WO2020221061A1 - 信号处理方法、装置及通信设备 - Google Patents

信号处理方法、装置及通信设备 Download PDF

Info

Publication number
WO2020221061A1
WO2020221061A1 PCT/CN2020/085827 CN2020085827W WO2020221061A1 WO 2020221061 A1 WO2020221061 A1 WO 2020221061A1 CN 2020085827 W CN2020085827 W CN 2020085827W WO 2020221061 A1 WO2020221061 A1 WO 2020221061A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
port
ports
frequency offset
communication device
Prior art date
Application number
PCT/CN2020/085827
Other languages
English (en)
French (fr)
Inventor
任晓涛
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20799254.6A priority Critical patent/EP3965349A4/en
Priority to US17/607,821 priority patent/US20220256373A1/en
Priority to KR1020217039284A priority patent/KR20220003601A/ko
Publication of WO2020221061A1 publication Critical patent/WO2020221061A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present disclosure relates to the field of communication technology, in particular to a signal processing method, device and communication equipment.
  • LTE Long Term Evolution
  • V2X Intelligent Vehicle-to-Everything
  • ADC analog to digital converter
  • DMRS demodulation reference signal
  • 5G NR supports the configuration of flexible subcarrier spacing, which brings new challenges to the design of the NR V2X physical layer structure.
  • the automatic gain control (AGC) and guard period (guard period) that originally occupied one symbol were fixed. , GP), may not meet the demand, need to re-design.
  • LTE V2X is a broadcast or multicast communication mode, and there is no unicast mode.
  • the abscissa is the time domain
  • each column represents an orthogonal frequency division multiplexing (OFDM) symbol.
  • the ordinate is the frequency domain.
  • AGC occupies the first OFDM symbol
  • GP occupies the last OFDM symbol
  • data or DMRS is in the middle.
  • the purpose of the present disclosure is to provide a signal processing method, device, and communication equipment to solve the problem of excessive resource consumption when supporting multiple functions in the NR V2X multi-port direct link communication in the related art.
  • embodiments of the present disclosure provide a signal processing method applied to a first communication device, including:
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the sequence type used by the first reference signal is a pseudo-random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in time domain and/or frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is mapped in time domain and/or frequency domain in a continuous mapping manner, and is mapped to a preset working bandwidth;
  • the continuous mapping method refers to mapping one by one according to the subcarrier sequence number.
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, part of the carrier bandwidth, or a configured bandwidth part (BWP).
  • the first reference signal used for automatic gain control measurement of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to adjust the modulus corresponding to each port of the first reference signal in the local signal receiver according to the signal strength of the sequence received by each port of the first reference signal.
  • the scaling factor of the digital converter is such that the signal intensity of the sequence received at each port of the first reference signal is in the preset intensity range after the corresponding analog-to-digital converter is scaled.
  • the use of the first reference signal for frequency offset estimation of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to obtain the initial frequency offset estimation value corresponding to each port of the reference signal; according to the initial frequency offset estimation value and at least one frequency offset adjustment value corresponding to each port Obtain at least two frequency offset trial values corresponding to each port; and perform frequency offset compensation on the sequence received by each port according to the at least two frequency offset trial values corresponding to each port.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the reference signal includes:
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes:
  • the first reference signal used for channel state information measurement of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to perform channel state information measurement of at least two ports of the first reference signal according to the first reference signal to obtain at least The channel state information measurement results of the two ports.
  • the first reference signal is used to enable the second communication device to measure channel state information of at least two ports of the first reference signal according to the first reference signal to obtain the first reference signal.
  • the measurement results of the channel state information of at least two ports of the reference signal include:
  • Different ports of the reference signal correspond to different time domain positions, so that the second communication device obtains the channel state information measurement result of each port according to the time domain position corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different frequency domain positions, so that the second communication device obtains the channel state information measurement result of each port according to the frequency domain position corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different sequences, so that the second communication device obtains the channel state information measurement result of each port according to the sequence corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different cyclic shifts, so that the second communication device obtains the channel state information measurement result of each port according to the cyclic shift corresponding to each port of the reference signal.
  • the first reference signal is used for channel estimation of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to perform channel estimation of at least two ports of the first reference signal according to the first reference signal, or to enable the second communication device to perform channel estimation according to the
  • the first reference signal and the newly added demodulation reference signal DMRS are used for channel estimation of at least two ports of the first reference signal.
  • the embodiment of the present disclosure also provides a signal processing method applied to a second communication device, including:
  • the first reference signal perform automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the sequence type used by the first reference signal is a pseudo-random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in time domain and/or frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is mapped in time domain and/or frequency domain in a continuous mapping manner, and is mapped to a preset working bandwidth;
  • the continuous mapping method refers to mapping one by one according to the subcarrier sequence number.
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, part of the carrier bandwidth, or the configured bandwidth part BWP.
  • performing automatic gain control measurements of at least two ports of the first reference signal according to the first reference signal includes:
  • the scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver so that the The signal strength of the sequence received by each port is in the preset strength range after being scaled by the corresponding analog-to-digital converter.
  • performing automatic gain control measurements of at least two ports of the first reference signal according to the first reference signal includes:
  • the subcarrier spacing (SCS) of the carrier communicating on the current through link is less than the first preset threshold, for each port of the first reference signal, use one symbol or half of the symbol
  • the first reference signal is used for automatic gain control measurement;
  • the signal processing method further includes:
  • each port of the first reference signal use the corresponding remaining half-symbol of the first reference signal to perform other operations except automatic gain control measurement.
  • performing frequency offset estimation of at least two ports of the first reference signal according to the first reference signal includes:
  • the obtaining the initial frequency offset estimation value corresponding to each port of the first reference signal includes:
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes:
  • measuring channel state information of at least two ports of the first reference signal according to the first reference signal includes:
  • the channel state information measurement of at least two ports of the first reference signal is performed, and the channel state information measurement result of the at least two ports of the first reference signal is obtained.
  • the channel state information measurement of at least two ports of the first reference signal is performed according to the first reference signal, and the channel state information measurement result of the at least two ports of the first reference signal is obtained ,include:
  • the channel state information measurement result of each port is obtained according to the cyclic shift corresponding to each port of the first reference signal.
  • performing channel estimation of at least two ports of the first reference signal according to the first reference signal includes:
  • the performing channel estimation of at least two ports of the first reference signal according to the first reference signal includes:
  • the channel estimation of each port is performed according to the sequence received by each port of the first reference signal.
  • the performing channel estimation of at least two ports of the first reference signal according to the first reference signal and the newly added demodulation reference signal DMRS includes:
  • the embodiments of the present disclosure also provide a communication device, where the communication device is a first communication device, and includes a memory, a processor, a transceiver, and a computer program stored on the memory and running on the processor;
  • the processor implements the following steps when executing the program:
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the sequence type used by the first reference signal is a pseudo-random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in time domain and/or frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is mapped in time domain and/or frequency domain in a continuous mapping manner, and is mapped to a preset working bandwidth;
  • the continuous mapping method refers to mapping one by one according to the subcarrier sequence number.
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, part of the carrier bandwidth, or the configured bandwidth part BWP.
  • the first reference signal used for automatic gain control measurement of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to adjust the modulus corresponding to each port of the first reference signal in the local signal receiver according to the signal strength of the sequence received by each port of the first reference signal.
  • the scaling factor of the digital converter is such that the signal intensity of the sequence received at each port of the first reference signal is in the preset intensity range after the corresponding analog-to-digital converter is scaled.
  • the use of the first reference signal for frequency offset estimation of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to obtain the initial frequency offset estimation value corresponding to each port of the reference signal; according to the initial frequency offset estimation value and at least one frequency offset adjustment value corresponding to each port Obtain at least two frequency offset trial values corresponding to each port; and perform frequency offset compensation on the sequence received by each port according to the at least two frequency offset trial values corresponding to each port.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the reference signal includes:
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes:
  • the first reference signal used for channel state information measurement of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to perform channel state information measurement of at least two ports of the first reference signal according to the first reference signal to obtain at least Measurement results of channel state information of two ports.
  • the first reference signal is used to enable the second communication device to measure channel state information of at least two ports of the first reference signal according to the first reference signal to obtain the first reference signal.
  • the measurement results of the channel state information of at least two ports of the reference signal include:
  • Different ports of the reference signal correspond to different time domain positions, so that the second communication device obtains the channel state information measurement result of each port according to the time domain position corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different frequency domain positions, so that the second communication device obtains the channel state information measurement result of each port according to the frequency domain position corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different sequences, so that the second communication device obtains the channel state information measurement result of each port according to the sequence corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different cyclic shifts, so that the second communication device obtains the channel state information measurement result of each port according to the cyclic shift corresponding to each port of the reference signal.
  • the first reference signal is used for channel estimation of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to perform channel estimation of at least two ports of the first reference signal according to the first reference signal, or to enable the second communication device to perform channel estimation according to the
  • the first reference signal and the newly added demodulation reference signal DMRS are used for channel estimation of at least two ports of the first reference signal.
  • the embodiments of the present disclosure also provide a communication device, where the communication device is a second communication device, and includes a memory, a processor, a transceiver, and a computer program stored on the memory and running on the processor;
  • the processor implements the following steps when executing the program:
  • the first reference signal perform automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the sequence type used by the first reference signal is a pseudo-random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in time domain and/or frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is mapped in time domain and/or frequency domain in a continuous mapping manner, and is mapped to a preset working bandwidth;
  • the continuous mapping method refers to mapping one by one according to the subcarrier sequence number.
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, part of the carrier bandwidth, or the configured bandwidth part BWP.
  • the processor is specifically configured to:
  • the scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver so that the The signal strength of the sequence received by each port is in the preset strength range after being scaled by the corresponding analog-to-digital converter.
  • the processor is specifically configured to:
  • the processor is further configured to:
  • each port of the first reference signal use the corresponding remaining half-symbol of the first reference signal to perform other operations except automatic gain control measurement.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the channel state information measurement of at least two ports of the first reference signal is performed, and the channel state information measurement result of the at least two ports of the first reference signal is obtained.
  • the processor is specifically configured to:
  • the channel state information measurement result of each port is obtained according to the cyclic shift corresponding to each port of the first reference signal.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the channel estimation of each port is performed according to the sequence received by each port of the first reference signal.
  • the processor is specifically configured to:
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the signal processing method on the first communication device side are realized; or
  • the embodiment of the present disclosure also provides a signal processing device applied to the first communication device, including:
  • the first sending module is configured to send the first reference signal to the second communication device
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the sequence type used by the first reference signal is a pseudo-random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in time domain and/or frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is mapped in time domain and/or frequency domain in a continuous mapping manner, and is mapped to a preset working bandwidth;
  • the continuous mapping method refers to mapping one by one according to the subcarrier sequence number.
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, part of the carrier bandwidth, or the configured bandwidth part BWP.
  • the first reference signal used for automatic gain control measurement of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to adjust the modulus corresponding to each port of the first reference signal in the local signal receiver according to the signal strength of the sequence received by each port of the first reference signal.
  • the scaling factor of the digital converter is such that the signal intensity of the sequence received at each port of the first reference signal is in the preset intensity range after the corresponding analog-to-digital converter is scaled.
  • the use of the first reference signal for frequency offset estimation of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to obtain the initial frequency offset estimation value corresponding to each port of the reference signal; according to the initial frequency offset estimation value and at least one frequency offset adjustment value corresponding to each port Obtain at least two frequency offset trial values corresponding to each port; and perform frequency offset compensation on the sequence received by each port according to the at least two frequency offset trial values corresponding to each port.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the reference signal includes:
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes:
  • the first reference signal used for channel state information measurement of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to perform channel state information measurement of at least two ports of the first reference signal according to the first reference signal to obtain at least Measurement results of channel state information of two ports.
  • the first reference signal is used to enable the second communication device to measure channel state information of at least two ports of the first reference signal according to the first reference signal to obtain the first reference signal.
  • the measurement results of the channel state information of at least two ports of the reference signal include:
  • Different ports of the reference signal correspond to different time domain positions, so that the second communication device obtains the channel state information measurement result of each port according to the time domain position corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different frequency domain positions, so that the second communication device obtains the channel state information measurement result of each port according to the frequency domain position corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different sequences, so that the second communication device obtains the channel state information measurement result of each port according to the sequence corresponding to each port of the reference signal;
  • Different ports of the reference signal correspond to different cyclic shifts, so that the second communication device obtains the channel state information measurement result of each port according to the cyclic shift corresponding to each port of the reference signal.
  • the first reference signal is used for channel estimation of at least two ports of the first reference signal includes:
  • the first reference signal is used to enable the second communication device to perform channel estimation of at least two ports of the first reference signal according to the first reference signal, or to enable the second communication device to perform channel estimation according to the
  • the first reference signal and the newly added demodulation reference signal DMRS are used for channel estimation of at least two ports of the first reference signal.
  • the embodiments of the present disclosure also provide a signal processing device applied to a second communication device, including:
  • the first receiving module is configured to receive the first reference signal sent by the first communication device
  • the first processing module is configured to perform automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations according to the first reference signal:
  • the sequence type used by the first reference signal is a pseudo-random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in time domain and/or frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is mapped in time domain and/or frequency domain in a continuous mapping manner, and is mapped to a preset working bandwidth;
  • the continuous mapping method refers to mapping one by one according to the subcarrier sequence number.
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, part of the carrier bandwidth, or the configured bandwidth part BWP.
  • the first processing module includes:
  • the first processing sub-module is configured to adjust the scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver according to the signal strength of the sequence received by each port of the first reference signal, The signal strength of the sequence received by each port of the first reference signal is scaled by the corresponding analog-to-digital converter to be in the preset strength range.
  • the first processing module includes:
  • the second processing submodule is used to use one symbol or half symbol for each port of the first reference signal when the subcarrier interval SCS of the carrier communicating on the current through link is less than the first preset threshold To perform automatic gain control measurement on the first reference signal;
  • the signal processing device further includes:
  • the second processing module is configured to perform automatic gain control measurement using half a symbol of the first reference signal for each port of the first reference signal, and then perform automatic gain control measurement for each port of the first reference signal , Using the corresponding remaining half symbol of the first reference signal to perform other operations except the automatic gain control measurement.
  • the first processing module includes:
  • the first acquisition sub-module is configured to acquire the initial frequency offset estimation value corresponding to each port of the first reference signal
  • the third processing sub-module is configured to obtain at least two frequency offset trial values corresponding to each port according to the initial frequency offset estimation value and at least one frequency offset adjustment value corresponding to each port;
  • the fourth processing sub-module is configured to perform frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port.
  • the first obtaining submodule includes:
  • the first processing unit is configured to divide the sequence received by each port of the first reference signal into two sequences, and perform correlation processing on the two sequences respectively and the local sequence corresponding to the corresponding port;
  • the first acquiring unit is configured to acquire the phase difference between the two sequences after the correlation processing is performed;
  • the second processing unit is configured to obtain the initial frequency offset estimation value corresponding to the corresponding port according to the phase difference value.
  • the fourth processing submodule includes:
  • the third processing unit is configured to perform correlation calculations according to at least two frequency offset trial values corresponding to each port to obtain at least two correlation peaks corresponding to each port;
  • the second acquiring unit is configured to acquire the frequency offset trial value corresponding to the maximum value of the at least two correlation peaks corresponding to each port as the best frequency offset trial value corresponding to each port;
  • the fourth processing unit is configured to perform frequency offset compensation on the sequence received by each port according to the optimal frequency offset attempt value corresponding to each port.
  • the first processing module includes:
  • the fifth processing sub-module is configured to measure channel state information of at least two ports of the first reference signal according to the first reference signal, and obtain channel state information of at least two ports of the first reference signal Measurement results.
  • the fifth processing submodule includes:
  • the fifth processing unit is configured to, if different ports of the first reference signal correspond to different time domain positions, obtain the channel state information measurement results of each port according to the time domain position corresponding to each port of the first reference signal ;and / or
  • the channel state information measurement result of each port is obtained according to the cyclic shift corresponding to each port of the first reference signal.
  • the first processing module includes:
  • the sixth processing submodule is configured to perform channel estimation of at least two ports of the first reference signal according to the first reference signal, or,
  • the sixth processing submodule includes:
  • the sixth processing unit when the subcarrier interval SCS of the carrier communicating on the current direct link is less than the second preset threshold, perform channel channel of each port according to the sequence received by each port of the first reference signal estimate.
  • the sixth processing submodule includes:
  • the seventh processing unit is used for when the SCS of the carrier communicating on the current through link is greater than or equal to the second preset threshold, according to the sequence received by each port of the first reference signal and the corresponding newly added demodulation
  • the reference signal DMRS is used for channel estimation of each port.
  • the signal processing method transmits a first reference signal to a second communication device; wherein, the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and the following operations At least one of: frequency offset estimation; channel state information measurement; and channel estimation; capable of transmitting the multi-port multi-purpose reference signal (MP-RS) at the transmitting end, which supports at least two ports , Can use a single signal to complete multi-port automatic gain control measurement, and at the same time have multi-port frequency offset estimation, multi-port channel state information measurement, multi-port channel estimation and other functions, can support multiple ports, while avoiding time-frequency resources Waste, thereby improving the bit error rate performance and resource utilization performance of the sidelink data transmission of the through link; it solves the problem of excessive resource consumption when supporting multiple functions in the NR V2X multi-port through link communication in the related technology.
  • MP-RS multi-port multi-purpose reference signal
  • Figure 1 is a schematic diagram of the R15 (version 15) V2X Sidelink subframe structure in related technologies
  • FIG. 2 is a first schematic flowchart of a signal processing method according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the second flow of the signal processing method according to an embodiment of the disclosure.
  • FIG. 4 is a first schematic diagram of multi-port MP-RS transmission according to an embodiment of the disclosure.
  • FIG. 5 is a second schematic diagram of multi-port MP-RS transmission according to an embodiment of the disclosure.
  • FIG. 6 is a third schematic diagram of multi-port MP-RS transmission according to an embodiment of the disclosure.
  • FIG. 7 is a fourth schematic diagram of multi-port MP-RS sending according to an embodiment of the disclosure.
  • FIG. 8 is a fifth schematic diagram of multi-port MP-RS sending according to an embodiment of the disclosure.
  • FIG. 9 is a first structural diagram of a communication device according to an embodiment of the disclosure.
  • FIG. 10 is a second schematic structural diagram of a communication device according to an embodiment of the disclosure.
  • FIG. 11 is a first structural diagram of a signal processing device according to an embodiment of the disclosure.
  • FIG. 12 is a second structural diagram of a signal processing device according to an embodiment of the disclosure.
  • the present disclosure provides a signal processing method applied to a first communication device, as shown in FIG. 2, including:
  • Step 21 Send the first reference signal to the second communication device
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the first communication device includes a terminal, a roadside unit (RSU) (such as traffic lights, light poles, etc.), or a small base station, but it is not limited to this.
  • RSU roadside unit
  • the second communication device includes a terminal, a roadside unit RSU (such as a traffic light, a light pole, etc.) or a small base station, but it is not limited to this.
  • a roadside unit RSU such as a traffic light, a light pole, etc.
  • the signal processing method provided by the embodiment of the present disclosure sends a first reference signal to a second communication device; wherein the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal, and At least one of the following operations: frequency offset estimation; channel state information measurement; and channel estimation; it can realize that the transmitter can send a multi-port multi-purpose reference signal (MP-RS), which supports at least two ports and can be used
  • MP-RS multi-port multi-purpose reference signal
  • a single signal completes multi-port automatic gain control measurement, and at the same time has multi-port frequency offset estimation, multi-port channel state information measurement, multi-port channel estimation and other functions.
  • the sequence type used by the first reference signal is a pseudo random sequence or a constant envelope zero autocorrelation sequence.
  • the pseudo-random sequence includes the longest linear feedback shift register m sequence, the Gold sequence, or the GMW sequence.
  • the constant envelope zero autocorrelation sequence includes zero autocorrelation ZC sequence (Zadoff-Chu sequence), Frank sequence, Golomb sequence, Chirp sequence and the like.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in the time domain and/or the frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is time-domain and/or frequency-domain mapped in a continuous mapping manner, and is mapped to a preset working bandwidth; wherein, the continuous mapping manner refers to mapping one by one according to the subcarrier sequence number .
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, the partial carrier bandwidth, or the configured bandwidth part BWP.
  • the different ports after the mapping of the first reference signal occupy the same or different time domain positions and occupy the same or different frequency domain positions.
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal, including: the first reference signal is used for making the second communication device according to the first
  • the signal strength of the sequence received by each port of the reference signal is adjusted, and the scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver is adjusted so that the sequence received by each port of the first reference signal
  • the signal intensity of is in the preset intensity range after being scaled by the corresponding analog-to-digital converter.
  • the first reference signal is used to estimate the frequency offset of at least two ports of the first reference signal, including: the first reference signal is used to enable the second communication device to obtain the reference signal
  • the initial frequency offset estimation value corresponding to each port of each port at least two frequency offset attempt values corresponding to each port are obtained according to the initial frequency offset estimation value corresponding to each port and at least one frequency offset adjustment value;
  • a frequency offset attempt value is used to compensate the frequency offset of the sequence received at each port.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the reference signal includes: dividing the sequence received by each port of the reference signal into two sequences, and dividing the two sequences respectively Correlation processing is performed on the local sequence corresponding to the corresponding port; the phase difference value between the two sequences after the correlation processing is obtained; and the initial frequency offset estimation value corresponding to the corresponding port is obtained according to the phase difference value.
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes: performing correlation operations based on at least two frequency offset trial values corresponding to each port to obtain each At least two correlation peaks corresponding to each port; obtain the frequency offset attempt value corresponding to the maximum value of the at least two correlation peaks corresponding to each port as the optimal frequency offset attempt value corresponding to each port; according to the optimal frequency offset corresponding to each port
  • the bias value compensates the frequency deviation of the sequence received by each port.
  • the first reference signal is used to measure the channel state information of at least two ports of the first reference signal, including: the first reference signal is used to make the second communication device according to the first For the reference signal, perform channel state information measurement of at least two ports of the first reference signal, and obtain channel state information measurement results of the at least two ports of the first reference signal.
  • the first reference signal is used to enable the second communication device to perform channel state information measurement of at least two ports of the first reference signal according to the first reference signal to obtain the first reference
  • the channel state information measurement results of the at least two ports of the signal include: different ports of the reference signal correspond to different time domain positions, so that the second communication device according to the time domain position of each port of the reference signal, Obtain the channel state information measurement result of each port; and/or, different ports of the reference signal correspond to different frequency domain positions, so that the second communication device obtains according to the frequency domain positions corresponding to each port of the reference signal Channel state information measurement results of each port; and/or
  • Different ports of the reference signal correspond to different sequences, so that the second communication device obtains the channel state information measurement results of each port according to the sequence corresponding to each port of the reference signal; and/or Different ports correspond to different cyclic shifts, so that the second communication device obtains the channel state information measurement results of each port according to the cyclic shift corresponding to each port of the reference signal.
  • the first reference signal is used for channel estimation of at least two ports of the first reference signal, including: the first reference signal is used for making the second communication device according to the first reference signal , Perform channel estimation of at least two ports of the first reference signal, or enable the second communication device to perform channel estimation of the first reference signal according to the first reference signal and the newly added demodulation reference signal DMRS Channel estimation of at least two ports.
  • the embodiment of the present disclosure also provides a signal processing method applied to a second communication device, as shown in FIG. 3, including:
  • Step 31 Receive the first reference signal sent by the first communication device
  • Step 32 According to the first reference signal, perform automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the first communication device includes a terminal, a roadside unit RSU (such as a traffic light, a light pole, etc.), or a small base station, but it is not limited to this.
  • a roadside unit RSU such as a traffic light, a light pole, etc.
  • the second communication device includes a terminal, a roadside unit RSU (such as a traffic light, a light pole, etc.) or a small base station, but it is not limited to this.
  • a roadside unit RSU such as a traffic light, a light pole, etc.
  • the signal processing method provided by the embodiment of the present disclosure receives a first reference signal sent by a first communication device; performs automatic gain control measurement of at least two ports of the first reference signal according to the first reference signal, and At least one of the following operations: frequency offset estimation; channel state information measurement; and channel estimation; the receiver can receive the multi-port multi-purpose reference signal (MP-RS), which supports at least two ports, which can be used
  • MP-RS multi-port multi-purpose reference signal
  • the sequence type used by the first reference signal is a pseudo random sequence or a constant envelope zero autocorrelation sequence.
  • the pseudo-random sequence includes the longest linear feedback shift register m sequence, the Gold sequence, or the GMW sequence.
  • the constant envelope zero autocorrelation sequence includes zero autocorrelation ZC sequence (Zadoff-Chu sequence), Frank sequence, Golomb sequence, Chirp sequence and the like.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in the time domain and/or the frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is time-domain and/or frequency-domain mapped in a continuous mapping manner, and is mapped to a preset working bandwidth; wherein, the continuous mapping manner refers to mapping one by one according to the subcarrier sequence number .
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, the partial carrier bandwidth, or the configured bandwidth part BWP.
  • the different ports after the mapping of the first reference signal occupy the same or different time domain positions and occupy the same or different frequency domain positions.
  • Performing automatic gain control measurement of at least two ports of the first reference signal according to the first reference signal includes: adjusting the local signal strength according to the signal strength of the sequence received by each port of the first reference signal The scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the signal receiver, so that the signal strength of the sequence received by each port of the first reference signal is scaled by the corresponding analog-to-digital converter.
  • the preset intensity range is the intensity range.
  • performing automatic gain control measurement of at least two ports of the first reference signal according to the first reference signal includes: the subcarrier interval SCS of the carrier communicating on the current through link is less than the first preset When the threshold is set, for each port of the first reference signal, use one symbol or half a symbol of the first reference signal for automatic gain control measurement; or the SCS of the carrier communicating on the current direct link is greater than Or equal to the first preset threshold, for each port of the first reference signal, at least two symbols of the first reference signal are used for automatic gain control measurement; wherein, different ports correspond to different gain compensation the amount.
  • the first preset threshold may be 15KHz, but is not limited to this.
  • the signal processing method further includes: Each port of the corresponding remaining half symbol of the first reference signal is used to perform other operations except the automatic gain control measurement.
  • Performing frequency offset estimation of at least two ports of the first reference signal according to the first reference signal includes: obtaining an initial frequency offset estimation value corresponding to each port of the first reference signal; According to the initial frequency offset estimation value corresponding to each port and at least one frequency offset adjustment value, at least two frequency offset trial values corresponding to each port are obtained; according to the at least two frequency offset trial values corresponding to each port, the data received by each port The sequence performs frequency offset compensation.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the first reference signal includes: dividing a sequence received by each port of the first reference signal into two sequences, and The two sequences are respectively correlated with the local sequence corresponding to the corresponding port; the phase difference between the two sequences after the correlation processing is obtained; and the initial frequency offset estimation value corresponding to the corresponding port is obtained according to the phase difference.
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes: performing correlation operations based on at least two frequency offset trial values corresponding to each port to obtain each At least two correlation peaks corresponding to each port; obtain the frequency offset attempt value corresponding to the maximum value of the at least two correlation peaks corresponding to each port as the optimal frequency offset attempt value corresponding to each port; according to the optimal frequency offset corresponding to each port
  • the bias value compensates the frequency deviation of the sequence received by each port.
  • Performing channel state information measurement of at least two ports of the first reference signal according to the first reference signal includes: performing at least two ports of the first reference signal according to the first reference signal The channel state information measurement of the port obtains the channel state information measurement result of the at least two ports of the first reference signal.
  • said measuring the channel state information of at least two ports of the first reference signal according to the first reference signal to obtain the channel state information measurement results of the at least two ports of the first reference signal includes: if different ports of the first reference signal correspond to different time domain positions, obtaining the channel state information measurement results of each port according to the time domain position corresponding to each port of the first reference signal; and/or, If different ports of the first reference signal correspond to different frequency domain positions, obtain the channel state information measurement result of each port according to the frequency domain position corresponding to each port of the first reference signal; and/or
  • the channel state information measurement result of each port corresponds to the sequence corresponding to each port of the first reference signal; and/or if the first reference signal Different ports of the signal correspond to different cyclic shifts, and the channel state information measurement results of each port are obtained according to the cyclic shifts corresponding to each port of the first reference signal.
  • Performing channel estimation of at least two ports of the first reference signal according to the first reference signal includes: performing channel estimation of at least two ports of the first reference signal according to the first reference signal Channel estimation, or, according to the first reference signal and the newly added demodulation reference signal DMRS, channel estimation of at least two ports of the first reference signal.
  • the performing channel estimation of at least two ports of the first reference signal according to the first reference signal includes: the subcarrier interval SCS of the carrier communicating on the current direct link is smaller than the second preset When the threshold is used, the channel estimation of each port is performed according to the sequence received by each port of the first reference signal.
  • the second preset threshold may be 15KHz, but it is not limited to this.
  • the performing channel estimation of at least two ports of the first reference signal according to the first reference signal and the newly added demodulation reference signal DMRS includes: performing communication on the carrier of the current direct link When the SCS is greater than or equal to the second preset threshold, the channel estimation of each port is performed according to the sequence received by each port of the first reference signal and the corresponding newly added demodulation reference signal DMRS.
  • the signal processing method provided in the embodiments of the present disclosure will be further described below.
  • the first communication device uses the terminal UE A as an example, and the second communication device uses the UE B as an example.
  • the embodiments of the present disclosure provide a signal processing method, which mainly relates to a multi-port multi-purpose reference signal MP-RS, which is a multi-port multi-function reference signal.
  • the signal can support automatic gain control measurement, frequency offset estimation, channel state information measurement, channel estimation and other functions of at least two ports at the same time; it can be used in the through-link Sidelink communication of the V2X system.
  • MP-RS is a specific sequence with a specific length, such as m sequence (longest linear feedback shift register sequence), Gold sequence or ZC sequence (zero autocorrelation sequence); the sequence length occupies the entire frequency domain
  • m sequence longest linear feedback shift register sequence
  • Gold sequence Gold sequence
  • ZC sequence zero autocorrelation sequence
  • the sequence length corresponding to each port of MP-RS is the same.
  • MP-RS supports at least two ports, and different ports can be distinguished by at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • MP-RS can use comb mapping method for time domain mapping, and map to the preset working bandwidth (the entire working bandwidth, the entire carrier bandwidth or part of the bandwidth)
  • the ports can be distinguished by the position of the comb teeth in the time domain, and different ports occupy different positions of the comb teeth in the time domain.
  • configuring two time domain combs corresponds to supporting two ports; configuring four time domain combs corresponds to supporting four ports.
  • MP-RS can use comb mapping method for frequency domain mapping, and map to the preset working bandwidth (the entire working bandwidth, the entire carrier bandwidth or part of the bandwidth)
  • the ports can be distinguished by the position of the comb in the frequency domain, and different ports occupy different positions of the comb in the frequency domain.
  • configuring two frequency domain combs corresponds to supporting two ports; configuring four frequency domain combs corresponds to supporting four ports.
  • MP-RS can use a continuous mapping method (that is, mapping one by one according to the sub-carrier sequence number) for time-domain mapping, and map to the preset working bandwidth
  • a continuous mapping method that is, mapping one by one according to the sub-carrier sequence number
  • ports can be distinguished by sequence or cyclic shift. Different ports can occupy the same or different time domain resource positions, but have different sequences or cyclic shifts.
  • MP-RS can use a continuous mapping method (that is, a method of mapping one by one according to the subcarrier sequence number) for frequency domain mapping, and map to the preset working bandwidth
  • a continuous mapping method that is, a method of mapping one by one according to the subcarrier sequence number
  • the ports can be distinguished by sequence or cyclic shift.
  • Different ports can occupy the same or different frequency domain resource locations, but have different sequences or cyclic shifts.
  • MP-RS is used for "multi-port automatic gain measurement": UE A at the transmitting side (can be sent before physical sidelink control channel (PSCCH)) to send MP-RS, this signal is used to help The UE B on the receiving side is used for automatic gain measurement to avoid the problem of increasing the bit error rate of subsequent PSCCH and data reception caused by excessive signal strength fluctuations and excessive ADC quantization errors; and MP-RS can support multi-port automatic gain Measure separately, and different ports have different gain compensation amounts.
  • PSCCH physical sidelink control channel
  • MP-RS is used for "multi-port frequency offset estimation”: UE A on the transmitting side sends MP-RS, this signal is used to help UE B on the receiving side for frequency offset estimation, and MP-RS can support separate To estimate the frequency offset of different ports, the specific estimation schemes include:
  • the frequency offset adjustment amount is added to obtain the frequency offset trial value; specifically, at least one frequency offset adjustment amount is required to obtain at least one frequency offset trial value; the initial frequency offset estimation value can also be used as a frequency offset Trial value, corresponding to a frequency deviation trial value, in short, at least two frequency deviation trial values are finally obtained;
  • the UE on the receiving side can set different frequency offset compensations according to the maximum value of the detected correlation peaks corresponding to each port.
  • MP-RS is used for "multi-port channel state information measurement": UE A at the sending side sends a multi-port MP-RS, this signal is used to help UE B at the receiving side do channel state information measurement (about which of the following Method, the two UEs can be agreed in advance):
  • UE B can directly use comb-shaped MP-RS that covers the full working bandwidth to measure channel state information. Different ports occupy different comb teeth, UE B The channel information measurement results of different ports can be obtained through sequences on different combs;
  • UE A sends multi-port MP-RS, different ports of MP-RS use different sequences or different cyclic shifts, MP-RS can cover all working bandwidth, UB After B receives the multi-port MP-RS, it can obtain channel state information of different ports on the entire working bandwidth.
  • MP-RS is used for "multi-port channel estimation": UE A at the transmitting side sends a multi-port MP-RS, which is used to help UE B at the receiving side for channel estimation; MP-RS can provide at least two ports The channel estimation result.
  • the sub-carrier spacing SCS of the carrier communicating on the current direct link is relatively small, and the time used for automatic gain control AGC is less, and MP-RS has enough time for channel estimation, and the channel estimation accuracy is higher at this time ;
  • the transmission of MP-RS is shown in Figure 4 (a represents a subframe, b represents a preset working bandwidth, and PSFCH represents a physical direct link feedback channel. (physical sidelink feedback channel), as shown, a small square (a blank square or a filled small square) in symbol #0 in FIG. 4 represents that the time domain lasts for 1 symbol, and the frequency domain is 1 subcarrier.
  • the MP-RS located in the first symbol uses a comb mapping method to map to the entire working bandwidth. There are two comb teeth, and each comb tooth corresponds to a port.
  • MP-RS can also perform channel state measurement on the unicast communication link before communication, and perform channel estimation and frequency offset estimation during communication. In this way, MP-RS multiplexing can complete multiple This function improves the bit error rate performance and resource utilization performance of Sidelink data transmission.
  • Example 1 (using different time-frequency resources-different time-domain resources and/or different frequency-domain resources to distinguish ports):
  • MP-RS occupies the first symbol and distinguishes ports by different comb teeth, each comb tooth corresponds to a port.
  • FIG 5 (a represents a subframe, b represents a preset working bandwidth)
  • the blank square or filled square on the first symbol occupies one symbol in the time domain and one sub-carrier in the frequency domain.
  • the blank square represents port 1 of MP-RS
  • the filled square represents port 2 of MP-RS.
  • the receiving-side terminal can obtain related information of the two ports through the sequences mapped on the two different ports, including automatic gain control information, frequency offset estimation information, channel state measurement information, channel estimation information, etc. Since the MP-RS maps different port measurement sequences through different time-frequency resources, the receiving-side terminal can measure different ports separately and obtain different measurement information.
  • the multi-port MP-RS sequence mapping method can ensure that the two ports are completely orthogonal and the measurement result is accurate.
  • Example 2 (using the same time-frequency resources and different sequences to distinguish ports):
  • MP-RS occupies the first symbol and distinguishes ports through different sequences. Each sequence corresponds to a port. In order to reduce the interference between the two ports, the sequence used by the two ports can be low correlation. As shown in Figure 6 (a represents a subframe, and b represents a preset working bandwidth), the blank square on the first symbol occupies one symbol in the time domain and one sub-carrier in the frequency domain. The blank squares represent port 1 and port 2 of MP-RS.
  • the receiving-side terminal can obtain related information of the two ports through the sequences mapped on the two different ports, including automatic gain control information, frequency offset estimation information, channel state measurement information, channel estimation information, etc. Since the MP-RS maps different port measurement sequences through different sequences, the receiving-side terminal can measure different ports separately and obtain different measurement information.
  • the multi-port MP-RS sequence mapping method occupies less time-frequency resources per port on average, and the number of ports that can be mapped is larger.
  • Example 3 (using the same time-frequency resource, the same sequence, and different cyclic shifts to distinguish ports):
  • MP-RS occupies the first symbol, and the ports can be distinguished by different cyclic shifts of the same sequence. Each cyclic shift corresponds to a port. In order to reduce the interference between the two ports, the cycle used by the two ports The shift can be low correlation.
  • Figure 7 (a represents a subframe, and b represents a preset working bandwidth), the blank square on the first symbol occupies one symbol in the time domain and one subcarrier in the frequency domain. The blank squares represent port 1 and port 2 of MP-RS.
  • the receiving-side terminal can obtain related information of the two ports through the sequences mapped on the two different ports, including automatic gain control information, frequency offset estimation information, channel state measurement information, channel estimation information, etc. Since the MP-RS maps different port measurement sequences through different cyclic shifts of the same sequence, the receiving-side terminal can measure different ports separately and obtain different measurement information.
  • the multi-port MP-RS sequence mapping method occupies less time-frequency resources per port on average, and the number of ports that can be mapped is larger.
  • MP-RS is used for "multi-port automatic gain measurement": UE A on the transmitting side can send MP-RS before sending PSCCH. This signal is used to help UE B on the receiving side do automatic gain measurement to avoid excessive signal strength fluctuations. If the ADC quantization error is too large, the error rate of subsequent PSCCH and data reception will increase, and MP-RS can support multi-port automatic gain measurement, and different ports have different gain compensation amounts.
  • the AGC measurement can be completed by using one-symbol or half-symbol MP-RS;
  • the corresponding symbol duration is 67us
  • the AGC duration is generally fixed, about 10-15us, so the AGC measurement can be completed by using half-symbol MP-RS.
  • the corresponding symbol duration is 8us
  • the AGC duration is generally fixed, about 10-15us, so the AGC measurement can only be completed by using two-symbol MP-RS.
  • MP-RS is used for other functions of the corresponding port (any function except AGC).
  • the frequency-domain discrete mapping can be used to obtain the time-domain repeated MP-RS signal.
  • the remaining half of the MP-RS can be used for other functions.
  • the MP-RS is combed in the frequency domain at the transmitting end Mapping is converted from frequency domain to time domain after inverse fast Fourier transform (IFFT) before transmission, as shown on the right side of Figure 8 to become a signal that is repeated in time domain within a symbol, the first half
  • IFFT inverse fast Fourier transform
  • the MP-RS of the first half symbol can be used for AGC measurement
  • the MP-RS of the second half symbol is used for other functions, such as resource occupation State awareness.
  • the MP-RS is used in the "multi-port automatic gain measurement" method.
  • MP-RS can adjust its duration adaptively according to the configuration of SCS to ensure that there is enough time for ADC gain adjustment, but not It will cause a waste of resources, and MP-RS can support multi-port automatic gain measurement separately, and different ports have different gain compensation amounts.
  • MP-RS is used for "multi-port frequency offset estimation”: UE A at the sending side can send MP-RS before sending the physical direct link control channel PSCCH or physical sidelink shared channel (PSSCH) This signal is used to help UE B on the receiving side to estimate the frequency offset, and MP-RS can support the estimation of the frequency offset of different ports.
  • the specific estimation schemes include:
  • the frequency offset adjustment amount is added to obtain the frequency offset trial value; specifically, at least one frequency offset adjustment amount is required to obtain at least one frequency offset trial value; the initial frequency offset estimation value can also be used as a frequency offset Trial value, corresponding to a frequency deviation trial value, in short, at least two frequency deviation trial values are finally obtained;
  • the UE on the receiving side can set different frequency offset compensations according to the maximum value of the detected correlation peaks corresponding to each port.
  • the MP-RS used in the "multi-port frequency offset estimation” method multiplexes the MP-RS signal for multi-port frequency offset estimation, which can obtain the frequency offset of the current transmitted data, which is beneficial to subsequent data demodulation. Decoding, and for different ports, you can set different frequency offset compensation.
  • MP-RS is used for "multi-port channel state information measurement": UE A on the transmitting side can send MP-RS before PSCCH or PSSCH is sent. This signal is used to help UE B on the receiving side do channel state information measurement, and MP-RS can support measuring channel state information of different ports:
  • UE B can directly use comb-shaped MP-RS that covers the full working bandwidth to measure channel state information. Different ports occupy different comb teeth, UE B The channel information measurement results of different ports can be obtained through sequences on different combs;
  • UE A sends multi-port MP-RS, different ports of MP-RS use different sequences or different cyclic shifts, MP-RS can cover all working bandwidth, UB After B receives the multi-port MP-RS, it can obtain channel state information of different ports on the entire working bandwidth.
  • the MP-RS used in the "multi-port channel state information measurement” method multiplexes the MP-RS signal for multi-port channel state information measurement, and can obtain the channel state information of different ports of the current Sidelink unicast communication, saving
  • the channel state information-reference signal CSI-RS signaling overhead is improved, and resource utilization efficiency is improved.
  • MP-RS is used for "multi-port channel estimation”: UE A on the transmitting side can send MP-RS before PSCCH or PSSCH is sent. This signal is used to help UE B on the receiving side for channel estimation.
  • MP-RS can provide Channel estimation results of at least two ports;
  • the SCS of the carrier communicating on the current direct link is relatively small, and the time used for AGC is relatively small, and MP-RS has enough time for channel estimation, and the channel estimation accuracy is high at this time;
  • the MP-RS used in the "multi-port channel estimation” method multiplexes the MP-RS signal for channel estimation, and can obtain the channel matrix H value of the current Sidelink unicast communication, which saves DMRS signaling overhead and improves Improve resource utilization efficiency, and MP-RS can provide channel estimation results of at least two ports.
  • Example 8 (The SCS of MP-RS may be different from the SCS of PSCCH or PSSCH sent subsequently):
  • the sequence length of MP-RS is fixed, for example, the length is 255, but the SCS of MP-RS can be different from the SCS of PSCCH or PSSCH sent subsequently, so that MP-RS can cover the entire bandwidth:
  • MP-RS adopts a smaller SCS to ensure that there are enough subcarriers to accommodate the MP-RS sequence
  • the working bandwidth of V2X is 5MHz
  • the SCS configured for PSCCH or PSSCH is 15KHz
  • the SCS configured for PSCCH or PSSCH is 30KHz
  • the working bandwidth of 5MHz only has 12 RBs, which cannot accommodate the 255-long MP-RS sequence. Therefore, the MP-RS needs to use a smaller SCS, that is, 15KHz. It can be guaranteed that a 255-long MP-RS sequence can be accommodated in a 5MHz bandwidth.
  • the MP-RS uses a larger SCS to ensure that the MP-RS sequence can cover the entire bandwidth.
  • the working bandwidth of V2X is 20MHz
  • the SCS configured for PSCCH or PSSCH is 60KHz
  • the SCS configured for PSCCH or PSSCH is 15KHz
  • the working bandwidth of 20MHz will have 100 RBs, and the 255-long MP-RS sequence cannot cover the entire bandwidth, so the MP-RS needs to use a larger SCS, which is 60KHz. This ensures that the 255-long MP-RS sequence can cover the entire 20MHz bandwidth.
  • the SCS configuration method of the MP-RS sequence in this example is relatively flexible, and can be applied to various PSCCH or PSSCH SCS conditions and bandwidth conditions.
  • the solution provided by the embodiment of the present disclosure may specifically include a method for sending a multi-port multi-purpose (multi-function) reference signal for a through link Sidelink.
  • the sending end sends multi-port multi-purpose Reference signal (MP-RS), this signal supports at least two ports, can use a single signal to complete multi-port automatic gain control measurement, but also has multi-port frequency offset estimation, multi-port channel state information measurement, multi-port channel estimation And other functions, it can support multiple ports, thereby avoiding the waste of time-frequency resources, thereby improving the bit error rate performance and resource utilization performance of Sidelink data transmission.
  • MP-RS multi-port multi-purpose Reference signal
  • the embodiment of the present disclosure also provides a communication device.
  • the communication device is a first communication device. As shown in FIG. 9, it includes a memory 91, a processor 92, a transceiver 93, and is stored on the memory 91 and can be stored in The computer program 94 running on the processor 92; when the processor 92 executes the program, the following steps are implemented:
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the communication device sends a first reference signal to a second communication device by using the transceiver; wherein, the first reference signal is used for automatic control of at least two ports of the first reference signal.
  • MP-RS multi-port multi-purpose reference signal
  • the sequence type used by the first reference signal is a pseudo random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in the time domain and/or the frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is time-domain and/or frequency-domain mapped in a continuous mapping manner, and is mapped to a preset working bandwidth; wherein, the continuous mapping manner refers to mapping one by one according to the subcarrier sequence number .
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, the partial carrier bandwidth, or the configured bandwidth part BWP.
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal, including: the first reference signal is used for making the second communication device according to the first
  • the signal strength of the sequence received by each port of the reference signal is adjusted, and the scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver is adjusted so that the sequence received by each port of the first reference signal
  • the signal intensity of is in the preset intensity range after being scaled by the corresponding analog-to-digital converter.
  • the first reference signal is used to estimate the frequency offset of at least two ports of the first reference signal, including: the first reference signal is used to enable the second communication device to obtain the reference signal
  • the initial frequency offset estimation value corresponding to each port of each port at least two frequency offset attempt values corresponding to each port are obtained according to the initial frequency offset estimation value corresponding to each port and at least one frequency offset adjustment value;
  • a frequency offset attempt value is used to compensate the frequency offset of the sequence received at each port.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the reference signal includes: dividing the sequence received by each port of the reference signal into two sequences, and dividing the two sequences respectively Correlation processing is performed on the local sequence corresponding to the corresponding port; the phase difference value between the two sequences after the correlation processing is obtained; and the initial frequency offset estimation value corresponding to the corresponding port is obtained according to the phase difference value.
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes: performing correlation operations based on at least two frequency offset trial values corresponding to each port to obtain each At least two correlation peaks corresponding to each port; obtain the frequency offset attempt value corresponding to the maximum value of the at least two correlation peaks corresponding to each port as the optimal frequency offset attempt value corresponding to each port; according to the optimal frequency offset corresponding to each port
  • the bias value compensates the frequency deviation of the sequence received by each port.
  • the first reference signal is used to measure the channel state information of at least two ports of the first reference signal, including: the first reference signal is used to make the second communication device according to the first For the reference signal, perform channel state information measurement of at least two ports of the first reference signal, and obtain channel state information measurement results of the at least two ports of the first reference signal.
  • the first reference signal is used to enable the second communication device to perform channel state information measurement of at least two ports of the first reference signal according to the first reference signal to obtain the first reference
  • the channel state information measurement results of the at least two ports of the signal include: different ports of the reference signal correspond to different time domain positions, so that the second communication device according to the time domain position of each port of the reference signal, Obtain the channel state information measurement result of each port; and/or, different ports of the reference signal correspond to different frequency domain positions, so that the second communication device obtains according to the frequency domain positions corresponding to each port of the reference signal Channel state information measurement results of each port; and/or
  • Different ports of the reference signal correspond to different sequences, so that the second communication device obtains the channel state information measurement results of each port according to the sequence corresponding to each port of the reference signal; and/or Different ports correspond to different cyclic shifts, so that the second communication device obtains the channel state information measurement results of each port according to the cyclic shift corresponding to each port of the reference signal.
  • the first reference signal is used for channel estimation of at least two ports of the first reference signal, including: the first reference signal is used for making the second communication device according to the first reference signal , Perform channel estimation of at least two ports of the first reference signal, or enable the second communication device to perform channel estimation of the first reference signal according to the first reference signal and the newly added demodulation reference signal DMRS Channel estimation of at least two ports.
  • the implementation embodiments of the signal processing method on the first communication device side are all applicable to the embodiments of the communication device, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides a communication device.
  • the communication device is a second communication device.
  • the communication device includes a memory 101, a processor 102, a transceiver 103, and is stored on the memory 101 and is available in The computer program 104 running on the processor 102; when the processor 102 executes the program, the following steps are implemented:
  • the first reference signal perform automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the communication device receives the first reference signal sent by the first communication device by using the transceiver; according to the first reference signal, automatically performs at least two ports of the first reference signal Gain control measurement and at least one of the following operations: frequency offset estimation; channel state information measurement; and channel estimation; enabling the receiving end to receive a multi-port multi-purpose reference signal (MP-RS), which supports at least two ports , Can use a single signal to complete multi-port automatic gain control measurement, and at the same time have multi-port frequency offset estimation, multi-port channel state information measurement, multi-port channel estimation and other functions, can support multiple ports, while avoiding time-frequency resources Waste, thereby improving the bit error rate performance and resource utilization performance of the sidelink data transmission of the through link; it solves the problem of excessive resource consumption when supporting multiple functions in the NR V2X multi-port through link communication in the related technology.
  • MP-RS multi-port multi-purpose reference signal
  • the sequence type used by the first reference signal is a pseudo random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in the time domain and/or the frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is time-domain and/or frequency-domain mapped in a continuous mapping manner, and is mapped to a preset working bandwidth; wherein, the continuous mapping manner refers to mapping one by one according to the subcarrier sequence number .
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, the partial carrier bandwidth, or the configured bandwidth part BWP.
  • the processor is specifically configured to: according to the signal strength of the sequence received by each port of the first reference signal, adjust the value of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver.
  • the scaling factor is such that the signal strength of the sequence received at each port of the first reference signal is in the preset strength range after being scaled by the corresponding analog-to-digital converter.
  • the processor is specifically configured to: when the subcarrier interval SCS of the carrier communicating on the current through link is less than a first preset threshold, use one symbol or half for each port of the first reference signal. For each port of the first reference signal, when the SCS of the carrier communicating on the current through link is greater than or equal to the first preset threshold , Using at least two symbols of the first reference signal to perform automatic gain control measurement; wherein, different ports correspond to different gain compensation amounts.
  • the processor is further configured to: For each port of, use the corresponding remaining half symbol of the first reference signal to perform other operations except automatic gain control measurement.
  • the processor is specifically configured to: obtain the initial frequency offset estimation value corresponding to each port of the first reference signal; and obtain the respective initial frequency offset estimation values corresponding to each port and at least one frequency offset adjustment value. At least two frequency offset trial values corresponding to the port; and frequency offset compensation is performed on the sequence received by each port according to the at least two frequency offset trial values corresponding to each port.
  • the processor is specifically configured to: divide the sequence received by each port of the first reference signal into two sequences, and perform correlation processing on the two sequences respectively and the local sequence corresponding to the corresponding port; Obtain a phase difference value between the two sequences after performing correlation processing; obtain an initial frequency offset estimation value corresponding to a corresponding port according to the phase difference value.
  • the processor is specifically configured to: perform correlation calculations according to at least two frequency offset trial values corresponding to each port to obtain at least two correlation peaks corresponding to each port; and obtain one of the at least two correlation peaks corresponding to each port.
  • the frequency offset attempt value corresponding to the maximum value is used as the optimal frequency offset attempt value corresponding to each port; frequency offset compensation is performed on the sequence received by each port according to the optimal frequency offset attempt value corresponding to each port.
  • the processor is specifically configured to: measure channel state information of at least two ports of the first reference signal according to the first reference signal, and obtain information of at least two ports of the first reference signal Channel state information measurement result.
  • the processor is specifically configured to: if different ports of the first reference signal correspond to different time domain positions, obtain the channel of each port according to the time domain position corresponding to each port of the first reference signal State information measurement result; and/or, if different ports of the first reference signal correspond to different frequency domain positions, obtain the channel state information of each port according to the frequency domain position corresponding to each port of the first reference signal Measurement results; and/or
  • the channel state information measurement result of each port corresponds to the sequence corresponding to each port of the first reference signal; and/or if the first reference signal Different ports of the signal correspond to different cyclic shifts, and the channel state information measurement results of each port are obtained according to the cyclic shifts corresponding to each port of the first reference signal.
  • the processor is specifically configured to: perform channel estimation of at least two ports of the first reference signal according to the first reference signal, or, according to the first reference signal and the newly added demodulation reference Signal DMRS to perform channel estimation of at least two ports of the first reference signal.
  • the processor is specifically configured to: when the sub-carrier interval SCS of the carrier communicating on the current through link is less than a second preset threshold, perform each step according to the sequence received by each port of the first reference signal Channel estimation of the port.
  • the processor is specifically configured to: when the SCS of the carrier communicating on the current through link is greater than or equal to the second preset threshold, according to the sequence received by each port of the first reference signal and the corresponding A new demodulation reference signal DMRS is added for channel estimation of each port.
  • the implementation embodiments of the signal processing method on the second communication device side are all applicable to the embodiments of the communication device, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the signal processing method on the first communication device side are realized; or
  • the foregoing implementation embodiments of the signal processing method on the first communication device side or the second communication device side are all applicable to the embodiment of the computer-readable storage medium, and correspondingly the same technical effects can also be achieved.
  • the embodiment of the present disclosure also provides a signal processing device, which is applied to the first communication device, as shown in FIG. 11, including:
  • the first sending module 111 is configured to send a first reference signal to a second communication device
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations:
  • the signal processing apparatus sends a first reference signal to a second communication device; wherein the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal and At least one of the following operations: frequency offset estimation; channel state information measurement; and channel estimation; it can realize that the transmitter can send a multi-port multi-purpose reference signal (MP-RS), which supports at least two ports and can be used
  • MP-RS multi-port multi-purpose reference signal
  • a single signal completes multi-port automatic gain control measurement, and at the same time has multi-port frequency offset estimation, multi-port channel state information measurement, multi-port channel estimation and other functions.
  • the sequence type used by the first reference signal is a pseudo random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in the time domain and/or the frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is time-domain and/or frequency-domain mapped in a continuous mapping manner, and is mapped to a preset working bandwidth; wherein, the continuous mapping manner refers to mapping one by one according to the subcarrier sequence number .
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, the partial carrier bandwidth, or the configured bandwidth part BWP.
  • the first reference signal is used for automatic gain control measurement of at least two ports of the first reference signal, including: the first reference signal is used for making the second communication device according to the first
  • the signal strength of the sequence received by each port of the reference signal is adjusted, and the scaling factor of the analog-to-digital converter corresponding to each port of the first reference signal in the local signal receiver is adjusted so that the sequence received by each port of the first reference signal
  • the signal intensity of is in the preset intensity range after being scaled by the corresponding analog-to-digital converter.
  • the first reference signal is used to estimate the frequency offset of at least two ports of the first reference signal, including: the first reference signal is used to enable the second communication device to obtain the reference signal
  • the initial frequency offset estimation value corresponding to each port of each port at least two frequency offset attempt values corresponding to each port are obtained according to the initial frequency offset estimation value corresponding to each port and at least one frequency offset adjustment value;
  • a frequency offset attempt value is used to compensate the frequency offset of the sequence received at each port.
  • the obtaining the initial frequency offset estimation value corresponding to each port of the reference signal includes: dividing the sequence received by each port of the reference signal into two sequences, and dividing the two sequences respectively Correlation processing is performed on the local sequence corresponding to the corresponding port; the phase difference value between the two sequences after the correlation processing is obtained; and the initial frequency offset estimation value corresponding to the corresponding port is obtained according to the phase difference value.
  • the performing frequency offset compensation on the sequence received by each port according to at least two frequency offset trial values corresponding to each port includes: performing correlation operations based on at least two frequency offset trial values corresponding to each port to obtain each At least two correlation peaks corresponding to each port; obtain the frequency offset attempt value corresponding to the maximum value of the at least two correlation peaks corresponding to each port as the optimal frequency offset attempt value corresponding to each port; according to the optimal frequency offset corresponding to each port
  • the bias value compensates the frequency deviation of the sequence received by each port.
  • the first reference signal is used to measure the channel state information of at least two ports of the first reference signal, including: the first reference signal is used to make the second communication device according to the first For the reference signal, perform channel state information measurement of at least two ports of the first reference signal, and obtain channel state information measurement results of the at least two ports of the first reference signal.
  • the first reference signal is used to enable the second communication device to perform channel state information measurement of at least two ports of the first reference signal according to the first reference signal to obtain the first reference
  • the channel state information measurement results of the at least two ports of the signal include: different ports of the reference signal correspond to different time domain positions, so that the second communication device according to the time domain position of each port of the reference signal, Obtain the channel state information measurement result of each port; and/or, different ports of the reference signal correspond to different frequency domain positions, so that the second communication device obtains according to the frequency domain positions corresponding to each port of the reference signal Channel state information measurement results of each port; and/or
  • Different ports of the reference signal correspond to different sequences, so that the second communication device obtains the channel state information measurement results of each port according to the sequence corresponding to each port of the reference signal; and/or Different ports correspond to different cyclic shifts, so that the second communication device obtains the channel state information measurement results of each port according to the cyclic shift corresponding to each port of the reference signal.
  • the first reference signal is used for channel estimation of at least two ports of the first reference signal, including: the first reference signal is used for making the second communication device according to the first reference signal , Perform channel estimation of at least two ports of the first reference signal, or enable the second communication device to perform channel estimation of the first reference signal according to the first reference signal and the newly added demodulation reference signal DMRS Channel estimation of at least two ports.
  • the implementation embodiments of the signal processing method on the first communication device side are all applicable to the embodiments of the signal processing apparatus, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides a signal processing device applied to a second communication device, as shown in FIG. 12, including:
  • the first receiving module 121 is configured to receive the first reference signal sent by the first communication device
  • the first processing module 122 is configured to perform automatic gain control measurement of at least two ports of the first reference signal and at least one of the following operations according to the first reference signal:
  • the signal processing apparatus receives a first reference signal sent by a first communication device; performs automatic gain control measurement of at least two ports of the first reference signal according to the first reference signal; At least one of the following operations: frequency offset estimation; channel state information measurement; and channel estimation; the receiver can receive the multi-port multi-purpose reference signal (MP-RS), which supports at least two ports, which can be used
  • MP-RS multi-port multi-purpose reference signal
  • a single signal completes multi-port automatic gain control measurement, and at the same time has multi-port frequency offset estimation, multi-port channel state information measurement, multi-port channel estimation and other functions.
  • the sequence type used by the first reference signal is a pseudo random sequence or a constant envelope zero autocorrelation sequence.
  • the first reference signal occupies at least one symbol in the time domain.
  • different ports of the first reference signal correspond to at least one of different sequences, different cyclic shifts, different time domain positions, and different frequency domain positions.
  • the first reference signal is mapped in the time domain and/or the frequency domain in a comb mapping manner, and is mapped to a preset working bandwidth.
  • the first reference signal is time-domain and/or frequency-domain mapped in a continuous mapping manner, and is mapped to a preset working bandwidth; wherein, the continuous mapping manner refers to mapping one by one according to the subcarrier sequence number .
  • the preset working bandwidth is one of the entire working bandwidth, part of the working bandwidth, the entire carrier bandwidth, the partial carrier bandwidth, or the configured bandwidth part BWP.
  • the details are as follows:
  • the first processing module includes: a first processing sub-module for adjusting the signal strength of the first reference signal in the local signal receiver according to the signal strength of the sequence received at each port of the first reference signal
  • the scaling factor of the analog-to-digital converter corresponding to each port is such that the signal strength of the sequence received at each port of the first reference signal is in the preset strength range after being scaled by the corresponding analog-to-digital converter.
  • the first processing module includes: a second processing sub-module, which is used to measure the first reference signal when the sub-carrier interval SCS of the carrier communicating on the current through link is less than a first preset threshold
  • Each port uses one symbol or half of the first reference signal to perform automatic gain control measurement; or when the SCS of the carrier communicating on the current through link is greater than or equal to the first preset threshold,
  • Each port of the first reference signal uses at least two symbols of the first reference signal to perform automatic gain control measurement; where different ports correspond to different gain compensation amounts.
  • the signal processing device further includes: a second processing module, configured to use half symbol of the first reference signal for automatic gain control measurement for each port of the first reference signal, then For each port of the first reference signal, use the corresponding remaining half symbol of the first reference signal to perform operations other than automatic gain control measurement.
  • a second processing module configured to use half symbol of the first reference signal for automatic gain control measurement for each port of the first reference signal, then For each port of the first reference signal, use the corresponding remaining half symbol of the first reference signal to perform operations other than automatic gain control measurement.
  • the first processing module includes: a first acquisition submodule, configured to acquire the initial frequency offset estimation value corresponding to each port of the first reference signal; The initial frequency offset estimation value corresponding to the port and the at least one frequency offset adjustment value obtain at least two frequency offset attempt values corresponding to each port; the fourth processing sub-module is used to determine the The sequence received by each port performs frequency offset compensation.
  • the first acquisition sub-module includes: a first processing unit, configured to divide the sequence received at each port of the first reference signal into two sequences, and respectively correspond to the two sequences Correlation processing is performed on the local sequence corresponding to the port; the first obtaining unit is used to obtain the phase difference between the two sequences after the correlation processing is performed; the second processing unit is used to obtain the corresponding port according to the phase difference value The corresponding initial frequency offset estimate.
  • the fourth processing sub-module includes: a third processing unit, configured to perform correlation calculations according to at least two frequency offset trial values corresponding to each port to obtain at least two correlation peaks corresponding to each port; and second acquisition Unit for obtaining the frequency offset attempt value corresponding to the maximum value of the at least two correlation peaks corresponding to each port as the optimal frequency offset attempt value corresponding to each port; the fourth processing unit is used for obtaining the frequency offset attempt value corresponding to each port according to the maximum value corresponding to each port The best frequency offset trial value performs frequency offset compensation for the sequence received at each port.
  • the first processing module includes: a fifth processing sub-module, configured to measure channel state information of at least two ports of the first reference signal according to the first reference signal, and obtain the first reference signal Channel state information measurement results of at least two ports of a reference signal.
  • the fifth processing sub-module includes: a fifth processing unit, configured to, if different ports of the first reference signal correspond to different time domain positions, perform according to the information corresponding to each port of the first reference signal Time domain position, obtain the channel state information measurement result of each port; and/or, if different ports of the first reference signal correspond to different frequency domain positions, then according to the frequency domain corresponding to each port of the first reference signal Position to obtain the channel state information measurement results of each port; and/or
  • the channel state information measurement result of each port corresponds to the sequence corresponding to each port of the first reference signal; and/or if the first reference signal Different ports of the signal correspond to different cyclic shifts, and the channel state information measurement results of each port are obtained according to the cyclic shifts corresponding to each port of the first reference signal.
  • the first processing module includes: a sixth processing sub-module, configured to perform channel estimation of at least two ports of the first reference signal according to the first reference signal, or, according to the first reference signal A reference signal and a newly added demodulation reference signal DMRS are used for channel estimation of at least two ports of the first reference signal.
  • the sixth processing sub-module includes: a sixth processing unit, which is used for when the subcarrier interval SCS of the carrier communicating on the current through link is less than a second preset threshold, according to the first reference signal The sequence received by each port is used for channel estimation of each port.
  • the sixth processing sub-module includes: a seventh processing unit, configured to: when the SCS of the carrier communicating on the current through link is greater than or equal to a second preset threshold, according to the first reference signal The sequence received by each port and the corresponding newly added demodulation reference signal DMRS are used for channel estimation of each port.
  • the implementation embodiments of the signal processing method on the second communication device side are all applicable to the embodiments of the signal processing device, and the same technical effect can also be achieved.
  • the modules/submodules/units can be implemented by software so as to be executed by various types of processors.
  • an identified executable code module may include one or more physical or logical blocks of computer instructions, for example, it may be constructed as an object, process, or function. Nevertheless, the executable code of the identified module does not need to be physically located together, but can include different instructions stored in different bits. When these instructions are logically combined together, they constitute a module and implement the requirements of the module. purpose.
  • the executable code module may be a single instruction or many instructions, and may even be distributed on multiple different code segments, distributed in different programs, and distributed across multiple memory devices.
  • operational data can be identified within the module, and can be implemented in any suitable form and organized in any suitable type of data structure. The operating data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and at least partly may only exist as electronic signals on the system or network.
  • the module can be implemented by software, taking into account the level of hardware technology in the relevant technology, so the module can be implemented by software, regardless of cost, those skilled in the art can build corresponding hardware circuits to implement the corresponding functions
  • the hardware circuits include conventional very large-scale integration (VLSI) circuits or gate arrays, as well as semiconductors or other discrete components in related technologies such as logic chips and transistors.
  • VLSI very large-scale integration
  • Modules can also be implemented with programmable hardware devices, such as field programmable gate arrays, programmable array logic, programmable logic devices, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to implement Described functions in other electronic units or combinations thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开提供了一种信号处理方法、装置及通信设备,其中,信号处理方法包括:第一通信设备向第二通信设备发送第一参考信号;其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计。

Description

信号处理方法、装置及通信设备
相关申请的交叉引用
本申请主张在2019年4月30日在中国提交的中国专利申请号No.201910363911.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种信号处理方法、装置及通信设备。
背景技术
在相关技术中的长期演进(Long Term Evolution,LTE)智能网联汽车技术(vehicle-to-everything,V2X)技术中(版本Rel-14/Rel-15LTE V2X技术),终端(user equipment,UE)用于自动增益控制或用于保护间隔的时长固定为一个符号,以完成进入模数转换器(analog to digital converter,ADC)的信号功率的调整,以及完成收发之间的转换。而用于数据解调的解调参考信号(demodulation reference signal,DMRS)也在一个子帧内占用了4个符号,参考信号开销比较高。而随着第五代(fifth generation,5G)新无线接入技术(New Radio,NR)的出现,促使车联网技术进一步发展,以满足新应用场景的需求。5G NR支持灵活的子载波间隔的配置,这就给NR V2X物理层结构的设计带来了新的挑战,原来固定占用一个符号的自动增益控制(automatic gain control,AGC)和保护间隔(guard period,GP),可能不能满足需求,需要重新进行设计。而LTE V2X是广播或组播式通信模式,并没有单播模式。
具体如图1所示(图中a表示一个子帧),横坐标是时域,每列代表一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。纵坐标是频域。AGC固定占用第一个OFDM符号,GP固定占用最后一个OFDM符号,中间是数据或DMRS。可以看出,一个子帧14个符号中,AGC、GP以及DMRS共占用了6个符号,留给数据传输仅有8个符号;而在NR V2X中,为了满足NR V2X单播通信的需求,支持新引入的UE与UE之间的单 播通信模式,需要在NR V2X中进行基于用户的进行多端口的资源占用情况感知、自动增益控制、频偏估计、信道测量与信道估计等,也就是说,每个用户要使用可以区分开的信号或信道去完成自动增益控制、频偏估计与信道测量等功能,同时还需要避免用户间这些信号或信道的碰撞而导致的性能下降。这样就需要引入很多新的信号或信道来满足以上需求,增加了系统设计的复杂度以及信令开销,浪费资源。
也就是说,相关技术中NR V2X多端口直通链路通信中支持多种功能时存在资源消耗过多的问题。
发明内容
本公开的目的在于提供一种信号处理方法、装置及通信设备,解决相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
为了解决上述技术问题,本公开实施例提供一种信号处理方法,应用于第一通信设备,包括:
向第二通信设备发送第一参考信号;
其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
可选的,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
可选的,所述第一参考信号在时域上占用至少一个符号。
可选的,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
可选的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
可选的,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
其中,连续映射的方式是指按照子载波序号逐个映射。
可选的,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分(bandwidth part,BWP)中的一个。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:
所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
可选的,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:
将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
获取进行相关处理之后的所述两段序列之间的相位差值;
根据所述相位差值获得对应端口对应的初始频偏估计值。
可选的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
可选的,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:
所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
本公开实施例还提供了一种信号处理方法,应用于第二通信设备,包括:
接收第一通信设备发送的第一参考信号;
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动 增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
可选的,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
可选的,所述第一参考信号在时域上占用至少一个符号。
可选的,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
可选的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
可选的,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
其中,连续映射的方式是指按照子载波序号逐个映射。
可选的,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
可选的,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量,包括:
根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
可选的,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量,包括:
在当前直通链路上进行通信的载波的子载波间隔(subcarrier spacing,SCS)小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者
在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信 号,进行自动增益控制测量;
其中,不同的端口对应不同的增益补偿量。
可选的,若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则所述信号处理方法还包括:
针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
可选的,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的频率偏移估计,包括:
获取所述第一参考信号的每一个端口对应的初始频偏估计值;
根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;
根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
可选的,所述获取所述第一参考信号的每一个端口对应的初始频偏估计值,包括:
将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
获取进行相关处理之后的所述两段序列之间的相位差值;
根据所述相位差值获得对应端口对应的初始频偏估计值。
可选的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
可选的,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,包括:
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
可选的,所述根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:
若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
可选的,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,包括:
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,
根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
可选的,所述根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,包括:
在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
可选的,所述根据所述第一参考信号和新增解调参考信号DMRS,进行 所述第一参考信号的至少两个端口的信道估计,包括:
在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
本公开实施例还提供了一种通信设备,所述通信设备为第一通信设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现以下步骤:
通过所述收发机向第二通信设备发送第一参考信号;
其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
可选的,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
可选的,所述第一参考信号在时域上占用至少一个符号。
可选的,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
可选的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
可选的,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
其中,连续映射的方式是指按照子载波序号逐个映射。
可选的,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号 的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:
所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
可选的,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:
将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
获取进行相关处理之后的所述两段序列之间的相位差值;
根据所述相位差值获得对应端口对应的初始频偏估计值。
可选的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
可选的,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得 所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:
所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
本公开实施例还提供了一种通信设备,所述通信设备为第二通信设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现以下步骤:
通过所述收发机接收第一通信设备发送的第一参考信号;
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
可选的,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零 自相关序列。
可选的,所述第一参考信号在时域上占用至少一个符号。
可选的,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
可选的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
可选的,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
其中,连续映射的方式是指按照子载波序号逐个映射。
可选的,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
可选的,所述处理器具体用于:
根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
可选的,所述处理器具体用于:
在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者
在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;
其中,不同的端口对应不同的增益补偿量。
可选的,若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则所述处理器还用于:
针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
可选的,所述处理器具体用于:
获取所述第一参考信号的每一个端口对应的初始频偏估计值;
根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;
根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
可选的,所述处理器具体用于:
将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
获取进行相关处理之后的所述两段序列之间的相位差值;
根据所述相位差值获得对应端口对应的初始频偏估计值。
可选的,所述处理器具体用于:
根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
可选的,所述处理器具体用于:
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
可选的,所述处理器具体用于:
若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考 信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
可选的,所述处理器具体用于:
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,
根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
可选的,所述处理器具体用于:
在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
可选的,所述处理器具体用于:
在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一通信设备侧的信号处理方法的步骤;或者
该程序被处理器执行时实现上述第二通信设备侧的信号处理方法的步骤。
本公开实施例还提供了一种信号处理装置,应用于第一通信设备,包括:
第一发送模块,用于向第二通信设备发送第一参考信号;
其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
可选的,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零 自相关序列。
可选的,所述第一参考信号在时域上占用至少一个符号。
可选的,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
可选的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
可选的,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
其中,连续映射的方式是指按照子载波序号逐个映射。
可选的,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:
所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
可选的,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:
将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
获取进行相关处理之后的所述两段序列之间的相位差值;
根据所述相位差值获得对应端口对应的初始频偏估计值。
可选的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
可选的,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:
所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
可选的,所述第一参考信号用于所述第一参考信号的至少两个端口的信 道估计,包括:
所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
本公开实施例还提供了一种信号处理装置,应用于第二通信设备,包括:
第一接收模块,用于接收第一通信设备发送的第一参考信号;
第一处理模块,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
可选的,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
可选的,所述第一参考信号在时域上占用至少一个符号。
可选的,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
可选的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
可选的,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
其中,连续映射的方式是指按照子载波序号逐个映射。
可选的,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
可选的,所述第一处理模块,包括:
第一处理子模块,用于根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
可选的,所述第一处理模块,包括:
第二处理子模块,用于在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者
在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;
其中,不同的端口对应不同的增益补偿量。
可选的,所述信号处理装置还包括:
第二处理模块,用于若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
可选的,所述第一处理模块,包括:
第一获取子模块,用于获取所述第一参考信号的每一个端口对应的初始频偏估计值;
第三处理子模块,用于根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;
第四处理子模块,用于根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
可选的,所述第一获取子模块,包括:
第一处理单元,用于将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
第一获取单元,用于获取进行相关处理之后的所述两段序列之间的相位差值;
第二处理单元,用于根据所述相位差值获得对应端口对应的初始频偏估计值。
可选的,所述第四处理子模块,包括:
第三处理单元,用于根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
第二获取单元,用于获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
第四处理单元,用于根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
可选的,所述第一处理模块,包括:
第五处理子模块,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
可选的,所述第五处理子模块,包括:
第五处理单元,用于若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
可选的,所述第一处理模块,包括:
第六处理子模块,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,
根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
可选的,所述第六处理子模块,包括:
第六处理单元,用于在当前直通链路上进行通信的载波的子载波间隔 SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
可选的,所述第六处理子模块,包括:
第七处理单元,用于在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
本公开的上述技术方案的有益效果如下:
上述方案中,所述信号处理方法通过向第二通信设备发送第一参考信号;其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现发送端发送多端口多用途参考信号(multi-purpose reference signal,MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
附图说明
图1为相关技术中的R15(版本15)V2X Sidelink子帧结构示意图;
图2为本公开实施例的信号处理方法流程示意图一;
图3为本公开实施例的信号处理方法流程示意图二;
图4为本公开实施例的多端口MP-RS发送示意图一;
图5为本公开实施例的多端口MP-RS发送示意图二;
图6为本公开实施例的多端口MP-RS发送示意图三;
图7为本公开实施例的多端口MP-RS发送示意图四;
图8为本公开实施例的多端口MP-RS发送示意图五;
图9为本公开实施例的通信设备结构示意图一;
图10为本公开实施例的通信设备结构示意图二;
图11为本公开实施例的信号处理装置结构示意图一;
图12为本公开实施例的信号处理装置结构示意图二。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开针对相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题,提供一种信号处理方法,应用于第一通信设备,如图2所示,包括:
步骤21:向第二通信设备发送第一参考信号;
其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
第一通信设备包括终端、路侧单元(roadside unit,RSU)(如红绿灯,灯杆等)或小基站,但并不以此为限。
第二通信设备包括终端、路侧单元RSU(如红绿灯,灯杆等)或小基站,但并不以此为限。
本公开实施例提供的所述信号处理方法通过向第二通信设备发送第一参考信号;其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现发送端发送多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自 相关序列。
具体的:所述伪随机序列包括最长线性反馈移位寄存器m序列、Gold序列或GMW序列等。
所述恒包络零自相关序列包括零自相关ZC序列(Zadoff-Chu序列)、Frank序列、Golomb序列或Chirp序列等。
其中,所述第一参考信号在时域上占用至少一个符号。
本公开实施例中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
具体的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
也可以是,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;其中,连续映射的方式是指按照子载波序号逐个映射。
其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
关于第一参考信号映射后的相关特征如下:
(1)若所述第一参考信号的不同端口对应不同的时域位置,则所述第一参考信号映射后不同的端口占用不同的时域位置;
若所述第一参考信号的不同端口对应相同的时域位置,则所述第一参考信号映射后不同的端口占用相同的时域位置;
(2)若所述第一参考信号的不同端口对应不同的频域位置,则所述第一参考信号映射后不同的端口占用不同的频域位置;
若所述第一参考信号的不同端口对应相同的频域位置,则所述第一参考信号映射后不同的端口占用相同的频域位置;
(3)若第一参考信号的不同端口对应不同的序列,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置;
若第一参考信号的不同端口对应相同的序列,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置;
(4)若第一参考信号的不同端口对应不同的循环移位,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置;
若第一参考信号的不同端口对应相同的循环移位,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置。
关于第一参考信号用于自动增益控制测量、频率偏移估计、信道状态信息测量或信道估计,具体如下:
(1)所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
(2)所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
其中,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;获取进行相关处理之后的所述两段序列之间的相位差值;根据所述相位差值获得对应端口对应的初始频偏估计值。
具体的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最 佳频偏尝试值;根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
(3)所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
具体的,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或,所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或,所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
(4)所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
本公开实施例还提供了一种信号处理方法,应用于第二通信设备,如图3所示,包括:
步骤31:接收第一通信设备发送的第一参考信号;
步骤32:根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
第一通信设备包括终端、路侧单元RSU(如红绿灯,灯杆等)或小基站,但并不以此为限。
第二通信设备包括终端、路侧单元RSU(如红绿灯,灯杆等)或小基站,但并不以此为限。
本公开实施例提供的所述信号处理方法通过接收第一通信设备发送的第一参考信号;根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现接收端接收多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
具体的:所述伪随机序列包括最长线性反馈移位寄存器m序列、Gold序列或GMW序列等。
所述恒包络零自相关序列包括零自相关ZC序列(Zadoff-Chu序列)、Frank序列、Golomb序列或Chirp序列等。
其中,所述第一参考信号在时域上占用至少一个符号。
本公开实施例中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
具体的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
也可以是,所述第一参考信号是以连续映射的方式进行时域和/或频域映 射的,且映射到预设工作带宽上;其中,连续映射的方式是指按照子载波序号逐个映射。
其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
关于第一参考信号映射后的相关特征如下:
(1)若所述第一参考信号的不同端口对应不同的时域位置,则所述第一参考信号映射后不同的端口占用不同的时域位置;
若所述第一参考信号的不同端口对应相同的时域位置,则所述第一参考信号映射后不同的端口占用相同的时域位置;
(2)若所述第一参考信号的不同端口对应不同的频域位置,则所述第一参考信号映射后不同的端口占用不同的频域位置;
若所述第一参考信号的不同端口对应相同的频域位置,则所述第一参考信号映射后不同的端口占用相同的频域位置;
(3)若第一参考信号的不同端口对应不同的序列,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置;
若第一参考信号的不同端口对应相同的序列,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置;
(4)若第一参考信号的不同端口对应不同的循环移位,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置;
若第一参考信号的不同端口对应相同的循环移位,则所述第一参考信号映射后不同的端口占用相同或不同的时域位置,以及占用相同或不同的频域位置。
关于根据第一参考信号进行自动增益控制测量、频率偏移估计、信道状态信息测量或信道估计,具体如下:
(1)根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量,包括:根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数 转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
其中,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量,包括:在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;其中,不同的端口对应不同的增益补偿量。
第一预设阈值可为15KHz,但并不以此为限。
进一步的,若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则所述信号处理方法还包括:针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
(2)根据所述第一参考信号,进行所述第一参考信号的至少两个端口的频率偏移估计,包括:获取所述第一参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
其中,所述获取所述第一参考信号的每一个端口对应的初始频偏估计值,包括:将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;获取进行相关处理之后的所述两段序列之间的相位差值;根据所述相位差值获得对应端口对应的初始频偏估计值。
具体的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;根据各个端口对应的最佳频偏尝试值对各个端口接收到的序 列进行频偏补偿。
(3)根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,包括:根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
具体的,所述根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或,若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或,若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
(4)根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,包括:根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
其中,所述根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,包括:在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
第二预设阈值可为15KHz,但并不以此为限。
具体的,所述根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计,包括:在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的 信道估计。
下面对本公开实施例提供的所述信号处理方法进行进一步说明,第一通信设备以终端UE A为例,第二通信设备以UE B为例。
针对上述技术问题,本公开实施例提供了一种信号处理方法,主要涉及一种多端口多用途参考信号MP-RS,该信号“一人多能”且能够支持多端口,是一种多功能参考信号,可以同时支持至少两个端口的自动增益控制测量、频率偏移估计、信道状态信息测量、信道估计等功能;可使用在V2X系统的直通链路Sidelink通信中。
具体的:
(1)MP-RS是一种具有特定长度的特定序列,比如m序列(最长线性反馈移位寄存器序列)、Gold序列或ZC序列(零自相关序列);序列长度在频域上占用整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个,在时域上占用至少一个符号。MP-RS的每个端口对应的序列长度均相同。
(2)MP-RS支持至少两个端口,可通过不同的序列、不同的循环移位、不同的时域位置和不同的频域位置中的至少一种来区分不同的端口。
(3)MP-RS的不同端口可对应不同的时域资源:MP-RS可采用梳状映射的方法进行时域映射,映射到预设工作带宽(整个工作带宽、整个载波带宽或者部分带宽)上,可通过时域梳齿位置区分端口,不同的端口占用不同的时域梳齿位置。典型的,配置两个时域梳齿对应到支持两个端口;配置四个时域梳齿对应到支持四个端口。
(4)MP-RS的不同端口可对应不同的频域资源:MP-RS可采用梳状映射的方法进行频域映射,映射到预设工作带宽(整个工作带宽、整个载波带宽或者部分带宽)上,可通过频域梳齿位置区分端口,不同的端口占用不同的频域梳齿位置。典型的,配置两个频域梳齿对应到支持两个端口;配置四个频域梳齿对应到支持四个端口。
(5)MP-RS的不同端口可对应不同的序列或循环移位:MP-RS可采用连续映射的方法(即按照子载波序号逐个映射的方式)进行时域映射,映射到预设工作带宽(整个工作带宽、整个载波带宽或者部分带宽)上,可通过 序列或循环移位区分端口,不同的端口可占用相同或不同的时域资源位置,但具有不同的序列或循环移位。
(6)MP-RS的不同端口可对应不同的序列或循环移位:MP-RS可采用连续映射的方法(即按照子载波序号逐个映射的方式)进行频域映射,映射到预设工作带宽(整个工作带宽、整个载波带宽或者部分带宽)上,可通过序列或循环移位区分端口,不同的端口可占用相同或不同的频域资源位置,但具有不同的序列或循环移位。
(7)MP-RS用于“多端口自动增益测量”:发送侧UE A(可在发送物理直通链路控制信道(physical sidelink control channel,PSCCH)之前)发送MP-RS,该信号用于帮助接收侧UE B用来做自动增益测量,避免信号强度波动过大导致ADC量化误差过大而导致的后续PSCCH和数据接收的误码率上升问题;并且,MP-RS可以支持多端口的自动增益分别测量,不同的端口具有不同的增益补偿量。
(8)MP-RS用于“多端口频率偏移估计”:发送侧UE A发送MP-RS,该信号用于帮助接收侧UE B用来做频率偏移估计,而MP-RS可以支持分别估计不同端口的频偏,具体的估计方案包括有:
a)针对MP-RS的每一个端口,将端口接收到的序列分成两段序列,两段序列分别与该端口所对应的本地序列做相关,然后计算相关处理之后的两段序列之间的相位差值,来获得该端口对应的初始频偏估计值;
b)在初始频偏估计值基础上增加频偏调整量得到频偏尝试值;具体需要至少一个频偏调整量,得到至少一个频偏尝试值;也可将初始频偏估计值作为一个频偏尝试值,对应得到一个频偏尝试值,总之最后得到至少两个频偏尝试值;
c)使用至少两个频偏尝试值去做相关运算,获得相关峰值(每个频偏尝试值对应一个相关峰值),将至少两个频偏尝试值所对应的至少两个相关峰值的最大值所对应的频偏作为最佳频偏,对该端口接收到的序列进行频偏补偿。
d)对于不同端口,接收侧UE可以根据检测到的各个端口对应的相关峰值的最大值,设置不同的频偏补偿。
(9)MP-RS用于“多端口信道状态信息测量”:发送侧UE A发送多端 口MP-RS,该信号用于帮助接收侧UE B用来做信道状态信息测量(关于使用以下哪种方式,两个UE之间可提前约定好):
a)对于不同时域资源或不同频域资源的测量方式:UE B可直接使用覆盖了全部工作带宽的梳齿状MP-RS进行信道状态信息测量,不同的端口占用不同的梳齿,UE B可以通过不同梳齿上的序列获得不同端口的信道信息测量结果;
b)对于不同序列或不同循环移位的测量方式:UE A发送多端口MP-RS,MP-RS的不同端口采用不同的序列或不同的循环移位,MP-RS可覆盖全部工作带宽,UB B收到多端口MP-RS之后,就可以获得整个工作带宽上不同端口的信道状态信息。
(10)MP-RS用于“多端口信道估计”:发送侧UE A发送多端口MP-RS,该信号用于帮助接收侧UE B用来做信道估计;MP-RS可以提供至少两个端口的信道估计结果。
a)在当前直通链路上进行通信的载波的子载波间隔SCS比较小时,用于自动增益控制AGC的时长较少,MP-RS有足够的时长用于信道估计,这时信道估计精度较高;
b)在当前直通链路上进行通信的载波的SCS比较大时,用于AGC的时长较长,MP-RS用于信道估计的时长较少或无法进行信道估计,这时需要新增DMRS完成信道估计。
具体的,以支持两个端口的MP-RS为例,关于MP-RS的发送如图4所示(图中a表示一个子帧,b表示预设工作带宽,PSFCH表示物理直通链路反馈信道(physical sidelink feedback channel)),所示,图4中符号#0中一个小方块(一个空白小方块或一个填充小方块)代表时域持续1个符号,频域为1个子载波。如图4所示,位于第一个符号的MP-RS采用梳状映射方式,映射到整个工作带宽上,共有两个梳齿,每个梳齿对应到一个端口。MP-RS除了可以完成AGC功能之外,还可以对该单播通信链路在通信之前进行信道状态测量,在通信中进行信道估计与频偏估计,这样可以通过MP-RS复用完成了多项功能,从而提高了Sidelink数据传输的误码率性能和资源利用性能。
下面对本公开实施例提供方案进行举例说明:
示例1(使用不同的时频资源-不同的时域资源和/或不同的频域资源来区分端口):
MP-RS占用第一个符号,并且通过不同的梳齿来区分端口,每一个梳齿对应到一个端口。如图5所示(图中a表示一个子帧,b表示预设工作带宽),第一个符号上的空白方块或填充方块在时域上占用一个符号,在频域上占用一个子载波。空白方块代表MP-RS的端口1,填充方块代表MP-RS的端口2上。接收侧终端可以通过这两个不同端口上映射的序列来获得这两个端口的相关信息,包括自动增益控制信息,频偏估计信息,信道状态测量信息,信道估计信息等。由于该MP-RS通过不同的时频资源映射了不同的端口测量序列,所以接收侧终端可以对不同端口分别进行测量并获得不同的测量信息。
本示例中这种多端口MP-RS序列的映射方法可以保证两个端口是完全正交的,测量结果准确。
示例2(使用相同的时频资源,不同的序列来区分端口):
MP-RS占用第一个符号,并且通过不同的序列来区分端口,每一个序列对应到一个端口,为了减轻两个端口之间的干扰,两个端口所使用的序列可以是低相关的。如图6所示(图中a表示一个子帧,b表示预设工作带宽),第一个符号上的空白方块在时域上占用一个符号,在频域上占用一个子载波。空白方块代表MP-RS的端口1和端口2。接收侧终端可以通过这两个不同端口上映射的序列来获得这两个端口的相关信息,包括自动增益控制信息,频偏估计信息,信道状态测量信息,信道估计信息等。由于该MP-RS通过不同的序列映射了不同的端口测量序列,所以接收侧终端可以对不同端口分别进行测量并获得不同的测量信息。
本示例中这种多端口MP-RS序列的映射方法平均每端口占用的时频资源较少,所能映射的端口数量较多。
示例3(使用相同的时频资源,相同的序列,不同的循环移位来区分端口):
MP-RS占用第一个符号,并且可通过相同序列的不同循环移位来区分端口,每一个循环移位对应到一个端口,为了减轻两个端口之间的干扰,两个端口所使用的循环移位可以是低相关的。如图7所示(图中a表示一个子帧, b表示预设工作带宽),第一个符号上的空白方块在时域上占用一个符号,在频域上占用一个子载波。空白方块代表MP-RS的端口1和端口2。接收侧终端可以通过这两个不同端口上映射的序列来获得这两个端口的相关信息,包括自动增益控制信息,频偏估计信息,信道状态测量信息,信道估计信息等。由于该MP-RS通过相同序列的不同循环移位映射了不同的端口测量序列,所以接收侧终端可以对不同端口分别进行测量并获得不同的测量信息。
本示例中这种多端口MP-RS序列的映射方法平均每端口占用的时频资源较少,所能映射的端口数量较多。
示例4(MP-RS用于“多端口自动增益测量”):
MP-RS用于“多端口自动增益测量”:发送侧UE A可在发送PSCCH之前,先发送MP-RS,该信号用于帮助接收侧UE B用来做自动增益测量,避免信号强度波动过大导致ADC量化误差过大而导致的后续PSCCH和数据接收的误码率上升问题,并且MP-RS可以支持多端口的自动增益分别测量,不同的端口具有不同的增益补偿量。
a)当前直通链路上进行通信的载波的SCS较小时,这时可使用一个符号或半个符号的MP-RS即可完成AGC测量;
比如:当SCS=15KHz时,对应到符号持续时长较大为67us,而AGC时长一般是固定的,大概是10~15us,所以这时使用半个符号的MP-RS即可完成AGC测量。当SCS=60KHz时,对应到符号持续时长较大为17us,所以这时使用一个符号的MP-RS即可完成AGC测量。
b)当前直通链路上进行通信的载波的SCS较大时,需要使用两个或更多符号的MP-RS才能完成AGC测量;
比如:当SCS=120KHz时,对应到符号持续时长较大为8us,而AGC时长一般是固定的,大概是10~15us,所以这时使用两个符号的MP-RS才能完成AGC测量。
c)剩余时长(一个符号中剩余部分)的MP-RS用来做对应端口的其它功能(除AGC外的任何功能)使用。
具体可通过频域离散映射,可以获得时域重复的MP-RS信号。这样当半个符号用作AGC时,剩余的半个符号的MP-RS可以用来做其它功能使用。
如图8左侧所示(图中a表示一个子帧,b表示预设工作带宽,c表示正交频分复用OFDM符号#0),在发送端将MP-RS进行了频域梳状映射,在发送之前经过快速傅里叶反变换(inverse fast Fourier transform,IFFT)变换之后,从频域转换到时域,如图8右侧所示成为在一个符号内时域重复的信号,前半个符号和后半个符号的信息完全相同,这样在接收端接收到之后,可以使用前半个符号的MP-RS进行AGC测量,后半个符号的MP-RS进行其他功能使用,比如进行资源占用状态感知。
本示例这种MP-RS用于“多端口自动增益测量”的方法中MP-RS可以根据SCS的配置情况自适应的调整其时长,以便保证既有足够的时长用于ADC增益调整,又不会造成资源的浪费,并且MP-RS可以支持多端口的自动增益分别测量,不同的端口具有不同的增益补偿量。
示例5(MP-RS用于“多端口频率偏移估计”):
MP-RS用于“多端口频率偏移估计”:发送侧UE A可以在发送物理直通链路控制信道PSCCH或物理直通链路共享信道(physical sidelink shared channel,PSSCH)之前,先发送MP-RS,该信号用于帮助接收侧UE B用来做频率偏移估计,而MP-RS可以支持分别估计不同端口的频偏,具体的估计方案包括有:
a)针对MP-RS的每一个端口,将端口接收到的序列分成两段,两段序列分别与该端口所对应的本地序列做相关,然后计算相关处理之后的两段序列之间的相位差值,来获得该端口对应的初始频偏估计值;
b)在初始频偏估计值基础上增加频偏调整量得到频偏尝试值;具体需要至少一个频偏调整量,得到至少一个频偏尝试值;也可将初始频偏估计值作为一个频偏尝试值,对应得到一个频偏尝试值,总之最后得到至少两个频偏尝试值;
c)使用至少两个频偏尝试值去做相关运算,获得相关峰值(每个频偏尝试值对应一个相关峰值),将至少两个频偏尝试值所对应的至少两个相关峰值的最大值所对应的频偏作为最佳频偏,对该端口接收到的序列进行频偏补偿。
d)对于不同端口,接收侧UE可以根据检测到的各个端口对应的相关峰值的最大值,设置不同的频偏补偿。
本示例这种MP-RS用于“多端口频率偏移估计”的方法中复用MP-RS信号进行多端口频偏估计,可以获得当前发送数据的频率偏移,有利于后续的数据解调解码,并且对于不同端口,可以设置不同的频偏补偿量。
示例6(MP-RS用于“多端口信道状态信息测量”):
MP-RS用于“多端口信道状态信息测量”:发送侧UE A可以在发送PSCCH或PSSCH之前,先发送MP-RS,该信号用于帮助接收侧UE B用来做信道状态信息测量,而MP-RS可以支持分别测量不同端口的信道状态信息:
a)对于不同时域资源或不同频域资源的测量方式:UE B可直接使用覆盖了全部工作带宽的梳齿状MP-RS进行信道状态信息测量,不同的端口占用不同的梳齿,UE B可以通过不同梳齿上的序列获得不同端口的信道信息测量结果;
b)对于不同序列或不同循环移位的测量方式:UE A发送多端口MP-RS,MP-RS的不同端口采用不同的序列或不同的循环移位,MP-RS可覆盖全部工作带宽,UB B收到多端口MP-RS之后,就可以获得整个工作带宽上不同端口的信道状态信息。
本示例这种MP-RS用于“多端口信道状态信息测量”的方法中复用MP-RS信号进行多端口信道状态信息测量,可以获得当前Sidelink单播通信的不同端口的信道状态信息,节省了信道状态信息-参考信号CSI-RS的信令开销,提升了资源利用效率。
示例7(MP-RS用于“多端口信道估计”):
MP-RS用于“多端口信道估计”:发送侧UE A可以在发送PSCCH或PSSCH之前,先发送MP-RS,该信号用于帮助接收侧UE B用来做信道估计,MP-RS可以提供至少两个端口的信道估计结果;
a)在当前直通链路上进行通信的载波的SCS比较小时,用于AGC的时长较少,MP-RS有足够的时长用于信道估计,这时信道估计精度较高;
b)在当前直通链路上进行通信的载波的SCS比较大时,用于AGC的时长较长,MP-RS用于信道估计的时长较少或无法进行信道估计,这时需要新增DMRS完成信道估计。
本示例这种MP-RS用于“多端口信道估计”的方法中复用MP-RS信号进 行信道估计,可以获得当前Sidelink单播通信的信道矩阵H值,节省了DMRS的信令开销,提升了资源利用效率,并且MP-RS可以提供至少两个端口的信道估计结果。
示例8(MP-RS的SCS可以与随后发送的PSCCH或PSSCH的SCS不同):
MP-RS的序列长度是固定的,比如长度是255,但MP-RS的SCS可以与随后发送的PSCCH或PSSCH的SCS不同,以便MP-RS能够正好覆盖整个带宽:
a)当PSCCH或PSSCH配置的SCS较大并且工作带宽较小的时候,MP-RS采用较小的SCS,以保证有足够的子载波来容纳MP-RS序列;
例如:当V2X的工作带宽是5MHz时,在PSCCH或PSSCH配置的SCS为15KHz时,有25个RB,每个资源块RB有12个子载波,可以容纳下255长的MP-RS序列,但在PSCCH或PSSCH配置的SCS为30KHz时,5MHz的工作带宽只有12个RB,就无法容纳下255长的MP-RS序列了,所以此时需要MP-RS采用较小的SCS,也就是15KHz,这样可以保证在5MHz带宽中容纳下255长的MP-RS序列。
b)当PSCCH或PSSCH配置的SCS较小并且工作带宽较大的时候,MP-RS采用较大的SCS,以保证MP-RS序列可以覆盖整个带宽。
例如:当V2X的工作带宽是20MHz时,在PSCCH或PSSCH配置的SCS为60KHz时,有25个RB,每个RB有12个子载波,255长的MP-RS序列可以覆盖整个20MHz带宽,但在PSCCH或PSSCH配置的SCS为15KHz时,20MHz的工作带宽就有100个RB,255长的MP-RS序列就无法覆盖整个带宽了,所以此时需要MP-RS采用较大的SCS,也就是60KHz,这样可以保证255长的MP-RS序列可以覆盖整个20MHz带宽。
本示例这种MP-RS序列的SCS配置方法比较灵活,可以适用于多种PSCCH或PSSCH的SCS情况与带宽情况。
在此说明,占用多于1个的符号的MP-RS的示例与上述类似,在此不再赘述,且占用的符号越多,得到的信息的精度越高。
由上可知,本公开实施例提供的方案,可以具体包括一种用于直通链路 Sidelink的多端口多用途(多功能)参考信号的发送方法,相对于相关技术,发送端发送多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,从而避免了时频资源的浪费,进而提高了Sidelink数据传输的误码率性能和资源利用性能。
本公开实施例还提供了一种通信设备,所述通信设备为第一通信设备,如图9所示,包括存储器91、处理器92、收发机93及存储在所述存储器91上并可在所述处理器92上运行的计算机程序94;所述处理器92执行所述程序时实现以下步骤:
通过所述收发机93向第二通信设备发送第一参考信号;
其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
本公开实施例提供的所述通信设备通过利用所述收发机向第二通信设备发送第一参考信号;其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现发送端发送多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
具体的,所述第一参考信号在时域上占用至少一个符号。
本公开实施例中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
具体的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
也可以是,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;其中,连续映射的方式是指按照子载波序号逐个映射。
其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
关于第一参考信号用于自动增益控制测量、频率偏移估计、信道状态信息测量或信道估计,具体如下:
(1)所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
(2)所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
其中,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;获取进行相关处理之后的所述两段序列之间的相位差值;根据所述相位差值获得对应端口对应的初始频偏估计值。
具体的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接 收到的序列进行频偏补偿,包括:根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
(3)所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
具体的,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或,所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或,所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
(4)所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
其中,上述第一通信设备侧的信号处理方法的所述实现实施例均适用于该通信设备的实施例中,也能达到相同的技术效果。
本公开实施例还提供了一种通信设备,所述通信设备为第二通信设备,如图10所示,包括存储器101、处理器102、收发机103及存储在所述存储器101上并可在所述处理器102上运行的计算机程序104;所述处理器102执行所述程序时实现以下步骤:
通过所述收发机103接收第一通信设备发送的第一参考信号;
根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
本公开实施例提供的所述通信设备通过利用所述收发机接收第一通信设备发送的第一参考信号;根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现接收端接收多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
具体的,所述第一参考信号在时域上占用至少一个符号。
本公开实施例中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
具体的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
也可以是,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;其中,连续映射的方式是指按照子载波序 号逐个映射。
其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
关于根据第一参考信号进行自动增益控制测量、频率偏移估计、信道状态信息测量或信道估计,具体如下:
(1)所述处理器具体用于:根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
其中,所述处理器具体用于:在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;其中,不同的端口对应不同的增益补偿量。
进一步的,若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则所述处理器还用于:针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
(2)所述处理器具体用于:获取所述第一参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
其中,所述处理器具体用于:将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;获取进行相关处理之后的所述两段序列之间的相位差值;根据所述相位差值获得对应端口对应的初始频偏估计值。
具体的,所述处理器具体用于:根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;获取各个端口对 应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
(3)所述处理器具体用于:根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
具体的,所述处理器具体用于:若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或,若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或,若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
(4)所述处理器具体用于:根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
其中,所述处理器具体用于:在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
具体的,所述处理器具体用于:在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
其中,上述第二通信设备侧的信号处理方法的所述实现实施例均适用于该通信设备的实施例中,也能达到相同的技术效果。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一通信设备侧的信号处理方法的步骤;或者
该程序被处理器执行时实现上述第二通信设备侧的信号处理方法的步骤。
其中,上述第一通信设备侧或第二通信设备侧的信号处理方法的所述实现实施例均适用于该计算机可读存储介质的实施例中,也能达到对应相同的技术效果。
本公开实施例还提供了一种信号处理装置,应用于第一通信设备,如图11所示,包括:
第一发送模块111,用于向第二通信设备发送第一参考信号;
其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
本公开实施例提供的所述信号处理装置通过向第二通信设备发送第一参考信号;其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现发送端发送多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
具体的,所述第一参考信号在时域上占用至少一个符号。
本公开实施例中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
具体的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
也可以是,所述第一参考信号是以连续映射的方式进行时域和/或频域映 射的,且映射到预设工作带宽上;其中,连续映射的方式是指按照子载波序号逐个映射。
其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
关于第一参考信号用于自动增益控制测量、频率偏移估计、信道状态信息测量或信道估计,具体如下:
(1)所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
(2)所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
其中,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;获取进行相关处理之后的所述两段序列之间的相位差值;根据所述相位差值获得对应端口对应的初始频偏估计值。
具体的,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
(3)所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
具体的,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或,所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或,所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
(4)所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
其中,上述第一通信设备侧的信号处理方法的所述实现实施例均适用于该信号处理装置的实施例中,也能达到相同的技术效果。
本公开实施例还提供了一种信号处理装置,应用于第二通信设备,如图12所示,包括:
第一接收模块121,用于接收第一通信设备发送的第一参考信号;
第一处理模块122,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
频率偏移估计;
信道状态信息测量;以及
信道估计。
本公开实施例提供的所述信号处理装置通过接收第一通信设备发送的第一参考信号;根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:频率偏移估计;信道状态信息测量;以及信道估计;能够实现接收端接收多端口多用途参考信号(MP-RS),该信号支持至少两个端口,既可以使用单一信号完成多端口自动增益控制测量,又同时具有多端口频率偏移估计、多端口信道状态信息测量、多端口信道估计等功能,能够支持多端口,同时避免了时频资源的浪费,从而提高了直通链路Sidelink数据传输的误码率性能和资源利用性能;很好的解决了相关技术中NR V2X多端口直通链路通信中支持多功能时资源消耗过多的问题。
其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
具体的,所述第一参考信号在时域上占用至少一个符号。
本公开实施例中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
具体的,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
也可以是,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;其中,连续映射的方式是指按照子载波序号逐个映射。
其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
关于第一处理模块用于根据第一参考信号进行自动增益控制测量、频率偏移估计、信道状态信息测量或信道估计,具体如下:
(1)所述第一处理模块,包括:第一处理子模块,用于根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一 参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
其中,所述第一处理模块,包括:第二处理子模块,用于在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;其中,不同的端口对应不同的增益补偿量。
进一步的,所述信号处理装置还包括:第二处理模块,用于若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
(2)所述第一处理模块,包括:第一获取子模块,用于获取所述第一参考信号的每一个端口对应的初始频偏估计值;第三处理子模块,用于根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;第四处理子模块,用于根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
其中,所述第一获取子模块,包括:第一处理单元,用于将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;第一获取单元,用于获取进行相关处理之后的所述两段序列之间的相位差值;第二处理单元,用于根据所述相位差值获得对应端口对应的初始频偏估计值。
具体的,所述第四处理子模块,包括:第三处理单元,用于根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;第二获取单元,用于获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;第四处理单元,用于根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进 行频偏补偿。
(3)所述第一处理模块,包括:第五处理子模块,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
具体的,所述第五处理子模块,包括:第五处理单元,用于若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或,若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或,若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
(4)所述第一处理模块,包括:第六处理子模块,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
其中,所述第六处理子模块,包括:第六处理单元,用于在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
具体的,所述第六处理子模块,包括:第七处理单元,用于在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
其中,上述第二通信设备侧的信号处理方法的所述实现实施例均适用于该信号处理装置的实施例中,也能达到相同的技术效果。
需要说明的是,此说明书中所描述的许多功能部件都被称为模块/子模块/单元,以便更加特别地强调其实现方式的独立性。
本公开实施例中,模块/子模块/单元可以用软件实现,以便由各种类型的 处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到相关技术中硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的相关技术中半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一 些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其 组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (67)

  1. 一种信号处理方法,应用于第一通信设备,包括:
    向第二通信设备发送第一参考信号;
    其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
    频率偏移估计;
    信道状态信息测量;以及
    信道估计。
  2. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
  3. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号在时域上占用至少一个符号。
  4. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
  5. 根据权利要求4所述的信号处理方法,其中,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
  6. 根据权利要求4所述的信号处理方法,其中,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
    其中,连续映射的方式是指按照子载波序号逐个映射。
  7. 根据权利要求5或6所述的信号处理方法,其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
  8. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量,包括:
    所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端 口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
  9. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:
    所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
  10. 根据权利要求9所述的信号处理方法,其中,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:
    将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
    获取进行相关处理之后的所述两段序列之间的相位差值;
    根据所述相位差值获得对应端口对应的初始频偏估计值。
  11. 根据权利要求9所述的信号处理方法,其中,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
    根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
    获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
    根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
  12. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:
    所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
  13. 根据权利要求12所述的信号处理方法,其中,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口 的信道状态信息测量结果,包括:
    所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
    所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
    所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
    所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
  14. 根据权利要求1所述的信号处理方法,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:
    所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
  15. 一种信号处理方法,应用于第二通信设备,包括:
    接收第一通信设备发送的第一参考信号;
    根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
    频率偏移估计;
    信道状态信息测量;以及
    信道估计。
  16. 根据权利要求15所述的信号处理方法,其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
  17. 根据权利要求15所述的信号处理方法,其中,所述第一参考信号在 时域上占用至少一个符号。
  18. 根据权利要求15所述的信号处理方法,其中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
  19. 根据权利要求18所述的信号处理方法,其中,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
  20. 根据权利要求18所述的信号处理方法,其中,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
    其中,连续映射的方式是指按照子载波序号逐个映射。
  21. 根据权利要求19或20所述的信号处理方法,其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
  22. 根据权利要求15所述的信号处理方法,其中,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量,包括:
    根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
  23. 根据权利要求15或22所述的信号处理方法,其中,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量,包括:
    在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者
    在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时,针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;
    其中,不同的端口对应不同的增益补偿量。
  24. 根据权利要求23所述的信号处理方法,其中,若针对所述第一参考 信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则所述信号处理方法还包括:
    针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
  25. 根据权利要求15所述的信号处理方法,其中,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的频率偏移估计,包括:
    获取所述第一参考信号的每一个端口对应的初始频偏估计值;
    根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;
    根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
  26. 根据权利要求25所述的信号处理方法,其中,所述获取所述第一参考信号的每一个端口对应的初始频偏估计值,包括:
    将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
    获取进行相关处理之后的所述两段序列之间的相位差值;
    根据所述相位差值获得对应端口对应的初始频偏估计值。
  27. 根据权利要求25或26所述的信号处理方法,其中,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
    根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
    获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
    根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
  28. 根据权利要求18所述的信号处理方法,其中,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,包括:
    根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道 状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
  29. 根据权利要求28所述的信号处理方法,其中,所述根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:
    若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
    若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
    若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
    若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
  30. 根据权利要求15所述的信号处理方法,其中,根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,包括:
    根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,
    根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
  31. 根据权利要求30所述的信号处理方法,其中,所述根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,包括:
    在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
  32. 根据权利要求30所述的信号处理方法,其中,所述根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口 的信道估计,包括:
    在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
  33. 一种通信设备,所述通信设备为第一通信设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述计算机程序时实现以下步骤:
    通过所述收发机向第二通信设备发送第一参考信号;
    其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
    频率偏移估计;
    信道状态信息测量;以及
    信道估计。
  34. 根据权利要求33所述的通信设备,其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
  35. 根据权利要求33所述的通信设备,其中,所述第一参考信号在时域上占用至少一个符号。
  36. 根据权利要求33所述的通信设备,其中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
  37. 根据权利要求36所述的通信设备,其中,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
  38. 根据权利要求36所述的通信设备,其中,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
    其中,连续映射的方式是指按照子载波序号逐个映射。
  39. 根据权利要求37或38所述的通信设备,其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
  40. 根据权利要求33所述的通信设备,其中,所述第一参考信号用于所 述第一参考信号的至少两个端口的自动增益控制测量,包括:
    所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
  41. 根据权利要求33所述的通信设备,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的频率偏移估计,包括:
    所述第一参考信号用于使得所述第二通信设备获取所述参考信号的每一个端口对应的初始频偏估计值;根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
  42. 根据权利要求41所述的通信设备,其中,所述获取所述参考信号的每一个端口对应的初始频偏估计值,包括:
    将所述参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
    获取进行相关处理之后的所述两段序列之间的相位差值;
    根据所述相位差值获得对应端口对应的初始频偏估计值。
  43. 根据权利要求41所述的通信设备,其中,所述根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿,包括:
    根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
    获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
    根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
  44. 根据权利要求33所述的通信设备,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的信道状态信息测量,包括:
    所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一 参考信号的至少两个端口的信道状态信息测量结果。
  45. 根据权利要求44所述的通信设备,其中,所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果,包括:
    所述参考信号的不同端口对应不同的时域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
    所述参考信号的不同端口对应不同的频域位置,使得所述第二通信设备根据所述参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
    所述参考信号的不同端口对应不同的序列,使得所述第二通信设备根据所述参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
    所述参考信号的不同端口对应不同的循环位移,使得所述第二通信设备根据所述参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
  46. 根据权利要求33所述的通信设备,其中,所述第一参考信号用于所述第一参考信号的至少两个端口的信道估计,包括:
    所述第一参考信号用于使得所述第二通信设备根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,使得所述第二通信设备根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
  47. 一种通信设备,所述通信设备为第二通信设备,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述计算机程序时实现以下步骤:
    通过所述收发机接收第一通信设备发送的第一参考信号;
    根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
    频率偏移估计;
    信道状态信息测量;以及
    信道估计。
  48. 根据权利要求47所述的通信设备,其中,所述第一参考信号所使用的序列类型为伪随机序列或恒包络零自相关序列。
  49. 根据权利要求47所述的通信设备,其中,所述第一参考信号在时域上占用至少一个符号。
  50. 根据权利要求47所述的通信设备,其中,所述第一参考信号的不同端口对应不同的序列、不同的循环移位、不同的时域位置以及不同的频域位置中的至少一种。
  51. 根据权利要求50所述的通信设备,其中,所述第一参考信号是以梳状映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上。
  52. 根据权利要求50所述的通信设备,其中,所述第一参考信号是以连续映射的方式进行时域和/或频域映射的,且映射到预设工作带宽上;
    其中,连续映射的方式是指按照子载波序号逐个映射。
  53. 根据权利要求51或52所述的通信设备,其中,所述预设工作带宽为整个工作带宽、部分工作带宽、整个载波带宽、部分载波带宽或配置的带宽部分BWP中的一个。
  54. 根据权利要求47所述的通信设备,其中,所述处理器具体用于:
    根据所述第一参考信号的各个端口接收的序列的信号强度,调整本地信号接收机中所述第一参考信号的各个端口对应的模数转换器的缩放系数,使得所述第一参考信号的各个端口接收的序列的信号强度经对应的模数转换器缩放处理后处于预设强度范围。
  55. 根据权利要求47或54所述的通信设备,其中,所述处理器具体用于:
    在当前直通链路上进行通信的载波的子载波间隔SCS小于第一预设阈值时,针对所述第一参考信号的每一个端口,使用一个符号或半个符号的所述第一参考信号,进行自动增益控制测量;或者
    在当前直通链路上进行通信的载波的SCS大于或等于第一预设阈值时, 针对所述第一参考信号的每一个端口,使用至少两个符号的所述第一参考信号,进行自动增益控制测量;
    其中,不同的端口对应不同的增益补偿量。
  56. 根据权利要求55所述的通信设备,其中,若针对所述第一参考信号的每一个端口,使用半个符号的所述第一参考信号,进行自动增益控制测量,则所述处理器还用于:
    针对所述第一参考信号的每一个端口,利用对应的剩余的半个符号的所述第一参考信号,进行除自动增益控制测量外的其他操作。
  57. 根据权利要求47所述的通信设备,其中,所述处理器具体用于:
    获取所述第一参考信号的每一个端口对应的初始频偏估计值;
    根据每一个端口对应的初始频偏估计值和至少一个频偏调整量得到各个端口对应的至少两个频偏尝试值;
    根据各个端口对应的至少两个频偏尝试值,对各个端口接收到的序列进行频偏补偿。
  58. 根据权利要求57所述的通信设备,其中,所述处理器具体用于:
    将所述第一参考信号的每一个端口接收到的序列划分为两段序列,并将所述两段序列分别与对应端口对应的本地序列进行相关处理;
    获取进行相关处理之后的所述两段序列之间的相位差值;
    根据所述相位差值获得对应端口对应的初始频偏估计值。
  59. 根据权利要求57或58所述的通信设备,其中,所述处理器具体用于:
    根据各个端口对应的至少两个频偏尝试值进行相关运算,得到各个端口对应的至少两个相关峰值;
    获取各个端口对应的至少两个相关峰值中的最大值所对应的频偏尝试值作为各个端口对应的最佳频偏尝试值;
    根据各个端口对应的最佳频偏尝试值对各个端口接收到的序列进行频偏补偿。
  60. 根据权利要求50所述的通信设备,其中,所述处理器具体用于:
    根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道 状态信息测量,获得所述第一参考信号的至少两个端口的信道状态信息测量结果。
  61. 根据权利要求60所述的通信设备,其中,所述处理器具体用于:
    若所述第一参考信号的不同端口对应不同的时域位置,则根据所述第一参考信号的各个端口对应的时域位置,获得各个端口的信道状态信息测量结果;和/或
    若所述第一参考信号的不同端口对应不同的频域位置,则根据所述第一参考信号的各个端口对应的频域位置,获得各个端口的信道状态信息测量结果;和/或
    若所述第一参考信号的不同端口对应不同的序列,则根据所述第一参考信号的各个端口对应的序列,获得各个端口的信道状态信息测量结果;和/或
    若所述第一参考信号的不同端口对应不同的循环位移,则根据所述第一参考信号的各个端口对应的循环位移,获得各个端口的信道状态信息测量结果。
  62. 根据权利要求47所述的通信设备,其中,所述处理器具体用于:
    根据所述第一参考信号,进行所述第一参考信号的至少两个端口的信道估计,或者,
    根据所述第一参考信号和新增解调参考信号DMRS,进行所述第一参考信号的至少两个端口的信道估计。
  63. 根据权利要求62所述的通信设备,其中,所述处理器具体用于:
    在当前直通链路上进行通信的载波的子载波间隔SCS小于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列,进行各个端口的信道估计。
  64. 根据权利要求62所述的通信设备,其中,所述处理器具体用于:
    在当前直通链路上进行通信的载波的SCS大于或等于第二预设阈值时,根据所述第一参考信号的各个端口接收到的序列和对应的新增解调参考信号DMRS,进行各个端口的信道估计。
  65. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1至14中任一项所述的信号处理方法的步骤; 或者
    该计算机程序被处理器执行时实现如权利要求15至32中任一项所述的信号处理方法的步骤。
  66. 一种信号处理装置,应用于第一通信设备,包括:
    第一发送模块,用于向第二通信设备发送第一参考信号;
    其中,所述第一参考信号用于所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
    频率偏移估计;
    信道状态信息测量;以及
    信道估计。
  67. 一种信号处理装置,应用于第二通信设备,包括:
    第一接收模块,用于接收第一通信设备发送的第一参考信号;
    第一处理模块,用于根据所述第一参考信号,进行所述第一参考信号的至少两个端口的自动增益控制测量以及以下操作中的至少一种:
    频率偏移估计;
    信道状态信息测量;以及
    信道估计。
PCT/CN2020/085827 2019-04-30 2020-04-21 信号处理方法、装置及通信设备 WO2020221061A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20799254.6A EP3965349A4 (en) 2019-04-30 2020-04-21 SIGNAL PROCESSING METHOD AND EQUIPMENT AND COMMUNICATION DEVICE
US17/607,821 US20220256373A1 (en) 2019-04-30 2020-04-21 Signal processing method, device and communication device
KR1020217039284A KR20220003601A (ko) 2019-04-30 2020-04-21 신호 처리 방법, 장치 및 통신 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910363911.3A CN111865533B (zh) 2019-04-30 2019-04-30 一种信号处理方法、装置及通信设备
CN201910363911.3 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221061A1 true WO2020221061A1 (zh) 2020-11-05

Family

ID=72965175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085827 WO2020221061A1 (zh) 2019-04-30 2020-04-21 信号处理方法、装置及通信设备

Country Status (6)

Country Link
US (1) US20220256373A1 (zh)
EP (1) EP3965349A4 (zh)
KR (1) KR20220003601A (zh)
CN (1) CN111865533B (zh)
TW (1) TWI761819B (zh)
WO (1) WO2020221061A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024722A1 (zh) * 2021-08-23 2023-03-02 华为技术有限公司 通信能力信息生成方法、使用方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150937A1 (en) * 2019-03-13 2022-05-12 Lg Electronics Inc. Method for controlling plurality of antenna remote units in sidelink-supporting wireless communication system, and device therefor
CN113870558A (zh) * 2021-09-26 2021-12-31 中国联合网络通信集团有限公司 车辆检测方法、车辆检测装置、车辆和交通管制装置
CN117898012A (zh) * 2021-10-22 2024-04-16 Oppo广东移动通信有限公司 侧行传输资源的指示方法、装置、设备及存储介质
CN117956508A (zh) * 2022-10-28 2024-04-30 华为技术有限公司 一种无线感知的方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578833A (zh) * 2006-09-29 2009-11-11 皇家飞利浦电子股份有限公司 用于分组化系统的高速通信的节省成本的前导结构
CN103701730A (zh) * 2013-12-30 2014-04-02 清华大学 信道时域相关性低复杂度压缩感知的信道估计方法及装置
US20180324733A1 (en) * 2014-02-25 2018-11-08 Lg Electronics Inc. Method and apparatus for generating device-to-device terminal signal in wireless communication system
CN109644025A (zh) * 2016-10-03 2019-04-16 诺基亚技术有限公司 具有波束赋形训练和信道估计的参考信号

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127222B2 (en) * 2002-09-26 2006-10-24 Broadcom Corporation Automatic gain control adjustment of a radio receiver
WO2011019228A2 (ko) * 2009-08-14 2011-02-17 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
CN102237951B (zh) * 2010-04-30 2014-03-05 中国移动通信集团公司 小区八天线端口的信道状态信息参考信号传输方法和设备
US9420511B2 (en) * 2012-11-01 2016-08-16 Intel Corporation Signaling QoS requirements and UE power preference in LTE-A networks
US10567057B2 (en) * 2014-12-30 2020-02-18 Lg Electronics Inc. Method for performing channel estimation in wireless communication system and apparatus therefor
EP3309990B1 (en) * 2015-06-11 2021-01-27 LG Electronics Inc. Reference signal configuration method for v2v communication in wireless communication system, and apparatus therefor
CN107623542B (zh) * 2016-07-13 2023-09-01 华为技术有限公司 一种发送参考信号的方法、相关设备及通信系统
WO2018027982A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
CN109391403B (zh) * 2017-08-10 2021-07-06 上海诺基亚贝尔股份有限公司 用于无线信号的发送和接收的方法和装置
CN111431678B (zh) * 2019-01-09 2021-07-30 大唐移动通信设备有限公司 一种参考信号的传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578833A (zh) * 2006-09-29 2009-11-11 皇家飞利浦电子股份有限公司 用于分组化系统的高速通信的节省成本的前导结构
CN103701730A (zh) * 2013-12-30 2014-04-02 清华大学 信道时域相关性低复杂度压缩感知的信道估计方法及装置
US20180324733A1 (en) * 2014-02-25 2018-11-08 Lg Electronics Inc. Method and apparatus for generating device-to-device terminal signal in wireless communication system
CN109644025A (zh) * 2016-10-03 2019-04-16 诺基亚技术有限公司 具有波束赋形训练和信道估计的参考信号

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on physical layer structure in NR V2X", 3GPP DRAFT; R1-1901992, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 11, XP051599687 *
FUJITSU: "Discussion on physical layer structure for NR sidelink", 3GPP DRAFT; R1-1901943, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 6, XP051599637 *
See also references of EP3965349A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024722A1 (zh) * 2021-08-23 2023-03-02 华为技术有限公司 通信能力信息生成方法、使用方法及装置

Also Published As

Publication number Publication date
EP3965349A4 (en) 2022-11-02
CN111865533B (zh) 2022-04-15
KR20220003601A (ko) 2022-01-10
CN111865533A (zh) 2020-10-30
EP3965349A1 (en) 2022-03-09
TW202044793A (zh) 2020-12-01
US20220256373A1 (en) 2022-08-11
TWI761819B (zh) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2020221061A1 (zh) 信号处理方法、装置及通信设备
JP5503756B2 (ja) ダウンリンクpdsch電力設定のための方法及び装置
KR101511981B1 (ko) 모두 1인 r 매트릭스를 회피함으로써 ieee 802.11ac에서 파일럿 톤들 상에서의 스펙트럼 라인들의 회피
JP5065389B2 (ja) Ofdm通信環境におけるアップリンクアクセス要求
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
TWI762850B (zh) 參考信號的傳輸方法和設備
KR20110122686A (ko) 무선 통신 네트워크에서 ofdm-기반 전송을 위한 자동 이득 제어〔agc〕
WO2018010184A1 (zh) 基于无线网络的通信方法、终端设备和网络设备
CN108282322A (zh) 一种配置参考信号的方法和装置
CN108809576B (zh) 参考信号的指示方法和装置
WO2010130209A1 (zh) 下行测量导频的配置和发送方法和装置
TW201803384A (zh) 傳輸數據的方法及裝置
WO2013020491A1 (zh) 一种导频信号发送方法和设备
WO2020164461A1 (zh) 一种下行传输方法及其装置
KR20180044364A (ko) 무선 근거리 네트워크에 대한 정보 송신 방법 및 장치
WO2016201627A1 (zh) 资源分配的方法、发送端设备和接收端设备
WO2018098692A1 (zh) 一种降低无线信号的papr的方法及相关装置
WO2017148190A1 (zh) 信号发送方法和装置
WO2014082575A1 (zh) 一种物理广播信道传输方法、设备和系统
JP2023502761A (ja) 無線通信の柔軟なフレーム構成
US10103844B2 (en) Information receiving and sending method and apparatus
CN101867949B (zh) 信道测量导频与物理资源块的映射方法
WO2012151964A1 (zh) 数据传输方法及装置、数据处理方法及装置、帧结构
WO2012109928A1 (zh) 信号处理方法、装置及系统
WO2018126979A1 (zh) 一种配置参考信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217039284

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799254

Country of ref document: EP

Effective date: 20211130