WO2020221110A1 - 双连接场景下scg侧业务处理方法及装置 - Google Patents

双连接场景下scg侧业务处理方法及装置 Download PDF

Info

Publication number
WO2020221110A1
WO2020221110A1 PCT/CN2020/086527 CN2020086527W WO2020221110A1 WO 2020221110 A1 WO2020221110 A1 WO 2020221110A1 CN 2020086527 W CN2020086527 W CN 2020086527W WO 2020221110 A1 WO2020221110 A1 WO 2020221110A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
scg
terminal device
base station
message
Prior art date
Application number
PCT/CN2020/086527
Other languages
English (en)
French (fr)
Inventor
李小仙
窦凤辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20798955.9A priority Critical patent/EP3944670A4/en
Priority to US17/605,113 priority patent/US12004036B2/en
Publication of WO2020221110A1 publication Critical patent/WO2020221110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for processing SCG side services in a dual-connection scenario.
  • GPP) has launched the fifth generation (5th-Generation, 5G) communication system.
  • 5G fifth generation
  • NR new radio
  • the three main applications of 5G communication systems are: enhanced mobile bandwidth (eMBB), massive machine-type communication (MTC), ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile bandwidth
  • MTC massive machine-type communication
  • URLLC ultra-reliable low latency communications
  • DC dual connectivity
  • the terminal device can maintain a connection with two base stations at the same time, one of which is called the primary base station and the other is called the secondary base station.
  • the primary base station configures a master cell group (MCG) and a secondary cell group (SCG) for the terminal device.
  • MCG bearers master cell group
  • SCG bearers secondary cell group
  • split bearers the gateway sends out a piece of data.
  • the data reaches the shunt point.
  • the shunt point divides the data into two parts. One part flows directly to the terminal equipment, and the other part flows into the terminal equipment through another base station.
  • the shunt point can be a primary base station or a secondary base station.
  • the terminal device In the process of uplink data transmission, when split bearer is used, if the terminal device meets the conditions such as the uplink buffer amount reaching the threshold, the terminal device sends data to the primary base station and the secondary base station respectively, and the two shares of data are merged in one of the base stations. Send to the gateway.
  • the coverage area of the secondary base station may not be continuous; for another example, the primary base station is an eNB in long term evolution (LTE), the secondary base station is a gNB in new radio (NR), and gNB uses C- In the band or higher frequency bands, the coverage of gNB is small, or the mobility parameters configured for gNB are unreasonable, resulting in continuous poor transmission quality of the SCG-side cell, resulting in high power consumption and reduced service experience.
  • LTE long term evolution
  • NR new radio
  • the embodiments of the application provide a method and device for processing SCG side services in a dual-connection scenario.
  • the terminal device reports the link quality information of the serving cell or the optimal neighboring cell determined by the terminal device to the main base station , Enabling the main base station to decide whether to release the SCG or switch the terminal device from the serving cell to the optimal neighboring cell according to the link quality information reported by the terminal, thereby achieving the purpose of reducing power consumption of the terminal device and improving service experience.
  • the example of this application provides a method for processing SCG side services in a dual-connection scenario.
  • the method is applied to a terminal device.
  • the terminal device establishes dual connections with both a primary base station and a secondary base station.
  • the method includes: the primary base station is a terminal device Configure the primary cell group and secondary cell group.
  • the terminal device determines that the link quality information of the serving cell in the SCG satisfies the first preset condition, obtain the link of at least one neighbor cell of the serving cell For path quality information, determine whether there is a better neighboring cell based on the link quality information, and if there is no better neighboring cell, send a first message to the primary base station, and the primary base station determines whether to perform SCG cell group release according to the first message.
  • the terminal device can timely determine the link quality information of the serving cell.
  • the channel quality information is sent to the main base station, so that the main base station can determine in time whether to perform SCG release, etc., to prevent the terminal equipment from continuing to transmit uplink and downlink data based on the serving cell
  • the link quality information of the serving cell includes one or more of the following information: the number of times the T313 timer corresponding to the cell in the SCG is turned on, the running time of the T313 timer corresponding to the cell in the SCG, and the SCG
  • the number of out of sync events in the middle cell the throughput of data transmitted by the cell in the SCG, the ratio of the throughput of the data transmitted by the cell in the SCG to the power consumption, the number of beam failures triggered by the cell in the SCG, and the corresponding cell in the SCG
  • the amount of data buffered in the RLC layer of the radio link control, the delay of uplink data sent by the link of the cell in the SCG, the signal strength of the cell in the SCG, the amplitude of the change in the signal strength of the cell in the SCG, and the link of the cell in the SCG The retransmission rate of the transmitted data, the signal-to-interference and noise ratio SINR of the cell in the SCG, the MCS index
  • the terminal device can determine whether the link quality information of the serving cell in the SCG satisfies the first preset condition, that is, whether the service quality on the SCG side is poor, through one or a combination of the following methods:
  • the MCS index of the modulation and coding mode corresponding to the cell in the SCG is lower than the thirteenth threshold, and the MCS index is the MCS index of the cell in the SCG for sending downlink data and/or the MCS index for receiving the uplink data;
  • the terminal device can flexibly determine whether the service quality on the SCG side meets the first preset condition.
  • the link quality information of the neighbor cell includes at least one of reference signal received power RSRP, reference signal received quality RSRQ, signal to interference plus noise ratio SINR, load, priority, or availability.
  • the terminal device if there is a better neighbor cell in at least one neighbor cell, the terminal device generates a second message, which carries the link quality determined by the terminal device according to the link quality information of the better neighbor cell Information; send a second message to the main base station.
  • the terminal device can send the determined link quality information of the better neighboring cell to the main base station in time, so that the main base station can determine whether to trigger the terminal device to perform cell handover in time, and avoid The terminal equipment continues to transmit uplink and downlink data based on the serving cell.
  • the second message is an A3 measurement report, A4 measurement report, or A5 measurement report.
  • the main base station after sending the second message to the main base station, it also receives a handover message sent by the main base station, and the handover message is used to instruct the terminal device to switch from the serving cell to a better neighboring cell.
  • the main base station can determine whether to perform SCG release in time, etc., so as to prevent terminal equipment from continuing to transmit uplink and downlink data based on the serving cell
  • the first message is an A2 measurement report.
  • the terminal device after sending the first message to the main base station, it also receives a release message sent by the main base station.
  • the release message is used to instruct the terminal device to release the SCG, and according to the release message, release the SCG.
  • the terminal device sends a second message to the main base station, so that the main base station determines in time whether to send a handover message to the terminal device, so that the terminal device switches to a better neighboring area, thereby ensuring the success rate of uplink and downlink data transmission , While improving the quality of upstream and downstream services, avoid high power consumption of terminal equipment.
  • an embodiment of the present application provides an SCG-side service processing apparatus for terminal equipment in a dual-connection scenario, where the terminal equipment establishes a dual-connection with a primary base station and a secondary base station, and the apparatus includes:
  • the processing unit is configured to obtain link quality information of the serving cell in the secondary cell group SCG, and if the link quality information of the serving cell satisfies a first preset condition, obtain the link of at least one neighbor cell of the serving cell Quality information, if there is no better neighbor cell in the at least one neighbor cell, a first message is generated, where the better neighbor cell is the link quality information in the at least one neighbor cell that meets the second preset condition A neighbor cell, where the first message carries link quality information determined by the terminal device according to the link quality information of the serving cell;
  • the transceiver unit is configured to send the first message by the primary base station, so that the primary base station processes the SCG side service according to the first message.
  • the link quality information of the serving cell includes one or more of the following information: the number of times the T313 timer corresponding to the cell in the SCG is turned on, and the T313 timing corresponding to the cell in the SCG
  • the running time of the device the number of out of sync events in the cell in the SCG, the throughput of the data transmitted by the cell in the SCG, the ratio of the throughput of the data transmitted by the cell in the SCG to the power consumption, and the The number of beam failures triggered by the cell in the SCG, the amount of data buffered by the radio link control RLC layer corresponding to the cell in the SCG, the delay of uplink data sent by the link of the cell in the SCG, and the cell in the SCG
  • the signal strength of the cell in the SCG the change amplitude of the signal strength of the cell in the SCG, the retransmission rate of the link transmission data of the cell in the SCG, the signal to interference plus noise ratio SINR of the cell in the SCG, the SI
  • the link quality information of the neighbor cell includes at least one of reference signal received power RSRP, reference signal received quality RSRQ, signal to interference plus noise ratio SINR, load, priority, or availability.
  • the processing unit is further configured to generate a second message if there is a better neighbor cell in the at least one neighbor cell, and the second message carries the terminal device according to the better neighbor cell.
  • Link quality information determined by link quality information of neighboring cells;
  • the transceiver unit is further configured to send the second message to the main base station.
  • the second message is an A3 measurement report, an A4 measurement report, or an A5 measurement report.
  • the transceiver unit after sending the second message to the primary base station, is further configured to receive a handover message sent by the primary base station, where the handover message is used to instruct the terminal device Switching from the serving cell to the better neighboring cell.
  • the first message is an A2 measurement report.
  • the transceiver unit after the transceiver unit sends the first message to the primary base station, it is also used to receive a release message sent by the primary base station, and the release message is used to instruct the terminal device to release The SCG;
  • the processing unit is further configured to release the SCG according to the release message.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a terminal device, enable the terminal device to execute the foregoing first aspect or the methods in the various possible implementation manners of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a terminal device, causes the terminal device to execute the above-mentioned first aspect or the first aspect.
  • a terminal device in a fifth aspect, includes a processor and a memory, and the processor is coupled with the memory, and is configured to execute the foregoing first aspect or methods in various possible implementation manners of the first aspect.
  • the SCG-side service processing method and device provided by the embodiments of this application are applied to terminal equipment in a dual-connection scenario.
  • the primary base station configures the primary cell group and secondary cell group for the terminal equipment.
  • the terminal equipment determines When the link quality information of the serving cell in the SCG satisfies the first preset condition, the link quality information of at least one neighbor cell of the serving cell is acquired, and whether there is a better neighboring cell is determined according to the link quality information.
  • the preferred neighbor cell sends a first message to the primary base station, and the primary base station determines whether to perform the SCG cell group release according to the first message.
  • the terminal device can timely update the link determined based on the link quality information of the serving cell
  • the quality information is sent to the main base station, so that the main base station determines in time whether to perform SCG release, etc., so as to prevent the terminal equipment from continuing to transmit uplink and downlink data based on the serving cell.
  • Figure 1 is a schematic structural diagram of a wireless protocol stack for a bearer established on the terminal device side under the EN-DC architecture;
  • Figure 2 is a schematic structural diagram of the wireless protocol stack on the network device side under the EN-DC architecture
  • Figure 3 is a schematic diagram of the control plane architecture of EN-DC
  • FIG. 4 is a schematic diagram of a dual-connection architecture used in a SCG-side service processing method in a dual-connection scenario according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the first interface and the third interface under the EN-DC architecture in the SCG-side service processing method in the dual-connection scenario provided by the embodiment of the present invention
  • FIG. 6 is a schematic diagram of split bearer under the EN-DC architecture in the SCG-side service processing method in the dual connectivity scenario provided by an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the first interface and the third interface under the NGEN-DC architecture in the SCG-side service processing method in the dual-connection scenario provided by the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of split bearer under the NGEN-DC architecture in the SCG-side service processing method in the dual connectivity scenario provided by an embodiment of the present invention
  • FIG. 9 is a schematic diagram of deployment of MN and SN in the SCG-side service processing method in a dual connectivity scenario provided by an embodiment of the present invention.
  • FIG. 10 is another schematic diagram of deployment of MN and SN in the SCG-side service processing method in a dual connectivity scenario provided by an embodiment of the present invention
  • FIG. 11 is a flowchart of a service processing method on the SCG side in a dual connectivity scenario provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of an option3x network architecture applicable to a SCG-side service processing method in a dual-connection scenario according to an embodiment of the present application;
  • FIG. 13 is a flowchart of another SCG-side service processing method in a dual-connection scenario provided by an embodiment of the present application.
  • FIG. 14 is a flowchart of yet another SCG-side service processing method in a dual-connection scenario provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an SCG-side service processing apparatus provided by an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the 5G communication system also introduces a dual connectivity (DC) architecture.
  • DC dual connectivity
  • the terminal device maintains a connection with two base stations at the same time, one of which is called a primary base station or a primary network node (master node, MN), and the other is called a secondary base station or a secondary network node (secondary node).
  • MN primary base station
  • secondary node secondary node
  • the connected terminal device is configured with one MCG and one SCG.
  • the dual connectivity architecture of the 5G system is divided into EN-DC architecture, NGEN-DC architecture, and NE -DC architecture and NR-DC architecture, etc.
  • DC stands for dual connectivity, which means dual connectivity
  • E stands for Evolved Universal Terrestrial Radio Access (E-UTRA), which means 4G wireless access network
  • N stands for NR, which means 5G new wireless
  • NGE stands for Next Generation E-UTRA (Next Generation E-UTRA, NGE), that is, in the NGEN-DC architecture
  • MN is the next generation eNB, which can be connected to the 5G core network.
  • the 5G network deployment architecture is divided into independent networking architecture (Standalone, SA) and non-independent networking (Non-Standalone, NSA).
  • SA independent networking architecture
  • Non-Standalone NSA
  • SA independent networking architecture
  • NSA non-independent networking
  • EN-DC EN-DC is the main form of NSA networking architecture.
  • the primary base station is the eNB
  • the secondary base station is the gNB, which are respectively denoted as the master base station (master eNB, MeNB) and the secondary base station (secondary SgNB).
  • EN-DC can be divided into option 3, option3a, and option3x.
  • the shunt point is MeNB
  • the shunt point is SgNB
  • the core network performs shunt.
  • the dual-connectivity architecture may subsequently be transformed into NE-DC, NGEN-DC, such as option4, option4a, option7, option7a, and option7x, or even SA architecture, such as option2.
  • FIG. 1 is a schematic structural diagram of a wireless protocol stack for a bearer established on the terminal device side under the EN-DC architecture.
  • the core network is an evolved packet core (EPC).
  • EPC evolved packet core
  • MCG bearers From the perspective of terminal equipment, there are three types of bearers: MCG bearers, SCG bearers, and split bearers.
  • MCG bearers From the perspective of terminal equipment, there are three types of bearers: MCG bearers, SCG bearers, and split bearers.
  • the MeNB acts as the offload point.
  • the MeNB encapsulates the data into packet data convergence protocol (PDCP) packets, and the MeNB passes the PDCP packets through the communication between the MeNB and SgNB.
  • the Xx interface is forwarded to the radio link control (radio link control, RLC) layer of the SgNB.
  • RLC radio link control
  • SgNB serves as the offloading point. After the data sent by the gateway reaches the SgNB, the SgNB encapsulates the data into PDCP packets, and forwards the PDCP packets to the RLC layer of the MeNB through the Xx interface.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • technical specifications technical specifications, TS 37.340.
  • FIG. 2 is a schematic diagram of the structure of the wireless protocol stack on the network device side under the EN-DC architecture.
  • bearers there are three types of bearers: MCG bearers, SCG bearers, and split bearers.
  • MCG bearers MCG bearers
  • SCG bearers SCG bearers
  • split bearers from the perspective of MeNB or SgNB, there are two types of separated bearers: the offload point is the separated bearer of the MeNB and the offload point is the separated bearer of the SgNB, corresponding to the option3 architecture and the option3x architecture respectively.
  • the split bearer is the split bearer.
  • FIG 3 is a schematic diagram of the control plane architecture of EN-DC.
  • MeNB and SgNB have their own radio resource control (radio resource rontrol, RRC) entities.
  • RRC radio resource control
  • Uu ports are established between terminal equipment and MeNB
  • Uu ports are established between terminal equipment and SeNB
  • X2 is established between MeNB and SgNB.
  • -C interface an S1 interface is established between the MeNB and the core network.
  • the RRC protocol data unit (protocol data unit, PDU) generated by the SgNB can be forwarded to the terminal device through the MeNB, and the MeNB sends the initial RRC configuration of the SgNB through signaling radio bearers (SRB) 1, and the subsequent reconfiguration
  • SRB signaling radio bearers
  • the terminal device may perform uplink service splitting.
  • the downlink data offload strategy is determined by the offload strategy configured by the operator. After offloading, if the service quality of the NR side, that is, the SCG side, is continuously poor, for example, when the SCG side meets at least one of the following conditions, the terminal device triggers the SCG failure reporting process:
  • the terminal device detects the SCG radio link failure (radio link failure, RLF);
  • the terminal device needs to perform the following actions:
  • Reset (reset) the secondary cell group-media access control layer (secondary cell group-media access control, SCG-MAC).
  • the split bearer when configured for the terminal device on the network side, if the amount of uplink service data is relatively high, the terminal device performs uplink service offloading. Similarly, if the amount of downlink service data is relatively high, the offload point performs downlink service offloading.
  • the frequency band corresponding to the secondary base station is higher than the frequency band corresponding to the primary base station, the coverage area of the secondary base station is smaller.
  • the coverage area of SgNB is smaller, and In the initial stage of network construction of NR base stations, the coverage of NR base stations may be discontinuous and other reasons, making the NR side more prone to poor service quality than the LTE side, which in turn causes high power consumption and reduced service experience.
  • the terminal device In order to avoid the problems of high power consumption and degraded service experience caused by poor service quality on the NR side, when the quality of the NR side is poor, the terminal device needs to report relevant information to the MeNB, which triggers the MeNB to take certain measures, such as issuing handover instructions to the terminal device.
  • the terminal equipment is switched to a cell with better quality under the SgNB, or the MeNB releases the SCG and instructs the terminal equipment.
  • Terminal equipment generally triggers the MeNB in the following two ways:
  • the first type the terminal device detects whether the T313 timer expires. If the T313 timer expires, the terminal device reports the SCG RLF to the MeNB, and the MeNB determines whether to issue a handover instruction or release the SCG according to the SCG RLF. Among them, the T313 timer is used to indicate the length of the timer for radio link failure. When the terminal device detects that the T313 timer expires, the lower layer of the terminal device continuously reports to RRC N313 out-of-sync triggers to start the T313 timer.
  • the T313 timer expires, if N314 consecutive synchronizations (in-sync) are detected ), stop T313 timing, and only trigger SCG RLF when the T313 timer expires.
  • the T313 timer is likely to be repeatedly turned on and reset, which makes it impossible to trigger SCG and RLF in time. Therefore, it may happen that for a long period of time before the terminal device officially triggers the SCG and RLF, the service quality on the NR side is poor, such as the packet loss rate and the high bit error rate. Under the power control mechanism, the terminal equipment will gradually increase the power, resulting in an increase in power consumption, causing the terminal equipment to lose power quickly and generate heat.
  • N313 is used to indicate the maximum number of synchronization loss
  • N314 is used to indicate the maximum number of synchronization.
  • T313, N313 and N314 please refer to 3GPP TS 36.331 and 3GPP TS 38.331.
  • the second type the terminal device sends a measurement report to trigger the MeNB to issue a handover instruction or release the SCG.
  • the mobility management of the terminal device is mainly triggered by the network side according to the measurement report of the terminal device, and the reporting of the measurement report of the terminal device is also performed in accordance with the measurement report reporting trigger threshold configured on the network side.
  • the measurement report reporting threshold configured on the network side may not meet the service transmission requirements of the terminal device. For example, under the EN-DC connection, if the reference signal received power (RSRP) of the S-measure configuration on the NR side is low, it is difficult for the terminal device to trigger the measurement process on the NR side. Therefore, it is impossible to obtain information such as signal strength of neighboring cells in time.
  • RSRP reference signal received power
  • S-measure is a field in the measurement configuration (measConfig) in LTE or NR
  • the measConfig cell is the RRC reconfiguration (RRC Reconfiguration) signaling sent by the network side.
  • RRC Reconfiguration the RRC reconfiguration
  • the terminal device must measure the neighboring cell with consistently high signal strength to trigger the measurement Report, while the terminal equipment in the current cell has experienced degradation of service quality due to problems such as interference and discontinuous coverage, but it still cannot trigger the A3 event measurement report, resulting in a continuous poor quality experience and high power consumption.
  • the A3 event is one of a series of measurement events pre-configured on the network side.
  • the series of measurement events include A1 to A6 events.
  • A1 events are reported when the serving cell trigger quantity is higher than the threshold, and A2 events refer to the serving cell Report when the trigger amount is lower than the threshold.
  • Event A3 means that the neighbor cell trigger amount is better than that of the primary cell (PCell) or primary cell (PSCell) after considering the offset.
  • A4 event refers to the neighbor cell trigger amount. Report when the amount is higher than the threshold,
  • A5 event means that the trigger amount of PCell or PSCell is lower than the threshold 1, and the trigger amount of the neighbor cell is higher than the threshold 2.
  • Report A6 event means that the trigger amount of the neighbor cell is better than the threshold after considering the deviation PSCell).
  • A3 events etc., please refer to 3GPP TS 36.331, 3GPP TS 38.331.
  • the terminal device needs to inform the network side of the situation in time, so that the network side triggers cell handover or releases SCG.
  • the terminal device If the terminal device reports SCG RLF by detecting whether the T313 timer expires, the terminal device cannot trigger the SCG RLF due to the repeated resetting of the T313 timer, causing problems such as uplink and downlink service delays and high power consumption of the terminal device; if the terminal device performs For measurement, the measurement parameters included in the measurement configuration information on the network side may be unreasonable, so that the terminal device cannot trigger the report of the measurement report even when the service quality on the NR side is poor, and the terminal device cannot switch to a better neighboring cell. .
  • the embodiments of the present invention provide a SCG-side service processing method and device in a dual-connection scenario.
  • the terminal device determines whether there is a neighbor cell whose link quality information meets the second preset condition according to the link quality information of the serving cell on the SCG side, and if there is, it sends the terminal device determination to the main base station.
  • the measurement report of the link quality information of the better neighboring cell is used to trigger the main base station to determine whether to issue a handover instruction to the terminal device according to the measurement report, so that the terminal device will switch to the better neighbor cell, if there is no link quality information If the neighbor cell meets the second preset condition, the terminal device sends a measurement report carrying link quality information of the serving cell determined by the terminal device to the primary base station to trigger the primary base station to determine whether to perform SCG release according to the measurement report.
  • FIG. 4 is a schematic diagram of a dual-connection architecture used by the SCG-side service processing method in a dual-connection scenario according to an embodiment of the present invention.
  • the terminal device maintains a connection with two network devices at the same time, one of the network devices is called MN, and the other network device is called SN.
  • the network equipment can be one or several of eNB, gNB, transmission and reception point (TRP), cell, central unit (CU), distributed unit (DU), etc. A combination.
  • the network device can be a gNB, and the gNB completes the functions involved in the network device; or, the network device is a combination of gNB and TRP, and the gNB completes the resource configuration function, and the TRP completes the sending and receiving functions; or, the network equipment is Combination of CU and DU.
  • the terminal equipment can be a mobile phone, a tablet, a smart car, a sensor device, the Internet of Things (IOT), a customer-premises equipment (CPE), a relay base station, etc.
  • IOT Internet of Things
  • CPE customer-premises equipment
  • the MN interacts with the core network through the first interface
  • the SN interacts with the core network through the second interface.
  • the third interface between the MN and the SN can be an X2 interface
  • the MN and the UE interact through the fourth interface.
  • the fourth interface can be a Uu interface.
  • the SN and the UE interact through the fifth interface.
  • the interface can be a Uu interface.
  • the architecture shown in Figure 4 can be EN-DC architecture, NGEN-DC architecture, NE-DC architecture, NR-DC architecture, etc.
  • FIG. 5 is a schematic diagram of the EN-DC architecture in the SCG-side service processing method in a dual connectivity scenario provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of split bearer under the EN-DC architecture in the SCG-side service processing method in the dual connectivity scenario provided by an embodiment of the present invention.
  • MN is LTE eNB
  • SN is gNB
  • core network is EPC.
  • the first interface may include control plane interface S1-C and data plane interface S1-U
  • the second The interface can be a data plane interface S1-U
  • the third interface between MN and SN can be an X2 interface.
  • the solid line in the figure is the control plane interface
  • the dashed line is the data plane interface
  • the gNB is the shunt point.
  • FIG. 7 is a schematic diagram of the first interface and the third interface under the NGEN-DC architecture in the SCG-side service processing method in the dual connectivity scenario provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of split bearer under the NGEN-DC architecture in the SCG-side service processing method in the dual connectivity scenario provided by an embodiment of the present invention. Please refer to Figure 7 and Figure 8.
  • MN is eLTE eNB
  • SN is gNB
  • the core network is a new radio core (NG Core, NGC) network.
  • NG Core new radio core
  • the first interface can include control plane interfaces NG-C and Data plane interface NG-U, the second interface can be data plane interface NG-U, the third interface between MN and SN can be Xn interface, the solid line in the figure is the control plane interface, the dashed line is the data plane interface, gNB is Diversion point.
  • the MN and the SN can be deployed on the same site or separately.
  • Figure 9 is a schematic diagram of a deployment of MN and SN in the SCG-side service processing method in a dual connectivity scenario provided by an embodiment of the present invention.
  • Another deployment schematic diagram of MN and SN in the SCG-side service processing method in the connection scenario MN and SN are deployed on the same site.
  • MN and SN share the same set of hardware devices, such as processors, transceivers, etc.
  • the LTE network equipment can be the LTE network equipment connected to the EPC, or It can be NGC network equipment connected to 5G, etc.
  • MN and SN are deployed on different sites. At this time, MN and SN use different hardware devices, such as processors, transceivers, etc.
  • FIG. 11 is a flowchart of a service processing method on the SCG side in a dual connectivity scenario provided in an embodiment of the present application. This embodiment is described in detail from the perspective of a terminal device. This embodiment includes :
  • the terminal device establishes a connection with the primary base station and the secondary base station at the same time, and the terminal device is configured with MCG and SCG.
  • the terminal device can obtain the link quality information of the serving cell in the SG.
  • the terminal device can obtain the reference signal received power (RSRP) of the serving cell, the received signal strength indicator (RSSI), or the reference signal received quality (RSRQ), etc., and It is determined whether the information meets the first preset condition, and if the information meets the first preset condition, it is considered that the link quality of the serving cell is poor.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSQ reference signal received quality
  • link quality information of the serving cell meets the first preset condition, acquire link quality information of at least one neighbor cell of the serving cell;
  • the terminal device determines that the link quality information of the serving cell satisfies the first preset condition, it measures the RSRP, RSRQ, signal to interference plus noise ratio of each neighboring cell of the serving cell. ratio, SINR), load, etc., to automatically obtain link quality information of neighboring cells of the serving cell.
  • the link quality information of the serving cell satisfies the first preset condition, it indicates that the link quality of the serving cell in the SCG is good, and there is no need to report to the primary base station, and the primary base station does not need to determine whether to release the SCG cell or perform a serving cell handover.
  • the preferred neighboring cell is a neighboring cell whose link quality information in the at least one neighboring cell satisfies a second preset condition, and the first message carries the terminal equipment to determine according to the link quality information of the serving cell Link quality information.
  • the terminal device determines whether there is a neighbor cell whose link quality meets the second preset condition in at least one neighbor cell according to the link quality information of the neighbor cell, and if there is a neighbor cell whose link quality meets the second preset condition in at least one neighbor cell If a neighbor cell is set, the neighbor cell is regarded as a better neighbor; otherwise, the terminal device considers that there is no better neighbor.
  • the terminal device determines a new link quality information according to the link quality information of the serving cell, and uses the new link quality information to generate a first message.
  • the link quality information carried in the first message is the original link quality information of the serving cell obtained by the terminal device, or it may be obtained by the terminal device processing the original link quality information of the serving cell, or, It is a preset value determined by the terminal device, and the embodiment of this application does not limit the specific embodiment of the link quality information carried in the first message.
  • the link quality information carried in the first message makes it easier for the primary base station to determine whether to release the SCG.
  • the coverage area of the gNB is not continuous, and the parameter configuration of the gNB is unreasonable, when the amount of service data of the terminal device is large and the split bearer is used, The SCG side is prone to problems of poor service quality, and the eNB cannot trigger the release of the SCG.
  • the terminal device determines that there is no neighbor cell whose link quality information meets the second preset condition in at least one neighbor cell, that is, there is no better neighbor cell, the terminal device will determine according to the link quality information of the serving cell
  • the new link quality information is reported to the main base station so that the main base station can determine whether to release the SCG.
  • the main base station can instruct the terminal equipment to use the MCG bearer to transmit uplink and downlink data, or if the main base station does not release SCG continues to use split bearer, the offload point can allocate less uplink and downlink data to the SCG side; another example, in the NE-DC architecture, the SCG side base station coverage is not continuous, the parameter configuration is unreasonable, etc., when the terminal equipment business When the data volume is large and split is used, the SCG side is prone to poor service quality.
  • the terminal device determines that there is no neighbor cell whose link quality information meets the second preset condition in at least one neighbor cell, that is, there is no better neighbor cell, the terminal device will determine according to the link quality information of the serving cell
  • the new link quality information is reported to the main base station, so that the main base station determines whether to release the MCG. If the main base station releases the SCG, the main base station instructs the terminal equipment to use the MCG bearer to transmit uplink and downlink data, or if the main base station does not release the SCG.
  • the split bearer continues to be used, but the amount of uplink and downlink data allocated to the SCG at the shunt point is less.
  • the 5 neighboring cells and the serving cell are same-frequency neighboring cells, and the link quality information is RSRP as an example
  • the 5 neighboring cells are neighboring cell 1 to neighboring cell 5
  • the terminal equipment measures
  • the RSRP of the 5 neighboring cells is -80dBm, -82dBm, -85dBm, -88dBm, and -90dBm
  • the RSRP of the serving cell is -79dBm.
  • the second preset condition is Mn+first compensation RSRP value+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off, where Mn represents the RSRP of the neighbor cell, Mp is the serving cell RSRP, and the first compensation RSRP value is one Preset value or dynamic value, such as 5dBm, Ofn represents the frequency offset of the neighboring cell (0dBm when the neighboring cell is the same frequency neighboring cell of the serving cell), Ocn represents the cell offset of the neighboring cell (the neighboring cell is the serving cell's 0dBm in the same frequency adjacent cell), Hys represents the amplitude hysteresis of the measurement structure (for example, 2dBm), Ofp represents the frequency offset of the serving cell (0dBm when the neighbor cell is the same frequency adjacent cell of the serving cell), and Ocp identifies the serving cell (0dBm when the neighbor cell is the same-frequency neighboring cell of the serving cell), off represents the offset of the measurement result (for example
  • the neighbor cell with the largest RSRP can be selected from the multiple neighbor cells, and then it is determined whether the neighbor cell with the largest RSRP can be the optimal neighbor; or, It is also possible to randomly select a neighbor cell from multiple neighbor cells, and then determine whether the neighbor cell can be the optimal neighbor cell.
  • a second message is generated and sent to the primary base station, and the second message carries the terminal device to determine according to the link quality information of the better neighboring cell Link quality information.
  • step 103 is executed; if there is a better neighboring cell in at least one neighboring cell, Step 105 is executed, that is, the terminal device determines a new link quality information according to the link quality information of the better neighboring cell, and generates a second message based on the new link quality information and sends it to the master base station.
  • the link quality information carried in the second message may be the original link quality information of the better neighboring cell, or it may be obtained by the terminal device processing the original link quality information of the better neighboring cell, or , It can also be a preset value determined by the terminal device.
  • the primary base station determines whether to send a handover message to the terminal device according to the second message, triggering the terminal device to perform cell handover, and handover from the serving cell to a better neighboring cell.
  • the SCG-side service processing method in the dual-connection scenario provided by the embodiment of the present invention is applied to terminal equipment in the dual-connection scenario.
  • the primary base station configures the primary cell group and the secondary cell group for the terminal equipment.
  • the terminal equipment When it is determined that the link quality information of the serving cell in the SCG satisfies the first preset condition, the link quality information of at least one neighboring cell of the serving cell is obtained, and the link quality information is used to determine whether there is a better neighboring cell. If there is a better neighboring cell, the first message is sent to the main base station, and the main base station determines whether to perform the SCG cell group release according to the first message.
  • the terminal device can timely update the link determined based on the link quality information of the serving cell
  • the quality information is sent to the main base station, so that the main base station determines in time whether to perform SCG release, etc., so as to prevent the terminal equipment from continuing to transmit uplink and downlink data based on the serving cell.
  • the terminal device if there is a better neighboring cell in at least one neighbor cell, the terminal device sends a second message to the primary base station, and the second message carries the terminal device's determination based on the link quality information of the better neighboring cell Link quality information.
  • the terminal device finds that there is a neighbor cell whose link quality information meets the second preset condition in at least one neighbor cell, it sends to the primary base station the link determined by the terminal device according to the link quality information of the better neighbor cell. Road quality information.
  • the primary base station determines whether to send a handover message to the terminal device according to the second message, and triggers the terminal device to perform cell handover to switch from the serving cell to a better neighboring cell.
  • the terminal device sends a second message to the primary base station, so that the primary base station determines in time whether to send a handover message to the terminal device, so that the terminal device switches to a better neighboring cell, thereby ensuring the success rate of uplink and downlink data transmission , While improving the quality of upstream and downstream services, avoid high power consumption of terminal equipment.
  • the dual-connection architecture is the EN-DC architecture, the NGEN-DC architecture, and the NE-DC architecture as examples to describe in detail the SCG-side service processing method in the above-mentioned dual-connection scenario.
  • the dual connection architecture is the EN-DC architecture.
  • the LTE side means MeNB or MCG-related processing, such as LTE air interface, LTE-related signaling, LTE-related internal bearer layers, etc.
  • NR side means interaction with SgNB or SCG Related processing, such as NR air interface, NR-related signaling, NR-related data bearer layers, etc.
  • network side means LTE side and/or NR side, and can also be called MCG and/or SCG, MeNB and/or SgNB, Pcell and/or SPCell, etc.
  • EN-DC architecture includes option3 architecture, option3a architecture, option3x architecture, etc.
  • the terminal device first accesses the eNB, and then the receiving eNB configures the SgNB through the addition process of the SgNB, and accesses the SgNB to form a dual connection.
  • the bearer type carried by dual connectivity is split bearer, and the user plane (UP) offload point is located at the SgNB; when the option 3 architecture is adopted, the UP offload point is located at the eNB.
  • the EN-DC architecture as an option3x architecture as an example, the SCG-side service processing method in the above dual-connection scenario will be described in detail. Exemplarily, refer to FIG. 12 and FIG. 13.
  • FIG. 12 is a schematic diagram of an option 3x network architecture to which a SCG-side service processing method in a dual connectivity scenario provided by an embodiment of the present application is applicable.
  • LTE eNB is MeNB
  • 5G gNB is SgNB
  • the core network is evolved packet core (EPC).
  • EPC evolved packet core
  • FIG. 13 is a flowchart of another SCG-side service processing method in a dual-connection scenario provided by an embodiment of the present application. This embodiment is described in detail from the perspective of a terminal device. This embodiment includes:
  • a terminal device obtains link quality information of a serving cell in a secondary cell group SCG.
  • the quality of the NR side link is poor, indicating that the quality of the serving cell in the SCG is poor.
  • the terminal device obtains the link quality information of the serving cell in the secondary cell group SCG.
  • the terminal device determines that the air interface signal quality on the NR side is poor and the NR side loses synchronization. Frequent, less scheduling on the NR side, higher bit error rate on the NR side, etc., it is determined that the link quality on the NR side is poor.
  • the link quality information of the serving cell includes one or more of the following information: the number of times the T313 timer corresponding to the cell in the SCG is turned on, and the T313 timer corresponding to the cell in the SCG , The number of out of sync events of the cell in the SCG, the throughput of data transmitted by the cell in the SCG, the ratio of the throughput of the data transmitted by the cell in the SCG to the power consumption, the The number of beam failures triggered by the cell in the SCG, the amount of data buffered in the radio link control (RLC) layer corresponding to the cell in the SCG, the delay of uplink data sent by the link of the cell in the SCG, The signal strength of the cell in the SCG, the change amplitude of the signal strength of the cell in the SCG, the retransmission rate of the link transmission data of the cell in the SCG, the signal and interference plus noise ratio of the cell in the SCG, SINR , The modulation and coding scheme (MCS)
  • the first preset condition may be a first threshold to a fourteenth threshold.
  • the terminal device may obtain one or more of the foregoing information, and determine whether the link quality information of the serving cell meets the first preset condition according to any one or a combination of the following manners. Hereinafter, these methods will be described in detail.
  • the first preset condition includes a first threshold, and the terminal device determines that the number of times the T313 timer corresponding to the cell in the SCG is turned on exceeds the first threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the number of runs of T313 corresponding to the cell in the SCG within the detection time window reaches a preset T313 opening threshold, and the preset T313 opening threshold is the first threshold.
  • the first threshold may be configured by the base station, or the first threshold may vary according to the communication environment in this embodiment of the application.
  • An implementation manner is: the terminal device counts the number of openings of T313 within the detection time window. For example, within the detection time window, each time T313 is opened, 1 is added to the counter.
  • the detection time window time can be a sliding time window, which represents a recent period of time. Taking the detection time window set to 30 seconds as an example, the terminal device counts the number of opening times of T313 from 30s before the current time to the current time, and compares it with the preset threshold of opening times of T313.
  • the preset T313 opening times threshold can be a threshold set internally by the terminal device.
  • the threshold value can be a certain value set internally by the terminal device or a value dynamically set.
  • the terminal device can use power information and air interface Environmental information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as the RSRP, RSRQ, SINR, etc.) of the neighboring cell, and the configuration information of the serving cell (such as the serving cell design)
  • Environmental information such as the interference situation of the current environment, or the signal quality of the serving cell, etc.
  • neighboring cell signal quality information such as the RSRP, RSRQ, SINR, etc.
  • SINR serving cell design
  • a predetermined measurement report trigger threshold, etc. are combined to dynamically set the preset T313 opening times threshold.
  • the cell in the SCG is a serving cell
  • the first threshold is 10 times.
  • the terminal device detects that the T313 timer is turned on more than 10 times within the detection time window, the SCG side link quality is considered to be poor.
  • Radio link monitoring refers to the synchronization signal block (synchronzation signal block, SSB) indicated in the signal resource, maps the SSB to the corresponding SSB block error rate (Block Error Ratio, BLER), and compares the SSB BLER with the out-of-sync threshold (Qout) / Determine whether to trigger the out-of-sync/in-sync indication report based on the size of the synchronization threshold (Qin), where Qout is the threshold for triggering out-of-sync, and Qin is the threshold for triggering in-sync; or
  • the channel state information reference signal (channel state information-feference signal, CSI-RS) in RLM is mapped to the corresponding CSI-RS
  • the terminal device can set the parameters and/or thresholds that trigger out-of-sync and in-sync instructions to report in actual applications according to its own conditions, that is, the parameters and/or thresholds configured on the network side are not used Qout/Qin parameters.
  • the actual value of N313 or N314 can be adjusted inside the terminal device.
  • the N313 or N314 configured on the network side can be increased or decreased by an appropriate amount. That is, the present invention judges out-of-
  • the specific implementation of sync and in-sync events is not limited, unless otherwise specified, the settings related to T313, N313, N314, detection and reporting of out-of-sync/in-sync events involved in the present invention all follow this principle .
  • the terminal device internally sets the preset T313 opening times threshold to 10, and if it is detected that T313 has been opened 10 times within the 30S detection time window, it is determined that the current NR side link quality is poor.
  • the configuration mode and startup and reset mode of T313 refer to the description of 3GPP TS 38, which will not be repeated here.
  • the first preset condition includes a second threshold, and it is determined that the running time of the T313 timer corresponding to the cell in the SCG exceeds the second threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the UE determines that the running duration of T313 corresponding to the cell in the SCG within the detection time window reaches the preset T313 running duration threshold, and the preset T313 running duration threshold is the second threshold.
  • the first possible implementation manner is, taking the cell in the SCG as the serving cell as an example, the terminal device counts the time of the timer that runs after each T313 is turned on within the detection time window, and calculates the total sum T313 running time.
  • the detection time window time can be a sliding time window, which represents a recent period of time. For example, taking the detection time window set to 30 seconds as an example, the terminal device counts the running time of T313 from 30s before the current time to the current time, and compares it with the preset T313 running time threshold.
  • the preset T313 operating time threshold can be a threshold set inside the terminal device. The threshold can be a certain value set inside the terminal device or a dynamic value.
  • the terminal device can be based on power information and air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), serving cell configuration information (such as the measurement set by the serving cell)
  • power information and air interface environment information Such as the interference situation of the current environment, or the signal quality of the serving cell, etc.
  • neighboring cell signal quality information such as neighboring cell RSRP, RSRQ, SINR, etc.
  • serving cell configuration information such as the measurement set by the serving cell
  • the configuration mode and startup and reset mode of T313 refer to the description in the first mode.
  • the terminal device sets a preset T313 running time threshold of 10 seconds, that is, the second threshold is 10 seconds. If it is detected that T313 is turned on for 10 seconds within the 30-second detection time window, the current NR side link quality is determined Poor.
  • the second threshold may also be configured by the base station, or the terminal device may dynamically adjust the second threshold according to actual conditions.
  • the second possible implementation is that the detection time window starts when T313 is opened, and the preset running time threshold of T313 is the threshold for triggering RLF, that is, m% of T313 or T313-N (N can be changed according to the size of T313). Different), that is, the terminal device detects that the running time of T313 reaches the threshold for a certain time.
  • the preset T313 operating time threshold is set to 80% of T313, or the preset T313 operating time threshold is set to T313-20ms.
  • the terminal device detects that the T313 timing duration reaches the preset T313 operating duration threshold set above, it means that the current NR side is approaching to trigger RLF, and it will reach the SCG Failure determination threshold, which can be used as a basis for determining the poor link quality on the NR side .
  • the preset T313 operating time threshold reference may be made to the aforementioned first possible implementation manner, which will not be repeated here.
  • a third possible implementation manner is to combine the foregoing first and second possible implementation manners, that is, combining the total duration of T313 with the duration of the last T313 timing at the current moment as the judgment basis.
  • the first preset condition includes a third threshold, and it is determined that the number of times that the cell in the SCG detects out of sync events exceeds the third threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the cell in the SCG detects that the out-of-sync count reaches a preset out-of-sync count threshold within the detection time window, and the preset out-of-sync count threshold is the third threshold .
  • the third threshold may be configured by the base station, or the third threshold varies with the communication environment and is not limited in this embodiment of the application.
  • the detection time window time can be a sliding time window, which represents a recent period of time.
  • the terminal device counts the number of out-of-sync events within the detection time window. For example, within the detection time window, every time an out-of-sync event is detected, the counter is plus 1.
  • the detection time window time can be a sliding time window, which represents the most recent time window. Taking the detection time window set to 30 seconds and the third threshold value of 10 times as an example, the terminal device counts whether the number of out-of-sync events from 30 seconds before the current time to the current time exceeds 10 times.
  • the preset out-of-sync event times threshold can be a threshold set internally by the terminal device. The threshold can be a certain value set inside the terminal device or a dynamic value.
  • the terminal device can be based on power information , Air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), serving cell configuration information (such as service The measurement report trigger threshold set by the cell, etc.) are combined to dynamically set the preset out-of-sync event frequency threshold.
  • Air interface environment information such as the interference situation of the current environment, or the signal quality of the serving cell, etc.
  • neighboring cell signal quality information such as neighboring cell RSRP, RSRQ, SINR, etc.
  • serving cell configuration information such as service The measurement report trigger threshold set by the cell, etc.
  • the terminal device frequently detects out-of-sync on the NR side, it can reflect that the link quality on the NR side is poor.
  • the first preset condition includes a fourth threshold, and it is determined that the throughput of data transmitted through the cell in the SCG is less than the fourth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the throughput of data transmitted through the cell in the SCG is less than a preset throughput threshold within the detection time window, and the preset throughput threshold is the fourth threshold.
  • the data transmitted through the cell in the SCG includes the data transmitted through the SCG bearer, and/or the data on the branch branched by the secondary base station in the split bearer.
  • the detection time window time may be a sliding time window, which represents the most recent period of time.
  • the fourth threshold is 20 kilobytes (KB) and the detection time window is 60 seconds as an example.
  • the terminal device counts the total uplink and downlink throughput reached by the user plane on the NR side in the latest 60-second detection time window, and compares it with Preset total uplink and downlink throughput thresholds for comparison.
  • the preset total uplink and downlink throughput threshold that is, the fourth threshold may be a threshold set inside the terminal device, for example, a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal equipment according to the power information, air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), service
  • the configuration information of the cell (such as the measurement report trigger threshold set by the serving cell, etc.) is combined to dynamically set the preset total uplink and downlink throughput threshold.
  • the fourth threshold may be configured by the base station, or the fourth threshold may vary according to the communication environment in this embodiment of the application.
  • the terminal device will be configured with EN-DC architecture only when the amount of downlink buffer on the network side reaches a certain amount. If the total uplink and downlink throughput achieved by the terminal device on the NR side is low, it can be to a certain extent This reflects the poor link quality on the NR side.
  • the first preset condition includes a fifth threshold, and the cell in the SCG determines that the ratio of the throughput of the data transmitted through the secondary base station to the power consumption is less than the fifth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the ratio of the throughput of data transmitted through the cell in the SCG to the power consumption of the terminal device within the detection time window is less than a preset throughput power consumption ratio threshold, and the preset throughput power consumption ratio threshold is the first Five thresholds.
  • the data transmitted through the cell in the SCG includes the data transmitted through the SCG bearer, and/or the data on the branch branched by the secondary base station in the split bearer.
  • the detection time window time can be a sliding time window, which represents a recent period of time.
  • the terminal device counts the uplink and/or downlink throughput of the NR side user plane within the detection time window.
  • the terminal device counts the uplink and/or downlink throughput achieved by the NR side user plane within the latest 60 second time window.
  • the preset throughput power consumption ratio threshold may be a threshold set inside the terminal device, such as a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal device may be based on power information and air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), serving cell configuration information (such as the measurement set by the serving cell)
  • the report trigger threshold, etc. are combined to dynamically set the preset throughput and power consumption ratio threshold.
  • the fifth threshold may be configured by the base station, or the fifth threshold may vary depending on the communication environment in this embodiment of the application.
  • the terminal equipment detects whether the ratio of the total uplink and downlink throughput to the power consumption of the terminal equipment is less than 2%. If the ratio is less than 2%, it means SCG Side service quality is poor.
  • the terminal device will be configured with the EN-DC architecture only when the amount of downlink buffer on the network side reaches a certain amount. If the terminal device achieves a low total uplink and downlink throughput on the NR side and the terminal The high power consumption of the equipment can reflect the poor link quality on the NR side to a certain extent.
  • the first preset condition includes a sixth threshold, and it is determined that the number of beam failures triggered by a cell in the SCG exceeds the sixth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the number of beam failures triggered by the cell in the SCG reaches a preset beam failure threshold within the detection time window, and the preset beam failure threshold is the sixth threshold.
  • the terminal device counts the number of beam failures within the detection time window. For example, within the detection time window, every time beam failure is detected, 1 is added to the counter.
  • the detection time window time can be a sliding time window, which represents a recent period of time. Taking the detection time window set to 30 seconds as an example, the terminal device counts the number of beam failure occurrences from 30 seconds before the current moment to the current moment, and compares it with the preset beam failure threshold times.
  • the preset beam failure threshold may be a threshold set inside the terminal device, which may be a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal equipment according to the power information, air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), service
  • the configuration information of the cell (such as the measurement report trigger threshold set by the serving cell, etc.) is combined to dynamically set the preset beam failure threshold.
  • the sixth threshold may be configured by the base station, or the sixth threshold may vary depending on the communication environment in this embodiment of the application.
  • the terminal device can set the actual application trigger beam failure instance to indicate the reported parameter and/or threshold, that is, no Using the Qout-LR parameters configured on the network side, this application does not limit the specific implementation of determining beam failure instance events, unless otherwise specified, the detection and reporting beam failure instance related settings involved in this application follow this principle .
  • the first preset condition includes a seventh threshold, and it is determined that the amount of data buffered in the radio link control RLC layer of the cell in the SCG exceeds the seventh threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the RLC layer buffer amount of the cell in the SCG exceeds a preset buffer (buffer) threshold, and the preset buffer threshold is the seventh threshold.
  • the terminal device detects that the NR RLC layer buffer amount of any bearer in the built bearer exceeds the preset buffer threshold, and the bearer includes the branch branched by the secondary base station in the SCG bearer or the separated bearer, for example,
  • the seventh threshold is 80%.
  • the terminal device If the amount of NR RLC layer buffer carried by any one of the bearers exceeds 80%, the terminal device considers that the quality of the SCG side is poor; in the second possible implementation manner, the terminal device detects all bearers in the built bearer
  • the amount of NR RLC layer buffer exceeds the preset buffer threshold; the preset buffer threshold may be a threshold set inside the terminal device, such as a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal equipment according to the power information, air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), service
  • the configuration information of the cell (such as the measurement report trigger threshold set by the serving cell, etc.) is combined to dynamically set the preset buffer threshold.
  • the seventh threshold may be configured by the base station, or the seventh threshold may vary depending on the communication environment in the embodiments of the present application.
  • the first preset condition includes an eighth threshold, and the terminal device determines that the delay of uplink data sent through the link of the cell in the SCG exceeds the eighth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the uplink data transmission delay of the cell in the SCG exceeds a preset uplink delay threshold, and the preset uplink delay threshold is the eighth threshold.
  • the terminal device counts the number of transmission control protocol (TCP) messages sent from the NR side within a certain period of time to the use of the corresponding TCP acknowledgement (acknowledgement, ACK).
  • TCP transmission control protocol
  • ACK TCP acknowledgement
  • the final result value is obtained as the uplink data transmission delay and compared with the preset uplink delay threshold.
  • the eighth threshold is 100 milliseconds.
  • the terminal device determines the value based on the ACK received within a period of time If the uplink data transmission delay exceeds 100 milliseconds, it is considered that the service quality on the SCG side is poor; in the second possible implementation manner, the terminal equipment statistics are delivered to the layer 2 cache, such as from the IP layer to the PDCP layer, After receiving the hybrid automatic repeat request (HARQ) indication on the network side, the time consumed is used as the uplink data transmission delay, or the final result obtained through the smoothing algorithm for multiple times is counted as the uplink data transmission delay, and is compared with The preset uplink delay threshold comparison. It should be noted that the HARQ indication on the network side may be an implicit or displayed indication.
  • HARQ hybrid automatic repeat request
  • the uplink data transmission delay can be set to a preset value.
  • the eighth threshold is 100 milliseconds. If the terminal device determines that the time spent receiving HARQ exceeds 100 milliseconds, it is considered The service quality on the SCG side is poor.
  • the terminal device sends a delay test message, such as a ping message, to the SCG, and calculates the round trip time (RTT) to obtain the delay result as the uplink data transmission delay.
  • the preset uplink delay threshold can be a threshold set inside the terminal device, for example, a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal device can be based on power information and air interface environment information (as currently The interference situation of the environment, or the signal quality of the serving cell, etc.), the signal quality information of the neighboring cell (such as the RSRP, RSRQ, SINR, etc.) of the neighboring cell, and the configuration information of the serving cell (such as the measurement report trigger threshold set by the serving cell) Etc.) etc. to dynamically set the preset uplink delay threshold.
  • the eighth threshold may be configured by the base station, or the eighth threshold varies with the communication environment and is not limited in this embodiment of the application.
  • the air interface link quality on the NR side indicates that the air interface link quality on the NR side is degraded or the SCG scheduling uplink grant (UL Grant) resources are less, that is, the NR side The link quality is poor.
  • the first preset condition includes a ninth threshold, and the terminal device determines that the signal strength of the cell in the SCG is lower than the ninth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the signal strength of the SCG cell is lower than a preset signal strength threshold, and the preset signal strength threshold is the ninth threshold.
  • the terminal device detects the signal strength of the SCG PScell reference signal (such as SSB, Channel State Information-Reference Signal (CSI-RS), etc.), which can be detected multiple times and smoothed The signal strength value, and then compare it with the preset signal strength threshold.
  • the preset signal strength threshold can be a threshold set inside the terminal device, for example, a certain value set in the terminal device, or a value dynamically set by the terminal device.
  • the terminal device can be based on power information and air interface environment information (such as current location).
  • the ninth threshold may be configured by the base station, or the ninth threshold is not limited in the embodiment of the present application according to the communication environment.
  • the ninth threshold is -80dBm
  • the terminal device detects that the RSRP of the CSI-RS of the serving cell is lower than -80dBm, the SCG side service quality is considered to be poor.
  • the first preset condition includes a tenth threshold, and it is determined that the change amplitude of the signal strength of the cell in the SCG exceeds the tenth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the signal strength change range of the SCG cell is higher than a preset signal strength change threshold, and the preset signal strength change threshold is the tenth threshold.
  • the terminal device counts the change values of the signal strength of two adjacent PSCells and records it multiple times. The result is obtained through a smoothing algorithm as the signal strength change amplitude of the SCG cell, and is compared with the preset signal strength change threshold. Compare.
  • the preset signal strength change threshold may be a threshold set inside the terminal device, which may be a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal equipment according to the power information, air interface environment information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as neighboring cell RSRP, RSRQ, SINR, etc.), service
  • the configuration information of the cell (such as the measurement report trigger threshold set by the serving cell, etc.) is combined to dynamically set the preset signal strength change threshold.
  • the tenth threshold may be configured by the base station, or the tenth threshold may vary depending on the communication environment in this embodiment of the application.
  • the terminal device Taking the cell in the SCG as the serving cell and the tenth threshold of 10dBm as an example, if the terminal device detects the PSCell of the serving cell twice adjacent to -60dBm and -80dBm, the change value of the PSCell signal strength is 20, which exceeds For the tenth threshold, the terminal device considers that the service quality on the SCG side is poor.
  • the first preset condition includes an eleventh threshold, and the terminal device determines that the retransmission rate of data transmitted through the link of the cell in the SCG exceeds the eleventh threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the retransmission rate of the data transmission of the cell in the SCG is higher than the preset retransmission rate threshold, and the preset retransmission rate threshold is the eleventh threshold.
  • the eleventh threshold may be configured by the base station, or the eleventh threshold varies with the communication environment in the embodiment of the present application, which is not limited.
  • the retransmission rate of the data transmission of the cell in the SCG may be the HARQ retransmission rate.
  • the terminal device counts the ratio of the number of uplink UL Grant times used for retransmissions on the NR side over a period of time to all UL Grant times.
  • the terminal device can count multiple times and pass a smoothing algorithm to obtain the final result as a retransmission of data transmission Rate, and compare it with the preset retransmission rate threshold.
  • the eleventh threshold is 35%, and if the terminal device determines that the HARQ retransmission rate exceeds 35%, the SCG side service quality is considered poor.
  • the retransmission rate of the data transmission of the cell in the SCG may be the RLC layer retransmission rate.
  • the RLC layer retransmission rate may be the downlink RLC data retransmission rate, or the uplink RLC data retransmission rate or the uplink and downlink retransmission rate.
  • the downlink RLC retransmission rate may be the number of downlink RLC SDU retransmissions in the detection time window/the total number of downlink RLC SDU transmissions.
  • the terminal device may use a sliding algorithm to obtain the final result as the downlink RLC layer retransmission rate. The same is true for the retransmission rate of the uplink RLC layer.
  • the uplink and downlink RLC layer retransmission is a combination of the downlink RLC layer retransmission rate and the uplink RLC layer retransmission rate.
  • a possible calculation method is:
  • Uplink and downlink RLC layer retransmission rate (downlink RLC effective flow ⁇ downlink RLC data retransmission rate+uplink RLC effective flow ⁇ uplink RLC data retransmission rate)/(downlink RLC effective flow+uplink RLC effective flow), where the effective flow can be Is the number of SDUs sent within the detection time window.
  • the retransmission trajectory of the data transmission of the cell in the SCG may be the retransmission rate of the upper layer IP packet, for example, the TCP retransmission rate.
  • the specific statistical method can refer to the common statistical method in the industry. I won't repeat them here.
  • the first preset condition includes a twelfth threshold, and the terminal device determines that the signal to interference plus noise ratio (SINR) of the cell in the SCG is lower than the twelfth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the SINR of the cell in the SCG is lower than a preset SINR threshold, and the preset SINR threshold is the twelfth threshold.
  • the terminal device counts the downlink SINR of the serving cell on the NR side, for example, obtains the downlink SINR based on the RSRP of reference signals such as SSB and/or CSI-RS and the measured interference and noise floor RSRP.
  • the smoothing algorithm can be used for processing, and the smoothed SINR is used as the downlink SINR.
  • the preset SINR threshold can be a threshold set inside the terminal device, such as a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal device can be based on power information and air interface environment information (such as the current location).
  • Environmental interference, or signal quality of the serving cell, etc. may be based on neighboring cell signal quality information (such as RSRP, RSRQ, SINR, etc.) of the neighboring cell, and serving cell configuration information (such as the measurement report trigger threshold set by the serving cell, etc.)
  • the preset SINR threshold is dynamically set by a combination of one or more of the same.
  • the twelfth threshold may be configured by the base station, or the twelfth threshold is not limited in the embodiments of the present application according to the communication environment.
  • the terminal device determines that the SINR of the serving cell is lower than 10dB, it is considered that the SCG side link quality is poor.
  • the first preset condition includes a thirteenth threshold.
  • the terminal device determines that the modulation and coding scheme (MCS) index (index) of the cell in the SCG is lower than the thirteenth threshold.
  • MCS index is the MCS index for sending downlink data and/or the MCS index for receiving uplink data by the secondary base station.
  • the cell in the SCG can be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the downlink and/or uplink MCS Index of the cell in the SCG is lower than the preset MCS Index threshold, and the preset MCS Index threshold is the thirteenth threshold.
  • a possible implementation manner is that the terminal device determines the downlink and/or uplink MCS Index scheduled by the NR-side serving cell within the detection time window, which is lower than the preset MCS Index threshold; another possible implementation manner is that the terminal device is in In the detection time window, the downlink and/or uplink MCS Index scheduled by the serving cell on the NR side is counted, and the ratio is lower than the preset MCS Index statistical threshold by more than a certain percentage, such as 80%, then the downlink and/or uplink MCS Index on the NR side is determined to be low At the preset MCS Index threshold.
  • the preset MCS Index threshold or the preset MCS Index statistical threshold can be a threshold set inside the terminal device, for example, a certain value set inside the terminal device, or a value dynamically set by the terminal device, for example, the terminal device based on power information and air interface Environmental information (such as the interference situation of the current environment, or the signal quality of the serving cell, etc.), neighboring cell signal quality information (such as the RSRP, RSRQ, SINR, etc.) of the neighboring cell, and the configuration information of the serving cell (such as the serving cell design)
  • a certain measurement report trigger threshold, etc. can be dynamically set by a combination of one or more.
  • the thirteenth threshold may be configured by the base station, or the thirteenth threshold varies with the communication environment and is not limited in this embodiment of the application.
  • the MCS index of the terminal device in the serving cell is lower than 3, it is considered that the SCG side link quality is poor.
  • the link throughput may be low or the link has a high bit error rate when the MCS is high. That is, the link quality on the NR side is poor.
  • the first preset condition includes a fourteenth threshold
  • the terminal device determines that the block error rate BLER of sending downlink data and/or receiving uplink data of the cell in the SCG is higher than the fourteenth threshold.
  • the cell in the SCG may be a serving cell or a non-serving cell in the SCG.
  • the terminal device determines that the downlink block error rate (BLER) and/or the uplink BLER are higher than a preset BLER threshold, and the preset BLER threshold is the fourteenth threshold.
  • the BLER can be the initial block error rate (IBLER) or the residual block error rate (RBLER), which can be the statistical physical downlink shared channel (PDSCH)/physical uplink sharing
  • PDSCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • PDCH physical downlink control channel
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • the terminal device counts the downlink data transmission IBLER scheduled by the serving cell on the NR side within the detection time window and compares it with the preset downlink IBLER threshold.
  • the preset BLER threshold can be a threshold set inside the terminal device, such as a certain value set inside the terminal device, or a value dynamically set by the terminal device.
  • the terminal device can be based on power information and air interface environment information (such as the current location). Environmental interference, or signal quality of the serving cell, etc.), neighboring cell signal quality information (such as RSRP, RSRQ, SINR, etc.) of the neighboring cell, and serving cell configuration information (such as the measurement report trigger threshold set by the serving cell, etc.) One or more of the combination to dynamically set.
  • the fourteenth threshold may be configured by the base station, or the fourteenth threshold varies with the communication environment in the embodiment of the present application, which is not limited.
  • the block error rate of the downlink data sent by the terminal device in the serving cell is higher than 15%, it is considered that the SCG side link quality is poor.
  • the above method only exemplifies the way that the terminal device performs a single detection to obtain the poor quality of the NR side link.
  • the terminal device may perform multiple times. Implementation of the above method, when the number of times of detecting poor NR link quality in the above method reaches the set number of times, it is finally determined that the NR side link quality is poor, and the subsequent steps are implemented; on the other hand, the above is only Enumerating some of the determination methods, the terminal device may also determine that the NR side link quality is poor in other determination methods; on the other hand, the terminal device may specifically combine one or more of the above methods in specific combinations, such as In different scenarios, different combinations are applied, and the present invention does not limit it.
  • the SCG cell can be considered as a problem cell, and targeted optimization can be performed.
  • the terminal device obtains the link quality information of the neighboring cell.
  • the neighboring cell and the serving cell may be same-frequency and/or different-frequency cells.
  • the link quality information may be one or more of RSRP, RSRQ, SINR, load, priority, or availability.
  • RSRP can be cell-level, user-level, or beam-level RSRP
  • RSRQ can be cell-level, user-level RSRQ, etc.
  • the load can be based on the cell's traffic, throughput, business dynamic information, number of users, and cell Capability, congestion, high power, drop rate, average scheduling rate, physical resource block (PRB) utilization, guaranteed bit rate (GBR), service quality (quality of service, QoS) )
  • the priority may be frequency priority, frequency band priority, handover priority, etc.
  • Availability can be understood as barred indication information and service support information for neighboring cells.
  • the terminal device can obtain the load information of the neighbor cell by receiving the indication information carried by the relevant message on the network side, where the indication information may be an explicit indication or an implicit indication, such as mapping or calculating the neighbor cell through the indication information carried by the relevant message Load information, or judged by detecting the air interface message interaction of the neighboring cell, such as determining the load status of the neighboring cell by detecting the downlink data message sent by the neighboring cell within a certain period of time, or obtaining it through the cloud, such as the terminal device receiving records
  • the message sent by the server that obtains the current load information of the neighboring cell on the NR side, and obtains the load situation of the neighboring cell from the message, the specific acquisition method used is not limited in the present invention.
  • the SgNB can generate measurement control information, and send the measurement control information to the terminal device through the MeNB, which contains the measurement object (such as the measurement system, Here are attributes such as NR system, measurement frequency point or measurement cell, indicating which frequency points or cells (ie neighboring cells) the terminal device performs signal quality measurement on, and the report configuration of measurement tasks (such as measurement event information, intra-system handover)
  • the time also involves trigger volume and reporting volume, other information of the measurement report, etc., instructing the terminal equipment according to which standard to report the measurement report), other configuration of the measurement task (such as measurement volume, measurement GAP, measurement filtering, etc.).
  • the terminal device determines the neighboring cell for measurement according to the instructions in the measurement control information and the terminal device's own strategy, and obtains related neighboring cell link quality information.
  • the measurement frequency point or the measurement cell may be the same frequency neighboring cell or different frequency neighboring cell. It should be noted that when the neighboring cell is an inter-frequency neighboring cell of the serving cell, it is possible that the network side will only issue A2 measurement control information initially, and will only issue the inter-frequency neighboring cell's information when the terminal device side reports the A2 measurement report. Measurement control information.
  • the terminal device can report the A2 measurement report to the network side after the condition in step 201 is satisfied to trigger the network side to issue the inter-frequency neighboring cell.
  • Zone measurement control information For example, the terminal device fills in the RSRP of the current serving cell in the A2 measurement report or fills in the RSRP value that is sufficient to trigger the network side to issue inter-frequency neighbor cell measurement control information.
  • the terminal device After receiving the NR inter-frequency neighboring cell measurement control information, the terminal device determines the inter-frequency neighboring cell for measurement according to the instructions in the measurement control information and the terminal device's own strategy, and obtains the link quality information of the neighboring cell.
  • the terminal device When the S-measure is configured on the network side, if the terminal device obtains the link quality information of the SCG serving cell through step 201, it is found that the link quality information of the serving cell meets the first preset condition, that is, the terminal device When it is determined that the link quality of the serving cell on the NR side is poor, if the RSRP of the serving cell is greater than the RSRP threshold indicated by the S-measure, the terminal device still performs related NR same-frequency and different-frequency adjacent cell measurements.
  • S-measure is a field in the measurement configuration (measConfig) in LTE or NR
  • the measConfig information element is an information element in the RRC reconfiguration (RRC Reconfiguration) signaling sent by the network side.
  • the terminal device can obtain the quality information of multiple neighboring cells, which is specifically determined according to the measurement control information configured on the network side and the internal strategy of the terminal device.
  • the better neighboring cell is a neighboring cell whose link quality information in the at least one neighboring cell meets the second preset condition.
  • the link quality information of the neighbor cell includes at least one of reference signal received power RSRP, reference signal received quality RSRQ, signal to interference plus noise ratio SINR, load, priority, or availability; accordingly, the terminal device determines whether The method for the existence of a better neighboring cell may be: determining whether the link quality information in at least one neighboring cell meets one or a combination of the following judgments; if so, it is determined that there is a better neighboring cell; otherwise, it is considered as There are better neighborhoods.
  • the way for terminal equipment to obtain RSRP, RSRQ, SINR, etc. refers to 3GPP TS38.215, 3GPP TS36.214, etc.
  • the way for terminal equipment to obtain priority, load, availability, etc. refers to 3GPP TS 36.311, 3GPP TS 36.304, etc.
  • the second preset condition includes the first condition, and the terminal device determines, according to the link quality information of the at least one neighbor cell, whether there is a cell whose reference signal received power RSRP meets the first condition in the at least one neighbor cell.
  • the compliance condition is the first condition.
  • Mn+first compensation RSRP value+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off it means the neighbor cell’s RSRP meets the RSRP compliance conditions.
  • the first compensation RSRP value is a preset value or dynamic value, such as 5dBm
  • Ofn represents the frequency offset of the neighbor cell
  • Ocn represents the cell offset of the neighbor cell
  • Hys Represents the amplitude hysteresis of the measurement structure
  • Ofp represents the frequency offset of the serving cell
  • Ocp identifies the cell offset of the serving cell
  • off represents the offset of the measurement result.
  • Thresh is the threshold configured on the network side
  • Mn is the RSRP of the neighboring cell
  • Ofn is the frequency offset of the neighboring cell
  • Ocn is the cell offset of the neighboring cell
  • Hys is the amplitude hysteresis of the measurement structure
  • Thresh is the RSRP satisfied by RSTP. Compliance conditions.
  • the terminal device when applied to the A5 measurement report, when the neighboring cell satisfies Mn+the third compensation RSRP value+Ofn+Ocn–Hys>Thresh2 within a certain period of time (such as TimeToTrigger time), it means that the RSRP of the neighboring cell meets the RSRP compliance condition, where , Mn is the RSRP of the neighbor cell, Thresh2 is the RSRP threshold configured on the network side, and the third compensation RSRP value is a preset or dynamic value, such as 5dBm, Ofn represents the frequency offset of the neighbor cell, and Ocn represents the cell of the neighbor cell Offset, Hys represents the amplitude hysteresis of the measurement structure, and Thresh represents the compliance condition that RSTP meets. It should be noted that, at this time, based on the judgment in step 201, the terminal device considers that the RSRP value of the serving cell meets the A5 trigger threshold.
  • ⁇ T1 is a time difference value, which can be a preset value or correspondingly set according to the size of Time To Trigger, which means that the terminal device side applies a shorter time lag to make measurement judgment.
  • the RSRP of the neighboring cell when applied to the A4 measurement report, when the RSRP of the neighboring cell satisfies Mn+Ofn+Ocn–Hys>Thresh within Time To Trigger- ⁇ T2, it means that the RSRP of the neighboring cell meets the RSRP compliance conditions, where ⁇ T2 is a time difference
  • the value can be a preset value or set according to the size of Time To Trigger, which means that the terminal device side applies a shorter time lag to make measurement judgments.
  • the neighbor cell RSRP when applied to the A5 measurement report, when the neighbor cell RSRP satisfies Mn+Ofn+Ocn–Hys>Thresh2 within Time To Trigger- ⁇ T3, it means that the neighbor cell RSRP meets the RSRP compliance condition, where ⁇ T3 is a time difference
  • the value can be a preset value or set according to the size of TimeToTrigger, which means that the terminal device side applies a shorter time lag to make measurement judgment. It should be noted that at this time, based on the judgment in step 201, the terminal device considers the service The RSRP value of the cell meets the A5 trigger threshold. It should be noted that the terminal device can also set other RSRP compliance conditions, which are not limited by the present invention.
  • the second preset condition includes a second condition, and the terminal device determines, according to the link quality information of the at least one neighboring cell, whether there is a cell whose reference signal reception quality RSRQ meets the second condition in the at least one neighboring cell;
  • the compliance condition is the second condition.
  • Mn+first compensation RSRQ value+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off it means the neighbor cell’s RSRQ meets the RSRQ compliance conditions.
  • the first compensation RSRQ value is a preset value or dynamic value, such as 5dBm
  • Ofn represents the frequency offset of the neighbor cell
  • Ocn represents the cell offset of the neighbor cell
  • Hys Represents the amplitude hysteresis of the measurement structure
  • Ofp represents the frequency offset of the serving cell
  • Ocp identifies the cell offset of the serving cell
  • off represents the offset of the measurement result.
  • Thresh is the threshold configured on the network side
  • Mn is the RSRQ of the neighboring cell
  • Ofn is the frequency offset of the neighboring cell
  • Ocn is the cell offset of the neighboring cell
  • Hys is the amplitude hysteresis of the measurement structure
  • Thresh is the RSTP satisfied Compliance conditions.
  • the terminal device when applied to A5 measurement report, when the neighboring cell meets Mn+the third compensation RSRQ value+Ofn+Ocn–Hys>Thresh2 within a certain period of time (such as TimeToTrigger time), it means that the RSRQ of the neighboring cell meets the RSRQ compliance condition, where , Mn is the neighbor cell RSRQ, Thresh2 is the RSRQ threshold configured on the network side, and the third compensation RSRQ value is a preset or dynamic value, such as 5dBm, Ofn represents the frequency offset of the neighbor cell, and Ocn represents the cell of the neighbor cell Offset, Hys represents the amplitude hysteresis of the measurement structure, and Thresh represents the compliance condition that RSTP meets. It should be noted that, at this time, based on the judgment in step 201, the terminal device considers that the RSRQ value of the serving cell meets the A5 trigger threshold.
  • ⁇ T1 is a time difference value, which can be a preset value or correspondingly set according to the size of Time To Trigger, which means that the terminal device side applies a shorter time lag to make measurement judgment.
  • the neighbor cell RSRQ when applied to A4 measurement report, when the neighbor cell RSRQ satisfies Mn+Ofn+Ocn–Hys>Thresh within Time To Trigger- ⁇ T2, it means that the neighbor cell RSRQ meets the RSRQ compliance condition, where ⁇ T2 is a time difference
  • the value can be a preset value or set according to the size of TimeToTrigger, which means that the terminal device side applies a shorter time lag to make measurement judgments.
  • the neighbor cell RSRQ when applied to A5 measurement report, when the neighbor cell RSRQ satisfies Mn+Ofn+Ocn–Hys>Thresh2 within Time To Trigger- ⁇ T3, it means that the neighbor cell RSRQ meets the RSRQ compliance condition, where ⁇ T3 is a time difference
  • the value can be a preset value or set according to the size of TimeToTrigger, which means that the terminal device side applies a shorter time lag to make measurement judgment. It should be noted that at this time, based on the judgment in step 201, the terminal device considers the service The RSRQ value of the cell meets the A5 trigger threshold. It should be noted that the terminal device can also set other RSRQ compliance conditions, which are not limited by the present invention.
  • the second preset condition includes the third condition, and the terminal device determines, according to the link quality information of the at least one neighbor cell, whether there is a cell whose signal-to-interference plus noise ratio SINR satisfies the third condition in the at least one neighbor cell .
  • the compliance condition is the second condition.
  • Mn+first compensation SINR value+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off it means the neighbor cell’s SINR satisfies the SINR compliance condition.
  • the first compensation SINR value is a preset value or dynamic value, such as 5dBm
  • Ofn represents the frequency offset of the neighbor cell
  • Ocn represents the cell offset of the neighbor cell
  • Hys represents the amplitude hysteresis of the measurement structure
  • Ofp represents the frequency offset of the serving cell
  • Ocp identifies the cell offset of the serving cell
  • off represents the offset of the measurement result.
  • Thresh is the threshold configured on the network side
  • Mn is the SINR of the neighboring cell
  • Ofn is the frequency offset of the neighboring cell
  • Ocn is the cell offset of the neighboring cell
  • Hys is the amplitude hysteresis of the measurement structure
  • Thresh is the RSTP satisfied Compliance conditions.
  • the neighbor cell when applied to the A5 measurement report, when the neighbor cell satisfies Mn+the third compensation SINR value+Ofn+Ocn–Hys>Thresh2 within a certain period of time (such as TimeToTrigger time), it means that the neighbor cell SINR meets the SINR compliance condition, where , Mn is the SINR of the neighbor cell, Thresh2 is the SINR threshold configured on the network side, and the third compensation SINR value is a preset or dynamic value, such as 5dBm, Ofn represents the frequency offset of the neighbor cell, and Ocn represents the cell of the neighbor cell Offset, Hys represents the amplitude hysteresis of the measurement structure, and Thresh represents the compliance condition that RSTP meets. It should be noted that, at this time, based on the judgment in step 201, the terminal device considers that the SINR value of the serving cell meets the A5 trigger threshold.
  • ⁇ T1 is a time difference value, which can be a preset value or correspondingly set according to the size of Time To Trigger, which means that the terminal device side applies a shorter time lag to make measurement judgment.
  • the neighbor cell SINR when applied to A4 measurement report, when the neighbor cell SINR satisfies Mn+Ofn+Ocn–Hys>Thresh within Time To Trigger- ⁇ T2, it means that the neighbor cell SINR meets the SINR compliance condition, where ⁇ T2 is a time difference
  • the value can be a preset value or set according to the size of TimeToTrigger, which means that the terminal device side applies a shorter time lag to make measurement judgments.
  • the neighbor cell SINR when applied to A5 measurement report, when the neighbor cell SINR satisfies Mn+Ofn+Ocn–Hys>Thresh2 within Time To Trigger- ⁇ T3, it means that the neighbor cell SINR meets the SINR compliance condition, where ⁇ T3 is a time difference
  • the value can be a preset value or set according to the size of TimeToTrigger, which means that the terminal device side applies a shorter time lag to make measurement judgment. It should be noted that at this time, based on the judgment in step 201, the terminal device considers the service The cell SINR value meets the A5 trigger threshold. It should be noted that the terminal equipment can also set other SINR compliance conditions, which are not limited by the present invention
  • the second preset condition includes a fourth condition, and the terminal device determines, according to the link quality information of the at least one neighbor cell, whether there is a cell whose load meets the fourth condition in the at least one neighbor cell.
  • the load compliance condition is the fourth condition.
  • the traffic of the neighboring cell is lower than the preset traffic threshold, or the downlink and/or uplink throughput of the neighboring cell is lower than the threshold, or the downlink and/or certain types of services of the neighboring cell
  • the uplink throughput is lower than the threshold, or the number of users in the neighboring cell is lower than the number of users, or the cell capacity is higher than the threshold, or the congestion is lower than the threshold, or the total base station transmit power of the neighboring cell is lower than the threshold, or
  • the call drop rate of the neighboring cell is lower than the threshold, or the average scheduling rate of the terminal equipment in the neighboring cell is higher than the threshold, or the PRB utilization rate of the neighboring cell is lower than the threshold, or the guaranteed bit rate and service quality of the neighboring cell
  • QoS satisfaction rate of service
  • the second preset condition includes the fifth condition, and the terminal device determines, according to the link quality information of the at least one neighbor cell, whether there is a cell whose priority meets the fifth condition among the at least one neighbor cell.
  • the priority of the neighboring cell satisfies the priority reaching condition
  • the priority reaching condition is the fifth condition.
  • the priority of the neighbor cell meets the priority of the switchable neighbor cell set by the terminal device, and the priority of the switchable neighbor cell set by the terminal device can be indicated to it by the network side through dedicated signaling, or it can be performed internally by the terminal device. It is preset or dynamically set by the terminal device according to the current transmission status, neighbor cell RSRP status, power information, etc., and the present invention is not limited.
  • the second preset condition includes a sixth condition, and the terminal device determines, according to the link quality information of the at least one neighbor cell, whether there is a cell whose availability meets the sixth condition in the at least one neighbor cell.
  • the availability standard condition is the sixth condition.
  • the access barring indication information of the neighboring cell indicates that the neighboring cell is not barred from accessing the neighboring cell, or the supporting service information of the neighboring cell indicates that the neighboring cell supports related services of the terminal device.
  • the terminal device determines whether there is a better neighbor cell based on the link quality information of at least one neighbor cell, it determines whether the first condition, second condition, If the neighbor cell of one or more of the third condition, fourth condition, fifth condition, or sixth condition exists, the neighbor cell will be regarded as a better neighbor; otherwise, the terminal device determines that there is no better neighbor Area.
  • Step 204 The terminal device sends the first message to the MeNB.
  • the first message may be an A2 measurement report, SCG failure information (SCG failure information), NR SCG failure information (SCG failure information NR), etc.
  • the terminal device can fill in the determined original link quality information of the serving cell into the A2 measurement report, etc. and send it to the primary base station; or, the terminal device can also perform certain processing on the original link quality information of the serving cell and process it
  • the link quality information of the subsequent serving cell is filled in the A2 measurement report, etc. and sent to the main base station.
  • processing refers to performing certain operations on the link quality information of the serving cell.
  • the primary base station After receiving the A2 measurement report, the primary base station determines by itself whether to perform the SCG release, and if the SCG release is performed, it sends a release message to the terminal device.
  • the release message is used to instruct the terminal device to release the SCG. After receiving the release message, the terminal device releases the SCG; if the primary base station determines not to perform the SCG release, it indicates that the offload point is the branch that is offloaded by the secondary base station in the split bearer to allocate less uplink and downlink data.
  • Step 205 The terminal device sends a second message to the MeNB.
  • the second message may be an A3 measurement report, an A4 measurement report, or an A5 measurement report.
  • the terminal device can fill in the determined original link quality information of the better neighboring area into the A3 measurement report, A4 measurement report, or A5 measurement report, etc., and send it to the main base station; or, the terminal device can also check the original link quality information of the better neighboring area. Perform certain processing on the link quality information, and fill in the processed link quality information of the better neighboring cell into the A3 measurement report, A4 measurement report, or A5 measurement report, etc., and send it to the primary base station; or the terminal device determines one The preset value is used as the link quality information of the better neighboring cell.
  • processing refers to performing certain operations on the link quality information of the better neighboring cell.
  • the primary base station After receiving the A3 measurement report, A4 measurement report, or A5 measurement report, the primary base station determines whether to trigger the terminal device to perform cell handover. If the primary base station determines to trigger the terminal device to perform cell handover, it sends a handover message to the terminal device so that the terminal device will be served from the cell Switch to a better neighboring cell; if the primary base station does not trigger a cell handover, the offload point is instructed to allocate less uplink and downlink data to the branch that is offloaded by the secondary base station in the split bearer.
  • the terminal device when the terminal device does not measure the neighbor cell that meets the network side A3/A4/A5 measurement report reporting threshold, if the terminal device determines that there is a neighbor cell with better quality, it will send A3/A4 actively. /A5 measurement report, to trigger the network side to send handover instruction information to the terminal device to instruct the terminal device to switch its reported NR neighbor cell, so as to avoid long-term transmission on the NR side caused by improper network side configuration measurement report threshold. In the case of poor quality, improve the service quality of terminal equipment. Therefore, through the aforementioned process, the terminal device can actively trigger the network side to instruct the terminal device to switch the NR neighbor cell.
  • the terminal device determines that there is no better neighboring cell, it sends an A2 measurement report or SCG Failure Information/SCG Failure Information NR message to the network side. If the terminal device sends the A2 measurement report, it carries the RSRP of the serving cell or carries the preset RSRP value, that is, the terminal device uses the preset RSRP as the RSRP of the serving cell.
  • the preset RSRP can be the A2 measurement that meets the network side configuration Any value of the report trigger threshold, or any value of the A2 measurement report trigger threshold configured on the network side and the SCG release threshold on the network side, or the difference between the serving cell RSRP and the preset value.
  • the terminal device detects that the RSRP of the serving cell fails to meet the threshold of the serving cell that triggers the A2 measurement report reporting threshold, the A2 measurement report is actively sent to trigger the network side to instruct the terminal device to release the SCG, thereby Reduce power consumption on the terminal device side.
  • the terminal device sends SCG Failure Information, SCG Failure Information NR messages, it carries the Failure Type field in it, and indicates that Failure Type is t313 timer expiration (t313-expiry) or reaches the maximum number of rlc retransmissions (rlc) -Max Num Retx).
  • a FailureType of t313-expiry or rlc-Max Num Retxs can indicate to the network side that the link quality of the current serving cell of the terminal device is poor.
  • SCG Failure Information NR messages to the network side and does not carry neighbor cell information that meets the measurement report trigger threshold, the network side is very likely to trigger the terminal device to release the SCG, thereby Reduce power consumption on the terminal device side.
  • the terminal device can actively trigger the network side to instruct the terminal device to release the SCG.
  • the specific manner in which the terminal device sends the first message and the manner in which the network side instructs the terminal device to release the SCG are not limited in this embodiment of the application.
  • the terminal device can also use other information based on the link quality information of the neighbor cell.
  • the present invention does not limit the determination method; on the other hand, the terminal device can combine one or more combinations of determination conditions based on internal strategies, and the specific combination method is not limited.
  • the terminal device regards the neighbor cell with the largest RSRP among the non-barred co-frequency neighbor cells as the preferred neighbor cell, and therefore sends an A3 report to the network side, and carries the RSRP of the neighbor cell in it, or carries the preset RSRP Value, that is, the terminal device uses the preset RSRP as the RSRP of the neighbor cell.
  • the preset RSRP can be any value that meets the A3 report trigger threshold configured on the network side, or the sum of the neighbor cell RSRP plus the preset difference; or
  • the terminal device determines the neighbor cell with the largest RSRP among the neighbor cells that is not forbidden to access, and determines that the RSRP of the neighbor cell meets the RSRP threshold set inside the terminal device, then determines that the neighbor cell is a connectable neighbor cell, and therefore sends A3 to the network side /A4/A5 measurement report, and carry the neighbor cell RSRP in it, or carry the preset RSRP value, that is, the terminal device uses the preset RSRP as the RSRP of the neighbor cell, and the preset RSRP can be A3/A4 that meets the network side configuration
  • the /A5 measurement report triggers any value of the threshold, or the sum of the neighbor cell RSRP plus the preset value.
  • the SCG-side service processing method in the dual-connection scenario provided by the embodiment of the present application when the transmission quality of the NR side decreases, the terminal device obtains the serving cell by determining that the link quality of the serving cell in the SCG is poor Link quality information of at least one neighboring cell of the cell, and determine whether there is a better neighboring cell.
  • the terminal device can send the link quality information determined according to the link quality information of the serving cell in time To the main base station, so that the main base station can determine whether to perform SCG release in time, so as to prevent the terminal device from continuing to transmit uplink and downlink data based on the serving cell; when there is a better neighboring cell, the terminal device can timely determine the chain of the better neighboring cell
  • the channel quality information is sent to the main base station, so that the main base station can determine in time whether to trigger the terminal device to perform cell handover, and avoid the terminal device from continuing to transmit uplink and downlink data based on the serving cell.
  • the dual connection architecture is the NGEN-DC architecture.
  • a terminal device is connected to an eLTE-eNB and a gNB, where the eLTE-eNB is the primary base station and the gNB is the secondary base station.
  • eLTE-eNB is connected to NGC, eLTE-eNB and gNB are connected through Xn interface.
  • FIG. 14 is a flowchart of another SCG-side service processing method in a dual-connection scenario provided by an embodiment of the present application. This embodiment is described in detail from the perspective of a terminal device, and this embodiment includes:
  • the terminal device obtains the link quality information of the NR side serving cell of the NGEN-DC.
  • the poor quality of the NR side link indicates that the quality of the serving cell in the SCG is poor.
  • the terminal equipment obtains the link quality information of the serving cell on the NR side.
  • the link quality information of the serving cell meets the first preset condition, such as poor air interface signal quality on the NR side, frequent loss of synchronization on the NR side, and less scheduling on the NR side , NR side has a higher bit error rate, etc., it is determined that the NR side link quality is poor.
  • the terminal device may determine that the link quality on the NR side is poor according to the method of step 201 above.
  • step 201 which is not repeated here.
  • the terminal device obtains the link quality information of the neighboring cell.
  • the neighboring cell and the serving cell may be same-frequency and/or different-frequency cells.
  • step 202 For details, refer to the description of step 202 above, which is not repeated here.
  • the link quality information of the neighbor cell includes at least one of reference signal received power RSRP, reference signal received quality RSRQ, signal to interference plus noise ratio SINR, load, priority, or availability; accordingly, the terminal device determines whether The method for the existence of a better neighboring cell may be: the terminal device determines whether there are one or more neighboring cells satisfying the second preset condition among RSRP, RSRQ, SINR load, priority, or availability in at least one neighboring cell, and if so, Then, the neighbor cell meeting the second preset condition is regarded as a better neighbor cell, and if it does not exist, the terminal device considers that there is no better neighbor cell.
  • RSRP reference signal received power
  • RSRQ signal received quality
  • SINR signal to interference plus noise ratio
  • Step 304 The terminal device sends the first message to the eLTE-eNB.
  • the first message may be an A2 measurement report, SCG failure information, SCG failure information NR, and so on.
  • the terminal device fills the determined original link quality information of the serving cell into the A2 measurement report, etc. and sends it to the master Base station; or, the terminal device can also perform certain processing on the original link quality information of the serving cell, and fill in the processed link quality information of the serving cell into the A2 measurement report, etc. and send it to the main base station.
  • processing refers to performing certain operations on the link quality information of the serving cell.
  • the primary base station After receiving the A2 measurement report, the primary base station determines by itself whether to perform the SCG release, and if the SCG release is performed, it sends a release message to the terminal device.
  • the release message is used to instruct the terminal device to release the SCG.
  • the terminal device After receiving the release message, the terminal device releases the SCG; if the primary base station determines not to perform the SCG release, it indicates that the offload point is the branch that is offloaded by the secondary base station in the split bearer to allocate less uplink and downlink data.
  • Step 305 If there is a better neighbor cell in at least one neighbor cell, the terminal device sends a second message to the eLTE-eNB.
  • the second message may be an A3 measurement report, an A4 measurement report, or an A5 measurement report.
  • the terminal equipment can fill in the A3 measurement report, A4 measurement report, or A5 measurement report, etc., with the original link quality information of the better neighboring cell and send it to the primary base station; or the terminal equipment can also check the original link quality of the better neighboring cell
  • the information is processed to a certain extent, and the processed link quality information of the better neighboring cell is filled in the A3 measurement report, A4 measurement report, or A5 measurement report, etc., and sent to the main base station; or, the terminal device determines a preset The value is used as the link quality information of the better neighboring cell.
  • processing refers to performing certain operations on the link quality information of the better neighboring cell.
  • the primary base station After receiving the A3 measurement report, A4 measurement report, or A5 measurement report, the primary base station determines whether to trigger the terminal device to perform cell handover. If the primary base station determines to trigger the terminal device to perform cell handover, it sends a handover message to the terminal device so that the terminal device will be served from the cell Handover to a better neighboring cell; if the primary base station determines not to trigger cell handover, it indicates that the branch point is the branch that is branched off by the secondary base station in the split bearer to allocate less uplink and downlink data.
  • the terminal device when the transmission quality on the SCG side decreases, the terminal device obtains the link quality information of at least one neighbor cell of the serving cell and determines Whether there is a better neighboring cell, when there is no better neighboring cell, the terminal device can timely send the link quality information determined according to the link quality information of the serving cell to the main base station, so that the main base station can determine whether to perform SCG in time Release, etc., to prevent the terminal device from continuing to transmit uplink and downlink data based on the serving cell; when there is a better neighboring cell, the terminal device can send the determined link quality information of the better neighboring cell to the main base station in time, thereby making the main base station timely Determine whether to trigger the terminal device to perform cell handover to prevent the terminal device from continuing to transmit uplink and downlink data based on the serving cell.
  • the dual connectivity architecture is NE-DC.
  • terminal equipment is connected to an ng-eNB and a gNB, where the ng-eNB is a secondary base station and the gNB is the primary base station.
  • the gNB is connected to the NGC, and the ng-eNB is connected to the gNB through the Xn interface.
  • FIG. 15 is a flowchart of another SCG-side service processing method in a dual-connection scenario provided by an embodiment of the present application. This embodiment is described in detail from the perspective of a terminal device. This embodiment includes:
  • a terminal device obtains link quality information of a serving cell on the eLTE side of the NE-DC.
  • the poor quality of the eLTE side link indicates that the quality of the serving cell in the SCG serving the terminal device is poor.
  • the terminal device obtains the link quality information of the serving cell on the eLTE side.
  • the link quality information of the serving cell meets the first preset condition, such as poor air interface signal quality on the eLTE side, frequent loss of synchronization on the NR side, and less scheduling on the eLTE side , If the error rate on the eLTE side is high, etc., it is determined that the link quality on the eLTE side is poor.
  • the terminal device can determine that the link quality on the eLTE side is poor according to the method of step 201 above. For a specific description, refer to step 201, and will not be repeated this time.
  • the terminal device obtains the link quality information of the neighbor cell on the eLTE side.
  • the neighbor cell and the serving cell may be same-frequency and/or different-frequency cells.
  • step 202 For details, refer to the description of step 202 above, which is not repeated here.
  • Step 404 The terminal device sends the first message to the gNB.
  • the first message may be an A2 measurement report, SCG failure information, SCG failure information NR, and so on.
  • the terminal device fills the determined original link quality information of the serving cell into the A2 measurement report, etc. and sends it To the primary base station; or, the terminal device can also perform certain processing on the original link quality information of the serving cell, and fill in the processed link quality information of the serving cell into the A2 measurement report, etc., and send it to the primary base station.
  • processing refers to performing certain operations on the link quality information of the serving cell.
  • the primary base station After receiving the A2 measurement report, the primary base station determines by itself whether to perform the SCG release, and if the SCG release is performed, it sends a release message to the terminal device.
  • the release message is used to instruct the terminal device to release the SCG.
  • the terminal device After receiving the release message, the terminal device releases the SCG; if the primary base station determines not to perform the SCG release, it indicates that the offload point is the branch that is offloaded by the secondary base station in the split bearer to allocate less uplink and downlink data.
  • Step 405 If there is a better neighbor cell in at least one neighbor cell, the terminal device sends a second message to the gNB.
  • the second message may be an A3 measurement report, an A4 measurement report, or an A5 measurement report.
  • the terminal equipment can fill in the A3 measurement report, A4 measurement report, or A5 measurement report, etc., with the original link quality information of the better neighboring cell and send it to the primary base station; or the terminal equipment can also check the original link quality of the better neighboring cell
  • the information is processed to a certain extent, and the processed link quality information of the better neighboring cell is filled in the A3 measurement report, A4 measurement report, or A5 measurement report, etc., and sent to the main base station; or, the terminal device determines a preset The value is used as the link quality information of the better neighboring cell.
  • processing refers to performing certain operations on the link quality information of the better neighboring cell.
  • the primary base station After receiving the A3 measurement report, A4 measurement report, or A5 measurement report, the primary base station determines whether to trigger the terminal device to perform cell handover. If the primary base station determines to trigger the terminal device to perform cell handover, it sends a handover message to the terminal device so that the terminal device will be served from the cell Handover to a better neighboring cell; if the primary base station determines not to trigger cell handover, it indicates that the branch point is the branch that is branched off by the secondary base station in the split bearer to allocate less uplink and downlink data.
  • the terminal device when the transmission quality on the SCG side decreases, the terminal device obtains the link quality information of at least one neighbor cell of the serving cell, and determines Whether there is a better neighboring cell, when there is no better neighboring cell, the terminal device can timely send the link quality information determined according to the link quality information of the serving cell to the main base station, so that the main base station can determine whether to perform SCG in time Release, etc., to prevent the terminal device from continuing to transmit uplink and downlink data based on the serving cell; when there is a better neighboring cell, the terminal device can send the determined link quality information of the better neighboring cell to the main base station in time, thereby making the main base station timely Determine whether to trigger the terminal device to perform cell handover to prevent the terminal device from continuing to transmit uplink and downlink data based on the serving cell.
  • FIG. 16 is a schematic structural diagram of an SCG-side service processing apparatus provided by an embodiment of the present invention.
  • the SCG-side service processing apparatus 100 may be implemented in software and/or hardware. As shown in FIG. 10, the SCG side service processing 100 includes:
  • the processing unit 11 is configured to obtain link quality information of a serving cell in the secondary cell group SCG, and if the link quality information of the serving cell satisfies a first preset condition, obtain the link of at least one neighbor cell of the serving cell Link quality information, if there is no better neighboring cell in the at least one neighboring cell, a first message is generated, where the better neighboring cell is that the link quality information in the at least one neighboring cell satisfies the second preset condition In the neighbor cell of the serving cell, the first message carries link quality information determined by the terminal device according to the link quality information of the serving cell;
  • the transceiver unit 12 is configured to send the first message by the primary base station, so that the primary base station processes the SCG side service according to the first message.
  • the link quality information of the serving cell includes one or more of the following information: the number of times the T313 timer corresponding to the cell in the SCG is turned on, and the T313 timing corresponding to the cell in the SCG
  • the running time of the device the number of out of sync events in the cell in the SCG, the throughput of the data transmitted by the cell in the SCG, the ratio of the throughput of the data transmitted by the cell in the SCG to the power consumption, and the The number of beam failures triggered by the cell in the SCG, the amount of data buffered by the radio link control RLC layer corresponding to the cell in the SCG, the delay of uplink data sent by the link of the cell in the SCG, and the cell in the SCG
  • the signal strength of the cell in the SCG the change amplitude of the signal strength of the cell in the SCG, the retransmission rate of the link transmission data of the cell in the SCG, the signal to interference plus noise ratio SINR of the cell in the SCG, the SI
  • the link quality information of the neighbor cell includes at least one of reference signal received power RSRP, reference signal received quality RSRQ, signal to interference plus noise ratio SINR, load, priority, or availability.
  • the processing unit 11 is further configured to generate a second message if there is a better neighboring cell in the at least one neighboring cell, and the second message carries the terminal device according to the comparison.
  • Link quality information determined by the link quality information of the preferred neighborhood;
  • the transceiver unit 12 is further configured to send the second message to the main base station.
  • the second message is an A3 measurement report, an A4 measurement report, or an A5 measurement report.
  • the transceiver unit 12 after sending the second message to the primary base station, the transceiver unit 12 is also used to receive a handover message sent by the primary base station, and the handover message is used to instruct the terminal The device switches from the serving cell to the better neighboring cell.
  • the first message is an A2 measurement report.
  • the transceiver unit 12 after sending the first message to the main base station, is also used to receive a release message sent by the main base station, and the release message is used to instruct the terminal device Release the SCG;
  • the processing unit 11 is further configured to release the SCG according to the release message.
  • the SCG-side service processing apparatus provided in the embodiment of the present invention can perform the actions of the terminal device in the foregoing embodiment, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the above transceiving unit may be a transceiver in actual implementation, and the processing unit may be implemented in a form of software calling through a processing element; it may also be implemented in a form of hardware.
  • the processing unit may be a separate processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the functions of the above processing unit.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above method or each of the above units can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application. As shown in FIG. 17, the terminal device 200 includes:
  • the memory 22 stores computer execution instructions
  • the processor 21 executes computer execution instructions stored in the memory 22, so that the processor 21 executes the SCG-side service processing method corresponding to the above terminal device.
  • the terminal device 200 further includes a communication interface 23.
  • the processor 21, the memory 22, and the communication interface 23 may be connected through a bus 24.
  • the embodiment of the present invention also provides a storage medium, and the storage medium stores computer-executable instructions, and the computer-executable instructions are used to implement the SCG-side service processing method executed by the above terminal device when executed by the processor.
  • the embodiment of the present invention also provides a computer program product, which is used to implement the SCG-side service processing method executed by the terminal device when the computer program product runs on the terminal device.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种双连接场景下SCG侧业务处理方法及装置,应用于双连接场景下的终端设备,主基站为终端设备配置主小区组与辅小区组,上下行数据传输过程中,当终端设备确定出SCG中的服务小区的链路质量信息满足第一预设条件时,获取该服务小区的至少一个邻居小区的链路质量信息,根据链路质量信息确定是否存在较优邻区,若不存在较优邻区,则向主基站发送第一消息,主基站根据该第一消息确定是否执行SCG小区组释放。该过程中,当SCG中的服务小区的链路质量信息满足第一预设条件,即当SCG侧业务质量差时,由于终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据。

Description

双连接场景下SCG侧业务处理方法及装置
本申请要求在2019年4月30日提交中国国家知识产权局、申请号为201910358482.0的中国专利申请的优先权,发明名称为“一种优化双连接SCG链路连接的方法”的中国专利申请的优先权,在2019年8月29日提交中国国家知识产权局、申请号为201910808801.3的中国专利申请的优先权,发明名称为“双连接场景下SCG侧业务处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种双连接场景下SCG侧业务处理方法及装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3|GPP)推出了第五代(5th-Generation,5G)通信系统,5G通信系统中通过引入新无线(new radio,NR)接入技术,可以实现高吞吐、低时延传输。5G通信系统的三种主要应用为:增强移动带宽(enhanced mobile broadBmand,eMBB)、海量机器类通信(machine-type communication,MTC)、超可靠低时延通信(ultra-reliable low latency communications,URLLC)。为了增强网络的移动性能及增加用户吞吐量,引入了一种称作双连接(dual connectivity,DC)的新的增强方案。该方案中,终端设备可以同时与两个基站保持连接,其中一个基站称为主基站,另一个称为辅基站。
双连接架构中,主基站为终端设备配置一个主小区组(master cell group,MCG)和一个辅小区组(secondary cell group,SCG)。从终端设备侧来看,存在3种类型的承载:MCG承载、SCG承载和分离(split)承载。下行数据传输过程中,采用split承载时,网关发出一路数据,该数据到达分流点,由分流点将该数据分成两股,一股直接流向终端设备,另一股经由另外一个基站流入终端设备,其中,分流点可以为主基站也可以为辅基站。上行数据传输过程中,采用split承载时,若终端设备满足上行缓存量达到门限值等条件,则终端设备分别向主基站和辅基站发送数据,该两股数据在其中一个基站汇合后,再发送至网关。
上下行数据传输过程中,可能存在SCG侧业务质量差的问题。例如,辅基站的覆盖范围可能并不连续;再如,主基站为长期演进(long term evolution,LTE)中的eNB,辅基站为新无线(new radio,NR)中的gNB,gNB采用C-band或者更高频段时,gNB的覆盖范围较小,或者针对gNB配置的移动性参数不合理,导致SCG侧小区传输质量持续较差,而引发高耗电及业务体验下降。
发明内容
本申请实施例提供一种双连接场景下SCG侧业务处理处理方法及装置,当SCG侧业务质量差时,终端设备向主基站上报终端设备确定的服务小区或最优邻区的链路质量信息, 使得主基站根据终端上报的链路质量信息决策是否释放SCG或将终端设备从服务小区切换至最优邻区,从而实现降低终端设备耗电量并提高业务体验的目的。
第一方面,本申请示例提供一种双连接场景下SCG侧业务处理方法,该方法应用于终端设备,该终端设备与主基站和辅基站均建立双连接,该方法包括:主基站为终端设备配置主小区组与辅小区组,上下行数据传输过程中,当终端设备确定出SCG中的服务小区的链路质量信息满足第一预设条件时,获取该服务小区的至少一个邻居小区的链路质量信息,根据链路质量信息确定是否存在较优邻区,若不存在较优邻区,则向主基站发送第一消息,主基站根据该第一消息确定是否执行SCG小区组释放。采用该种方案,当SCG中的服务小区的链路质量信息满足第一预设条件,即当SCG侧业务质量差时,由于终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据
一种可行的设计中,服务小区的链路质量信息包括下述信息中的一个或多个:SCG中小区对应的T313定时器的开启次数、SCG中小区对应的T313定时器的运行时长、SCG中小区失去同步事件out of sync的次数、SCG中小区传输的数据的吞吐量、SCG中小区传输的数据的吞吐量与耗电量的比值、SCG中小区触发的波束失败次数、SCG中小区对应的无线链路控制RLC层的缓存的数据量、SCG中小区的链路发送的上行数据的时延、SCG中小区的信号强度、SCG中小区的信号强度的变化幅值、SCG中小区的链路传输数据的重传率、SCG中小区的信号与干扰加噪比SINR、SCG中小区对应的调制与编码方式MCS索引、SCG中小区发送下行数据和/或接收上行数据的误块率BLER。采用该种方案,终端设备可以灵活的确定出SCG侧的业务质量。
一种可行的设计中,终端设备可通过如下方式中的一种或多种方式的组合确定SCG中服务小区的链路质量信息是否满足第一预设条件,即SCG侧业务质量是否差:
确定SCG中小区对应的T313定时器的开启次数超过第一阈值;
确定SCG中小区对应的T313定时器的运行时长超过第二阈值;
确定检测到SCG中小区失去同步事件out of sync的次数超过第三阈值;
确定通过SCG中小区传输的数据的吞吐量小于第四阈值;
确定通过SCG中小区传输的数据的吞吐量与耗电量的比值小于第五阈值;
确定SCG中小区触发的波束失败次数超过第六阈值;
确定SCG中小区对应的无线链路控制RLC层的缓存的数据量超过第七阈值;
确定通过SCG中小区的链路发送的上行数据的时延超过第八阈值;
确定SCG中小区的信号强度低于第九阈值;
确定SCG中小区的信号强度的变化幅值超过第十阈值;
确定通过SCG中小区的链路传输数据的重传率超过第十一阈值;
确定SCG中小区的信号与干扰加噪比SINR低于第十二阈值;
确定SCG中小区对应的调制与编码方式MCS索引低于第十三阈值,MCS索引是SCG中小区发送下行数据的MCS索引和/或接收上行数据的MCS索引;
确定SCG中小区发送下行数据和/或接收上行数据的误块率BLER低于第十四阈值。
采用该种方案,终端设备可以灵活的确定出SCG侧的业务质量是否满足第一预设条件。
一种可行的设计中,邻居小区的链路质量信息包括参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个。采用该种方案,终端设备可以灵活的确定出邻居小区中是否存在较优邻区。
一种可行的设计中,若至少一个邻居小区中存在较优邻区,则终端设备生成第二消息,该第二消息携带终端设备根据较优邻区的链路质量信息确定出的链路质量信息;向主基站发送第二消息。采用该种方案,当存在较优邻区时,终端设备能够及时将确定出的较优邻区的链路质量信息发送给主基站,进而使得主基站及时确定是否触发终端设备执行小区切换,避免终端设备继续基于服务小区传输上下行数据。
一种可行的设计中,第二消息为A3测量报告、A4测量报告或A5测量报告。采用该种方案,实现终端设备灵活发送第二消息的目的。
一种可行的设计中,向主基站发送第二消息之后,还接收主基站发送的切换消息,切换消息用于指示终端设备从服务小区切换至较优邻区。采用该种方案,实现主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据
一种可行的设计中,第一消息为A2测量报告。采用该种方案,实现终端设备灵活发送第一消息的目的。
一种可行的设计中,向主基站发送第一消息之后,还接收主基站发送的释放消息,释放消息用于指示终端设备释放SCG,根据释放消息,释放SCG。采用该种方案,终端设备通过向主基站发送第二消息,使得主基站及时确定是否向终端设备发送切换消息,以使得终端设备切换到较优邻区,从而保证了上下行数据传输的成功率,提高上下行业务质量的同时,避免终端设备耗电量高。
第二方面,本申请实施例提供一种SCG侧业务处理装置,用于双连接场景中的终端设备,所述终端设备与主基站和辅基站建立双连接,所述装置包括:
处理单元,用于获取辅小区组SCG中服务小区的链路质量信息,若所述服务小区的链路质量信息满足第一预设条件,则获取所述服务小区的至少一个邻居小区的链路质量信息,若所述至少一个邻居小区中不存在较优邻区,则生成第一消息,所述较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区,所述第一消息携带终端设备根据所述服务小区的链路质量信息确定的链路质量信息;
收发单元,用于所述主基站发送所述第一消息,以使得所述主基站根据所述第一消息,处理所述SCG侧业务。
一种可行的设计中,所述服务小区的链路质量信息包括下述信息中的一个或多个:所述SCG中小区对应的T313定时器的开启次数、所述SCG中小区对应的T313定时器的运行时长、所述SCG中小区失去同步事件out of sync的次数、所述SCG中小区传输的数据的吞吐量、所述SCG中小区传输的数据的吞吐量与耗电量的比值、所述SCG中小区触发的波束失败次数、所述SCG中小区对应的无线链路控制RLC层的缓存的数据量、所述SCG中小区的链路发送的上行数据的时延、所述SCG中小区的信号强度、所述SCG中小区的信号强度的变化幅值、所述SCG中小区的链路传输数据的重传率、所述SCG中小区的信号与干扰加噪比SINR、所述SCG中小区对应的调制与编码方式MCS索引、所述SCG中小区发送下行数据和/或接收上行数据的误块率BLER。
一种可行的设计中,所述邻居小区的链路质量信息包括参考信号接收功率RSRP、参 考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个。
一种可行的设计中,所述处理单元,还用于若所述至少一个邻居小区中存在较优邻区,则生成第二消息,所述第二消息携带所述终端设备根据所述较优邻区的链路质量信息确定出的链路质量信息;
所述收发单元,还用于向所述主基站发送所述第二消息。
一种可行的设计中,所述第二消息为A3测量报告、A4测量报告或A5测量报告。
一种可行的设计中,所述收发单元,在向所述主基站发送所述第二消息之后,还用于接收所述主基站发送的切换消息,所述切换消息用于指示所述终端设备从所述服务小区切换至所述较优邻区。
一种可行的设计中,所述第一消息为A2测量报告。
一种可行的设计中,所述收发单元,向所述主基站发送所述第一消息之后,还用于接收所述主基站发送的释放消息,所述释放消息用于指示所述终端设备释放所述SCG;
所述处理单元,还用于根据所述释放消息,释放所述SCG。
第三方面,本申请实施例提供一种包含指令的计算机程序产品,当其在终端设备上运行时,使得终端设备执行上述第一方面或第一方面的各种可能的实现方式中的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在终端设备上运行时,使得终端设备执行上述第一方面或第一方面的各种可能的实现方式中的方法。
第五方面,提供了一种终端设备,该终端设备包括处理器和存储器,处理器与存储器耦合,用于执行上述第一方面或第一方面的各种可能的实现方式中的方法。
本申请实施例提供的SCG侧业务处理方法及装置,应用于双连接场景下的终端设备,主基站为终端设备配置主小区组与辅小区组,上下行数据传输过程中,当终端设备确定出SCG中的服务小区的链路质量信息满足第一预设条件时,获取该服务小区的至少一个邻居小区的链路质量信息,根据链路质量信息确定是否存在较优邻区,若不存在较优邻区,则向主基站发送第一消息,主基站根据该第一消息确定是否执行SCG小区组释放。该过程中,当SCG中的服务小区的链路质量信息满足第一预设条件,即当SCG侧业务质量差时,由于终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据。
附图说明
图1为EN-DC架构下终端设备侧建立的承载的无线协议栈的结构示意图;
图2为EN-DC架构下网络设备侧的无线协议栈的结构示意图;
图3是EN-DC的控制面架构示意图;
图4是本发明实施例提供的双连接场景下SCG侧业务处理方法所使用的双连接架构示意图;
图5是本发明实施例提供的双连接场景下SCG侧业务处理方法中EN-DC架构下第一接口和第三接口的示意图;
图6是本发明实施例提供的双连接场景下SCG侧业务处理方法中EN-DC架构下split承载的示意图;
图7是本发明实施例提供的双连接场景下SCG侧业务处理方法中NGEN-DC架构下第一接口和第三接口的示意图;
图8是本发明实施例提供的双连接场景下SCG侧业务处理方法中NGEN-DC架构下split承载的示意图;
图9是本发明实施例提供的双连接场景下SCG侧业务处理方法中MN和SN的一种部署示意图;
图10是本发明实施例提供的双连接场景下SCG侧业务处理方法中MN和SN的另一种部署示意图;
图11是本申请实施例提供的一种双连接场景下SCG侧业务处理方法的流程图;
图12是本申请实施例提供的一种双连接场景下SCG侧业务处理方法所适用的option3x的网络架构示意图;
图13是本申请实施例提供的另一种双连接场景下SCG侧业务处理方法的流程图;
图14是本申请实施例提供的又一种双连接场景下SCG侧业务处理方法的流程图;
图15是本申请实施例提供的又一种双连接场景下SCG侧业务处理方法的流程图;
图16为本发明实施例提供的一种SCG侧业务处理装置的结构示意图;
图17是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
为增强网络的移动性能及增加用户吞吐量,5G通信系统还引入了双连接(dual connectivity,DC)架构。该架构中,终端设备同时与两个基站保持连接,其中一个基站称为主基站或者主要网络节点(master node,MN),另一个称为辅基站或者次要网络节点(secondary node)。双连接架构下,连接态的终端设备被配置一个MCG和一个SCG。根据不同空口和核心网的排列组合,以及双连接时控制面(control plane,CP)所应用的无线接入技术,5G系统的双连接就架构分为EN-DC架构、NGEN-DC架构、NE-DC架构和NR-DC架构等。其中,DC代表dual connectivity,即双连接,E代表演进的通用地面无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA),即4G无线接入网;N代表NR,即5G新无线;NGE代表下一代E-UTRA(Next Generation E-UTRA,NGE),即NGEN-DC架构中,MN为下一代eNB,其可以连接到5G核心网。根据是否单独部署NR基站和NR核心网,将5G网络部署架构分为独立组网架构(Standalone,SA)和非独立组网(Non-Standalone,NSA)。从4G到5G平滑演进过程中,为保护已有的4G投资,多数运营商在5G建网初期选择了NSA架构进行组网,而EN-DC是NSA组网架构的主要形式。
EN-DC架构中,主基站为eNB,辅基站为gNB,分别记为主基站(master eNB,MeNB)和辅基站(secondary SgNB)。根据分流点的不同,又可以将EN-DC分为选项(option)3、option3a和option3x三种架构。其中,option3架构中,分流点为MeNB,option3x架构中,分流点为SgNB,option3a架构中,由核心网进行分流。随着NR基站,即gNB部署逐渐完善,双连接架构后续也可能转变为NE-DC、NGEN-DC,如option4、option4a以及option7、option7a、option7x,甚至转变为SA架构,如option2。
图1为EN-DC架构下终端设备侧建立的承载的无线协议栈的结构示意图。请参照图1,在EN-DC架构中,核心网为演进核心网(evolved packet core,EPC)。从终端设备来看,存在三种类型的承载:MCG承载、SCG承载和分离(split)承载。当采用option3架构时,MeNB作为分流点,网关发送的数据到达MeNB后,由MeNB将数据封装成分组数据汇聚协议(packet data convergence protocol,PDCP)包,MeNB将PDCP包通过MeNB和SgNB之间的Xx接口转发到SgNB的无线链路控制(radio link control,RLC)层。当采用option3a架构时,SgNB作为分流点,网关发送的数据到达SgNB后,由SgNB将数据封装成PDCP包,并将PDCP包通过Xx接口转发至MeNB的RLC层。具体可参见第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范(technical specifications,TS)37.340。
图2为EN-DC架构下网络设备侧的无线协议栈的结构示意图。请参照图2,存在三种类型的承载:MCG承载、SCG承载和分离(split)承载。其中,从MeNB或SgNB角度来看,分离承载包括两种:分流点是MeNB的分离承载以及分流点是SgNB的分离承载,分别对应option3架构和option3x架构。需要说明的是,本申请实施例中,分离承载即为split承载。
图3是EN-DC的控制面架构示意图。请参照图3,MeNB和SgNB具有自己的无线资源控制(radio resource rontrol,RRC)实体,终端设备与MeNB之间建立Uu口,终端设备与SeNB之间建立Uu口,MeNB和SgNB之间建立X2-C接口,MeNB与核心网之间建立S1接口。基于该架构,SgNB生成的RRC协议数据单元(protocol data unit,PDU)可以通过MeNB转发给终端设备,MeNB通过信令无线承载(signaling radio bearers,SRB)1发送SgNB的初始RRC配置,后续的重配置可以由MeNB或SgNB发送。
EN-DC架构中,网络侧为终端设备配置了split承载后,当上行业务数据量高于上行数据分流门限(ul-data split threshold)时,终端设备可能进行上行业务分流。下行数据分流策略由运营商配置的分流策略等确定。分流后,若NR侧,即SCG侧的业务质量持续较差时,例如,当SCG侧满足如下条件中的至少一个时,终端设备触发SCG失败(failure)上报流程:
1)终端设备检测到SCG的无线链路失败(radio link failure,RLF);
2)重配置时与SCG同步失败;
3)SCG配置失败;
4)SCG底层上报完整性校验失败;
5)SCG超出上行传输定时偏差最大值。
如果触发SCG failure流程,参考3GPP TS 37.340,终端设备需要执行以下动作:
1)挂起信令资源承载(signal resource bearer,SRB)的SCG传输、挂起数据资源承载(data resource bearer,DRB)的SCG传输;
2)复位(reset)辅小区组-媒体接入控制层(secondary cell group-media access control,SCG-MAC)。
3)若T304定时器运行,则停止T304定时器。
4)如果终端设备在EN-DC状态,则触发SCG失败信息(SCG failure information)的发送。
根据上述可知:在网络侧为终端设备配置了split承载的情况下,若上行业务数据量较高,则终端设备进行上行业务分流。同理,若下行业务数据量较高,则分流点进行下行业务分流。然而,当辅基站对应的频段高于主基站对应的频段时,辅基站的覆盖范围较小,例如,EN-DC架构下,若NR频段高于LTE频段,则SgNB的覆盖范围更小,而且NR基站建网初期,NR基站的覆盖可能不连续等原因,导致NR侧相较于LTE侧更容易出现业务质量差,进而引发高耗电及业务体验下降的问题。
为避免NR侧业务质量差引发高耗电及业务体验下降的问题,NR侧质量差时,终端设备需要向MeNB上报相关信息,从而触发MeNB采取一定的措施,如向终端设备下发切换指令,使得终端设备切换到SgNB下质量较好的小区,或者,MeNB释放SCG并向终端设备指示。终端设备一般通过如下两种方式触发MeNB:
第一种:终端设备检测T313定时器是否超时,若T313定时器超时,则终端设备向MeNB上报SCG RLF,MeNB根据SCG RLF确定是否下发切换指令或释放SCG。其中,T313定时器用于指示无线链路失败的定时器长度。终端设备检测T313定时器超时过程中,终端设备低层向RRC连续上报N313个失去同步(out-of-sync)触发T313定时器开启,T313定时器超时前若连续检测到N314次同步(in-sync),则停止T313计时,只有T313定时器超时时才触发SCG RLF。然而,由于信号传输的波动,容易出现T313定时器反复开启和复位的现象,导致无法及时触发SCG RLF。因此,可能会发生终端设备正式触发SCG RLF之前较长时间段内,NR侧业务质量差,如丢包率、误码率高等。在功控机制下,终端设备会逐步提高功率,导致功耗增加,使得终端设备掉电快、发热等。其中,N313用于指示失去同步的最大次数,N314用于指示同步的最大次数。关于T313、N313和N314的描述,可参见3GPP TS 36.331、3GPP TS 38.331。
第二种:终端设备发送测量报告,以触发MeNB下发切换指令或释放SCG。
终端设备的移动性管理主要由网络侧根据终端设备的测量报告触发,而终端设备的测量报告的上报也是遵照网络侧配置的测量报告上报触发门限来进行的。在一些组网覆盖情况下,网络侧配置的测量报告上报门限可能无法满足终端设备的业务传输需求。例如,在EN-DC连接下,如果NR侧的S-测量(S-measure)配置的参考信号接收功率(reference signal received power,RSRP)较低,则终端设备在NR侧较难触发测量过程,也就无法及时获取邻区的信号强度等信息,其中,S-measure是LTE或NR中测量配置(measConfig)中的一个字段,measConfig信元是网络侧发送的RRC重配置(RRC Reconfiguration)信令中的一个信元;再例如,如果NR侧配置的A3事件的迟滞值较高或者触发时间(Time To Trigger)过长,则终端设备必须测量到信号强度持续较高的邻区才可以触发测量报告,而终端设备在当前小区下由于干扰、覆盖不连续等问题已经出现业务质量下降,却仍然无法触发A3事件测量报告,造成持续的质差体验,并引起高耗电。其中,A3事件是网络侧预先配置的一系列测量事件中的一种,该一些列测量事件包括A1事件~A6事件,A1事件指服务小区触发量高于阙值时上报,A2事件指服务小区触发量低于阙值时上报,A3事件指邻居小区触发量考虑偏移后好于主小区(primary Cell,PCell)或主辅小区(primary secondary cell,PSCell的触发量,A4事件指邻区触发量高于阙值时上报,A5事件指PCell或PSCell的触发量低于阙值1,邻居小区的触发量高于阙值2时上报,A6事件指邻居小区的触发量考虑偏差值后好于PSCell)。关于A3事件等的描述,可参见3GPP TS 36.331、 3GPP TS 38.331。
根据上述可知:双连接场景下,如EN-DC架构中,由于种种原因,例如,NR频段高于LTE频段时,覆盖范围小;再如,建网初期NR基站的覆盖不连续;又如,NR基站的参数配置不合理,使得NR侧较LTE侧更容易出现业务质量持续较差的问题,此时,需要终端设备及时向网络侧告知该状况,使得网络侧触发小区切换或释放SCG。若终端设备通过检测T313定时器是否超时来上报SCG RLF时,则由于T313定时器反复复位使得终端设备无法触发SCG RLF,引起上下行业务时延、终端设备耗电量高等问题;若终端设备进行测量,则可能由于网络侧的测量配置信息包含的测量参数等配置不合理,使得终端设备在NR侧业务质量差时也无法触发测量报告的上报,进而导致终端设备无法切换到较优的邻区。
有鉴于此,本发明实施例提供一种双连接场景下SCG侧业务处理方法及装置,在双连接场景下,当SCG中服务小区的链路质量信息满足第一预设条件,即SCG侧业务质量持续较差时,终端设备根据该SCG侧服务小区的链路质量信息,确定是否存在链路质量信息满足第二预设条件的邻居小区,若存在,则向主基站发送携带终端设备确定的较优邻区的链路质量信息的测量报告,用于触发主基站根据该测量报告确定是否向终端设备下发切换指令,使得终端设备切换至较优的邻居小区,若不存在链路质量信息满足第二预设条件的邻居小区,则终端设备向主基站发送携带终端设备确定的服务小区的链路质量信息的测量报告,用于触发主基站根据该测量报告确定是否执行SCG释放。
图4是本发明实施例提供的双连接场景下SCG侧业务处理方法所使用的双连接架构示意图。请参照图4,终端设备同时与两个网络设备保持连接,其中一个网络设备称之为MN,另一个网络设备称之为SN。网络设备可以是eNB、gNB、发送和接收点(transmission and reception point,TRP)、小区(cell)、中心单元(central unit,CU)、分布单元(distributed unit,DU)等中的一个或某几个的组合。例如,网络设备可以为一个gNB,由gNB完成网络设备所涉及的功能;或者,网络设备为gNB和TRP的组合,由gNB完成资源配置功能,由TRP完成发送、接收功能;或者,网络设备为CU和DU的组合。终端设备可以为手机、平板、智能汽车、传感器设备、物联网(internet of things,IOT)、用户驻地设备(customer-premises equipment,CPE)、中继基站等。
请参照图4,MN通过第一接口与核心网进行交互,SN通过第二接口与核心网交互。MN与SN之间的第三接口可以为X2接口,MN和UE之间通过第四接口进行交互,该第四接口可以为Uu接口,SN和UE之间通过第五接口进行交互,该第五接口可以为Uu接口。图4所示架构可以是EN-DC架构、NGEN-DC架构、NE-DC架构和NR-DC架构等。
图5是本发明实施例提供的双连接场景下SCG侧业务处理方法中EN-DC架构示意图。图6是本发明实施例提供的双连接场景下SCG侧业务处理方法中EN-DC架构下split承载的示意图。请参照图5和图6,采用EN-DC架构时,MN为LTE eNB,SN为gNB,核心网为EPC,第一接口可以包含控制面接口S1-C和数据面接口S1-U,第二接口可以为数据面接口S1-U,MN与SN之间的第三接口可以为X2接口,图中实线为控制面接口,虚线为数据面接口,gNB为分流点。
图7是本发明实施例提供的双连接场景下SCG侧业务处理方法中NGEN-DC架构下 第一接口和第三接口的示意图。图8是本发明实施例提供的双连接场景下SCG侧业务处理方法中NGEN-DC架构下split承载的示意图。请参照图7和图8,采用NGEN-DC架构时,MN为eLTE eNB,SN为gNB,核心网为新无线核心(NG Core,NGC)网,第一接口可以包含控制面接口NG-C和数据面接口NG-U,第二接口可以为数据面接口NG-U,MN与SN之间的第三接口可以为Xn接口,图中实线为控制面接口,虚线为数据面接口,gNB为分流点。
本申请实施例中,MN和SN可以部署在同一个站点上或者分开部署。示例性的,可参见图9和图10,图9是本发明实施例提供的双连接场景下SCG侧业务处理方法中MN和SN的一种部署示意图,图10是本发明实施例提供的双连接场景下SCG侧业务处理方法中MN和SN的另一种部署示意图。请参照图9,MN和SN部署在同一个站点上,此时,MN和SN共享同一套硬件设备,如处理器、收发器等,LTE的网络设备可以为连接于EPC的LTE网络设备,也可以为连接于5G的NGC的网络设备等。请参照图10,MN和SN部署在不同的站点上,此时,MN和SN使用不同的硬件设备,如处理器、收发器等。
下面,对本申请实施例所述的双连接场景下SCG侧业务处理方法进行详细说明。示例性的,请参见图11,图11是本申请实施例提供的一种双连接场景下SCG侧业务处理方法的流程图,本实施例是从终端设备的角度进行详细说明,本实施例包括:
101、获取辅小区SCG中服务小区的链路质量信息。
示例性的,终端设备同时与主基站和辅基站建立连接,终端设备被配置MCG和SCG。终端设备可以获取SG中服务小区的链路质量质量信息。例如,终端设备可以获取服务小区的参考信号接收功率(reference signal received power,RSRP)、接收信号强度指示(received signal strength indicator,RSSI)或参考信号接收质量(reference signal received quality,RSRQ)等,并判断该些信息是否满足第一预设条件,若该些信息满足第一预设条件,则认为服务小区的链路质量差。
102、若所述服务小区的链路质量信息满足第一预设条件,则获取所述服务小区的至少一个邻居小区的链路质量信息;
示例性的,当终端设备确定出服务小区的链路质量信息满足第一预设条件时,通过测量该服务小区的各个邻居小区的RSRP、RSRQ、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、负载等,以自动获取该服务小区的邻居小区的链路质量信息。其中,邻居小区可以为多个。例如,服务小区具有5个邻居小区,则终端设备确定该5个邻居小区的链路质量信息;或者,终端设备确定该5个邻居小区中的部分,如2个或3个邻区小区的链路质量信息。
若所述服务小区的链路质量信息满足第一预设条件,则说明SCG中服务小区的链路质量良好,无需向主基站上报,无需主基站确定是否释放SCG小区或执行服务小区切换。
103、若所述至少一个邻居小区中不存在较优邻区,则生成第一消息。
其中,所述较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区,所述第一消息携带终端设备根据所述服务小区的链路质量信息确定的链路质量信息。
示例性的,终端设备根据邻居小区的链路质量信息,确定至少一个邻居小区中是否存 在链路质量满足第二预设条件的邻居小区,若至少一个邻居小区中存在链路质量满足第二预设条件的邻居小区,则将该邻居小区作为较优邻区;否则,终端设备认为没有较优邻区。当终端设备认为没有较优邻区时,根据服务小区的链路质量信息,确定一个新的链路质量信息,并利用该新的链路质量信息生成第一消息。该第一消息携带的链路质量信息是终端设备获取到的服务小区的原始的链路质量信息,也可以是终端设备对服务小区的原始的链路质量信息进行处理得到的,或者,也可以是终端设备确定出的一个预设值,本申请实施例对第一消息携带的链路质量信息的具体体现不做限定。相较于服务小区原始的链路质量信息,该第一消息携带的链路质量信息更容易使得主基站确定是否要释放SCG。
例如,EN-DC架构中,由于eNB对应的频段低于gNB对应的频段、gNB的覆盖区域不连续、gNB的参数配置不合理等,当终端设备的业务数据量较大、采用split承载时,SCG侧容易出现业务质量差的问题,而eNB无法触发SCG释放等。此时,若终端设备确定出至少一个邻居小区中不存在链路质量信息满足第二预设条件的邻居小区,即不存在较优邻区时,终端设备将根据服务小区的链路质量信息确定出的新的链路质量信息上报给主基站,使得主基站可以确定是否释放SCG,若主基站释放SCG,则主基站可以指示终端设备采用MCG承载传输上下行数据,或者,若主基站不释放SCG而是继续采用split承载,则分流点可以为SCG侧分配较少的上下行数据;再如,NE-DC架构中,SCG侧基站覆盖不连续、参数配置不合理等,当终端设备的业务数据量较大、采用split承载时,SCG侧容易出现业务质量差的问题。此时,若终端设备确定出至少一个邻居小区中不存在链路质量信息满足第二预设条件的邻居小区,即不存在较优邻区时,终端设备将根据服务小区的链路质量信息确定出的新的链路质量信息上报给主基站,使得主基站确定是否释放MCG,若主基站释放SCG,则主基站指示终端设备采用MCG承载传输上下行数据,或者,若主基站不释放SCG而是继续采用split承载,但是分流点分给SCG的上下行数据量较少。
以服务小区具有5个邻居小区且该5个邻居小区与服务小区为同频邻区、链路质量信息为RSRP为例,该5个邻居小区为邻居小区1~邻居小区5,终端设备测量到该5个邻居小区的RSRP依次为-80dBm、-82dBm、-85dBm、-88dBm和-90dBm,服务小区的RSRP为-79dBm。假设第二预设条件为Mn+第一补偿RSRP值+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,其中,Mn表示邻居小区的RSRP,Mp为服务小区RSRP,第一补偿RSRP值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置(邻居小区为服务小区的同频邻区时为0dBm),Ocn表示邻居小区的小区偏移量(邻居小区为服务小区的同频邻区时为0dBm),Hys表示测量结构的幅度迟滞(例如为2dBm),Ofp表示服务小区的频率偏移(邻居小区为服务小区的同频邻区时为0dBm),Ocp标识服务小区的小区偏移量(邻居小区为服务小区的同频邻区时为0dBm),off表示测量结果的偏置(例如为1dBm),则将邻居小区1的RSRP代入该第二预设条件:-80+5+0+0-2>-79+0+0+1。因此可以将邻居小区1作为服务小区的最优邻区。
需要说明的是,当服务小区的邻居小区有多个时,可以从多个邻居小区中选择出RSRP最大的邻居小区,然后再确定该RSRP最大的邻居小区是否可以作为最优邻区;或者,也可以随机的从多个邻居小区中选择一个邻居小区,再判断该邻居小区是否可以作为最优邻区。
104、向主基站发送第一消息。
105、若所述至少一个邻居小区中存在较优邻区,则生成第二消息并向主基站发送,所述第二消息携带所述终端设备根据所述较优邻区的链路质量信息确定出的链路质量信息。
示例性的,终端设备获取到至少一个邻居小区的链路质量信息后,若至少一个邻居小区中不存在较优邻区,则执行步骤103;若至少一个邻居小区中,存在较优邻区,则执行步骤105,即终端设备根据较优邻区的链路质量信息确定一个新的链路质量信息,基于该新的链路质量信息生成第二消息并发送给主基站。也就是说,第二消息携带的链路质量信息可以是较优邻区的原始的链路质量信息,也可以是终端设备对较优邻区的原始的链路质量信息进行处理得到的,或者,也可以是终端设备确定出的一个预设值。主基站接收到第二消息后,根据第二消息,确定是否向终端设备发送切换消息,触发终端设备执行小区切换,从服务小区切换至较优邻区。
本发明实施例提供的双连接场景下SCG侧业务处理方法,应用于双连接场景下的终端设备,主基站为终端设备配置主小区组与辅小区组,上下行数据传输过程中,当终端设备确定出SCG中的服务小区的链路质量信息满足第一预设条件时,获取该服务小区的至少一个邻居小区的链路质量信息,根据链路质量信息确定是否存在较优邻区,若不存在较优邻区,则向主基站发送第一消息,主基站根据该第一消息确定是否执行SCG小区组释放。该过程中,当SCG中的服务小区的链路质量信息满足第一预设条件,即当SCG侧业务质量差时,由于终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据。
上述实施例中,若至少一个邻居小区中存在较优邻区,则终端设备向主基站发送第二消息,该第二消息携带所述终端设备根据所述较优邻区的链路质量信息确定出的链路质量信息。
示例性的,若终端设备发现至少一个邻居小区中存在链路质量信息满足第二预设条件的邻居小区,则向主基站发送携带终端设备根据较优邻区的链路质量信息确定出的链路质量信息。主基站接收到该第二消息后,根据第二消息确定是否向终端设备发送切换消息,触发终端设备执行小区切换以从服务小区切换至较优邻区。
本实施例中,终端设备通过向主基站发送第二消息,使得主基站及时确定是否向终端设备发送切换消息,以使得终端设备切换到较优邻区,从而保证了上下行数据传输的成功率,提高上下行业务质量的同时,避免终端设备耗电量高。
下面,分别以双连接架构为EN-DC架构、NGEN-DC架构和NE-DC架构为例,对上述的双连接场景下SCG侧业务处理方法进行详细说明。
首先,双连接架构为EN-DC架构。
EN-DC架构中,对于终端设备而言,LTE侧即表示MeNB或MCG相关的处理,如LTE空口、LTE相关信令、LTE相关内部承载(bearer)各层等;NR侧表示与SgNB或SCG相关的处理,如NR空口、NR相关信令、NR相关数据承载(bearer)各层等;网络侧表示LTE侧和/或NR侧,也可以称之为MCG和/或SCG、MeNB和/或SgNB、Pcell和/或SPCell等。
当NR侧未配置SRB3时,NR侧的所有信令通过ENB下发。此时,gNB的测量控制模块产生的测量控制消息通过X2口传递给eNB,由eNB下发给终端设备。终端设备将测量结果上报给eNB,eNB通过X2口将测量报告传递给gNB进行PSCell变更流程,即服务小区切换流程。当NR侧配置SRB3时,终端设备的部分信令可以通过SRB3发送给gNB。
EN-DC架构包括option3架构、option3a架构、option3x架构等。当采用option3X架构时,终端设备首先接入eNB,然后接收eNB通过SgNB的加法(addition)流程配置SgNB,并接入SgNB,形成双连接。通过双连接承载的承载类型为split承载,用户面(user plane,UP)分流点位于SgNB;当采用option3架构时,UP分流点位于eNB。下面,以EN-DC架构具体为option3x架构为例,对上述的双连接场景下SCG侧业务处理方法进行详细说明。示例性的,可参见图12和图13,图12是本申请实施例提供的一种双连接场景下SCG侧业务处理方法所适用的option3x的网络架构示意图。
请参照图12,LTE eNB为MeNB,5G gNB作为SgNB,核心网为演进核心网(evolved packet core,EPC),图中虚线为控制面数据,实线为用户面数据。
图13是本申请实施例提供的另一种双连接场景下SCG侧业务处理方法的流程图,本实施例是从终端设备的角度进行详细说明,本实施例包括:
201、终端设备获取辅小区组SCG中服务小区的链路质量信息。
示例性的,上下行数据传输过程中,NR侧链路质量差,说明SCG中的服务小区的质量差。终端设备通过获取辅小区组SCG中服务小区的链路质量信息,当服务小区的链路质量信息满足第一预设条件时,如终端设备确定NR侧空口信号质量较差、NR侧失去同步较频繁、NR侧调度较少、NR侧误码率较高等,则确定NR侧链路质量差。
本申请实施例中,所述服务小区的链路质量信息包括下述信息中的一个或多个:所述SCG中小区对应的T313定时器的开启次数、所述SCG中小区对应的T313定时器的运行时长、所述SCG中小区失去同步事件out of sync的次数、所述SCG中小区传输的数据的吞吐量、所述SCG中小区传输的数据的吞吐量与耗电量的比值、所述SCG中小区触发的波束失败次数、所述SCG中小区对应的无线链路控制(radio link control,RLC)层的缓存的数据量、所述SCG中小区的链路发送的上行数据的时延、所述SCG中小区的信号强度、所述SCG中小区的信号强度的变化幅值、所述SCG中小区的链路传输数据的重传率、所述SCG中小区的信号与干扰加噪比SINR、所述SCG中小区对应的调制与编码方式(modulation and coding scheme,MCS)索引(index)、所述SCG中小区发送下行数据和/或接收上行数据的误块率BLER。对应的,第一预设条件可以为第一阈值~第十四阈值。终端设备可获取到上述信息中的一个或多个,根据下述方式中的任意一种或多个方式的组合,确定服务小区的链路质量信息是否满足第一预设条件。下面,对该些方式进行详细说明。
方式一、第一预设条件包括第一阈值,终端设备确定所述SCG中小区对应的T313定时器的开启次数超过第一阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区对应的T313在检测时间窗口内运行次数达到预设T313开启次数门限,该预设T313开启次数门限即为第一阈值。在另一些实施例中,第一阈值可以是由基站配置的,或者第一阈值随着通信环境的本申请实施例对此不作限定。
一种实施方式为:终端设备在检测时间窗口时间内,统计T313开启次数,例如,在检测时间窗口时间内,T313每开启一次则对记数器加1。其中,检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口。以检测时间窗口设定为30秒为例,终端设备统计当前时刻前30S到当前时刻的T313开启次数,并将其与预设T313开启次数门限比较。预设T313开启次数门限可以为终端设备内部设置的门限值,该门限值可以是终端设备内部设置的某一定值,也可以是动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定预设T313开启次数门限值。当终端设备底层在PSCell侧检测到连续N313次失去同步(out-of-sync)则开启T313,在T313超时前若测量到连续N314次保持同步(in-sync),则停止T313计时。
示例性的,SCG中的小区为服务小区,且第一阈值为10次,当终端设备在检测时间窗口内检测到T313定时器的开启次数超过10次,则认为SCG侧链路质量差。
需要说明的是,本领域内的技术人员可以理解,一方面,终端设备内部判定out-of-sync、in-sync事件的方式可以有多种,例如,使用网络侧配置的无线链路监测(radio link monitoring,RLM)参考信号资源中指示的同步信号块(synchronzation signalblock,SSB),将SSB映射到相应的SSB误块率(Block Error Ratio,BLER),比较SSB BLER与失去同步门限(Qout)/在同步门限(Qin)的大小以确定是否触发out-of-sync/in-sync指示上报,其中,Qout为触发out-of-sync的门限,Qin为触发in-sync的门限;或者,将RLM中的信道状态信息参考信号(channel state information-feference signal,CSI-RS)映射到相应的CSI-RS BLER,比较CSI-RS BLER与Qout/Qin的大小以确定是否触发out-of-sync/in-sync指示上报;或者,还可以使用信噪比(signal noise ratio,SNR)等信息,此次不在赘述。将该些信息映射到相应的SSB BLER和/或CSI-RS BLER,然后使用该SSB BLER和/或CSI-RSBLER比较其与Qout/Qin的大小以确定是否触发out-of-sync/in-sync指示上报;另一方面,终端设备内部可以根据自身情况,设定实际应用时的触发out-of-sync、in-sync指示上报的参量和/或门限值,即不使用网络侧所配置的Qout/Qin参数,再一方面,终端设备内部可以对N313或N314的实际使用值进行调整,例如对网络侧配置的N313或N314进行适量增大或减小,即本发明对判断out-of-sync、in-sync事件的具体实现方式并不作限制,除非特别说明,本发明中涉及的T313、N313、N314、检测及上报out-of-sync/in-sync事件相关的设置均遵循这一原则。
本领域的技术人员可以理解,若检测到T313开启次数达到所述预设T313开启次数门限,则说明底层触发Out-of-Sync的次数较多,可以反映出当前NR侧的传输质量较差。例如,终端设备内部设定预设T313开启次数门限为10,若在30S检测时间窗口内检测到T313开启达到了10次,则确定当前NR侧链路质量较差。
该种方式中,T313的配置方式和启动及复位方式参考3GPP TS 38的描述,此处不再赘述。
方式二、第一预设条件包括第二阈值,确定所述SCG中小区对应的T313定时器的运行时长超过第二阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,UE确定SCG中小区对应的T313在检测时间窗口内运行时长达到预设T313 运行时长门限,该预设T313运行时长门限即为第二阈值。
第一种可能的实施方式为,以SCG中的小区为服务小区为例,终端设备在检测时间窗口内,统计每一次T313开启后运行的计时器的时间,并求其相加的总数即为T313运行时长。其中,检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口。例以检测时间窗口设定为30秒为例,终端设备统计当前时刻前30S到当前时刻的T313运行时长,并将其与预设T313运行时长门限比较。预设T313运行时长门限可以终端设备内部设置的门限值,该门限值可以是终端设备内部设置某一定值,也可以是一个动态的值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设T313运行时长门限。其中,T313的配置方式和启动及复位方式参考前述方式一中的描述。
需要说明的是,本领域的技术人员可以理解,若检测到T313运行时长达到所述预设T313运行时长门限,则说明底层触发Out-of-Sync失步的次数较多且多次出现连续失步,可以反映出当前NR侧的传输质量较差。例如,终端设备内部设定预设T313运行时长门限为10秒,即第二阈值为10秒,若在30秒检测时间窗口内检测到T313开启达到了10秒,则确定当前NR侧链路质量较差。在另一些实施例中,第二阈值也可以是基站配置,或者终端设备根据实际情况动态调整第二阈值。
第二种可能的实施方式为,检测时间窗口从T313开启时计时,预设T313运行时长门限为触发RLF的门限值,即T313的m%或者为T313-N(N可以根据T313的大小而不同),即终端设备检测某次T313运行时长达到门限值。例如,设置预设T313运行时长门限为T313的80%,或者,设置预设T313运行时长门限为T313-20ms。若终端设备检测到T313计时时长达到前述设置的预设T313运行时长门限,则说明当前NR侧临近触发RLF,即将达到SCG Failure的判定门限,可以以此作为NR侧链路质量较差的判定依据。预设T313运行时长门限可能参考前述的第一种可能的实施方式,此处不再赘述。
第三种可能的实施方式为,结合前述的第一种及第二种可能的实施方式,即将T313总计时时长与当前时刻最后一次T313计时时长结合起来作为判断依据。当T313总计时时长满足终端设备设置的预设总计时时长,及最后一次T313计时时长满足终端设备设置的预设计时时长,则判断NR侧链路质量较差。
方式三、第一预设条件包括第三阈值,确定SCG中小区检测到失去同步事件out of sync的次数超过第三阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区在检测时间窗口内检测到out-of-sync次计数达到预设out-of-sync次数门限,该预设out-of-sync次数门限即为第三阈值。在另一些实施例中,第三阈值可以是由基站配置的,或者第三阈值随着通信环境的本申请实施例对此不作限定。其中,检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口。一种可能的实施方式中,终端设备在检测时间窗口时间内,统计out-of-sync事件次数,例如,在检测时间窗口时间内,每检测到一次out-of-sync事件则对记数器加1。检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口。以检测时间窗口设定为30秒、第三阈值为10次为例,终端设备统计当前时刻前30S到当前时刻的out-of-sync事件次数是否超过10次。预设out-of-sync事件次数门限可以为终端设备内部设置的门限值,该门限值可以为终端设备内 部设置某一定值,也可以为一个动态的值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设out-of-sync事件次数门限值。Out-of-sync的具体检测方式相关设置可以参考方式一。
本领域的技术人员可以理解,若终端设备在NR侧较频繁地检测到out-of-sync,可以反映出NR侧链路质量较差。
方式四、第一预设条件包括第四阈值,确定通过所述SCG中小区传输的数据的吞吐量小于第四阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定通过SCG中小区传输的数据的吞吐量在检测时间窗口内小于预设吞吐门限,该预设吞吐门限即为第四阈值。通过SCG中小区传输的数据包括通过SCG承载传输的数据,和/或,通过split承载中由辅基站分流的支路上的数据。其中,检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口一种可能的实施方式为,终端设备在检测时间窗口内统计NR侧用户面达到上行和/或下行吞吐量,例如,以第四阈值为20千字节(KB)、检测时间窗口为60秒为例,终端设备统计最近的60秒检测时间窗口内NR侧用户面达到的上行和下行吞吐的总量,并将其与预设上下行吞吐总量门限进行比较。其中,预设上下行吞吐总量门限,即第四阈值可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值。例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设上下行吞吐总量门限值。另外,在另一些实施例中,第四阈值可以是由基站配置的,或者第四阈值随着通信环境的本申请实施例对此不作限定。
本领域的技术人员可以理解,当网络侧下行缓存量达到一定量时才会向终端设备配置EN-DC架构,若终端设备在NR侧达到的上下行吞吐总量较低,可以在一定程度上反映出NR侧链路质量较差。
方式五、第一预设条件包括第五阈值,SCG中小区确定通过所述辅基站传输的数据的吞吐量与耗电量的比值小于第五阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定通过SCG中小区传输的数据的吞吐量与终端设备耗电量的比值在检测时间窗口内小于预设吞吐耗电比值门限,该预设吞吐耗电比值门限即为第五阈值。通过SCG中小区传输的数据包括通过SCG承载传输的数据,和/或,通过split承载中由辅基站分流的支路上的数据。其中,检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口。一种可能的实施方式为,终端设备在检测时间窗口内统计NR侧用户面达到上行和/或下行吞吐量,例如,终端设备统计最近的60秒时间窗口内,NR侧用户面达到的上行和下行吞吐的总量,以及60S内终端设备的耗电量,根据公式p=上行和下行吞吐的总量/终端设备耗电量,计算得到比值p,并将其与预设吞吐耗电比值门限进行比较。其中,预设吞吐耗电比值门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前 所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设吞吐耗电比值门限。另外,在另一些实施例中,第五阈值可以是由基站配置的,或者第五阈值随着通信环境的本申请实施例对此不作限定。
以SCG中的小区为服务小区、第五阈值为2%为例,终端设备检测上行和下行吞吐的总量与终端设备耗电量的比值是否小于2%,若比值小于2%,则说明SCG侧业务质量差。
本领域的技术人员可以理解,通常情况下,当网络侧下行缓存量达到一定量时才会向终端设备配置EN-DC架构,若终端设备在NR侧达到的上下行吞吐总量较低且终端设备耗电量较高,可以在一定程度上反映出NR侧链路质量较差。
方式六、第一预设条件包括第六阈值,确定所述SCG中小区触发的波束失败次数超过第六阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区触发的波束失败(beam failure)次数在检测时间窗口内达到预设波束失败门限,该预设波束失败门限即为第六阈值。一种可能的实施方式为:终端设备在检测时间窗口时间内,统计beam failure次数,例如,在检测时间窗口时间内,每检测一次beam failure则对记数器加1。其中,检测时间窗口时间可以为滑动时间窗口,表示最近的一段时间窗口。以检测时间窗口设定为30秒为例,终端设备统计当前时刻前30S到当前时刻的beam failure发生次数,并将其与预设波束失败门限次数门限比较。预设波束失败门限可以为终端设备内部设置的门限值,其可以是终端设备内部设置的某一定值,也可以是终端设备动态设置的一个值。例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设波束失败门限值。另外,在另一些实施例中,第六阈值可以是由基站配置的,或者第六阈值随着通信环境的本申请实施例对此不作限定。
本领域内的技术人员可以理解,一方面,终端设备内部判定beam failure的方式可以有多种,例如,使用网络侧配置的beam failure检测参考信号资源中的SSB和/或CSI-RS解调信号、信噪比(Signal to Noise Ratio,SNR)等信息映射到相应的SSB BLER和/或CSI-RS BLER,然后使用该SSB BLER和/或CSI-RS BLER比较其与门限(表示为Qout-LR)的大小以确定是否触发波束失败实例(beam failure instance)指示上报;另一方面,终端设备内部可以自身设定实际应用时的触发beam failure instance指示上报的参量和/或门限值,即不使用网络侧所配置的Qout-LR参数,本申请对判断beam failure instance事件的具体实现方式并不作限制,除非特别说明,本申请中涉及的检测及上报beam failure instance相关的设置均遵循这一原则。
方式七、第一预设条件包括第七阈值,确定所述SCG中小区的无线链路控制RLC层的缓存的数据量超过第七阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区的RLC层buffer量超过预设缓存(buffer)门限,该预设buffer门限即为第七阈值。在第一种可能的实施方式中,终端设备检测所建bearer中任一bearer的NR RLC层buffer量超过预设buffer门限,bearer包括SCG承载或 分离承载中由辅基站分流的支路,例如,第七阈值为80%,若任意一个承载的NR RLC层buffer量超过80%,则终端设备认为SCG侧质量差;在第二种可能的实施方式中,终端设备检测所建bearer中所有bearer的NR RLC层buffer量超过预设buffer门限;预设buffer门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值。例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设buffer门限。另外,在另一些实施例中,第七阈值可以是由基站配置的,或者第七阈值随着通信环境的本申请实施例对此不作限定
本领域的技术人员可以理解,NR侧RLC层buffer较多时,可以反映出NR侧空口链路质量下降或者SCG调度UL grant资源较少,即NR侧链路质量较差。
方式八、第一预设条件包括第八阈值,终端设备确定通过所述SCG中小区的链路发送的上行数据的时延超过第八阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区的上行数据传输时延超过预设上行时延门限,该预设上行时延门限即为第八阈值。在第一种可能的实施方式中,终端设备统计一段时间内从NR侧发送若干条传输控制协议(transmission control protocol,TCP)报文到接收到相应的TCP肯定应答(acknowledgement,ACK)的所使用的时间,经过平滑算法得到最终结果值作为上行数据传输时延,并与预设上行时延门限比较,例如,第八阈值为100毫秒,若终端设备根据一段时间内接收到的ACK确定出的上行数据传输时延超过100毫秒,则认为SCG侧业务质量差;在第二种可能的实施方式中,终端设备统计送达层(layer)2缓存中,如从IP层递交到PDCP层中,到接收到网络侧混合自动重传请求(hybrid automatic repeat request,HARQ)指示所消耗的时间,作为上行数据传输时延,或者统计多次经过平滑算法得到最终结果作为上行数据传输时延,并与预设上行时延门限比较。需要说明的是,网络侧HARQ指示可以为隐式或显示的指示。若终端设备上行传输失败,则可以将此次上行数据传输时延设置为一个预设值,例如,第八阈值为100毫秒,若终端设备确定出接收HARQ所消耗的时间超过100毫秒,则认为SCG侧业务质量差。在第三种可能的实施方式中,终端设备向SCG发送时延测试报文,如ping报文,统计环回时间(round trip time,RTT)从而得到时延结果,作为上行数据传输时延。预设上行时延门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设上行时延门限。另外,在另一些实施例中,第八阈值可以是由基站配置的,或者第八阈值随着通信环境的本申请实施例对此不作限定。
本领域的技术人员可以理解,当终端设备的上行传输时延较大时,NR侧空口链路质量说明NR侧空口链路质量下降或者SCG调度上行授权(UL Grant)资源较少,即NR侧链路质量较差。
方式九、第一预设条件包括第九阈值,终端设备确定所述SCG中小区的信号强度低 于第九阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG小区的信号强度低于预设信号强度门限,该预设信号强度门限即为第九阈值。一种可能的实施方式为,终端设备检测SCG PScell的参考信号(如SSB、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等)的信号强度,可以检测多次经过平滑得到信号强度值,然后将其与预设信号强度门限进行比较。预设信号强度门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设信号强度门限。另外,在另一些实施例中,第九阈值可以是由基站配置的,或者第九阈值随着通信环境的本申请实施例对此不作限定。
以SCG中的小区为服务小区、信号强度用RSRP衡量为例,假设第九阈值为-80dBm,若终端设备检测到服务小区CSI-RS的RSRP低于-80dBm,则认为SCG侧业务质量差。
本领域的技术人员可以理解,当SCG小区的信号强度较弱时,其链路传输的误块率或者BLER会增大,即NR侧链路质量较差。
方式十、第一预设条件包括第十阈值,确定所述SCG中小区的信号强度的变化幅值超过第十阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG小区的信号强度变化幅度高于预设信号强度变化门限,该预设信号强度变化门限即为第十阈值。一种可能的实施方式为,终端设备统计相邻两次PSCell信号强度的变化值,并记录多次,经过平滑算法得到结果作为SCG小区的信号强度变化幅度,并与预设信号强度变化门限进行比较。预设信号强度变化门限可以为终端设备内部设置的门限值,其可以是终端设备内部设置某一定值,也可以是终端设备动态设置的一个值。例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设信号强度变化门限。另外,在另一些实施例中,第十阈值可以是由基站配置的,或者第十阈值随着通信环境的本申请实施例对此不作限定。
以SCG中的小区为服务小区、第十阈值为10dBm为例,若终端设备相邻两次检测到服务小区的PSCell的分别为-60dBm、-80dBm,则PSCell信号强度的变化值为20,超过第十阈值,终端设备认为SCG侧业务质量差。
本领域的技术人员可以理解,当SCG小区的信号强度变化幅度较大时,其链路传输的成功率不稳定,容易引起较大的传输时延,即NR侧链路质量较差。
方式十一、第一预设条件包括第十一阈值,终端设备确定通过所述SCG中小区的的链路传输数据的重传率超过第十一阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区的数据传输的重传率高于预设重传率门限,该预设重传率门限即为第十一阈值。另外,在另一些实施例中,第十一阈值可以是由基站配置的,或者第十一阈值随着通信环境的本申请实施例对此不作限定。
在第一种可能的实施方式中,SCG中小区的数据传输的重传率可以为HARQ重传率。例如,终端设备统计一段时间内NR侧用于重传的上行UL Grant次数与所有UL Grant次数的比值,进一步地,终端设备可以统计多次并经过平滑算法得到最终结果,作为数据传输的重传率,并与其与预设重传率门限对比。例如,第十一阈值为35%,若终端设备确定出HARQ重传率超过35%,则认为SCG侧业务质量差。
在第二种可能的实施方式中,SCG中小区的数据传输的重传率可以为RLC层重传率。RLC层重传率可以为下行RLC数据重传率、或者上行RLC数据重传率或者上下行重传率。其中下行RLC重传率可以为检测时间窗口内的下行RLC SDU重传次数/下行RLC SDU传输总数,进一步地,终端设备可以使用滑动算法得到最终结果做为下行RLC层重传率。上行RLC层重传率同理。上下行RLC层重传为结合下行RLC层重传率和上行RLC层重传率得到的结合,一种可能的计算方式为:
上下行RLC层重传率=(下行RLC有效流量×下行RLC数据重传率+上行RLC有效流量×上行RLC数据重传率)/(下行RLC有效流量+上行RLC有效流量),其中有效流量可以为检测时间窗口内发送的SDU数量。
在第三种可能的实施方式中,SCG中小区的数据传输的重传轨可以为上层IP包的重传率,例如为TCP重传率,其具体的统计方式可以参考业界普遍的统计方式,此处不再赘述。
本领域的技术人员可以理解,当终端设备与SCG间交互的重传率较高时,说明空口链路质量容易导致误码,即NR侧链路质量较差。
方式十二、第一预设条件包括第十二阈值,终端设备确定所述SCG中小区的信号与干扰加噪比(signal to interference plus noise ratio,SINR)低于第十二阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区的SINR低于预设SINR门限,该预设SINR门限即为第十二阈值。一种可能的实施方式为,终端设备统计所在NR侧服务小区的下行SINR,例如基于参考信号如SSB和/或CSI-RS的RSRP和测量到的干扰及底噪RSRP得到下行SINR,进一步地,可以通过平滑算法进行处理,将平滑后的SINR作为下行SINR。预设SINR门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定所述预设SINR门限。另外,在另一些实施例中,第十二阈值可以是由基站配置的,或者第十二阈值随着通信环境的本申请实施例对此不作限定。
以SCG中的小区为服务小区、第十二阈值为10dB为例,若终端设备确定出服务小区的SINR低于10dB,则认为SCG侧链路质量差。
本领域的技术人员可以理解,当SCG中小区的的SINR较低时,其链路传输的误码率较高,即NR侧链路质量较差。
方式十三、第一预设条件包括第十三阈值,终端设备确定所述SCG中小区的的调制与编码方式(modulation and coding scheme,MCS)索引(index)低于第十三阈值,所述MCS索引是所述辅基站发送下行数据的MCS索引和/或接收上行数据的MCS索引。其 中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定SCG中小区的下行和/或上行MCS Index低于预设MCS Index门限,该预设MCS Index门限即为第十三阈值。一种可能的实施方式为,终端设备在检测时间窗口内确定NR侧服务小区调度的下行和/或上行MCS Index,低于预设MCS Index门限;另一种可能的实施方式为,终端设备在检测时间窗口内统计NR侧服务小区调度的下行和/或上行MCS Index,低于预设MCS Index统计门限的比例超过一定的百分比,如80%,则确定NR侧下行和/或上行MCS Index低于预设MCS Index门限。预设MCS Index门限或预设MCS Index统计门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定。另外,在另一些实施例中,第十三阈值可以是由基站配置的,或者第十三阈值随着通信环境的本申请实施例对此不作限定。
以SCG中的小区为服务小区、第十三阈值为3为例,若终端设备在服务小区的MCS索引低于3,则认为SCG侧链路质量差。
本领域的技术人员可以理解,当SCG中小区的调度的下行和/或上行MCS Index较低时,可以反应出链路吞吐可能较低或其链路在较高MCS时误码率较高,即NR侧链路质量较差。
方式十四、第一预设条件包括第十四阈值,终端设备确定所述SCG中小区的发送下行数据和/或接收上行数据的误块率BLER高于第十四阈值。其中,SCG中小区可以是SCG中的服务小区或非服务小区。
示例性的,终端设备确定下行误块率(block error rate,BLER)和/或上行BLER高于预设BLER门限,该预设BLER门限即为第十四阈值。其中,BLER可以为初始误块率(Initial block error rate,IBLER)或剩余误块率(residual block error rate,RBLER),可以为统计物理下行共享信道(Physical downlink shared channel,PDSCH)/物理上行共享信道(physical uplink shared channel,PUSCH)得到的结果,或者可以为统计物理下行控制信道(physical downlink control channel,PDCCH)/物理上行控制信道(physical uplink control channel,PUCCH)得到的结果,或者可以为统计参考信号如SSB/CSI-RS/探测参考信号(sounding reference signal,SRS)等得到的结果。例如,终端设备在检测时间窗口内统计NR侧服务小区调度的下行数传IBLER并与预设下行IBLER门限比较。预设BLER门限可以为终端设备内部设置的门限值,例如终端设备内部设置某一定值,或者终端设备动态设置的一个值,例如,终端设备根据电量信息、空口环境信息(如当前所处的环境的干扰情况,或者服务小区的信号质量等)、邻区信号质量信息(如邻区的RSRP、RSRQ、SINR等)、服务小区的配置信息(如服务小区设定的测量报告触发门限等)等的一种或多种的结合来动态地设定。本领域的技术人员可以理解,当NR侧服务小区的下行BLER和/或上行BLER较低时,可以反应出链路误码率较高,即NR侧链路质量较差。另外,在另一些实施例中,第十四阈值可以是由基站配置的,或者第十四阈值随着通信环境的本申请实施例对此不作限定。
以SCG中的小区为服务小区、第十四阈值为15%为例,若终端设备在服务小区的发送下行数据的误块率高于15%,则认为SCG侧链路质量差。
需要说明的是,一方面,上述方式中仅举例说明了终端设备进行单次检测获取NR侧链路质量较差这一情况的方式,在实际的实施过程中,有可能终端设备会进行多次实施上述方式,当上述方式中检测到NR链路质量较差的情况的次数达到设定次数后,才最终确定NR侧链路质量较差,并进行后续步骤的实施;另一方面,以上仅列举部分确定方式,终端设备还可以以其他的确定方式确定NR侧链路质量较差;再一方面,终端设备具体结合上述方式中的一种或者多种的具体结合方式可以有多种,例如,在不同的场景下应用不同的结合方式,本发明不作限制。
本领域的技术人员可以理解,终端设备确定NR侧链路质量较差后,可以认为SCG小区为问题小区,从而进行针对性的优化。
202、终端设备获取邻居小区的链路质量信息,邻居小区与服务小区可以是同频和/或异频小区。
示例性的,链路质量信息可以为RSRP、RSRQ、SINR、负载(load)、优先级或可用性等中的一种或者多种。其中,RSRP可以为小区级的、用户级别或波束级的RSRP,RSRQ可以为小区级的、用户级的RSRQ等,负载可以基于小区的话务量、吞吐量、业务动态信息、用户数、小区能力、拥塞情况、高功率情况、掉话率、平均调度率、物理资源块(physical resoure block,PRB)利用率、保证比特率(guaranteed bit rate,GBR)、业务服务质量(quality of service,QoS)满意率以及各类资源受限指示等中的一种或多种,优先级可以为频率优先级、频段优先级、切换优先级等。可用性可以理解为为邻区的禁止接入(barred)指示信息、支持业务信息。终端设备可以通过接收网络侧通过相关消息携带的指示信息获取邻居小区的负载信息,其中,指示信息可以为显式指示,或者隐式指示,如通过相关消息携带的指示信息来映射或计算邻区负载信息,或者通过检测该邻区的空口消息交互来判断,如通过检测一定时间内的该邻区发送的下行数据消息来判断出邻区的负载状况,或者通过云端获取,例如终端设备接收记录了NR侧的邻居小区当前负载信息的服务器所下发的报文,并从中获取邻区的负载情况,其具体使用的获取方式本发明并不作限制。
本领域的技术人员可以理解,通常,SgNB可以在收到SgNB添加请求(Addition Request)消息后,产生测量控制信息,并通过MeNB向终端设备发送测量控制信息,其中包含测量对象(如测量系统,此处为NR系统、测量频点或测量小区等属性,指示终端设备对哪些频点或小区,也即邻区,进行信号质量测量)、测量任务的报告配置(如测量事件信息、系统内切换时还涉及触发量和上报量、测量报告的其他信息等,指示终端设备按照什么标准上报测量报告)、测量任务的其他配置(如测量量、测量GAP、测量滤波等)。因此,终端设备根据测量控制信息中的指示及终端设备自身的策略确定进行测量的邻区,并获取相关的邻区链路质量信息。测量频点或者测量小区可以为同频邻区或者异频邻区。需要说明的是,当邻居小区为服务小区的异频邻区时,有可能网络侧最初仅下发A2测量控制信息,待到终端设备侧上报A2测量报告时才会下发异频邻区的测量控制信息。因此,若步骤202之前网络侧未下发异频邻区的测量控制信息,则可以在步骤201中的条件满足后,终端设备向网络侧上报A2测量报告,以触发网络侧下发异频邻区的测量控制信息。例如,终端设备在A2测量报告中填入当前服务小区的RSRP或者填入对应于足以触发网络侧下发异频邻区测量控制信息的RSRP值。在接收NR异频邻区测量控制信息后,终端设备根据测量控制信息中的指示及终端设备自身的策略确定进行测量的异频邻区,并获取邻区的链路质量信 息。当网络侧配置有S-测量(S-measure)时,如果终端设备通过步骤201获取到SCG服务小区的链路质量信息,发现服务小区的链路质量信息满足第一预设条件,即终端设备判定NR侧服务小区链路质量较差时,若服务小区的RSRP大于S-measure指示的RSRP门限值,终端设备仍然进行相关的NR同频、异频邻区的测量。其中,S-measure是LTE或NR中测量配置(measConfig)中的一个字段,measConfig信元是网络侧发送的RRC重配置(RRC Reconfiguration)信令中的一个信元。
需要说明的是,终端设备可以获取多个邻区的质量信息,具体根据网络侧配置的测量控制信息和终端设备内部策略确定。
203、若至少一个邻居小区中不存在较优邻区,则生成第一消息,较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区。
示例性的,邻居小区的链路质量信息包括参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个;相应的,终端设备确定是否存在较优邻区的方法可以为:确定至少一个邻居小区中是否存在链路质量信息是否符合以下判断情况中一种或者多种的组合,若是,则确定存在较优邻区;否则,认为为存在较优邻区。其中,终端设备获取RSRP、RSRQ、SINR等的方式参考3GPP TS38.215、3GPP TS36.214等;终端设备获取优先级、负载、可用性等的方式参考3GPP TS 36.311、3GPP TS 36.304等。
下面,对该些情况分别进行详细说明。
情况一、第二预设条件包括第一条件,终端设备根据所述至少一个邻居小区链路质量信息,确定所述至少一个邻居小区中是否存在参考信号接收功率RSRP满足第一条件的小区。
示例性的,邻居小区的RSRP满足RSRP达标条件,该达标条件即为第一条件。
例如,应用于A3测量报告时,当邻居小区满足一定时间内(如Time To Trigger时间),Mn+第一补偿RSRP值+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,则表示邻居小区的RSRP满足RSRP达标条件。其中Mn为邻居小区RSRP,Mp为服务小区RSRP,第一补偿RSRP值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Ofp表示服务小区的频率偏移,Ocp标识服务小区的小区偏移量,off表示测量结果的偏置。
再如,当应用于A4测量报告时,当邻居小区满足一定时间内(如触发时长(Time To Trigger))Mn+第二补偿RSRP值+Ofn+Ocn–Hys>Thresh,则表示邻居小区RSRP满足RSRP达标条件Thresh。其中,Thresh为网络侧配置的门限值,Mn为邻居小区RSRP,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Thresh表示RSTP满足的达标条件。
又如,当应用于A5测量报告时,当邻居小区满足在一定时间内(如TimeToTrigger时间)Mn+第三补偿RSRP值+Ofn+Ocn–Hys>Thresh2,则表示邻居小区RSRP满足RSRP达标条件,其中,Mn为邻居小区RSRP,Thresh2为网络侧配置的RSRP门限值,第三补偿RSRP值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Thresh表示RSTP满足的达标条件。需要说明的是,此时,基于步骤201中的判断,终端设备认为服务小区RSRP值 满足A5触发门限。
又如,当应用于A3测量报告,当邻居小区RSRP在Time To Trigger-ΔT1时间内满足Mn+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,则表示邻居小区RSRP满足RSRP达标条件,其中,ΔT1为一个时间差值,可以为预设定值或者根据Time To Trigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断。
又如,当应用于A4测量报告,当邻居小区RSRP在Time To Trigger-ΔT2时间内满足Mn+Ofn+Ocn–Hys>Thresh,则表示邻居小区RSRP满足RSRP达标条件,其中,ΔT2为一个时间差值,可以为预设定值或者根据Time To Trigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断。
又如,当应用于A5测量报告,当邻居小区RSRP在Time To Trigger-ΔT3时间内满足Mn+Ofn+Ocn–Hys>Thresh2,则表示邻居小区RSRP满足RSRP达标条件,其中,ΔT3为一个时间差值,可以为预设定值或者根据TimeToTrigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断,需要说明的是,此时,基于步骤201中的判断,终端设备认为服务小区RSRP值满足A5触发门限。需要说明的是,终端设备还可以设置其他RSRP达标条件,本发明不作限制。
情况二、第二预设条件包括第二条件,终端设备根据所述至少一个邻居小区链路质量信息,确定所述至少一个邻居小区中是否存在参考信号接收质量RSRQ满足第二条件的小区;
示例性的,邻居小区的RSRQ满足RSRQ达标条件,该达标条件即为第二条件。
例如,应用于A3测量报告时,当邻居小区满足一定时间内(如Time To Trigger时间),Mn+第一补偿RSRQ值+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,则表示邻居小区的RSRQ满足RSRQ达标条件。其中Mn为邻居小区RSRQ,Mp为服务小区RSRQ,第一补偿RSRQ值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Ofp表示服务小区的频率偏移,Ocp标识服务小区的小区偏移量,off表示测量结果的偏置。
再如,当应用于A4测量报告时,当邻居小区满足一定时间内(如TimeToTrigger时间)Mn+第二补偿RSRQ值+Ofn+Ocn–Hys>Thresh,则表示邻居小区RSRQ满足RSRQ达标条件Thresh。其中,Thresh为网络侧配置的门限值,Mn为邻居小区RSRQ,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Thresh表示RSTP满足的达标条件。
又如,当应用于A5测量报告时,当邻居小区满足在一定时间内(如TimeToTrigger时间)Mn+第三补偿RSRQ值+Ofn+Ocn–Hys>Thresh2,则表示邻居小区RSRQ满足RSRQ达标条件,其中,Mn为邻居小区RSRQ,Thresh2为网络侧配置的RSRQ门限值,第三补偿RSRQ值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Thresh表示RSTP满足的达标条件。需要说明的是,此时,基于步骤201中的判断,终端设备认为服务小区RSRQ值满足A5触发门限。
又如,当应用于A3测量报告,当邻居小区RSRQ在Time To Trigger-ΔT1时间内满足Mn+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,则表示邻居小区RSRQ满足RSRQ达标条 件,其中,ΔT1为一个时间差值,可以为预设定值或者根据Time To Trigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断。
又如,当应用于A4测量报告,当邻居小区RSRQ在Time To Trigger-ΔT2时间内满足Mn+Ofn+Ocn–Hys>Thresh,则表示邻居小区RSRQ满足RSRQ达标条件,其中,ΔT2为一个时间差值,可以为预设定值或者根据TimeToTrigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断。
又如,当应用于A5测量报告,当邻居小区RSRQ在Time To Trigger-ΔT3时间内满足Mn+Ofn+Ocn–Hys>Thresh2,则表示邻居小区RSRQ满足RSRQ达标条件,其中,ΔT3为一个时间差值,可以为预设定值或者根据TimeToTrigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断,需要说明的是,此时,基于步骤201中的判断,终端设备认为服务小区RSRQ值满足A5触发门限。需要说明的是,终端设备还可以设置其他RSRQ达标条件,本发明不作限制。
情况三、第二预设条件包括第三条件,终端设备根据所述至少一个邻居小区链路质量信息,确定所述至少一个邻居小区中是否存在信号与干扰加噪声比SINR满足第三条件的小区。
示例性的,邻居小区的SINR满足SINR达标条件,该达标条件即为第二条件。
例如,应用于A3测量报告时,当邻居小区满足一定时间内(如Time To Trigger时间),Mn+第一补偿SINR值+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,则表示邻居小区的SINR满足SINR达标条件。其中Mn为邻居小区SINR,Mp为服务小区SINR,第一补偿SINR值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Ofp表示服务小区的频率偏移,Ocp标识服务小区的小区偏移量,off表示测量结果的偏置。
再如,当应用于A4测量报告时,当邻居小区满足一定时间内(如TimeToTrigger时间)Mn+第二补偿SINR值+Ofn+Ocn–Hys>Thresh,则表示邻居小区SINR满足SINR达标条件Thresh。其中,Thresh为网络侧配置的门限值,Mn为邻居小区SINR,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Thresh表示RSTP满足的达标条件。
又如,当应用于A5测量报告时,当邻居小区满足在一定时间内(如TimeToTrigger时间)Mn+第三补偿SINR值+Ofn+Ocn–Hys>Thresh2,则表示邻居小区SINR满足SINR达标条件,其中,Mn为邻居小区SINR,Thresh2为网络侧配置的SINR门限值,第三补偿SINR值为一个预设值或动态值,如5dBm,Ofn表示邻居小区的频率偏置,Ocn表示邻居小区的小区偏移量,Hys表示测量结构的幅度迟滞,Thresh表示RSTP满足的达标条件。需要说明的是,此时,基于步骤201中的判断,终端设备认为服务小区SINR值满足A5触发门限。
又如,当应用于A3测量报告,当邻居小区SINR在Time To Trigger-ΔT1时间内满足Mn+Ofn+Ocn–Hys>Mp+Ofp+Ocp+Off,则表示邻居小区SINR满足SINR达标条件,其中,ΔT1为一个时间差值,可以为预设定值或者根据Time To Trigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断。
又如,当应用于A4测量报告,当邻居小区SINR在Time To Trigger-ΔT2时间内满足 Mn+Ofn+Ocn–Hys>Thresh,则表示邻居小区SINR满足SINR达标条件,其中,ΔT2为一个时间差值,可以为预设定值或者根据TimeToTrigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断。
又如,当应用于A5测量报告,当邻居小区SINR在Time To Trigger-ΔT3时间内满足Mn+Ofn+Ocn–Hys>Thresh2,则表示邻居小区SINR满足SINR达标条件,其中,ΔT3为一个时间差值,可以为预设定值或者根据TimeToTrigger的大小相应设置,表示终端设备侧应用更短的时间迟滞来进行测量判断,需要说明的是,此时,基于步骤201中的判断,终端设备认为服务小区SINR值满足A5触发门限。需要说明的是,终端设备还可以设置其他SINR达标条件,本发明不作限制
情况四、第二预设条件包括第四条件,终端设备根据所述至少一个邻居小区链路质量信息,确定所述至少一个邻居小区中是否存在负载满足第四条件的小区。
示例性的,邻居小区的负载满足负载达标条件,该负载达标条件即为第四条件。例如,邻居小区的话务量低于预设话务量门限,或者,邻居小区的下行和/或上行吞吐量低于门限,或者,邻居小区的某一类或某些类业务的下行和/或上行吞吐量低于门限,或者,邻居小区的用户数低于用户数门限,或者,小区能力高于门限,或者,拥塞度低于门限,或者,邻居小区基站发射总功率低于门限,或者,邻居小区掉话率低于门限,或者邻居小区内终端设备的平均调度率高于门限,或者,邻居小区的PRB利用率低于门限,或者,邻居小区的保证比特率、业务服务质量(quality of service,QoS)满意率高于门限等,或者,结合前述的多种情况的一种或者多种作为满足负载达标条件的判定。
情况五、第二预设条件包括第五条件,终端设备根据所述至少一个邻居小区链路质量信息,确定所述至少一个邻居小区中是否存在优先级满足第五条件的小区。
示例性的,邻居小区的优先级满足优先级达标条件,该优先级达标条件即为第五条件。例如,邻居小区的优先级满足终端设备设置的可切换邻居小区的优先级,终端设备设置的可切换邻居小区的优先级可以由网络侧通过专用信令向其指示,或者可以由终端设备内部进行预先设定,或者由终端设备根据当前的传输状况、邻居小区RSRP情况、电量信息等动态设定,本发明不作限制。
情况六、第二预设条件包括第六条件,终端设备根据所述至少一个邻居小区链路质量信息,确定所述至少一个邻居小区中是否存在可用性满足第六条件的小区。
示例性的,邻居小区的可用性满足可用性达标条件,该可用性达标条件即为第六条件。例如,邻居小区的禁止接入指示信息指示该邻居小区不为禁止接入邻居小区,或者,邻居小区的支持业务信息指示邻居小区支持所述终端设备的相关业务等。
终端设备根据至少一个邻居小区的链路质量信息确定是否存在较优邻区时,根据该至少一个邻居小区的链路质量信息,确定至少一个邻居小区中是否满足上述第一条件、第二条件、第三条件、第四条件、第五条件或第六条件中的一个或多个条件的邻居小区,若存在,则将该邻居小区作为较优邻区;否则,终端设备确定不存在较优邻区。
步骤204、终端设备向MeNB发送第一消息。
示例性的,该第一消息可以是A2测量报告、SCG失败信息(SCG failure information)、NR SCG失败信息(SCG failure information NR)等。终端设备可以将确定出的服务小区原始的链路质量信息填入A2测量报告等并发送给主基站;或者,终端设备也可以对服务小区 原始的链路质量信息进行一定的处理,并将处理后的服务小区的链路质量信息填入A2测量报告等并发送给主基站。其中,处理是指对服务小区的链路质量信息进行一定的运算。主基站接收到A2测量报告后,自行确定是否执行SCG释放,若执行SCG释放,则向终端设备发送释放消息,该释放消息用于指示终端设备释放SCG。终端设备接收到释放消息后,释放SCG;若主基站确定不执行SCG释放,则指示分流点为split承载中由辅基站分流的支路分配较少的上下行数据。
步骤205、终端设备向MeNB发送第二消息。
示例性的,该第二消息可以是A3测量报告、A4测量报告或A5测量报告等。终端设备可以将确定出的较优邻区原始的链路质量信息填入A3测量报告、A4测量报告或A5测量报告等并发送给主基站;或者,终端设备也可以对较优邻区原始的链路质量信息进行一定的处理,并将处理后的较优邻区的链路质量信息填入A3测量报告、A4测量报告或A5测量报告等并发送给主基站;或者,终端设备确定出一个预设的值,将该值作为较优邻区的链路质量信息。其中,处理是指对较优邻区的链路质量信息进行一定的运算等。主基站接收A3测量报告、A4测量报告或A5测量报告后,确定是否触发终端设备执行小区切换,若主基站确定触发终端设备执行小区切换,则向终端设备发送切换消息,使得终端设备从服务小区切换至较优邻区;若主基站不触发小区切换,则指示分流点为split承载中由辅基站分流的支路分配较少的上下行数据。
本领域的技术人员可以理解,在终端设备侧未测量到满足网络侧A3/A4/A5测量报告上报门限的邻居小区时,若终端设备判断有质量较优的邻居小区,通过主动发送A3/A4/A5测量报告,来触发网络侧向终端设备发送切换指示信息,以指示终端设备切换其上报的NR邻居小区,从而在一定程度上避免由于网络侧配置测量报告门限不当引起的NR侧长时间传输质量恶劣的情况,改善终端设备的业务质量。因此,通过前述的过程,终端设备可以主动触发网络侧指示终端设备切换NR邻居小区。
反之,若终端设备确定不存在较优邻区,则向网络侧发送A2测量报告或SCG Failure Information/SCG Failure Information NR消息。若终端设备发送A2测量报告,则在其中携带服务小区的RSRP,或者携带预设RSRP值,即终端设备以预设RSRP作为服务小区的RSRP,该预设RSRP可以为满足网络侧配置的A2测量报告触发门限的任意值,或者为网络侧配置的A2测量报告触发门限和触发网络侧释放SCG门限的任意值,或者为服务小区RSRP减去预设值的差值。本领域的技术人员可以理解,在终端设备侧检测到服务小区RSRP未能满足触发A2测量报告上报门限的服务小区时,通过主动发送A2测量报告,来触发网络侧向终端设备指示释放SCG,从而减小终端设备侧功耗。若终端设备发送SCG Failure Information、SCG Failure Information NR消息,则在其中携带失败类型(Failure Type)字段,并指示Failure Type为t313定时器到期(t313-expiry)或达到rlc最大重传次数(rlc-Max Num Retx)。本领域的技术人员可以理解,FailureType为t313-expiry或rlc-Max Num Retxs可以向网络侧指示终端设备当前的服务小区的链路质量较差。本领域的技术人员可以理解,当终端设备向网络侧报告SCG Failure Information、SCG Failure Information NR消息且未携带满足测量报告触发门限的邻居小区信息时,网络侧极有可能触发终端设备释放SCG,从而减小终端设备侧功耗。
因此,通过前述的过程,终端设备可以主动触发网络侧指示终端设备释放SCG。终端 设备具体发送第一消息的方式,及网络侧指示终端设备释放SCG的指示方式,本申请实施例并不限制。
需要说明的是,一方面,以上仅是部分举例说明根据邻居小区的链路质量信息判定是否较优邻区的方式,除此之外,终端设备还可以根据邻居小区的链路质量信息使用其他的判定方式,本发明不作限制;另一方面,终端设备基于内部策略可以结合一个或者多种判断情况的组合,其具体的结合方式不作限制。
例如,终端设备将非禁止接入的同频邻居小区中RSRP最大的邻居小区,作为较优邻区,因而向网络侧发送A3报告,并在其中携带该邻居小区的RSRP,或者携带预设RSRP值,即终端设备以预设RSRP作为该邻居小区的RSRP,该预设RSRP可以为满足网络侧配置的A3报告触发门限的任意值,或者为邻居小区RSRP加预设差值的和值;或者,终端设备确定非禁止接入邻居小区中RSRP最大的邻居小区,并确定该邻居小区RSRP满足终端设备内部设置的RSRP门限,则确定该邻居小区为可连接的邻居小区,因而向网络侧发送A3/A4/A5测量报告,并在其中携带邻居小区RSRP,或者携带预设RSRP值,即终端设备以预设RSRP作为该邻居小区的RSRP,该预设RSRP可以为满足网络侧配置的A3/A4/A5测量报告触发门限的任意值,或者为邻居小区RSRP加预设值的和值。
本申请实施例提供的双连接场景下SCG侧业务处理方法,在EN-DC场景下,当NR侧出现传输质量下降时,终端设备通过确定SCG中服务小区的链路质量差时,获取服务小区的至少一个邻居小区的链路质量信息,并确定是否存在较优邻区,当不存在较优邻区时,终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,进而使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据;当存在较优邻区时,终端设备能够及时将确定出的较优邻区的链路质量信息发送给主基站,进而使得主基站及时确定是否触发终端设备执行小区切换,避免终端设备继续基于服务小区传输上下行数据。
其次,双连接架构为NGEN-DC架构。
请参照图7和图8,NGEN-DC架构中,终端设备连接于一个eLTE-eNB和一个gNB,其中,eLTE-eNB为主基站,gNB为辅基站。eLTE-eNB连接于NGC,eLTE-eNB与gNB通过Xn接口相连。
图14是本申请实施例提供的又一种双连接场景下SCG侧业务处理方法的流程图,本实施例是从终端设备的角度进行详细说明,本实施例包括:
301、终端设备获取NGEN-DC的NR侧服务小区的链路质量信息。
示例性的,NR侧链路质量差,说明SCG中的服务小区的质量差。终端设备获取NR侧服务小区的链路质量信息,当服务小区的链路质量信息满足第一预设条件时,如NR侧空口信号质量较差、NR侧失去同步较频繁、NR侧调度较少、NR侧误码率较高等,则确定NR侧链路质量差。
具体的,终端设备可根据上述步骤201的方式,确定NR侧链路质量差,具体描述可参见步骤201,此次不再赘述。
302、终端设备获取邻居小区的链路质量信息,邻居小区与服务小区可以是同频和/或异频小区。
具体可参见上述步骤202的描述,此处不再赘述。
303、若至少一个邻居小区中不存在较优邻区,则生成第一消息,较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区。
示例性的,邻居小区的链路质量信息包括参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个;相应的,终端设备确定是否存在较优邻区的方法可以为:终端设备确定至少一个邻居小区中是否存在RSRP、RSRQ、SINR负载、优先级或可用性中的一个或多个满足第二预设条件的邻居小区,若存在,则将满足第二预设条件的邻居小区作为较优邻区,若不存在,则终端设备认为不存在较优邻区。
步骤304、终端设备向eLTE-eNB发送第一消息。
示例性的,该第一消息可以是A2测量报告、SCG failure information、SCG failure informationNR等。例如,gNB覆盖区域不连续等、终端设备的业务数据量较大、采用split承载或SCG承载时,终端设备将确定出的服务小区原始的链路质量信息填入A2测量报告等并发送给主基站;或者,终端设备也可以对服务小区原始的链路质量信息进行一定的处理,并将处理后的服务小区的链路质量信息填入A2测量报告等并发送给主基站。其中,处理是指对服务小区的链路质量信息进行一定的运算。主基站接收到A2测量报告后,自行确定是否执行SCG释放,若执行SCG释放,则向终端设备发送释放消息,该释放消息用于指示终端设备释放SCG。终端设备接收到释放消息后,释放SCG;若主基站确定不执行SCG释放,则指示分流点为split承载中由辅基站分流的支路分配较少的上下行数据。
步骤305、若至少一个邻居小区中存在较优邻区,则终端设备向eLTE-eNB发送第二消息。
示例性的,该第二消息可以是A3测量报告、A4测量报告或A5测量报告等。终端设备可以将较优邻区原始的链路质量信息填入A3测量报告、A4测量报告或A5测量报告等并发送给主基站;或者,终端设备也可以对较优邻区原始的链路质量信息进行一定的处理,并将处理后的较优邻区的链路质量信息填入A3测量报告、A4测量报告或A5测量报告等并发送给主基站;或者,终端设备确定出一个预设的值,将该值作为较优邻区的链路质量信息。其中,处理是指对较优邻区的链路质量信息进行一定的运算等。主基站接收A3测量报告、A4测量报告或A5测量报告后,确定是否触发终端设备执行小区切换,若主基站确定触发终端设备执行小区切换,则向终端设备发送切换消息,使得终端设备从服务小区切换至较优邻区;若主基站确定不触发小区切换,则指示分流点为split承载中由辅基站分流的支路分配较少的上下行数据。
本申请实施例提供的双连接场景下SCG侧业务处理方法,在NGEN-DC场景下,当SCG侧出现传输质量下降时,终端设备获取服务小区的至少一个邻居小区的链路质量信息,并确定是否存在较优邻区,当不存在较优邻区时,终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,进而使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据;当存在较优邻区时,终端设备能够及时将确定出的较优邻区的链路质量信息发送给主基站,进而使得主基站及时确定是否触发终端设备执行小区切换,避免终端设备继续基于服务小区传输上下行数据。
最后,双连接架构为NE-DC。
NE-DC架构中,终端设备连接于一个ng-eNB和一个gNB,其中,ng-eNB为辅基站, gNB为主基站。gNB连接于NGC,ng-eNB与gNB通过Xn接口相连。
图15是本申请实施例提供的又一种双连接场景下SCG侧业务处理方法的流程图,本实施例是从终端设备的角度进行详细说明,本实施例包括:
401、终端设备获取NE-DC的eLTE侧服务小区的链路质量信息。
示例性的,eLTE侧链路质量差,说明SCG中为终端设备提供服务的服务小区的质量差。终端设备获取eLTE侧服务小区的链路质量信息,当服务小区的链路质量信息满足第一预设条件时,如eLTE侧空口信号质量较差、NR侧失去同步较频繁、eLTE侧调度较少、eLTE侧误码率较高等,则确定eLTE侧链路质量差。
具体的,终端设备可根据上述步骤201的方式,确定eLTE侧链路质量差,具体描述可参见步骤201,此次不再赘述。
402、终端设备获取eLTE侧邻居小区的链路质量信息,邻居小区与服务小区可以是同频和/或异频小区。
具体可参见上述步骤202的描述,此处不再赘述。
403、若至少一个邻居小区中不存在较优邻区,则生成第一消息,较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区。
步骤404、终端设备向gNB发送第一消息。
示例性的,该第一消息可以是A2测量报告、SCG failure information、SCG failure informationNR等。
例如,ng-eNB覆盖区域不连续等、终端设备的业务数据量较大、采用split承载或SCG承载时,终端设备将确定出的服务小区原始的链路质量信息填入A2测量报告等并发送给主基站;或者,终端设备也可以对服务小区原始的链路质量信息进行一定的处理,并将处理后的服务小区的链路质量信息填入A2测量报告等并发送给主基站。其中,处理是指对服务小区的链路质量信息进行一定的运算。主基站接收到A2测量报告后,自行确定是否执行SCG释放,若执行SCG释放,则向终端设备发送释放消息,该释放消息用于指示终端设备释放SCG。终端设备接收到释放消息后,释放SCG;若主基站确定不执行SCG释放,则指示分流点为split承载中由辅基站分流的支路分配较少的上下行数据。
步骤405、若至少一个邻居小区中存在较优邻区,则终端设备向gNB发送第二消息。
示例性的,该第二消息可以是A3测量报告、A4测量报告或A5测量报告等。终端设备可以将较优邻区原始的链路质量信息填入A3测量报告、A4测量报告或A5测量报告等并发送给主基站;或者,终端设备也可以对较优邻区原始的链路质量信息进行一定的处理,并将处理后的较优邻区的链路质量信息填入A3测量报告、A4测量报告或A5测量报告等并发送给主基站;或者,终端设备确定出一个预设的值,将该值作为较优邻区的链路质量信息。其中,处理是指对较优邻区的链路质量信息进行一定的运算等。主基站接收A3测量报告、A4测量报告或A5测量报告后,确定是否触发终端设备执行小区切换,若主基站确定触发终端设备执行小区切换,则向终端设备发送切换消息,使得终端设备从服务小区切换至较优邻区;若主基站确定不触发小区切换,则指示分流点为split承载中由辅基站分流的支路分配较少的上下行数据。
本申请实施例提供的双连接场景下SCG侧业务处理方法,在NE-DC场景下,当SCG侧出现传输质量下降时,终端设备获取服务小区的至少一个邻居小区的链路质量信息,并 确定是否存在较优邻区,当不存在较优邻区时,终端设备能够及时将根据服务小区的链路质量信息确定出的链路质量信息发送给主基站,进而使得主基站及时确定是否执行SCG释放等,避免终端设备继续基于服务小区传输上下行数据;当存在较优邻区时,终端设备能够及时将确定出的较优邻区的链路质量信息发送给主基站,进而使得主基站及时确定是否触发终端设备执行小区切换,避免终端设备继续基于服务小区传输上下行数据。
下述为本发明装置实施例,可以用于执行本发明方法实施例。对于本发明装置实施例中未披露的细节,请参照本发明方法实施例。
图16为本发明实施例提供的一种SCG侧业务处理装置的结构示意图。该SCG侧业务处理装置100可以通过软件和/或硬件的方式实现。如图10所示,该SCG侧业务处理100包括:
处理单元11,用于获取辅小区组SCG中服务小区的链路质量信息,若所述服务小区的链路质量信息满足第一预设条件,则获取所述服务小区的至少一个邻居小区的链路质量信息,若所述至少一个邻居小区中不存在较优邻区,则生成第一消息,所述较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区,所述第一消息携带终端设备根据所述服务小区的链路质量信息确定的链路质量信息;
收发单元12,用于所述主基站发送所述第一消息,以使得所述主基站根据所述第一消息,处理所述SCG侧业务。
一种可行的设计中,所述服务小区的链路质量信息包括下述信息中的一个或多个:所述SCG中小区对应的T313定时器的开启次数、所述SCG中小区对应的T313定时器的运行时长、所述SCG中小区失去同步事件out of sync的次数、所述SCG中小区传输的数据的吞吐量、所述SCG中小区传输的数据的吞吐量与耗电量的比值、所述SCG中小区触发的波束失败次数、所述SCG中小区对应的无线链路控制RLC层的缓存的数据量、所述SCG中小区的链路发送的上行数据的时延、所述SCG中小区的信号强度、所述SCG中小区的信号强度的变化幅值、所述SCG中小区的链路传输数据的重传率、所述SCG中小区的信号与干扰加噪比SINR、所述SCG中小区对应的调制与编码方式MCS索引、所述SCG中小区发送下行数据和/或接收上行数据的误块率BLER。
一种可行的设计中,所述邻居小区的链路质量信息包括参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个。
一种可行的设计中,所述处理单元11,还用于若所述至少一个邻居小区中存在较优邻区,则生成第二消息,所述第二消息携带所述终端设备根据所述较优邻区的链路质量信息确定出的链路质量信息;
所述收发单元12,还用于向所述主基站发送所述第二消息。
一种可行的设计中,所述第二消息为A3测量报告、A4测量报告或A5测量报告。
一种可行的设计中,所述收发单元12,在向所述主基站发送所述第二消息之后,还用于接收所述主基站发送的切换消息,所述切换消息用于指示所述终端设备从所述服务小区切换至所述较优邻区。
一种可行的设计中,所述第一消息为A2测量报告。
一种可行的设计中,所述收发单元12,向所述主基站发送所述第一消息之后,还用 于接收所述主基站发送的释放消息,所述释放消息用于指示所述终端设备释放所述SCG;
所述处理单元11,还用于根据所述释放消息,释放所述SCG。
本发明实施例提供的SCG侧业务处理装置,可以执行上述实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上收发单元实际实现时可以是收发器,处理单元可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理单元可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图17是本申请实施例提供的一种终端设备的结构示意图,如图17所示,该终端设备200包括:
处理器21和存储器22;
所述存储器22存储计算机执行指令;
所述处理器21执行所述存储器22存储的计算机执行指令,使得所述处理器21执行如上终端设备对应的SCG侧业务处理方法。
处理器21的具体实现过程可参见上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
可选地,该终端设备200还包括通信接口23。其中,处理器21、存储器22以及通信接口23可以通过总线24连接。
本发明实施例还提供一种存储介质,所述存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如上终端设备执行的SCG侧业务处理方法。
本发明实施例还提供一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,用于实现终端设备执行的SCG侧业务处理方法。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive, HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请各实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种双连接场景下SCG侧业务处理方法,其特征在于,应用于终端设备,所述终端设备与主基站和辅基站建立双连接,该方法包括:
    获取辅小区组SCG中服务小区的链路质量信息;
    若所述服务小区的链路质量信息满足第一预设条件,则获取所述服务小区的至少一个邻居小区的链路质量信息;
    若所述至少一个邻居小区中不存在较优邻区,则生成第一消息,所述较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区,所述第一消息携带终端设备根据所述服务小区的链路质量信息确定的链路质量信息;
    向所述主基站发送所述第一消息,以使得所述主基站根据所述第一消息,处理所述SCG侧业务。
  2. 根据权利要求1所述的方法,其特征在于,所述服务小区的链路质量信息包括下述信息中的一个或多个:所述SCG中小区对应的T313定时器的开启次数、所述SCG中小区对应的T313定时器的运行时长、所述SCG中小区失去同步事件out of sync的次数、所述SCG中小区传输的数据的吞吐量、所述SCG中小区传输的数据的吞吐量与耗电量的比值、所述SCG中小区触发的波束失败次数、所述SCG中小区对应的无线链路控制RLC层的缓存的数据量、所述SCG中小区的链路发送的上行数据的时延、所述SCG中小区的信号强度、所述SCG中小区的信号强度的变化幅值、所述SCG中小区的链路传输数据的重传率、所述SCG中小区的信号与干扰加噪比SINR、所述SCG中小区对应的调制与编码方式MCS索引、所述SCG中小区发送下行数据和/或接收上行数据的误块率BLER。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述邻居小区的链路质量信息包括参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,还包括:
    若所述至少一个邻居小区中存在较优邻区,则生成第二消息,所述第二消息携带所述终端设备根据所述较优邻区的链路质量信息确定出的链路质量信息;
    向所述主基站发送所述第二消息。
  5. 根据权利要求4所述的方法,其特征在于,所述第二消息为A3测量报告、A4测量报告或A5测量报告。
  6. 根据权利要求4或5所述的方法,其特征在于,所述向所述主基站发送所述第二消息之后,还包括:
    接收所述主基站发送的切换消息,所述切换消息用于指示所述终端设备从所述服务小区切换至所述较优邻区。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述第一消息为A2测量报告。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述向所述主基站发送所述第一消息之后,还包括:
    接收所述主基站发送的释放消息,所述释放消息用于指示所述终端设备释放所述SCG;
    根据所述释放消息,释放所述SCG。
  9. 一种SCG侧业务处理装置,用于双连接场景中的终端设备,其特征在于,所述终端设备与主基站和辅基站建立双连接,所述装置包括:
    处理单元,用于获取辅小区组SCG中服务小区的链路质量信息,若所述服务小区的链路质量信息满足第一预设条件,则获取所述服务小区的至少一个邻居小区的链路质量信息,若所述至少一个邻居小区中不存在较优邻区,则生成第一消息,所述较优邻区是所述至少一个邻区小区中链路质量信息满足第二预设条件的邻居小区,所述第一消息携带终端设备根据所述服务小区的链路质量信息确定的链路质量信息;
    收发单元,用于所述主基站发送所述第一消息,以使得所述主基站根据所述第一消息,处理所述SCG侧业务。
  10. 根据权利要求9所述的装置,其特征在于,所述服务小区的链路质量信息包括下述信息中的一个或多个:所述SCG中小区对应的T313定时器的开启次数、所述SCG中小区对应的T313定时器的运行时长、所述SCG中小区失去同步事件out of sync的次数、所述SCG中小区传输的数据的吞吐量、所述SCG中小区传输的数据的吞吐量与耗电量的比值、所述SCG中小区触发的波束失败次数、所述SCG中小区对应的无线链路控制RLC层的缓存的数据量、所述SCG中小区的链路发送的上行数据的时延、所述SCG中小区的信号强度、所述SCG中小区的信号强度的变化幅值、所述SCG中小区的链路传输数据的重传率、所述SCG中小区的信号与干扰加噪比SINR、所述SCG中小区对应的调制与编码方式MCS索引、所述SCG中小区发送下行数据和/或接收上行数据的误块率BLER。
  11. 根据权利要求9或10所述的装置,其特征在于,所述邻居小区的链路质量信息包括参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、负载、优先级或可用性中的至少一个。
  12. 根据权利要求9~11任一项所述的装置,其特征在于,
    所述处理单元,还用于若所述至少一个邻居小区中存在较优邻区,则生成第二消息,所述第二消息携带所述终端设备根据所述较优邻区的链路质量信息确定出的链路质量信息;
    所述收发单元,还用于向所述主基站发送所述第二消息。
  13. 根据权利要求12所述的装置,其特征在于,所述第二消息为A3测量报告、A4测量报告或A5测量报告。
  14. 根据权利要求13所述的装置,其特征在于,
    所述收发单元,在向所述主基站发送所述第二消息之后,还用于接收所述主基站发送的切换消息,所述切换消息用于指示所述终端设备从所述服务小区切换至所述较优邻区。
  15. 根据权利要求9~14任一项所述的装置,其特征在于,所述第一消息为A2测量报告。
  16. 根据权利要求9~15任一项所述的装置,其特征在于,
    所述收发单元,向所述主基站发送所述第一消息之后,还用于接收所述主基站发送的释放消息,所述释放消息用于指示所述终端设备释放所述SCG;
    所述处理单元,还用于根据所述释放消息,释放所述SCG。
  17. 一种终端设备,包括:处理器、存储器,以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时执行如权利要求1~8 任一项所述的方法。
  18. 一种计算机存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在终端设备上运行时,使得终端设备执行上述权利要求1~8任一项所述的方法。
  19. 一种包含指令的计算机程序产品,其特征在于,所述指令在终端设备上运行时,使得终端设备执行上述权利要求1~8任一项所述的方法。
PCT/CN2020/086527 2019-04-30 2020-04-24 双连接场景下scg侧业务处理方法及装置 WO2020221110A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20798955.9A EP3944670A4 (en) 2019-04-30 2020-04-24 METHOD AND APPARATUS FOR SERVICE PROCESSING ON THE SCG SIDE IN A DUAL CONNECTIVITY SCENARIUM
US17/605,113 US12004036B2 (en) 2019-04-30 2020-04-24 SCG-side service processing method and apparatus in dual connectivity scenario

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910358482 2019-04-30
CN201910358482.0 2019-04-30
CN201910808801.3A CN111866973B (zh) 2019-04-30 2019-08-29 双连接场景下scg侧业务处理方法及装置
CN201910808801.3 2019-08-29

Publications (1)

Publication Number Publication Date
WO2020221110A1 true WO2020221110A1 (zh) 2020-11-05

Family

ID=72970582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086527 WO2020221110A1 (zh) 2019-04-30 2020-04-24 双连接场景下scg侧业务处理方法及装置

Country Status (4)

Country Link
US (1) US12004036B2 (zh)
EP (1) EP3944670A4 (zh)
CN (1) CN111866973B (zh)
WO (1) WO2020221110A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040436A (zh) * 2021-10-22 2022-02-11 中国联合网络通信集团有限公司 数据上报方法、装置及计算机可读存储介质
CN114980141A (zh) * 2022-06-09 2022-08-30 中国联合网络通信集团有限公司 小区管理方法及装置
WO2022212699A1 (en) * 2021-03-31 2022-10-06 Convida Wireless, Llc Activation/de-activation mechanism for one scg and scells, and conditional pscell change/addition

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11706726B2 (en) * 2020-03-16 2023-07-18 Qualcomm Incorporated Dynamic monitoring modes for synchronization signal block transmissions
CN113676961B (zh) * 2020-05-14 2022-08-19 荣耀终端有限公司 一种数据业务切换方法及装置
US11477832B2 (en) 2020-06-11 2022-10-18 T-Mobile Usa, Inc. Battery management using selective EN-DC enablement
US11659467B2 (en) * 2020-08-17 2023-05-23 Qualcomm Incorporated Methods and apparatuses for out of coverage determination(s)
US11096096B1 (en) * 2020-09-14 2021-08-17 T-Mobile Usa, Inc. Dual connectivity control based on downlink data at a 5G base station
US11290914B1 (en) 2020-09-14 2022-03-29 T-Mobile Usa, Inc. Dual connectivity control based on downlink data at a 4G base station
CN114554539B (zh) * 2020-11-25 2024-03-29 大唐移动通信设备有限公司 业务处理方法、装置、网络设备及存储介质
CN114599058B (zh) * 2020-12-04 2024-05-24 大唐移动通信设备有限公司 通信方法、装置、电子设备及计算机可读存储介质
CN112601263A (zh) * 2020-12-11 2021-04-02 Oppo广东移动通信有限公司 一种目标小区确认方法、终端设备及存储介质
CN114698070B (zh) * 2020-12-30 2024-03-19 中国移动通信集团终端有限公司 用户设备功耗的降低方法、装置、设备及存储介质
CN113099477B (zh) * 2021-03-24 2022-11-11 Oppo广东移动通信有限公司 时延信息处理方法及相关装置
US11601363B2 (en) * 2021-05-14 2023-03-07 Comcast Cable Communications, Llc Intelligent internet traffic routing
CN113271624B (zh) * 2021-06-16 2022-11-01 展讯通信(上海)有限公司 小区测量方法、装置及设备
US11778479B2 (en) * 2021-06-24 2023-10-03 Qualcomm Incorporated Methods to improve user equipment performance in DSS deployments
CN113613291B (zh) * 2021-08-12 2024-02-02 中国联合网络通信集团有限公司 一种下行gbr业务流传送方法、终端及流量控制单元
US11956049B2 (en) * 2021-10-14 2024-04-09 Qualcomm Incorporated Beam failure declaration and reporting
CN116367308B (zh) * 2023-03-10 2024-06-18 中国电信股份有限公司卫星通信分公司 确定终端数据传输方式的方法、装置以及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960772A (zh) * 2014-01-31 2016-09-21 高通股份有限公司 用于在双连接场景下管理辅助eNB(SeNB)无线链路失败(S-RLF)的过程
CN106332174A (zh) * 2015-06-19 2017-01-11 北京信威通信技术股份有限公司 一种控制测量上报的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220655B (zh) * 2012-01-19 2016-12-14 华为技术有限公司 小区重选方法及用户设备
US20150223095A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Method for Configuring a Dual Connectivity User Equipment
JP6031555B2 (ja) * 2014-05-13 2016-11-24 宏達國際電子股▲ふん▼有限公司 測定構成を処理する装置
US9504052B2 (en) * 2015-01-21 2016-11-22 Htc Corporation Device and method of handling communication operation with multiple base stations
WO2018030841A1 (ko) * 2016-08-11 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
JP6603297B2 (ja) * 2016-12-05 2019-11-06 宏達國際電子股▲ふん▼有限公司 通信を扱う装置及び方法
US10601535B2 (en) * 2017-03-24 2020-03-24 Lg Electronics Inc. Method for performing SCG re-establishment in dual connectivity in wireless communication system and a device therefor
KR102356027B1 (ko) * 2017-03-24 2022-01-26 삼성전자 주식회사 제1 무선접속기술과 제2 무선접속기술을 통해 데이터를 송수신하는 단말이 측정 결과를 보고하는 방법 및 장치
CN108810953B (zh) * 2017-04-28 2020-11-13 维沃移动通信有限公司 测量上报的处理方法、网络侧设备和用户设备
KR102396931B1 (ko) 2017-05-04 2022-05-12 삼성전자 주식회사 이중 연결 네트워크에서 보조 노드 장애를 보고하는 방법 및 시스템
US10440615B2 (en) * 2017-06-15 2019-10-08 Htc Corporation Method of handling handover in dual connectivity
WO2018231115A1 (en) * 2017-06-16 2018-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Information encoding and message transmission at secondary cell group failure
CN116112995A (zh) * 2017-08-10 2023-05-12 北京三星通信技术研究有限公司 切换服务小区的方法及装置
CN108924890B (zh) * 2018-09-25 2020-11-10 珠海格力电器股份有限公司 移动通信网络切换方法、装置、用户设备和存储介质
EP3949532B1 (en) * 2019-03-28 2023-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Handling of inactive/idle measurement configurations and inactive/idle measurements upon inter-rat cell reselection
US20220210852A1 (en) * 2019-04-05 2022-06-30 Ntt Docomo, Inc. User equipment and radio base station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960772A (zh) * 2014-01-31 2016-09-21 高通股份有限公司 用于在双连接场景下管理辅助eNB(SeNB)无线链路失败(S-RLF)的过程
CN106332174A (zh) * 2015-06-19 2017-01-11 北京信威通信技术股份有限公司 一种控制测量上报的方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.304
3GPP TS 36.311
3GPP TS 36.331
3GPP TS 37.340
3GPP TS 38.331
3GPP TS36.214
3GPP TS38.215
ERICSSON: "[E040, S005, H016] Reporting of SCG serving cells measurements in NE-DC", 3GPP DRAFT; R2-1903859, 12 April 2019 (2019-04-12), Xi’An, China, pages 1 - 11, XP051688586 *
ERICSSON: "[E040, S005, H016] Reporting of SCG serving cells measurements in NE-DC", 3GPP DRAFT; R2-1905418, 12 April 2019 (2019-04-12), Xi’An, China, pages 1 - 11, XP051704668 *
HUAWEI; HISILICON: "[E040][S005][H016] Reporting of SCG measurements in NE-DC", 3GPP DRAFT; R2-1904555,, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 4, XP051693759 *
See also references of EP3944670A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022212699A1 (en) * 2021-03-31 2022-10-06 Convida Wireless, Llc Activation/de-activation mechanism for one scg and scells, and conditional pscell change/addition
CN114040436A (zh) * 2021-10-22 2022-02-11 中国联合网络通信集团有限公司 数据上报方法、装置及计算机可读存储介质
CN114980141A (zh) * 2022-06-09 2022-08-30 中国联合网络通信集团有限公司 小区管理方法及装置
CN114980141B (zh) * 2022-06-09 2023-06-20 中国联合网络通信集团有限公司 小区管理方法及装置

Also Published As

Publication number Publication date
CN111866973A (zh) 2020-10-30
US20220201581A1 (en) 2022-06-23
US12004036B2 (en) 2024-06-04
EP3944670A1 (en) 2022-01-26
CN111866973B (zh) 2022-05-10
EP3944670A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2020221110A1 (zh) 双连接场景下scg侧业务处理方法及装置
US10939348B2 (en) RAN for multimedia delivery
JP7028978B2 (ja) 無線通信ネットワークにおけるユーザ装置、ネットワークノードおよび方法
EP2981129B1 (en) Method for offloading traffic by means of wireless lan in mobile communications system and apparatus therefor
US20210112453A1 (en) Dual Connectivity
RU2683483C2 (ru) Система управления беспроводными ресурсами, беспроводная базовая станция, устройство ретрансляции, способ управления беспроводными ресурсами и программа
CN107819546B (zh) 传输数据的方法、基站和用户设备
US20160338074A1 (en) Method and Apparatus of Latency Measurement for LTE-WLAN Aggregation
RU2721755C1 (ru) Динамический выбор линии связи
CN105210407B (zh) 将通信从蜂窝网络卸载到无线局域网
US20230397084A1 (en) Methods, apparatuses, architectures and systems for handling link degradation and/or link failure in an integrated access and backhaul (iab) network
EP3826274A1 (en) Flow control method and apparatus
EP2781123B1 (en) Performing mobility load balancing and mobility robustness optimization between access nodes for only a subset of user equipment
US10887239B2 (en) RAN for multimedia delivery
US20140198655A1 (en) Enhanced local access in mobile communications using small node devices
KR20230141800A (ko) 롱 텀 에볼루션 통신 시스템을 위한 다중-기술 집적아키텍처
BR112015019401B1 (pt) Rede de acesso via rádio de evolução de longo prazo
WO2020167219A1 (en) User equipment, radio network node and methodsfor managing recovery procedures therein
KR20200059531A (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
JP2016532385A (ja) マルチストリーミング伝送データをコーディネーションする方法及び基地局
KR20120095813A (ko) 무선 통신 시스템에서 신호 측정 방법 및 장치
WO2016155292A1 (zh) 一种获取接入技术网络间传输时延的方法及装置
WO2018082515A1 (zh) 配置方法及装置
JP7144541B2 (ja) セル再選択制御方法及びユーザ装置
JP2021514596A (ja) Pdcp複製のnrユーザプレーンシグナリング制御されたトリガリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798955

Country of ref document: EP

Effective date: 20211021