WO2020221053A1 - 嵌入式多媒体装置和用于车载远程通信处理器的通信设备 - Google Patents

嵌入式多媒体装置和用于车载远程通信处理器的通信设备 Download PDF

Info

Publication number
WO2020221053A1
WO2020221053A1 PCT/CN2020/085745 CN2020085745W WO2020221053A1 WO 2020221053 A1 WO2020221053 A1 WO 2020221053A1 CN 2020085745 W CN2020085745 W CN 2020085745W WO 2020221053 A1 WO2020221053 A1 WO 2020221053A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
disk partition
data
vehicle
reliability
Prior art date
Application number
PCT/CN2020/085745
Other languages
English (en)
French (fr)
Inventor
胡睿
阳美文
王建强
李丽丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020221053A1 publication Critical patent/WO2020221053A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • G06F9/44505Configuring for program initiating, e.g. using registry, configuration files
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • This application relates to the field of storage technology, and in particular to embedded multimedia devices and communication equipment used in vehicle-mounted remote communication processors.
  • the Internet of Vehicles system consists of four parts, namely the host, the telematics box (T-BOX), the mobile phone application (application, APP) and the background system.
  • the vehicle-mounted T-BOX is an important part of the vehicle network system, which is mainly used to control the vehicle by the background system or mobile phone APP.
  • the vehicle-mounted T-BOX mainly interacts with the background system or mobile phone APP through the internal communication device.
  • the communication device of the vehicle-mounted T-BOX mainly consists of a processor and a storage module, and the storage module is usually composed of a single level cell. , SLC) architecture flash memory and SLC architecture NAND flash memory (flash).
  • SLC SLC architecture flash memory
  • flash SLC architecture NAND flash memory
  • NAND Flash stores the startup program of the vehicle T-BOX, configuration files and related data of the application installed in the vehicle T-BOX, etc.
  • the processor reads and writes the corresponding data stored in the NAND Flash to ensure the vehicle T-BOX
  • the communication device is operating normally.
  • the NAND Flash of the SLC architecture has the characteristic that each unit only stores one bit of data, so that the reliability of the data stored in the NAND Flash can be guaranteed.
  • the embodiments of the present application provide an embedded multimedia device and a communication device for a vehicle-mounted remote communication processor, which are used to reduce the storage of the vehicle-mounted T-BOX on the premise of meeting the high storage capacity and data reliability of the vehicle-mounted T-BOX The cost of the module.
  • an embedded multimedia device which is applied to a communication device of a vehicle-mounted telecommunication processor T-BOX.
  • the embedded multimedia device includes a boot disk partition, a high-reliability disk partition, and a user data disk partition, wherein:
  • the boot disk partition uses a method of storing one bit of data in each unit storage space to store the startup program of the vehicle-mounted T-BOX;
  • the high-reliability disk partition uses a method of storing one bit of data in each unit storage space Store the initialization information of the hardware equipment included in the vehicle-mounted T-BOX and the configuration file of the vehicle-mounted T-BOX;
  • the user data disk partition to store the data of the applications installed in the vehicle-mounted T-BOX.
  • the embedded multimedia device since the boot disk partition and the high-reliability disk partition adopt the SLC architecture to store data, the data stored in these two disk partitions (that is, the boot program stored in the vehicle T-BOX, The reliability of the initialization information of the hardware equipment and some configuration parameter files of each module in the system operation process meets the demand for data reliability of the vehicle-mounted T-BOX.
  • the embedded multimedia device adopts eMMC standard specifications, which can avoid the storage capacity limitation problem when using NAND flash to store the relevant data of the vehicle T-BOX in the prior art, which can be understood as a kind of existing eMMC memory Improved, and the storage device adopting the eMMC standard specification has the characteristics of low cost and large storage capacity. Therefore, the embedded multimedia device provided by the embodiment of the present application can be realized to meet the high storage capacity and data of the vehicle T-BOX. Under the premise of reliability, the effect of reducing the cost of the storage module of the on-board T-BOX.
  • the high-reliability disk partition includes a first high-reliability disk partition and a second high-reliability disk partition, and the number of writes stored in the first high-reliability disk partition is lower than the set write Threshold data is stored in the second high-reliability disk partition for data whose write times are higher than the write threshold.
  • the high-reliability disk partition can be divided into two disk partitions according to the number of data writes according to actual use requirements, which can meet the needs of different application scenarios of the vehicle T-BOX. Improve the flexibility of embedded multimedia devices.
  • the user data disk partition can store at least two bits of data in each unit storage space to store the vehicle T-BOX configuration file and the data of the vehicle T-BOX application program .
  • the user data disk partition adopts an MLC or TLC architecture, that is, multiple bits of data are stored in a unit storage space, so the storage capacity of the embedded multimedia device can be increased.
  • the boot disk partition includes a main boot disk partition and a backup boot disk partition. Both the main boot disk partition and the backup boot disk partition store the boot program of the vehicle T-BOX. When the disk partition fails, the processor of the vehicle-mounted T-BOX reads the start-up program of the vehicle-mounted T-BOX from the backup boot disk partition.
  • a communication device for a vehicle-mounted remote communication processor T-BOX includes a processor and an embedded multimedia device.
  • the embedded multimedia device is used to store data, and the data includes The startup program of the T-BOX, the initialization information of the hardware equipment included in the vehicle-mounted T-BOX, the configuration file of the vehicle-mounted T-BOX and the data of the application program installed in the vehicle-mounted T-BOX; the processor is used for reading Take the data stored in the embedded multimedia device and/or write the data to be stored in the embedded multimedia device.
  • the embedded multimedia device is similar to the embedded multimedia device in the first aspect or one of the possible designs of the first aspect, and will not be repeated here.
  • the processor and the embedded multimedia device can be connected through, but not limited to, a secure digital input and output SDIO.
  • the embedded multimedia device may be set outside the communication device of the vehicle-mounted T-BOX, and connected to the processor of the communication device through the SDIO interface outside the communication device.
  • the embedded multimedia device can also be set inside the communication device, and the processor and the embedded multimedia device use the SDIO protocol to communicate inside the communication device.
  • the communication device can be added Flexibility.
  • a communication device for a vehicle-mounted remote communication processor T-BOX includes a processor, a NAND flash memory and an embedded multimedia device, wherein: the NAND flash memory is used to store the vehicle T-BOX startup program; the embedded multimedia device is used to store data, the data includes the initialization information of the hardware equipment included in the vehicle T-BOX, the configuration file of the vehicle T-BOX and the installed T-BOX Application data; the processor is used to read the startup program of the NAND flash memory and the data stored in the embedded multimedia device, and/or write the data to be stored in the embedded multimedia device.
  • the embedded multimedia device includes a high-reliability disk partition and a user data disk partition.
  • the high-reliability disk partition adopts a method of storing one bit of data in each unit storage space to store the hardware included in the vehicle-mounted T-BOX Initialization information and configuration files of the device; the user data disk partition stores the data of the application installed on the vehicle-mounted T-BOX.
  • the available storage space that can be provided to the user in the NAND flash is increased, which can satisfy the user’s need for NAND flash.
  • the data transferred to the embedded multimedia device is stored using the SLC architecture, which can ensure the data reliability requirements of the on-board T-BOX. In this way, the structure of the on-board T-BOX can be changed without increasing the cost. , To meet the high storage capacity and data reliability requirements of the vehicle-mounted T-BOX, and the implementation method is simple.
  • Figure 1 is a schematic diagram of the structure of a vehicle-mounted T-BOX communication device in the prior art
  • FIG. 2 is a schematic diagram of three storage structures of NAND flash in the prior art
  • FIG. 3 is a schematic diagram of data partitioning of eMMC used by mobile phones in the prior art
  • FIG. 4 is a structural block diagram of an example of an embedded multimedia device provided by an embodiment of the application.
  • FIG. 5 is a structural block diagram of another example of an embedded multimedia device provided by an embodiment of the application.
  • FIG. 6 is a structural block diagram of another example of an embedded multimedia device provided by an embodiment of the application.
  • FIG. 7 is a structural block diagram of an example of a communication device for a vehicle-mounted T-BOX according to an embodiment of the application.
  • FIG. 8 is a structural block diagram of another example of a communication device for a vehicle-mounted T-BOX according to an embodiment of the application.
  • Figure 9 is a schematic diagram of the connection between the NAND flash and the processor
  • FIG. 10 is a schematic diagram of the connection mode of the eMMC memory and the processor
  • FIG. 11 is a structural block diagram of another example of a communication device for a vehicle-mounted T-BOX provided in an embodiment of the application.
  • the vehicle-mounted T-BOX can also be called the vehicle box. Its main function is: when the user sends a control command through the mobile phone APP, the background system will send a monitoring request command to the vehicle-mounted T-BOX. After receiving the monitoring request instruction, the vehicle T-BOX sends a control message corresponding to the monitoring request instruction to the corresponding components in the vehicle through the controller area network (CAN) bus to realize the control of the vehicle , And feedback the control result to the mobile APP. In this way, users can remotely start the lights, turn on the air conditioner, adjust the seat, turn on the engine, and so on.
  • CAN controller area network
  • NAND Flash is mainly used as the storage module of the vehicle-mounted T-BOX communication device to store the data required by the vehicle-mounted T-BOX.
  • NAND Flash includes several unit storage spaces (or can be called storage cells). According to the number of bits of data stored in each unit storage space, NAND Flash can be divided into SLC and multi-level cells (MLC). ) And three-level cell (triple level cell, TLC) architecture.
  • a unit storage space of NAND Flash expresses its stored data through different voltage levels. Please refer to Figure 2.
  • SLC architecture the voltage of a unit storage space is divided into 2 levels, representing 0 and 1, respectively, that is, one bit of data is stored in a unit storage space.
  • MLC architecture the voltage of a unit storage space is divided into 4 levels, representing 00, 01, 10, and 11 respectively, that is, storing 2 bits of data in a unit storage space.
  • the voltage of a unit storage space is divided into 8 levels, respectively representing 000, 001, 010, 011, 100, 101, 110, 111, that is, 3 bits are stored in a unit storage space The data.
  • the unit storage space includes 2 states. When the voltage reaches a certain threshold, the state is considered as 1. Thus, the data is written into the unit storage space.
  • MLC and TLC there are many states of unit storage space. In order to distinguish each state, the applied voltage needs to be more accurate, which is more error-prone. Therefore, the NAND Flash of the SLC architecture has the highest data reliability among the three architectures. of. Therefore, in order to ensure the reliability of the data, the storage module of the communication device of the vehicle-mounted T-BOX usually adopts the NAND Flash of the SLC architecture.
  • the eMMC in the mobile phone can include 5 partitions, which are boot partition, replay protected memory block (RPMB) partition, general purpose partition (GPP), and enhanced user Data partition (enhanced user data area, EUDA) and user data partition User DATA.
  • the boot partition is used to store the startup programs required by the mobile phone system;
  • the RPMB partition is a partition with security features.
  • the RPMB partition is a partition with security features.
  • the RPMB partition is usually used to store data that needs to prevent illegal tampering.
  • data For example, public keys and serial numbers related to fingerprint payment on mobile phones;
  • GPP partition is used to store system and mobile phone application data, EUDA partition and UDA partition have similar functions, and are usually used to store user data.
  • the data stored in the NAND Flash of the vehicle-mounted T-BOX is first analyzed.
  • the data stored in the NAND Flash of the vehicle-mounted T-BOX mainly includes three types: 1. Startup program; 2. Firmware (which can be understood as the initialization information of the hardware device in the vehicle-mounted T-BOX) and various modules during system operation Some configuration parameter files that may be used; 3. User data.
  • Each type of data corresponds to a partition in NAND Flash, and each partition adopts the SLC architecture for storage.
  • the reliability of the aforementioned two types of data can only be satisfied.
  • the embodiments of the present application provide an embedded multimedia device used in the communication equipment of the vehicle-mounted telecommunication processor T-BOX, which is used to meet the high storage capacity and data reliability of the vehicle-mounted T-BOX. , To reduce the cost of the storage module of the vehicle T-BOX.
  • the embedded multimedia device in the embodiment of the present application will be described below with reference to the accompanying drawings.
  • a plurality of refers to two or more than two. In view of this, “a plurality of” may also be understood as “at least two” in the embodiments of the present application. “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one refers to including one, two or more, and does not limit which ones are included. For example, including at least one of A, B, and C, then the included can be A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • FIG. 4 is a structural block diagram of an embedded multimedia device 400 according to an embodiment of this application.
  • the embedded multimedia device includes three disk partitions, namely a boot disk partition 401, a high-reliability disk partition 402, and a user data disk partition 403, in which:
  • Boot disk partition 401 which stores one bit of data in each unit storage space to store the boot program of the vehicle-mounted T-BOX;
  • the high-reliability disk partition 402 adopts a method of storing one bit of data in each unit storage space to store the initialization information of the hardware equipment included in the vehicle-mounted T-BOX and the configuration file of the vehicle-mounted T-BOX;
  • the user data disk partition 403 stores the data of the applications installed on the vehicle-mounted T-BOX.
  • the embedded multimedia device since the boot disk partition 401 and the high-reliability disk partition 402 both use the SLC architecture to store data, the reliability of the data stored in these two disk partitions can be guaranteed. Therefore, The two disk partitions store the startup program in the vehicle T-BOX, the initialization information of the hardware device, and some configuration parameter files of each module during the system operation, which can ensure the data reliability requirements of the vehicle T-BOX.
  • the embedded multimedia device adopts the eMMC standard specification, which can be understood as an improvement to the existing eMMC memory.
  • the biggest feature of the storage device adopting the eMMC standard specification is that it is low cost and can provide a larger storage capacity.
  • the embedded multimedia device provided by the embodiments of the present application can achieve the effect of reducing the cost of the storage module of the vehicle-mounted T-BOX under the premise of meeting the high storage capacity and data reliability of the vehicle-mounted T-BOX.
  • the user data disk partition 403 stores data in the following two manners, but is not limited to:
  • the first method is to store one bit of data in each unit of storage space to store the data of the on-board T-BOX application program. In this way, all data stored in the vehicle-mounted T-BOX is stored using the SLC architecture, which can improve the data reliability of the vehicle-mounted T-BOX.
  • the second method is to store at least two bits of data in each unit of storage space to store the data of the on-board T-BOX application.
  • the user data disk partition 403 adopts an MLC or TLC architecture, that is, a unit of storage space stores multiple bits of data, so the storage capacity of the embedded multimedia device can be increased.
  • each disk partition may be written to the corresponding disk partition by a technician according to the function of each disk partition before the embedded multimedia device leaves the factory.
  • the processor of the vehicle-mounted T-BOX reads the corresponding data from different disk partitions to realize various control functions of the vehicle-mounted T-BOX.
  • the above multiple disk partitions can be understood as the hardware partition of the embedded multimedia device, or can be understood as the physical partition, that is, the access of each disk partition is independent of each other, and the starting position of each disk partition is Start from 0.
  • the vehicle-mounted T-BOX can first send control instructions, through which control instructions indicate the disk partitions that need to be operated (read or write), and then operate on the indicated disk partitions.
  • the embedded multimedia device can be understood as a device including a disk array formed by the above three disk partitions.
  • the high-reliability disk partition 402 can be divided into two disk partitions according to the number of writes of data to be stored, which are respectively the first high-reliability disk partition 4021 And the second high-reliability disk partition 4022, as shown in FIG. 4.
  • the first high-reliability disk partition 4021 may store data whose write times are lower than the set write threshold
  • the second high-reliability disk partition 4022 may store data whose write times are higher than the threshold.
  • the writing threshold may be set according to actual usage requirements.
  • the threshold may be set to 10 times or 50 times, etc., which is not limited here.
  • the first high-reliability disk partition 4021 stores data with high reliability and few writing scenarios, for example, a mirror file of a vehicle-mounted T-BOX, while the second high-reliability disk partition 4022 has high storage reliability.
  • write data with many scenes for example, it is used to store the configuration parameters of other peripherals (such as wireless fidelity (Wi-Fi) modules) of the vehicle-mounted T-BOX.
  • Wi-Fi wireless fidelity
  • the first high-reliability disk partition 4021 and the second high-reliability disk partition 4022 can be understood as two logical partitions of the high-reliability disk partition 402, as shown in FIG. 4. That is, the end position of the storage space of the first high-reliability disk partition 4021 and the start position of the storage space of the second high-reliability disk partition 4022 may be continuous.
  • the high-reliability disk partition 402 includes 100 unit storage spaces, then 0-50 unit storage spaces are the storage space corresponding to the first high-reliability disk partition 4021, and 51-100 unit storage spaces are the second high-reliability Storage space corresponding to disk partition 4022.
  • the first high-reliability disk partition 4021 and the second high-reliability disk partition 4022 can be understood as two physical partitions of the embedded multimedia device.
  • the embedded multimedia device provided in the embodiment of the present application can be understood as including 4 disk partitions (boot disk partition 401, first high-reliability disk partition 4021, second high-reliability disk partition 4022, and user data
  • FIG. 5 That is, the first high-reliability disk partition 4021 and the second high-reliability disk partition 4022 are used to replace the high-reliability disk partition 402.
  • the high reliability disk partition 402 is represented by a dotted line.
  • the boot disk partition 401 of the embedded multimedia device can be divided into two parts, the main boot disk partition 4011 and the backup boot disk partition 4012. Both the main boot disk partition 4011 and the backup boot disk partition 4012 store the boot program of the vehicle T-BOX, so that when the main boot disk partition 4011 fails, the processor of the vehicle T-BOX can read it from the backup boot disk partition 4012. The required startup procedure, and then start the vehicle T-BOX, can improve the stability of the vehicle T-BOX.
  • the primary boot disk partition 4011 and the backup boot disk partition 4012 can be understood as physical partitions or logical partitions.
  • FIG. 4 it is taken as an example that both the primary boot disk partition 4011 and the backup boot disk partition 4012 are logical partitions.
  • At least one logical partition may also be divided according to usage requirements, which will not be repeated here.
  • the embedded multimedia device in the embodiment of the present application may also include other devices, for example, it can realize erasing and writing balance and bad block management.
  • FIG. 6 is a schematic diagram of another example of the embedded multimedia device provided by the embodiment of this application, which can be regarded as an example of the embedded multimedia device shown in FIG. Kind of specific examples.
  • the embedded multimedia device 600 may be an eMMC memory.
  • the eMMC memory includes a boot partition, a GPP partition, an EUDA partition, and a User DATA partition, where the boot partition and the User DATA partition are the same as the corresponding content in FIG. 3, and will not be repeated here.
  • the GPP partition and the EUDA partition are switched from the MLC architecture to the SLC architecture.
  • the read-only image file of the vehicle-mounted T-BOX in the GPP partition for example, divide it into multiple logical partitions in the GPP partition, one of which is used to store fastboot image files, and one logical partition is used to store M3BOOT
  • the image file (m3image) of the file, another logical partition is used to store the image file of the system, etc.
  • the EUDA partition is divided into multiple logical partitions.
  • One logical partition is used to store customer data (custdata) and one logical partition is used to store customer data (custdata).
  • a logical partition is used to store user data, etc.
  • FIG. 6 is an example. In the embodiment of the present application, the number and functions of logical partitions in each partition are not limited.
  • the data stored in the GPP and EUDA partitions as shown in Figure 6 can maintain greater than 1 when the number of programming/erase cycles per unit storage space is greater than 30k There is no error in years, and the erasing life of each partition in the eMMC memory as shown in Figure 6 is greater than or equal to 10 years, which can meet the needs of the on-board T-BOX.
  • An embodiment of the present application also provides a communication device 700 for a vehicle-mounted T-BOX.
  • the communication device 700 includes a processor 701 and an embedded multimedia device 702.
  • the embedded multimedia The device 702 is used to store data, the data including the startup program of the vehicle T-BOX, the initialization information of the hardware equipment included in the vehicle T-BOX, the configuration file of the vehicle T-BOX, and the installation of the vehicle T-BOX
  • the data of the application program, the processor 701 is used to read the data stored in the embedded multimedia device 702 and/or write the data to be stored in the embedded multimedia device 702.
  • the embedded multimedia device 702 is the same as the embedded multimedia device shown in FIGS. 4 to 5, and will not be repeated here. In the following description, the connection mode of the processor 701 and the embedded multimedia device 702 is mainly described.
  • the processor 701 and the embedded multimedia device 702 may include but are not limited to the following two connection modes:
  • the first connection method :
  • the embedded multimedia device 702 is set outside the communication device of the vehicle-mounted T-BOX, and is connected to the processor 701 of the communication device through the secure digital input and output (SDIO) interface outside the communication device .
  • SDIO secure digital input and output
  • the embedded multimedia device 702 can be used to store data in the embedded multimedia device as shown in FIGS. 4 to 5, and can also be used to store other data by the vehicle-mounted T-BOX, for example, to store the vehicle-mounted T-BOX.
  • Wi-Fi wireless fidelity
  • the processor 701 and the embedded multimedia device 702 are both arranged inside the communication device, and the processor 701 and the embedded multimedia device 702 use SDIO protocol to communicate inside the communication device.
  • the size of the vehicle-mounted T-BOX can be reduced while meeting the high storage capacity and low-cost requirements of the vehicle-mounted T-BOX.
  • NAND flash passes through multiple signal lines (including I/O bus for data transmission, address latch enable (ALE) signal line, command latch enable (CLE) ) Signal line, chip enable (CE) signal line, write enable (WE) signal line, free/busy output (ready/busy output, RB) signal line, read enable (read enable, The RE) signal line and the write protect (WP) signal line) are connected to the processor.
  • signal lines including I/O bus for data transmission, address latch enable (ALE) signal line, command latch enable (CLE) ) Signal line, chip enable (CE) signal line, write enable (WE) signal line, free/busy output (ready/busy output, RB) signal line, read enable (read enable, The RE) signal line and the write protect (WP) signal line
  • the eMMC memory is only connected to the processor through the clock signal (clock, CLK) signal line for synchronization, the 8-bit bus (DAT0-7) for data transmission, and the CMD signal line for signaling interaction, as shown in the figure 10 shown. It can be seen that in the communication device as shown in FIG. 7 or FIG. 8, the wiring of the communication device is simpler because the connection line between the processor and the NAND flash is removed.
  • An embodiment of the present application also provides a communication device 1100 for a vehicle-mounted T-BOX.
  • the communication device 1100 includes a processor 1101, a NAND flash memory 1102, and an embedded multimedia device 1103.
  • the NAND flash memory 1102 is used to store the startup program of the vehicle-mounted T-BOX
  • the embedded multimedia device 1103 is used to store data.
  • the data includes the initialization information of the hardware equipment included in the vehicle-mounted T-BOX and the vehicle-mounted T-BOX.
  • the configuration file and the data of the application program installed in the vehicle-mounted T-BOX, the processor 1101, is used to read the startup program in the NAND flash memory 1102 and the data stored in the embedded multimedia device 1103, and/or send it to the embedded multimedia device Write the data to be stored in 1103.
  • the NAND flash memory 1102 is located inside the communication device and communicates with the processor 1101 through the SDIO protocol, and the embedded multimedia device 1103 is connected with the processor 1101 through the SDIO interface of the communication device.
  • the embedded multimedia device 1102 may include but is not limited to the following three structures:
  • the first structure is a first structure:
  • the embedded multimedia device 1102 includes a high-reliability disk partition and a user data disk partition.
  • the high-reliability disk partition adopts a method of storing one bit of data in each unit storage space to store the vehicle-mounted T-BOX.
  • the initialization information of the hardware device and the configuration file of the vehicle-mounted T-BOX; the user data disk partition stores the data of the applications installed on the vehicle-mounted T-BOX.
  • the high-reliability disk partition and the user data disk partition are the same as the corresponding parts in the embedded multimedia device shown in FIGS. 4 to 5. It can be understood that the embedded multimedia device 1102 is the same as the embedded multimedia device shown in FIGS. 4 to 5 except for the boot disk partition. For the description of each disk partition, please refer to the implementation shown in FIGS. 4 to 5 For example, I will not repeat them here.
  • the second structure is a first structure.
  • the embedded multimedia device 1102 has the same structure as the embedded multimedia device shown in FIGS. 4 to 5, that is, it includes a boot disk partition, a high reliability disk partition, and a user data disk partition. However, the boot disk partition in the embedded multimedia device 1102 is different from the data stored in the boot disk partition in the embodiment shown in FIG. 4 to FIG. 5.
  • the boot disk partition in the embedded multimedia device 1102 does not store the data of the vehicle T-BOX
  • the startup program for example, can be used to store configuration parameters of other peripherals (such as wireless fidelity (Wi-Fi) modules) of the vehicle-mounted T-BOX.
  • Wi-Fi wireless fidelity
  • the third structure is a first structure.
  • the embedded multimedia device 1102 is the eMMC memory in the prior art as shown in FIG. 3, and the eMMC memory stores part of the mirror file and/or application data of the vehicle-mounted T-BOX.
  • the specific structure please refer to FIG. 3. This will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Information Transfer Between Computers (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

一种嵌入式多媒体装置和用于车载远程通信处理器的通信设备,该嵌入式多媒体装置应用于车载远程通信处理器T-BOX的通信设备中,包括启动磁盘分区、高可靠性磁盘分区以及用户数据磁盘分区,其中:该启动磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储车载T-BOX的启动程序;该高可靠性磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储该车载T-BOX所包括的硬件设备的初始化信息和车载T-BOX的配置文件;该用户数据磁盘分区,存储该车载T-BOX所安装的应用程序的数据,用以在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本。

Description

嵌入式多媒体装置和用于车载远程通信处理器的通信设备
本申请要求在2019年4月29日提交中国国家知识产权局、申请号为201910356141.X的中国专利申请的优先权,发明名称为“嵌入式多媒体装置和用于车载远程通信处理器的通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及存储技术领域,尤其涉及嵌入式多媒体装置和用于车载远程通信处理器的通信设备。
背景技术
随着互联网技术的发展,车联网系统已得到广泛应用。车联网系统包含四个部分,分别为主机、车载远程信息处理器(telematics box,T-BOX)、手机端应用程序(application,APP)及后台系统。车载T-BOX是车辆网系统中的一个重要的组成部分,主要用于实现后台系统或者手机端APP对车辆的控制。
车载T-BOX主要通过内部设置的通信装置来与后台系统或者手机端APP进行信息交互。现有技术中,为保证车载T-BOX中数据的可靠性,请参考图1,车载T-BOX的通信装置主要由处理器和存储模块组成,而存储模块通常由单层单元(single level cell,SLC)架构的闪存与SLC架构的与非(not and,NAND)闪存(flash)组成。其中,NAND Flash中存储车载T-BOX的启动程序,配置文件和车载T-BOX中所安装的应用程序的相关数据等,处理器通过读写NAND Flash中存储的相应数据以保证车载T-BOX的通信装置正常运行。SLC架构的NAND Flash由于具有每一个单元仅存储一个比特位数据的特点,从而能够保证存储在该NAND Flash中的数据的可靠性。
随着业务的多样性发展,用户对NAND Flash的容量需求越来越大,而业界高容量的SLC架构的NAND Flash成本偏高,因此,如何在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本,是目前亟待解决的一个问题。
发明内容
本申请实施例提供一种嵌入式多媒体装置和用于车载远程通信处理器的通信设备,用以在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本。
第一方面,提供一种嵌入式多媒体装置,应用于车载远程通信处理器T-BOX的通信设备中,该嵌入式多媒体装置包括启动磁盘分区、高可靠性磁盘分区以及用户数据磁盘分区,其中:该启动磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储车载T-BOX的启动程序;该高可靠性磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储该车载T-BOX所包括的硬件设备的初始化信息和该车载T-BOX的配置文件;以及该用户数据磁盘分区,存储车载T-BOX所安装的应用程序的数据。
上述嵌入式多媒体装置中,由于启动磁盘分区和高可靠性磁盘分区采用SLC架构来存储数据的,从而可以保证存储在这两个磁盘分区中的数据(即存储车载T-BOX中的启动程序、硬件设备的初始化信息以及系统运行过程中各个模块的一些配置参数文件)的可靠性,满足车载T-BOX对数据可靠性的需求。且,该嵌入式多媒体装置采用eMMC标准规格,可以避免现有技术中使用NAND flash存储车载T-BOX的相关数据时存在的存储容量限制的问题,可以理解为对现有的eMMC存储器的一种改进,而采用eMMC标准规格的存储装置具有成本低且能够提供较大的存储容量的特点,因此,本申请实施例提供的嵌入式多媒体装置可以实现在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本的效果。
在一种可能的设计中,该高可靠性磁盘分区包括第一高可靠性磁盘分区和第二高可靠性磁盘分区,可以在第一高可靠性磁盘分区存储写入次数低于设定写入阈值的数据,在第二高可靠性磁盘分区存储写入次数高于该写入阈值的数据。
在上述嵌入式多媒体装置中,可以根据实际使用需求,将该高可靠性磁盘分区按照数据的写入次数的大小,划分为两个磁盘分区,可以满足车载T-BOX的不同应用场景的需求,提高嵌入式多媒体装置的灵活性。
在一种可能的设计中,该用户数据磁盘分区,可以采用在每个单位存储空间中存储至少两个比特位数据的方式,存储车载T-BOX配置文件和车载T-BOX的应用程序的数据。
在上述嵌入式多媒体装置中,由于用户数据磁盘分区采用的是MLC或者TLC的架构,也就是说,一个单位存储空间中存储多个比特位数据,因此,可以增加嵌入式多媒体装置的存储容量。
在一种可能的设计中,该启动磁盘分区中包括主启动磁盘分区和备用启动磁盘分区,该主启动磁盘分区与该备用启动磁盘分区中均存储车载T-BOX的启动程序,在该主启动磁盘分区发生故障时,车载T-BOX的处理器从该备用启动磁盘分区读取该车载T-BOX的启动程序。
在上述嵌入式多媒体装置中,通过采用将车载T-BOX的启动程序进行备份的方式,可以保证当主启动磁盘分区发生故障时,车载T-BOX仍然能够启动车载T-BOX,可以提高车载T-BOX的稳定性。
第二方面,提供一种用于车载远程通信处理器T-BOX的通信设备,该通信设备包括处理器和嵌入式多媒体装置,其中:该嵌入式多媒体装置,用于存储数据,该数据包括车载T-BOX的启动程序、该车载T-BOX所包括的硬件设备的初始化信息、该车载T-BOX的配置文件和该车载T-BOX所安装的应用程序的数据;该处理器,用于读取该嵌入式多媒体装置中存储的数据,和/或,向该嵌入式多媒体装置中写入待存储的数据。且该嵌入式多媒体装置与第一方面或者第一方面的其中一种可能的设计中的嵌入式多媒体装置相似,在此不再赘述。
在一种可能的设计中,该处理器和该嵌入式多媒体装置可以但不限于通过安全数字输入输出SDIO连接。
在上述技术方案中,嵌入式多媒体装置可以设置在车载T-BOX的通信设备的外部,通过通信设备外部的SDIO接口,与通信设备的处理器连接。或者,该嵌入式多媒体装置还可以设置在该通信设备的内部,处理器和嵌入式多媒体装置在通信设备内部使用SDIO协议进 行通信,本领域技术人员可以根据使用需求进行设置,可以增加该通信设备的灵活性。
第三方面,提供一种用于车载远程通信处理器T-BOX的通信设备,该通信设备包括处理器、与非NAND闪存和嵌入式多媒体装置,其中:该与非NAND闪存,用于存储车载T-BOX的启动程序;该嵌入式多媒体装置,用于存储数据,该数据包括车载T-BOX所包括的硬件设备的初始化信息、车载T-BOX的配置文件和该车载T-BOX所安装的应用程序的数据;该处理器,用于读取该与非NAND闪存的启动程序和该嵌入式多媒体装置中存储的数据,和/或,向该嵌入式多媒体装置中写入待存储的数据。该嵌入式多媒体装置包括高可靠性磁盘分区以及用户数据磁盘分区,该高可靠性磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储该车载T-BOX所包括的硬件设备的初始化信息和配置文件;该用户数据磁盘分区,存储该车载T-BOX所安装的应用程序的数据。
在上述技术方案中,通过将现有技术中NAND flash中存储的部分数据转存到嵌入式多媒体装置的方式,使得NAND flash中能够提供给用户的可用存储空间增大,可以满足用户对NAND flash的容量需求,且转存在嵌入式多媒体装置的数据采用SLC架构进行存储,可以保证车载T-BOX的数据可靠性需求,这样,可以在不改变车载T-BOX的结构以及不用增加成本的前提下,满足车载T-BOX的高存储容量以及数据可靠性的需求,实现方式简便。
附图说明
图1为现有技术中车载T-BOX的通信装置的结构示意图;
图2为现有技术中NAND flash的三种存储结构的示意图;
图3为现有技术中手机使用的eMMC的数据分区的示意图;
图4为本申请实施例提供的一种嵌入式多媒体装置的一种示例的结构框图;
图5为本申请实施例提供的一种嵌入式多媒体装置的另一种示例的结构框图;
图6为本申请实施例提供的一种嵌入式多媒体装置的另一种示例的结构框图;
图7为本申请实施例提供一种用于车载T-BOX的通信设备一种示例的结构框图;
图8为本申请实施例提供一种用于车载T-BOX的通信设备另一种示例的结构框图;
图9为NAND flash与处理器的连接方式的示意图;
图10为eMMC存储器与处理器的连接方式的示意图;
图11为本申请实施例提供一种用于车载T-BOX的通信设备另一种示例的结构框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合说明书附图以及具体的实施方式对本申请实施例中的技术方案进行详细的说明。
车载T-BOX也可以叫车辆盒子,其主要功能是:当用户通过手机端APP发送控制命令后,后台系统会发出监控请求指令到车载T-BOX。车辆T-BOX在接收该监控请求指令后,则通过控制器局域网络(controller area network,CAN)总线,发送与该监控请求指令相应的控制报文给车辆中相应的部件,实现对车辆的控制,并将控制结果反馈到手机端APP上。通过这种方式,可以实现让用户远程启动车灯、打开空调、调整座椅、打开发动机等等。
通过车载T-BOX实现对车辆的智能化控制,需要大量的数据,例如,车载T-BOX的启动程序、用于对车辆的各个功能进行控制的应用软件的配置文件和用户数据等。如图1所 示,现有技术中主要采用NAND Flash作为车载T-BOX的通信装置的存储模块,用于存储车载T-BOX所需的数据。
NAND Flash中包括若干个单位存储空间(或者可以称为存储单元),根据每个单位存储空间内存储的数据的比特数不同,可以将NAND Flash分为SLC、多层单元(multi level cell,MLC)和三层单元(triple level cell,TLC)三种架构。NAND Flash的一个单位存储空间是通过不同的电压等级来表示其所存储的数据。请参考图2,在SLC架构中,单位存储空间的电压被分为2个等级,分别表示0和1,即一个单位存储空间中存储1个比特位的数据。在MLC架构中,单位存储空间的电压被分为4个等级,分别表示00、01、10、11,即在一个单位存储空间中存储2个比特位的数据。同理,在TLC架构中,单位存储空间的电压被分为8个等级,分别表示000、001、010、011、100、101、110、111,即在一个单位存储空间中存储3个比特位的数据。
当需要在NAND Flash中写入数据时,需要施加电压形成一个电场,例如,在SLC架构的NAND Flash中,单位存储空间包括2个状态,则当电压达到某个阈值则认为该状态为1,从而将数据写入到单位存储空间中。而MLC和TLC中,单位存储空间的状态较多,为了区分各个状态,则施加的电压需要更加精确,从而也就更加容易出错,因此,SLC架构的NAND Flash是三种架构中数据可靠性最高的。因此,为了保证数据的可靠性,车载T-BOX的通信装置的存储模块通常采用SLC架构的NAND Flash。
随着车载通信技术的发展,车载T-BOX的功能越来越多,因此,对NAND Flash的存储容量的需求也越来越大。但业界高容量的SLC架构的NAND Flash成本偏高,为解决车载T-BOX的容量问题,一种替代方案为:使用手机中的存储器,即嵌入式多媒体卡(embedded multi media card,eMMC)来作为车载T-BOX中的存储模块使用。
下面,对手机中的使用的eMMC进行介绍。请参考图3,手机中的eMMC可以包括5个分区,分别为启动(boot)分区、重放保护数据块(replay protected memory block,RPMB)分区、通用分区(general purpose partition,GPP)、增强用户数据分区(enhanced user data area,EUDA)以及用户数据分区User DATA。其中,boot分区用于存储手机系统所需的启动程序;RPMB分区是一个具有安全特性的分区,当有写入数据RPMB分区时,会校验数据的合法性,且在从RPMB分区中读数据时,也提供了签名机制,保证所读取到的数据是RPMB分区的内部数据,而不是攻击者伪造的数据,在实际应用中,RPMB分区中通常用于存储有防止非法篡改需求的数据,例如手机上指纹支付相关的公钥、序列号等;GPP分区用于存储系统和手机应用数据,EUDA分区和UDA分区的作用相似,通常用于存储用户数据等。
然而,上述5个eMMC的分区中,只有boot分区采用的是SLC架构,而其他分区使用的是MLC架构或者TLC架构。由前述对SLC架构、MLC架构以及TLC架构的介绍可知,采用MLC架构和TLC架构存储数据的可靠性较低,可见,使用手机中的eMMC可能无法替代车载T-BOX中的NAND Flash。
因此,如何在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本,是目前亟待解决的一个问题。
为解决上述问题,本申请实施例中首先对车载T-BOX的NAND Flash中存储的数据进行分析。车载T-BOX的NAND Flash中存储的数据主要包括三种类型:1、启动程序;2、固件(firmware)(可以理解为车载T-BOX中硬件设备的初始化信息)以及系统运行过程中 各个模块可能用到的一些配置参数文件;3、用户数据。每种类型的数据对应NAND Flash中的一个分区,且每个分区均采用SLC架构进行存储。然而,在车载T-BOX的实际使用过程中,可以只满足前述2种类型的数据的可靠性即可。
鉴于此,本申请实施例提供了一种应用于车载远程通信处理器T-BOX的通信设备中的嵌入式多媒体装置,用以在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本。下面将结合附图对本申请实施例中的嵌入式多媒体装置进行说明。
需要说明的是,在本申请的描述中,“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。本申请实施例中的术语“系统”和“网络”可被互换使用。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
请参考图4,为本申请实施例提供的一种嵌入式多媒体装置400的结构框图。如图4所示,该嵌入式多媒体装置包括3个磁盘分区,分别为启动磁盘分区401、高可靠性磁盘分区402以及用户数据磁盘分区403,其中:
启动磁盘分区401,采用在每个单位存储空间中存储一个比特位数据的方式,存储车载T-BOX的启动程序;
高可靠性磁盘分区402,采用在每个单位存储空间中存储一个比特位数据的方式,存储该车载T-BOX所包括的硬件设备的初始化信息和车载T-BOX的配置文件;
用户数据磁盘分区403,存储车载T-BOX所安装的应用程序的数据。
在上述嵌入式多媒体装置中,由于启动磁盘分区401和高可靠性磁盘分区402都是采用SLC架构来存储数据的,从而可以保证存储在这两个磁盘分区中的数据的可靠性,因此,在这两个磁盘分区中存储车载T-BOX中的启动程序、硬件设备的初始化信息以及系统运行过程中各个模块的一些配置参数文件,可以保证车载T-BOX对数据可靠性的需求。且,该嵌入式多媒体装置采用eMMC标准规格,可以理解为对现有的eMMC存储器的一种改进,而采用eMMC标准规格的存储装置最大的特点就是成本低且能够提供较大的存储容量,因此,本申请实施例提供的嵌入式多媒体装置可以实现在满足车载T-BOX的高存储容量以及数据可靠性的前提下,降低车载T-BOX的存储模块的成本的效果。
在本申请实施例中,用户数据磁盘分区403存储数据的方式可以包括但不限于如下两种:
第一种方式,采用在每个单位存储空间中存储一个比特位数据的方式,存储车载T-BOX的应用程序的数据。在这种方式下,车载T-BOX中存储的所有的数据都是采用SLC架构进行存储的,可以提高车载T-BOX的数据可靠性。
第二种方式,采用在每个单位存储空间中存储至少两个比特位数据的方式,存储车载 T-BOX的应用程序的数据。在这种方式下,由于用户数据磁盘分区403采用的是MLC或者TLC的架构,也就是说,一个单位存储空间中存储多个比特位数据,因此,可以增加嵌入式多媒体装置的存储容量。
需要说明的是,各个磁盘分区中的数据可以是在该嵌入式多媒体装置出厂前,由技术人员根据各个磁盘分区的功能,写入到对应的磁盘分区的。当该嵌入式多媒体装置安装在车载T-BOX后,则由车载T-BOX的处理器从不同的磁盘分区中读取相应的数据,以实现车载T-BOX的各种控制功能。
另外需要说明的是,上述多个磁盘分区可以理解为嵌入式多媒体装置的硬件分区,或者可以理解为物理分区,即各个磁盘分区的访问是相互独立的,每个磁盘分区的起始位置都是从0开始。车载T-BOX在访问不同的磁盘分区之前,可以先发送控制指令,通过该控制指令指示需要进行操作(读操作或者写操作)的磁盘分区,然后再对所指示的磁盘分区进行操作。在这种情况下,该嵌入式多媒体装置可以理解为包括上述3个磁盘分区形成的磁盘阵列的装置。
在本申请实施例中,针对高可靠性磁盘分区402,可以根据待存储的数据的写入次数,将高可靠性磁盘分区402划分为两个磁盘分区,分别为第一高可靠性磁盘分区4021和第二高可靠性磁盘分区4022,如图4所示。其中,第一高可靠性磁盘分区4021中可以存储写入次数低于设定写入阈值的数据,第二高可靠性磁盘分区4022中可以存储写入次数高于该阈值的数据。
在具体实施过程中,该写入阈值可以根据实际使用需求进行设置,例如,该阈值可以设置为10次或者50次等,在此不作限制。可以理解为,该第一高可靠性磁盘分区4021中存储可靠性高且写入场景少的数据,例如,车载T-BOX的镜像文件,而第二高可靠性磁盘分区4022则存储可靠性高且写入场景较多的数据,例如,用于存储车载T-BOX的其他外设(例如无线保真(wireless fidelity,Wi-Fi)模块)的配置参数等。
需要说明的是,作为一种示例,第一高可靠性磁盘分区4021和第二高可靠性磁盘分区4022可以理解为高可靠性磁盘分区402的两个逻辑分区,如图4所示。也就是说,第一高可靠性磁盘分区4021的存储空间的终止位置和第二高可靠性磁盘分区4022的存储空间的起始位置可以是连续的。例如,高可靠性磁盘分区402包括100个单位存储空间,则0~50个单位存储空间为第一高可靠性磁盘分区4021对应的存储空间,51~100个单位存储空间为第二高可靠性磁盘分区4022对应的存储空间。
作为另一种示例,第一高可靠性磁盘分区4021和第二高可靠性磁盘分区4022可以理解为该嵌入式多媒体装置的两个物理分区。在这种情况下,本申请实施例提供的嵌入式多媒体装置可以理解为包括4个磁盘分区(启动磁盘分区401、第一高可靠性磁盘分区4021、第二高可靠性磁盘分区4022以及用户数据磁盘分区403)所形成的磁盘阵列的装置,请参考图5,即用第一高可靠性磁盘分区4021和第二高可靠性磁盘分区4022替换掉高可靠性磁盘分区402,在图5中将高可靠性磁盘分区402用虚线表示。
在本申请实施例中,请继续参考图4,可以将嵌入式多媒体装置的启动磁盘分区401划分为两个部分,分别为主启动磁盘分区4011和备用启动磁盘分区4012。主启动磁盘分区4011与备用启动磁盘分区4012中均存储车载T-BOX的启动程序,这样,当主启动磁盘分区4011发生故障时,车载T-BOX的处理器可以从备用启动磁盘分区4012读取其所需的启 动程序,进而启动车载T-BOX,可以提高车载T-BOX的稳定性。
需要说明的是,主启动磁盘分区4011和备用启动磁盘分区4012可以理解为物理分区,也可以理解为逻辑分区,具体请参照对第一高可靠性磁盘分区4021和第二高可靠性磁盘分区4022的说明,在此不再赘述。在图4中,以主启动磁盘分区4011和备用启动磁盘分区4012均为逻辑分区为例。
当然,本申请实施例所提供的嵌入式多媒体装置的其他物理分区中,也可以根据使用需求划分至少一个逻辑分区,在此不再赘述。
另外需要说明的是,上述内容只针对嵌入式多媒体装置中的存储模块进行了说明,本申请实施例中的嵌入式多媒体装置中还可以包括其他器件,例如,能够实现擦写均衡、坏块管理、时钟管理、数据存取等功能的闪存控制器(flash controller),用于与其他设备通信的通信接口等,在此不作限制。
基于与图4或图5相同的技术构思,请参考图6,为本申请实施例提供的嵌入式多媒体装置的另一种示例的示意图,可以视为图5所示的嵌入式多媒体装置的一种具体实例。
如图6所示,该嵌入式多媒体装置600可以为eMMC存储器。该eMMC存储器包括boot分区、GPP分区、EUDA分区以及User DATA分区,其中,boot分区和User DATA分区和如图3中相应的内容相同,在此不再赘述。通过设置GPP分区和EUDA分区的属性为增强存储介质(enhanced storage media)属性,从而将GPP分区和EUDA分区由MLC架构切换为SLC架构。在GPP分区中存储车载T-BOX的只读镜像文件,例如,在GPP分区中划分为多个逻辑分区,其中一个逻辑分区用于存储快速启动(fastboot)镜像文件,一个逻辑分区用于存储M3BOOT文件的镜像文件(m3image),另一个逻辑分区用于存储系统的镜像文件等。在EUDA分区中存储车载T-BOX中经常变更的高可靠性文件,例如,在EUDA分区中划分为多个逻辑分区,其中一个逻辑分区用于存储客户数据(custdata),一个逻辑分区用于存储联网(online)数据,一个逻辑分区用于存储用户数据(userdata)等,图6是一种举例,在本申请实施例中不限制每个分区中的逻辑分区的数量以及作用。
经试验得出,在55摄氏度(℃)的温度下,存储在如图6所示的GPP分区和EUDA分区中的数据,在单位存储空间的编程/擦写次数大于30k时,能够保持大于1年的时间不出现错误,且如图6所示的eMMC存储器中每个分区的擦写寿命大于等于10年,可以满足车载T-BOX的使用需求。
基于相同的技术构思,请参考图7,本申请实施例还提供一种用于车载T-BOX的通信设备700,该通信设备700包括处理器701和嵌入式多媒体装置702,其中,嵌入式多媒体装置702,用于存储数据,该数据包括该车载T-BOX的启动程序、该车载T-BOX所包括的硬件设备的初始化信息、该车载T-BOX的配置文件和车载T-BOX所安装的应用程序的数据,处理器701,用于读取嵌入式多媒体装置702中存储的数据,和/或,向嵌入式多媒体装置702中写入待存储的数据。
需要说明的是,嵌入式多媒体装置702与图4~图5所示的嵌入式多媒体装置相同,在此不再赘述。在下面的描述中,主要对处理器701和嵌入式多媒体装置702的连接方式进行说明。
在本申请实施例中,处理器701和嵌入式多媒体装置702可以包括但不限于如下两种连接方式:
第一种连接方式:
请参考图7,嵌入式多媒体装置702设置在车载T-BOX的通信设备的外部,通过通信设备外部的安全数字输入输出(secure digital input and output,SDIO)接口,与通信设备的处理器701连接。这样,该嵌入式多媒体装置702除了可以用于存储如图4~图5所示的嵌入式多媒体装置中的数据,还可以被车载T-BOX用于存储其他数据,例如用于存储车载T-BOX的其他外设(例如无线保真(wireless fidelity,Wi-Fi)模块)的配置参数等,从而可以在满足车载T-BOX的高存储容量以及低成本需求的前提下,提高嵌入式多媒体装置702的存储空间的利用率。
第二种连接方式:
请参考图8,处理器701和嵌入式多媒体装置702均设置在该通信设备的内部,且处理器701和嵌入式多媒体装置702在通信设备内部使用SDIO协议进行通信。这样,通过将嵌入式多媒体装置702集成到通信设备内部,可以在满足车载T-BOX的高存储容量以及低成本需求的前提下,减小车载T-BOX的尺寸。
在图7或图8所述的通信设备中,使用嵌入式多媒体装置702替代了现有技术中的NAND flash,而eMMC存储器与处理器的连接方式,较NAND flash与处理器的连接方式更加简单。请参考图9,NAND flash通过多条信号线(包括用于传输数据的I/O总线、地址锁存使能(address latch enable,ALE)信号线、命令锁存使能(command latch enable,CLE)信号线、芯片使能(chip enable,CE)信号线、写使能(write enable,WE)信号线、空闲/忙输出(ready/busy output,RB)信号线、读使能(read enable,RE)信号线以及写保护(write protect,WP)信号线)与处理器连接。而eMMC存储器仅通过用于同步的时钟信号(clock,CLK)信号线、用于传输数据的8比特总线(DAT0-7)以及用于信令交互的CMD信号线,与处理器连接,如图10所示。可见,在如图7或图8所示的通信设备中,由于去除了处理器与NAND flash之间的连接线,从而使得通信设备的布线更加简单。
基于相同的技术构思,请参考图11,本申请实施例还提供一种用于车载T-BOX的通信设备1100,该通信设备1100包括处理器1101、NAND闪存1102以及嵌入式多媒体装置1103,其中,NAND闪存1102用于存储该车载T-BOX的启动程序,嵌入式多媒体装置1103,用于存储数据,该数据包括该车载T-BOX所包括的硬件设备的初始化信息、该车载T-BOX的配置文件和车载T-BOX所安装的应用程序的数据,处理器1101,用于读取NAND闪存1102中的启动程序和嵌入式多媒体装置1103中存储的数据,和/或,向嵌入式多媒体装置1103中写入待存储的数据。其中,NAND闪存1102位于通信设备内部,通过SDIO协议与处理器1101通信,嵌入式多媒体装置1103通过通信设备的SDIO接口,与处理器1101连接。
在本申请实施例中,嵌入式多媒体装置1102可以包括但不限于如下三种结构:
第一种结构:
嵌入式多媒体装置1102包括高可靠性磁盘分区以及用户数据磁盘分区,其中,该高可靠性磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储车载T-BOX所包括的硬件设备的初始化信息和车载T-BOX的配置文件;该用户数据磁盘分区,存储车载T-BOX所安装的应用程序的数据。
需要说明的是,该高可靠性磁盘分区和该用户数据磁盘分区与图4~图5所示的嵌入式多媒体装置中的相应部分相同。可以理解为,嵌入式多媒体装置1102与图4~图5所示的嵌 入式多媒体装置除去启动磁盘分区后的其余部分相同,针对每个磁盘分区的说明请参考图4~图5所示的实施例,在此不再赘述。
第二种结构:
嵌入式多媒体装置1102与图4~图5所示的嵌入式多媒体装置的结构相同,即包括启动磁盘分区,高可靠性磁盘分区以及用户数据磁盘分区。但是,嵌入式多媒体装置1102中的启动磁盘分区与图4~图5所示的实施例中的启动磁盘分区存储的数据不同,嵌入式多媒体装置1102中的启动磁盘分区不存储车载T-BOX的启动程序,例如,可以用于存储车载T-BOX的其他外设(例如无线保真(wireless fidelity,Wi-Fi)模块)的配置参数等。针对每个磁盘分区的说明请参考图4~图5所示的实施例,在此不再赘述。
第三种结构:
嵌入式多媒体装置1102即如图3所示的现有技术中的eMMC存储器,且该eMMC存储器中存储车载T-BOX的部分镜像文件和/或应用程序的数据,具体结构请参考图3,在此不再赘述。
在上述技术方案中,由于将NAND flash中的部分数据转存到嵌入式多媒体装置1102,因此,NAND flash中能够提供给用户的可用存储空间增大,这样,不用改变车载T-BOX的结构便可以满足用户对NAND flash的容量需求,实现方式简便。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种嵌入式多媒体装置,应用于车载远程通信处理器T-BOX的通信设备中,其特征在于,包括启动磁盘分区、高可靠性磁盘分区以及用户数据磁盘分区,其中:
    所述启动磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储所述T-BOX的启动程序;
    所述高可靠性磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储所述T-BOX所包括的硬件设备的初始化信息和所述T-BOX的配置文件;
    所述用户数据磁盘分区,存储所述T-BOX所安装的应用程序的数据。
  2. 根据权利要求1所述的装置,其特征在于,所述高可靠性磁盘分区包括第一高可靠性磁盘分区和第二高可靠性磁盘分区,所述第一高可靠性磁盘分区存储写入次数低于写入阈值的数据,所述第二高可靠性磁盘分区存储写入次数高于所述写入阈值的数据。
  3. 根据权利要求1或2所述的装置,其特征在于,所述用户数据磁盘分区,采用在每个单位存储空间中存储至少两个比特位数据的方式,存储所述配置文件和所述应用程序的数据。
  4. 根据权利要求1-3中任一项所述的装置,其特征在于,所述启动磁盘分区中包括主启动磁盘分区和备用启动磁盘分区,所述主启动磁盘分区与所述备用启动磁盘分区中均存储所述T-BOX的启动程序,在所述主启动磁盘分区发生故障时,所述T-BOX的处理器从所述备用启动磁盘分区读取所述T-BOX的启动程序。
  5. 一种用于车载远程通信处理器T-BOX的通信设备,其特征在于,包括处理器和嵌入式多媒体装置,其中:
    所述嵌入式多媒体装置,用于存储数据,所述数据包括所述T-BOX的启动程序、所述T-BOX所包括的硬件设备的初始化信息、所述T-BOX的配置文件和所述T-BOX所安装的应用程序的数据;
    所述处理器,用于读取所述嵌入式多媒体装置中存储的数据,和/或,向所述嵌入式多媒体装置中写入待存储的数据;
    所述嵌入式多媒体装置包括启动磁盘分区、高可靠性磁盘分区以及用户数据磁盘分区,其中:
    所述启动磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储所述T-BOX的启动程序;
    所述高可靠性磁盘分区,采用所述在每个单位存储空间中存储一个比特位数据的方式,存储所述T-BOX所包括的硬件设备的初始化信息和所述T-BOX的配置文件;
    所述用户数据磁盘分区,存储所述T-BOX所安装的应用程序的数据。
  6. 根据权利要求5所述的通信设备,其特征在于,所述启动磁盘分区中包括主启动磁盘分区和备用启动磁盘分区,所述主启动磁盘分区与所述备用启动磁盘分区中均存储所述T-BOX的启动程序,在所述主启动磁盘分区发生故障时,所述处理器从所述备用启动磁盘分区中读取所述T-BOX的启动程序,以启动所述T-BOX。
  7. 根据权利要求5或6所述的通信设备,其特征在于,所述处理器和所述嵌入式多媒体装置通过安全数字输入输出SDIO连接。
  8. 一种用于车载远程通信处理器T-BOX的通信设备,其特征在于,包括处理器、与 非NAND闪存和嵌入式多媒体装置,其中:
    所述与非NAND闪存,用于存储所述T-BOX的启动程序;
    所述嵌入式多媒体装置,用于存储数据,所述数据包括所述T-BOX所包括的硬件设备的初始化信息、所述T-BOX的配置文件和所述T-BOX所安装的应用程序的数据;
    所述处理器,用于读取所述与非NAND闪存的启动程序和所述嵌入式多媒体装置中存储的数据,和/或,向所述嵌入式多媒体装置中写入待存储的数据;
    所述嵌入式多媒体装置包括高可靠性磁盘分区以及用户数据磁盘分区,所述高可靠性磁盘分区,采用在每个单位存储空间中存储一个比特位数据的方式,存储所述T-BOX所包括的硬件设备的初始化信息和所述T-BOX的配置文件;所述用户数据磁盘分区,存储所述T-BOX所安装的应用程序的数据。
  9. 根据权利要求5-8中任一项所述的通信设备,其特征在于,所述高可靠性磁盘分区包括第一高可靠性磁盘分区和第二高可靠性磁盘分区,所述第一高可靠性磁盘分区存储写入次数低于写入阈值的数据,所述第二高可靠性磁盘分区存储写入次数高于所述写入阈值的数据。
  10. 根据权利要求5-8中任一项所述的通信设备,其特征在于,所述用户数据磁盘分区,采用在每个单位存储空间中存储至少两个比特位数据的方式,存储所述配置文件和所述应用程序的数据。
PCT/CN2020/085745 2019-04-29 2020-04-21 嵌入式多媒体装置和用于车载远程通信处理器的通信设备 WO2020221053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356141.XA CN110262836A (zh) 2019-04-29 2019-04-29 嵌入式多媒体装置和用于车载远程通信处理器的通信设备
CN201910356141.X 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020221053A1 true WO2020221053A1 (zh) 2020-11-05

Family

ID=67914080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085745 WO2020221053A1 (zh) 2019-04-29 2020-04-21 嵌入式多媒体装置和用于车载远程通信处理器的通信设备

Country Status (2)

Country Link
CN (1) CN110262836A (zh)
WO (1) WO2020221053A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262836A (zh) * 2019-04-29 2019-09-20 华为技术有限公司 嵌入式多媒体装置和用于车载远程通信处理器的通信设备
CN111444152A (zh) * 2020-03-30 2020-07-24 北京小米移动软件有限公司 文件系统、文件系统访问方法、电子设备及存储介质
CN112328561A (zh) * 2020-11-26 2021-02-05 广东小天才科技有限公司 一种日志传递方法、系统、电子设备和存储介质
CN114584550A (zh) * 2021-03-30 2022-06-03 长城汽车股份有限公司 车辆数据的上传及存储方法、装置、存储介质及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221927A (zh) * 2010-11-24 2013-07-24 索尼爱立信移动通讯有限公司 用于电子设备的可动态配置的嵌入式闪存
CN204305014U (zh) * 2014-12-29 2015-04-29 武汉烽火信息集成技术有限公司 一种车载通信设备
US20180046399A1 (en) * 2015-04-03 2018-02-15 Huawei Technologies Co., Ltd. Storage Partitioning Method and Terminal
CN208479957U (zh) * 2018-07-24 2019-02-05 中国航天空气动力技术研究院 一种车载终端t-box以及面向v2x网联汽车的车联网信息装置
CN110262836A (zh) * 2019-04-29 2019-09-20 华为技术有限公司 嵌入式多媒体装置和用于车载远程通信处理器的通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221927A (zh) * 2010-11-24 2013-07-24 索尼爱立信移动通讯有限公司 用于电子设备的可动态配置的嵌入式闪存
CN204305014U (zh) * 2014-12-29 2015-04-29 武汉烽火信息集成技术有限公司 一种车载通信设备
US20180046399A1 (en) * 2015-04-03 2018-02-15 Huawei Technologies Co., Ltd. Storage Partitioning Method and Terminal
CN208479957U (zh) * 2018-07-24 2019-02-05 中国航天空气动力技术研究院 一种车载终端t-box以及面向v2x网联汽车的车联网信息装置
CN110262836A (zh) * 2019-04-29 2019-09-20 华为技术有限公司 嵌入式多媒体装置和用于车载远程通信处理器的通信设备

Also Published As

Publication number Publication date
CN110262836A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2020221053A1 (zh) 嵌入式多媒体装置和用于车载远程通信处理器的通信设备
US11379139B2 (en) Multi-partitioning of memories
CN109983449B (zh) 数据处理的方法和存储系统
US8954705B2 (en) Memory space management method and memory controller and memory storage device and memory storage using the same
US20080195833A1 (en) Systems, methods and computer program products for operating a data processing system in which a file system's unit of memory allocation is coordinated with a storage system's read/write operation unit
WO2015051711A1 (zh) 一种基于多通道slc nand与dram缓存的新usb协议计算机加速设备
EP2161673A1 (en) Method and system for protecting data
US20130173931A1 (en) Host Device and Method for Partitioning Attributes in a Storage Device
TWI437430B (zh) 動態切換分割區方法、記憶卡控制器與記憶卡儲存系統及電腦程式產品
US8327124B2 (en) SD switch box in a cellular handset
KR20200093362A (ko) 메모리 시스템 및 그것의 동작 방법
TWI526828B (zh) 資料存取方法及使用此方法的記憶體控制器與儲存裝置
US8812756B2 (en) Method of dispatching and transmitting data streams, memory controller and storage apparatus
US20110055430A1 (en) Method for establishing a communication channel between a host device and a memory device, associated memory device and controller thereof, and associated host device and host device application
WO2016173470A1 (zh) 一种基于嵌入式多媒体卡eMMC的存储方法及系统
US9804983B2 (en) Controlling method, connector, and memory storage device
KR20200115831A (ko) 컨트롤러, 메모리 시스템 및 그것의 동작 방법
US9146861B2 (en) Memory address management method, memory controller and memory storage device
KR20210006556A (ko) 컨트롤러, 메모리 시스템 및 그것의 동작 방법
CN115963977A (zh) 一种固态硬盘及其数据操作方法、装置及电子设备
US10719461B2 (en) Solid state device with distributed bit buckets
CN110069934B (zh) 存储器存储系统、主机系统验证方法及存储器存储装置
KR20220076803A (ko) 데이터 저장 장치 및 그것의 동작 방법
US11861224B2 (en) Data transfer management from host buffers
CN114385244A (zh) 存储器管理方法、存储器存储装置及存储器控制电路单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798988

Country of ref document: EP

Kind code of ref document: A1