WO2020221108A1 - 一种信号传输的方法、网络设备及终端设备 - Google Patents

一种信号传输的方法、网络设备及终端设备 Download PDF

Info

Publication number
WO2020221108A1
WO2020221108A1 PCT/CN2020/086518 CN2020086518W WO2020221108A1 WO 2020221108 A1 WO2020221108 A1 WO 2020221108A1 CN 2020086518 W CN2020086518 W CN 2020086518W WO 2020221108 A1 WO2020221108 A1 WO 2020221108A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
transmission
power
field
Prior art date
Application number
PCT/CN2020/086518
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020217039089A priority Critical patent/KR20210154255A/ko
Priority to EP20799296.7A priority patent/EP3965498A4/en
Priority to US17/607,377 priority patent/US20220217646A1/en
Publication of WO2020221108A1 publication Critical patent/WO2020221108A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of communication technology, and in particular to a signal transmission method, network equipment and terminal equipment.
  • the current uplink MIMO (Multiple Input Multiple Output, Multiple Input Multiple Output) multi-antenna power allocation mechanism cannot guarantee that under the codebook-based uplink transmission scheme, UEs with partial antenna coherent transmission capabilities and non-coherent transmission capabilities are channel-based
  • the state schedules different power control strategies and/or transmission modes to transmit uplink signals, that is, the UE uses full power to transmit uplink signals.
  • the Release 16 version of the NR system research is conducted on the scheme for UEs to transmit uplink signals with full power, but there is no definite scheme on how to control the UE to transmit uplink signals with full power.
  • the present application provides a signal transmission method, network equipment, and terminal equipment to solve the technical problem that the UE cannot be controlled to use full power to transmit uplink signals in the prior art.
  • the first aspect of the present invention provides a signal transmission method, including:
  • the network device determines a first indication message, where the first indication message instructs the terminal device to use the first power control strategy and/or the first transmission mode to send the first signal;
  • the network device sends the first instruction message to the terminal device.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, a precoding information and stream number field, a sounding reference signal resource indicator SRI field, or a demodulation reference signal DMRS port indicator field.
  • the first field occupies at least two bits.
  • the first field includes multiple states, wherein different states in the multiple states indicate different first power control strategies and/or first transmission modes to send a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one status indicating the terminal's codebook subset restriction information
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, after the terminal device scales the first transmission power by a second scaling factor, it is evenly distributed to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmission power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device adopts a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device uses the hourly delay delay diversity CDD to send the first signal
  • the terminal equipment adopts different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device performs precoding on the first signal through a predefined precoding matrix before transmission.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and the first indication information instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal.
  • the first indication message instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal
  • the first indication information indicates that the terminal device uses the number of transmission streams predefined by the protocol to send the first signal.
  • the first transmission mode is that the terminal uses a self-defined precoding matrix to send the first signal using the number of transmission streams;
  • the first power control strategy is:
  • the terminal device uses the first transmission power to transmit the first signal.
  • the first field contains at least one state indicating that the terminal does not perform full power transmission.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the first power control strategy and/or the first transmission mode includes:
  • a power control strategy for the terminal device to transmit the first signal at full power and/or
  • the second aspect of the present invention provides a signal transmission method, including:
  • the terminal device receives a first instruction message sent by the network device, where the first instruction message instructs the terminal device to use a first power control strategy and/or a first transmission mode to send a first signal;
  • the terminal device transmits the first signal based on the first power control strategy and/or the first transmission mode.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein different states in the plurality of states indicate different first power control strategies or first transmission modes.
  • the multiple states include at least one of the following:
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one status indicating the terminal's codebook subset restriction information
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, the terminal device scales the first transmission power by a second scaling factor and evenly distributes it to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmit power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device will adopt a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device will use the hourly delay delay diversity CDD to send the first signal;
  • the terminal equipment will use different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI;
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the first indication message indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • it also includes:
  • the terminal device If the terminal device detects the codebook subset restriction information indicated by the first indication message, it determines the codebook subset according to the codebook subset restriction information, and sends the codebook subset based on the codebook subset.
  • the terminal device If the terminal device detects the number of transmission streams indicated by the first indication message, the terminal device sends the first signal based on the number of transmission streams; and/or
  • the terminal device determines the precoding matrix based on the precoding matrix information serial number, and compares the precoding matrix based on the precoding matrix
  • the first signal is sent after precoding.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal;
  • the first indication message also instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal
  • the first indication information indicates that the terminal device uses the number of transmission streams predefined by the protocol to send the first signal.
  • the first transmission mode is that the terminal uses a self-defined precoding matrix to send the first signal using the number of transmission streams;
  • the first power control strategy is:
  • the terminal device uses the first transmission power to transmit the first signal, where the first transmission power refers to the transmission power calculated by the terminal device according to an uplink power control formula.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • a third aspect of the present invention provides a network device, including:
  • Memory used to store instructions
  • the processor is used to read instructions in the memory and execute the following process:
  • the transceiver is configured to send the first indication message to the terminal device.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, a precoding information and stream number field, a sounding reference signal resource indicator SRI field, or a demodulation reference signal DMRS port indicator field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein the first field includes a plurality of states, wherein different states in the plurality of states indicate different first power control strategies or The first transmission mode.
  • the multiple states include at least one of the following:
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one status indicating the terminal's codebook subset restriction information
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, after the terminal device scales the first transmission power by a second scaling factor, it is evenly distributed to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmission power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device adopts a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device uses the hourly delay delay diversity CDD to send the first signal
  • the terminal equipment adopts different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device performs precoding on the first signal through a predefined precoding matrix before transmission.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and the first indication information instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal.
  • the first indication message instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal
  • the first indication information indicates that the terminal device uses the number of transmission streams predefined by the protocol to send the first signal.
  • the first transmission mode is that the terminal uses a self-defined precoding matrix to send the first signal using the number of transmission streams;
  • the first power control strategy is:
  • the terminal device uses the first transmission power to transmit the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the first power control strategy and/or the first transmission mode includes:
  • a power control strategy for the terminal device to transmit the first signal at full power and/or
  • a fourth aspect of the present invention provides a terminal device, including:
  • a transceiver that receives a first indication message sent by the network device, where the first indication message instructs the terminal device to use a first power control strategy and/or a first transmission mode to send a first signal;
  • Memory used to store instructions
  • the processor is used to read instructions in the memory and execute the following process:
  • the transceiver is further configured to use the first transmission power to transmit the first signal based on the power control strategy and/or the transmission mode.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein different states in the plurality of states indicate different first power control strategies or first transmission modes.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one status indicating the terminal's codebook subset restriction information
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, the terminal device scales the first transmission power by a second scaling factor and evenly distributes it to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmit power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device will adopt a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device will use the hourly delay delay diversity CDD to send the first signal;
  • the terminal equipment will use different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI;
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • it also includes:
  • the terminal device detects the codebook subset restriction information indicated by the first indication message, determines a codebook subset according to the codebook subset restriction information, and sends the codebook subset based on the codebook subset The first signal; or
  • the terminal device detects the number of transmission streams indicated by the first indication message, and the terminal device sends the first signal based on the number of transmission streams; or
  • the terminal device detects the precoding matrix information number indicated by the first indication message, and the terminal device determines a precoding matrix based on the precoding matrix information number, and performs a calculation on the first coding matrix based on the precoding matrix.
  • a signal is sent after precoding.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal;
  • the first indication message also instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal.
  • the first indication message further indicating the number of transmission streams of the first signal, and instructing the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal includes:
  • the terminal device self-determines a precoding matrix corresponding to the number of transmission streams based on the number of transmission streams, and sends the first signal based on the precoding matrix;
  • the terminal device uses a default precoding matrix corresponding to the number of transmission streams to send the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • a fifth aspect of the present invention provides a network device, including:
  • a determining unit configured to determine a first indication message, the first indication message instructing the terminal device to use the first power control strategy and/or the first transmission mode to send the first signal;
  • the sending unit is configured to send the first indication message to the terminal device.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, after the terminal device scales the first transmission power by a second scaling factor, it is evenly distributed to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmission power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device adopts a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device uses the hourly delay delay diversity CDD to send the first signal
  • the terminal equipment adopts different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device performs precoding on the first signal through a predefined precoding matrix before transmission.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and the first indication information instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal.
  • the first indication message instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal
  • the first indication information indicates that the terminal device uses the number of transmission streams predefined by the protocol to send the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the first power control strategy and/or the first transmission mode includes:
  • a power control strategy for the terminal device to transmit the first signal at full power and/or
  • a sixth aspect of the present invention provides a terminal device, including:
  • a receiving unit configured to receive a first indication message sent by the network device, where the first indication message instructs the terminal device to use a first power control strategy and/or a first transmission mode to send a first signal;
  • a determining unit configured to determine the first power control strategy and/or the first transmission mode based on the first indication message
  • the sending unit is configured to send the first signal based on the first power control strategy and/or the first transmission mode.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, the terminal device scales the first transmission power by a second scaling factor and evenly distributes it to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmit power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device will adopt a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device will use the hourly delay delay diversity CDD to send the first signal;
  • the terminal equipment will use different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI;
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • it further includes: a detection unit,
  • the detecting unit is configured to detect the codebook subset restriction information indicated by the first indication message, determine a codebook subset according to the codebook subset restriction information, and based on the codebook subset Sending the first signal;
  • the detection unit is configured to detect the number of transmission streams indicated by the first indication message, and the terminal device sends the first signal based on the number of transmission streams;
  • the detecting unit is configured to detect the precoding matrix information number indicated by the first indication message, and the terminal device determines a precoding matrix based on the precoding matrix information number, and based on the precoding matrix pair
  • the first signal is sent after precoding.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal;
  • the first indication message also instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal,
  • the determining unit is further configured to determine a precoding matrix corresponding to the number of transmission streams by the number of transmission streams, and send the first signal based on the precoding matrix;
  • the adopting unit is configured to send the first signal using a default precoding matrix corresponding to the number of transmission streams.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • a seventh aspect of the present invention provides a computer storage medium on which a computer program is stored, when the computer program is executed by a processor, it implements any of the methods provided in the first aspect, or implements any of the methods provided in the second aspect. The method described in the item.
  • network equipment and terminal equipment provided by the present invention can solve the technical problem that the UE cannot be controlled to use full power to transmit uplink signals in the prior art.
  • FIG. 1 is a schematic diagram of a codebook-based uplink transmission provided by an embodiment of this application
  • FIG. 2 is a flowchart of a signal transmission method provided by an embodiment of the application
  • FIG. 3a is a schematic diagram of the correspondence between an antenna port for sending a first signal and an antenna port included in an SRS resource indicated by an SRI according to an embodiment of the application;
  • FIG. 3b is a schematic diagram of the correspondence between an antenna port for sending a first signal and an antenna port included in an SRS resource indicated by an SRI according to an embodiment of the application;
  • Fig. 4a is a precoding matrix for single-layer transmission using two antenna ports provided by an embodiment of the application
  • FIG. 4b is a precoding matrix for single-layer transmission of four antenna ports under a DFT-S-OFDM waveform provided by an embodiment of the application;
  • FIG. 4c is a precoding matrix for single-layer transmission using four antenna ports in a CP-OFDM waveform provided by an embodiment of the application;
  • FIG. 4d is a precoding matrix W using two antenna ports for dual-layer transmission in a CP-OFDM waveform provided by an embodiment of the application;
  • Fig. 4e is a precoding matrix W used for two-layer transmission using four antenna ports in a CP-OFDM waveform provided by an embodiment of the application;
  • FIG. 4f is a precoding matrix W used for three-layer transmission using four antenna ports in a CP-OFDM waveform provided by an embodiment of the application;
  • Fig. 4g is a precoding matrix W used for four-layer transmission using four antenna ports in a CP-OFDM waveform provided by an embodiment of the application;
  • FIG. 5 is a flowchart of a signal transmission method provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another terminal device provided by an embodiment of the application.
  • the transport stream (stream) is sometimes referred to as a layer, and the number of streams is also referred to as the number of layers.
  • the PUSCH (Physical Uplink Shared Channel) of the NR system of 3GPP NR Release 15 and Release 16 supports two uplink transmission schemes based on codebook transmission and non-codebook transmission.
  • the codebook-based uplink transmission scheme is a multi-antenna transmission technology that determines the uplink transmission precoding matrix based on a fixed codebook.
  • the flow of the codebook-based uplink transmission scheme is roughly as follows: UE sends to the base station the SRS (Channel state information) acquired by the codebook-based uplink transmission scheme CSI (Channel State Information). Sounding Reference Signal, sounding reference signal).
  • SRS Channel state information
  • CSI Channel State Information
  • the base station performs uplink channel detection according to the SRS sent by the UE, performs resource scheduling on the UE, and determines the SRS resource corresponding to the uplink transmission, the number of uplink transmission layers and the precoding matrix, and further determines the uplink transmission based on the precoding matrix and channel information MCS (Modulation and Coding), and then the base station allocates PUSCH resources and the corresponding MCS, TPMI (Transmit Precoding Matrix Indicator), the number of transmission layers and the corresponding SRI (SRS resource indicator) SRS resource indication) is notified to the UE.
  • MCS Modulation and Coding
  • the UE modulates and encodes the data according to the MCS indicated by the base station, and uses the indicated SRI, TPMI, and number of transmission layers to determine the precoding matrix and the number of transmission layers used when sending data, and then precode and send the data.
  • the PUSCH demodulation pilot and PUSCH data use the same precoding method.
  • the base station estimates the uplink channel based on the demodulated pilot signal and performs data detection.
  • the characteristics of the transmission antenna and radio frequency are quite different from those of the base station, and the codebook design needs to fully consider the correlation characteristics between the antennas.
  • the UE can use the two antenna ports to perform data transmission on the same layer at the same time through precoding to obtain array gain.
  • factors such as the mutual coupling effect of antenna elements, feeder differences, and changes in the phase and gain of the amplifier of the radio frequency path, there are inevitably differences in power and phase among the actual UE antenna ports.
  • not all UEs can calibrate each antenna port to a degree that meets the requirements for coherent transmission.
  • the UE's optimal uplink transmission precoding may not be the precoding indicated by TPMI, that is, the UE uses the precoding indicated by the base station through TPMI for PUSCH transmission Can not get better performance.
  • the base station can send codebook subset restriction signaling to the UE based on the UE's antenna coherent transmission capability to restrict the UE from using part of the codewords for uplink transmission.
  • the NR system defines three types of UE’s antenna coherent transmission capabilities, namely: full-coherent, that is, all antennas can transmit coherently; partial-coherent, that is, in the same coherent transmission group Antennas can transmit coherently, and coherent transmission groups cannot transmit coherently. Each coherent transmission group contains 2 antennas; non-coherent (non-coherent), that is, no antenna can transmit coherently.
  • the UE's antenna coherent transmission capability (or the coherent capability of the UE's antenna) is indicated by the codebook subset type parameter supported by the UE - the pusch-TransCoherence parameter in the UE capability parameter MIMO-ParametersPerBand (see 3GPP protocol TS38.306 and TS38.331).
  • pusch-TransCoherence is used to define the type of uplink codebook subset supported by the UE when precoding the PUSCH, and its value can be nonCoherent, partialNonCoherent, or fullCoherent.
  • the UE only supports the codebook subset for non-coherent transmission.
  • the codewords in the non-coherent transmission codebook subset are all non-coherent transmission type codewords, it can be considered that the value of pusch-TransCoherence is nonCoherent, which corresponds to all antennas of the terminal cannot be coherently transmitted (corresponding to the UE’s antenna coherent transmission Capabilities are incoherent).
  • the value of pusch-TransCoherence is partialNonCoherent, the UE only supports the codebook subset for non-coherent transmission and the codebook subset for partially coherent transmission.
  • the value of pusch-TransCoherence is partialNonCoherent, which corresponds to the coherent transmission of antennas in the same coherent transmission group of the terminal (corresponding to the terminal The coherent transmission capability of the antenna is partially coherent).
  • the UE supports a codebook subset for non-coherent transmission, a codebook subset for partially coherent transmission, and a codebook subset for full coherent transmission, that is, all codewords in the codebook.
  • the value of pusch-TransCoherence is fullCoherent, which corresponds to the coherent transmission of all antennas of the terminal (the coherence capability of the antenna corresponding to the terminal is full coherence).
  • each PUSCH layer has only one active antenna Port, that is, there is only one antenna port corresponding to a non-zero element;
  • the conditions for partially coherent transmission code words are: each PUSCH layer has at most two active antenna ports, and there is at least one PUSCH with two active antenna ports, namely Only the elements corresponding to two antenna ports are zero;
  • the condition that the codewords of fully coherent transmission meet is: at least one PUSCH uses all antenna ports.
  • any column in the codeword of partially coherent transmission only corresponds to non-zero elements belonging to the same coherent transmission antenna group (in the 3GPP NR system, the first antenna and the third antenna are a coherent transmission antenna group, and the second antenna And the fourth antenna are another coherent transmission antenna group); any column in the non-coherent transmission codeword only corresponds to non-zero elements of one antenna, and all elements in at least one column of the fully coherent transmission codeword are non-zero.
  • the UE has a specific PC (power class, functional level) capability, that is, a maximum output power requirement that the UE needs to meet. For example, for a UE with a power level of PC3, its maximum output power needs to reach 23 dBm; for a UE with a power level of PC2, its maximum output power needs to reach 26 dBm. For a UE with multiple PAs, it can achieve the maximum output power requirement by using multiple PAs to transmit simultaneously. That is, each PA of the UE is not required to reach the maximum output power required by the power level of the UE.
  • PC power class, functional level
  • each transmitting antenna or PA
  • this UE is a PC3 ⁇ UE.
  • the uplink transmission is configured with 4 antenna ports
  • the precoding matrix indicated by the base station is as shown in formula (1)
  • the transmission power calculated by the UE according to the PUSCH power control formula is P
  • the actual PUSCH transmission The power is P/2, where the transmit power of the first antenna port and the third antenna port are P/4.
  • the base station when the UE is located at the edge of a cell or the channel conditions are poor, the base station usually configures the UE for transmission with a low number of transmission streams (or rank rank) and transmits data with the maximum transmission power as much as possible.
  • the base station determines that the number of antenna ports included in the SRS resource corresponding to the uplink transmission is equal to the maximum number of antenna ports included in one SRS resource supported by the UE, And when the TPMI indicated by the base station is an incoherent or partially coherent codeword, the UE cannot use the full power transmission capability to send an uplink signal.
  • each PA Power Amplifier, power amplifier
  • PC UE power class
  • UE supports full power transmission, but no PA can reach the maximum transmit power corresponding to the UE power level
  • Capability 3 UE supports full power transmission, and some PAs can reach the maximum corresponding to the UE power level Transmission power.
  • Strategy 1 Introduce a new uplink codebook for terminals with incoherent transmission capability or partially coherent transmission capability; Strategy 2. UE uses CCD transparently (Cyclic Delay Diversity, hour delay diversity) or linear delay to send uplink signals; 3. Modify UE uplink MIMO power control rules; 4. UE customize how to implement full power transmission; 5. UE customize to determine the corresponding precoding matrix
  • the PUSCH transmit power scaling factor, and to ensure that the same precoding matrix uses the same scaling factor at different PUSCH transmission moments.
  • an embodiment of the present application provides a signal transmission method, and the process of the method is described as follows. Since the signal transmission method involves the interaction process between the terminal device and the network device, in the following process description, the process performed by the terminal device and the network device will be described together.
  • S201 Determine a first indication message, where the first indication message instructs the terminal device to use the first power control strategy and/or the first transmission mode to send the first signal.
  • the network device can determine the first indication message, and the first indication message instructs the terminal device to use the first power control strategy and/or the first transmission mode to send the first signal, and then the different statuses of the first message , The terminal can be instructed to use different power control strategies or transmission modes to send the first signal.
  • the terminal device can transmit the first signal with greater power, thereby improving the transmission performance of the terminal device.
  • the first signal may be a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the terminal device sends the codebook-based uplink transmission SRS to the network device, and the network device detects the uplink channel according to the SRS sent by the terminal device, and then determines the first indication message based on the uplink channel detection result.
  • the network device detects that the status of the uplink channel is poor, and the network device determines a first indication message that instructs the terminal device to send the first signal at full power, and the terminal device based on the first indication message
  • the terminal device is in the center of the cell, and the network device detects that the uplink channel is in a better state, and the network device determines a first indication message that instructs the terminal device to send the first signal under full power, and the terminal device based on the first indication message To reduce the transmission power of the terminal equipment, thereby reducing the interference of the terminal equipment to other devices.
  • the first power control strategy may include the following types:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission.
  • the first transmission power may refer to the transmission power calculated by the terminal device according to the uplink power control formula.
  • the first transmission power may be the transmission power of a PUSCH (Physical uplink shared channel, physical uplink shared channel), for example, the transmission power of a PUSCH that has been defined in the protocol or newly defined in a subsequent protocol version.
  • the foregoing uplink channel transmit power may be the uplink channel transmit power calculated by the terminal device using a power calculation formula, where the power calculation formula may be a power calculation formula defined in the protocol. In the embodiment of the present invention, the power calculation formula is not limited.
  • the uplink channel transmit power calculated by the power calculation formula can be the power P PUSCH, b, f calculated according to the formula in section 7.1.1 of TS38.213 ,c (i,j,q d ,l).
  • the uplink transmission is configured with 4 antenna ports
  • the precoding matrix W indicated by the base station is as shown in equation (2)
  • the first transmission power calculated by the terminal equipment according to the UE according to the uplink power control formula is P
  • the transmission power of the first antenna port and the third antenna port is P/2, that is, the terminal device does not scale P , Directly distribute P evenly to the first antenna port and the third antenna port.
  • the transmit power of the first antenna port is P, that is, the terminal device does not scale P, and directly distributes P evenly to the first antenna port.
  • the terminal device scales the first transmission power by the first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; where the first scaling factor is the antenna where the first signal has non-zero data transmission
  • the antenna port configured for uplink transmission has 2 antenna ports for transmitting the first signal, that is, the terminal device determines The first scaling factor is 1/2.
  • the first transmission power calculated by the terminal device according to the UE according to the uplink power control formula is P.
  • the multi-antenna allocation method for the uplink MIMO of the terminal equipment is as follows: first scale P based on the first scaling factor, that is, the scaled transmission power is P/2, and then the scaled transmission power P/2 is evenly distributed to the users.
  • Two antenna ports for transmitting the first signal that is, the power of each antenna port for transmitting the first signal is P/4.
  • the terminal device will evenly distribute the first transmission power to the antenna where the first signal has non-zero data transmission Port; otherwise, after the terminal device scales the first transmit power by the second scaling factor, it is evenly distributed to the antenna ports where the first signal has non-zero data transmission; where the second scaling factor is that the first signal has non-zero data transmission.
  • the first transmission power may refer to the transmission power calculated by the terminal device according to the uplink power control formula.
  • the first transmission power may be the transmission power of a PUSCH (Physical uplink shared channel, physical uplink shared channel), for example, the transmission power of a PUSCH that has been defined in the protocol or newly defined in a subsequent protocol version.
  • the foregoing uplink channel transmit power may be the uplink channel transmit power calculated by the terminal device using a power calculation formula, where the power calculation formula may be a power calculation formula defined in the protocol.
  • the power calculation formula is not limited. It can be a power calculation formula defined in the protocol or a newly defined power calculation formula in a subsequent protocol version.
  • the uplink channel transmit power calculated by the power calculation formula can be the power P PUSCH, b, f calculated according to the formula in section 7.1.1 of TS38.213 ,c (i,j,q d ,l).
  • the maximum transmission power supported by the power level of the terminal device may refer to the maximum output power required by the protocol for the terminal power level.
  • the maximum transmit power requirement is a maximum output power of 23 dBm.
  • each antenna port used for transmitting the first signal can reach the maximum transmission power supported by the power level of the terminal device.
  • Each antenna port used for transmitting the first signal has the maximum transmission power that can reach the power level of the terminal device.
  • the terminal device evenly distributes the first transmission power to the antenna ports where the first signal has non-zero data transmission.
  • the terminal device scales the first transmission power by the second scaling factor, it is evenly distributed to the antenna ports where the first signal has non-zero data transmission; wherein the second scaling factor is that the first signal has non-zero data.
  • the terminal is configured with 4 transmission antenna ports, namely the first antenna port, the second antenna port, the third antenna port, and the fourth antenna port.
  • the first antenna port and the third antenna port are used for transmitting the first signal.
  • the first transmission power is P
  • the maximum number of antenna ports included in one SRS resource supported by the terminal device is 8. If the first antenna port is a port that does not transmit at full power, the terminal device determines that the second scaling factor is 1/4, and then scales the first transmission power based on the first scaling factor to obtain the scaled transmission power as P/ 4. Then evenly distribute the scaled transmission power P/4 to the first antenna port and the third antenna port, that is, the transmission power of the first antenna port and the third antenna port is P/8.
  • the terminal device scales the first transmit power by the third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; where the third scaling factor is that the first signal has non-zero data.
  • the first transmission power may refer to the transmission power calculated by the terminal device according to the uplink power control formula.
  • the first transmission power may be the transmission power of a PUSCH (Physical uplink shared channel, physical uplink shared channel), for example, the transmission power of a PUSCH that has been defined in the protocol or newly defined in a subsequent protocol version.
  • the foregoing uplink channel transmit power may be the uplink channel transmit power calculated by the terminal device using a power calculation formula, where the power calculation formula may be a power calculation formula defined in the protocol.
  • the power calculation formula is not limited. It can be a power calculation formula defined in the protocol or a newly defined power calculation formula in a subsequent protocol version.
  • the uplink channel transmit power calculated by the power calculation formula can be the power P PUSCH, b, f calculated according to the formula in section 7.1.1 of TS38.213 ,c (i,j,q d ,l).
  • the terminal is configured with 4 transmission antenna ports, namely the first antenna port, the second antenna port, the third antenna port, and the fourth antenna port.
  • the first antenna port and the third antenna port are used for transmitting the first signal.
  • the first transmission power is P
  • the number of antenna ports included in the SRS resource indicated by the SRI is 6.
  • the terminal device determines that the third scaling factor is 2/3, and then scales the first transmission power based on the third scaling factor to obtain a scaled transmission power of 2P/ 3. Then evenly distribute the scaled transmission power to the first antenna port and the third antenna port, that is, the transmission power of the first antenna port and the third antenna port is P/3.
  • the terminal equipment adopts a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal.
  • the corresponding power control strategy "the terminal device will transmit first The power is evenly distributed to each antenna port that actually has data transmission in the precoding matrix used to send the first signal.
  • the number of antenna ports included in the SRS resource indicated by the SRI is 2, and the corresponding power control strategy "terminal device transmits to the first After the power is scaled by the first scaling factor, it is evenly distributed to each antenna port that sends the first signal".
  • the terminal device finds the corresponding power control strategy based on the number of antenna ports included in the SRS resource indicated by the SRI and the preset relationship.
  • the terminal device scales the first transmission power by the fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is a scaling factor customized by the terminal device, where:
  • the first transmission power refers to the transmission power calculated by the terminal device according to the uplink power control formula.
  • the first transmission mode may include the following types:
  • the terminal device uses the small delay delay diversity CDD to transmit the first signal.
  • the terminal equipment uses different time delays on different coherent transmission antenna ports.
  • the terminal has 4 antenna ports configured to transmit the first signal, namely antenna port 1, antenna port, antenna port 3, and antenna port 4.
  • antenna port 1 and antenna port 3 are incoherent transmission ports.
  • the delay used by the terminal equipment at the first antenna port is 1s, and the delay used at the antenna port 3 is 2s.
  • one antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the scheduling information of the first signal.
  • the terminal device can determine the analog beamforming according to the SRS resource indicated by the adopted SRI, and virtualize the port that sends the first signal based on the analog beamforming, so that an antenna port for the terminal device to send the first signal corresponds to the one indicated by the SRI
  • the at least two antenna ports included in the SRS resource specifically include at least the following two situations:
  • the terminal device uses at least two antenna ports to transmit the first signal, and each port that transmits the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI.
  • the terminal device uses a single antenna port to transmit the first signal, and the single antenna port corresponds to all antenna ports included in the SRS resource indicated by the SRI.
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the predefined precoding matrix may be a precoding matrix agreed by a protocol, or a default precoding matrix of the terminal device, or a precoding matrix agreed upon between the terminal device and the network device.
  • the network device may send the first indication message to the terminal device in the following two ways:
  • the first indication message can be carried in the high-layer dynamic signaling RRC.
  • the first indication message may be carried in the downlink control information DCI.
  • the first indication message carried in the DCI includes at least two ways as follows:
  • the first indication message may be carried in the first field of the downlink control information DCI.
  • the DCI may include multiple fields.
  • the DCI may include the first field that carries the first indication message, the TPMI field, and the RI field at the same time; it may also include one field.
  • DCI may only include the first field, excluding the TPMI field, TRI indication field, and so on.
  • the first field includes multiple states, and at least one of the multiple states indicates the first power control strategy and/or the first transmission mode.
  • the first field includes 2 bits and includes 4 states (for example, the value of state 0 is 00, the value of state 1 is 01, the value of state 2 is 10, and the value of state 3 is 11), where state 0 means
  • state 0 means
  • the terminal device does not scale the first transmission power, and directly distributes the first transmission power evenly to each antenna port used for transmitting the first signal.
  • State 1 indicates that after the terminal device uses the first scaling factor to scale the first transmission power, the scaled transmission power is evenly distributed to each antenna port used for transmitting the first signal.
  • State 2 indicates that the terminal device uses hourly delay delay diversity to send the first signal.
  • State 3 indicates that the terminal device uses different time delays to send the first signal at an unrelated antenna port.
  • the first indication message may be carried in the first field of the downlink control information DCI.
  • the first field is a predefined field.
  • the network device instructs the terminal to send the uplink signal at full power through a predefined field of the DCI.
  • the multiple states include the following states:
  • the first field includes at least one state indicating that the terminal is not performing full power transmission.
  • the terminal device uses the power control strategy of sub-full power transmission to determine the transmission power of the first signal .
  • the terminal equipment determines the transmission power of PUSCH in the following manner: calculates the transmission power of PUSCH according to the uplink power control formula, and determines the actual number of antenna ports for non-zero transmission of signals and the SRS resources supported by the terminal. Based on the ratio of the maximum number of antenna ports, the calculated PUSCH transmission power is scaled based on the ratio, and then the scaled transmission power is evenly distributed to the antenna ports of the actual signal.
  • the first field includes at least two states indicating different first power control strategies.
  • the terminal device detects that the first field contains at least two states indicating different first power control strategies, for example, one state indicates that the terminal device uses the first power control strategy in the first power control strategy, and the other The state indicates that the terminal device uses the second power control strategy in the first power control strategy.
  • the terminal device scales the calculated uplink transmission power based on the power control strategy indicated by each state, and then evenly allocates the scaled transmission power to the antenna port of the actual signal.
  • the first field includes at least one status indicating the terminal's codebook subset restriction information.
  • the terminal device detects a state containing at least one codebook subset restriction information indicating the terminal, it determines the codebook subset of the uplink signal based on the codebook subset restriction information indicated by the at least one state, and then the terminal device The uplink signal is transmitted based on the codebook subset.
  • the first field includes at least one status indicating the number of transport streams of the first signal.
  • the terminal device detects that the first field contains at least one state indicating the number of transmission streams of the first signal, determines the number of transmission streams of the uplink signal based on the number of transmission streams indicated by the at least one state, and performs uplink based on the number of transmission streams Signal transmission.
  • the network device instructs the terminal device to send the uplink signal at full power through the precoding information and stream number field of the DCI
  • the first field includes at least two states indicating the first transmission mode.
  • the terminal device detects that the first field contains at least two states indicating the first transmission mode, for example, one state indicates that the terminal device uses the first transmission mode in the first transmission mode, and the other state indicates that the terminal device uses the first transmission mode.
  • the second power control strategy in the first transmission mode The terminal equipment transmits uplink signals based on the transmission mode indicated by each state.
  • the first field is the precoding information and stream number field.
  • the network device instructs the terminal to send the uplink signal at full power through the precoding information and stream number field of the DCI, and the first indication message includes the following four states:
  • the first indication message indicates the number of transport streams corresponding to the first signal.
  • detecting the number of transmission streams corresponding to the first signal indicated by the first indication message by the terminal device includes the following two methods:
  • the first indication message indicates the number of transport streams corresponding to the first signal, and does not indicate the precoding information number.
  • the terminal device detects that the first field indicates the first indication information, and the first indication information simultaneously indicates the transmission strategy and the number of transmission streams corresponding to the first signal.
  • the terminal determines the precoding matrix according to the number of transmission streams, and then, after precoding the first signal based on the precoding matrix, it transmits the precoded first signal with the power control strategy indicated by the first indication information.
  • the manner in which the terminal device determines the precoding matrix according to the number of transmission streams of the first signal includes at least the following:
  • the terminal device is based on adopting a default precoding matrix corresponding to the number of transmission streams of the first signal.
  • the default precoding matrix may be predetermined by the protocol, or the terminal device may determine the precoding matrix corresponding to the first signal transmission stream number based on a preset relationship between the number of transmission streams and the default precoding matrix.
  • the default pre-programmed matrix is [1 1] T ; for single-stream transmission with 4 antenna ports, the default pre-programmed matrix is [1 1 1] T.
  • the terminal device freely selects a precoding matrix corresponding to the number of transmission streams of the first signal according to the number of transmission streams indicated by the first indication message.
  • the terminal device can select the precoding matrix corresponding to all antenna ports according to the number of transmission streams indicated by the first indication message.
  • the terminal device determines the coding matrix corresponding to the first transmission stream number according to the mapping relationship between the first signal transmission stream number and the precoding matrix.
  • the first indication message also instructs the terminal device not to scale the transmission power of the first signal.
  • At least one of the multiple states of the first field indicates the number of transmission streams, the precoding matrix information number, and the power control strategy and/or transmission mode.
  • the first indication message indicates the number of transport streams corresponding to the first signal and at the same time indicates the number of the precoding information.
  • the terminal device when the terminal device detects that the first indication message indicates a power control strategy, and the number of the precoding matrix information corresponding to the first signal and the number of transmission streams, the terminal device determines based on the number of transmission streams indicated by the first indication message The number of transmission streams of the uplink signal, and the precoding matrix corresponding to the first signal is determined based on the number of the precoding matrix information, and the precoding matrix and the number of transmission streams are used to transmit the first signal using the power strategy indicated by the first indication information. signal.
  • Figures 4a-4g show different precoding matrices in the NR system.
  • the precoding matrix W used for single-layer transmission using two antenna ports, where the codewords with TPMI index of 0 to 1 are codewords for non-coherent transmission; other codewords are codewords for fully coherent transmission .
  • Precoding matrix W for single-layer transmission using four antenna ports with transform precoding enabled (precoding matrix W) for single-layer transmission of four antenna ports under the DFT-S-OFDM waveform.
  • codewords with a TPMI index of 0 to 3 are codewords for non-coherent transmission; codewords with a TPMI index of 4 to 11 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • codewords with a TPMI index of 0 to 3 are codewords for non-coherent transmission; codewords with a TPMI index of 4 to 11 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • codewords with TPMI index of 0 are codewords for non-coherent transmission; codewords with TPMI index of 1 to 2 are codewords for fully coherent transmission.
  • codewords with TPMI index of 0 to 5 are codewords for non-coherent transmission; codewords with TPMI index of 6 to 13 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • Figure 4f Precoding matrix W for three-layer transmission using four antenna ports with transform precoding disabled (precoding matrix W) under the CP-OFDM waveform for three-layer transmission.
  • codewords with TPMI index of 0 are codewords for non-coherent transmission; codewords with TPMI index of 1 to 2 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • Figure 4g Precoding matrix W for four-layer transmission using four antenna ports with transform precoding disabled (precoding matrix W) under the CP-OFDM waveform for four-layer transmission using four antenna ports.
  • codewords with TPMI index of 0 are codewords for non-coherent transmission; codewords with TPMI index of 1 to 2 are codewords for partially coherent transmission; other codewords are codewords for fully coherent transmission.
  • the first indication message indicates the number of the precoding matrix information corresponding to the first signal, and does not indicate the number of transport streams.
  • the first indication information indicates both a power control strategy and precoding matrix number information
  • the terminal device determines the precoding matrix of the uplink signal based on the precoding matrix number based on a predefined number of transmission streams, and The precoding matrix performs uplink signal transmission.
  • the power control strategy is that the terminal does not scale the transmission power of the uplink signal.
  • the first indication message does not indicate the number of transport streams and the number of precoding matrix information.
  • the first indication message only indicates the power strategy or transmission mode used by the terminal device, and does not indicate the number of transmission streams and the precoding matrix information number of the terminal device.
  • the terminal device After receiving the first indication message, the terminal device detects that there is no state indication transmission stream number and precoding matrix information number among the multiple states corresponding to the first field, and the terminal device adopts a predefined power control strategy or transmission Mode to send the first signal.
  • a transmission mode is that the terminal uses a self-defined precoding matrix to transmit the first signal using a first power based on the default number of transmission streams, and the first power is the power control of the terminal according to the first signal The power calculated by the formula.
  • Method 1 The default number of transmission streams is agreed upon by terminal equipment and network equipment. For example, the default number of transport streams is 1.
  • the default number of transmission streams is customized by the terminal device.
  • the network device indicates the default number of transmission streams to the terminal device, and the terminal device determines the default number of transmission streams based on the instructions of the network device.
  • the default number of transmission streams is determined by the network device. For example, the terminal device sends the default transmission stream number indication information to the network device, and the network device determines the default transmission based on the terminal device's instruction.
  • At least one state is added to the precoding information and stream number fields, or at least one reserved state is used, and the state is used to indicate that the terminal transmits at full power.
  • state 2 corresponds to the full power transmission mode of the terminal.
  • the full-power transmission mode of the terminal refers to that the terminal performs single-stream PUSCH transmission using the transmission power calculated according to the power control formula of the PUSCH.
  • At least one status in the precoding information and stream number fields is used to indicate the full power transmission of the terminal and the number of transmission streams.
  • the precoding information and the indication method of the stream number field when the PUSCH 2 antenna port is transmitted with a maximum of 2 streams shows that when the maximum rank is equal to 2, CP- is used under 2 antenna ports.
  • the "precoding information and layer number" indicates the information indicated by the field.
  • the state 3 when the codebook subset is restricted to "nonCoherent” corresponds to the indication that the terminal transmits at full power and the number of transmission streams is 1;
  • the state 4 when the codebook subset is restricted to "nonCoherent” corresponds to the indication The terminal transmits at full power, and the number of transmission streams is 1.
  • the full-power transmission mode of the terminal refers to that the terminal uses the transmission power calculated according to the power control formula of the PUSCH to perform PUSCH transmission.
  • the terminal uses full power for single-stream PUSCH transmission.
  • the terminal uses full power to perform two-stream PUSCH transmission.
  • At least one state is added to the precoding information and stream number fields, or at least one reserved state is used, and the state is used to indicate the terminal's full power transmission and the precoding matrix and the number of transmission streams.
  • the precoding information and the indication method of the stream number field when the PUSCH 2 antenna port is transmitted with a maximum of 2 streams shows that when the maximum rank is equal to 2, CP- is used under 2 antenna ports.
  • the "precoding information and number of layers" indicates the information indicated by the field.
  • the state 3-5 when the codebook subset is restricted to "nonCoherent" corresponds to indicating that the terminal transmits at full power.
  • the full-power transmission mode of the terminal refers to a manner in which the terminal uses the transmission power calculated according to the PUSCH power control formula to evenly distribute the transmission power on all antenna ports where non-zero data transmission exists for PUSCH transmission.
  • At least one state is added to the precoding information and the stream number field, or at least one reserved state is used, and the state is used to indicate the full power transmission of the terminal and the precoding matrix.
  • the precoding information and the indication method of the stream number field when the PUSCH 2 antenna port is transmitted with a maximum of 2 streams shows that when the maximum rank is equal to 2, CP- is used under 2 antenna ports.
  • OFDM waveform "precoding information and number of layers" indicates the information indicated by the field.
  • the state 3-4 when the codebook subset is limited to "nonCoherent" corresponds to instructing the terminal to send at full power.
  • the full power transmission mode of the terminal refers to the transmission power calculated by the terminal based on the precoding information corresponding to the single stream and the single stream and the precoding matrix indicated by the stream number field using the power control formula of PUSCH PUSCH transmission is performed in a uniformly distributed manner on all antenna ports where non-zero data transmission exists.
  • the first field is the SRI field.
  • the network device instructs the terminal device to use full power to transmit the power control strategy and/or transmission mode of the first signal through the SRI resource field in the DCI, and the state of the SRI field also indicates the SRS resource corresponding to the first signal.
  • the terminal device After receiving the SRI field, the terminal device detects that the state of the SRI field indicates that the terminal device uses full power to transmit the first signal, and determines the SRS resource corresponding to the first signal according to the state indication of the SRI field, and the terminal device uses the SRI based on the determined SRS resource
  • the power control strategy and/or transmission mode indicated by the field sends the first signal.
  • the first field is the demodulation reference signal DMRS port indication field.
  • the network device determines the first instruction message, the first instruction message instructs the terminal device to use the first power control strategy and/or the first transmission mode, and sends the first instruction message to the terminal device. Therefore, the network device instructs the terminal device to send the first signal's first power control strategy and/or the first transmission mode through the first instruction message to prevent the terminal device from sending the first signal based on the same power control strategy, causing the terminal device to be unable to control
  • the UE uses full power to transmit uplink signals.
  • a special information field is introduced in the DCI to instruct the terminal to send an uplink signal at full power, and the information field includes one or more states indicating that the terminal sends an uplink signal at full power. If the terminal detects that the information field instructs the terminal to send the uplink signal at full power, the terminal uses the power control scheme for sending the uplink signal at full power corresponding to the indication and/or the uplink signal transmission mode to send the uplink signal at full power. .
  • different states of the information field are used to indicate different uplink signal sending behaviors.
  • the information field contains at least one status indicating that the terminal is not performing full power transmission. If the terminal detects that the information field indicates that the terminal does not perform full power transmission, the terminal uses an uplink power control scheme for non-full power transmission to determine the transmission power of the uplink signal.
  • the UE determines the transmission power of the PUSCH in the following way: the transmission power of the PUSCH calculated according to the uplink power control formula (in the NR system, corresponds to section 7.1.1 in TS 38.213-f40 P PUSCH, b, f, c (i, j, q d , l)) in P PUSCH, b, f, c (i, j, q d , l)) are scaled according to the ratio of the actual number of non-zero signal transmission ports to the maximum number of SRS ports contained in one SRS resource supported by the terminal, Then, the scaled power is equally divided among the antenna ports that actually transmit the signal.
  • the uplink power control formula in the NR system, corresponds to section 7.1.1 in TS 38.213-f40 P PUSCH, b, f, c (i, j, q d , l)) in P PUSCH, b, f, c (i, j,
  • the information field contains at least two states for indicating different uplink transmit power control schemes.
  • one value of the information field indicates that the terminal uses the first uplink transmit power control scheme
  • the other value indicates that the terminal uses the second uplink transmit power control scheme.
  • the information field contains at least one status indicating the terminal's codebook subset restriction information. If the terminal detects that the status of the information field indicates that the terminal codebook subset is restricted, the terminal determines the codebook subset of the uplink signal according to the information field. Under this scheme, the base station can dynamically indicate the codebook subset restriction to the terminal.
  • the information field contains one or more states used to indicate the number of transmission streams of the uplink signal. If the information field indicates the number of transmission streams of the uplink signal, the terminal uses the number of transmission streams to transmit the uplink signal, that is, the number of transmission streams of the uplink signal is the number of transmission streams.
  • the information field contains at least two states used to indicate the uplink transmission mode for full power transmission
  • the information field includes 1 bit, one state indicates that the terminal is transmitting at full power, and one state indicates that the terminal is not transmitting at full power.
  • the present invention does not exclude the case where a value of the information field indicates the uplink transmission power control scheme and codebook subset restriction information at the same time.
  • the information field and scheduling information such as TPMI and RI indication of the uplink signal always exist simultaneously.
  • the information domain is an independent information domain, which can be indicated in DCI without TPMI or TRI indication.
  • the information field exists in the DCI only when the terminal is a terminal with full power transmission capability and the number of antenna ports included in the SRS resource acquired by the CSI for codebook-based uplink transmission is greater than one; otherwise, The number of bits in the information field described in DCI is 0.
  • the base station instructs the terminal to send uplink signals at full power through the Precoding information and number of layers (precoding information and number of layers) field in the DCI. That is, the precoding information and one or more states of the stream number field are used to instruct the terminal to send the uplink signal at full power.
  • the terminal detects that the state of the precoding information and the flow number field is a state indicating that the terminal sends the uplink signal at full power, the terminal sends the uplink signal at full power.
  • the precoding information used to instruct the terminal to send the uplink signal at full power and the different states of the stream number field are used to indicate different behaviors of sending the uplink signal at full power. That is, when the terminal detects that the precoding information and the state of the stream number field indicate the state of the terminal to send the uplink signal at full power, the terminal uses different behaviors of sending the uplink signal at full power for different states.
  • the state of the precoding information and stream number field used to instruct the terminal to send the uplink signal at full power does not include the TPMI index (precoding matrix information index) indication, but includes the transmission stream number indication.
  • the terminal determines the number of transmission streams of the uplink signal according to the indication information, and sends the uplink signal with full power, and the number of transmission streams of the uplink signal is the number of transmission streams determined by the terminal according to the indication information.
  • the terminal determines that the number of transmission streams of the uplink signal is the number of transmission streams indicated by the transmission stream number indication.
  • the base station detects and decodes the uplink signal based on the number of transmission streams.
  • the terminal sends the uplink signal at full power, which means that the terminal does not perform MIMO scaling on the transmission power of the uplink signal.
  • each PA of the terminal cannot reach the maximum transmission power required for the PC level of the UE, and the terminal uses multiple PAs to transmit the uplink signal by means of antenna virtualization.
  • the terminal transmits the uplink signal using a PA that can reach the maximum transmission power required for the PC level of the UE.
  • the terminal independently selects a precoding matrix corresponding to the number of transmission streams to send the uplink signal.
  • the terminal transmits the uplink signal by using a default precoding matrix corresponding to the number of transmission streams.
  • the default precoding matrix is agreed upon by a protocol.
  • the default precoding matrix is selected by the terminal itself.
  • the default precoding matrix for single stream transmission with 2 antenna ports is [1 1] T (Note: The amplitude coefficient of the precoding matrix is not considered here).
  • the default precoding matrix for single stream transmission with 4 antenna ports is [1 1 1 1] T (Note: The amplitude coefficient of the precoding matrix is not considered here).
  • the terminal uses all antenna ports to transmit the uplink signal.
  • the state of the precoding information and stream number field used to instruct the terminal to send the uplink signal at full power does not include the TPMI index (precoding matrix information index) indication, nor the transmission stream number indication.
  • the terminal uses the default number of transmission streams to transmit the uplink signal according to the indication information, and the terminal does not perform MIMO scaling on the transmission power of the uplink signal.
  • the base station detects and decodes the uplink signal based on the default number of transmission streams.
  • the default number of transport streams is 1.
  • the default number of transmission streams is determined by the terminal.
  • the terminal sends the indication information of the default number of transmission streams to the base station.
  • the base station determines the default number of streams according to the instruction information of the terminal.
  • the default number of transmission streams is indicated to the terminal by the base station.
  • the terminal determines the default number of transmission streams according to the information indicated by the base station.
  • the terminal uses a default precoding matrix to send the uplink signal.
  • the default precoding matrix for single stream transmission with 2 antenna ports is [1 1] T (Note: The amplitude coefficient of the precoding matrix is not considered here).
  • the default precoding matrix for single stream transmission with 4 antenna ports is [1 1 1 1] T (Note: The amplitude coefficient of the precoding matrix is not considered here).
  • the terminal transmits the uplink signal in a small delay CDD manner.
  • the terminal transmits the uplink signal by adding a small delay on some antenna ports.
  • the terminal uses multiple PAs to transmit the uplink signal by means of antenna virtualization.
  • the terminal transmits the uplink signal using a PA that can reach the maximum transmission power required for the PC level of the UE.
  • the PUSCH port has a one-to-one correspondence with the SRS port in the SRS resource indicated by the SRI (note: the existing codebook-based transmission scheme has a one-to-one correspondence).
  • the PUSCH port no longer has a one-to-one correspondence with the SRS port of the SRS resource indicated by the SRI.
  • the terminal determines the analog beamforming according to the SRS resource indicated by the SRI.
  • the terminal performs single-port PUSCH transmission.
  • the terminal can perform single-stream transmission at most, and the codebook subset indicated by the base station is limited to non-coherent codebooks. Then when the precoding information and the stream number field correspond to index 4, the base station instructs the terminal to perform full power transmission, and the terminal transmits a single stream of PUSCH. The terminal determines by itself whether there is a relationship between the PUSCH port and the SRS port and what kind of relationship there is.
  • the terminal performs single-port PUSCH transmission, for example, the PUSCH is transmitted in a manner similar to the transmission of the PUSCH during DCI format 0_0 scheduling, and the port of the PUSCH no longer corresponds to the SRS port of the SRS resource indicated by the SRI.
  • the advantage of this method is that the base station does not need to configure single-port SRS resources for the terminal, and the terminal can also implement single-port PUSCH transmission.
  • precoding information and reserved bits in the stream number domain can be used to send indication information indicating full power transmission by the terminal. This solution can save DCI indication overhead.
  • the state of the precoding information and stream number field used to instruct the terminal to send the uplink signal at full power includes a TPMI index (precoding matrix information index) indicator and a transmission stream number indicator.
  • the terminal determines the number of transmission streams and the precoding matrix of the uplink signal according to the indication information,
  • the uplink signal is sent using a power control scheme for sending the uplink signal at full power, the number of transmission streams of the uplink signal is the number of transmission streams indicated by the precoding information and stream number fields, and the precoding matrix is the number of precoding information and streams.
  • the base station detects and decodes the uplink signal based on the number of transmission streams.
  • different indications may correspond to different power control schemes for transmitting the uplink signal at full power
  • At least one state of the precoding information and stream number field used to instruct the terminal to send the uplink signal at full power includes a precoding matrix information (TPMI) indicator, but does not include a transport stream number indicator.
  • the precoding matrix indicated by the TPMI Is the precoding matrix under the predefined number of streams.
  • the terminal determines the precoding matrix of the uplink signal according to the indication information, and uses a predefined number of streams to transmit the uplink signal, and the terminal does not perform MIMO scaling on the transmission power of the uplink signal.
  • the base station detects and decodes the uplink signal based on the predefined number of transmission streams.
  • the predefined number of streams may be agreed in advance by the base station and the terminal. For example, it is 1. It can also be instructed by the base station to the terminal, or reported by the terminal to the base station.
  • the base station instructs the terminal to send an uplink signal at full power through the SRI (SRS resource indicator, SRS resource indicator) field in the DCI. That is, one or more states of the SRI field are used to instruct the terminal to send uplink signals at full power.
  • the terminal detects that the state of the SRI field is a state instructing the terminal to send an uplink signal with full power, the terminal sends an uplink signal with full power.
  • the number of bits in the SRI field can be extended, for example, from 1 bit to 2 bits, and from 2 bits to 3 bits.
  • the indication information may also indicate the SRS resource corresponding to the uplink signal, and the terminal determines the SRS resource corresponding to the uplink signal according to the indication, and transmits the uplink signal using the indicated power control rule of the uplink signal.
  • the indication information may also indicate an uplink transmission mode of full power transmission, and the terminal transmits the uplink signal using the indicated uplink transmission mode.
  • this application provides a signal transmission method, which includes:
  • a terminal device receives a first instruction message sent by the network device, where the first instruction message instructs the terminal device to use a first power control strategy and/or a first transmission mode to send a first signal;
  • the terminal device determines the first power control strategy and/or the first transmission mode based on the first indication message
  • the terminal device determines the first power control strategy and/or the first transmission mode based on the first indication message.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, the terminal device scales the first transmission power by a second scaling factor and evenly distributes it to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmit power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device will adopt a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device will use the hourly delay delay diversity CDD to send the first signal;
  • the terminal equipment will use different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI;
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • it also includes:
  • the terminal device detects the codebook subset restriction information indicated by the first indication message, determines a codebook subset according to the codebook subset restriction information, and sends the codebook subset based on the codebook subset The first signal; or
  • the terminal device detects the number of transmission streams indicated by the first indication message, and the terminal device sends the first signal based on the number of transmission streams; or
  • the terminal device detects the precoding matrix information number indicated by the first indication message, and the terminal device determines a precoding matrix based on the precoding matrix information number, and performs a calculation on the first coding matrix based on the precoding matrix.
  • a signal is sent after precoding.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal;
  • the first indication message also instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal.
  • the first indication message further indicating the number of transmission streams of the first signal, and instructing the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal includes:
  • the terminal device self-determines a precoding matrix corresponding to the number of transmission streams based on the number of transmission streams, and sends the first signal based on the precoding matrix;
  • the terminal device uses a default precoding matrix corresponding to the number of transmission streams to send the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the present application provides a network device, which includes:
  • the memory 601 is used to store instructions
  • the processor 602 is configured to read instructions in the memory and execute the following process:
  • the transceiver 603 is configured to send the first indication message to the terminal device.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, after the terminal device scales the first transmission power by a second scaling factor, it is evenly distributed to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmission power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device adopts a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device uses the hourly delay delay diversity CDD to send the first signal
  • the terminal equipment adopts different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device performs precoding on the first signal through a predefined precoding matrix before transmission.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and the first indication information instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal.
  • the first indication message instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal
  • the first indication information indicates that the terminal device uses the number of transmission streams predefined by the protocol to send the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the first power control strategy and/or the first transmission mode includes:
  • a power control strategy for the terminal device to transmit the first signal at full power and/or
  • this application provides a terminal device, which includes:
  • the transceiver 701 receives a first indication message sent by the network device, where the first indication message instructs the terminal device to use a first power control strategy and/or a first transmission mode to send a first signal;
  • the memory 702 is used to store instructions
  • the processor 703 is configured to read instructions in the memory and execute the following process:
  • the transceiver 701 is further configured to use the first transmission power to transmit the first signal based on the power control strategy and/or the transmission mode.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, the terminal device scales the first transmission power by a second scaling factor and evenly distributes it to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmit power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device will adopt a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device will use the hourly delay delay diversity CDD to send the first signal;
  • the terminal equipment will use different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI;
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • it also includes:
  • the terminal device detects the codebook subset restriction information indicated by the first indication message, determines a codebook subset according to the codebook subset restriction information, and sends the codebook subset based on the codebook subset The first signal; or
  • the terminal device detects the number of transmission streams indicated by the first indication message, and the terminal device sends the first signal based on the number of transmission streams; or
  • the terminal device detects the precoding matrix information number indicated by the first indication message, and the terminal device determines a precoding matrix based on the precoding matrix information number, and performs a calculation on the first coding matrix based on the precoding matrix.
  • a signal is sent after precoding.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal;
  • the first indication message also instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal.
  • the first indication message further indicating the number of transmission streams of the first signal, and instructing the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal includes:
  • the terminal device self-determines a precoding matrix corresponding to the number of transmission streams based on the number of transmission streams, and sends the first signal based on the precoding matrix;
  • the terminal device uses a default precoding matrix corresponding to the number of transmission streams to send the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the present application provides a network device, which includes:
  • the determining unit 801 is configured to determine a first indication message, the first indication message instructing the terminal device to use the first power control strategy and/or the first transmission mode to send the first signal;
  • the sending unit 802 sends the first indication message to the terminal device.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, after the terminal device scales the first transmission power by a second scaling factor, it is evenly distributed to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmission power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device adopts a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device uses the hourly delay delay diversity CDD to send the first signal
  • the terminal equipment adopts different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device performs precoding on the first signal through a predefined precoding matrix before transmission.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and the first indication information instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal.
  • the first indication message instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal
  • the first indication information indicates that the terminal device uses the number of transmission streams predefined by the protocol to send the first signal.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the first power control strategy and/or the first transmission mode includes:
  • a power control strategy for the terminal device to transmit the first signal at full power and/or
  • the present application provides a terminal device, which includes:
  • the determining unit 901 is configured to determine the first power control strategy and/or the first transmission mode based on the first indication message;
  • the sending unit 902 is configured to send the first signal based on the first power control strategy and/or the first transmission mode.
  • the first indication message is carried in the first field of the downlink control information DCI.
  • the first field is a predefined field of the DCI, precoding information and stream number field, SRI field or demodulation reference signal DMRS port indication field.
  • the first field occupies at least two bits.
  • the first field includes a plurality of states, wherein at least one state of the plurality of states indicates that the first power control strategy and/or the first transmission mode sends a first signal.
  • the multiple states include at least one of the following:
  • the first field includes at least one state indicating that the terminal does not perform full power transmission
  • the first field includes at least two states indicating different first power control strategies
  • the first field includes at least one state indicating the restriction information of the codebook subset of the terminal;
  • the first field includes at least one state indicating the number of transmission streams of the first signal
  • the first field includes at least two states indicating the first transmission mode.
  • the first power control strategy includes at least one of the following strategies:
  • the terminal device evenly distributes the first transmission power to each antenna port where the first signal has non-zero data transmission, where the first transmission power refers to the transmission calculated by the terminal device according to the uplink power control formula power;
  • the terminal device scales the first transmission power by a first scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein the first scaling factor is the presence of the first signal The ratio of the number of antenna ports for non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device evenly distributes the first transmission power to the presence of the first signal The antenna port for non-zero data transmission; otherwise, the terminal device scales the first transmission power by a second scaling factor and evenly distributes it to the antenna port where the first signal has non-zero data transmission; wherein, The second scaling factor is the ratio of the number of antenna ports with non-zero data transmission of the first signal to the maximum number of antenna ports included in one SRS resource supported by the terminal device;
  • the terminal device scales the first transmit power by a third scaling factor, it is evenly distributed to each antenna port where the first signal has non-zero data transmission; wherein, the third scaling factor is the first signal The ratio of the number of antenna ports with non-zero data transmission to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal, where the first transmission power refers to the calculation by the terminal device according to the uplink power control formula Obtained transmit power;
  • the terminal device will adopt a power control strategy corresponding to the number of antenna ports included in the SRS resource indicated by the scheduling information of the first signal;
  • the terminal device scales the first transmit power by a fourth scaling factor, it is evenly distributed to each antenna port that transmits the first signal; wherein, the fourth scaling factor is customized by the terminal device The zoom factor.
  • the first transmission mode includes at least one of the following modes:
  • the terminal device will use the hourly delay delay diversity CDD to send the first signal;
  • the terminal equipment will use different time delays on different coherent transmission antenna groups
  • One antenna port through which the terminal device sends the first signal corresponds to at least two antenna ports included in the SRS resource indicated by the SRI;
  • the terminal device transmits the first signal after precoding through a predefined precoding matrix.
  • the first indication message further indicates at least one of the following information:
  • the SRS resource corresponding to the first signal is the SRS resource corresponding to the first signal.
  • it further includes: a detection unit,
  • the detecting unit is configured to detect the codebook subset restriction information indicated by the first indication message, determine a codebook subset according to the codebook subset restriction information, and based on the codebook subset Sending the first signal; or
  • the detection unit is configured to detect the number of transmission streams indicated by the first indication message, and the terminal device sends the first signal based on the number of transmission streams;
  • the detecting unit is configured to detect the precoding matrix information number indicated by the first indication message, and the terminal device determines a precoding matrix based on the precoding matrix information number, and based on the precoding matrix pair
  • the first signal is sent after precoding.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal;
  • the first indication message also instructs the terminal device to use the default number of transmission streams of the terminal device to send the first signal.
  • the first indication message further indicates the number of transmission streams of the first signal, and instructs the terminal device to use the number of transmission streams indicated by the first indication message to send the first signal,
  • the determining unit is further configured to determine a precoding matrix corresponding to the number of transmission streams by the number of transmission streams, and send the first signal based on the precoding matrix;
  • the adopting unit is configured to send the first signal using a default precoding matrix corresponding to the number of transmission streams.
  • the first signal includes: a physical uplink shared channel PUSCH or a physical uplink control channel PUCCH.
  • the present application provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the signal transmission method as described above is realized.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, thereby executing on the computer or other programmable equipment
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

本申请公开了一种信号传输的方法、网络设备及终端设备,该方法包括:网络设备确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;所述网络设备向所述终端设备发送所述第一指示消息。解决了现有技术中无法控制UE使用满功率发送上行信号的技术问题。

Description

一种信号传输的方法、网络设备及终端设备
相关申请的交叉引用
本申请要求在2019年04月30日提交中国专利局、申请号为201910365525.8、申请名称为“一种信号传输的方法、网络设备及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输的方法、网络设备及终端设备。
背景技术
目前在3GPP(3rd Generation Partnership Project,第三代移动通信标准化伙伴项目)NR(New Radio,无线接入)系统的码本设计下,对于基于码本的上行传输来说,具有相干传输能力、部分天线相干传输能力和非相干传输能力的UE,总是使用基站通过TPMI(Transmit Precoding Matrix Indicator,预编码矩阵指示)所指示的预编码矩阵来进行上行信号传输,即UE总是使用相同的上行功率控制策略和相同的上行传输模式传输上行信号,终端设备不能够使用除码本之外的功率控制策略和/或传输模式来控制上行信号的发送功率,这种调度方式不灵活,导致终端设备传输性能较差的问题。
可见,当前的上行MIMO(Multiple Input Multiple Output,多输入多输出)多天线功率分配机制无法保证在基于码本的上行传输方案下,具有部分天线相干传输能力和非相干传输能力的UE基于信道的状态来调度不同功率控制策略和/或传输模式来发送上行信号,即UE使用满功率发送上行信号。目前,在NR系统的Release 16版本针对UE满功率发送上行信号的方案进行研究,但是,对于如何控制UE使用满功率发送上行信号还未有确定的方案。
发明内容
本申请提供一种信号传输的方法、网络设备及终端设备,以解决现有技术中无法控制UE使用满功率发送上行信号的技术问题。
本发明的第一方面提供一种信号传输的方法,包括:
网络设备确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
所述网络设备向所述终端设备发送所述第一指示消息。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、探测参考信号资源指示SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
所述第一字段包括至少两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备采用小时延延迟分集CDD发送所述第一信号;
所述终端设备在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
可选地,所述第一传输模式为终端采用自定义的预编码矩阵使用所述传输流数发送所述第一信号;
所述第一功率控制策略为:
所述终端设备使用所述第一发送功率发送所述第一信号。
可选地,所述第一字段包含至少一个指示终端不进行满功率发送的状态。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
可选地,所述第一功率控制策略和/或第一传输模式,包括:
所述终端设备满功率发送所述第一信号的功率控制策略;和/或
所述终端设备满功率发送所述第一信号的传输模式。
本发明第二方面提供一种信号传输的方法,包括:
终端设备接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
所述终端设备基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式;
所述终端设备基于所述第一功率控制策略和/或所述第一传输模式发送所述第一信号。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略或所述第一传输模式。
可选地,所述多个状态包括如下至少一种:
所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
所述第一字段包括至少两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配 到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
所述终端设备将在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,还包括:所述第一指示消息指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,还包括:
若所述终端设备检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;和/或
若所述终端设备检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;和/或
若所述终端设备检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
可选地,所述第一传输模式为终端采用自定义的预编码矩阵使用所述传输流数发送所述第一信号;
所述第一功率控制策略为:
所述终端设备使用第一发送功率发送所述第一信号,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
本发明第三方面提供一种网络设备,包括:
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
收发机,用于向所述终端设备发送所述第一指示消息。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、探测参考信号资源指示SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两 个比特。
可选地,所述第一字段包括多个状态,其中,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略或所述第一传输模式。
可选地,所述多个状态包括如下至少一种:
所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
所述第一字段包括至少两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指 示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备采用小时延延迟分集CDD发送所述第一信号;
所述终端设备在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
可选地,所述第一传输模式为终端采用自定义的预编码矩阵使用所述传 输流数发送所述第一信号;
所述第一功率控制策略为:
所述终端设备使用第一发送功率发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
可选地,所述第一功率控制策略和/或第一传输模式,包括:
所述终端设备满功率发送所述第一信号的功率控制策略;和/或
所述终端设备满功率发送所述第一信号的传输模式。
本发明第四方面提供一种终端设备,包括:
收发机,接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
基于所述第一指示消息确定所述第一发送功率发送第一信号所对应的功率控制策略和/或所述传输模式;
所述收发机,还用于基于所述功率控制策略和/或所述传输模式使用所述第一发送功率发送所述第一信号。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略或所述第一传输模式。
可选地,所述多个状态包括如下至少一种:
所述第一字段包括至少一个指示终端不进行满功率发送的状态;
所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
所述第一字段包括至少两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述 终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
所述终端设备将在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,还包括:
所述终端设备检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;或
所述终端设备检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;或
所述终端设备检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号,包括:
所述终端设备基于所述传输流数自定义确定与所述传输流数对应的预编码矩阵,并基于所述预编码矩阵发送所述第一信号;或
所述终端设备采用与所述传输流数对应的默认的预编码矩阵发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
本发明第五方面提供一种网络设备,包括:
确定单元,用于确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
发送单元,用于向所述终端设备发送所述第一指示消息。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备采用小时延延迟分集CDD发送所述第一信号;
所述终端设备在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
可选地,所述第一功率控制策略和/或第一传输模式,包括:
所述终端设备满功率发送所述第一信号的功率控制策略;和/或
所述终端设备满功率发送所述第一信号的传输模式。
本发明第六方面提供一种终端设备,包括:
接收单元,用于接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
确定单元,用于基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式;
发送单元,用于基于所述第一功率控制策略和/或所述第一传输模式发送所述第一信号。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数 据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
所述终端设备将在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,还包括:检测单元,
所述检测单元,用于检测到所述第一指示消息所指示的所述码本子集限 制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;
所述检测单元,用于检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;
所述检测单元,用于检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号,
所述确定单元,还用于所述传输流数自定义确定与所述传输流数对应的预编码矩阵,并基于所述预编码矩阵发送所述第一信号;或
采用单元,用于采用与所述传输流数对应的默认的预编码矩阵发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
本发明第七方面提供一种计算机存储介质,其上存储有计算机程序所述计算机程序被处理器执行时实现第一方面提供的任一项所述的方法,或者实现第二方面提供的任一项所述的方法。
利用本发明提供的一种信号传输的方法、网络设备及终端设备,可以解决现有技术中无法控制UE使用满功率发送上行信号的技术问题。
附图说明
图1为本申请实施例所提供的一种基于码本的上行传输的示意图;
图2为本申请实施例所提供的一种信号传输的方法的流程图;
图3a为本申请实施例所提供的一种发送第一信号的天线端口与SRI指示的SRS资源包含的天线端口对应关系示意图;
图3b为本申请实施例所提供的一种发送第一信号的天线端口与SRI指示的SRS资源包含的天线端口对应关系示意图;
图4a为本申请实施例所提供的一种用于使用两个天线端口的单层传输的预编码矩阵;
图4b为本申请实施例所提供的一种DFT-S-OFDM波形下的四个天线端口的单层传输的预编码矩阵;
图4c为本申请实施例所提供的一种CP-OFDM波形下使用四个天线端口进行单层传输的预编码矩阵;
图4d为本申请实施例所提供的一种CP-OFDM波形下使用两个天线端口进行双层传输的预编码矩阵W;
图4e为本申请实施例所提供的一种CP-OFDM波形下用于使用四个天线端口进行两层传输的预编码矩阵W;
图4f为本申请实施例所提供的一种CP-OFDM波形下用于使用四个天线端口进行三层传输的预编码矩阵W;
图4g为本申请实施例所提供的一种CP-OFDM波形下用于使用四个天线端口进行四层传输的预编码矩阵W;
图5为本申请实施例所提供的一种信号传输的方法的流程图;
图6为本申请实施例所提供的一种网络设备的结构示意图;
图7为本申请实施例所提供的一种终端设备的结构示意图;
图8为本申请实施例所提供的另一种网络设备的结构示意图;
图9为本申请实施例所提供的另一种终端设备的结构示意图。
具体实施方式
本申请实施例提供的方案中,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
为了更好的理解上述技术方案,下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
为使本申请的目的、技术方案和优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本申请的实施例中,传输流(stream)有时又被称为层(layer),流数又被称为层数。
下面介绍本申请实施例的背景技术。
3GPP NR Release 15和Release 16版本的NR系统的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)支持基于码本的传输和非码本传输两种上行传输方案。其中,基于码本的上行传输方案是基于固定码本确定上行传输预编码矩阵的多天线传输技术。
在NR系统中,如图1所述,基于码本的上行传输方案的流程大致为:UE向基站发送用于基于码本的上行传输方案CSI(Channel state information,信道状态信息)获取的SRS(Sounding Reference Signal,探测参考信号)。基站根据UE发送的SRS进行上行信道检测,对UE进行资源调度,并确定出上行传输对应的SRS资源、上行传输的层数和预编码矩阵,进一步根据预编码矩阵和信道信息,确定出上行传输的MCS(Modulation and Coding,调制编码方式),然后基站将PUSCH的资源分配和相应的MCS、TPMI(Transmit Precoding Matrix Indicator,传输预编码矩阵指示)、传输层数和对应的SRI(SRS resource indicator,SRS资源指示)通知给UE。UE根据基站指示的MCS对数据进行调制编码,并利用所指示的SRI、TPMI和传输层数确定数据发送时 使用的预编码矩阵和传输层数,进而对数据进行预编码及发送。PUSCH解调导频与PUSCH的数据采用相同的预编码方式。基站根据解调导频信号估计上行信道,并进行数据检测。
对于UE的MIMO传输,其传输天线与射频的特性与基站有较大差别,码本设计上需要充分考虑天线间的相关特性。当两个天线端口满足相干条件时,UE可以通过预编码利用这两个天线端口同时进行同一层的数据传输,以获得阵列增益。然而,由于天线阵元的互耦效应、馈线差异以及射频通路的放大器相位和增益的变化等因素的影响,实际的UE天线各端口间不可避免地存在功率和相位等方面的差异。受限于成本和设计,不是所有的UE都可以将各天线端口校准至满足相干传输需求的程度。对于不能做到天线相干传输的UE,基站在计算TPMI时UE天线间的相位差和UE接收到TPMI后进行PUSCH传输时天线间的相位差之间可能存在较大的差值。如果TPMI指示了不能相干传输的天线用于相同数据层的传输的话,UE最优的上行传输预编码可能并不是TPMI所指示的预编码,即UE使用基站通过TPMI指示的预编码进行PUSCH的传输并不能获得较好的性能。
因此,基站可以基于UE的天线相干传输能力向UE发送码本子集限制信令,限制UE使用其中的一部分码字用于上行传输。NR系统定义了三种UE的天线相干传输能力,分别为:full-coherent(全相干),也就是所有的天线都可以相干传输;partial-coherent(部分相干),也就是同一相干传输组内的天线可以相干传输,相干传输组之间不能相干传输,每个相干传输组包含2个天线;non-coherent(非相干),也就是没有天线可以相干传输。
UE的天线相干传输能力(或者成为UE的天线的相干能力)通过UE支持的码本子集类型参数--UE能力参数MIMO-ParametersPerBand里的pusch-TransCoherence参数指示(可参见3GPP协议TS38.306和TS38.331)。pusch-TransCoherence用来定义UE对于PUSCH进行预编码时支持的上行码本子集类型,其取值可以为nonCoherent,partialNonCoherent,或fullCoherent。当pusch-TransCoherence取值为nonCoherent时,UE只支持非相干传输的码 本子集。由于非相干传输的码本子集里的码字都是非相干传输类型的码字,因此可以认为pusch-TransCoherence取值为nonCoherent对应于终端的所有天线都不能相干传输(对应于UE的天线相干传输能力为非相干)。当pusch-TransCoherence取值为partialNonCoherent时,UE只支持非相干传输的码本子集和部分相干传输的码本子集。由于部分相干传输的码本子集里的码字都是部分相干传输类型的码字,因此可以认为pusch-TransCoherence取值为partialNonCoherent对应于终端同一相干传输组内的天线可以相干传输(对应于终端的天线的相干传输能力为部分相干)。当pusch-TransCoherence取值为fullCoherent时,UE支持非相干传输的码本子集、部分相干传输的码本子集和全相干传输的码本子集,即码本中的所有码字。此时可以认为pusch-TransCoherence取值为fullCoherent对应于终端所有的天线可以相干传输(对应于终端的天线的相干能力为全相干)。
UE对于PUSCH进行预编码时支持的上行码本子集类型中,不同传输类型的码字具有不同的限制条件,非相干传输类型的码字满足的条件为:每个PUSCH层只有一个激活的天线端口,即只有一个天线端口对应非零元素;部分相干传输的码字满足的条件为:每个PUSCH层最多有两个激活的天线端口,并且至少存在一个PUSCH有两个激活的天线端口,即只有两个天线端口对应的元素为零;全相干传输的码字满足的条件为:至少存在一个PUSCH使用所有的天线端口。也就是说,部分相干传输的码字中的任一列只有对应属于同一相干传输天线组的非零元素(在3GPP NR系统中,第一天线和第三天线为一个相干传输天线组,第二天线和第四天线为另一个相干传输天线组);非相干传输码字中的任一列只对应于一个天线的非零元素,全相干传输码字中至少一列所有元素非零。
在NR系统中,UE具有特定的PC(power class,功能等级)能力,即UE需要满足的一个最大输出功率的要求。例如,对于功率等级为PC3的UE,其最大输出功率需要可以达到23dBm;对于功率等级为PC2的UE,其最大输出功率需要可以达到26dBm。对于一个具有多个PA的UE来说,它可以通 过使用多个PA同时发送来达到最大输出功率要求。即,不要求UE的每个PA可以达到UE的功率等级所要求的最大输出功率。举例来说,对于一个有2根发送天线(或两个PA),每个发送天线(或PA)都可以达到20dBm的UE,它可以通过两根天线同时发送达到23dBm,则这个UE是一个PC3的UE。
为了便于理解,举例来说,假设上行传输配置了4个天线端口,基站指示的预编码矩阵为如式(1),UE根据PUSCH功率控制公式计算出的发送功率为P,则PUSCH的实际发送功率为P/2,其中,第一个天线端口和第三个天线端口的发送功率各为P/4。这种缩放不要求UE的每个天线端口都可以达到最大发送功率,允许UE使用更低成本的射频元件实现多天线功能。
Figure PCTCN2020086518-appb-000001
从UE性能的角度来说,当UE位于小区边缘或信道条件较差时,基站通常给UE配置一个低传输流数(或者成为秩rank)的传输,且尽可能地以最大发送功率传输数据。在NR系统的码本设计下,对于基于码本的上行传输来说,当基站确定出上行传输对应的SRS资源包含的天线端口数与UE支持的一个SRS资源包含的最大天线端口数相等时,并且基站所指示的TPMI为不相干或部分相干码字时,UE无法使用满功率发送能力发送上行信号。
在NR系统R16版本中,定义了三种UE的满功率发送能力,分别为:能力1,UE的每个PA(Power Amplifier,功率放大器)都可以达到UE功率等级(Power class,PC)所对应的最大功率;能力2,UE支持满功率发送,但是没有一个PA可以达到UE功率等级所对应的最大发送功率;能力3,UE支持满功率发送,且部分PA可以达到UE功率等级所对应的最大发送功率。
还定义了五种终端使用满功率发送能力发送上行信号的策略,分别为:策略1、为非相干传输能力或部分相干传输能力的终端引入新的上行码本;策略2、UE透明地使用CCD(Cyclic Delay Diversity,小时延迟分集)或线性时 延发送上行信号;3、修改UE上行MIMO的功率控制规则;4、UE自定义实现如何满功率发送;5、UE自定义确定各个预编码矩阵对应的PUSCH的发送功率的缩放系数,并保证同一个预编码矩阵在不同的PUSCH的传输时刻使用相同的缩放系数。
下面结合说明书附图介绍本申请实施例提供的技术方案。
请参见图2,本申请实施例提供一种信号传输的方法,该方法的流程描述如下。由于信号传输方法中涉及到终端设备和网络设备之间的交互过程,因此在以下的流程描述中,终端设备和网络设备所执行的过程将一同进行描述。
S201,确定第一指示消息,第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号。
考虑到在NR系统的码本设计下,对于基于码本的上行传输来说,具有部分天线相干传输能力和非相干传输能力的终端设备传输时总是基于相同的MIMO功控策略传输第一信号,网络设备无法根据终端的功率能力以及指示终端在不同信道状态下采用不同的功率控制策略和/或传输模式发送第一信号。所以,本申请实施例中,网络设备可以确定第一指示消息,第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号,则通过第一消息的不同状态,可以指示终端采用不同的功率控制策略或传输模式发送第一信号。当第一指示消息指示具有部分天线相干传输能力和非相干传输能力的终端设备满功率发送第一信号时,终端设备可以用更大的功率发送第一信号,进而提高终端设备的传输性能。
具体的,第一信号可以是物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
具体的,终端设备向网络设备发送基于码本的上行传输的SRS,网络设备根据终端设备发送的SRS进行上行信道的检测,然后,基于上行信道检测结果确定第一指示消息。
例如,终端设备在小区边缘时,网络设备检测到上行信道的状态较差,网络设备确定第一指示消息,该第一指示消息指示终端设备满功率发送第一 信号,终端设备基于第一指示消息的指示,提高终端设备的发送功率,进而提高了终端设备抗扰性,使得终端设备获得更好的性能。
例如,终端设备处于小区中心,网络设备检测到上行信道的状态较好,网络设备确定第一指示消息,该第一指示消息指示终端设备非满功率发送第一信号,终端设备基于第一指示消息的指示,降低终端设备的发送功率,进而降低终端设备对其他设备的干扰。
其中,第一功率控制策略可以包括如下几种:
第一种,终端设备将第一发送功率均匀分配到第一信号存在数据非零传输的各个天线端口。其中,第一发送功率可以是指终端设备根据上行功率控制公式计算得到的发送功率。在第一信号为PUSCH时,第一发送功率可以是PUSCH(Physical uplink shared channel,物理上行共享信道)的发送功率,例如:协议中已定义或者后续协议版本新定义的PUSCH的发送功率。或者上述上行信道发送功率可以是终端设备采用功率计算公式计算出的上行信道发送功率,其中,功率计算公式可以是协议中定义的功率计算公式,本发明实施例中,对功率计算公式不作限定,可以是协议中已定义的功率计算公式也可以是后续协议版本中新定义的功率计算公式。举例来说,在NR系统Rel-15版本的协议中,采用功率计算公式计算出的上行信道发送功率可以为根据TS38.213的第7.1.1节的公式计算出的功率P PUSCH,b,f,c(i,j,q d,l)。
为了便于理解,举例来说明,假设上行传输配置了4个天线端口,基站指示的预编码矩阵W为如式(2),终端设备根据UE根据上行功率控制公式计算出的第一发送功率为P,若第一个天线端口和第三个天线端口为实际传输第一信号的天线端口,则第一个天线端口和第三个天线端口的发送功率为P/2,即终端设备不对P进行缩放,直接将P均匀分配到第一天线端口和第三天线端口。
若第一天线端口为传输第一信号的天线端口,则第一天线端口的发送功率为P,即终端设备不对P进行缩放,直接将P均匀分配到第一天线端口。
Figure PCTCN2020086518-appb-000002
第二种,终端设备对第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送第一信号的天线端口;其中,第一缩放因子为第一信号存在数据非零传输的天线端口数与第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值。
为了便于理解,举例来进行说明。在NR系统中,假设探测参考信号资源指示SRI所指示的SRS资源包含的天线端口的个数为4,在上行传输配置的天线端口有2个天线端口用于传输第一信号,即终端设备确定第一缩放因子为1/2。终端设备根据UE根据上行功率控制公式计算出的第一发送功率为P。终端设备对上行MIMO的多天线分配方式为:先基于第一缩放因子对P进行缩放,即缩放后的发送功率为P/2,然后,缩放后的发送功率P/2均匀的均匀分配到用于传输第一信号的2个天线端口,即每个传输第一信号的天线端口的功率为P/4。
第三种,若每个发送第一信号的天线端口均可以达到终端设备的功率等级所支持的最大输出功率,则终端设备将第一发送功率均匀分配到第一信号存在数据非零传输的天线端口;否则,终端设备对第一发送功率通过第二缩放因子进行缩放后,均匀分配到第一信号存在数据非零传输的天线端口;其中,第二缩放因子为第一信号存在数据非零传输的天线端口的个数与终端设备支持的一个SRS资源包含的最大天线端口数的比值。其中,第一发送功率可以是指终端设备根据上行功率控制公式计算得到的发送功率。在第一信号为PUSCH时,第一发送功率可以是PUSCH(Physical uplink shared channel,物理上行共享信道)的发送功率,例如:协议中已定义或者后续协议版本新定义的PUSCH的发送功率。或者上述上行信道发送功率可以是终端设备采用功率计算公式计算出的上行信道发送功率,其中,功率计算公式可以是协议中定义的功率计算公式,本发明实施例中,对功率计算公式不作限定,可以 是协议中已定义的功率计算公式也可以是后续协议版本中新定义的功率计算公式。举例来说,在NR系统Rel-15版本的协议中,采用功率计算公式计算出的上行信道发送功率可以为根据TS38.213的第7.1.1节的公式计算出的功率P PUSCH,b,f,c(i,j,q d,l)。
本发明文本中,终端设备的功率等级所支持的最大发送功率可以指协议针对终端功率等级所要求的最大输出功率。例如,在NR系统Rel-15版本中,对于Power class 3的UE,最大发送功率要求(最大输出功率要求)为最大输出功率为23dBm。
具体的,通过用于发送第一信号的每个天线端口是否可以达到终端设备的功率等级所支持的最大发送功率,分为以下两种情况:
情况1、用于发送第一信号的每个天线端口均为可以达到终端设备的功率等级所支持的最大发送功率。
情况2、用于发送第一信号的天线端口中存在不可以达到终端设备的功率等级所支持的最大发送功率。
针对上述情况1,终端设备将第一发送功率均匀分配到第一信号存在数据非零传输的天线端口。
针对上述情况2,终端设备对第一发送功率通过第二缩放因子进行缩放后,均匀分配到第一信号存在数据非零传输的天线端口;其中,第二缩放因子为第一信号存在数据非零传输的天线端口的个数与终端设备支持的一个SRS资源包含的最大天线端口数的比值。
为了便于理解,下面以举例的形式进行说明。假设终端配置的传输天线端口有4个,分别为第一天线端口、第二天线端口、第三天线端口以及第四天线端口,其中,第一天线端口和第三天线端口为传输第一信号的天线端口,第一发送功率为P,终端设备支持的一个SRS资源包含的最大天线端口数为8个。若第一天线端口为非满功率发送的端口,则终端设备确定第二缩放因子为1/4,然后,基于第一缩放因子对第一发送功率进行缩放,得到缩放后的发送功率为P/4,再将缩放后的发送功率P/4均匀分配到第一天线端口和第三天 线端口,即第一天线端口和第三天线端口的发送功率为P/8。
第四种,终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到第一信号存在数据非零传输的各个天线端口;其中,第三缩放因子为第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值。其中,第一发送功率可以是指终端设备根据上行功率控制公式计算得到的发送功率。在第一信号为PUSCH时,第一发送功率可以是PUSCH(Physical uplink shared channel,物理上行共享信道)的发送功率,例如:协议中已定义或者后续协议版本新定义的PUSCH的发送功率。或者上述上行信道发送功率可以是终端设备采用功率计算公式计算出的上行信道发送功率,其中,功率计算公式可以是协议中定义的功率计算公式,本发明实施例中,对功率计算公式不作限定,可以是协议中已定义的功率计算公式也可以是后续协议版本中新定义的功率计算公式。举例来说,在NR系统Rel-15版本的协议中,采用功率计算公式计算出的上行信道发送功率可以为根据TS38.213的第7.1.1节的公式计算出的功率P PUSCH,b,f,c(i,j,q d,l)。
为了便于理解,下面以举例的形式进行说明。假设终端配置的传输天线端口有4个,分别为第一天线端口、第二天线端口、第三天线端口以及第四天线端口,其中,第一天线端口和第三天线端口为传输第一信号的天线端口,第一发送功率为P,SRI指示的SRS资源包含的天线端口的个数为6个。若第一天线端口为非满功率发送的端口,则终端设备确定第三缩放因子为2/3,然后,基于第三缩放因子对第一发送功率进行缩放,得到缩放后的发送功率为2P/3,再将缩放后的发送功率均匀分配到第一天线端口和第三天线端口,即第一天线端口和第三天线端口的发送功率为P/3。
第五种,终端设备采用与第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略。
例如,SRI指示的SRS资源包含的天线端口数与功控策略之间存在预设的关系,假设SRI指示的SRS资源包含的天线端口数为4,对应的功率控制策略“终端设备将第一发送功率均匀分配到发送第一信号使用的预编码矩阵 中实际存在数据传输的每个天线端口”,SRI指示的SRS资源包含的天线端口数为2,对应的功率控制策略“终端设备对第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送第一信号的天线端口”。终端设备基于SRI指示的SRS资源包含的天线端口数以及预设的关系找到对应的功控策略。
第六种,终端设备对第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送第一信号的天线端口;其中,第四缩放因子是终端设备自定义的缩放系数,其中,第一发送功率是指终端设备根据上行功率控制公式计算得到的发送功率。
进一步,第一传输模式可以包括如下几种:
第一种,终端设备采用小时延延迟分集CDD传输第一信号。
第二种,终端设备在不同相干传输天线端口上采用不同时延。
例如,终端所配置的用于传输第一信号的天线端口有4个,分别为天线端口1、天线端口、天线端口3和天线端口4,其中,天线端口1与天线端口3为不相干传输端口,终端设备在第一天线端口所采用的时延为1s,在天线端口3所采用的时延为2s。
第三种,终端设备发送第一信号的一个天线端口对应于第一信号的调度信息指示的SRS资源包含的至少两个天线端口。
终端设备可以根据采用的SRI指示的SRS资源确定模拟波束赋形,基于模拟波束赋形将发送第一信号的端口进行虚拟化处理,使得终端设备发送第一信号的一个天线端口对应于SRI指示的SRS资源包含的至少两个天线端口,具体的至少包括以下两种情况:
情况1,如图3a所示,终端设备采用至少两个天线端口发送第一信号,每个发送第一信号的端口对应SRI指示的SRS资源包含的至少两个天线端口。
情况2,如图3b所示,终端设备采用单天线端口发送第一信号,该单天线端口对应SRI指示的SRS资源包含的所有的天线端口。
第四种,终端设备对第一信号通过预定义的预编码矩阵进行预编码后传输。
具体的,预定义的预编码矩阵可以是协议约定的预编码矩阵,也可以是端设备默认的预编码矩阵,也可以是终端设备与网络设备约定预编码矩阵。
S202,向终端设备发送第一指示消息。
具体的,网络设备向终端设备发送第一指示消息可以包括以下两种方式:
方式1、第一指示消息可以承载在高层动态信令RRC中。
方式2、第一指示消息可以承载在下行控制信息DCI中。
具体的,第一指示消息承载在DCI中又包括如下至少两种方式:
第一种,第一指示消息可以承载在下行控制信息DCI的第一字段。
具体的,DCI可以包括多个字段,例如,DCI可以同时包括承载第一指示消息的第一字段、TPMI字段以及RI字段等;也可以包括一个字段。例如,DCI可以只包括第一字段,不包括TPMI字段、TRI指示字段等。
可能的实现方式中,第一字段包括多个状态,多个状态中至少一个状态指示第一功率控制策略和/或第一传输模式。
例如,第一字段包括2比特,包括4个状态(如,状态0取值为00,状态1取值为01,状态2取值为10,状态3取值为11),其中,状态0表示终端设备不对第一发送功率进行缩放,直接将第一发送功率均匀分配到用于传输第一信号的每个天线端口。状态1表示终端设备采用第一缩放因子对第一发送功率缩放后,将缩放后的发送功率均匀分配到用于传输第一信号的每个天线端口。状态2表示终端设备采用小时延延迟分集发送第一信号。状态3表示终端设备在不相干的天线端口采用不同时延发送第一信号。
具体的,第一指示消息可以承载在下行控制信息DCI的第一字段,一些示例如下:
情况1、第一字段为预定义的字段。
具体的,网络设备通过DCI的预定义的字段指示终端满功率发送上行信号,可能的实现方式中,多个状态中包括以下几种状态:
(1)第一字段至少包括一个指示终端不进行满功率发送的状态。
具体的,终端设备接收到第一指示消息后,若检测到第一字段中包含有 指示终端不进行满功率发送的状态,终端设备使用非满功率发送的功率控策略确定第一信号的发送功率。例如,第一信号为PUSCH时,终端设备按照如下的方式确定PUSCH的发送功率:根据上行功率控制公式计算出PUSCH发送功率,确定实际非零发送信号的天线端口数与终端支持的SRS资源包含的最大天线端口数的比值,基于该比值对计算出PUSCH发送功率进行缩放,然后将缩放后的发送功率均匀的分配给实际信号的天线端口。
(2)第一字段至少包括两个指示不同的第一功率控制策略的状态。
具体的,若终端设备检测到第一字段至少包含两个指示不同的第一功率控制策略的状态,例如,一个状态指示终端设备使用第一功率控制策略中的第一种功率控制策略,另一个状态指示终端设备使用第一功率控制策略中的第二种功率控制策略。终端设备基于每个状态所指示的功率控制策略对计算出上行发送功率进行缩放,然后将缩放后的发送功率均匀的分配给实际信号的天线端口。
(3)第一字段至少包括一个指示终端的码本子集限制信息的状态。
具体的,若终端设备检测到至少包含一个指示终端的码本子集限制信息的状态,基于该至少一个状态所指示的码本子集限制信息确定上行信号的码本子集,然后,终端设备基于码本子集进行上行信号的传输。
(4)第一字段至少包括一个指示第一信号的传输流数的状态。
具体的,终端设备检测到第一字段至少包含一个指示第一信号的传输流数的状态,基于至少一个状态所指示的传输流数,确定上行信号的传输流数,并基于传输流数进行上行信号传输。
进一步,网络设备通过DCI的预编码信息和流数字段指示终端设备满功率发送上行信号,
(5)第一字段至少包括两个指示第一传输模式的状态。
具体的,若终端设备检测到第一字段至少包含两个指示第一传输模式的状态,例如,一个状态指示终端设备使用第一传输模式中的第一种传输模式,另一个状态指示终端设备使用第一传输模式中的第二种功率控制策略。终端 设备基于每个状态所指示的传输模式传输上行信号。
情况2、第一字段为预编码信息和流数字段。
具体的,网络设备通过DCI的预编码信息和流数字段指示终端满功率发送上行信号,所述第一指示消息中包括以下4种状态:
(1)第一指示消息指示第一信号所对应的传输流数。
具体的,终端设备检测所述第一指示消息指示第一信号所对应的传输流数又包括以下两种方式:
方式1、第一指示消息指示第一信号所对应的传输流数,不指示预编码信息编号。
可选地,终端设备检测到第一字段指示第一指示信息,第一指示信息同时指示传输策略和第一信号对应的传输流数。终端根据所述传输流数确定预编码矩阵,然后,基于预编码矩阵对第一信号进行预编码后即与所属第一指示信息指示的功率控制策略发送预编码后的第一信号。终端设备根据第一信号的传输流数确定预编码矩阵的方式至少包括以下几种:
第一种,终端设备基于采用与第一信号的传输流数对应的默认的预编码矩阵。
具体的,默认的预编码矩阵可以是协议预定的,也可以是终端设备基于传输流数与默认的预编码矩阵之间预设的关系,确定出第一信号传输流数对应的预编码矩阵。
例如,2天线端口单流传输时,默认的预编矩阵为[1 1] T;4天线端口单流传输时,默认的预编矩阵为[1 1 1] T
第二种,终端设备根据第一指示消息指示的传输流数自定义选择与第一信号传输流数对应的预编码矩阵。
可实施的方式中,终端设备根据第一指示消息指示的传输流数可以选择所有的天线端口所对应的预编码矩阵。
可实施的方式中,终端设备根据第一信号传输流数与预编码矩阵之间映射关系,确定出与第一传输流数对应的编码矩阵。
可实施的方式中,第一指示消息还指示终端设备不对第一信号的发送功率进行缩放。
可实施的方式中,第一字段多个状态中的至少一个指示传输流数,预编码矩阵信息编号以及功率控制策略和/或传输模式。
方式2、第一指示消息指示第一信号所对应的传输流数,同时指示预编码信息编号。
例如,终端设备检测到第一指示消息指示一种功控策略,以及第一信号所对应的预编码矩阵信息编号时和传输流数,终端设备基于所述第一指示消息指示的传输流数确定上行信号的传输流数,以及基于预编码矩阵信息编号时确定第一信号对应的预编码矩阵,并采用所述预编码矩阵和传输流数利用第一指示信息指示的功率策略传输所述第一信号。图4a-4g表示,NR系统中不同的预编码矩阵。
如图4a表示:用于使用两天线端口的单层传输的预编码矩阵W,其中,TPMI index为0~1的码字为非相干传输的码字;其他码字为全相干传输的码字。
如图4b表示:DFT-S-OFDM波形下的四个天线端口的单层传输的,Precoding matrix W for single-layer transmission using four antenna ports with transform precoding enabled(预编码矩阵W)。其中,TPMI index为0~3的码字为非相干传输的码字;TPMI index为4~11的码字为部分相干传输的码字;其他码字为全相干传输的码字。
如图4c:CP-OFDM波形下使用四个天线端口进行单层传输的Precoding matrix W for single-layer transmission using four antenna ports with transform precoding disabled(预编码矩阵W)。其中,TPMI index为0~3的码字为非相干传输的码字;TPMI index为4~11的码字为部分相干传输的码字;其他码字为全相干传输的码字。
如图4d:CP-OFDM波形下使用两个天线端口进行双层传输的Precoding matrix W for two-layer transmission using two antenna ports with transform  precoding disabled(预编码矩阵W)。其中,TPMI index为0的码字为非相干传输的码字;TPMI index为1~2的码字为全相干传输的码字。
如图4e:CP-OFDM波形下用于使用四个天线端口进行两层传输的Precoding matrix W for two-layer transmission using four antenna ports with transform precoding disabled(预编码矩阵W)。其中,TPMI index为0~5的码字为非相干传输的码字;TPMI index为6~13的码字为部分相干传输的码字;其他码字为全相干传输的码字。
如图4f:CP-OFDM波形下用于使用四个天线端口进行三层传输的Precoding matrix W for three-layer transmission using four antenna ports with transform precoding disabled(预编码矩阵W)。其中,TPMI index为0的码字为非相干传输的码字;TPMI index为1~2的码字为部分相干传输的码字;其他码字为全相干传输的码字。
如图4g:CP-OFDM波形下用于使用四个天线端口进行四层传输的Precoding matrix W for four-layer transmission using four antenna ports with transform precoding disabled(预编码矩阵W)。其中,TPMI index为0的码字为非相干传输的码字;TPMI index为1~2的码字为部分相干传输的码字;其他码字为全相干传输的码字。
(2)第一指示消息指示第一信号所对应的预编码矩阵信息编号,不指示传输流数。
可选的,所述第一指示信息同时指示一个功率控制策略和一个预编码矩阵编号信息,终端设备根据所述预编码矩阵编号基于预定义的传输流数确定上行信号的预编码矩阵,并基于所述预编码矩阵进行上行信号的传输。可选地,所述功控策略为终端不对上行信号的发送功率进行缩放。
(3)第一指示消息不指示传输流数和预编码矩阵信息编号。
可实施的方式中,第一指示消息只指示终端设备使用的功率策略或传输模式,并不指示终端设备的传输流数和预编码矩阵信息编号。
具体的,终端设备接收到第一指示消息之后,检测到第一字段所对应的 多个状态中没有状态指示传输流数和预编码矩阵信息编号,则终端设备采用预定义的功控策略或传输模式发送所述第一信号。
可选地,一种传输模式为,终端基于默认的传输流数,采用自定义的预编码矩阵使用第一功率发送所述第一信号,所述第一功率为终端根据第一信号的功率控制公式计算出来的功率。
终端设备确定默认的传输流数的方式至少有以下3种方式:
方式1、默认的传输流数为终端设备和网络设备约定的。例如,默认的传输流数为1。
方式2、默认的传输流数是终端设备自定义的。例如,网络设备将默认的传输流数指示给终端设备,终端设备基于网络设备的指示确定默认的传输流数。
方式3、默认的传输流数是网络设备确定的。例如,终端设备向网络设备发送默认的传输流数指示信息,网络设备基于终端设备的指示确定默认的传输。
一些使用预编码信息和流数域指示第一指示信息的示例为:
(1)预编码信息和流数域中增加至少一个状态,或者使用至少一个预留状态,所述状态用来指示终端满功率发送。
以2天线端口最大单流传输时的预编码信息和流数域的指示方式为例,下表1表示且最大秩数等于1时,2个天线端口下使用DFT-S-OFDM波形或OFDM波形时“预编码信息和层数”指示域指示的信息。其中,当码本子集限制为“nonCoherent”时,状态2对应于终端满功率发送的方式。可选地,所述终端满功率发送的方式是指终端利用根据PUSCH的功控公式计算出的发送功率进行单流的PUSCH传输。
表1
Figure PCTCN2020086518-appb-000003
(2)预编码信息和流数域中至少一个状态,所述状态用来指示终端满功率发送及传输流数。
以在CP-OFDM波形下,PUSCH 2天线端口最大2流传输时的预编码信息和流数域的指示方式为例,下表2表示最大秩数等于2时,2个天线端口下使用CP-OFDM波形时“预编码信息和层数”指示域指示的信息。其中,在码本子集限制为“nonCoherent”时的状态3,对应于指示终端满功率发送,且传输流数为1;在码本子集限制为“nonCoherent”时的状态4,对应于指示终端满功率发送,且传输流数为1。可选地,所述终端满功率发送的方式是指终端利用根据PUSCH的功控公式计算出的发送功率进行PUSCH传输。则在状态3终端采用满功率进行单流的PUSCH传输。在状态4,终端采用满功率进行两流的PUSCH传输。
表2
Figure PCTCN2020086518-appb-000004
Figure PCTCN2020086518-appb-000005
(3)预编码信息和流数域中增加至少一个状态,或者使用至少一个预留状态,所述状态用来指示终端满功率发送及预编码矩阵和传输流数。
以在CP-OFDM波形下,PUSCH 2天线端口最大2流传输时的预编码信息和流数域的指示方式为例,下表3表示最大秩数等于2时,2个天线端口下使用CP-OFDM波形时“预编码信息和层数”指示域指示的信息。其中,当码本子集限制为“nonCoherent”时的状态3-5,对应于指示终端满功率发送。在指示状态3时,指示终端使用传输流数为1,预编码矩阵TPMI=0,满功率发送PUSCH;在状态4,对应于指示终端使用传输流数为1,预编码矩阵TPMI=1满功率发送PUSCH;在状态5,对应于指示终端使用传输流数为2,预编码矩阵TPMI=0满功率发送PUSCH。可选地,所述终端满功率发送的方式是指终端利用根据PUSCH的功控公式计算出的发送功率在存在非零数据传输的所有天线端口上均匀分配的方式进行PUSCH传输。
表3
Figure PCTCN2020086518-appb-000006
(4)预编码信息和流数域中增加至少一个状态,或者使用至少一个预留状态,所述状态用来指示终端满功率发送及预编码矩阵。
以在CP-OFDM波形下,PUSCH 2天线端口最大2流传输时的预编码信息和流数域的指示方式为例,下表4表示最大秩数等于2时,2个天线端口下使用CP-OFDM波形“预编码信息和层数”指示域指示的信息。其中,当码本子集限制为“nonCoherent”时的状态3-4,对应于指示终端满功率发送。在指示状态3时,指示终端预编码矩阵TPMI=0,满功率发送PUSCH;在状态4,对应于指示终端使用预编码矩阵TPMI=1满功率发送PUSCH。可选地,所述终端满功率发送的方式是指终端基于单流和单流时对应的所述预编码信息和流数域指示的预编码矩阵利用根据PUSCH的功控公式计算出的发送功率在存在非零数据传输的所有天线端口上均匀分配的方式进行PUSCH传输。
表4
Figure PCTCN2020086518-appb-000007
情况3、第一字段为SRI字段。
具体的,网络设备通过DCI中的SRI资源字段指示终端设备使用满功率发送第一信号的功率控制策略和/或传输模式,同时SRI字段的状态还指示第一信号对应SRS资源。终端设备接收到SRI字段之后,检测到SRI字段的状态指示终端设备使用满功率发送第一信号,以及根据SRI字段的状态指示确定第一信号对应的SRS资源,基于确定的SRS资源终端设备使用SRI字段指示的功率控制策略和/或传输模式发送第一信号。
情况4、第一字段为解调参考信号DMRS端口指示字段。
本申请实施例中,网络设备通过确定第一指示消息,第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式,并将第一指示消息发送给终端设备。因此,网络设备通过第一指示消息来指示终端设备发送第一信号的第一功率控制策略和/或第一传输模式,避免终端设备基于相同的功率控制策略发送第一信号,导致终端设备无法控制UE使用满功率发送上行信号的问题。
本申请可以通过下面实施例进行说明。
实施例一:
在DCI中引入一个专门的信息域指示终端满功率发送上行信号,所述信息域包含一个或多个状态指示终端满功率发送上行信号。若终端检测到该信息域指示终端满功率发送上行信号,终端使用所述指示对应的满功率发送所述上行信号的功率控制方案和/或满功率发送所述上行信号传输方式发送所述上行信号。
可选地,该信息域的不同状态用来指示不同的上行信号发送行为。
可选地,该信息域至少包含一个状态指示终端不进行满功率发送。若终端检测到该信息域指示终端不进行满功率发送,终端使用非满功率发送的上行功率控制方案确定上行信号的发送功率。例如,当上行信号为PUSCH时,UE按照如下方式确定PUSCH的发送功率:将根据上行功率控制公式计算出的PUSCH的发送功率(在NR系统中,对应于TS 38.213-f40中第7.1.1节中的P PUSCH,b,f,c(i,j,q d,l))按照实际非零发送信号的端口数与终端支持的一个SRS资源包含的最大SRS端口数中的比进行功率缩放,然后将缩放后的功率在实际发送信号的天线端口上均分。
可选地,该信息域至少包含两个用来指示不同的上行发送功率控制方案的状态。例如,该信息域的一个取值指示终端使用第一种上行发送功率控制方案,另一个取值表示指示终端使用第二种上行发送功率控制方案。
可选地,该信息域至少包含一个指示终端的码本子集限制信息的状态。若终端检测到该信息域的状态指示终端码本子集限制,终端根据该信息域确 定上行信号的码本子集。在这种方案下,基站可以动态地向终端指示码本子集限制。
可选地,该信息域包含一个或多个用来指示上行信号的传输流数的状态。若所述信息域指示了上行信号的传输流数,终端使用所述传输流数进行上行信号的传输,即上行信号的传输流数为所述传输流数。
可选地,该信息域至少包含两个用来指示满功率发送的上行传输方式的状态
举例来说,所述信息域包含1比特,一个状态指示终端满功率发送,一个状态指示终端非满功率发送。
应当理解的是,本发明不排除该信息域的一个取值同时指示上行发送功率控制方案和码本子集限制信息的情况。
可选地,该信息域与上行信号的TPMI、RI指示等调度信息总是同时存在。
可选地,该信息域是个独立的信息域,可以在没有TPMI、TRI指示的DCI中指示。
可选地,只有在终端为具有满功率发送能力的终端,且用于基于码本的上行传输的CSI获取的SRS资源包含的天线端口数大于1时,DCI中存在所述信息域;否则,DCI中所述信息域的比特数为0.
实施例二:
基站通过DCI中的Precoding information and number of layers(预编码信息和层数)域指示终端满功率发送上行信号。即预编码信息和流数域的一个或多个状态用来指示终端满功率发送上行信号。当终端检测到预编码信息和流数域的状态为指示终端满功率发送上行信号的状态时,终端满功率发送上行信号。
可选地,用来指示终端满功率发送上行信号的预编码信息和流数域的不同状态用来指示不同的满功率发送上行信号的行为。即终端检测到预编码信息和流数域的状态为指示终端满功率发送上行信号的状态时,终端对于不同 的状态采用不同的满功率发送上行信号的行为。
可选地,用来指示终端满功率发送上行信号的预编码信息和流数域的状态不包含TPMI index(预编码矩阵信息索引)指示,包含传输流数指示。终端根据所述指示信息确定上行信号的传输流数,满功率发送所述上行信号,所述上行信号的传输流数为终端根据所述指示信息确定的传输流数。终端确定上行信号的传输流数为传输流数指示来指示的传输流数。基站基于所述传输流数对所述上行信号进行检测和译码。
这里终端满功率发送所述上行信号,为终端不对上行信号的发送功率进行MIMO缩放。
可选地,所述终端的每个PA都无法达到对UE的PC等级所要求的最大发送功率,终端通过天线虚拟化的方式使用多个PA发送所述上行信号。
可选地,终端使用可以达到对UE的PC等级所要求的最大发送功率的PA发送所述上行信号。
可选地,终端自行选择对应于所述传输流数的预编码矩阵发送所述上行信号。
可选地,终端使用对应于所述传输流数的默认的预编码矩阵发送所述上行信号。
可选地,所述默认的预编码矩阵是协议约定的。
可选地,所述默认的预编码矩阵是终端自己选择的。
可选地,2天线端口单流传输时默认的预编码矩阵为[1 1] T(注:这里没有考虑预编码矩阵的幅度系数).
可选地,4天线端口单流传输时默认的预编码矩阵为[1 1 1 1] T(注:这里没有考虑预编码矩阵的幅度系数).
可选地,终端使用所有的天线端口发送所述上行信号。
可选地,用来指示终端满功率发送上行信号的预编码信息和流数域的状态不包含TPMI index(预编码矩阵信息索引)指示,也不包含传输流数指示。终端根据所述指示信息采用默认的传输流数进行所述上行信号的传输,且终 端不对上行信号的发送功率进行MIMO缩放。基站基于所述默认的传输流数对上行信号进行检测和译码。
优选地,默认的传输流数为1.
可选地,所述默认的传输流数是终端确定的。终端向基站发送默认的传输流数的指示信息。基站根据终端的指示信息确定默认流数。
可选地,所述默认的传输流数是基站指示给终端的。终端根据基站指示的信息确定默认的传输流数。
可选地,终端使用默认的预编码矩阵发送所述上行信号。
可选地,2天线端口单流传输时默认的预编码矩阵为[1 1] T(注:这里没有考虑预编码矩阵的幅度系数).
可选地,4天线端口单流传输时默认的预编码矩阵为[1 1 1 1] T(注:这里没有考虑预编码矩阵的幅度系数).
可选地,终端使用small delay CDD的方式发送所述上行信号。
可选地,终端使用在部分天线端口上增加小时延的方式发送所述上行信号。
可选地,终端通过天线虚拟化的方式使用多个PA发送所述上行信号。
可选地,终端使用可以达到对UE的PC等级所要求的最大发送功率的PA发送所述上行信号。
可选地,PUSCH端口与SRI指示的SRS资源内的SRS端口一一对应(注:现有的基于码本的传输方案为一一对应的)。
可选地,PUSCH端口不再与SRI指示的SRS资源的SRS端口一一对应。
可选地,终端根据采用与SRI指示的SRS资源确定模拟波束赋形。
可选地,终端进行单端口的PUSCH传输。
一个示例如下图所示,假设SRI指示的SRS端口包含4个天线端口,终端最大可以进行单流传输,基站指示的码本子集限制为非相干码本。则当预编码信息和流数域对应于index 4时,基站指示终端进行满功率发送,终端传输单流的PUSCH,终端自行确定PUSCH端口与SRS端口是否存在关系以及 存在何种的关系。可选地,终端进行单端口的PUSCH传输,例如采用类似于DCI format 0_0调度时传输PUSCH的方式传输PUSCH,PUSCH的端口与SRI指示的SRS资源的SRS端口不再一一对应。这种方式的优点在于基站不需要为终端配置单端口的SRS资源,终端也可以实现单端口的PUSCH传输。此外,可以使用预编码信息和流数域的预留比特发送指示终端满功率发送的指示信息,这种方案可以节省DCI的指示开销。
可选地,用来指示终端满功率发送上行信号的预编码信息和流数域的状态包含TPMI index(预编码矩阵信息索引)指示和传输流数指示。若DCI预编码信息和流数域的状态为用来指示终端满功率发送上行信号的预编码信息和流数域的状态,终端根据所述指示信息确定上行信号的传输流数和预编码矩阵,采用满功率发送所述上行信号的功率控制方案发送所述上行信号,所述上行信号的传输流数为预编码信息和流数域指示的传输流数,预编码矩阵为预编码信息和流数域指示的传输流数。基站基于所述传输流数对所述上行信号进行检测和译码。
可选地,不同的指示可以对应于不同的满功率发送所述上行信号的功率控制方案
可选地,用来指示终端满功率发送上行信号的预编码信息和流数域的至少一个状态包含预编码矩阵信息(TPMI)指示,不包含传输流数指示,所述TPMI指示的预编码矩阵为预定义流数下的预编码矩阵。终端根据所述指示信息确定上行信号的预编码矩阵,并采用预定义流数进行所述上行信号的传输,且终端不对上行信号的发送功率进行MIMO缩放。基站基于预定义的传输流数对上行信号进行检测和译码。
所述预定义的流数可以是基站和终端预先约定的。例如,为1.也可以是基站指示给终端的,或者终端上报给基站的。
实施例三:
基站通过DCI中的SRI(SRS resource indicator,SRS资源指示)域指示终端满功率发送上行信号。即SRI域的一个或多个状态用来指示终端满功率 发送上行信号。当终端检测到SRI域的状态为指示终端满功率发送上行信号的状态时,终端满功率发送上行信号。
为了实现该功能,SRI域的比特数可以进行扩展,例如从1比特增加到2比特,从2比特增加到3比特。
可选地,所述指示信息还可以指示上行信号对应的SRS资源,终端根据所述指示确定上行信号对应的SRS资源,并使用所指示的上行信号的功率控制规则发送所述上行信号。
可选地,所述指示信息还可以指示满功率发送的上行传输方式,终端使用所指示的上行传输方式发送所述上行信号。
如图5所示,本申请提供一种信号传输的方法,该方法包括:
S501,终端设备接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
S502,所述终端设备基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式;
S503,所述终端设备基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述 终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
所述终端设备将在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,还包括:
所述终端设备检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;或
所述终端设备检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;或
所述终端设备检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号,包括:
所述终端设备基于所述传输流数自定义确定与所述传输流数对应的预编码矩阵,并基于所述预编码矩阵发送所述第一信号;或
所述终端设备采用与所述传输流数对应的默认的预编码矩阵发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
参见图6,本申请提供一种网络设备,该网络设备包括:
存储器601,用于存储指令;
处理器602,用于读取所述存储器中的指令,执行下列过程:
确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
收发机603,用于向所述终端设备发送所述第一指示消息。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备采用小时延延迟分集CDD发送所述第一信号;
所述终端设备在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
可选地,所述第一功率控制策略和/或第一传输模式,包括:
所述终端设备满功率发送所述第一信号的功率控制策略;和/或
所述终端设备满功率发送所述第一信号的传输模式。
参见图7,本申请提供一种终端设备,该终端设备包括:
收发机701,接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
存储器702,用于存储指令;
处理器703,用于读取所述存储器中的指令,执行下列过程:
基于所述第一指示消息确定所述第一发送功率发送第一信号所对应的功率控制策略和/或所述传输模式;
所述收发机701,还用于基于所述功率控制策略和/或所述传输模式使用所述第一发送功率发送所述第一信号。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等 级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
所述终端设备将在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,还包括:
所述终端设备检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;或
所述终端设备检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;或
所述终端设备检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号,包括:
所述终端设备基于所述传输流数自定义确定与所述传输流数对应的预编码矩阵,并基于所述预编码矩阵发送所述第一信号;或
所述终端设备采用与所述传输流数对应的默认的预编码矩阵发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
参见图8,本申请提供一种网络设备,该网络设备包括:
确定单元801,用于确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
发送单元802,向所述终端设备发送所述第一指示消息。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据 非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备采用小时延延迟分集CDD发送所述第一信号;
所述终端设备在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
可选地,所述第一功率控制策略和/或第一传输模式,包括:
所述终端设备满功率发送所述第一信号的功率控制策略;和/或
所述终端设备满功率发送所述第一信号的传输模式。
参见图9,本申请提供一种终端设备,该终端设备包括:
确定单元901,用于基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式;
发送单元902,用于基于所述第一功率控制策略和/或所述第一传输模式发送所述第一信号。
可选地,所述第一指示消息承载在下行控制信息DCI的第一字段。
可选地,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
可选地,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
可选地,所述第一字段包括多个状态,其中,所述多个状态中至少一个状态指示所述第一功率控制策略和/或所述第一传输模式发送第一信号。
可选地,所述多个状态包括如下至少一种:
所述第一字段至少包括一个指示终端不进行满功率发送的状态;
所述第一字段至少包括两个指示不同的第一功率控制策略的状态;
所述第一字段至少包括一个指示终端的码本子集限制信息的状态;
所述第一字段至少包括一个指示所述第一信号的传输流数的状态;
所述第一字段至少包括两个指示所述第一传输模式的状态。
可选地,所述第一功率控制策略包括以下策略中的至少一种:
所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
可选地,所述第一传输模式包括以下模式的至少一种:
所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
所述终端设备将在不同相干传输天线组上采用不同时延;
所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
可选地,所述第一指示消息还指示如下至少一种信息:
所述第一信号所对应的码本子集限制信息;
所述第一信号所对应的传输流数;
所述第一信号所对应的预编码矩阵信息编号;
所述第一信号所对应的SRS资源。
可选地,还包括:检测单元,
所述检测单元,用于检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;或
所述检测单元,用于检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;或
所述检测单元,用于检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号。
可选地,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号,
所述确定单元,还用于所述传输流数自定义确定与所述传输流数对应的 预编码矩阵,并基于所述预编码矩阵发送所述第一信号;或
采用单元,用于采用与所述传输流数对应的默认的预编码矩阵发送所述第一信号。
可选地,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
本申请提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述所述信号传输的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (56)

  1. 一种信号传输的方法,其特征在于,包括:
    网络设备确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
    所述网络设备向所述终端设备发送所述第一指示消息。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示消息承载在下行控制信息DCI的第一字段。
  3. 如权利要求2所述的方法,其特征在于,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、探测参考信号资源指示SRI字段或解调参考信号DMRS端口指示字段。
  4. 如权利要求3所述的方法,其特征在于,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
  5. 如权利要求2所述的方法,其特征在于,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略和/或所述第一传输模式发送第一信号。
  6. 如权利要求5所述的方法,其特征在于,所述多个状态包括如下至少一种:
    所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
    所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
    所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
    所述第一字段包括至少两个指示所述第一传输模式的状态。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述第一功率控制策略包括以下策略中的至少一种:
    所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
    若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
    所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
    所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
  8. 如权利要求1-6任一所述的方法,其特征在于,所述第一传输模式包括以下模式的至少一种:
    所述终端设备采用小时延延迟分集CDD发送所述第一信号;
    所述终端设备在不同相干传输天线组上采用不同时延;
    所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
    所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
  9. 如权利要求1-6任一所述的方法,其特征在于,所述第一指示消息还指示如下至少一种信息:
    所述第一信号所对应的码本子集限制信息;
    所述第一信号所对应的传输流数;
    所述第一信号所对应的预编码矩阵信息编号;
    所述第一信号所对应的SRS资源。
  10. 如权利要求1-6任一所述的方法,其特征在于,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
    所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
    所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
  11. 如权利要求10所述的方法,其特征在于,
    所述第一传输模式为终端采用自定义的预编码矩阵使用所述传输流数发送所述第一信号;
    所述第一功率控制策略为:
    所述终端设备使用所述第一发送功率发送所述第一信号。
  12. 如权利要求10所述的方法,其特征在于,所述第一字段包含至少一个指示终端不进行满功率发送的状态。
  13. 如权利要求11所述的方法,其特征在于,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
  14. 如权利要求1所述的方法,其特征在于,所述第一功率控制策略和/或第一传输模式,包括:
    所述终端设备满功率发送所述第一信号的功率控制策略;和/或
    所述终端设备满功率发送所述第一信号的传输模式。
  15. 一种信号传输的方法,其特征在于,包括:
    终端设备接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
    所述终端设备基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式;
    所述终端设备基于所述第一功率控制策略和/或所述第一传输模式发送所述第一信号。
  16. 如权利要求15所述的方法,其特征在于,所述第一指示消息承载在下行控制信息DCI的第一字段。
  17. 如权利要求16所述的方法,其特征在于,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
  18. 如权利要求17所述的方法,其特征在于,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
  19. 如权利要求16所述的方法,其特征在于,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略或所述第一传输模式。
  20. 如权利要求19所述的方法,其特征在于,所述多个状态包括如下至少一种:
    所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
    所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
    所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
    所述第一字段包括至少两个指示所述第一传输模式的状态。
  21. 如权利要求15-20任一所述的方法,其特征在于,所述第一功率控制策略包括以下策略中的至少一种:
    所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传 输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
    若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
    所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
    所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
  22. 如权利要求15-20任一所述的方法,其特征在于,所述第一传输模式包括以下模式的至少一种:
    所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
    所述终端设备将在不同相干传输天线组上采用不同时延;
    所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
    所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
  23. 如权利要求15-20任一所述的方法,其特征在于,还包括:所述第一指示消息指示如下至少一种信息:
    所述第一信号所对应的码本子集限制信息;
    所述第一信号所对应的传输流数;
    所述第一信号所对应的预编码矩阵信息编号;
    所述第一信号所对应的SRS资源。
  24. 如权利要求23所述的方法,其特征在于,还包括:
    若所述终端设备检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;和/或
    若所述终端设备检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;和/或
    若所述终端设备检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
  25. 如权利要求24所述的方法,其特征在于,
    所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
    所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
    所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
  26. 如权利要求25所述的方法,其特征在于,
    所述第一传输模式为终端采用自定义的预编码矩阵使用所述传输流数发送所述第一信号;
    所述第一功率控制策略为:
    所述终端设备使用第一发送功率发送所述第一信号,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率。
  27. 如权利要求26所述的方法,其特征在于,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
  28. 一种网络设备,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于读取所述存储器中的指令,执行下列过程:
    确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
    收发机,用于向所述终端设备发送所述第一指示消息。
  29. 如权利要求28所述的网络设备,其特征在于,所述第一指示消息承载在下行控制信息DCI的第一字段。
  30. 如权利要求29所述的网络设备,其特征在于,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、探测参考信号资源指示SRI字段或解调参考信号DMRS端口指示字段。
  31. 如权利要求30所述的网络设备,其特征在于,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
  32. 如权利要求29所述的网络设备,其特征在于,所述第一字段包括多个状态,其中,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略或所述第一传输模式。
  33. 如权利要求32所述的网络设备,其特征在于,所述多个状态包括如下至少一种:
    所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
    所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
    所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
    所述第一字段包括至少两个指示所述第一传输模式的状态。
  34. 如权利要求28-33任一所述的网络设备,其特征在于,所述第一功率控制策略包括以下策略中的至少一种:
    所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备对所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
    若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备对所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
    所述终端设备对第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备采用与所述第一信号的调度信息指示的SRS资源包含的天线端口数所对应的功率控制策略;
    所述终端设备对所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述 终端设备自定义的缩放系数。
  35. 如权利要求28-33任一所述的网络设备,其特征在于,所述第一传输模式包括以下模式的至少一种:
    所述终端设备采用小时延延迟分集CDD发送所述第一信号;
    所述终端设备在不同相干传输天线组上采用不同时延;
    所述终端设备发送所述第一信号的一个天线端口对应于所述第一信号的调度信息指示的SRS资源包含的至少两个天线端口;
    所述终端设备对所述第一信号通过预定义的预编码矩阵进行预编码后传输。
  36. 如权利要求28-33任一所述的网络设备,其特征在于,所述第一指示消息还指示如下至少一种信息:
    所述第一信号所对应的码本子集限制信息;
    所述第一信号所对应的传输流数;
    所述第一信号所对应的预编码矩阵信息编号;
    所述第一信号所对应的SRS资源。
  37. 如权利要求28-33任一所述的网络设备,其特征在于,所述第一指示消息还指示所述第一信号的传输流数,所述第一指示信息指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
    所述第一指示消息指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号;或
    所述第一指示信息指示所述终端设备采用协议预定义的传输流数发送所述第一信号。
  38. 如权利要求37所述的网络设备,其特征在于,其特征在于,
    所述第一传输模式为终端采用自定义的预编码矩阵使用所述传输流数发送所述第一信号;
    所述第一功率控制策略为:
    所述终端设备使用第一发送功率发送所述第一信号。
  39. 如权利要求37所述的网络设备,其特征在于,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
  40. 如权利要求28所述的网络设备,其特征在于,所述第一功率控制策略和/或第一传输模式,包括:
    所述终端设备满功率发送所述第一信号的功率控制策略;和/或
    所述终端设备满功率发送所述第一信号的传输模式。
  41. 一种终端设备,其特征在于,包括:
    收发机,接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
    存储器,用于存储指令;
    处理器,用于读取所述存储器中的指令,执行下列过程:
    基于所述第一指示消息确定所述第一发送功率发送第一信号所对应的功率控制策略和/或所述传输模式;
    所述收发机,还用于基于所述功率控制策略和/或所述传输模式使用所述第一发送功率发送所述第一信号。
  42. 如权利要求41所述的终端设备,其特征在于,所述第一指示消息承载在下行控制信息DCI的第一字段。
  43. 如权利要求42所述的终端设备,其特征在于,所述第一字段为所述DCI的预定义的字段、预编码信息和流数字段、SRI字段或解调参考信号DMRS端口指示字段。
  44. 如权利要求43所述的终端设备,其特征在于,若所述第一字段为所述SRI字段,则所述第一字段至少占用两个比特。
  45. 如权利要求42所述的终端设备,其特征在于,所述第一字段包括多个状态,其中,所述多个状态中的不同状态指示不同的所述第一功率控制策略或所述第一传输模式。
  46. 如权利要求45所述的终端设备,其特征在于,所述多个状态包括如下至少一种:
    所述第一字段包括至少一个指示终端不进行满功率发送的状态;
    所述第一字段包括至少两个指示不同的第一功率控制策略的状态;
    所述第一字段包括至少一个指示终端的码本子集限制信息的状态;
    所述第一字段包括至少一个指示所述第一信号的传输流数的状态;
    所述第一字段包括至少两个指示所述第一传输模式的状态。
  47. 如权利要求41-46任一所述的终端设备,其特征在于,所述第一功率控制策略包括以下策略中的至少一种:
    所述终端设备将第一发送功率均匀分配到所述第一信号存在数据非零传输的各个天线端口,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备将所述第一发送功率通过第一缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第一缩放因子为所述第一信号存在数据非零传输的天线端口数与所述第一信号的调度信息所指示的SRS资源包含的天线端口的个数的比值;
    若每个发送所述第一信号的天线端口均可以达到所述终端设备的功率等级所支持的最大输出功率,则所述终端设备将所述第一发送功率均匀分配到所述第一信号存在数据非零传输的天线端口;否则,所述终端设备将所述第一发送功率通过第二缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的天线端口;其中,所述第二缩放因子为所述第一信号存在数据非零传输的天线端口的个数与所述终端设备支持的一个SRS资源包含的最大天线端口数的比值;
    所述终端设备将第一发送功率通过第三缩放因子进行缩放后,均匀分配到所述第一信号存在数据非零传输的各个天线端口;其中,所述第三缩放因子为所述第一信号存在数据非零传输的天线端口数与第一信号的调度信息指示的SRS资源包含的天线端口的个数的比值,其中,所述第一发送功率是指所述终端设备根据上行功率控制公式计算得到的发送功率;
    所述终端设备将采用与所述第一信号的调度信息指示的SRS资源包含的 天线端口数所对应的功率控制策略;
    所述终端设备将所述第一发送功率通过第四缩放因子进行缩放后,均匀分配到每个发送所述第一信号的天线端口;其中,所述第四缩放因子是所述终端设备自定义的缩放系数。
  48. 如权利要求41-46任一所述的终端设备,其特征在于,所述第一传输模式包括以下模式的至少一种:
    所述终端设备将采用小时延延迟分集CDD发送所述第一信号;
    所述终端设备将在不同相干传输天线组上采用不同时延;
    所述终端设备发送所述第一信号的一个天线端口对应于所述SRI指示的SRS资源包含的至少两个天线端口;
    所述终端设备将所述第一信号通过预定义的预编码矩阵进行预编码后传输。
  49. 如权利要求41-46任一所述的终端设备,其特征在于,所述第一指示消息还指示如下至少一种信息:
    所述第一信号所对应的码本子集限制信息;
    所述第一信号所对应的传输流数;
    所述第一信号所对应的预编码矩阵信息编号;
    所述第一信号所对应的SRS资源。
  50. 如权利要求49所述的终端设备,其特征在于,还包括:
    所述终端设备检测到所述第一指示消息所指示的所述码本子集限制信息,根据所述码本子集限制信息确定码本子集,并基于所述码本子集发送所述第一信号;或
    所述终端设备检测到所述第一指示消息所指示的所述传输流数,所述终端设备基于所述传输流数发送所述第一信号;或
    所述终端设备检测到所述第一指示消息所指示的所述预编码矩阵信息编号,所述终端设备基于所述预编码矩阵信息编号确定预编码矩阵,基于所述预编码矩阵对所述第一信号进行预编码后发送。
  51. 如权利要求50所述的终端设备,其特征在于,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号;或
    所述第一指示消息还指示所述终端设备采用所述终端设备默认的传输流数发送所述第一信号。
  52. 如权利要求51所述的终端设备,其特征在于,所述第一指示消息还指示所述第一信号的传输流数,以及指示所述终端设备采用所述第一指示消息所指示的传输流数发送所述第一信号,包括:
    所述终端设备基于所述传输流数自定义确定与所述传输流数对应的预编码矩阵,并基于所述预编码矩阵发送所述第一信号;或
    所述终端设备采用与所述传输流数对应的默认的预编码矩阵发送所述第一信号。
  53. 如权利要求52所述的终端设备,其特征在于,所述第一信号包括:物理上行共享信道PUSCH或物理上行链路控制信道PUCCH。
  54. 一种网络设备,其特征在于,包括:
    确定单元,用于确定第一指示消息,所述第一指示消息指示终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
    发送单元,向所述终端设备发送所述第一指示消息。
  55. 一种终端设备,其特征在于,包括:
    接收单元,用于接收所述网络设备发送的第一指示消息,所述第一指示消息指示所述终端设备使用第一功率控制策略和/或第一传输模式发送第一信号;
    确定单元,用于基于所述第一指示消息确定所述第一功率控制策略和/或所述第一传输模式;
    发送单元,用于基于所述第一功率控制策略和/或所述第一传输模式发送所述第一信号。
  56. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述 计算机程序被处理器执行时实现如权利要求1-14或者15-27任一项所述的方法。
PCT/CN2020/086518 2019-04-30 2020-04-23 一种信号传输的方法、网络设备及终端设备 WO2020221108A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217039089A KR20210154255A (ko) 2019-04-30 2020-04-23 신호 전송을 위한 방법, 네트워크 장치 및 단말 장치
EP20799296.7A EP3965498A4 (en) 2019-04-30 2020-04-23 SIGNAL TRANSMISSION METHOD, NETWORK DEVICE AND TERMINAL DEVICE
US17/607,377 US20220217646A1 (en) 2019-04-30 2020-04-23 Signal transmission method, network device and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365525.8 2019-04-30
CN201910365525.8A CN111867091B (zh) 2019-04-30 2019-04-30 一种信号传输的方法、网络设备及终端设备

Publications (1)

Publication Number Publication Date
WO2020221108A1 true WO2020221108A1 (zh) 2020-11-05

Family

ID=72965851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086518 WO2020221108A1 (zh) 2019-04-30 2020-04-23 一种信号传输的方法、网络设备及终端设备

Country Status (5)

Country Link
US (1) US20220217646A1 (zh)
EP (1) EP3965498A4 (zh)
KR (1) KR20210154255A (zh)
CN (2) CN116567833A (zh)
WO (1) WO2020221108A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117046A1 (zh) * 2020-12-04 2022-06-09 华为技术有限公司 一种通信方法、装置、芯片、存储介质及程序产品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3847850A4 (en) * 2019-11-28 2021-12-22 Apple Inc. IMPROVED MOBILE STATION POWER TRANSMISSION APPARATUS, SYSTEM AND METHOD
CN115175329A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 信息指示的方法与装置
CN115913450A (zh) * 2021-08-06 2023-04-04 华为技术有限公司 一种获取信息的方法和装置
WO2023209682A1 (en) * 2022-04-29 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Power scaling and virtualization for multi-resource transmission
CN117639856A (zh) * 2022-08-12 2024-03-01 华为技术有限公司 预编码指示方法和通信装置
WO2024065333A1 (zh) * 2022-09-28 2024-04-04 北京小米移动软件有限公司 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688580A (zh) * 2013-06-21 2014-03-26 华为技术有限公司 功率控制方法及装置
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备
CN111182619A (zh) * 2018-11-12 2020-05-19 电信科学技术研究院有限公司 一种上行功率控制的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152035B (zh) * 2017-06-16 2022-05-06 大唐移动通信设备有限公司 一种发送下行控制信息dci的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688580A (zh) * 2013-06-21 2014-03-26 华为技术有限公司 功率控制方法及装置
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备
CN111182619A (zh) * 2018-11-12 2020-05-19 电信科学技术研究院有限公司 一种上行功率控制的方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussions on full Tx power uplink transmission", 3GPP DRAFT; R1-1904210, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 4, XP051691348 *
See also references of EP3965498A4 *
VIVO: "Feature Lead Summary on Full TX Power UL Transmission", 3GPP DRAFT; R1-1903410, 26 February 2019 (2019-02-26), Athens, Greece, pages 1 - 19, XP051601085 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117046A1 (zh) * 2020-12-04 2022-06-09 华为技术有限公司 一种通信方法、装置、芯片、存储介质及程序产品

Also Published As

Publication number Publication date
CN116567833A (zh) 2023-08-08
CN111867091A (zh) 2020-10-30
EP3965498A4 (en) 2022-06-22
KR20210154255A (ko) 2021-12-20
EP3965498A1 (en) 2022-03-09
US20220217646A1 (en) 2022-07-07
CN111867091B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2020221108A1 (zh) 一种信号传输的方法、网络设备及终端设备
RU2730892C1 (ru) Зондирование восходящей линии связи на множестве ресурсов и передача поднабора антенн
WO2021018078A1 (zh) 传输方法、装置和计算机可读存储介质
CN113630230B (zh) 一种通信方法及装置
RU2751674C1 (ru) Способы эффективного указания ресурсов srs
TWI751648B (zh) 一種上行調度資訊確定方法、使用者設備、基地台及電腦可讀存儲介質
CN108476049B (zh) 用于信道状态信息参考信号(csi-rs)的方法和装置
KR102486805B1 (ko) 무선 통신 시스템에서 피드백 신호를 송수신하는 방법 및 장치
JP7450554B2 (ja) 上り電力制御方法、端末及びネットワーク機器
CN111357208B (zh) 可变相干自适应天线阵列
US20200169304A1 (en) Method for determining uplink transmission parameters and method and device for transmitting configuration information
KR102495713B1 (ko) 업링크 전송 방법, 업링크 전송의 스케줄링 방법 및 기기
CN109075828B (zh) 用于实现上行链路mimo的方法和设备
KR102527915B1 (ko) 업링크 파워 제어 방법 및 기기
WO2019052454A1 (zh) 信号配置、发送方法及装置
JP2022501956A (ja) データ伝送方法及び装置
JP2024503406A (ja) Pusch伝送方法、装置、機器及び記憶媒体
CN111937319B (zh) 通信方法、通信装置和系统
US9374130B2 (en) Method and apparatus for triggering a ranked transmission
WO2020143805A1 (zh) 一种通信方法及装置
KR20210150551A (ko) 데이터 전송 방법 및 기기
WO2021088749A1 (zh) 传输方法、设备及介质
CN111436107B (zh) 上行信号的发送方法、信道质量确定方法和相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217039089

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799296

Country of ref document: EP

Effective date: 20211130