WO2020224002A1 - 一种用于测量微纳米尺度纤维力学性能的装置 - Google Patents

一种用于测量微纳米尺度纤维力学性能的装置 Download PDF

Info

Publication number
WO2020224002A1
WO2020224002A1 PCT/CN2019/087506 CN2019087506W WO2020224002A1 WO 2020224002 A1 WO2020224002 A1 WO 2020224002A1 CN 2019087506 W CN2019087506 W CN 2019087506W WO 2020224002 A1 WO2020224002 A1 WO 2020224002A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
force sensor
sample stage
stretching
sample
Prior art date
Application number
PCT/CN2019/087506
Other languages
English (en)
French (fr)
Inventor
杨海华
宋大川
Original Assignee
苏州昇特智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州昇特智能科技有限公司 filed Critical 苏州昇特智能科技有限公司
Priority to DE212019000014.2U priority Critical patent/DE212019000014U1/de
Publication of WO2020224002A1 publication Critical patent/WO2020224002A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Definitions

  • the utility model relates to the field of testing the mechanical properties of micro-nano-scale fibers, in particular to a device for measuring the mechanical properties of micro-nano-scale fibers.
  • Nanotechnology also known as nanotechnology, is a technology for studying the properties and applications of materials with structural sizes ranging from 1 nanometer to 100 nanometers. After the utility model of scanning tunneling microscope in 1981, a molecular world with a length of 1 to 100 nanometers was born. Its ultimate goal is to directly use atoms or molecules to construct products with specific functions. Therefore, nanotechnology is actually a technology that uses single atoms and molecules to make matter.
  • the current device for measuring the mechanical properties of micro-nano-scale fibers has the problems of difficult sample preparation of fiber materials (including micro-nano fiber materials), relatively single measured samples, and low accuracy of the measured data. To solve the above problems, this application A device for measuring the mechanical properties of micro-nano-scale fibers is proposed in the paper.
  • this utility model proposes a device for measuring the mechanical properties of micro-nano-scale fibers, which can test a variety of fiber samples, and realizes the functions of offline sample preparation and online testing , And high-precision temperature control, easy for beams to fuse, easy to observe the fiber test status and solve the problem of fiber material sample preparation.
  • the present invention provides a device for measuring the mechanical properties of micro-nano-scale fibers, including a casing, a force sensor module, a sample, a stretching module, a sample stage, and a control center module; a force sensor module and a tension sensor module.
  • the extension modules are respectively installed on the bottom plate, and the force sensor module is provided with a force sensor module chuck, and the extension module is provided with a tension module chuck; a sample table is provided between the force sensor module chuck and the tension module chuck;
  • the sample stage includes a beam, a protruding end of the sample stage, a fixed fiber plane, a column, a sample stage fixing seat and a sample stage clamping plate; two ends of the fixed fiber plane are provided with columns, and beams are arranged between the columns, and the columns are far away from the side of the fixed fiber plane.
  • the wall is connected to one end of the sample stage card board, and the other end of the sample stage card board is connected to the sample stage fixing seat.
  • the two ends of the column parallel to the sample stage fixing seat are provided with sample stage protruding ends; the sample stage fixing seat is respectively connected with The chuck of the force sensor module and the chuck of the stretching module are clamped and connected; the sample is set on the fixed limit plane;
  • a load-bearing plate is installed on the bottom plate, and the load-bearing plate is respectively installed with a fuser module, a refrigeration module, a temperature sensor, a lighting module, a heating module and a chamber room temperature control stirring impeller;
  • the fuser module includes a fuser head and a fuser Transition rod: One end of the fuser transition rod is connected with the fuser head, which is located on the back side of the sample table.
  • the bottom plate is provided with a control center module, and a force sensor module, a stretching module, a fuser module, a refrigeration module, a temperature sensor, a lighting module, a heating module and a chamber room temperature control stirring impeller signal of the control center module Connect, and the output end of the control center module is connected with the computer signal.
  • an organic shell is arranged on the bottom plate, a sealed door is arranged on the shell, and a fiber observation window is arranged on the sealed door.
  • the casing is provided with a left and right fine adjustment knob of the stretching module and a height adjustment knob of the stretching module, and the left and right fine adjustment knob of the stretching module and the height adjustment knob of the stretching module are connected with the stretching module.
  • an indicator light and a rocker switch are provided on the bottom plate.
  • the above-mentioned technical solution of the present invention has the following beneficial technical effects: conventional fiber, special fiber, micro-nano-scale fiber stretching can be performed on the same equipment, covering various fiber samples; through the cooling module, heating module and impeller Stirring realizes high-precision temperature control; high-precision hot-melt module minimizes the force influence on the force sensor module and fiber, and the head end of the hot-melt device can be processed into various shapes to facilitate the fusing of the beam of the sample table ;
  • the side of the sealed dark room is illuminated, so that the experimenter can observe the state of various fibers (including micro-nano fibers) through the fiber observation window, and the sealed chamber eliminates the influence of the external environment on the force sensor and fiber materials; the device It realizes the offline preparation of fiber samples on the sample table, which solves the problem of difficult sample preparation of fiber materials (including micro and nano fiber materials).
  • the innovatively designed sample table not only realizes offline sample preparation, but also protects the preparation to the greatest extent. Damage to the fiber during the
  • Figure 1 is a schematic structural diagram of a device for measuring the mechanical properties of micro-nano-scale fibers proposed by the utility model.
  • Figure 2 is a schematic diagram of the internal structure of a device for measuring the mechanical properties of micro-nano-scale fibers proposed by the utility model.
  • Figure 3 is a schematic diagram of the structure of the sample stage in the device for measuring the mechanical properties of micro-nano-scale fibers proposed by the utility model.
  • Figure 4 is a schematic structural diagram of the connection relationship between the force sensor module chuck and the tensile module chuck and the sample stage in the device for measuring the mechanical properties of micro-nano-scale fibers proposed by the utility model.
  • Fig. 5 is a schematic diagram of the structure of a fuser in a device for measuring the mechanical properties of micro-nano-scale fibers proposed by the utility model.
  • a device for measuring the mechanical properties of micro-nano-scale fibers proposed by this utility model includes a housing 1, a force sensor module 12, a sample 13, a stretching module 16, a sample stage and a control center
  • the force sensor module 12 and the stretching module 16 are respectively installed on the base plate 6, and the force sensor module 12 is provided with a force sensor module chuck 25, and the stretching module 16 is provided with a stretching module chuck 26;
  • a sample stage is arranged between the head 25 and the stretching module chuck 26;
  • the sample stage includes a beam 19, a sample stage protruding end 20, a fixed fiber plane 21, a column 22, a sample stage fixing seat 23 and a sample stage clamping plate 24; both ends of the fixed fiber plane 21 are provided with columns 22, and between the columns 22
  • the beam 19 and the side wall of the column 22 away from the fixed fiber plane 21 are connected to one end of the sample table clamping plate 24, the other end of the sample table clamping plate 24 is connected to the sample table fixing seat 23, and the column 22 is parallel to the sample table fixing seat 23
  • the sample stage protruding ends 20 are respectively provided at both ends of the sample stage; the sample stage fixing seat 23 is respectively snap-connected to the force sensor module chuck 25 and the stretching module chuck 26; the sample 13 is arranged on the fixed limit plane 21;
  • a load-bearing plate 15 is installed on the bottom plate 6, and the load-bearing plate 15 is respectively installed with a fuser module 9, a refrigeration module 10, a temperature sensor 11, a lighting module 14, a heating module 17, and a chamber room temperature control stirring impeller 18; fuser module 9 includes a fuser head 27 and a fuser transition rod 28; one end of the fuser transition rod 28 is connected with the fuser head 27, and the fuser head 27 is located on the back side of the sample table.
  • the two ends of the fiber sample 13 are first placed on the fixed fiber plane 21 on the sample table, the two ends of the fiber sample 13 are fixed on the fixed fiber plane 21 by the adhesive, and then the sample table is fixed by the fixed seat.
  • 23 Fix the sample stage on the force sensor module chuck 25 and the stretch module chuck 26.
  • the position of the stretch module chuck 26 can be adjusted by adjusting the left and right fine adjustment knob 5 of the stretching module and the height adjustment knob 8 of the stretching module.
  • power on the equipment set the operating temperature, cover the airtight door 3, control the temperature in the chamber through the refrigeration module 10 and the heating module 17, then light up the lighting module 14, and observe the fiber through the fiber observation window 2.
  • start the fuser module 9 to fuse the two beams 19 of the sample table, and perform the fiber strength data test and analysis through the software on the computer side.
  • the bottom plate 6 is provided with a control center module, and the control center module has a force sensor module 12, a stretching module 16, a fuser module 9, a refrigeration module 10, a temperature sensor 11, and a lighting
  • the module 14, the heating module 17 and the chamber room temperature control stirring impeller 18 are signal connected, and the output end of the control center module is connected with the computer signal.
  • the high-precision fuser module 9 minimizes the force influence on the force sensor module and the fiber, and the head end of the fuser can be processed into various shapes to facilitate the fusing of the beam of the sample table.
  • an organic casing 5 is provided on the bottom plate 6, a sealed door 3 is provided on the casing 5, and a fiber observation window 2 is provided on the sealed door 3.
  • the side of the sealed dark room is illuminated to facilitate the experimenter. Observe the state of various fibers through the fiber observation window 2, and the sealed chamber eliminates the influence of the external environment on the force sensor and fiber materials.
  • the casing 1 is provided with a stretching module left and right fine adjustment knob 5 and a stretching module height adjustment knob 8, a stretching module left and right fine adjustment knob 5, and a stretching module height adjustment knob 8 and a stretching module 16 is connected, and the position of the chuck 26 of the stretching module is adjusted by the left and right fine adjustment knob 5 of the stretching module and the height adjustment knob 8 of the stretching module.
  • an indicator light 4 and a rocker switch 7 are provided on the bottom plate 6.
  • the sample stage is placed in a closed chamber, and the temperature in the chamber is controlled by the temperature control module.
  • the mechanical properties of the sample under a certain temperature environment can be measured.
  • the fiber observation window can be used during the experiment. To observe the experimental process.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种用于测量微纳米尺度纤维力学性能的装置,包括机壳(1)、力传感器模块(12)、样品(13)、拉伸模块(16)、样品台和控制中心模块;力传感器模块(12)上设置有力传感器模块夹头(25),拉伸模块(16)上设置有拉伸模块夹头(26);力传感器模块夹头(25)和拉伸模块夹头(26)之间设置有样品台;承重板(15)上分别安装有热熔器模块(9)、制冷模块(10)、温度传感器(11)、照明模块(14)、加热模块(17)和腔室温控搅拌叶轮(18);热熔器模块(9)包括热熔器头(27)和热熔器过渡杆(28),热熔器过渡杆(28)的一端与热熔器头(27)连接,热熔器头(27)位于样品台的后侧。装置能够对多种纤维样品进行测试,实现了线下制样,线上测试的功能,解决了纤维材料制样难的问题,便于观察纤维测试状态,且高精度温度控制,便于横梁熔断。

Description

一种用于测量微纳米尺度纤维力学性能的装置 技术领域
本实用新型涉及微纳米尺度的纤维力学特性的测试领域,尤其涉及一种用于测量微纳米尺度纤维力学性能的装置。
背景技术
纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。1981年扫描隧道显微镜实用新型后,诞生了一门以1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子制造物质的技术。而现在的测量微纳米尺度纤维力学性能的装置存在纤维材料(包括微纳米纤维材料)制样难,测量的样品比较单一,且测量的数据的精度不高的问题,为解决上述问题,本申请中提出一种用于测量微纳米尺度纤维力学性能的装置。
实用新型内容
(一)实用新型目的
为解决背景技术中存在的技术问题,本实用新型提出一种用于测量微纳米尺度纤维力学性能的装置,可以对多种纤维样品进行测试,并实现了线下制样,线上测试的功能,且高精度温度控制,便于横梁熔断,便于观察纤维测试状态和解决了纤维材料制样难的问题。
(二)技术方案
为解决上述问题,本实用新型提供了一种用于测量微纳米尺度纤维力学性能的装置,包括机壳、力传感器模块、样品、拉伸模块、样品台和控制中心模 块;力传感器模块和拉伸模块分别安装在底板上,且力传感器模块上设置有力传感器模块夹头,拉伸模块上设置有拉伸模块夹头;力传感器模块夹头和拉伸模块夹头之间设置有样品台;
样品台包括横梁、样品台突出端、固定纤维平面、立柱、样品台固定座和样品台卡板;固定纤维平面的两端设置有立柱,立柱之间设置有横梁,立柱远离固定纤维平面的侧壁与样品台卡板的一端连接,样品台卡板的另一端与样品台固定座连接,立柱上与样品台固定座平行方向的两端分别设置有样品台突出端;样品台固定座分别与力传感器模块夹头和拉伸模块夹头卡合连接;样品设置在固定限位平面上;
底板上安装有承重板,承重板上分别安装有热熔器模块、制冷模块、温度传感器、照明模块、加热模块和腔室温控搅拌叶轮;热熔器模块包括热熔器头和热熔器过渡杆;热熔器过渡杆的一端与热熔器头连接,热熔器头位于样品台的后侧。
优选的,底板上设置有设置有控制中心模块,控制中心模块的与力传感器模块、拉伸模块、热熔器模块、制冷模块、温度传感器、照明模块、加热模块和腔室温控搅拌叶轮信号连接,且控制中心模块的输出端与计算机信号连接。
优选的,底板上设置有机壳,机壳上设置有密封门,密封门上设置有纤维观察窗。
优选的,机壳上设置有拉伸模块左右微调旋钮和拉伸模块高低调节旋钮,拉伸模块左右微调旋钮和拉伸模块高低调节旋钮与拉伸模块连接。
优选的,底板上设置有指示灯和船型开关。
本实用新型的上述技术方案具有如下有益的技术效果:可以在同一设备上进行常规纤维、特种纤维、微纳米尺度的纤维拉伸,涵盖了各种纤维样品;通 过制冷模块,加热模块以及叶轮的搅拌,实现了高精度的温度控制;高精度的热熔模块,对力传感器模块和纤维的受力影响降到最低,热熔器的头端可以加工成各种形状来便于样品台横梁的熔断;密封的暗室内侧面打光,方便实验者通过纤维观察窗来观察各种纤维(包括微纳米纤维)的状态,同时密封的腔室排除了外界环境对力传感器和纤维材料的影响;该设备实现了线下在样品台上制取纤维样品,解决了纤维材料(包括微纳米纤维材料)制样难的问题,创新设计的样品台,除了实现线下制样,也最大限度地保护了制样过程中对纤维的损伤。
附图说明
图1为本实用新型提出的一种用于测量微纳米尺度纤维力学性能的装置的结构示意图。
图2为本实用新型提出的一种用于测量微纳米尺度纤维力学性能的装置内部的结构示意图。
图3为本实用新型提出的一种用于测量微纳米尺度纤维力学性能的装置中样品台的结构示意图。
图4为本实用新型提出的一种用于测量微纳米尺度纤维力学性能的装置中力传感器模块夹头和拉伸模块夹头与样品台连接关系的结构示意图。
图5为本实用新型提出的一种用于测量微纳米尺度纤维力学性能的装置中热熔器的结构示意图。
附图标记:
1、机壳;2、纤维观察窗;3、密封门;4、指示灯;5、拉伸模块左右微调旋钮;6、底板;7、船型开关;8、拉伸模块高低调节旋钮;9、热熔器模块;10、制冷模块;11、温度传感器;12、力传感器模块;13、样品;14、照明模 块;15、承重板;16、拉伸模块;17、加热模块;18、腔室温控搅拌叶轮;19、横梁;20、样品台突出端;21、固定纤维平面;22、立柱;23、样品台固定座;24、样品台卡板;25、力传感器模块夹头;26、拉伸模块夹头;27、热熔器头;28、热熔器过度杆。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本实用新型进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本实用新型的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本实用新型的概念。
如图1-5所示,本实用新型提出的一种用于测量微纳米尺度纤维力学性能的装置,包括机壳1、力传感器模块12、样品13、拉伸模块16、样品台和控制中心模块;力传感器模块12和拉伸模块16分别安装在底板6上,且力传感器模块12上设置有力传感器模块夹头25,拉伸模块16上设置有拉伸模块夹头26;力传感器模块夹头25和拉伸模块夹头26之间设置有样品台;
样品台包括横梁19、样品台突出端20、固定纤维平面21、立柱22、样品台固定座23和样品台卡板24;固定纤维平面21的两端设置有立柱22,立柱22之间设置有横梁19,立柱22远离固定纤维平面21的侧壁与样品台卡板24的一端连接,样品台卡板24的另一端与样品台固定座23连接,立柱22上与样品台固定座23平行方向的两端分别设置有样品台突出端20;样品台固定座23分别与力传感器模块夹头25和拉伸模块夹头26卡合连接;样品13设置在固定限位平面21上;
底板6上安装有承重板15,承重板15上分别安装有热熔器模块9、制冷模块10、温度传感器11、照明模块14、加热模块17和腔室温控搅拌叶轮18;热 熔器模块9包括热熔器头27和热熔器过渡杆28;热熔器过渡杆28的一端与热熔器头27连接,热熔器头27位于样品台的后侧。
本实用新型中,首先将纤维样品13的两端放置于样品台上的固定纤维平面21上,通过粘合剂将纤维样品13的两端固定在固定纤维平面21上,再通过样品台固定座23将样品台固定在力传感器模块夹头25和拉伸模块夹头26上,可通过调节拉伸模块左右微调旋钮5和拉伸模块高低调节旋钮8来调节拉伸模块夹头26的位置,接着,将设备上电,设定好使用温度,盖上密封门3,通过制冷模块10和加热模块17来控制腔室内的温度,然后,点亮照明模块14,通过纤维观察窗2来观察纤维的状态,最后,启动热熔器模块9将样品台的2个横梁19熔断,并通过电脑端的软件来进行纤维的强力数据测试和分析。
在一个可选的实施例中,底板6上设置有设置有控制中心模块,控制中心模块的与力传感器模块12、拉伸模块16、热熔器模块9、制冷模块10、温度传感器11、照明模块14、加热模块17和腔室温控搅拌叶轮18信号连接,且控制中心模块的输出端与计算机信号连接,通过制冷模块10,加热模块17以及叶轮的搅拌,实现了高精度的温度控制,高精度的热熔器模块9,对力传感器模块和纤维的受力影响降到最低,热熔器的头端可以加工成各种形状来便于样品台横梁的熔断。
在一个可选的实施例中,底板6上设置有机壳5,机壳5上设置有密封门3,密封门3上设置有纤维观察窗2,密封的暗室内侧面打光,方便实验者通过纤维观察窗2来观察各种纤维的状态,同时密封的腔室排除了外界环境对力传感器和纤维材料的影响。
在一个可选的实施例中,机壳1上设置有拉伸模块左右微调旋钮5和拉伸模块高低调节旋钮8,拉伸模块左右微调旋钮5和拉伸模块高低调节旋钮8与拉 伸模块16连接,通过拉伸模块左右微调旋钮5和拉伸模块高低调节旋钮8来调节拉伸模块夹头26的位置。
在一个可选的实施例中,底板6上设置有指示灯4和船型开关7。
工作原理:通过样品台来线下制取样品,然后把带有样品的样品台竖直插入装置的力传感器模块夹头25和拉伸模块26夹头上,固定好之后,通过左拉伸模块左右微调旋钮5和拉伸模块高低调节旋钮8来准确定位样品台的空间位置,然后通过热熔器模块9将样品台两侧的横梁19熔断,此时,只剩下纤维的两端固定在力传感器模块12和拉伸模块16上,然后电脑端软件通过控制中心模块对装置进行控制,通过拉伸装置的移动和力传感器模块数据的采集,来获取实验过程的数据,通过对实验数据的分析来得到纤维材料的力学性能;样品台放置在封闭的腔室内,通过控温模块来控制腔室内的温度,可测量样品在一定的温度环境下的力学性能,实验过程中可通过纤维观察窗口来观察实验过程。
应当理解的是,本实用新型的上述具体实施方式仅仅用于示例性说明或解释本实用新型的原理,而不构成对本实用新型的限制。因此,在不偏离本实用新型的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。此外,本实用新型所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (5)

  1. 一种用于测量微纳米尺度纤维力学性能的装置,其特征在于,包括机壳(1)、力传感器模块(12)、样品(13)、拉伸模块(16)、样品台和控制中心模块;力传感器模块(12)和拉伸模块(16)分别安装在底板(6)上,且力传感器模块(12)上设置有力传感器模块夹头(25),拉伸模块(16)上设置有拉伸模块夹头(26);力传感器模块夹头(25)和拉伸模块夹头(26)之间设置有样品台;
    样品台包括横梁(19)、样品台突出端(20)、固定纤维平面(21)、立柱(22)、样品台固定座(23)和样品台卡板(24);固定纤维平面(21)的两端设置有立柱(22),立柱(22)之间设置有横梁(19),立柱(22)远离固定纤维平面(21)的侧壁与样品台卡板(24)的一端连接,样品台卡板(24)的另一端与样品台固定座(23)连接,立柱(22)上与样品台固定座(23)平行方向的两端分别设置有样品台突出端(20);样品台固定座(23)分别与力传感器模块夹头(25)和拉伸模块夹头(26)卡合连接;样品(13)设置在固定限位平面(21)上;
    底板(6)上安装有承重板(15),承重板(15)上分别安装有热熔器模块(9)、制冷模块(10)、温度传感器(11)、照明模块(14)、加热模块(17)和腔室温控搅拌叶轮(18);热熔器模块(9)包括热熔器头(27)和热熔器过渡杆(28);热熔器过渡杆(28)的一端与热熔器头(27)连接,热熔器头(27)位于样品台的后侧。
  2. 根据权利要求1所述的一种用于测量微纳米尺度纤维力学性能的装置,其特征在于,底板(6)上设置有设置有控制中心模块,控制中心模块的与力传感器模块(12)、拉伸模块(16)、热熔器模块(9)、制冷模块(10)、温度 传感器(11)、照明模块(14)、加热模块(17)和腔室温控搅拌叶轮(18)信号连接,且控制中心模块的输出端与计算机信号连接。
  3. 根据权利要求1所述的一种用于测量微纳米尺度纤维力学性能的装置,其特征在于,底板(6)上设置有机壳(5),机壳(5)上设置有密封门(3),密封门(3)上设置有纤维观察窗(2)。
  4. 根据权利要求3所述的一种用于测量微纳米尺度纤维力学性能的装置,其特征在于,机壳(1)上设置有拉伸模块左右微调旋钮(5)和拉伸模块高低调节旋钮(8),拉伸模块左右微调旋钮(5)和拉伸模块高低调节旋钮(8)与拉伸模块(16)连接。
  5. 根据权利要求1所述的一种用于测量微纳米尺度纤维力学性能的装置,其特征在于,底板(6)上设置有指示灯(4)和船型开关(7)。
PCT/CN2019/087506 2019-05-08 2019-05-18 一种用于测量微纳米尺度纤维力学性能的装置 WO2020224002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212019000014.2U DE212019000014U1 (de) 2019-05-08 2019-05-18 Eine Vorrichtung zur Messung der mechanischen Eigenschaften von mikro- und nanoskaligen Fasern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920653377.5U CN210113560U (zh) 2019-05-08 2019-05-08 一种用于测量微纳米尺度纤维力学性能的装置
CN201920653377.5 2019-05-08

Publications (1)

Publication Number Publication Date
WO2020224002A1 true WO2020224002A1 (zh) 2020-11-12

Family

ID=69579231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087506 WO2020224002A1 (zh) 2019-05-08 2019-05-18 一种用于测量微纳米尺度纤维力学性能的装置

Country Status (2)

Country Link
CN (1) CN210113560U (zh)
WO (1) WO2020224002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108558A (zh) * 2019-05-08 2019-08-09 苏州昇特智能科技有限公司 一种用于测量微纳米尺度纤维力学性能的装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740769A (zh) * 2005-09-23 2006-03-01 东华大学 一种用于显微镜上的微测量方法、装置及用途
JP2007085737A (ja) * 2005-09-20 2007-04-05 Shinshu Univ ナノファイバー力学特性評価試験機
CN201004051Y (zh) * 2007-02-08 2008-01-09 中国科学院化学研究所 一种用在红外光谱仪上的微型拉伸仪
US20140004345A1 (en) * 2007-02-21 2014-01-02 The Board Of Trustees Of The University Of Illinois Stress micro mechanical test cell, device, system and methods
CN103760016A (zh) * 2014-02-13 2014-04-30 北京工业大学 一种用于测试复合材料界面力学性能的夹具及实验方法
CN205656070U (zh) * 2016-04-05 2016-10-19 西南交通大学 一种纤维拉伸测试装置
CN106525571A (zh) * 2016-11-29 2017-03-22 大连海事大学 一种适配于光学显微镜上的显微镜拉伸仪
CN106840863A (zh) * 2017-02-27 2017-06-13 南京林业大学 纳米纤维素薄膜用拉伸夹具
CN110108558A (zh) * 2019-05-08 2019-08-09 苏州昇特智能科技有限公司 一种用于测量微纳米尺度纤维力学性能的装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085737A (ja) * 2005-09-20 2007-04-05 Shinshu Univ ナノファイバー力学特性評価試験機
CN1740769A (zh) * 2005-09-23 2006-03-01 东华大学 一种用于显微镜上的微测量方法、装置及用途
CN201004051Y (zh) * 2007-02-08 2008-01-09 中国科学院化学研究所 一种用在红外光谱仪上的微型拉伸仪
US20140004345A1 (en) * 2007-02-21 2014-01-02 The Board Of Trustees Of The University Of Illinois Stress micro mechanical test cell, device, system and methods
CN103760016A (zh) * 2014-02-13 2014-04-30 北京工业大学 一种用于测试复合材料界面力学性能的夹具及实验方法
CN205656070U (zh) * 2016-04-05 2016-10-19 西南交通大学 一种纤维拉伸测试装置
CN106525571A (zh) * 2016-11-29 2017-03-22 大连海事大学 一种适配于光学显微镜上的显微镜拉伸仪
CN106840863A (zh) * 2017-02-27 2017-06-13 南京林业大学 纳米纤维素薄膜用拉伸夹具
CN110108558A (zh) * 2019-05-08 2019-08-09 苏州昇特智能科技有限公司 一种用于测量微纳米尺度纤维力学性能的装置

Also Published As

Publication number Publication date
CN210113560U (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
US7681459B1 (en) Multi-scale & three-axis sensing tensile testing apparatus
CN103471905A (zh) 用于扫描显微环境的单轴双向微力学测量装置及测量方法
CN111337347B (zh) 植物微观力学检测装置及其检测方法
CN105973694A (zh) 拉伸-四点弯曲预载荷下纳米压痕测试装置
CN109932252A (zh) 一种电涡流加热高温力学测试装置
CN103575593A (zh) 一种介观尺度金属材料单向拉伸原位观察装置
WO2020224002A1 (zh) 一种用于测量微纳米尺度纤维力学性能的装置
WO2021114731A1 (zh) 一种弯曲应变产生装置及其应用
CN206223570U (zh) 一种用于宏观样品的原位电镜力热耦合试验装置
WO2020228049A1 (zh) 一种用于测量柔性材料风格的装置
CN106645807B (zh) 一个光电耦合环境可控原子力显微测试系统
CN109883839B (zh) 一种材料样品的拉伸设备和用于红外光谱分析的系统
CN203249835U (zh) 力热场耦合作用下材料原位三点弯曲测试装置
CN109883828A (zh) 透射电子显微镜原位高温定量化力学实验台
CN110426285A (zh) 拉伸试验机及应力应变测试设备
CN101793911A (zh) 一种基于扫描电镜的纳米压痕系统
CN106370521A (zh) 一种原位拉压测试平台及观测系统
CN202141647U (zh) 跨尺度微纳米级原位三点弯曲力学性能测试平台
CN102384878B (zh) 显微组件下跨尺度原位微纳米拉伸/压缩液压驱动测试装置
CN108508238A (zh) 基于双驱动afm系统测试单分子力谱装置和方法
CN102183413A (zh) 拉曼环境下细丝纤维加载测量装置
CN110108558A (zh) 一种用于测量微纳米尺度纤维力学性能的装置
CN206420712U (zh) 一种原位拉压测试平台及观测系统
CN202351139U (zh) 显微组件下跨尺度原位微纳米拉伸/压缩液压驱动测试装置
CN109470571A (zh) 一种束纤维拉伸微应变的测量机构及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928152

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19928152

Country of ref document: EP

Kind code of ref document: A1