angle, target pitch angle and target roll angle.
  • a possible method for correcting the reference control parameter is: correcting the yaw angle in the reference control parameter by the offset value.
  • the correction method is: subtract the offset value from the yaw angle to obtain the target yaw angle in the target control parameters.
  • the robot can be in a state of fighting against other robots. When in this state, the robot can feed back the battle information with the competing robot.
  • the battle information can be characterized as the pressure value detected by the robotic arm.
  • a possible method for adjusting the robot's actions includes steps B1-B3, which are specifically as follows:
  • the robot may include a robot arm
  • the target control parameters may include the sub-target control parameters of the robot arm
  • the parameter correction information may be the target pressure value detected by the robot arm. Because when the robot is fighting, if one's own robot hits the opponent's robot For body parts, you can determine your own score. In order to protect the opponent's robot from damage, you need to cancel the hit state in time to protect the robot.
  • the target pressure value can be the pressure value when any part of the arm of the robot hits the opponent robot.
  • the following methods can be used to improve the safety:
  • a secure communication channel is established, and data is transmitted through the secure communication channel.
  • a possible method for establishing a secure communication channel involves robots, robot controllers, and proxy devices.
  • the proxy devices are trusted third-party devices. Including the following steps:
  • the initialization phase mainly completes the registration of the robot and the robot controller in the agent device, the subscription of the topic and the generation of system parameters.
  • Robots and robot controllers register with the agent device. Only the registered robots and robot controllers can participate in topic publication and subscription.
  • the robot controller subscribes to the agent device for related topics.
  • the agent device generates system public parameters (PK) and master key (MSK), and sends the PK to the registered robots and robot controllers.
  • PK system public parameters
  • MSK master key
  • the encryption and release stage is mainly where the robot encrypts the payload corresponding to the subject to be released and sends it to the agent device.
  • the robot uses a symmetric encryption algorithm to encrypt the payload, generates ciphertext (CT), and then develops an access structure According to the PK generated by the robot and Encrypt the symmetric key, and finally send the encrypted key and the encrypted payload to the proxy device.
  • CT ciphertext
  • the proxy device receives the encrypted key and CT sent by the robot, it filters and forwards it to the robot controller.
  • access structure It is an access tree structure.
  • K x num(x)
  • the non-leaf node represents an AND gate
  • K x 1
  • the non-leaf node represents an OR gate
  • each leaf node of the visited tree represents an attribute.
  • the attribute set satisfying an access tree structure can be defined as: suppose T is the access tree with r as the root node, and T x is the subtree of T with x as the root node.
  • the private key generation stage is mainly where the agent device generates a corresponding key for the robot controller to decrypt the CT received thereafter.
  • the robot controller provides the agent device with an attribute set Ai (attributes can be the characteristics of the subscriber, roles and other information), the agent device generates a private key SK according to the PK, the attribute set Ai and the master key MSK, and then sends the generated private key To the robot controller.
  • attribute set Ai attribute can be the characteristics of the subscriber, roles and other information
  • the attribute set A i represents the attribute information of the robot controller i (the i-th robot controller), which can be the characteristics and roles of the robot controller, and is the default attribute of the robot controller.
  • the global set U represents the attribute information of all robot controllers. Collection.
  • the decryption stage is mainly the process of the robot controller decrypting the encrypted payload to extract civilization. After receiving the encrypted key and CT sent by the agent device, the robot controller decrypts the encrypted key according to the PK and SK to obtain the symmetric key. If its attribute set A i satisfies the access structure of ciphertext The ciphertext can be successfully decrypted, thereby ensuring the security of the communication process.
  • the security of communication between the robot controller and the robot can be improved to a certain extent, and the possibility of illegal users stealing the data transmitted between the legal robot controller and the robot is reduced, and illegal users are also reduced. Through intrusion and tampering with the system, the important data in the system is stolen.
  • a possible method for determining the correction target control parameter includes steps B21-B24, which are specifically as follows:
  • the target pressure value is within a preset pressure value threshold interval, determine the first movement direction of the mechanical arm according to the target control parameter, and determine the mechanical arm according to the target pressure value Distance of movement;
  • the preset pressure value threshold interval can be set according to empirical values or historical data. Since the target control parameter is to control the movement of the robotic arm, the first movement direction of the robotic arm can be directly determined.
  • the method for determining the movement distance of the robotic arm according to the target pressure value is: determining the movement distance of the robotic arm according to a preset mapping relationship between the pressure value and the movement distance.
  • the mapping relationship between the pressure value and the movement distance can be set through empirical values or historical data.
  • the direction opposite to the first movement direction can be regarded as the second movement square.
  • a possible method for generating the correction value of the sub-target control parameter is: determining the rotation angle of the rotation axis of the manipulator according to the second movement direction and the movement distance; and using the rotation angle as the correction value.
  • the method for determining the rotation angle of the rotation axis of the robot arm according to the second motion direction and the motion distance can refer to the reverse method of determining the control method by the rotation angle of the robot arm, and then the rotation angle can be determined.
  • the angle of rotation includes the yaw angle, pitch angle and roll angle.
  • the sub-target control parameter is subtracted from the rotation angle to obtain the corrected target control parameter.
  • the robot after the robot receives the target control parameter, it can move according to the target control parameter.
  • the robot When controlling the movement of the robot through the target control parameters, the robot can be controlled to move, and the direction of the robot can be controlled.
  • FIG. 3 is a schematic flowchart of another robot control method according to an embodiment of the application.
  • the control method includes steps 301-307, which are specifically as follows:
  • the target parameter set includes target angular velocity, target gravitational acceleration, and target magnetic field strength.
  • the offset value of the yaw angle is determined by the strength of the magnetic field, and the angular velocity change curve is determined according to the target angular velocity and the target gravitational acceleration, and the offset value is used for correction, and finally the target control parameters are determined. Therefore, relative to In existing solutions, only fixed target control parameters are used to control the robot, which can improve the accuracy of robot control to a certain extent.
  • FIG. 4 is a schematic flowchart of another robot control method provided in an embodiment of the application.
  • the control method includes steps 401-409, which are specifically as follows:
  • the target parameter set use a preset target control parameter determination method to determine the target control parameter of the robot;
  • the parameter correction information includes a target pressure value
  • the robot includes a robot arm
  • the target control parameter includes a sub-target control parameter of the robot arm.
  • the target pressure value is within a preset pressure value threshold interval, determine the first movement direction of the mechanical arm according to the target control parameter, and determine the mechanical arm according to the target pressure value Distance of movement;
  • the parameter correction information sent by the robot can be received, and the sub-target control parameter correction value of the robotic arm can be obtained according to the correction information, and the sub-target control parameter of the robotic arm can be corrected to obtain the corrected target control parameter.
  • the sub-target control parameter correction value of the robotic arm can be obtained according to the correction information, and the sub-target control parameter of the robotic arm can be corrected to obtain the corrected target control parameter.
  • only fixed target control parameters are used to control the robot, which can improve the accuracy of robot control to a certain extent.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the application. As shown in the figure, it includes a processor, an input device, an output device, and a memory. The processor, The input device, the output device, and the memory are connected to each other, wherein the memory is used to store a computer program, the computer program includes program instructions, the processor is configured to call the program instructions, and the above program includes instructions for executing the following Step instructions;
  • a preset target control parameter determination method is adopted to determine the target control parameter of the robot
  • the target control parameter is sent to the robot.
  • the terminal includes hardware structures and/or software modules corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 is a schematic structural diagram of a robot control device provided in an embodiment of the application.
  • the robot control device includes an acquiring unit 601, a determining unit 602, and a sending unit 603, where:
  • the acquiring unit 601 is configured to acquire a target parameter set of the robot controller in a preset time period
  • the determining unit 602 is configured to determine the target control parameter of the robot by using a preset target control parameter determination method according to the target parameter set;
  • the sending unit 603 is configured to send the target control parameter to the robot.
  • the target parameter set includes target angular velocity, target gravitational acceleration, and target magnetic field strength.
  • the determining unit 602 is specifically configured to:
  • a preset target control parameter determination algorithm is used to determine the target control parameter.
  • the determining unit 602 is specifically configured to:
  • the reference control parameter is corrected according to the offset value to obtain the target control parameter.
  • the device is also specifically used for:
  • the correction target control parameter is sent to the robot.
  • the parameter correction information includes a target pressure value
  • the robot includes a robot arm
  • the target control parameter includes a sub-target control parameter of the robot arm.
  • the target is controlled
  • the device is also specifically used for:
  • the first movement direction of the robotic arm is determined according to the target control parameter, and the movement of the robotic arm is determined according to the target pressure value distance;
  • the sub-target control parameter is corrected according to the correction value to obtain the corrected target control parameter.
  • the embodiments of the present application also provide a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes the computer to execute any part of the robot control method described in the above method embodiment Or all steps.
  • the embodiments of the present application also provide a computer program product, which includes a non-transitory computer-readable storage medium storing a computer program, and the computer program causes a computer to execute any robot described in the above method embodiments. Part or all of the steps of the control method.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional unit in each embodiment may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software program module.
  • the integrated unit is implemented in the form of a software program module and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned memory includes: U disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), mobile hard disk, magnetic disk, or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: flash disk , Read-only memory, random access device, magnetic or optical disk, etc.

Abstract

Provided in the embodiments of the present application are a robot control method and a related product. The method comprises: acquiring a target parameter set of a robot controller in a preset time period; determining a target control parameter of a robot according to the target parameter set and by means of a preset target control parameter determination method; and sending the target control parameter to the robot. In this way, the convenience of robot control can be improved.

Description

机器人控制方法及相关产品Robot control methods and related products 技术领域Technical field
本申请涉及控制技术领域,具体涉及一种机器人控制方法及相关产品。This application relates to the field of control technology, in particular to a robot control method and related products.
背景技术Background technique
随着社会的不断发展,机器人越来越多的出现在人们的视野中,同时为人们的生活带来了很大的便利。传统的机器人关节控制系统,通常对机器人进行控制时的控制方法为:通过传统手柄等直接发出固定动作指令编号,通过有线或无线等通讯方式传到机器人处理器,查找固定写在机器人处理器的动作编号,继而将该编号对应的指令数据转换成对应的控制信号控制机器人运动,由于现有方案中仅采用固定的动作指令进行控制,导致在机器人控制时的准确性较低。With the continuous development of society, more and more robots appear in people's field of vision, and at the same time bring great convenience to people's lives. In traditional robot joint control systems, the control method usually used to control the robot is: directly issue a fixed motion instruction number through a traditional handle, etc., and transmit it to the robot processor through wired or wireless communication methods, and find the fixed number written in the robot processor. Action number, and then convert the instruction data corresponding to the number into a corresponding control signal to control the robot movement. Because the existing solution only uses fixed action instructions for control, the accuracy of robot control is low.
发明内容Summary of the invention
本申请实施例提供一种机器人控制方法及相关产品,能够提升机器人控制时的便捷性。The embodiments of the present application provide a robot control method and related products, which can improve the convenience of robot control.
本申请实施例的第一方面提供了一种机器人控制方法,该方法包括:The first aspect of the embodiments of the present application provides a robot control method, which includes:
获取机器人控制器的在预设时间段的目标参数集合;Obtain the target parameter set of the robot controller in the preset time period;
依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;According to the target parameter set, a preset target control parameter determination method is adopted to determine the target control parameter of the robot;
将所述目标控制参数发送给所述机器人。The target control parameter is sent to the robot.
本申请实施例的第二方面提供了一种机器人控制装置,该装置包括获取单元、确定单元和发送单元,其中,A second aspect of the embodiments of the present application provides a robot control device, which includes an acquiring unit, a determining unit, and a sending unit, wherein:
所述获取单元,用于获取机器人控制器的在预设时间段的目标参数集合;The acquiring unit is configured to acquire a target parameter set of the robot controller in a preset time period;
所述确定单元,用于依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;The determining unit is configured to determine the target control parameter of the robot by using a preset target control parameter determination method according to the target parameter set;
所述发送单元,用于将所述目标控制参数发送给所述机器人。The sending unit is configured to send the target control parameter to the robot.
本申请实施例的第三方面提供一种终端,包括处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如本申请实施例第一方面中的步骤指令。A third aspect of the embodiments of the present application provides a terminal, including a processor, an input device, an output device, and a memory. The processor, input device, output device, and memory are connected to each other, wherein the memory is used to store a computer program The computer program includes program instructions, and the processor is configured to call the program instructions to execute instructions as in the first aspect of the embodiments of the present application.
本申请实施例的第四方面提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。The fourth aspect of the embodiments of the present application provides a computer-readable storage medium, wherein the foregoing computer-readable storage medium stores a computer program for electronic data exchange, wherein the foregoing computer program enables a computer to execute Some or all of the steps described in one aspect.
本申请实施例的第五方面提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。The fifth aspect of the embodiments of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to make a computer execute Example part or all of the steps described in the first aspect. The computer program product may be a software installation package.
实施本申请实施例,至少具有如下有益效果:Implementing the embodiments of this application has at least the following beneficial effects:
本申请实施例中,通过获取机器人控制器的在预设时间段的目标参数集合,依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数,将所述目标控制参数发送给所述机器人。因此,相对于现有方案中,仅采用固定的控制指令对机器人进行控制,能够通过采集机器人控制器的目标参数集合,根据参数确定出目标控制参数,并将该目标控制参数发送给机器人,则在对机器人进行控制时,能够目标参数集合来确定目标控制参数,能够一定程度上提升机器人控制时的准确性。In the embodiment of the present application, by obtaining the target parameter set of the robot controller in a preset time period, according to the target parameter set, the preset target control parameter determination method is adopted to determine the target control parameter of the robot, and the The target control parameters are sent to the robot. Therefore, compared with the existing solution, only a fixed control command is used to control the robot. The target parameter set of the robot controller can be collected, and the target control parameter can be determined according to the parameter, and the target control parameter can be sent to the robot. When controlling the robot, the target parameter set can be used to determine the target control parameter, which can improve the accuracy of robot control to a certain extent.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the drawings needed in the embodiments. Obviously, the drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, without creative work, other drawings can be obtained from these drawings.
图1为本申请实施例提供了一种机器人控制系统的结构示意图;FIG. 1 provides a schematic structural diagram of a robot control system according to an embodiment of the application;
图2A为本申请实施例提供了一种机器人控制方法的流程示意图;FIG. 2A provides a schematic flowchart of a robot control method according to an embodiment of this application;
图2B为本申请实施例提供了一种电子装置的转动轴的示意图;2B is a schematic diagram of a rotating shaft of an electronic device according to an embodiment of the application;
图3为本申请实施例提供了另一种机器人控制方法的流程示意图;FIG. 3 is a schematic flowchart of another robot control method according to an embodiment of the application;
图4为本申请实施例提供了另一种机器人控制方法的流程示意图;FIG. 4 is a schematic flowchart of another robot control method according to an embodiment of the application;
图5为本申请实施例提供的一种终端的结构示意图;FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of this application;
图6为本申请实施例提供了一种机器人控制装置的结构示意图。FIG. 6 is a schematic structural diagram of a robot control device provided in an embodiment of the application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of this application.
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。The terms "first", "second", etc. in the specification and claims of this application and the above-mentioned drawings are used to distinguish different objects, rather than to describe a specific sequence. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product, or device that includes a series of steps or units is not limited to the listed steps or units, but optionally includes unlisted steps or units, or optionally also includes Other steps or units inherent to these processes, methods, products or equipment.
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。The reference to "embodiments" in this application means that a specific feature, structure or characteristic described in conjunction with the embodiments may be included in at least one embodiment of the present application. The appearance of the phrase in various places in the specification does not necessarily refer to the same embodiment, nor is it an independent or alternative embodiment mutually exclusive with other embodiments. Those skilled in the art clearly and implicitly understand that the embodiments described in this application can be combined with other embodiments.
本申请实施例中,主要考虑到现有技术中在进行机器人控制时的准确性不足,为了提升机器人控制时的准确性,采用了对控制器的参数集合进行分析,并确定出目标控制参数,能够提升机器人控制时的准确性。In the embodiments of the present application, mainly considering the lack of accuracy in robot control in the prior art, in order to improve the accuracy of robot control, the parameter set of the controller is analyzed and the target control parameters are determined. It can improve the accuracy of robot control.
为了更好的理解本申请实施例提供的一种机器人控制方法,下面对应用机器人控制方法的机器人控制系统进行简要介绍。请参阅图1,图1为本申请实施例提供了一种机器人控制系统的结构示意图。如图1所示,机器人控制系统包括机器人控制器101和机器人102,用户在操控机器人控制器101时,机器人控制器101获取其自身的目标参数集合,然后机器人控制器101依据目标参数集合,采用预设的目标控制参数确定方法,确定出几人的目标控制参数;机器人控制器101将目标控制参数发送给机器人102。因此,相对于现有方案中,仅采用固定的控制指令对机器人进行控制,能够通过采集机器人控制器的目标参数集合,根据参数确定出目标控制参数,并将该目标控制参数发送给机器人,则在对机器人进行控制时,能够目标参数集合来确定目标控制参数,能够一定程度上提升机器人控制时的准确性。In order to better understand a robot control method provided by an embodiment of the present application, the following briefly introduces a robot control system applying the robot control method. Please refer to FIG. 1. FIG. 1 provides a schematic structural diagram of a robot control system according to an embodiment of the present application. As shown in Figure 1, the robot control system includes a robot controller 101 and a robot 102. When a user manipulates the robot controller 101, the robot controller 101 obtains its own target parameter set, and then the robot controller 101 uses the target parameter set according to the target parameter set. The preset method for determining target control parameters determines the target control parameters of several people; the robot controller 101 sends the target control parameters to the robot 102. Therefore, compared with the existing solution, only a fixed control command is used to control the robot. The target parameter set of the robot controller can be collected, and the target control parameter can be determined according to the parameter, and the target control parameter can be sent to the robot. When controlling the robot, the target parameter set can be used to determine the target control parameter, which can improve the accuracy of robot control to a certain extent.
请参阅图2A,图2A为本申请实施例提供了一种机器人控制方法的流程示意图。如图2A所示,机器人控制方法包括步骤201-203,具体如下:Please refer to FIG. 2A. FIG. 2A is a schematic flowchart of a robot control method according to an embodiment of the application. As shown in Figure 2A, the robot control method includes steps 201-203, which are specifically as follows:
201、获取机器人控制器的在预设时间段的目标参数集合。201. Obtain a target parameter set of a robot controller in a preset time period.
其中,目标参数集合至少包括以下至少一种:目标角速度、目标重力加速度和目标磁场强度。其中,上述目标参数集合中的参数可以为,用户对机器人控制器进行操控时,机器人所具有的参数集合,该集合可以反映出用户对机器人控制器的操控动作。预设时间段通过经验值或历史数据设定。Wherein, the target parameter set includes at least one of the following: target angular velocity, target gravitational acceleration, and target magnetic field strength. Among them, the parameters in the above-mentioned target parameter set may be a parameter set possessed by the robot when the user manipulates the robot controller, and this set may reflect the user's manipulation action on the robot controller. The preset time period is set by experience values or historical data.
可选的,机器人控制器可以为仿人机械手臂,也可以为电子装置。仿人机械臂可以理解为与人体外形类似的机械手臂。Optionally, the robot controller may be a humanoid robotic arm or an electronic device. Humanoid robotic arm can be understood as a robotic arm similar in appearance to the human body.
可选的,一种可能的获取目标参数集合的方法为:通过陀螺仪或加速度传感器获取目标角速度,通过加速度传感器获取目标重力加速度,以及通过磁场强度检测传感器获取目标磁场强度。其中,上述目标参数集合可以存储于九轴芯片中,可以直接从芯片中进行读取。Optionally, a possible method for acquiring the target parameter set is: acquiring the target angular velocity through a gyroscope or an acceleration sensor, acquiring the target gravitational acceleration through an acceleration sensor, and acquiring the target magnetic field intensity through a magnetic field intensity detection sensor. Among them, the above-mentioned target parameter set can be stored in a nine-axis chip and can be directly read from the chip.
可选的,在采集机器人控制器的目标参数集合之前,在机器人控制器水平开机时,由于机器人控制器的信号采集传感器可能会具有偏移,此时,需要对数据进行校准。信号采集传感器可以为三轴陀螺仪,在进行校准时,可以采用如下方法进行校准,在预设时间段内采用预设时间间隔进行数据采集,求取采集到的数据的算术平均值,将该算术平均值作为偏差值,然后将偏差值作为基础数值。基础数值可以为设定的基准值,基准值理解为:以磁场为例,以正北方向为原始基准值,则将原始方向偏移到该偏差值所在的方向,并以该方向为基准值。预设时间段和预设时间间隔通过经验值或历史数据设定。Optionally, before collecting the target parameter set of the robot controller, when the robot controller is turned on horizontally, since the signal acquisition sensor of the robot controller may have an offset, at this time, the data needs to be calibrated. The signal acquisition sensor can be a three-axis gyroscope. When calibrating, the following methods can be used to calibrate. The data is collected at a preset time interval within a preset time period, and the arithmetic average of the collected data is calculated. The arithmetic mean value is used as the deviation value, and then the deviation value is used as the basic value. The basic value can be a set reference value. The reference value is understood as: taking the magnetic field as an example, taking the true north direction as the original reference value, then offset the original direction to the direction of the deviation value, and use this direction as the reference value . The preset time period and the preset time interval are set by experience values or historical data.
202、依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数。202. According to the target parameter set, use a preset target control parameter determination method to determine the target control parameter of the robot.
可选的,一种可能的根据目标参数集合,确定出机器人的目标控制参数的方法为:根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数。其中,采用预设的目标控制参数确定算法,确定出目标控制参数可包括步骤A1-A4,具体如下:Optionally, a possible method of determining the target control parameter of the robot based on the target parameter set is: according to the target angular velocity, target gravitational acceleration, and target magnetic field strength, using a preset target control parameter determination algorithm to determine The target control parameter. Among them, using a preset target control parameter determination algorithm to determine the target control parameter may include steps A1-A4, which are specifically as follows:
A1、若所述机器人在水平方向静止时,则根据所述目标磁场强度确定出偏航角的偏移值;A1. If the robot is stationary in the horizontal direction, determine the offset value of the yaw angle according to the target magnetic field strength;
其中,一种可能的根据目标磁场强度确定偏航角的偏移值的方法为:以正 北方向为参考,根据转动轴的磁场指向与正北方向之间的偏移量,作为该偏移值,偏移值,可以通过顺时针方向的偏移进行表示,顺时针方向为正,逆时针方向为负。当然也可以通过其它方式进行表示,此处仅为举例说明,不作具体限定。Among them, a possible method of determining the offset value of the yaw angle based on the target magnetic field strength is: taking the true north direction as a reference, and taking the offset between the magnetic field direction of the rotation axis and the true north direction as the offset Value, offset value, can be expressed by clockwise offset, clockwise is positive, counterclockwise is negative. Of course, it can also be expressed in other ways, and this is only an example for illustration and no specific limitation is made.
A2、根据所述目标角速度和目标重力加速度采用预设的滤波方法进行滤波,得到所述机器人控制器在所述预设时间段内的角速度变化曲线;A2. Filtering is performed according to the target angular velocity and the target gravitational acceleration by using a preset filtering method to obtain the angular velocity change curve of the robot controller in the preset time period;
可选的,预设的滤波方法可以为互补滤波方法。一种可能的根据目标角速度和目标重力加速度采用互补滤波法进行滤波可以为:互补滤波法可包括低通滤波和高通滤波,具体可以为:采用高通滤波法对目标角速度进行滤波,得到第一滤波信号;采用低通滤波法对目标重力加速度值进行滤波,得到第二滤波信号;将第一滤波信号和第二滤波信号进行组合得到预设时间段内的角速度变化曲线。其中,角速度变化曲线为空间坐标系中的一条曲线。预设时间段为通过经验值或历史数据进行设定。对第一滤波信号和第二滤波信号进行组合的方法为,将第一滤波信号的高频信号与第二滤波信号的低频信号进行拼接,得到角速度变化曲线。Optionally, the preset filtering method may be a complementary filtering method. One possible method for filtering based on the target angular velocity and the target gravitational acceleration using complementary filtering methods may be: the complementary filtering method may include low-pass filtering and high-pass filtering, specifically: the high-pass filtering method is used to filter the target angular velocity to obtain the first filter Signal; using a low-pass filtering method to filter the target gravitational acceleration value to obtain a second filtered signal; combine the first filtered signal and the second filtered signal to obtain the angular velocity change curve within a preset time period. Among them, the angular velocity change curve is a curve in the space coordinate system. The preset time period is set by experience value or historical data. The method for combining the first filter signal and the second filter signal is to splice the high frequency signal of the first filter signal and the low frequency signal of the second filter signal to obtain the angular velocity variation curve.
其中,进行低通滤波和高通滤波时,其通频段通过经验值或历史数据设定。Among them, when performing low-pass filtering and high-pass filtering, the pass band is set by empirical values or historical data.
A3、对所述角速度变化曲线进行积分,得到所述机器人控制器在所述预设时间段内的旋转角;A3. Integrate the angular velocity change curve to obtain the rotation angle of the robot controller in the preset time period;
可选的,一种可能的对角速度变化曲线进行积分的方法可以通过如下公式进行表示:Optionally, a possible method of integrating the angular velocity change curve can be expressed by the following formula:
Figure PCTCN2019099639-appb-000001
Figure PCTCN2019099639-appb-000001
其中,Δθ为旋转角,ω ib为角速度变化曲线。其中,旋转角为机器人控制器的旋转矢量相对于参考坐标系之间的旋转角。机器人控制器的转动轴可以为机器人控制器的手臂处于伸直状态时所在的直线、机器人控制器的竖直方向的旋转轴等。参考坐标系可以为预先设定的一个坐标系,例如,以机器人控制器的重心为原点设定的空间直角坐标系,或者空间极坐标系。 Among them, Δθ is the rotation angle, and ω ib is the angular velocity change curve. Among them, the rotation angle is the rotation angle between the rotation vector of the robot controller relative to the reference coordinate system. The rotation axis of the robot controller may be the straight line where the arm of the robot controller is in the extended state, the vertical rotation axis of the robot controller, and the like. The reference coordinate system may be a preset coordinate system, for example, a spatial rectangular coordinate system set with the center of gravity of the robot controller as the origin, or a spatial polar coordinate system.
A4、根据所述旋转角确定出参考控制参数。A4. Determine a reference control parameter according to the rotation angle.
可选的,参考控制参数可包括偏航角、俯仰角和翻滚角,旋转轴满足如下矢量关系:Optionally, the reference control parameters may include yaw angle, pitch angle and roll angle, and the rotation axis satisfies the following vector relationship:
R′=qRq′,R′=qRq′,
其中,R为转动轴的方向矢量矩阵,R'为R的逆矩阵,q'为q的逆矩阵,可以通过如下公式进行表示:Among them, R is the direction vector matrix of the rotation axis, R'is the inverse matrix of R, and q'is the inverse matrix of q, which can be expressed by the following formula:
q=λ+p 1i+p 2j+p 3k, q=λ+p 1 i+p 2 j+p 3 k,
Figure PCTCN2019099639-appb-000002
Figure PCTCN2019099639-appb-000002
Figure PCTCN2019099639-appb-000003
Figure PCTCN2019099639-appb-000003
Figure PCTCN2019099639-appb-000004
Figure PCTCN2019099639-appb-000004
Figure PCTCN2019099639-appb-000005
Figure PCTCN2019099639-appb-000005
其中,cosα为旋转轴相对于参考坐标系x的方向余弦,轴cosβ为旋转轴相对于参考坐标系y的方向余弦,cosγ为旋转轴相对于参考坐标系z的方向余弦,i为x轴的方向向量,j为y轴的方向向量,k为z轴的方向向量,θ为旋转角即为Δθ。Among them, cosα is the direction cosine of the rotation axis relative to the reference coordinate system x, axis cosβ is the direction cosine of the rotation axis relative to the reference coordinate system y, cosγ is the direction cosine of the rotation axis relative to the reference coordinate system z, and i is the direction cosine of the x axis The direction vector, j is the direction vector of the y-axis, k is the direction vector of the z-axis, and θ is the rotation angle, which is Δθ.
可选的,当控制器为电子装置时,转动轴可以理解为电子装置中线所在的方向,如图2B所示。Optionally, when the controller is an electronic device, the rotation axis can be understood as the direction in which the center line of the electronic device is located, as shown in FIG. 2B.
可选的,目标控制参数可包括偏航角、俯仰角和翻滚角,一种可能的根据旋转角确定出目标控制参数的方法为,通过如下公式确定出目标控制参数:Optionally, the target control parameters may include yaw angle, pitch angle, and roll angle. A possible method of determining the target control parameter based on the rotation angle is to determine the target control parameter by the following formula:
Y=arctan 2(2×q 1×q 2+2×q 0×q 3,-2×q 2×q 2-2×q 3×q 3+1)×57.3, Y=arctan 2(2×q 1 ×q 2 +2×q 0 ×q 3 ,-2×q 2 ×q 2 -2×q 3 ×q 3 +1)×57.3,
P=arcsin 2(-2×q 1×q 3+2×q 0×q 3+2×q 0×q 2)×57.3, P=arcsin 2(-2×q 1 ×q 3 +2×q 0 ×q 3 +2×q 0 ×q 2 )×57.3,
R=arctan 2(2×q 2×q 3+2×q 0×q 1,-2×q 1×q 1-2×q 2×q 2+1)×57.3, R=arctan 2(2×q 2 ×q 3 +2×q 0 ×q 1 ,-2×q 1 ×q 1 -2×q 2 ×q 2 +1)×57.3,
其中,Y为偏航角,P为俯仰角,R为翻滚角,q 0为矢量R的标量部分即为λ,q 1为矢量R在x轴矢量部分即为p 1,q 2为矢量R在y轴矢量部分即为p 2,q 3为矢量R在z轴矢量部分即为p 3,arctan()为反正切函数,arcsin()为反正弦函数。 Among them, Y is the yaw angle, P is the pitch angle, R is the roll angle, q 0 is the scalar part of the vector R, which is λ, q 1 is the vector R and the x-axis vector part is p 1 , and q 2 is the vector R The y-axis vector part is p 2 , q 3 is the vector R and the z-axis vector part is p 3 , arctan() is the arctangent function, and arcsin() is the arcsine function.
A5、根据所述偏移值对所述参考控制参数进行修正,得到所述目标控制参数。A5. Correct the reference control parameter according to the offset value to obtain the target control parameter.
其中,目标控制参数包括目标偏航角、目标俯仰角和目标翻滚角。Among them, the target control parameters include target yaw angle, target pitch angle and target roll angle.
可选的,一种可能的对参考控制参数进行修正的方法为:通过偏移值对参考控制参数中的偏航角进行校正。校正的方法为:将偏航角减去偏移值,得到目标控制参数中的目标偏航角。Optionally, a possible method for correcting the reference control parameter is: correcting the yaw angle in the reference control parameter by the offset value. The correction method is: subtract the offset value from the yaw angle to obtain the target yaw angle in the target control parameters.
一个可能的示例中,机器人可以处于与其它机器人进行对战的状态,则在处于此状态时,则机器人可以反馈与对战的机器人的对战信息,对战信息可以 表征为机械臂所检测到的压力值,则一种可能的对机器人的动作进行调整的方法包括步骤B1-B3,具体如下:In a possible example, the robot can be in a state of fighting against other robots. When in this state, the robot can feed back the battle information with the competing robot. The battle information can be characterized as the pressure value detected by the robotic arm. A possible method for adjusting the robot's actions includes steps B1-B3, which are specifically as follows:
B1、接收所述机器人发送的参数校正信息;B1. Receive parameter correction information sent by the robot;
其中,机器人可包括机械臂,目标控制参数可以包括机械臂的子目标控制参数,参数校正信息可以为机械臂检测到的目标压力值,由于在机器人进行对战时,若己方机器人击中对方机器人的身体部位,则可以判定己方得分,则为了保护对方机器人不受到损伤,则在击中后,需要及时的撤销击中状态,以使得对机器人进行保护。该目标压力值可以为机器人的手臂任何部位击中对方机器人时的压力值。Among them, the robot may include a robot arm, the target control parameters may include the sub-target control parameters of the robot arm, and the parameter correction information may be the target pressure value detected by the robot arm. Because when the robot is fighting, if one's own robot hits the opponent's robot For body parts, you can determine your own score. In order to protect the opponent's robot from damage, you need to cancel the hit state in time to protect the robot. The target pressure value can be the pressure value when any part of the arm of the robot hits the opponent robot.
可选的,在接收机器人发送的参数校正信息之前,为了提升机器人与机器人控制器之间数据传输时的安全性,则可以通过如下方法进行提升安全性:Optionally, before receiving the parameter correction information sent by the robot, in order to improve the safety of data transmission between the robot and the robot controller, the following methods can be used to improve the safety:
在进行数据传输前,建立安全通信通道,通过安全通信通道进行数据传输,一种可能的建立安全通信通道的方法涉及机器人、机器人控制器和代理设备,代理设备为可信的第三方设备,具体包括如下步骤:Before data transmission, a secure communication channel is established, and data is transmitted through the secure communication channel. A possible method for establishing a secure communication channel involves robots, robot controllers, and proxy devices. The proxy devices are trusted third-party devices. Including the following steps:
S1、初始化:初始化阶段主要完成机器人、机器人控制器在代理设备的注册,主题的订阅以及系统参数的生成。机器人、机器人控制器向代理设备进行注册,只有通过注册的机器人和机器人控制器才能参与主题的发布与订阅,机器人控制器向代理设备订阅相关主题。代理设备生成系统公开参数(PK)及主密钥(MSK),将PK发送给已注册的机器人和机器人控制器。S1. Initialization: The initialization phase mainly completes the registration of the robot and the robot controller in the agent device, the subscription of the topic and the generation of system parameters. Robots and robot controllers register with the agent device. Only the registered robots and robot controllers can participate in topic publication and subscription. The robot controller subscribes to the agent device for related topics. The agent device generates system public parameters (PK) and master key (MSK), and sends the PK to the registered robots and robot controllers.
S2、加密、发布:加密、发布阶段主要是机器人对要发布的主题对应的载荷进行加密,并发送给代理设备。首先机器人采用对称加密算法加密载荷,生成密文(CT),然后制定访问结构
Figure PCTCN2019099639-appb-000006
根据机器人生成的PK和
Figure PCTCN2019099639-appb-000007
加密对称密钥,最后将加密后的密钥和加密的载荷发送给代理设备。代理设备在接收到机器人发送的加密后的密钥与CT后,过滤并转发给该机器人控制器。
S2. Encryption and release: The encryption and release stage is mainly where the robot encrypts the payload corresponding to the subject to be released and sends it to the agent device. First, the robot uses a symmetric encryption algorithm to encrypt the payload, generates ciphertext (CT), and then develops an access structure
Figure PCTCN2019099639-appb-000006
According to the PK generated by the robot and
Figure PCTCN2019099639-appb-000007
Encrypt the symmetric key, and finally send the encrypted key and the encrypted payload to the proxy device. After the proxy device receives the encrypted key and CT sent by the robot, it filters and forwards it to the robot controller.
可选的,访问结构
Figure PCTCN2019099639-appb-000008
是一种访问树结构。访问树的每一个非叶子节点是一个门限,用K x表示,0<=K x<=num(x),num(x)表示其子节点数。当K x=num(x)时,非叶子节点代表与门;当K x=1时,非叶子节点代表或门;访问树的每一个叶子节点代表一种属性。属性集合满足一个访问树结构可以定义为:设T是以r为根节点的访问树,T x是以x为根节点的T的子树。如果T x(S)=1,则说明属性集合S满足访问结构T x。如果节点x是叶子节点,当且仅当叶子节点x 关联的属性att(x)是属性集合S的元素时,T x(S)=1。若节点x是非叶子节点时,至少K x个子节点z满足T z(S)=1时,T x(S)=1。
Optional, access structure
Figure PCTCN2019099639-appb-000008
It is an access tree structure. Each non-leaf node of the access tree is a threshold, represented by K x , 0<=K x <=num(x), and num(x) represents the number of its child nodes. When K x =num(x), the non-leaf node represents an AND gate; when K x =1, the non-leaf node represents an OR gate; each leaf node of the visited tree represents an attribute. The attribute set satisfying an access tree structure can be defined as: suppose T is the access tree with r as the root node, and T x is the subtree of T with x as the root node. If T x (S) = 1, it means that the attribute set S satisfies the access structure T x . If the node x is a leaf node, T x (S) = 1 if and only if the attribute att(x) associated with the leaf node x is an element of the attribute set S. If node x is a non-leaf node, at least K x child nodes z satisfy T z (S)=1, T x (S)=1.
S3、私钥生成:私钥生成阶段主要是代理设备为机器人控制器生成相应的密钥,用于解密其后收到的CT。机器人控制器向代理设备提供属性集合A i(属性可以是订阅端的特征,角色等信息),代理设备根据PK、属性集合A i以及主密钥MSK生成私钥SK,然后将生成的私钥发送到该机器人控制器。 S3. Private key generation: The private key generation stage is mainly where the agent device generates a corresponding key for the robot controller to decrypt the CT received thereafter. The robot controller provides the agent device with an attribute set Ai (attributes can be the characteristics of the subscriber, roles and other information), the agent device generates a private key SK according to the PK, the attribute set Ai and the master key MSK, and then sends the generated private key To the robot controller.
可选的,属性集合A i为全局集合U={A 1,A 2,…,A n}的一个子集。属性集合A i表示机器人控制器i(第i个机器人控制器)的属性信息,可以是机器人控制器的特征、角色等,为机器人控制器的默认属性,全局集合U表示所有机器人控制器属性信息的集合。 Optionally, the attribute set A i is a subset of the global set U={A 1 , A 2 ,..., A n }. The attribute set A i represents the attribute information of the robot controller i (the i-th robot controller), which can be the characteristics and roles of the robot controller, and is the default attribute of the robot controller. The global set U represents the attribute information of all robot controllers. Collection.
S4、解密:解密阶段主要是机器人控制器对加密载荷进行解密提取文明的过程。机器人控制器在接收到代理设备发送的加密后的密钥和CT后,根据PK以及SK解密加密后的密钥得到对称密钥。若其属性集合A i满足密文的访问结构
Figure PCTCN2019099639-appb-000009
则能成功解密密文,以此保障了通信过程的安全性。
S4. Decryption: The decryption stage is mainly the process of the robot controller decrypting the encrypted payload to extract civilization. After receiving the encrypted key and CT sent by the agent device, the robot controller decrypts the encrypted key according to the PK and SK to obtain the symmetric key. If its attribute set A i satisfies the access structure of ciphertext
Figure PCTCN2019099639-appb-000009
The ciphertext can be successfully decrypted, thereby ensuring the security of the communication process.
通过构建安全通信通道,能够一定程度上提升机器人控制器与机器人之间通信的安全性,减少非法用户对合法机器人控制器与机器人之间传输的数据进行窃取的可能性,同时也减少了非法用户通过入侵系统、篡改系统,使得系统中的重要数据遭到窃取的情况的发生。By constructing a secure communication channel, the security of communication between the robot controller and the robot can be improved to a certain extent, and the possibility of illegal users stealing the data transmitted between the legal robot controller and the robot is reduced, and illegal users are also reduced. Through intrusion and tampering with the system, the important data in the system is stolen.
B2、根据所述参数校正信息,对所述目标控制参数进行参数校正,得到校正目标控制参数;B2. Perform parameter correction on the target control parameter according to the parameter correction information to obtain a corrected target control parameter;
可选的,一种可能的确定校正目标控制参数的方法包括步骤B21-B24,具体如下:Optionally, a possible method for determining the correction target control parameter includes steps B21-B24, which are specifically as follows:
B21、若所述目标压力值处于预设的压力值阈值区间,则根据所述目标控制参数,确定出所述机械臂的第一运动方向,以及根据所述目标压力值确定出所述机械臂的运动距离;B21. If the target pressure value is within a preset pressure value threshold interval, determine the first movement direction of the mechanical arm according to the target control parameter, and determine the mechanical arm according to the target pressure value Distance of movement;
其中,预设的压力值阈值区间可以根据经验值或历史数据设定。由于目标控制参数为控制机械臂运动,则可直接确定出该机械臂的第一运动方向。Among them, the preset pressure value threshold interval can be set according to empirical values or historical data. Since the target control parameter is to control the movement of the robotic arm, the first movement direction of the robotic arm can be directly determined.
可选的,根据目标压力值确定出机械臂的运动距离的方法为:根据预设的压力值与运动距离之间的映射关系,确定出机械臂的运动距离。其中,压力值与运动距离之间的映射关系可以通过经验值或历史数据设定。Optionally, the method for determining the movement distance of the robotic arm according to the target pressure value is: determining the movement distance of the robotic arm according to a preset mapping relationship between the pressure value and the movement distance. Among them, the mapping relationship between the pressure value and the movement distance can be set through empirical values or historical data.
B22、根据所述第一运动方向,确定出所述机械臂的第二运动方向;B22. Determine the second direction of movement of the robotic arm according to the first direction of movement;
可选的,可以将第一运动方向的反方向作为第二运动方形。Optionally, the direction opposite to the first movement direction can be regarded as the second movement square.
B23、根据所述第二运动方向、所述运动距离,生成所述机械臂的子目标控制参数的修正值;B23. Generate a correction value of the sub-target control parameter of the robotic arm according to the second movement direction and the movement distance;
可选的,一种可能的生成子目标控制参数的修正值的方法为:根据第二运动方向和运动距离,确定出机械臂转动轴的转动角度;根据该转动角度作为修正值。其中,根据第二运动方向和运动距离,确定出机械臂转动轴的转动角度的方法可以参照通过机械臂转的转动角度确定出控制方法的逆向方法,则可确定出转动角度。转动角度包括偏航角、俯仰角和翻滚角。Optionally, a possible method for generating the correction value of the sub-target control parameter is: determining the rotation angle of the rotation axis of the manipulator according to the second movement direction and the movement distance; and using the rotation angle as the correction value. Wherein, the method for determining the rotation angle of the rotation axis of the robot arm according to the second motion direction and the motion distance can refer to the reverse method of determining the control method by the rotation angle of the robot arm, and then the rotation angle can be determined. The angle of rotation includes the yaw angle, pitch angle and roll angle.
B24、根据所述修正值对所述子目标控制参数进行修正,得到所述校正目标控制参数。B24. Correct the sub-target control parameter according to the correction value to obtain the corrected target control parameter.
其中,将子目标控制参数减去转动角度,得到校正目标控制参数。Among them, the sub-target control parameter is subtracted from the rotation angle to obtain the corrected target control parameter.
B3、将所述校正目标控制参数发送给所述机器人。B3. Send the correction target control parameter to the robot.
203、将所述目标控制参数发送给所述机器人。203. Send the target control parameter to the robot.
一个可能的实施例中,机器人接收到目标控制参数后,可根据该目标控制参数进行运动。在通过目标控制参数控制机器人运动时,可以控制机器人进行移动,控制机器人移动时的方向等。In a possible embodiment, after the robot receives the target control parameter, it can move according to the target control parameter. When controlling the movement of the robot through the target control parameters, the robot can be controlled to move, and the direction of the robot can be controlled.
请参阅图3,图3为本申请实施例提供了另一种机器人控制方法的流程示意图。如图3所示,控制方法包括步骤301-307,具体如下:Please refer to FIG. 3, which is a schematic flowchart of another robot control method according to an embodiment of the application. As shown in Figure 3, the control method includes steps 301-307, which are specifically as follows:
301、获取机器人控制器的在预设时间段的目标参数集合;301. Obtain a target parameter set of a robot controller in a preset time period;
其中,所述目标参数集合包括目标角速度、目标重力加速度和目标磁场强度。Wherein, the target parameter set includes target angular velocity, target gravitational acceleration, and target magnetic field strength.
302、若所述机器人在水平方向静止时,则根据所述目标磁场强度确定出偏航角的偏移值;302. If the robot is stationary in the horizontal direction, determine the offset value of the yaw angle according to the target magnetic field strength;
303、根据所述目标角速度和目标重力加速度采用预设的滤波方法进行滤波,得到所述机器人控制器在所述预设时间段内的角速度变化曲线;303. Filter according to the target angular velocity and the target gravitational acceleration by using a preset filtering method to obtain the angular velocity change curve of the robot controller in the preset time period;
304、对所述角速度变化曲线进行积分,得到所述机器人控制器在所述预设时间段内的旋转角;304. Integrate the angular velocity change curve to obtain the rotation angle of the robot controller in the preset time period.
305、根据所述旋转角确定出参考控制参数;305. Determine a reference control parameter according to the rotation angle.
306、根据所述偏移值对所述参考控制参数进行修正,得到所述目标控制参 数;306. Correct the reference control parameter according to the offset value to obtain the target control parameter.
307、将所述目标控制参数发送给所述机器人。307. Send the target control parameter to the robot.
本示例中,通过磁场强度确定出偏航角的偏移值,并根据目标角速度和目标重力加速度确定出角速度变化曲线,并采用偏移值进行修正,最后确定出目标控制参数,因此,相对于现有方案中,仅采用固定的目标控制参数对机器人进行控制,能够一定程度上提升机器人控制时的准确性。In this example, the offset value of the yaw angle is determined by the strength of the magnetic field, and the angular velocity change curve is determined according to the target angular velocity and the target gravitational acceleration, and the offset value is used for correction, and finally the target control parameters are determined. Therefore, relative to In existing solutions, only fixed target control parameters are used to control the robot, which can improve the accuracy of robot control to a certain extent.
请参阅图4,图4为本申请实施例提供了另一种机器人控制方法的流程示意图。如图4所示,控制方法包括步骤401-409,具体如下:Please refer to FIG. 4, which is a schematic flowchart of another robot control method provided in an embodiment of the application. As shown in Figure 4, the control method includes steps 401-409, which are specifically as follows:
401、获取机器人控制器的在预设时间段的目标参数集合;401. Obtain a target parameter set of the robot controller in a preset time period.
402、依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;402. According to the target parameter set, use a preset target control parameter determination method to determine the target control parameter of the robot;
403、将所述目标控制参数发送给所述机器人;403. Send the target control parameter to the robot.
404、接收所述机器人发送的参数校正信息;404. Receive parameter correction information sent by the robot.
其中,所述参数校正信息包括目标压力值,所述机器人包括机械臂,所述目标控制参数包括机械臂的子目标控制参数。Wherein, the parameter correction information includes a target pressure value, the robot includes a robot arm, and the target control parameter includes a sub-target control parameter of the robot arm.
405、若所述目标压力值处于预设的压力值阈值区间,则根据所述目标控制参数,确定出所述机械臂的第一运动方向,以及根据所述目标压力值确定出所述机械臂的运动距离;405. If the target pressure value is within a preset pressure value threshold interval, determine the first movement direction of the mechanical arm according to the target control parameter, and determine the mechanical arm according to the target pressure value Distance of movement;
406、根据所述第一运动方向,确定出所述机械臂的第二运动方向;406. Determine a second direction of movement of the robotic arm according to the first direction of movement.
407、根据所述第二运动方向、所述运动距离,生成所述机械臂的子目标控制参数的修正值;407. Generate a correction value of the sub-target control parameter of the robot arm according to the second movement direction and the movement distance.
408、根据所述修正值对所述子目标控制参数进行修正,得到所述校正目标控制参数;408. Correct the sub-target control parameter according to the correction value to obtain the corrected target control parameter.
409、将所述校正目标控制参数发送给所述机器人。409. Send the correction target control parameter to the robot.
本示例中,可以接收机器人发送的参数校正信息,并根据校正信息得到机械臂的子目标控制参数修正值,并对机械臂的子目标控制参数进行修正,得到校正目标控制参数,以此,相对于现有方案中,仅采用固定的目标控制参数对机器人进行控制,能够一定程度上提升机器人控制时的准确性。In this example, the parameter correction information sent by the robot can be received, and the sub-target control parameter correction value of the robotic arm can be obtained according to the correction information, and the sub-target control parameter of the robotic arm can be corrected to obtain the corrected target control parameter. In existing solutions, only fixed target control parameters are used to control the robot, which can improve the accuracy of robot control to a certain extent.
与上述实施例一致的,请参阅图5,图5为本申请实施例提供的一种终端的结构示意图,如图所示,包括处理器、输入设备、输出设备和存储器,所述处 理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,上述程序包括用于执行以下步骤的指令;Consistent with the above embodiment, please refer to FIG. 5. FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the application. As shown in the figure, it includes a processor, an input device, an output device, and a memory. The processor, The input device, the output device, and the memory are connected to each other, wherein the memory is used to store a computer program, the computer program includes program instructions, the processor is configured to call the program instructions, and the above program includes instructions for executing the following Step instructions;
获取机器人控制器的在预设时间段的目标参数集合;Obtain the target parameter set of the robot controller in the preset time period;
依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;According to the target parameter set, a preset target control parameter determination method is adopted to determine the target control parameter of the robot;
将所述目标控制参数发送给所述机器人。The target control parameter is sent to the robot.
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。The foregoing mainly introduces the solution of the embodiment of the present application from the perspective of the execution process on the method side. It can be understood that, in order to implement the above-mentioned functions, the terminal includes hardware structures and/or software modules corresponding to each function. Those skilled in the art should easily realize that in combination with the units and algorithm steps of the examples described in the embodiments provided herein, this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
本申请实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。The embodiments of the present application may divide the terminal into functional units according to the foregoing method examples. For example, each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit. The above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
与上述一致的,请参阅图6,图6为本申请实施例提供了一种机器人控制装置的结构示意图。机器人控制装置包括获取单元601、确定单元602和发送单元603,其中,Consistent with the above, please refer to FIG. 6, which is a schematic structural diagram of a robot control device provided in an embodiment of the application. The robot control device includes an acquiring unit 601, a determining unit 602, and a sending unit 603, where:
所述获取单元601,用于获取机器人控制器的在预设时间段的目标参数集合;The acquiring unit 601 is configured to acquire a target parameter set of the robot controller in a preset time period;
所述确定单元602,用于依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;The determining unit 602 is configured to determine the target control parameter of the robot by using a preset target control parameter determination method according to the target parameter set;
所述发送单元603,用于将所述目标控制参数发送给所述机器人。The sending unit 603 is configured to send the target control parameter to the robot.
可选的,所述目标参数集合包括目标角速度、目标重力加速度和目标磁场强度,在所述依据所述目标参数集合,采用预设的目标控制参数确定方法,确 定出机器人的目标控制参数方面,所述确定单元602具体用于:Optionally, the target parameter set includes target angular velocity, target gravitational acceleration, and target magnetic field strength. In terms of determining the target control parameter of the robot by using a preset target control parameter determination method based on the target parameter set, The determining unit 602 is specifically configured to:
根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数。According to the target angular velocity, the target gravitational acceleration, and the target magnetic field strength, a preset target control parameter determination algorithm is used to determine the target control parameter.
可选的,在所述根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数方面,所述确定单元602具体用于:Optionally, in terms of determining the target control parameter by using a preset target control parameter determination algorithm according to the target angular velocity, target gravitational acceleration, and target magnetic field strength, the determining unit 602 is specifically configured to:
若所述机器人在水平方向静止时,则根据所述目标磁场强度确定出所述偏航角的偏移值;If the robot is stationary in the horizontal direction, determine the offset value of the yaw angle according to the target magnetic field strength;
根据所述目标角速度和目标重力加速度采用预设的滤波方法进行滤波,得到所述机器人控制器在所述预设时间段内的角速度变化曲线;Filtering according to the target angular velocity and the target gravitational acceleration using a preset filtering method to obtain the angular velocity change curve of the robot controller in the preset time period;
对所述角速度变化曲线进行积分,得到所述机器人控制器在所述预设时间段内的旋转角;Integrating the angular velocity change curve to obtain the rotation angle of the robot controller in the preset time period;
根据所述旋转角确定出参考控制参数;Determining a reference control parameter according to the rotation angle;
根据所述偏移值对所述参考控制参数进行修正,得到所述目标控制参数。The reference control parameter is corrected according to the offset value to obtain the target control parameter.
可选的,所述装置还具体用于:Optionally, the device is also specifically used for:
接收所述机器人发送的参数校正信息;Receiving parameter correction information sent by the robot;
根据所述参数校正信息,对所述目标控制参数进行参数校正,得到校正目标控制参数;Performing parameter correction on the target control parameter according to the parameter correction information to obtain a corrected target control parameter;
将所述校正目标控制参数发送给所述机器人。The correction target control parameter is sent to the robot.
可选的,所述参数校正信息包括目标压力值,所述机器人包括机械臂,所述目标控制参数包括机械臂的子目标控制参数,在所述根据所述参数校正信息,对所述目标控制参数进行参数校正,得到校正目标控制参数方面,所述装置还具体用于:Optionally, the parameter correction information includes a target pressure value, the robot includes a robot arm, and the target control parameter includes a sub-target control parameter of the robot arm. After the parameter correction information, the target is controlled In terms of parameter correction to obtain the corrected target control parameter, the device is also specifically used for:
若所述目标压力值处于预设的压力值阈值区间,则根据所述目标控制参数,确定出所述机械臂的第一运动方向,以及根据所述目标压力值确定出所述机械臂的运动距离;If the target pressure value is within a preset pressure value threshold interval, the first movement direction of the robotic arm is determined according to the target control parameter, and the movement of the robotic arm is determined according to the target pressure value distance;
根据所述第一运动方向,确定出所述机械臂的第二运动方向;Determine the second movement direction of the mechanical arm according to the first movement direction;
根据所述第二运动方向、所述运动距离,生成所述机械臂的子目标控制参数的修正值;Generating a correction value of the sub-target control parameter of the robot arm according to the second movement direction and the movement distance;
根据所述修正值对所述子目标控制参数进行修正,得到所述校正目标控制 参数。The sub-target control parameter is corrected according to the correction value to obtain the corrected target control parameter.
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种机器人控制方法的部分或全部步骤。The embodiments of the present application also provide a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes the computer to execute any part of the robot control method described in the above method embodiment Or all steps.
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种机器人控制方法的部分或全部步骤。The embodiments of the present application also provide a computer program product, which includes a non-transitory computer-readable storage medium storing a computer program, and the computer program causes a computer to execute any robot described in the above method embodiments. Part or all of the steps of the control method.
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。It should be noted that for the foregoing method embodiments, for the sake of simple description, they are all expressed as a series of action combinations, but those skilled in the art should know that this application is not limited by the described sequence of actions. Because according to this application, some steps can be performed in other order or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification are all preferred embodiments, and the actions and modules involved are not necessarily required by this application.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in an embodiment, reference may be made to related descriptions of other embodiments.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed device may be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented. In addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
另外,在申请明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。In addition, it is stated in the application that each functional unit in each embodiment may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit. The above-mentioned integrated unit can be realized in the form of hardware or software program module.
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或 使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software program module and sold or used as an independent product, it can be stored in a computer readable memory. Based on this understanding, the technical solution of the present application essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in each embodiment of the present application. The aforementioned memory includes: U disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), mobile hard disk, magnetic disk, or optical disk and other media that can store program codes.
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器、随机存取器、磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps in the various methods of the above-mentioned embodiments can be completed by instructing relevant hardware through a program. The program can be stored in a computer-readable memory, and the memory can include: flash disk , Read-only memory, random access device, magnetic or optical disk, etc.
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The embodiments of the application are described in detail above, and specific examples are used in this article to illustrate the principles and implementation of the application. The descriptions of the above examples are only used to help understand the methods and core ideas of the application; A person of ordinary skill in the art, based on the idea of the present application, will have changes in the specific implementation and the scope of application. In summary, the content of this specification should not be construed as a limitation of the present application.

Claims (10)

  1. 一种机器人控制方法,其特征在于,所述方法包括:A robot control method, characterized in that the method includes:
    获取机器人控制器的在预设时间段的目标参数集合;Obtain the target parameter set of the robot controller in the preset time period;
    依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;According to the target parameter set, a preset target control parameter determination method is adopted to determine the target control parameter of the robot;
    将所述目标控制参数发送给所述机器人。The target control parameter is sent to the robot.
  2. 根据权利要求1所述的方法,其特征在于,所述目标参数集合包括目标角速度、目标重力加速度和目标磁场强度,所述依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数,包括:The method according to claim 1, wherein the target parameter set includes a target angular velocity, a target gravitational acceleration, and a target magnetic field strength. According to the target parameter set, a preset target control parameter determination method is used to determine The target control parameters of the robot, including:
    根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数。According to the target angular velocity, the target gravitational acceleration, and the target magnetic field strength, a preset target control parameter determination algorithm is used to determine the target control parameter.
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数,包括:The method according to claim 2, wherein the determining the target control parameter by using a preset target control parameter determination algorithm according to the target angular velocity, the target gravitational acceleration, and the target magnetic field strength comprises:
    若所述机器人在水平方向静止时,则根据所述目标磁场强度确定出偏航角的偏移值;If the robot is stationary in the horizontal direction, determine the offset value of the yaw angle according to the target magnetic field strength;
    根据所述目标角速度和目标重力加速度采用预设的滤波方法进行滤波,得到所述机器人控制器在所述预设时间段内的角速度变化曲线;Filtering according to the target angular velocity and the target gravitational acceleration using a preset filtering method to obtain the angular velocity change curve of the robot controller in the preset time period;
    对所述角速度变化曲线进行积分,得到所述机器人控制器在所述预设时间段内的旋转角;Integrating the angular velocity change curve to obtain the rotation angle of the robot controller in the preset time period;
    根据所述旋转角确定出参考控制参数;Determining a reference control parameter according to the rotation angle;
    根据所述偏移值对所述参考控制参数进行修正,得到所述目标控制参数。The reference control parameter is corrected according to the offset value to obtain the target control parameter.
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:The method according to any one of claims 1 to 3, wherein the method further comprises:
    接收所述机器人发送的参数校正信息;Receiving parameter correction information sent by the robot;
    根据所述参数校正信息,对所述目标控制参数进行参数校正,得到校正目标控制参数;Performing parameter correction on the target control parameter according to the parameter correction information to obtain a corrected target control parameter;
    将所述校正目标控制参数发送给所述机器人。The correction target control parameter is sent to the robot.
  5. 根据权利要求4所述的方法,其特征在于,所述参数校正信息包括目标压力值,所述机器人包括机械臂,所述目标控制参数包括机械臂的子目标控制 参数,所述根据所述参数校正信息,对所述目标控制参数进行参数校正,得到校正目标控制参数,包括:The method according to claim 4, wherein the parameter correction information includes a target pressure value, the robot includes a robot arm, the target control parameter includes a sub-target control parameter of the robot arm, and the parameter is based on the parameter The correction information, performing parameter correction on the target control parameter to obtain the corrected target control parameter, includes:
    若所述目标压力值处于预设的压力值阈值区间,则根据所述目标控制参数,确定出所述机械臂的第一运动方向,以及根据所述目标压力值确定出所述机械臂的运动距离;If the target pressure value is within a preset pressure value threshold interval, the first movement direction of the robotic arm is determined according to the target control parameter, and the movement of the robotic arm is determined according to the target pressure value distance;
    根据所述第一运动方向,确定出所述机械臂的第二运动方向;Determine the second movement direction of the mechanical arm according to the first movement direction;
    根据所述第二运动方向、所述运动距离,生成所述机械臂的子目标控制参数的修正值;Generating a correction value of the sub-target control parameter of the robot arm according to the second movement direction and the movement distance;
    根据所述修正值对所述子目标控制参数进行修正,得到所述校正目标控制参数。The sub-target control parameter is corrected according to the correction value to obtain the corrected target control parameter.
  6. 一种机器人控制装置,其特征在于,所述装置包括获取单元、确定单元和发送单元,其中,A robot control device, characterized in that the device includes an acquisition unit, a determination unit and a sending unit, wherein:
    所述获取单元,用于获取机器人控制器的在预设时间段的目标参数集合;The acquiring unit is configured to acquire a target parameter set of the robot controller in a preset time period;
    所述确定单元,用于依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数;The determining unit is configured to determine the target control parameter of the robot by using a preset target control parameter determination method according to the target parameter set;
    所述发送单元,用于将所述目标控制参数发送给所述机器人。The sending unit is configured to send the target control parameter to the robot.
  7. 根据权利要求6所述的装置,其特征在于,所述目标参数集合包括目标角速度、目标重力加速度和目标磁场强度,在所述依据所述目标参数集合,采用预设的目标控制参数确定方法,确定出机器人的目标控制参数方面,所述确定单元具体用于:The device according to claim 6, wherein the target parameter set includes a target angular velocity, a target gravitational acceleration, and a target magnetic field strength, and a preset target control parameter determination method is used according to the target parameter set, In terms of determining the target control parameters of the robot, the determining unit is specifically configured to:
    根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数。According to the target angular velocity, the target gravitational acceleration, and the target magnetic field strength, a preset target control parameter determination algorithm is used to determine the target control parameter.
  8. 根据权利要求7所述的装置,其特征在于,在所述根据所述目标角速度、目标重力加速度和目标磁场强度,采用预设的目标控制参数确定算法,确定出所述目标控制参数方面,所述确定单元具体用于:The device according to claim 7, wherein in the aspect of determining the target control parameter by using a preset target control parameter determination algorithm according to the target angular velocity, target gravitational acceleration, and target magnetic field strength, The determining unit is specifically used for:
    若所述机器人在水平方向静止时,则根据所述目标磁场强度确定出偏航角的偏移值;If the robot is stationary in the horizontal direction, determine the offset value of the yaw angle according to the target magnetic field strength;
    根据所述目标角速度和目标重力加速度采用预设的滤波方法进行滤波,得到所述机器人控制器在所述预设时间段内的角速度变化曲线;Filtering according to the target angular velocity and the target gravitational acceleration using a preset filtering method to obtain the angular velocity change curve of the robot controller in the preset time period;
    对所述角速度变化曲线进行积分,得到所述机器人控制器在所述预设时间 段内的旋转角;Integrating the angular velocity change curve to obtain the rotation angle of the robot controller in the preset time period;
    根据所述旋转角确定出参考控制参数;Determining a reference control parameter according to the rotation angle;
    根据所述偏移值对所述参考控制参数进行修正,得到所述目标控制参数。The reference control parameter is corrected according to the offset value to obtain the target control parameter.
  9. 一种终端,其特征在于,包括处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1-5任一项所述的方法。A terminal, characterized in that it includes a processor, an input device, an output device, and a memory, the processor, input device, output device, and memory are connected to each other, wherein the memory is used to store a computer program, and the computer program Comprising program instructions, the processor is configured to call the program instructions to execute the method according to any one of claims 1-5.
  10. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-5任一项所述的方法。A computer-readable storage medium, wherein the computer storage medium stores a computer program, the computer program includes program instructions, and the program instructions, when executed by a processor, cause the processor to execute as claimed in claim 1. -The method of any one of 5.
PCT/CN2019/099639 2019-04-25 2019-08-07 Robot control method and related product WO2020224076A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910340710 2019-04-25
CN201910376280.9 2019-05-07
CN201910376280.9A CN110103216B (en) 2019-04-25 2019-05-07 Robot control method and related product

Publications (1)

Publication Number Publication Date
WO2020224076A1 true WO2020224076A1 (en) 2020-11-12

Family

ID=67488553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099639 WO2020224076A1 (en) 2019-04-25 2019-08-07 Robot control method and related product

Country Status (2)

Country Link
CN (1) CN110103216B (en)
WO (1) WO2020224076A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110675684A (en) * 2019-09-27 2020-01-10 陕西天竞智能操作工程有限责任公司 Intelligent drilling system and equipment
CN111062048B (en) * 2019-12-31 2022-10-04 深圳市工匠社科技有限公司 Secure transmission method and related device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104757976A (en) * 2015-04-16 2015-07-08 大连理工大学 Human gait analyzing method and system based on multi-sensor fusion
JP2016168671A (en) * 2016-06-28 2016-09-23 セイコーエプソン株式会社 Robot control system and robot system
CN107376294A (en) * 2017-08-02 2017-11-24 魏会风 A kind of robot for being used for physical education and training
CN108490893A (en) * 2018-02-13 2018-09-04 烽台科技(北京)有限公司 A kind of industrial control method, device and equipment
CN108568818A (en) * 2018-04-10 2018-09-25 珠海格力智能装备有限公司 The control system and method for robot
CN108839025A (en) * 2018-07-12 2018-11-20 杭州电子科技大学 A kind of motion planning method and device of mobile mechanical arm
US10166674B1 (en) * 2015-05-27 2019-01-01 X Development Llc Adapting programming of a robot and/or control of the robot based on one or more parameters of an end effector of the robot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850127B (en) * 2015-03-13 2017-11-21 哈尔滨工程大学 It is a kind of can dynamic manipulation quadrotor method
CN106182003A (en) * 2016-08-01 2016-12-07 清华大学 A kind of mechanical arm teaching method, Apparatus and system
JP6557282B2 (en) * 2017-05-17 2019-08-07 ファナック株式会社 Machine tool control device and production system
CN109531578B (en) * 2018-12-29 2020-08-07 深圳市工匠社科技有限公司 Humanoid mechanical arm somatosensory control method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104757976A (en) * 2015-04-16 2015-07-08 大连理工大学 Human gait analyzing method and system based on multi-sensor fusion
US10166674B1 (en) * 2015-05-27 2019-01-01 X Development Llc Adapting programming of a robot and/or control of the robot based on one or more parameters of an end effector of the robot
JP2016168671A (en) * 2016-06-28 2016-09-23 セイコーエプソン株式会社 Robot control system and robot system
CN107376294A (en) * 2017-08-02 2017-11-24 魏会风 A kind of robot for being used for physical education and training
CN108490893A (en) * 2018-02-13 2018-09-04 烽台科技(北京)有限公司 A kind of industrial control method, device and equipment
CN108568818A (en) * 2018-04-10 2018-09-25 珠海格力智能装备有限公司 The control system and method for robot
CN108839025A (en) * 2018-07-12 2018-11-20 杭州电子科技大学 A kind of motion planning method and device of mobile mechanical arm

Also Published As

Publication number Publication date
CN110103216A (en) 2019-08-09
CN110103216B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
US11241614B2 (en) Variable magnetic field-based position
WO2020224076A1 (en) Robot control method and related product
TW201719433A (en) Secure access control to an embedded device through a networked computer
CN107409118A (en) Trust Establishment between credible performing environment and ancillary equipment
US20230408248A1 (en) System and method for measuring mobility metrics of a joint using magnetometer-free inertial measurement units
CN108927808B (en) ROS node communication method, authentication method and device
US10630702B1 (en) Protocol agnostic security by using out-of-band health checks
WO2020146540A1 (en) Secure communication with a trusted execution environment
WO2019083809A1 (en) Vr body tracking without external sensors
Polushin et al. Stability of bilateral teleoperators with generalized projection-based force reflection algorithms
WO2019058684A1 (en) Verification device, information processing method, and program
CN108810019A (en) Refusal service attack defending method, apparatus, equipment and storage medium
US20220284620A1 (en) Information terminal apparatus and position recognition sharing method
US9871792B2 (en) Hostless mDNS-SD responder with authenticated host wake service
WO2018072760A1 (en) Information processing method, electronic devices and storage medium
CN109845181A (en) Key of obscuring for non-security commercial off-the-shelf (COTS) device is derived
WO2018196224A1 (en) Alignment method and alignment device
US20150200776A1 (en) Portable electronic device and secure pairing method therefor
US10938960B2 (en) System and method for implementing augmented object members for remote procedure call
Volden et al. Secure and efficient transmission of vision-based feedback control signals
US10354519B2 (en) Communication system, apparatus and method
Wang et al. Navigation of a humanoid robot via head gestures based on global and local live videos on google glass
JP2021043987A5 (en) SDK, 3D data processing method, and information processing device
WO2020133628A1 (en) Humanoid robotic arm somatosensory control system and related product
Nandhini et al. Study and analysis of cloud-based robotics framework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21.04.2022.)

122 Ep: pct application non-entry in european phase

Ref document number: 19927799

Country of ref document: EP

Kind code of ref document: A1