WO2020221166A1 - 一种深水水域水下机器人型沉水植物盖度仪 - Google Patents

一种深水水域水下机器人型沉水植物盖度仪 Download PDF

Info

Publication number
WO2020221166A1
WO2020221166A1 PCT/CN2020/087009 CN2020087009W WO2020221166A1 WO 2020221166 A1 WO2020221166 A1 WO 2020221166A1 CN 2020087009 W CN2020087009 W CN 2020087009W WO 2020221166 A1 WO2020221166 A1 WO 2020221166A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater robot
deep
submerged plant
water
data
Prior art date
Application number
PCT/CN2020/087009
Other languages
English (en)
French (fr)
Inventor
李勇
杨朝辉
王军
Original Assignee
苏州科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科技大学 filed Critical 苏州科技大学
Publication of WO2020221166A1 publication Critical patent/WO2020221166A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • G01B11/285Measuring arrangements characterised by the use of optical techniques for measuring areas using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/048Control of altitude or depth specially adapted for water vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the invention relates to a submerged plant monitoring device, in particular to a deep-water underwater robot-type submerged plant coverage meter, which realizes automatic image monitoring of deep-water waters, and further completes the automatic extraction of submerged plants and the automatic coverage of submerged plants Calculation.
  • Submerged plants are an important part of the seashore, estuary and inland aquatic ecosystems. They live at the interface between water and sediment in the aquatic ecosystem, and are the organic junction between the water body and the two major nutrient reservoirs. Many studies at home and abroad have shown that the reconstruction of aquatic plant communities through artificial or natural propagation and cultivation methods, restores the functions of aquatic ecosystems, and transforms lakes from algae-type turbid water state to grass-type clear water state, has become a water environment pollution control And the important content of the renovation project.
  • the distribution, composition and changes of submerged plants can scientifically reflect the aquatic ecological status of a specific water area. It has always been a key indicator of lake eutrophication management and one of the important indicators of water ecological health evaluation.
  • the field survey method generally refers to underwater shooting by divers, combined with surface interpretation. This method is time-consuming, labor-intensive, small in monitoring coverage, low in accuracy, poor in safety, and easily affects the water environment. Satellite remote sensing monitoring method has been gradually used since the 1990s.
  • submerged plants are completely submerged in water, and the reflection spectrum of their plants must pass through the atmosphere-water interface, water and water bodies. Phytoplankton and other optically active ingredients (suspended matter, etc.) in the plant will change the optical properties of submerged plants, making the spectral properties of submerged plants more complicated.
  • hyperspectral remote sensing technology with rich spectral information is mainly used to monitor submerged plants.
  • this method based on hyperspectral remote sensing technology is greatly affected by the weather, and hyperspectral remote sensing images cannot be obtained in bad weather or with clouds; it is difficult to penetrate when the water is deep or there are suspended solids on the water surface. Water bodies can accurately monitor submerged plants; and the spatial resolution of hyperspectral remote sensing images is relatively low, making it difficult to achieve high-precision monitoring of submerged plants in deep waters.
  • the purpose of the present invention is to provide a deep-water underwater robot-type submerged plant coverage instrument.
  • the automatic shooting of deep-water images can be realized.
  • Complete high-precision extraction of submerged plants and automatic calculation of coverage On the basis of not destroying the original community structure, it solves the difficult problem of quickly and accurately monitoring the distribution of submerged plants and coverage statistics in deep water environment, and provides data support for scientifically and objectively assessing the ecological health of deep waters.
  • a deep-water underwater robot type submerged plant coverage meter including an underwater robot main body, a GPS positioning device, an embedded central processing unit, a wide-angle image sensor, a gyroscope, a sonar detector, a depth regulator, and a handheld Operation display screen and high-performance storage equipment.
  • the embedded central processing unit is installed in the main body of the underwater robot
  • the GPS positioning device is installed on the top of the main body of the underwater robot
  • the combination of the wide-angle image sensor, gyroscope, and sonar detector is installed on the front end of the main body of the underwater robot
  • the depth adjuster is installed at the rear end of the main body of the underwater robot.
  • the said GPS positioning device, wide-angle image sensor, gyroscope, sonar detector, depth adjuster and handheld operation display screen are all connected to the port of the embedded central processing unit.
  • the embedded central processing unit receives the position data of GPS positioning device, gyroscope, sonar detector, the parameter setting data of the handheld operation display screen and the digital image data of the wide-angle image sensor through the corresponding ports; and inputs these data into the navigation line Optimization analysis module, data preprocessing module and submerged plant coverage analysis module; finally the navigation route optimization analysis results, data preprocessing results and coverage analysis results are sent to the handheld operating display screen through the human-computer interaction module.
  • the GPS positioning device includes a retractable antenna and a waterproof connector, and the length of the antenna can be adjusted according to the specific depth of the underwater robot.
  • the embedded central processing unit can receive data collected or displayed from GPS positioning devices, wide-angle image sensors, gyroscopes, sonar detectors, depth adjusters, and handheld operating displays; it supports navigation routes Optimization analysis module, data preprocessing module, and submerged plant coverage analysis module related calculation analysis; the final image processing results and submerged plant coverage analysis results can be saved to high-performance storage devices, and sent to handheld operation Display screen.
  • the wide-angle image sensor can adjust the shooting angle according to the instruction, and collect high-resolution digital images of deep waters.
  • the gyroscope is connected to the wide-angle image sensor, and can record the current posture as an inertial navigation system of the wide-angle image sensor.
  • the sonar detector can transmit and receive sonar signals to the bottom of the deep water area to calculate the depth of the water body.
  • the depth adjuster can adjust the diving depth of the underwater robot according to the instruction to ensure the best distance for image shooting.
  • the handheld operating display screen can set the basic parameters of the underwater robot and its related equipment, and display the optimization analysis result of the navigation route, the data preprocessing result and the coverage analysis result.
  • the high-performance storage device can store the original deep water digital images collected by the wide-angle image sensor, the image processing results obtained by the data preprocessing module and the submerged plant coverage analysis module, and the submerged plant coverage analysis results.
  • the navigation route optimization analysis module is used to receive the data collected by the GPS positioning device, the sonar detector and the gyroscope, obtain the water depth of the deep water area through the sonar detector data, and obtain the data from the GPS positioning device
  • the vertical direction of the subject’s travel direction) The principle of overlapping of adjacent images of 30%-40%, calculate the best distance for image shooting, and send instructions to the depth adjuster to adjust the diving depth of the underwater robot, and finally complete the navigation route
  • the optimization analysis of the navigation route is sent to the handheld operating display screen through the embedded central processing unit. Confirmed by the user, the underwater robot-type submerged plant cover meter for deep waters can set the optimal navigation route.
  • the data preprocessing module is used to receive the deep water digital image data collected by the wide-angle image sensor, the positioning data collected by the GPS positioning device and the gyroscope, and compare the positioning data collected by the GPS positioning device and the gyroscope.
  • the deep water digital image data collected by the wide-angle image sensor is position-marked, and the digital image data after the position-marking is saved to a high-performance storage device and sent to the submerged plant coverage analysis module.
  • submerged plant coverage analysis module is used to receive the deep water digital image data after the position marking is completed, and use the embedded central processing unit to complete the image processing, target extraction and coverage analysis of these image data. Finally, the image processing results and submerged plant coverage analysis results are saved to a high-performance storage device and sent to the handheld operating display.
  • the main processing steps of the submerged plant coverage analysis module are as follows:
  • the human-computer interaction module is used to manually input the basic parameter data and various control commands of the underwater robot related equipment, and send these basic parameters and control commands to the embedded central processing unit; it can also optimize the analysis results of the navigation route, The data preprocessing result and the coverage analysis result are sent to the handheld operation display screen by the embedded central processing unit.
  • the present invention provides an underwater robot-type submerged plant coverage instrument in deep waters.
  • By designing a new type of underwater robot-type submerged plant coverage instrument automatic monitoring of deep-water water images is realized, and submerged plants are completed. High-precision extraction and automatic calculation of coverage.
  • On the basis of not destroying the original community structure it solves the difficult problem of quickly and accurately monitoring the distribution and coverage statistics of submerged plants in deep water environment, and provides powerful data support for scientifically and objectively assessing the ecological health of deep waters .
  • Fig. 1 is a schematic diagram of the structure of a deep-water underwater robot-type submerged plant coverage meter according to the present invention.
  • FIG. 2 is a schematic diagram of the module composition of the deep-water underwater robot-type submerged plant coverage meter of the present invention.
  • Figure 1 is a schematic diagram of the structure of a deep-water underwater robot type submerged plant coverage meter according to the present invention, including the main body of the underwater robot 1, the GPS positioning device 2, the embedded central processing unit, and the wide-angle image sensor 3. Gyroscope 4, sonar detector 5, depth adjuster 6, handheld operation display screen 8 and high-performance storage device 7.
  • the embedded central processing unit is installed in the underwater robot body 1
  • the GPS positioning device 2 is installed on the top of the underwater robot body 1
  • the wide-angle image sensor 3, gyroscope 4, and sonar detector 5 are installed in combination At the front end of the underwater robot body 1.
  • FIG. 2 is a schematic diagram of the module composition.
  • the GPS positioning device 2, the wide-angle image sensor 3, the gyroscope 4, the sonar detector 5, the depth adjuster 6 and the handheld operating display screen 8 are all connected to the embedded central processing unit port Phase connection.
  • the embedded central processing unit receives the position data of the GPS positioning device 2, the gyroscope 4, the sonar detector 5, the parameter setting data of the handheld operation display screen 8 and the digital image data of the wide-angle image sensor 3 through the corresponding ports; These data are input into the navigation route optimization analysis module, data preprocessing module and submerged plant coverage analysis module for analysis and calculation; finally the navigation route optimization analysis results, data preprocessing results and coverage analysis results are sent to the handheld through the human-computer interaction module Type operation display screen 8.
  • the deep-water underwater robot type submerged plant coverage meter is placed in the deep-water area, and the embedded central processing unit starts to receive the data collected by the GPS positioning device 2, the sonar detector 5 and the gyroscope 4, and The data is sent to the navigation route optimization analysis module.
  • the navigation route optimization analysis module calculates the depth of the water body in deep waters through the data of the sonar detector 5, obtains the current spatial position of the underwater robot body through the data of the GPS positioning device 2, combines the field of view angle of the wide-angle image sensor 3, and according to the digital image
  • the principle of the overlap degree of adjacent images of the heading is 40%-60%
  • the overlap degree of the adjacent images of the side is 30%-40%.
  • the depth adjuster 6 calculates the best distance for image shooting, and send instructions to the depth adjuster 6, adjust the diving depth of the underwater robot, adjust the GPS antenna length, adjust the best shooting angle of the wide-angle image sensor 3, and finally complete the optimization of the navigation route Analyze, and send the navigation route optimization analysis result to the handheld operation display screen 8 through the embedded central processing unit.
  • the deep-water underwater robot-type submerged plant coverage meter performs navigation and captures digital image data of deep-water waters according to the optimized navigation route set.
  • the data preprocessing module is used to receive the deep water digital image data collected by the wide-angle image sensor 3, the positioning data collected by the GPS positioning device 2 and the gyroscope 4, and the positioning data collected by the GPS positioning device 2 and the gyroscope 4
  • the data performs position marking on the deep water digital image data collected by the wide-angle image sensor 3, and saves the digital image data after the position marking is completed to the high-performance storage device 7, and sends it to the submerged plant coverage analysis module.
  • the submerged plant coverage analysis module is used to receive the deep water digital image data after the position marking is completed, and use the embedded central processing unit to complete the image processing, target extraction and coverage analysis of these image data, and its main processing The steps are as follows:
  • the embedded central processing unit saves the image processing results and the submerged plant coverage analysis results to the high-performance storage device 7 and sends them to the handheld operating display screen 8.
  • the user confirms through the human-computer interaction module and chooses to retake or end the shooting.

Abstract

提供了一种深水水域水下机器人型沉水植物盖度仪,包括水下机器人主体(1)、GPS定位装置(2)、内嵌式中央处理器、广角影像传感器(3)、陀螺仪(4)、声纳探测器(5)、深度调节器(6)、手持式操作显示屏(8)和高性能存贮设备(7);内嵌式中央处理器安装在水下机器人主体(1)内,GPS定位装置(2)安装在水下机器人主体(1)顶部,广角影像传感器(3)、陀螺仪(4)、声纳探测器(5)组合安装在水下机器人主体(1)前端,深度调节器(6)安装在水下机器人主体(1)后端。盖度仪在不破坏原有群落结构的基础上,解决在深水水域环境下难以快速、准确地监测沉水植物分布情况和盖度统计的难题,为科学客观地评估深水水域水生态健康提供有力的数据支撑。

Description

一种深水水域水下机器人型沉水植物盖度仪 技术领域
本发明涉及一种沉水植物监测装置,具体涉及一种深水水域水下机器人型沉水植物盖度仪,实现深水水域的自动影像监测,进而完成沉水植物的自动提取及其盖度的自动计算。
背景技术
深水水域是相对于浅水水域而言,一般是指危险性比较大、水深超过5m的水域。沉水植物是海滨、河口和内陆水生生态系统的重要组成部分,它生活于水生生态系统中水与底质的界面,是水体和底质两大营养库间的有机结合部。国内外许多研究表明,通过人工或自然的繁殖和培植方法进行水生植物群落的重建,恢复水生生态系统的功能,将湖泊由藻型浊水状态向草型清水状态转化,已成为水环境污染治理和整治工程中的重要内容。沉水植物的分布、组成及变化可以科学反映特定水域的水生态状况,一直是湖泊富营养化治理重点关注的指标,也是水生态健康评价的重要指标之一。
目前,深水水域的沉水植物调查主要分为现场调查法和卫星遥感监测法。现场调查法一般指通过潜水员进行水下拍摄,并结合水面现场判读。这种方法耗时耗力、监测覆盖范围小、精度较低、安全性差,而且容易影响水体环境。卫星遥感监测法自20世纪90年代以来被逐渐使用,然而与陆生植物和挺水植物不同,沉水植物完全沉于水中,其植物体反射的光谱必须穿过大气-水界面,水体和水体中的浮游植物以及其他光学活性成分(悬浮物等)会改变沉水植物的光学特性,使得沉水植物的光谱特性更为复杂。因此,目前主要采用具有丰富光谱信息的高光谱遥感技术来监测沉水植物。然而,这种基于高光谱遥感技术的方法受天气影响较大,在天气不好或存在云层的情况下不能获取高光谱遥感影像;在水体较深或水面存在悬浮物的情况下很难穿透水体,准确监测出沉水植物;而且高光谱遥感影像的空间分辨率相对较低,很难实现对深水水域沉水植物的高精度监测。
发明内容
为解决上述问题,本发明的目的在于提供一种深水水域水下机器人型沉水植物盖度仪,通过设计新型的水下机器人型沉水植物盖度仪,实现对深水水域影像的自动拍摄,完成沉水植物的高精度提取及其盖度的自动计算。在不破坏原有群落结构的基础上,解决在深水水域环境下难以快速、准确地监测沉水植物分布情况和盖度统计的难题,为科学客观地评估深水水域水生态健康提供数据支撑。
为实现上述目的,本发明采取的技术方案为:
为实现上述目的,本发明采取的技术方案为:
一种深水水域水下机器人型沉水植物盖度仪,包括水下机器人主体、GPS定位装置、内嵌式中央处理器、广角影像传感器、陀螺仪、声纳探测器、深度调节器、手持式操作显示屏和高性能存贮设备。所述内嵌式中央处理器安装在水下机器人主体内,所述GPS定位装置安装在水下机器人主体顶部,所述广角影像传感器、陀螺仪、声纳探测器组合安装在水下机器人 主体前端,所述深度调节器安装在水下机器人主体后端。
进一步的,所述的GPS定位装置、广角影像传感器、陀螺仪、声纳探测器、深度调节器和手持式操作显示屏均与内嵌式中央处理器端口相连接。内嵌式中央处理器通过对应端口接收GPS定位装置、陀螺仪、声纳探测器的位置数据,手持式操作显示屏的参数设置数据和广角影像传感器的数字影像数据;并将这些数据输入导航线路优化分析模块、数据预处理模块和沉水植物盖度分析模块;最终将导航线路优化分析结果、数据预处理结果和盖度分析结果通过人机交互模块发送到手持式操作显示屏。
进一步的,所述的GPS定位装置包括一个可伸缩天线和防水连接件,可以根据水下机器人下潜的具体深度调节天线的长度。
进一步的,所述的内嵌式中央处理器可以接收来自GPS定位装置、广角影像传感器、陀螺仪、声纳探测器、深度调节器、手持式操作显示屏所采集或显示的数据;支持导航线路优化分析模块、数据预处理模块和沉水植物盖度分析模块的相关计算分析;可以将最终将图像处理结果和沉水植物盖度分析结果保存到高性能存贮设备,并发送到手持式操作显示屏。
进一步的,所述的广角影像传感器可以根据指令调整拍摄角度,采集高分辨率的深水水域数字影像。
进一步的,所述的陀螺仪与广角影像传感器相连接,可以记录当前的姿态,作为广角影像传感器的惯导系统。
进一步的,所述的声纳探测器可以向深水水域底部发射并接收声纳信号,从而计算出水体的深度。
进一步的,所述的深度调节器可以根据指令调节水下机器人的下潜深度,保证影像拍摄的最佳距离。
进一步的,所述的手持式操作显示屏可以设置水下机器人及其相关设备的基本参数,显示导航线路优化分析结果、数据预处理结果和盖度分析结果。
进一步的,所述的高性能存贮设备可以保存广角影像传感器采集的原始深水水域数字影像、数据预处理模块和沉水植物盖度分析模块得到的图像处理结果和沉水植物盖度分析结果。
进一步的,所述的导航线路优化分析模块用于接收GPS定位装置、声纳探测器和陀螺仪所采集的数据,通过声纳探测器数据获取深水水域的水体深度,通过GPS定位装置的数据获取当前水下机器人本体的空间位置,结合广角影像传感器的视场角,并根据数字影像拍摄时航向(水下机器人主体行进方向)相邻影像重叠度40%-60%、旁向(水下机器人主体行进方向的垂直方向)相邻影像重叠度30%-40%的原则,计算影像拍摄的最佳距离,并发送指令给深度调节器,调整水下机器人的下潜深度,最终完成对导航线路的优化分析,并将导航线路优化分析结果通过内嵌式中央处理器发送到手持式操作显示屏。经用户确认,深水水域水下机器人型沉水植物盖度仪即可设置最优化的导航线路。
进一步的,所述的数据预处理模块用于接收广角影像传感器所采集的深水水域数字影像数据,GPS定位装置和陀螺仪所采集的定位数据,将GPS定位装置和陀螺仪所采集的定位数据对广角影像传感器所采集的深水水域数字影像数据进行位置标记,并将位置标记完成后的数字影像数据保存到高性能存贮设备,并发送到沉水植物盖度分析模块。
进一步的,所述的沉水植物盖度分析模块用于接收位置标记完成后的深水水域数字影像数据,使用内嵌式中央处理器完成对这些影像数据的图像处理、目标提取和盖度分析,最终将图像处理结果和沉水植物盖度分析结果保存到高性能存贮设备,并发送到手持式操作显示屏。
沉水植物盖度分析模块的主要处理步骤如下所示:
(1)对具有位置标记的深水水域数字影像数据进行噪声去除和图像增强处理;
(2)基于位置标记信息完成广角影像传感器自动标定和数字影像畸变校正;
(3)结合位置标记信息,对完成畸变校正的数字影像进行正射图像生成;
(4)对生成的正射图像进行特征点自动提取,通过相邻影像的特征点自动匹配及空中三角测量高效计算,实现影像匹配点的自动优化选择;
(5)基于优化选择的影像匹配点进行深水水域大场景正射图像生成;
(6)结合影像光谱特征信息和沉水植物几何特征信息,实现影像中沉水植物的自动提取;
(7)将提取出的沉水植物面积除以影像监测的总面积,即得到沉水植物盖度分析结果。
人机交互模块,用于手工输入水下机器人相关设备的基本参数数据和各种控制命令,并将这些基本参数和控制命令发送至内嵌式中央处理器;也可以将导航线路优化分析结果、数据预处理结果和盖度分析结果内嵌式中央处理器发送到手持式操作显示屏。
有益效果:本发明提供了一种深水水域水下机器人型沉水植物盖度仪,通过设计新型的水下机器人型沉水植物盖度仪,实现对深水水域影像的自动监测,完成沉水植物的高精度提取及其盖度的自动计算。在不破坏原有群落结构的基础上,解决在深水水域环境下难以快速、准确地监测沉水植物分布情况和盖度统计的难题,为科学客观地评估深水水域水生态健康提供有力的数据支撑。
附图说明
图1为本发明所述的一种深水水域水下机器人型沉水植物盖度仪的结构示意图。
图2为本发明所述的深水水域水下机器人型沉水植物盖度仪的模块组成示意图。
图中:1、水下机器人主体;2、GPS定位装置;3、广角影像传感器;4、陀螺仪;5、声纳探测器;6、深度调节器;7、高性能存贮设备;8、手持式操作显示屏。
具体实施方式
下面结合具体实施例来进一步描述本发明,但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
图1为本发明所述的一种深水水域水下机器人型沉水植物盖度仪的结构示意图,包括水下机器人主体1、GPS定位装置2、内嵌式中央处理器、广角影像传感器3、陀螺仪4、声纳探测器5、深度调节器6、手持式操作显示屏8和高性能存贮设备7。所述内嵌式中央处理器安装在水下机器人主体1内,所述GPS定位装置2安装在水下机器人主体1顶部,所述广角影像传感器3、陀螺仪4、声纳探测器5组合安装在水下机器人主体1前端。
图2为模块组成示意图,所述的GPS定位装置2、广角影像传感器3、陀螺仪4、声纳探测器5、深度调节器6和手持式操作显示屏8均与内嵌式中央处理器端口相连接。内嵌式中央处理器通过对应端口接收GPS定位装置2、陀螺仪4、声纳探测器5的位置数据,手持式操作显示屏8的参数设置数据和广角影像传感器3的数字影像数据;并将这些数据输入导航线路优化分析模块、数据预处理模块和沉水植物盖度分析模块进行分析计算;最终将导航线路优化分析结果、数据预处理结果和盖度分析结果通过人机交互模块发送到手持式操作显示屏8。
本实例的具体使用过程如下:
(1)将深水水域水下机器人型沉水植物盖度仪放置于深水水域,内嵌式中央处理器开始接收GPS定位装置2、声纳探测器5和陀螺仪4所采集的数据,并将数据发送到导航线路优化分析模块。导航线路优化分析模块通过声纳探测器5数据计算深水水域的水体深度,通过GPS定位装置2的数据获取当前水下机器人本体的空间位置,结合广角影像传感器3的视场角,并根据数字影像拍摄时航向(水下机器人主体1行进方向)相邻影像重叠度40%-60%、旁向(水下机器人主体1行进方向的垂直方向)相邻影像重叠度30%-40%的原则,计算影像拍摄的最佳距离,并发送指令给深度调节器6,调整水下机器人的下潜深度,调整GPS的天线长度,调整广角影像传感器3的最佳拍摄角度,最终完成对导航线路的优化分析,并将导航线路优化分析结果通过内嵌式中央处理器发送到手持式操作显示屏8。经用户确认,深水水域水下机器人型沉水植物盖度仪按照设置的最优化导航线路进行航行和深水水域数字影像数据的拍摄。
(2)数据预处理模块用于接收广角影像传感器3所采集的深水水域数字影像数据,GPS定位装置2和陀螺仪4所采集的定位数据,将GPS定位装置2和陀螺仪4所采集的定位数据对广角影像传感器3所采集的深水水域数字影像数据进行位置标记,并将位置标记完成后的数字影像数据保存到高性能存贮设备7,并发送到沉水植物盖度分析模块。
(3)沉水植物盖度分析模块用于接收位置标记完成后的深水水域数字影像数据,使用内嵌式中央处理器完成对这些影像数据的图像处理、目标提取和盖度分析,其主要处理步骤如下所示:
1)对具有位置标记的深水水域数字影像数据进行噪声去除和图像增强处理;
2)基于位置标记信息完成广角影像传感器3自动标定和数字影像畸变校正;
3)结合位置标记信息,对完成畸变校正的数字影像进行正射图像生成;
4)对生成的正射图像进行特征点自动提取,通过相邻影像的特征点自动匹配及空中三角测量高效计算,实现影像匹配点的自动优化选择;
5)基于优化选择的影像匹配点进行深水水域大场景正射图像生成;
6)结合影像光谱特征信息和沉水植物几何特征信息,实现影像中沉水植物的自动提取;
7)将提取出的沉水植物面积除以影像监测的总面积,即得到沉水植物盖度分析结果。
(4)内嵌式中央处理器将图像处理结果和沉水植物盖度分析结果保存到高性能存贮设备7,并发送到手持式操作显示屏8。用户通过人机交互模块进行确认,选择重新拍摄或结束拍摄。

Claims (10)

  1. 一种深水水域水下机器人型沉水植物盖度仪,其特征在于,包括水下机器人主体、GPS定位装置、内嵌式中央处理器、广角影像传感器、陀螺仪、声纳探测器、深度调节器、手持式操作显示屏和高性能存贮设备;所述内嵌式中央处理器安装在水下机器人主体内,所述GPS定位装置安装在水下机器人主体顶部,所述广角影像传感器、陀螺仪、声纳探测器组合安装在水下机器人主体前端,所述深度调节器安装在水下机器人主体后端。
  2. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的GPS定位装置、广角影像传感器、陀螺仪、声纳探测器、深度调节器和手持式操作显示屏均与内嵌式中央处理器端口相连接,内嵌式中央处理器通过对应端口接收GPS定位装置、陀螺仪、声纳探测器的位置数据、手持式操作显示屏的参数设置数据和广角影像传感器的数字影像数据;并将这些数据输入导航线路优化分析模块、数据预处理模块和沉水植物盖度分析模块;最终将导航线路优化分析结果、数据预处理结果和盖度分析结果通过人机交互模块发送到手持式操作显示屏。
  3. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的GPS定位装置包括一个可伸缩天线和防水连接件,根据水下机器人下潜的具体深度调节天线的长度。
  4. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的广角影像传感器根据指令调整拍摄角度,用于采集高分辨率的深水水域数字影像;所述的陀螺仪与广角影像传感器相连接,记录当前的姿态,作为广角影像传感器的惯导系统。
  5. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的声纳探测器用于向深水水域底部发射并接收声纳信号,从而计算出水体的深度;所述的深度调节器可根据指令调节水下机器人的下潜深度,保证影像拍摄的最佳距离。
  6. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的手持式操作显示屏可设置水下机器人及其相关设备的基本参数,显示导航线路优化分析结果、数据预处理结果和盖度分析结果。
  7. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的高性能存贮设备用于保存广角影像传感器采集的原始深水水域数字影像、数据预处理模块和沉水植物盖度分析模块得到的图像处理结果和沉水植物盖度分析结果。
  8. 根据权利要求1所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,
    所述的导航线路优化分析模块用于接收GPS定位装置、声纳探测器和陀螺仪所采集的数据,通过声纳探测器数据获取深水水域的水体深度,通过GPS定位装置的数据获取当前水下机器人本体的空间位置,结合广角影像传感器的视场角,并根据数字影像拍摄时航向相邻影像重叠度40%-60%、旁向相邻影像重叠度30%-40%的原则,计算影像拍摄的最佳距离,并发送指令给深度调节器,调整水下机器人的下潜深度,最终完成对导航线路的优化分析,并将导航线路优化分析结果通过内嵌式中央处理器发送到手持式操作显示屏;经用户确认,深水水域水下机器人型沉水植物盖度仪即可设置最优化的导航线路;
    所述的数据预处理模块用于接收广角影像传感器所采集的深水水域数字影像数据,GPS定位装置和陀螺仪所采集的定位数据,将GPS定位装置和陀螺仪所采集的定位数据对广角影像传感器所采集的深水水域数字影像数据进行位置标记,并将位置标记完成后的数字影像数据保存到高性能存贮设备,并发送到沉水植物盖度分析模块;
    所述的沉水植物盖度分析模块,用于接收位置标记完成后的深水水域数字影像数据,使用内嵌式中央处理器完成对这些影像数据的图像处理、目标提取和盖度分析,最终将图像处理结果和沉水植物盖度分析结果保存到高性能存贮设备,并发送到手持式操作显示屏。
  9. 根据权利要求8所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的沉水植物盖度分析模块的主要处理步骤如下所示:
    (1)对具有位置标记的深水水域数字影像数据进行噪声去除和图像增强处理;
    (2)基于位置标记信息完成广角影像传感器自动标定和数字影像畸变校正;
    (3)结合位置标记信息,对完成畸变校正的数字影像进行正射图像生成;
    (4)对生成的正射图像进行特征点自动提取,通过相邻影像的特征点自动匹配及空中三角测量高效计算,实现影像匹配点的自动优化选择;
    (5)基于优化选择的影像匹配点进行深水水域大场景正射图像生成;
    (6)结合影像光谱特征信息和沉水植物几何特征信息,实现影像中沉水植物的自动提取;
    (7)将提取出的沉水植物面积除以影像监测的总面积,即得到沉水植物盖度分析结果。
  10. 根据权利要求2所述的一种深水水域水下机器人型沉水植物盖度仪,其特征在于,所述的人机交互模块用于手工输入水下机器人相关设备的基本参数数据和各种控制命令,并将这些基本参数和控制命令发送至内嵌式中央处理器;也可将导航线路优化分析结果、数据预处理结果和盖度分析结果内嵌式中央处理器发送到手持式操作显示屏。
PCT/CN2020/087009 2019-04-30 2020-04-26 一种深水水域水下机器人型沉水植物盖度仪 WO2020221166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910360081.9A CN110132183B (zh) 2019-04-30 2019-04-30 一种深水水域水下机器人型沉水植物盖度仪
CN201910360081.9 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221166A1 true WO2020221166A1 (zh) 2020-11-05

Family

ID=67575736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087009 WO2020221166A1 (zh) 2019-04-30 2020-04-26 一种深水水域水下机器人型沉水植物盖度仪

Country Status (2)

Country Link
CN (1) CN110132183B (zh)
WO (1) WO2020221166A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433956A (zh) * 2021-07-21 2021-09-24 武昌理工学院 一种水下测绘机器人位移安全获取方法
CN117572430A (zh) * 2024-01-12 2024-02-20 自然资源部第二海洋研究所 一种采矿羽流再沉积厚度面域探测装置和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132183B (zh) * 2019-04-30 2021-12-28 苏州科技大学 一种深水水域水下机器人型沉水植物盖度仪
CN111860220B (zh) * 2020-06-30 2021-04-13 扬州大学 一种小麦幼苗分布特征的评价方法
CN114046777A (zh) * 2021-10-22 2022-02-15 自然资源部第一海洋研究所 适用于大范围浅海珊瑚礁制图的水下光学成像系统及方法
CN115316088A (zh) * 2022-09-09 2022-11-11 温州大学 一种激光测深的自动化沉水植物种植船

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230B2 (ja) * 1978-03-31 1985-01-07 松下電器産業株式会社 券発行機の印字装置
CN101102480A (zh) * 2007-07-27 2008-01-09 浙江工业大学 基于全方位视觉的水下视频检测装置
CN101614819A (zh) * 2009-08-04 2009-12-30 北京师范大学 浅水湖泊沉水植物自动识别技术及装置
CN103913422A (zh) * 2014-03-03 2014-07-09 中国科学院南京地理与湖泊研究所 一种基于hj-ccd影像的浅水湖泊水生植物快速监测方法
CN105974456A (zh) * 2016-05-20 2016-09-28 盐城工学院 一种自主式水下机器人组合导航系统
CN107728150A (zh) * 2017-09-26 2018-02-23 江苏省水利科学研究院 调查湖泊沉水植物的方法
CN108828066A (zh) * 2018-03-21 2018-11-16 中冶华天工程技术有限公司 一种利用回声探测仪观测沉水植物的方法
CN110132183A (zh) * 2019-04-30 2019-08-16 苏州科技大学 一种深水水域水下机器人型沉水植物盖度仪

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600230B2 (ja) * 2003-02-21 2004-12-15 株式会社ファースト 建築および土木構造物計測・解析システム
CN105159320A (zh) * 2014-08-12 2015-12-16 天津北洋蓝水科技有限公司 适用于复杂水域的水下目标探测平台系统及其使用方法
CN106092195B (zh) * 2016-06-21 2018-11-09 杨州 一种水环境监测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230B2 (ja) * 1978-03-31 1985-01-07 松下電器産業株式会社 券発行機の印字装置
CN101102480A (zh) * 2007-07-27 2008-01-09 浙江工业大学 基于全方位视觉的水下视频检测装置
CN101614819A (zh) * 2009-08-04 2009-12-30 北京师范大学 浅水湖泊沉水植物自动识别技术及装置
CN103913422A (zh) * 2014-03-03 2014-07-09 中国科学院南京地理与湖泊研究所 一种基于hj-ccd影像的浅水湖泊水生植物快速监测方法
CN105974456A (zh) * 2016-05-20 2016-09-28 盐城工学院 一种自主式水下机器人组合导航系统
CN107728150A (zh) * 2017-09-26 2018-02-23 江苏省水利科学研究院 调查湖泊沉水植物的方法
CN108828066A (zh) * 2018-03-21 2018-11-16 中冶华天工程技术有限公司 一种利用回声探测仪观测沉水植物的方法
CN110132183A (zh) * 2019-04-30 2019-08-16 苏州科技大学 一种深水水域水下机器人型沉水植物盖度仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433956A (zh) * 2021-07-21 2021-09-24 武昌理工学院 一种水下测绘机器人位移安全获取方法
CN117572430A (zh) * 2024-01-12 2024-02-20 自然资源部第二海洋研究所 一种采矿羽流再沉积厚度面域探测装置和方法

Also Published As

Publication number Publication date
CN110132183A (zh) 2019-08-16
CN110132183B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2020221166A1 (zh) 一种深水水域水下机器人型沉水植物盖度仪
Hodúl et al. Satellite derived photogrammetric bathymetry
CN110779498B (zh) 基于无人机多视点摄影的浅水河流水深测绘方法及系统
CN105784710B (zh) 一种基于数字图像处理的混凝土桥梁裂缝检测装置
Šašak et al. Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain
McKenzie et al. Methods for mapping seagrass distribution
Zheng et al. Leaf orientation retrieval from terrestrial laser scanning (TLS) data
Bendig et al. Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring in Northeast China
Letortu et al. Examining high-resolution survey methods for monitoring cliff erosion at an operational scale
CN102495420A (zh) 一种水下目标精确定位系统及方法
CN105842707B (zh) 基于无人机遥感图像的草地地上生物量测算方法及装置
CN102589461A (zh) 一种基于图像的积雪深度测量方法
WO2020221168A1 (zh) 一种浅水湖泊无人水上舰艇型沉水植物盖度仪
Lu et al. A method of obtaining ice concentration and floe size from shipboard oblique sea ice images
CN110987063A (zh) 一种遥感监测河湖水文水生态要素的方法
CN113804154A (zh) 基于卫星和无人机遥感的路面沉陷检测方法及装置
CN108362201A (zh) 一种基于三维激光扫描的导航传感器参数标定方法和装置
CN112945877A (zh) 一种基于水上和水下双平台的水下高光谱校正系统及其工作方法
JP5152913B2 (ja) 洋上監視システムおよび方法
CN110836661A (zh) 一种天坑参数测量方法
CN207365912U (zh) 一种用于水下目标物尺寸测量的原位激光-图像融合测量系统
CN110044828B (zh) 一种声光融合的珊瑚活性探测系统及方法
Chang et al. Cost-effective framework for rapid underwater mapping with digital camera and color correction method
Song et al. Analysis of 3D topographic information on reservoir using UAV and echo sounder
CN114046777A (zh) 适用于大范围浅海珊瑚礁制图的水下光学成像系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799493

Country of ref document: EP

Kind code of ref document: A1