WO2020220629A1 - 楼层层数的获取方法、装置、电子设备及存储介质 - Google Patents

楼层层数的获取方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2020220629A1
WO2020220629A1 PCT/CN2019/115116 CN2019115116W WO2020220629A1 WO 2020220629 A1 WO2020220629 A1 WO 2020220629A1 CN 2019115116 W CN2019115116 W CN 2019115116W WO 2020220629 A1 WO2020220629 A1 WO 2020220629A1
Authority
WO
WIPO (PCT)
Prior art keywords
air pressure
pressure difference
value
floor
floors
Prior art date
Application number
PCT/CN2019/115116
Other languages
English (en)
French (fr)
Inventor
王梦岩
Original Assignee
广东小天才科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东小天才科技有限公司 filed Critical 广东小天才科技有限公司
Publication of WO2020220629A1 publication Critical patent/WO2020220629A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/231Hierarchical techniques, i.e. dividing or merging pattern sets so as to obtain a dendrogram
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of positioning, in particular to a method, device, electronic equipment and storage medium for acquiring the number of floors.
  • positioning systems such as Beidou satellites and GPS (Global Positioning System; global positioning system) are mainly used to provide users with location services; while in the indoor environment, positioning methods of wireless sensor networks and Wi-Fi (Wireless- Fidelity; wireless fidelity) radio frequency fingerprint and other positioning methods to provide users with location services.
  • Wi-Fi Wireless- Fidelity; wireless fidelity
  • the embodiment of the present invention discloses a method, a device, an electronic device and a storage medium for acquiring the number of floors. Based on the air pressure difference between any two adjacent floors in the target area, the air pressure difference is relatively close, so the air pressure detection value and air pressure of the target user can be passed.
  • the reference value is used to obtain the current air pressure difference of the target user relative to the reference floor, so as to obtain the floor number of the target user’s current floor according to the current air pressure difference and the target air pressure difference, which realizes the positioning of the floor number of the floor and improves Improved positioning accuracy.
  • a method for calculating the number of floors based on hierarchical clustering including:
  • Detecting whether a floor location request is received wherein the floor location request is used to request the number of floors of the floor where the user is currently located;
  • an electronic device including:
  • the first acquiring unit is configured to acquire the standard value of air pressure corresponding to the floor in the target indoor positioning scene
  • a calculation unit configured to sort all the air pressure standard values, calculate the difference between two adjacent air pressure standard values after sorting, and determine the air pressure difference between floors according to the difference;
  • a clustering unit configured to perform hierarchical clustering of all the air pressure differences between floors, and determine the air pressure differences of adjacent floors in the target indoor scene according to the hierarchical clustering results;
  • the storage unit is used to store the air pressure difference of the adjacent floors in the fingerprint library of the altitude air pressure difference of the adjacent floors of the building;
  • the detection unit is used to detect whether a floor positioning request is received; wherein the floor positioning request is used to request the number of floors where the user is currently located;
  • the second acquiring unit is configured to acquire the initial air pressure value of the reference plane of the target indoor positioning scene, the measured air pressure value of the floor where the user is currently located, and the information from the building phase when the detection result of the detection unit is yes. Obtain the air pressure difference value of the adjacent floor from the fingerprint database of the altitude air pressure difference value of the adjacent floor;
  • the determining unit is configured to determine the number of floors where the user is currently located according to the initial air pressure value, the measured air pressure value, and the air pressure difference between the adjacent floors.
  • a method for acquiring the number of floors including:
  • the target air pressure difference value is the air pressure difference value between any two adjacent floors in the floor area;
  • the number of floors of the floor to be determined is determined according to the air pressure detection value, the target air pressure difference value, and the air pressure reference value of a reference floor in the target area.
  • a device for acquiring the number of floors includes:
  • the detection value acquisition module is used to acquire the air pressure detection value of the floor to be determined in the target area
  • the target air pressure difference acquiring module is used to acquire the target air pressure difference corresponding to at least one floor area included in the target area; the target air pressure difference is the air pressure between any two adjacent floors in the floor area Difference
  • the number of floors determining module is used to determine the number of floors of the floor to be determined according to the detected air pressure value, the target air pressure difference value, and the air pressure reference value of a reference floor in the target area.
  • an electronic device including:
  • a memory storing executable program codes
  • a processor coupled with the memory
  • the processor calls the executable program code stored in the memory to execute all or part of the steps in any one of the methods disclosed in the first aspect of the embodiment of the present invention, or executes the steps disclosed in the third aspect of the embodiment of the present invention All or part of the steps in any method.
  • a computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the embodiments of the present invention. All or part of the steps in any method disclosed in the first aspect, or execute all or part of the steps in any method disclosed in the third aspect of the embodiments of the present invention.
  • a computer program product is disclosed.
  • the computer program product runs on a computer, the computer is caused to execute part or all of any method in the first aspect of the embodiments of the present invention. Steps, or perform all or part of the steps in any method disclosed in the third aspect of the embodiments of the present invention.
  • the air pressure detection value of the floor to be determined in the target area is acquired; the target air pressure difference value corresponding to at least one floor area included in the target area is acquired; the target air pressure difference value is in the floor area
  • the air pressure difference between any two adjacent floors; the number of floors of the floor to be determined is determined according to the air pressure detection value, the target air pressure difference and the air pressure reference value of the reference floor in the target area.
  • the present invention is based on the fact that the air pressure difference values of any two adjacent floors in any floor area included in the target area are relatively close, so the target air pressure difference values corresponding to any two adjacent floors in different floor areas can be obtained in advance, so that The current air pressure difference of the floor to be determined relative to the reference floor can be obtained through the air pressure detection value of the floor to be determined and the air pressure reference value of the reference floor, so as to get the number of floors to be determined according to the current air pressure difference and the target air pressure difference. , Realizes the positioning of the number of floors, and improves the positioning accuracy.
  • FIG. 1 is a schematic flowchart of a method for calculating the number of floors based on hierarchical clustering disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of another method for calculating the number of floors based on hierarchical clustering disclosed in an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another electronic device disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for acquiring the number of floors disclosed in an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of another method for acquiring the number of floors disclosed in an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a system for acquiring the number of floors disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of another method for acquiring the number of floors disclosed in an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another method for acquiring the number of floors disclosed in an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a device for acquiring the number of floors disclosed in an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of another device for acquiring the number of floors disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another device for acquiring the number of floors disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present invention.
  • the living area and office area of the user are usually located in a building, and the building may include multiple floors, in order to enable the monitoring personnel to monitor the current floor of the target user in real time, the present invention
  • Target users can be targeted.
  • children need to be trained in dance lessons on the 10th floor of the XX building, and there are video games on the 5th floor of the XX building.
  • Parents can locate the child to identify whether the child goes to the 5th floor of the XX building to play video games during the training period;
  • the office area of a company employee is on the 8th floor of the YY building, and the 1st to 4th floors of the YY building are shopping malls.
  • the person in charge of the company can locate the employees to identify whether the company employees use office hours to shop on the 1st to 4th floors.
  • Shopping in a mall, etc. the above examples of application scenarios are just examples, and the present invention does not limit this.
  • Fig. 1 is a schematic flowchart of a method for calculating the number of floors based on hierarchical clustering disclosed in an embodiment of the present invention. As shown in Figure 1, the method may include the following steps:
  • the electronic device obtains a standard value of air pressure corresponding to a floor in the target indoor positioning scene.
  • the electronic device acquiring the air pressure standard value of the floor in the target indoor positioning scene may include:
  • sample user data positioned in the target indoor positioning scene; where the sample user data includes at least sample air pressure data; perform hierarchical clustering on the sample air pressure data to obtain the air pressure data set corresponding to the floor in the target indoor positioning scene; The arithmetic mean value of the air pressure data set determines the air pressure standard value of the corresponding floor.
  • the electronic device can continuously receive sample user data located in the target indoor positioning scene within a preset time period collected by the air pressure sensor; wherein the sample user data includes at least sample air pressure data, and may also include temperature data and Humidity data and so on. Since the air pressure has the characteristic of being constant for a short period of time, preferably, the preset duration can be set to 60 minutes, and the number of sample user data can be any number greater than or equal to 2.
  • the air pressure sensor can be installed on each floor of the target indoor positioning scene, or it can be installed on the smart device (such as mobile phone, phone watch, etc.) carried by the user positioned in the target indoor positioning scene, which is not limited in the embodiment of the present invention. .
  • the air pressure difference between two adjacent floors is greater than the air pressure fluctuation value of the same floor, that is, the air pressure difference on the same floor in a short period of time is smaller ,
  • the difference between floors is large; in addition, the height of a single storey of the building remains unchanged (the height between adjacent floors of a building is generally not less than one meter, and generally more than two meters), so it can be clustered by hierarchy ( Hierarchical Clustering) method of hierarchical clustering of sample air pressure data, the air pressure data set corresponding to the floor under the target indoor positioning scene can be obtained, and then the arithmetic average of the air pressure data of each air pressure data set is calculated, and the arithmetic average of the air pressure data set The value result is determined as the air pressure standard value of the corresponding floor.
  • Hierarchical Clustering Hierarchical Clustering
  • the electronic device can classify each sample air pressure data into one category, and use the Euclidean distance as the similarity measurement method between each two categories, and set the distance threshold at the same time.
  • the distance threshold is greater than the distance threshold, clustering is stopped, and the air pressure data set corresponding to the floor in the target indoor positioning scene is determined according to the current clustering result.
  • the distance threshold can be set according to the general single-floor height of the actual building.
  • the air pressure standard value of some floors in the target indoor positioning scene can be obtained; and when the number of sample user data collected is sufficient (covering the target indoor positioning scene The standard value of the air pressure of each floor in the target indoor positioning scene can be obtained.
  • the sample air pressure data can be processed by the hierarchical clustering method to obtain the air pressure standard value of the floor under the target indoor positioning scene.
  • the cluster center point (k value , That is, the number of corresponding air pressure data sets).
  • This solution does not need to specify the initial clustering center point, but uses the general floor height of the actual building as a threshold to determine the number of categories, so that the clustering result is more in line with the actual needs of the solution.
  • the electronic device sorts all air pressure standard values, calculates the difference between two adjacent air pressure standard values after sorting, and determines the air pressure difference between floors according to the difference.
  • the electronic device may sort all standard values of air pressure in descending order.
  • the electronic device performs hierarchical clustering of the air pressure differences between all floors, and determines the air pressure differences of adjacent floors in the target indoor scene according to the hierarchical clustering results, and stores the air pressure differences of the adjacent floors in the building phase.
  • the electronic device performs hierarchical clustering on the air pressure difference between all floors, and determines the air pressure difference between adjacent floors in the target indoor scene according to the hierarchical clustering result.
  • the electronic device can perform hierarchical clustering on the air pressure difference between all floors.
  • the air pressure difference is clustered to obtain several clusters; wherein, each cluster can include at least one floor space air pressure difference; further, the arithmetic mean value of each cluster is calculated, and all clusters are The arithmetic mean values of the clusters are sorted from small to large, and the difference between the arithmetic mean values of two adjacent clusters after sorting is calculated, and it is determined as the new inter-floor air pressure difference.
  • the electronic device detects whether a floor location request is received, and if the floor location request is received, step 105 is triggered; if the floor location request is not received, step 104 is continued; wherein, the floor location request is used to request user acquisition The number of the current floor.
  • the above-mentioned electronic device may be a smart device carried by the user (such as a smart phone, a telephone watch, etc.), or may be a floor positioning device (such as a floor positioning device) used to provide a floor positioning for a user in a target indoor positioning scene Server), which is not limited in the embodiment of the present invention.
  • the electronic device is a floor locating device
  • the floor locating device can realize two-way communication with the smart device carried by the user through a communication network. Therefore, the user can send a floor location request to the floor locating device through the smart device.
  • the electronic device obtains the initial air pressure value of the reference plane of the target indoor positioning scene and the measured air pressure value of the user's current floor, and obtains the air pressure difference value of adjacent floors from the fingerprint library of the altitude air pressure difference value of adjacent floors of the building, according to The initial air pressure, the measured air pressure and the air pressure difference between adjacent floors determine the number of floors where the user is currently located.
  • the floor location request can be sent to the electronic device by the user through the smart device carried by the user, and the smart device can be provided with an air pressure sensor for collecting air pressure data, so the floor location request can be Including the measured air pressure value of the floor where the user is currently located.
  • the smart device can collect several times of air pressure data at the user's current location through the air pressure sensor, and send the average value of the several times of air pressure data as the measured air pressure value of the user's current floor to the electronic device.
  • the reference plane of the positioning scene in the target indoor positioning scene may be the reference level of the building included in the target indoor positioning scene, such as the first floor, then the initial air pressure value may be the user entering the building The barometric pressure value measured at the time point within.
  • the electronic device determines the number of floors of the floor where the user is currently located according to the initial pressure value, the measured pressure value, and the pressure difference between adjacent floors, which may include:
  • the electronic device can calculate the target is the single-floor height value in the indoor positioning scene based on the air pressure difference between adjacent floors and the preset standard air pressure altitude formula; similarly, it can also be based on the initial air pressure value
  • the absolute value of the difference between the measured air pressure values and the preset standard air pressure altitude formula can calculate the relative altitude value between the user's current floor and the reference plane.
  • the electronic device can establish a BP neural network based on the air pressure data and temperature data collected at different measurement locations (floors) in the target indoor positioning scene, and optimize the BP neural network according to the principles of genetic algorithm and complete its training and learning process. Obtain the above-mentioned standard atmospheric pressure altitude formula.
  • the electronic device may determine the measurement position of the initial air pressure value as the first measurement point, and the first measurement point is located on the above-mentioned reference plane; similarly, the electronic device may also determine the measurement position of the above-mentioned measured air pressure value
  • the second measurement point is located on the floor plan of the floor where the user is currently located. Therefore, the above-mentioned relative height value refers to the vertical height between the first measurement point and the second measurement point.
  • the electronic device can determine whether the current time belongs to the preset control time period after determining the user's current floor according to the initial air pressure value, the measured air pressure value, and the air pressure difference between adjacent floors. If yes, determine the store list corresponding to the user’s current floor according to the preset dynamic floor plan; determine the target WiFi hotspot with the strongest signal according to the list of WiFi hotspots detected in the user’s current orientation; change the name of the target WiFi hotspot Match with the name of the shop included in the shop list, and determine the successfully matched shop as the target shop; determine whether the target shop belongs to the preset shop set; if the target shop belongs to the preset shop set, send to the monitoring terminal Prompt message to remind the user to be in the non-learning area within the control time period.
  • the above-mentioned control time period may be a pre-set time period for after-school study by the parent.
  • the parent hopes that the student user performs after-school activities related to learning, such as reading books in the library, buying books in the bookstore, or going to Extracurricular teaching and tutoring institutions, etc. Therefore, the electronic device can determine the store list corresponding to the user's current floor by looking up the dynamic floor plan, and determine the target store closest to the user from the store list according to the strength of the WiFi hotspot signal, and the target store is the user The current store; further, determine whether the target store belongs to the preset store set. If it does not, it means that the target store is not a store related to learning.
  • a reminder message can be sent to the parent’s monitoring terminal to remind the user It is in a non-learning area during the control time period; wherein, the above-mentioned floor dynamic plan may include the name of the shop on each floor in the target indoor positioning scene.
  • the embodiments of the present invention can locate the specific area where the user is located after locating the floor where the user is located, so that parents can accurately grasp the specific location coordinates of the student user; in addition, by determining the functional category of the specific area where the user is located Determine whether student users are engaged in learning-related activities within the preset management and control time period, which realizes the supervision and control of student users' learning and improves the efficiency of learning management and control.
  • the air pressure difference between adjacent floors of the target indoor positioning scene where the user is located can be determined based on the hierarchical clustering method, and the single floor can be easily obtained based on the correspondence between air pressure and altitude.
  • the height value of the building and the relative height value between the user and the ground so as to obtain the number of floors where the user is currently located according to the height value and relative height value of the single-story building.
  • the single-story cannot be accurately known. The problem of inaccurate positioning of the number of floors caused by the height of the building.
  • This solution improves the accuracy of locating the number of floors where the user is located; after locating the floor where the user is located, the specific area where the user is located on the floor can be located, so that parents can be accurate Grasp the specific location coordinates of the student user; in addition, by determining the functional category of the specific area where the user is located, it can be determined whether the student user is engaged in learning-related activities within the preset control time period, which realizes the supervision and study of the student user Management and control improve the efficiency of learning management and control.
  • Fig. 2 is a schematic flowchart of another method for calculating the number of floors based on hierarchical clustering disclosed in an embodiment of the present invention. As shown in Figure 2, the method may include the following steps:
  • the method for calculating the number of floors based on hierarchical clustering includes steps 201 to 205.
  • steps 201 to 205 please refer to the detailed description of steps 101 to 105 in the first embodiment. No longer.
  • the electronic device detects whether it has received the location sharing request sent by the monitoring terminal, and if it receives the location sharing request, triggers execution of step 207; if it does not receive the location sharing request, continues to execute step 206.
  • the user of the monitoring terminal may be a parent.
  • the parent hopes to know the accurate location of the child in time.
  • the parent can send a location sharing request to the electronic device through the monitoring terminal. Get the specific number of floors where the child is currently located.
  • the electronic device acquires the number of walking steps of the user.
  • the electronic device can receive the user's walking steps sent by the user's smart device (such as a smart phone).
  • the user's smart device such as a smart phone
  • the electronic device judges whether the number of walking steps is greater than the preset number of steps threshold, if the number of walking steps is greater than the preset number of steps threshold, triggers execution of steps 209-210; if the number of walking steps is not greater than the preset threshold of steps, triggers execution of steps 211.
  • the electronic device obtains real-time network connection data, and calculates the degree of overlap between the real-time network connection data and the historical network connection data; wherein, the collection time of the historical network connection data is the same as the time when the electronic device determines the number of floors where the user is currently located.
  • the network connection data may include a WiFi hotspot list, and the WiFi hotspot list may include multiple WiFi hotspots; and each WiFi hotspot list includes the same number of WiFi hotspots.
  • the electronic device calculates the degree of overlap between the real-time network connection data and the historical network connection data, which may include:
  • the ratio of the first number to the second number is determined as the degree of overlap between the real-time network connection data and the historical network connection data; where the second number is the number of all WiFi hotspots included in the WiFi hotspot list.
  • the number of WiFi hotspots in the real-time WiFi hotspot list and the historical WiFi hotspot list are both 10; compare the names of the WiFi hotspots in the real-time WiFi hotspot list and the WiFi hotspots in the historical WiFi hotspot list to obtain targets with the same name
  • the number of WiFi hotspots is 5, so it is easy to get a 50% overlap between real-time network connection data and historical network connection data.
  • the electronic device determines whether the coincidence degree is higher than the preset coincidence degree threshold, and if the coincidence degree is higher than the preset coincidence degree threshold, triggers execution of step 211; if the coincidence degree is not higher than the preset coincidence degree threshold, triggers execution of step 205.
  • the aforementioned coincidence degree is higher than the preset coincidence degree threshold, it can indicate that the user has not left the network coverage area corresponding to the historical network connection data (for example, the network coverage area of a WiFi hotspot); on the contrary, if the aforementioned coincidence degree It is higher than the preset coincidence degree threshold, indicating that the user has currently left the network coverage area corresponding to the historical network connection data.
  • the electronic device shares the number of floors of the user's current floor to the monitoring terminal.
  • the electronic device can send the location coordinates corresponding to the target indoor positioning scene and the number of floors of the floor where the user is currently located to the monitoring device to realize location sharing.
  • the monitoring terminal After receiving the location sharing request sent by the monitoring terminal, it is determined whether the user has left the current floor by comparing the number of steps the user walks and the change of the network connection data in turn. When it is determined that the user has not left the current floor, the number of floors of the floor is shared with the monitoring terminal, which avoids the steps of repeatedly collecting air pressure data and calculating the number of floors, and improves the efficiency of location sharing.
  • the air pressure difference between adjacent floors of the target indoor positioning scene where the user is located can be determined based on the hierarchical clustering method, and the single floor can be easily obtained based on the correspondence between air pressure and altitude.
  • the height value of the building and the relative height value between the user and the ground so as to obtain the number of floors where the user is currently located according to the height value and relative height value of the single-story building.
  • the single-story cannot be accurately known. The problem of inaccurate positioning of the number of floors caused by the height of the building.
  • This solution improves the accuracy of locating the number of floors where the user is located; after locating the floor where the user is located, the specific area where the user is located on the floor can be located, so that parents can be accurate Grasp the specific location coordinates of the student user; and by determining the functional category of the specific area where the user is located, it is possible to determine whether the student user is engaged in learning-related activities within the preset control time period, which realizes the supervision and control of the student user’s learning Management and control improve the efficiency of learning management and control; in addition, when it is determined that the user has not left the current floor, the number of floors of the floor is shared with the monitoring terminal, which avoids the steps of repeatedly collecting air pressure data and calculating the number of floors, and improves the sharing of positioning effectiveness.
  • Fig. 3 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present invention. As shown in Figure 3, the electronic device may include:
  • the first obtaining unit 301 is configured to obtain a standard value of air pressure corresponding to a floor in the target indoor positioning scene, and provide the standard value of air pressure to the calculation unit 302.
  • the calculation unit 302 is used to sort all the air pressure standard values, calculate the difference between two adjacent air pressure standard values after sorting, and determine the floor space air pressure difference according to the difference, and provide the floor space air pressure difference Give the clustering unit 303.
  • the clustering unit 303 is used to perform hierarchical clustering of the air pressure differences between all floors, and determine the air pressure differences of adjacent floors in the target indoor scene according to the hierarchical clustering results, and provide the air pressure differences of adjacent floors to storage Unit 306.
  • the clustering unit 303 performs hierarchical clustering on the air pressure difference values between all floors, and determines the air pressure difference values of adjacent floors in the target indoor scene according to the hierarchical clustering results.
  • the method may be:
  • Clustering the air pressure differences between all floors to obtain several clusters; wherein each cluster may include at least one air pressure difference between floors; further, calculate the arithmetic mean value of each cluster, and Sort the arithmetic averages of all clusters in ascending order, calculate the difference between the arithmetic averages of two adjacent clusters after sorting, and determine it as the new floor space air pressure difference Value, perform hierarchical clustering between the new inter-floor air pressure difference and the arithmetic mean of the cluster cluster with the smallest value among the arithmetic mean values of all the above cluster clusters, until the clustering obtains a target cluster cluster, and the target cluster The arithmetic average of the clusters is determined as the air pressure difference between adjacent floors in the target indoor scene.
  • the storage unit 306 is configured to store the above-mentioned air pressure difference value of adjacent floors in the fingerprint library of the altitude air pressure difference value of adjacent floors of the building.
  • the detection unit 304 is configured to detect whether a floor location request is received and provide the detection result to the second acquiring unit 305; wherein the floor location request is used to request the number of floors where the user is currently located.
  • the second acquisition unit 305 is configured to acquire the initial air pressure value of the reference plane of the target indoor positioning scene, the measured air pressure value of the floor where the user is currently located, and the building from the storage unit 306 when the detection result of the detection unit is yes
  • the air pressure difference value of the adjacent floor is obtained from the fingerprint database of the altitude air pressure difference value of the adjacent floor and provided to the determining unit 307.
  • the determining unit 307 is configured to determine the number of floors where the user is currently located according to the initial air pressure value, the measured air pressure value, and the air pressure difference between the adjacent floors.
  • the electronic device described in FIG. 3 can determine the air pressure difference between adjacent floors of the target indoor positioning scene where the user is located based on the hierarchical clustering method, and it is easy to obtain a list based on the correspondence between air pressure and altitude.
  • the height value of the floor and the relative height value between the user and the ground so as to obtain the number of floors where the user is currently located according to the height value and the relative height value of the single-story building.
  • the order cannot be accurately obtained. The problem of inaccurate positioning of the number of floors caused by the height of the building.
  • This solution improves the accuracy of locating the number of floors where the user is located; after locating the floor where the user is located, the specific area where the user is located on the floor can be located, so that parents can Accurately grasp the specific location coordinates of the student user; in addition, by determining the functional category of the specific area where the user is located, it can be determined whether the student user is engaged in learning-related activities within the preset control time period, which realizes the supervision of the student user in learning And control, improve the efficiency of learning control.
  • FIG. 4 is a schematic structural diagram of another electronic device provided by an embodiment of the present invention.
  • the electronic device shown in FIG. 4 is obtained by further optimization of the electronic device shown in FIG. 3.
  • the first obtaining unit 301 may include:
  • the selecting subunit 3011 is used to select sample user data positioned in the target indoor positioning scene and provide the sample user data to the clustering subunit 3012; wherein the sample user data may at least include sample air pressure data.
  • the selection subunit 3011 can continuously receive sample user data located in the target indoor positioning scene within a preset time period collected by the air pressure sensor; wherein the sample user data includes at least sample air pressure data and may also include temperature Data and humidity data and so on. Since the air pressure has the characteristic of being constant for a short period of time, preferably, the preset duration can be set to 60 minutes, and the number of sample user data can be any number greater than or equal to 2.
  • the air pressure sensor can be installed on each floor of the target indoor positioning scene, or it can be installed on the smart device (such as mobile phone, phone watch, etc.) carried by the user positioned in the target indoor positioning scene, which is not limited in the embodiment of the present invention. .
  • the clustering subunit 3012 is used to perform hierarchical clustering of the sample air pressure data to obtain the air pressure data set corresponding to the floor in the target indoor positioning scene, and provide the air pressure data set to the first determining subunit 3013.
  • the air pressure difference between two adjacent floors is greater than the air pressure fluctuation value of the same floor, that is, the air pressure difference of the same floor in a short period of time is smaller ,
  • the difference between floors is large; in addition, the height of a single storey of the building remains unchanged (the height between adjacent floors of a building is generally not less than one meter, and generally more than two meters), so it can be clustered by hierarchy ( Hierarchical Clustering) method to hierarchically cluster the sample air pressure data, you can get the air pressure data set corresponding to the floor under the target indoor positioning scene, and then calculate the arithmetic average of the air pressure data of each air pressure data set, and calculate the arithmetic average of the air pressure data set The value result is determined as the standard value of air pressure for the corresponding floor.
  • the clustering subunit 3012 can classify each sample air pressure data into one category, and use Euclidean distance as the similarity measurement method between each two categories, and set the distance threshold at the same time. When the two closest Euclidean distances When the distance of the class is greater than the distance threshold, clustering is stopped, and the air pressure data set corresponding to the floor in the target indoor positioning scene is determined according to the current clustering result; wherein, preferably, the distance threshold can be based on the general single-floor height of the actual building Set up.
  • the air pressure standard value of some floors in the target indoor positioning scene can be obtained; and when the number of sample user data collected is sufficient (covering the target indoor positioning scene The standard value of the air pressure of each floor in the target indoor positioning scene can be obtained.
  • the sample air pressure data can be processed by the hierarchical clustering method to obtain the air pressure standard value of the floor under the target indoor positioning scene.
  • the cluster center point (k value , That is, the number of corresponding air pressure data sets).
  • This solution does not need to specify the initial clustering center point, but uses the general floor height of the actual building as a threshold to determine the number of categories, so that the clustering result is more in line with the actual needs of the solution.
  • the first determining subunit 3013 is used to determine the standard value of the air pressure of the corresponding floor according to the arithmetic mean value of the above-mentioned air pressure data set.
  • the above determining unit 307 may include:
  • the second determining subunit 3071 is used to determine the single-floor height value in the target indoor positioning scene according to the air pressure difference between adjacent floors, and to determine the difference between the user’s current floor and the reference plane according to the initial air pressure value and the measured air pressure value.
  • the relative height value of the room, and the single floor height value and the relative height value are provided to the calculation subunit 3072.
  • the calculation subunit 3072 is used to divide the relative height value by the single-floor height value, and determine the number of floors the user is currently on according to the division result.
  • the detection unit 304 is further configured to determine the user in the determination unit 307 according to the initial air pressure value, the measured air pressure value, and the air pressure difference between the adjacent floors. After the floor number of the current floor, it is detected whether the location sharing request sent by the monitoring terminal is received, and the detection result is provided to the second acquiring unit 305.
  • the second acquiring unit 305 is further configured to acquire the number of walking steps of the user when the detection result of the detecting unit 304 is yes, and provide the number of walking steps to the judgment unit 308.
  • the judging unit 308 is configured to judge whether the number of walking steps is greater than the preset step number threshold, and provide the judgment result to the sharing unit 309.
  • the sharing unit 309 is configured to share the number of floors where the user is currently located to the monitoring terminal when the determination unit 308 determines that the number of walking steps is not greater than the preset number of steps threshold.
  • the second obtaining unit 305 is further configured to obtain the user's real-time network connection when the judgment unit 308 determines that the number of walking steps is greater than the preset step number threshold. data.
  • the calculation unit 302 is also used to calculate the degree of coincidence between the real-time network connection data and the historical network connection data, and provide it to the judgment unit 308; wherein the collection time of the historical network connection data and the electronic device determine the number of floors the user is currently on The moment is the same.
  • the above judgment unit 308 is also used to judge whether the coincidence degree is higher than the preset coincidence degree threshold, and provide the judgment result to the sharing unit 309.
  • the sharing unit 309 is further configured to share the number of floors of the floor where the user is currently located to the monitoring terminal when the judging unit 308 determines that the coincidence degree is higher than the preset coincidence degree threshold.
  • the electronic device described in FIG. 4 can determine the air pressure difference between adjacent floors of the target indoor positioning scene where the user is located based on the hierarchical clustering method, and it is easy to obtain a list based on the correspondence between air pressure and altitude.
  • the height value of the floor and the relative height value between the user and the ground so as to obtain the number of floors where the user is currently located according to the height value and the relative height value of the single-story building.
  • the order cannot be accurately obtained. The problem of inaccurate positioning of the number of floors caused by the height of the building.
  • This solution improves the accuracy of locating the number of floors where the user is located; after locating the floor where the user is located, the specific area where the user is located on the floor can be located, so that parents can Accurately grasp the specific location coordinates of the student user; and by determining the functional category of the specific area where the user is located, it can be determined whether the student user is engaged in learning-related activities within the preset control time period, which realizes the supervision of the student user in learning And control, improve the efficiency of learning management and control; in addition, when it is determined that the user has not left the current floor, the number of floors of the floor is shared with the monitoring terminal, which avoids the steps of repeatedly collecting air pressure data and calculating the number of floors, and improves location sharing s efficiency.
  • Fig. 5 is a schematic flowchart of a method for acquiring the number of floors disclosed in an embodiment of the present invention.
  • the present invention can be applied to electronic equipment. As shown in FIG. 5, the method may include the following steps:
  • the target area may be the target indoor positioning scene in the embodiment shown in FIG. 1.
  • the air pressure detection value can be obtained in but not limited to the following ways:
  • Method 1 One situation is: since the terminal device (such as mobile phone, wearable device, etc.) currently carried by the target user located on the floor to be determined may have a built-in air pressure sensor, the present invention can use the built-in air pressure sensor of the terminal device The collected air pressure value is used as the air pressure detection value.
  • the terminal device such as mobile phone, wearable device, etc.
  • the present invention can use the built-in air pressure sensor of the terminal device
  • the collected air pressure value is used as the air pressure detection value.
  • the air pressure sensor can collect multiple air pressure values within a preset position range of the target user’s current location, and use the average value of the multiple air pressure values as the Air pressure detection value.
  • the terminal device After the terminal device obtains the air pressure detection value, it sends the air pressure detection value to the electronic device.
  • Air pressure sensors can be installed at different positions in the target area, and the target area may be: each floor included in the building.
  • the target area may be: each floor included in the building, and a site within a preset area around the building.
  • the air pressure detection value can be obtained based on the air pressure value currently collected by the target sensor.
  • the target sensor may be at least one air pressure sensor installed in the floor to be determined.
  • the air pressure value collected by any target sensor may be used as the air pressure detection value, and the any target sensor sends the air pressure detection value to the electronic device through a built-in communication module.
  • multiple target sensors may send the detected air pressure values to the electronic device, so that the electronic device calculates the average value of the air pressure values collected by the multiple target sensors to obtain the air pressure detection value.
  • the target sensor may be the air pressure sensor closest to the target user. At this time, the air pressure value currently collected by the target sensor is the air pressure detection value, so the target sensor sends the air pressure detection value to the electronic device through the built-in communication module.
  • the target sensor is multiple air pressure sensors within the preset position range of the target user’s current location
  • the multiple target sensors send the currently collected air pressure values to the electronic device through the built-in communication module, so that the electronic device can calculate the The average value of the air pressure values currently collected by the multiple target sensors obtains the air pressure detection value.
  • the above example is only an example, and the present invention does not limit this.
  • the target air pressure difference value is the air pressure difference value between any two adjacent floors in the floor area.
  • the difference between the number of floors of two adjacent floors is 1, the height of a single floor corresponding to different floor areas is different, and the height of a single floor in a single floor area is the same. In this way, based on the characteristics of the air pressure value, the target air pressure difference values of different floor areas are different.
  • the certain office area can be divided Two-floor areas.
  • floors 1 to 4 are shopping mall floor areas
  • floors 5 to 28 are office floor areas. Among them, the height of single floors on floors 1 to 4 is usually higher, and the height of single floors on floors 5 to 28 is usually lower. .
  • the target air pressure difference can be obtained through the following steps:
  • the standard value of the air pressure can be obtained through the following steps:
  • Step 1 Collect multiple air pressure sample values in the target area.
  • the air pressure change value of the same position within the preset time period is less than or equal to the preset air pressure threshold. Therefore, multiple air pressure sample values in the target area can be collected within a preset period of time.
  • the air pressure sensor can collect multiple air pressure sample values according to a preset collection period within a preset time period.
  • the preset duration may be set to 60 minutes.
  • this step may also be to collect air pressure sample values at the locations of multiple users in the target area.
  • Step 2 Cluster the air pressure sample values to obtain the air pressure sample set corresponding to multiple floors in the target area.
  • the present invention can adopt hierarchical clustering method, K-means clustering method, etc.
  • each air pressure sample value can be classified as a category to be aggregated, and the similarity between every two categories to be aggregated is calculated, and the air pressure sample values are hierarchically clustered according to the similarity Obtain the air pressure sample set corresponding to multiple floors in the target area.
  • the similarity can be a parameter such as Euclidean distance or Manhattan distance. Since the air pressure sample value is a one-dimensional parameter, the results of obtaining similarity by Euclidean distance or Manhattan distance in the present invention are the same. If the similarity is the Euclidean distance, the air pressure difference between every two categories to be aggregated can be calculated to obtain the Euclidean distance of each two categories to be aggregated; the two categories to be aggregated corresponding to the minimum distance are merged to obtain a new For aggregation category, the average air pressure of the two categories to be aggregated corresponding to the minimum distance is the air pressure sample value corresponding to the new category to be aggregated; then the new category to be aggregated and the specified category to be aggregated are used as the target category to be aggregated, and the target class update step is repeated , Until the loop termination condition is met.
  • the similarity is the Euclidean distance
  • the air pressure difference between every two categories to be aggregated can be calculated to obtain the Euclidean distance of each two categories to be aggregate
  • the loop termination condition includes: the maximum Euclidean distance obtained according to the updated target class to be aggregated is less than or equal to the first distance threshold;
  • the target class update step includes: calculating the air pressure difference between every two target classes to be aggregated Value, get the Euclidean distance of each two targets to be aggregated, and determine whether the maximum Euclidean distance is less than or equal to the first distance threshold.
  • the two targets with the minimum Euclidean distance are The aggregation classes are aggregated, and the target class to be aggregated is updated according to the aggregation results; the class to be aggregated is designated as the class to be aggregated except the new class to be aggregated, and the first distance threshold can be based on the general single-floor height of the actual building Make settings. It can be seen that, according to the final clustering results, the air pressure sample sets corresponding to different floors in the target area are determined. It should be noted that, because the air pressure sample values of some floors in the target area may not be collected, the floor corresponding to the air pressure sample set may not include all floors in the target area.
  • K-means clustering method is used, and the similarity includes Euclidean distance
  • K air pressure sample values are randomly selected, and the K air pressure sample values are used as the initial cluster center air pressure value, and the K initial cluster centers are divided
  • the air pressure sample value other than the air pressure value is used as the air pressure value to be clustered, and the Euclidean distance between the target air pressure value to be clustered and the air pressure value of each initial cluster center is obtained.
  • the target air pressure value to be clustered can be any Cluster air pressure value; classify the target air pressure value to be clustered into the category of the initial cluster center air pressure value corresponding to the minimum Euclidean distance; then the distance average value of each category can be obtained, and the distance average value can be for each category The average value of the air pressure difference between the initial clustering center air pressure value in each category and the other air pressure values to be clustered in each category. If the distance average value of a category is greater than or equal to the second distance threshold, you can continue to The certain category is divided into two categories (refer to the above method for dividing K categories), and the average distances corresponding to the two categories are calculated until the average distances corresponding to the two categories are less than the second distance threshold.
  • the above examples are just examples Note that the present invention does not limit this.
  • Step 3 Obtain air pressure standard values corresponding to multiple floors in the target area through the air pressure sample collection.
  • the standard value of air pressure is smaller; on the contrary, if the number of floors of the floor is lower, the standard value of air pressure is greater.
  • the standard value of air pressure can be obtained through but not limited to the following methods:
  • the average value of all air pressure sample values included in the air pressure sample set may be calculated to obtain the air pressure standard value of the corresponding floor of the air pressure sample set, and the average value may be an arithmetic average or a weighted average.
  • the target area can be divided in advance to obtain multiple sub-areas, and each sub-area can be set with a corresponding weight, so that the air pressure sample values collected in different sub-areas have different weights. For example, the more concerned area on the same floor is set with a larger weight, and the less concerned area on the same floor is set with a smaller weight.
  • the present invention can filter the air pressure sample values included in the air pressure sample set according to a preset filter condition to obtain a new air pressure sample set, and calculate the value of all air pressure sample values included in the new air pressure sample set.
  • the arithmetic mean is used to obtain the standard value of air pressure corresponding to the floor of the air pressure sample set.
  • the preset filter condition can be to filter the maximum air pressure sample value and the minimum air pressure sample value included in the air pressure sample set, or obtain the normal distribution map of all the air pressure sample values included in the air pressure sample set, and according to the normal distribution map
  • the air pressure sample values that exceed the preset interval range are filtered.
  • the above examples are only examples, and the present invention does not limit this.
  • the present invention can sort multiple floors according to the standard value of air pressure in descending order, so as to obtain multiple floors from low to high; or, the present invention can also sort the floors according to the standard value of air pressure in descending order. Sort multiple floors in order to get multiple floors from high to low.
  • the standard value of air pressure of floor L1 is p1
  • the standard value of air pressure of floor L2 is p2
  • the standard value of air pressure of floor L3 is p3, and p1>p2>p3
  • the standard value of air pressure goes from large to small Sort multiple floors in the order of, then the ordering results of the floors are: L1, L2, and L3, and the floors are gradually rising; if the multiple floors are sorted according to the standard value of air pressure from small to large, the result of the floor sorting It is: L3, L2 and L1, and the floor is gradually lowered.
  • the first air pressure difference in the present invention may include: the air pressure difference between two adjacent layers in the target area, and/or the air pressure difference between two non-adjacent layers in the target area value.
  • the multiple floors include 1st, 2nd, 3rd,..., 17th, 18th
  • the first air pressure difference value t1 between the 1st and 2nd floors can be obtained.
  • the specific number of layers mentioned above can be the air pressure difference between two adjacent layers in the target area, or the air pressure difference between two non-adjacent layers in the target area.
  • the number of layers in the example above is unknown.
  • the present invention can calculate the absolute value of the difference between the air pressure standard values of two adjacent floors in the order, and obtain the first air pressure difference of the two adjacent floors in the order.
  • the air pressure standard value of the same floor can be used as the air pressure value of the same floor. Therefore, the first air pressure difference value obtained based on the air pressure standard value in this step is more accurate, which avoids the problem of inaccurate air pressure value obtained on the same floor caused by errors in collecting a single air pressure sample value of the same floor.
  • a hierarchical clustering method, a K-means clustering method, etc. may be used to cluster the first air pressure difference, and the specific clustering process will not be repeated.
  • the first air pressure difference values with the same number of different floors can be classified into one category, and the first air pressure difference value set can be generated according to the first air pressure difference values classified into one category.
  • the multiple floors include 1, 3, 6, 10, 13, 17, and 18 floors, and get the space between the 1st and 3rd floors
  • the first air pressure difference q1 the first air pressure difference between the 3 layer and the 6 layer q2, the first air pressure difference between the 6 layer and the 10 layer q3, the first air pressure difference between the 10 layer and the 13 layer Value q4, the first air pressure difference q5 between the 13th and 17th floors, and the first air pressure difference q6 between the 17th and 18th floors
  • the first air pressure difference q1 has two floors
  • An air pressure difference q2 has 3 floors
  • a first air pressure difference q3 has 4 floors
  • a first air pressure difference q4 has 3 floors
  • a first air pressure difference q5 has a difference floor.
  • the number of floors is 4, and the number of different floors with the first air pressure difference q6 is 1 floor.
  • the first air pressure difference q2 and q4 with three different floors can be classified into one category, and the first air pressure difference q1 with two different floors can be classified into one category.
  • the first air pressure difference q3 and q5 where the number of different floors are all 4 are classified into one category, and the first air pressure difference q6 where the number of different floors is 1 floor is classified into one category.
  • the first air pressure difference set with the number of different floors of 3 floors is expressed as ⁇ q2, q4 ⁇
  • the first air pressure difference set with the number of different floors of 2 floors is expressed as ⁇ q1 ⁇
  • the number of different floors is the first set of 4 floors.
  • An air pressure difference set is represented as ⁇ q3, q5 ⁇
  • the first air pressure difference set with a difference of 1 floor is represented as ⁇ q6 ⁇ .
  • the target air pressure difference can be obtained through the following steps:
  • Step 1 Obtain the air pressure difference standard value corresponding to each first air pressure difference set.
  • the first air pressure difference set includes a single first air pressure difference value
  • the single first air pressure difference value is used as the air pressure difference standard value
  • the first air pressure difference value set includes the same number of different floors
  • the arithmetic average of the multiple first air pressure differences can be calculated to obtain the air pressure difference standard value corresponding to the first air pressure difference set.
  • the multiple first air pressure differences There may be gross errors in the difference.
  • the present invention can also filter the multiple first air pressure differences to obtain multiple target first air pressure differences, and calculate the arithmetic average of the multiple target first air pressure differences ,
  • the standard value of the air pressure difference corresponding to the first air pressure difference value set is obtained, and the above-mentioned filtering process refers to the filtering process of the air pressure sample value in S11, which will not be repeated.
  • Step 2 Obtain a single target cluster set through but not limited to the following methods:
  • Method 1 Sort the first air pressure difference set according to the standard value of the air pressure difference, and obtain the second air pressure difference value of the two adjacent first air pressure difference sets, and use the second air pressure difference value as the cluster to be clustered
  • the air pressure difference value, and the steps of updating the air pressure difference value to be clustered are executed in a loop until the cycle termination condition is satisfied; the cycle termination condition includes the clustering of the air pressure difference value to be clustered to obtain a single target cluster set.
  • the step of updating the air pressure difference to be clustered includes: clustering the air pressure difference to be clustered to obtain a cluster set, judging whether the cluster set belongs to a single set, and when the cluster set does not belong to a single set, obtaining the cluster set
  • the standard values of the air pressure difference to be sorted corresponding to the clusters sort the cluster sets by the air pressure difference standard values to be sorted, and update the air pressure difference of the two adjacent cluster sets to the air pressure difference to be clustered .
  • the first air pressure difference set can be sorted according to the standard value of air pressure difference from small to large; or, the first air pressure difference set can be sorted in the order of the standard value of air pressure difference from large to small.
  • the present invention does not limit this.
  • the acquired first air pressure difference set includes A1, A2, A3, A4, A5, A6, and the air pressure difference standard value of A1 is s1, the air pressure difference standard value of A2 is s2, and the air pressure difference standard of A3 is If the value is s3, the standard value of the air pressure difference of A4 is s4, the standard value of the air pressure difference of A5 is s5, and the standard value of the air pressure difference of A6 is s6, if the first air pressure
  • the difference set is sorted, and the sort result of the first air pressure difference set is: A1, A2, A3, A4, A5, and A6, then the second air pressure difference in this step may include: the air pressure between A1 and A2 Difference, the air pressure difference between A2 and A3, the air pressure difference between A3 and A4, the air pressure difference between A4 and A5, the air pressure difference between A5 and A6.
  • the second air pressure difference includes the air pressure difference between A1 and A2 as an example for description, and the second air pressure difference may be the absolute value of the difference
  • Method 2 In this step, the first air pressure difference set can be sorted according to the standard value of the air pressure difference, and the second air pressure difference values of the two adjacent first air pressure difference sets in the sorting order can be obtained, and the second air pressure difference values can be summed
  • the minimum air pressure difference standard value is used as the air pressure difference to be clustered, and the update step of the air pressure difference to be clustered is executed in a loop until the loop termination condition is met.
  • the loop termination condition includes the clustering of the air pressure difference to be clustered to obtain a single target cluster set.
  • the step of updating the air pressure difference to be clustered includes: clustering the air pressure difference to be clustered to obtain a cluster set, judging whether the cluster set belongs to a single set, and when the cluster set does not belong to a single set, obtaining the cluster set Respectively correspond to the standard value of the air pressure difference to be sorted, sort the cluster set by the standard value of the air pressure difference to be sorted, and update the air pressure difference value of the two adjacent cluster sets and the minimum pressure difference standard value to be sorted Is the air pressure difference to be clustered.
  • the single target cluster set obtained is the air pressure difference corresponding to the number of different floors as a single floor. Therefore, the average value corresponding to the single target cluster set is calculated to obtain the standard value of the air pressure difference.
  • the standard value of the air pressure difference determines the target air pressure difference.
  • Step 3 If the air pressure difference standard value corresponding to a single target cluster set is within the preset value interval, the air pressure difference standard value corresponding to the single target cluster set is taken as the target air pressure difference value corresponding to a single floor area included in the target area; Or, if the standard value of the air pressure difference corresponding to a single target cluster set is greater than the maximum value of the preset value interval, the target air pressure difference corresponding to the single floor area included in the target area is obtained according to the standard value of the air pressure difference corresponding to the single target cluster set Or, if the standard value of the air pressure difference corresponding to a single target cluster set is less than the minimum value of the preset value interval, obtain the air pressure to be clustered before the single target cluster set has not performed the latest update step of the air pressure difference to be clustered The difference set, and through the set of to-be-clustered air pressure difference values, the target air pressure difference values corresponding to the multiple floor areas included in the target area are obtained.
  • the preset numerical interval may be a range of air pressure difference between two adjacent floors in the target area, and usually the preset numerical interval is a closed interval.
  • the single target cluster set since the single target cluster set includes air pressure difference values with the same number of different floors, it is considered that the number of different floors may be a single floor or multiple floors. Therefore, it needs to be explained in different situations:
  • Case 1 In the case that the single target cluster set includes the air pressure difference with the number of different floors as a single floor, the air pressure difference standard value corresponding to the single target cluster set is within the preset value interval, and the air pressure difference standard value can be It is the average value of a single target cluster set, and the average value can be an arithmetic average or a weighted average.
  • Case 2 In the case that the single target cluster set includes air pressure differences with multiple floors, the standard value of the air pressure difference corresponding to the single target cluster set is greater than the maximum value of the preset value interval.
  • the standard value of the air pressure difference corresponding to the single target cluster set can be divided by the specified value to obtain the new standard value of the air pressure difference, and it can be judged whether the standard value of the new air pressure difference is within the preset value interval.
  • the new standard value of the air pressure difference is used as the target air pressure difference value; when the new air pressure difference standard value is greater than the maximum value of the preset value interval, the specified value is updated For example, you can calculate the sum of the specified value and 1 to get the updated specified value, and re-execute the step of dividing the standard value of the pressure difference by the specified value to get the new standard value of the pressure difference.
  • Case 3 In the case where the single target cluster set includes air pressure difference values with the same number of different floors in each floor area, if the air pressure difference standard value corresponding to the single target cluster set is less than the minimum value of the preset value interval, then It is possible to obtain the air pressure difference set to be clustered before the latest air pressure difference update step for a single target cluster set is performed, and continue to judge whether there is any air pressure difference set to be clustered and the standard value of the air pressure difference is less than the expected value. Set the minimum value of the numerical interval. If there is any air pressure difference set to be clustered, the standard value of the air pressure difference is less than the minimum value of the preset numerical interval, then continue to obtain the air pressure difference set to be clustered.
  • the new set of air pressure difference to be clustered before the air pressure difference update step and so on. If the standard value of the air pressure difference of each air pressure difference set to be clustered is greater than or equal to the minimum value of the preset value interval, it can be based on each The air pressure difference standard value of the cluster air pressure difference set is obtained, and the target air pressure difference value of the floor area corresponding to each of the air pressure difference sets to be clustered is obtained.
  • the target relative height of the air pressure difference standard corresponding to the single target cluster set may be obtained based on the standard air pressure altitude formula, so as to determine whether the target relative height is within the preset single-floor height range .
  • the standard value of the air pressure difference is determined to be the target air pressure difference; or, in the case that the target relative height is greater than the maximum value of the preset single-floor height range, It can be determined based on experience that the target relative height is the height of the specified number of floors, so as to calculate the ratio of the target relative height to the specified number of floors to obtain the updated target relative height, and re-execute to determine whether the target relative height is located on the preset single floor
  • the step within the altitude range is to change the designated number of floors so that the updated target relative altitude is within the preset single-floor altitude range, so that the air pressure difference corresponding to the updated target relative altitude is the target air pressure difference.
  • the target relative height is less than the minimum value of the preset single-floor height range
  • the air pressure difference standard value is used to obtain the target relative height of the floor area corresponding to each of the air pressure difference sets to be clustered, so as to obtain the corresponding target air pressure difference value of the floor area according to the target relative height of the floor area.
  • the mapping relationship between the target air pressure difference and the target area may be stored in the air pressure difference database of adjacent floors of the building. In this way, this step can determine the target area where the target user is located according to the current location information of the target user; and obtain the target air pressure difference corresponding to the target area according to the mapping relationship stored in the air pressure difference database.
  • the present invention can continuously collect air pressure sample values, and update the target air pressure difference value according to the air pressure sample values, thereby improving the accuracy of obtaining the number of layers.
  • the reference floor can be a floor with a known number of floors.
  • the air pressure value of the target user on the first floor can be obtained first in the target area. Therefore, the first floor is used as the reference floor, and the target user is on the first floor.
  • the barometric pressure value is used as the barometric reference value, that is, the barometric pressure measured at the moment when the target user enters the target area is the barometric reference value.
  • the target area includes each floor of the building and the outdoor within the preset area around the building, the outdoor within the preset area around the building can generally be considered as the first floor. Therefore, the present invention can also Through the positioning information of each user, obtain the outdoor air pressure in the preset area around the building.
  • the target user moves from the first floor to the target floor, the number of floors of the target floor can be obtained according to the method for obtaining the number of floors of the present invention. Therefore, the target The floor can also be used as the reference floor, and the air pressure value of the target user on the reference floor is used as the air pressure reference value.
  • the number of floors to be determined can be obtained through, but not limited to, the following methods:
  • Method 1 Obtain the current air pressure difference between the floor to be determined and the reference floor according to the air pressure detection value and the air pressure reference value; and determine the number of floors to be determined by the current air pressure difference and the target air pressure difference.
  • the target area includes a single floor area
  • the current air pressure difference and the target air pressure difference are divided to obtain the first division result
  • the number of floors to be determined is determined according to the first division result.
  • the air pressure reference value is the air pressure value of the first floor
  • the first division result is the number of floors to be determined
  • the air pressure reference value is the air pressure value of a non-first floor
  • the first floor is calculated. The sum of the result of the division and the number of floors of the non-first floor is the number of floors to be determined.
  • the target area includes multiple floor areas
  • a series of equations can be used, and the number of floors in different floor areas included between the floor to be determined and the first floor can be obtained through iterative solution.
  • the air pressure reference value is the air pressure value of the first floor
  • the air pressure reference value is the air pressure value of the non-first floor
  • the number of floors and the value of the number of floors in the different floor area can be calculated, and the sum of the number of floors and the number of floors other than the first floor can be calculated to obtain the number of floors to be determined.
  • Method 2 Determine the single-floor height value corresponding to at least one floor area according to the target air pressure difference corresponding to at least one floor area; and determine the distance between the floor to be determined and the reference floor according to the air pressure reference value and air pressure detection value Relative height value.
  • the target area includes a single floor area
  • the relative height value and the single floor height value are divided to obtain the second division result, and the number of floors to be determined is determined according to the second division result.
  • the air pressure reference value is the air pressure value of the first floor
  • the second division result is the number of floors to be determined; if the air pressure reference value is not the air pressure value of the first floor, calculate the second The sum of the result of the division and the number of floors of the non-first floor is the number of floors to be determined.
  • the equations can also be used to determine the number of floors in different floor areas included between the floor to be determined and the non-first floor through an iterative solution method.
  • the air pressure reference value is the air pressure value of the first floor
  • the sum of the number of floors in the different floor areas is the number of floors to be determined
  • the air pressure reference value is the air pressure value of the non-first floor
  • the above relative height The value refers to the vertical height between the reference floor and the floor to be determined.
  • the single-floor height value in the target area can be calculated according to the above-mentioned target air pressure difference and the preset standard air pressure altitude formula; similarly, the absolute value of the difference between the air pressure reference value and the air pressure detection value can also be calculated , And the preset standard air pressure altitude formula can calculate the relative altitude value between the target user's current floor to be determined and the reference floor.
  • the present invention can also establish a neural network (such as BP neural network) based on the air pressure sample values and temperature sample values collected on different floors in the target area, and optimize the neural network according to the principles of genetic algorithm and complete its training and learning process , Get the above-mentioned standard atmospheric pressure altitude formula.
  • a neural network such as BP neural network
  • the air pressure detection value of the floor to be determined in the target area is obtained; the target air pressure difference corresponding to at least one floor area included in the target area is obtained; the target air pressure difference is between any two adjacent floors in the floor area According to the air pressure detection value, the target air pressure difference and the air pressure reference value of the reference floor in the target area, determine the number of floors to be determined.
  • the present invention is based on the fact that the air pressure difference values of any two adjacent floors in any floor area included in the target area are relatively close, so the target air pressure difference values corresponding to any two adjacent floors in different floor areas can be obtained in advance, so that The current air pressure difference of the floor to be determined relative to the reference floor can be obtained through the air pressure detection value of the floor to be determined and the air pressure reference value of the reference floor, so as to get the number of floors to be determined according to the current air pressure difference and the target air pressure difference. , Realizes the positioning of the number of floors, and improves the positioning accuracy.
  • Fig. 6 is a schematic flowchart of a method for acquiring the number of floors disclosed in an embodiment of the present invention. This embodiment can be applied to a system for acquiring the number of floors.
  • the system includes a monitoring device 701, a server 702, and a terminal device 703.
  • the monitoring device 701 performs two-way communication with the server 702, and the server 702 communicates with the server 702.
  • the terminal device 703 performs two-way communication.
  • the method may include the following steps:
  • the monitoring device sends a floor location request to the server.
  • the monitoring device is provided with a floor positioning interface, and multiple candidate terminal devices that are bound to the monitoring device are displayed in the floor positioning interface.
  • the monitoring personnel who carry the monitoring device select the desired terminal device from the candidate terminal devices.
  • the terminal device for positioning and triggers the positioning element in the floor positioning interface. In this way, when the monitoring device detects the trigger operation, the floor location request is generated, and the floor location request includes the device identifier of the terminal device.
  • the server sends an air pressure value acquisition request to the terminal device when receiving the floor positioning request.
  • the terminal device collects the air pressure detection value of the floor to be determined in the target area where the terminal device is currently located.
  • step 501 For the specific process, refer to step 501, which will not be repeated.
  • the terminal device sends the air pressure detection value and the area identifier of the target area to the server.
  • the server After receiving the air pressure detection value sent by the terminal device and the area identifier of the target area, the server acquires the target air pressure difference corresponding to at least one floor area included in the target area according to the area identifier of the target area; the target air pressure difference The value is the air pressure difference between any two adjacent floors in the floor area.
  • the difference between the number of floors of two adjacent floors is 1, and the heights of single floors corresponding to different floor areas are different.
  • step 502 For the specific process, refer to step 502, which will not be repeated here.
  • the server determines the number of floors to be determined according to the air pressure detection value, the target air pressure difference, and the air pressure reference value of the reference floor in the target area.
  • step 503 For the specific process, refer to step 503, which will not be repeated here.
  • the server sends the number of floors to be determined to the monitoring device.
  • the monitoring device can display the number of floors to be determined to the monitoring user, so that the monitoring personnel can obtain the location information of the target user corresponding to the terminal device in time;
  • a safe floor range is preset in the monitoring equipment. If the floor to be determined is within the safe floor range, there is no need to prompt the monitoring personnel; if the floor to be determined is not within the safe floor range , You can prompt the monitoring personnel, and so on.
  • the server can obtain the air pressure detection value of the floor to be determined in the target area where the terminal device is currently located according to the positioning acquisition requirements of the monitoring device; and obtain the target air pressure difference value corresponding to at least one floor area included in the target area; And according to the air pressure detection value, the target air pressure difference and the air pressure reference value of the reference floor in the target area, the number of floors to be determined is determined.
  • the present invention is based on the fact that the air pressure difference values of any two adjacent floors in any floor area included in the target area are relatively close, so the target air pressure difference values corresponding to any two adjacent floors in different floor areas can be obtained in advance, so that The current air pressure difference of the floor to be determined relative to the reference floor can be obtained through the air pressure detection value of the floor to be determined and the air pressure reference value of the reference floor, so as to get the number of floors to be determined according to the current air pressure difference and the target air pressure difference. , Realizes the positioning of the number of floors, and improves the positioning accuracy.
  • Fig. 8 is a schematic flowchart of a method for acquiring the number of floors disclosed in an embodiment of the present invention. This embodiment can be applied to a system for acquiring the number of floors.
  • the system includes a monitoring device 701, a server 702, and a terminal device 703.
  • the monitoring device 701 performs two-way communication with the server 702, and the server 702 communicates with the server 702.
  • the terminal device 703 performs two-way communication.
  • the method may include the following steps:
  • the terminal device obtains the air pressure detection value of the floor to be determined in the target area.
  • the terminal device may collect the air pressure detection value of the floor to be determined according to a preset period.
  • step 501 which will not be repeated.
  • the terminal device sends the air pressure detection value and the area identifier of the target area to the server.
  • the server After receiving the air pressure detection value sent by the terminal device and the area identification of the target area, the server obtains the target air pressure difference corresponding to at least one floor area included in the target area according to the area identification of the target area; the target air pressure difference The value is the air pressure difference between any two adjacent floors in the floor area.
  • the difference between the number of floors of two adjacent floors is 1, and the heights of single floors corresponding to different floor areas are different.
  • step 502 For the specific process, refer to step 502, which will not be repeated here.
  • the server determines the number of floors to be determined according to the air pressure detection value, the target air pressure difference, and the air pressure reference value of the reference floor in the target area.
  • step 503 For the specific process, refer to step 503, which will not be repeated here.
  • the server judges whether the current moment is within a preset management and control time period.
  • the management and control time period can be set so that the server does not need to send the number of floors to be determined to the monitoring device in real time, thereby reducing the amount of data transmission.
  • the control time period may be a time period preset by the monitoring user corresponding to the monitoring device.
  • the server sends the number of floors to be determined to the monitoring device.
  • step 806 considering that there are multiple shops on the floor to be determined, before step 806, it may further include: determining the target shop where the terminal device is currently located, and determining whether the target shop belongs to the pre-determined shop. If the target shop does not belong to the preset shop collection, a reminder message will be sent to the monitoring device to remind the target user corresponding to the terminal device to be in a non-designated area within the control period. If the target shop belongs to the preset shop If there is a collection of shops, there is no need to send prompt messages to the monitoring device, thereby avoiding the problem of poor user experience caused by more prompt messages from the monitoring device.
  • the present invention can determine the list of shops corresponding to the floor to be determined where the target user is currently located according to the preset dynamic floor plan; determine the target WiFi hotspot with the strongest signal according to the list of WiFi hotspots detected in the current orientation of the target user; Match the name of the target WiFi hotspot with the name of the shop included in the shop list, and determine the successfully matched shop as the target shop, or you can pre-store the hotspot correspondence relationship, which includes the name of the WiFi hotspot and the shop name Based on the corresponding relationship of the hotspot, the store name corresponding to the name of the WiFi hotspot is obtained.
  • the controlled time period may be an after-school study time period.
  • the parents hope that student users can perform after-school activities related to learning, such as reading books in the library, buying books in a bookstore, or studying in an after-school teaching and counseling institution, etc. .
  • the server can determine the store list corresponding to the student user’s current floor by looking up the floor dynamic plan, and determine the target store closest to the student user from the store list according to the strength of the WiFi hotspot signal, and the target store is The store where the student user is currently located; further, determine whether the target store belongs to the preset learning-related store set, if not, it means that the target store is not a learning-related store, so you can send a reminder to the parent’s monitoring device Information to prompt the user to be in a non-learning area during the control time period; wherein, the above-mentioned floor dynamic floor plan may include the name of the shop on each floor in the target area.
  • the embodiment of the present invention can locate the specific area where the target user is located after locating the floor where the target user is located, so that the monitoring user can accurately grasp the specific location coordinates of the target user; in addition, by determining the specific area where the target user is located
  • the area category can determine whether the target user is engaged in the designated activity within the preset control time period, which realizes the precise control of the target user and improves the efficiency of learning control.
  • the server does not need to send the number of floors to be determined to the monitoring device.
  • the present invention is based on the fact that the air pressure difference between any two adjacent floors in any floor area included in the target area is relatively close, so the target air pressure difference corresponding to any two adjacent floors in different floor areas can be obtained in advance , So that the current air pressure difference of the floor to be determined relative to the reference floor can be obtained through the air pressure detection value of the floor to be determined and the air pressure reference value of the reference floor, so as to obtain the floor pressure to be determined according to the current air pressure difference and the target air pressure difference.
  • the number of floors realizes the positioning of the number of floors and improves the positioning accuracy.
  • the present invention can also be preset with a management and control time period, so that the server sends the number of floors to the monitoring device during the management and control time period, thereby reducing the amount of data transmission of the server.
  • Fig. 9 is a schematic flowchart of a method for acquiring the number of floors disclosed in an embodiment of the present invention. This embodiment can be applied to a system for acquiring the number of floors.
  • the system includes a monitoring device 701, a server 702, and a terminal device 703.
  • the monitoring device 701 performs two-way communication with the server 702, and the server 702 communicates with the server 702.
  • the terminal device 703 performs two-way communication.
  • the method may include the following steps:
  • the terminal device obtains the air pressure detection value of the floor to be determined in the target area.
  • the terminal device may collect the air pressure detection value of the floor to be determined according to a preset period.
  • step 501 which will not be repeated.
  • the terminal device sends the air pressure detection value and the area identifier of the target area to the server.
  • the server After receiving the air pressure detection value sent by the terminal device and the area identification of the target area, the server obtains the target air pressure difference corresponding to at least one floor area included in the target area according to the area identification of the target area; the target air pressure difference The value is the air pressure difference between any two adjacent floors in the floor area.
  • step 502 the difference between the number of floors of two adjacent floors is 1, and the heights of single floors corresponding to different floor areas are different.
  • the server determines the number of floors to be determined according to the air pressure detection value, the target air pressure difference, and the air pressure reference value of the reference floor in the target area.
  • step 503 For the specific process, refer to step 503, which will not be repeated here.
  • the server detects whether a location sharing request sent by the monitoring device is received.
  • the monitoring user of the monitoring device may be a parent, and the target user may be a child.
  • the parent hopes to know the child’s accurate location in time, then the parent can monitor
  • the device sends a location sharing request to the server to obtain the number of floors where the child is currently located.
  • the server obtains the number of walking steps of the target user.
  • the server may receive the number of walking steps of the target user sent by the terminal device carried by the target user. Further, the present invention can collect the number of walking steps of the target user according to a preset collection period, wherein the starting time of counting the number of walking steps is the time when the location sharing request is received.
  • the server judges whether the number of walking steps is greater than a preset number of steps threshold.
  • step 901 if the number of walking steps is greater than the preset step number threshold, it can be determined that the floor where the target user is currently located has changed, and step 901 is returned. If the number of walking steps is If the number of steps is less than or equal to the preset threshold value, it can be determined that the floor where the target user is currently located has not changed, and execute 910.
  • the server obtains real-time network connection data, and calculates the degree of overlap between the real-time network connection data and the historical network connection data; wherein, the collection time of the historical network connection data is the same as the time when the server determines the number of floors to be determined.
  • the network connection data may include a WiFi hotspot list, and the WiFi hotspot list may include multiple WiFi hotspots; and the number of WiFi hotspots included in each WiFi hotspot list may be the same.
  • the server calculates the degree of overlap between the real-time network connection data and the historical network connection data, which may include: comparing the names of each WiFi hotspot in the real-time WiFi hotspot list with the names of each WiFi hotspot in the historical WiFi hotspot list; determining that the names are the same
  • the number of target WiFi hotspots in is the first number; the ratio of the first number to the second number is determined as the degree of overlap between real-time network connection data and historical network connection data; where the second number is all WiFi included in the WiFi hotspot list The number of hotspots.
  • the number of WiFi hotspots in the real-time WiFi hotspot list and the historical WiFi hotspot list are both 10; compare the names of the WiFi hotspots in the real-time WiFi hotspot list and the WiFi hotspots in the historical WiFi hotspot list to obtain targets with the same name
  • the number of WiFi hotspots is 5, so it is easy to get a 50% overlap between real-time network connection data and historical network connection data.
  • the server determines whether the coincidence degree is greater than a preset coincidence degree threshold.
  • the above coincidence degree is greater than the preset coincidence degree threshold, it can indicate that the target user has not left the network coverage area corresponding to the historical network connection data (such as the network coverage area of a WiFi hotspot); on the contrary, if the above coincidence degree If it is less than or equal to the preset coincidence degree threshold, it indicates that the user has currently left the network coverage area corresponding to the historical network connection data.
  • the server shares the number of floors to be determined with the monitoring device.
  • the server may also send the location coordinates corresponding to the target area and the number of floors of the floor where the user is currently located to the monitoring device to realize location sharing.
  • step 906 if the number of walking steps is less than or equal to the preset step number threshold, The number of floors of the floor to be determined is shared with the monitoring device; after step 909, if the coincidence degree is less than or equal to the preset coincidence degree threshold, it can be determined that the floor where the target user is located has changed. Therefore, it is necessary to return to step 901.
  • the present invention is based on the fact that the air pressure difference between any two adjacent floors in any floor area included in the target area is relatively close, so the target air pressure difference corresponding to any two adjacent floors in different floor areas can be obtained in advance , So that the current air pressure difference of the floor to be determined relative to the reference floor can be obtained through the air pressure detection value of the floor to be determined and the air pressure reference value of the reference floor, so as to obtain the floor pressure to be determined according to the current air pressure difference and the target air pressure difference.
  • the number of floors realizes the positioning of the number of floors and improves the positioning accuracy.
  • the monitoring device determines whether the target user has left the current floor by comparing the user's walking steps and changes in network connection data, and after judging that the target user has not left the current location
  • the number of floors to be determined is shared with the monitoring equipment when building floors, avoiding the steps of repeatedly collecting air pressure detection values and obtaining the number of floors, and improving the efficiency of location sharing.
  • Fig. 10 is a schematic structural diagram of a device for acquiring the number of floors disclosed in an embodiment of the present invention. As shown in Fig. 10, the apparatus 10 may include:
  • the detection value acquisition module 1001 is used to acquire the detection value of the air pressure of the floor to be determined in the target area;
  • the target air pressure difference obtaining module 1002 is configured to obtain the target air pressure difference values corresponding to at least one floor area included in the target area; the target air pressure difference value is the difference between any two adjacent floors in the floor area Air pressure difference;
  • the number of floors determining module 1003 is configured to determine the number of floors of the floor to be determined according to the detected air pressure value, the target air pressure difference value, and the air pressure reference value of a reference floor in the target area.
  • Fig. 11 is a schematic structural diagram of a device for acquiring the number of floors disclosed in an embodiment of the present invention.
  • the target air pressure difference obtaining module 1002 may include:
  • the air pressure standard value obtaining sub-module 10021 is used to obtain air pressure standard values corresponding to multiple floors in the target area;
  • the air pressure difference obtaining sub-module 10022 is configured to sort the multiple floors according to the air pressure standard value, and obtain the first air pressure difference of two adjacent floors in the sort;
  • the air pressure difference clustering sub-module 10023 is used to cluster the first air pressure difference to obtain a first air pressure difference set
  • the target air pressure difference obtaining sub-module 10024 is configured to obtain the target air pressure difference of the target area to which the floor to be determined belongs through the first air pressure difference set.
  • the air pressure standard value obtaining sub-module 10021 is configured to collect multiple air pressure sample values in the target area
  • the air pressure standard values corresponding to multiple floors in the target area are obtained.
  • the target air pressure difference obtaining sub-module 10024 is configured to obtain the air pressure difference standard value corresponding to each first air pressure difference set;
  • the first air pressure difference set is sorted, and the second air pressure difference values of the two adjacent first air pressure difference sets are obtained, and the second air pressure difference
  • the value is used as the air pressure difference to be clustered, and the step of updating the air pressure difference to be clustered is executed repeatedly until the cycle termination condition is satisfied;
  • the cycle termination condition includes the clustering of the air pressure difference to be clustered to obtain a single target cluster set;
  • the standard value of the air pressure difference corresponding to the single target cluster set is within the preset value interval, the standard value of the air pressure difference corresponding to the single target cluster set is taken as the target air pressure corresponding to a single floor area included in the target area Difference
  • the standard value of the air pressure difference corresponding to the single target cluster set is greater than the maximum value of the numerical interval, then according to the standard value of the air pressure difference corresponding to the single target cluster set, obtain the corresponding single floor area included in the target area Target air pressure difference; and,
  • the target waiting for the single target cluster set before the latest to-be-clustered air pressure difference update step is obtained Clustering the air pressure difference, and obtaining the target air pressure difference corresponding to the multiple floor areas included in the target area through the target air pressure difference to be clustered.
  • the step of updating the air pressure difference to be clustered includes: clustering the air pressure difference to be clustered to obtain a cluster set, judging whether the cluster set belongs to a single set, and the cluster set In the case of not belonging to a single set, obtain the standard values of the pressure difference to be sorted corresponding to the cluster sets, sort the cluster sets by the standard value of the pressure difference to be sorted, and sort the adjacent two
  • the air pressure difference of the cluster sets is updated to the air pressure difference to be clustered.
  • the target air pressure difference obtaining sub-module 10024 is further configured to use the second air pressure difference and the minimum air pressure difference standard value as the air pressure difference to be clustered;
  • the step of updating the air pressure difference to be clustered includes: clustering the air pressure difference to be clustered to obtain a cluster set, and judging whether the cluster set belongs to a single set, where the cluster set does not belong to a single set. In the case of obtaining the pressure difference standard values to be sorted corresponding to the cluster sets, sort the cluster sets according to the pressure difference standard values to be sorted, and sort two adjacent clusters The air pressure difference value of the cluster set and the minimum air pressure difference to be sorted standard value are updated to the air pressure difference to be clustered.
  • Fig. 12 is a schematic structural diagram of a device for acquiring the number of floors disclosed in an embodiment of the present invention.
  • the layer number determining module 1003 includes:
  • the current air pressure difference obtaining sub-module 10031 is configured to obtain the current air pressure difference between the floor to be determined and the reference floor according to the air pressure detection value and the air pressure reference value;
  • the floor number determining sub-module 10032 is configured to determine the number of floors of the floor to be determined by using the current air pressure difference value and the target air pressure difference value.
  • the present invention is based on the fact that the air pressure difference between any two adjacent floors in any floor area included in the target area is relatively close, so the target air pressure difference corresponding to any two adjacent floors in different floor areas can be obtained in advance , So that the current air pressure difference of the floor to be determined relative to the reference floor can be obtained through the air pressure detection value of the floor to be determined and the air pressure reference value of the reference floor, so as to obtain the floor pressure to be determined according to the current air pressure difference and the target air pressure difference.
  • the number of floors realizes the positioning of the number of floors and improves the positioning accuracy.
  • FIG. 13 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present invention.
  • the electronic device may be a terminal device, a monitoring device or a server.
  • the electronic device may include:
  • a memory 1301 storing executable program codes
  • a processor 1302 coupled with the memory 1301;
  • the processor 1302 calls the executable program code stored in the memory 1301 to execute part or all of the steps of the method in the above method embodiments.
  • the embodiment of the present invention also discloses a computer-readable storage medium, where the computer-readable storage medium stores program code, where the program code includes instructions for executing part or all of the steps in the above method embodiments.
  • the embodiment of the present invention also discloses a computer program product, wherein when the computer program product runs on a computer, the computer is caused to execute part or all of the steps of the method in the above method embodiments.
  • the embodiment of the present invention also discloses an application publishing platform, wherein the application publishing platform is used to publish a computer program product, wherein, when the computer program product runs on a computer, the computer is caused to execute parts of the method in the above method embodiments Or all steps.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this text is only an association relationship describing associated objects, indicating that there can be three types of relationships, such as A and/or B, which can mean: A alone exists, A and B exist at the same time, There are three cases of B alone.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium includes read-only Memory (Read-Only Memory, ROM), Random Access Memory (RAM), Programmable Read-only Memory (PROM), Erasable Programmable Read Only Memory, EPROM), One-time Programmable Read-Only Memory (OTPROM), Electronically-Erasable Programmable Read-Only Memory (EEPROM), CD-ROM (Compact Disc) Read-Only Memory, CD-ROM) or other optical disk storage, magnetic disk storage, tape storage, or any other computer-readable medium that can be used to carry or store data.
  • Read-Only Memory ROM
  • RAM Random Access Memory
  • PROM Programmable Read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, and may be located in one place or distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the aforementioned integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-accessible memory.
  • the essence of the technical solution of the present invention or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a computer device which may be a personal computer, a server, or a network device, etc., specifically a processor in a computer device

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Air Conditioning Control Device (AREA)
  • Navigation (AREA)

Abstract

本发明实施例提供了一种楼层层数的获取方法、装置、电子设备及存储介质,包括:获取目标区域中的待确定楼层的气压检测值;获取目标区域包括的至少一个楼层区域分别对应的目标气压差值;目标气压差值为楼层区域中任意两个相邻楼层之间的气压差值;根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。这样,本发明基于目标区域包括的某个楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,从而基于目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。

Description

楼层层数的获取方法、装置、电子设备及存储介质 技术领域
本发明涉及定位技术领域,具体涉及一种楼层层数的获取方法、装置、电子设备及存储介质。
背景技术
目前,随着移动互联网技术的不断发展,人们在日常生活中对于各项移动服务的需求也与日俱增,位置服务便是其中一项最基本的需求。在室外环境中主要依靠北斗卫星、GPS(Global Positioning System;全球定位系统)等定位系统为用户提供位置服务;而在室内环境中,则主要采用无线传感器网络的定位方法以及Wi-Fi(Wireless-Fidelity;无线保真)射频指纹等的定位方法来为用户提供位置服务。对于室内定位方法来说,由于相邻楼层相距较近且无线信号可以直接通过中空区域进行传输,因此信号衰减量很小,导致相邻楼层难以区分,无法准确定位用户所在的楼层。可见,如何准确定位用户所在楼层的具体层数成为亟需解决的问题。
发明内容
本发明实施例公开一种楼层层数的获取方法、装置、电子设备及存储介质,基于目标区域中任两个相邻楼层的气压差值比较接近,因此可以通过目标用户的气压检测值和气压基准值,以获取到目标用户相对于基准楼层的当前气压差值,从而根据当前气压差值与目标气压差值得到目标用户当前所在楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。
根据本发明实施例的第一方面,公开了一种基于层次聚类的楼层层数计算方法,包括:
获取目标室内定位场景下楼层对应的气压标准值;
对所有所述气压标准值进行排序,计算排序后相邻两个所述气压标准值之间的差值,并根据所述差值确定楼层间距气压差值;
对所有所述楼层间距气压差值进行层次聚类,并根据层次聚类结果确定所述目标室内场景中相邻楼层的气压差值,以及将所述相邻楼层的气压差值存储到建筑物相邻楼层高度气压差值指纹库;
检测是否接收到楼层定位请求;其中,所述楼层定位请求用于请求获取用户当前所在楼层的层数;
如果是,获取所述目标室内定位场景的基准平面的初始气压值、用户当 前所在楼层的测量气压值,从所述建筑物相邻楼层高度气压差值指纹库中获取所述相邻楼层的气压差值,并根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的层数。
根据本发明实施例的第二方面,公开了一种电子设备,所述电子设备包括:
第一获取单元,用于获取目标室内定位场景下楼层对应的气压标准值;
计算单元,用于对所有所述气压标准值进行排序,计算排序后相邻两个所述气压标准值之间的差值,并根据所述差值确定楼层间距气压差值;
聚类单元,用于对所有所述楼层间距气压差值进行层次聚类,并根据层次聚类结果确定所述目标室内场景中相邻楼层的气压差值;
存储单元,用于将所述相邻楼层的气压差值存储到建筑物相邻楼层高度气压差值指纹库;
检测单元,用于检测是否接收到楼层定位请求;其中,所述楼层定位请求用于请求获取用户当前所在楼层的层数;
第二获取单元,用于在所述检测单元的检测结果为是时,获取所述目标室内定位场景的基准平面的初始气压值、用户当前所在楼层的测量气压值,以及从所述建筑物相邻楼层高度气压差值指纹库中获取所述相邻楼层的气压差值;
确定单元,用于根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的层数。
根据本发明实施例的第三方面,提供了一种楼层层数的获取方法,包括:
获取目标区域中的待确定楼层的气压检测值;
获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值;所述目标气压差值为所述楼层区域中任意两个相邻楼层之间的气压差值;
根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数。
在本发明实施例的第四方面,公开了一种楼层层数的获取装置,所述装置包括:
检测值获取模块,用于获取目标区域中的待确定楼层的气压检测值;
目标气压差值获取模块,用于获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值;所述目标气压差值为所述楼层区域中任意两个相邻楼层之间的气压差值;
层数确定模块,用于根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数。
根据本发明实施例的第五方面,公开了一种电子设备,所述电子设备包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
所述处理器调用所述存储器中存储的所述可执行程序代码,执行本发明实施例第一方面公开的任意一种方法中的全部或部分步骤,或者执行本发明实施例第三方面公开的任意一种方法中的全部或部分步骤。
根据本发明实施例的第六方面,公开了一种计算机可读存储介质,所述计算机可读存储介质存储有用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行本发明实施例第一方面公开的任意一种方法中的全部或部分步骤,或者执行本发明实施例第三方面公开的任意一种方法中的全部或部分步骤。
根据本发明实施例的第七方面,公开一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行本发明实施例第一方面的任意一种方法的部分或全部步骤,或者执行本发明实施例第三方面公开的任意一种方法中的全部或部分步骤。
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例中,获取目标区域中的待确定楼层的气压检测值;获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值;所述目标气压差值为所述楼层区域中任意两个相邻楼层之间的气压差值;根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数。这样,本发明基于目标区域包括的任一楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,以便可以通过待确定楼层的气压检测值和基准楼层的气压基准值,获取到待确定楼层相对于基准楼层的当前气压差值,从而根据当前气压差值与目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种基于层次聚类的楼层层数计算方法的流程示意图;
图2是本发明实施例公开的另一种基于层次聚类的楼层层数计算方法的流程示意图;
图3是本发明实施例公开的一种电子设备的结构示意图;
图4是本发明实施例公开的另一种电子设备的结构示意图;
图5是本发明实施例公开的一种楼层层数的获取方法的流程示意图;
图6是本发明实施例公开的另一种楼层层数的获取方法的流程示意图;
图7是本发明实施例公开的一种楼层层数的获取系统的结构示意图;
图8是本发明实施例公开的另一种楼层层数的获取方法的流程示意图;
图9是本发明实施例公开的另一种楼层层数的获取方法的流程示意图;
图10是本发明实施例公开的一种楼层层数的获取装置的结构示意图;
图11是本发明实施例公开的另一种楼层层数的获取装置的结构示意图;
图12是本发明实施例公开的另一种楼层层数的获取装置的结构示意图;
图13是本发明实施例公开的一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先,对本发明的应用场景进行说明,由于用户的居住区域以及办公区域等通常位于建筑物中,并且建筑物可以包括多个楼层,为了使得监控人员可以实时监控目标用户当前所在的楼层,本发明可以对目标用户进行定位。例如,孩子需要在XX大楼的10层进行舞蹈课的培训,XX大楼的5层有电玩场所,家长可以通过对孩子进行定位,以识别孩子是否在培训期间到XX大楼的5层打电玩;又如,公司职员的办公区域在YY大楼的8层,YY大楼的1至4层为购物商场,公司负责人可以通过对职员进行定位,以识别公司职员是否利用办公时间在1至4层的购物商场进行购物等,上述应用场景的示例只是举例说明,本发明对此不作限定。
下面结合具体实施例对本发明进行详细说明。
图1是本发明实施例公开的一种基于层次聚类的楼层层数计算方法的流程示意图。如图1所示,该方法可以包括以下步骤:
101、电子设备获取目标室内定位场景下楼层对应的气压标准值。
作为一种可选的实施方式,电子设备获取目标室内定位场景下楼层的气压标准值,可以包括:
选取定位在目标室内定位场景的样本用户数据;其中,该样本用户数据至少包括样本气压数据;对该样本气压数据进行层次聚类,得到目标室内定位场景下楼层对应的气压数据集合;根据每个气压数据集合的算术平均值确定出对应楼层的气压标准值。
本发明实施例中,电子设备可以不间断地接收气压传感器采集到的预设时长内定位在目标室内定位场景的样本用户数据;其中,样本用户数据至少包括样本气压数据,还可以包括温度数据以及湿度数据等等。由于气压具有短期不变的特点,优选地,该预设时长可以设置为60分钟,而样本用户数据的数量可以是大于等于2的任意数量。此外,气压传感器可以设置在目标室内定位场景的各个楼层,也可以是定位在目标室内定位场景的用户随身携带的智能设备(例如手机、电话手表等)上装设的,本发明实施例不做限定。
在本方案中,由于气压随楼层变化而变化的特性,相邻两层楼之间的气压的差值大于同一楼层气压值的波动值,即同一楼层在较短时间内的气压差值较小,楼层间差值较大;此外,建筑物的单层高度不变(建筑物的相邻楼层间的高度普遍不低于一米,且一般在两米以上),因此可以通过层次聚类(Hierarchical Clustering)的方法对样本气压数据进行层次聚类,可以得到目标室内定位场景下楼层对应的气压数据集合,再对每个气压数据集合的气压数据求算术平均值,将气压数据集合的算术平均值结果确定为对应楼层的气压标准值。具体来说,电子设备可以把每一个样本气压数据归为一类,并以欧式距离作为每两个类之间的相似度度量方法,同时设置距离阈值,当欧式距离最近的两个类的距离大于该距离阈值时,停止聚类,根据当前的聚类结果确定出目标室内定位场景下楼层对应的气压数据集合;其中优选地,距离阈值可以根据实际建筑物的普遍单楼层高度进行设置。
需要说明的是,当采集到的样本用户数据的数量较少时,可以得到目标室内定位场景中部分楼层的气压标准值;而当采集到的样本用户数据的数量足够多(覆盖目标室内定位场景的各个楼层)时,可以得到目标室内定位场景中每个楼层的气压标准值。
可见,本发明实施例,能够利用层次聚类法对样本气压数据进行处理,得到目标室内定位场景下楼层的气压标准值,相比较k-means聚类方法需要预先指定聚类中心点(k值,也就是对应气压数据集合的数量),本方案不需要指定初始的聚类中心点,而利用实际建筑物的普遍楼层高度作为阈值来确定类别数目,使得聚类结果更符合方案的实际需求。
102、电子设备对所有气压标准值进行排序,计算排序后相邻两个气压标准值之间的差值,并根据该差值确定楼层间距气压差值。
本发明实施例中,可选的,电子设备可以按照从大到小的顺序对所有气压标准值进行排序。
103、电子设备对所有楼层间距气压差值进行层次聚类,并根据层次聚类结果确定目标室内场景中相邻楼层的气压差值,以及将该相邻楼层的气压差值存储到建筑物相邻楼层高度气压差值指纹库。
本发明实施例中,电子设备对所有楼层间距气压差值进行层次聚类,并根据层次聚类结果确定目标室内场景中相邻楼层的气压差值,具体来说,电子设备可以对所有楼层间距气压差值进行聚类,得到若干个聚类簇;其中, 每个聚类簇可以包括至少一个楼层间距气压差值;进一步地,计算每个聚类簇的算术平均值,并将所有聚类簇的算术平均值按照从小到大的顺序进行排序,计算排序后的相邻两个聚类簇的算术平均值之间的差值,并将其确定为新的楼层间距气压差值,将该新的楼层间距气压差值与上述所有聚类簇的算术平均值中数值最小的聚类簇的算术平均值进行层次聚类,直到聚类得到一个目标聚类簇,将目标聚类簇的算术平均值确定为目标室内场景中相邻楼层的气压差值,并将该相邻楼层的气压差值处理后形成气压指纹存储到建筑物相邻楼层高度气压差值指纹库。
104、电子设备检测是否接收到楼层定位请求,如果接收到该楼层定位请求,触发执行步骤105;如果未接收到该楼层定位请求,继续执行步骤104;其中,该楼层定位请求用于请求获取用户当前所在楼层的层数。
本发明实施例中,上述电子设备可以是用户随身携带的智能设备(例如智能手机、电话手表等),也可以是用于为处于目标室内定位场景中的用户提供楼层定位的楼层定位装置(例如服务器),本发明实施例不做限定。其中,当电子设备是楼层定位装置时,该楼层定位装置可以与用户携带的智能设备通过通信网络实现双向通信,因此,用户可以通过智能设备向楼层定位装置发送楼层定位请求。
105、电子设备获取目标室内定位场景的基准平面的初始气压值、用户当前所在楼层的测量气压值,并从建筑物相邻楼层高度气压差值指纹库中获取相邻楼层的气压差值,根据初始气压值、测量气压值以及相邻楼层的气压差值确定用户当前所在楼层的层数。
本发明实施例中,基于上述实施例内容可知,楼层定位请求可以由用户通过随身携带的智能设备发送给电子设备,并且智能设备可以设置有用于采集气压数据的气压传感器,因此上述楼层定位请求可以包括有用户当前所在楼层的测量气压值。优选地,智能设备可以通过气压传感器采集用户当前所在位置采集若干次气压数据,并将若干次气压数据的平均值作为用户当前所在楼层的测量气压值发送给电子设备。
此外,在本方案中,目标室内定位场景内的定位场景的基准平面可以是目标室内定位场景所包括的建筑物的基准层,例如第一层,那么上述初始气压值可以是用户进入该建筑物内的时间点测量得到的气压值。
作为一种可选的实施方式,电子设备根据初始气压值、测量气压值以及相邻楼层的气压差值确定用户当前所在楼层的层数,可以包括:
根据相邻楼层间的气压差值确定出目标室内定位场景中的单楼层高度值;根据初始气压值以及测量气压值确定出用户当前所在楼层与基准平面之间的相对高度值;将相对高度值与单楼层高度值进行相除,根据相除结果确定用户当前所在楼层的层数。
本发明实施例中,电子设备可以根据上述相邻楼层间的气压差值以及预设的标准气压高度公式计算出目标是室内定位场景中的单楼层高度值;同理, 还可以根据初始气压值以及测量气压值之间的差值的绝对值以及该预设的标准气压高度公式可以计算出用户当前所在楼层与基准平面之间的相对高度值。其中,电子设备可以根据目标室内定位场景中不同测量地点(楼层)采集到的气压数据以及温度数据建立BP神经网络,并根据遗传算法的原理对该BP神经网络进行优化并完成其训练学习过程,得到上述的标准气压高度公式。
本发明实施例中,电子设备可以将初始气压值的测量位置确定为第一测量点,该第一测量点位于上述基准平面上;同理,电子设备还可以将上述测量气压值的测量位置确定为第二测量点,该第二测量点位于用户当前所在楼层的楼层平面上,因此,上述相对高度值指的是第一测量点与第二测量点之间的垂直高度。
作为另一种可选的实施方式,电子设备在根据初始气压值、测量气压值以及相邻楼层的气压差值确定用户当前所在楼层之后,还可以判断当前时刻是否属于预设的管控时间段内,如果是,根据预设的楼层动态平面图确定用户当前所在楼层所对应的商铺列表;根据在用户的当前朝向位置检测到的WiFi热点列表确定信号最强的目标WiFi热点;将目标WiFi热点的名称与商铺列表所包括的商铺的名称进行匹配,将匹配成功的商铺确定为目标商铺;判断该目标商铺是否属于预设的商铺集合;如果该目标商铺属于该预设的商铺集合,向监控终端发送提示消息,以提示用户在管控时间段内处于非学习区域。
本发明实施例中,上述管控时间段可以是家长预先设置的课余学习时间段,在该管控时间段内家长希望学生用户进行与学习有关的课余活动,例如在图书馆看书、去书店买书或者去课外教学辅导机构学习等等。因此,电子设备可以通过查找楼层动态平面图确定出用户当前所在楼层所对应的商铺列表,并根据WiFi热点信号的强弱从商铺列表中确定出与用户距离最近的目标商铺,该目标商铺即为用户当前所在的商铺;进一步地,判断该目标商铺是否属于预设的商铺集合,如果不属于,说明该目标商铺不是与学习相关的商铺,因此可以向家长的监控终端发送提示信息,以提示用户在管控时间段内处于非学习区域;其中,上述楼层动态平面图可以包括目标室内定位场景中每个楼层的商铺的名称。可见,本发明实施例,可以在定位用户所在楼层之后对用户位于该楼层的具体区域进行定位,使得家长能够精确掌握学生用户的具体位置坐标;此外,通过确定用户所在的具体区域的功能类别可以确定学生用户是否在预设的管控时间段内从事学习相关的活动,实现了对学生用户在学习上的监督与管控,提高了学习管控效率。
可见,通过图1所描述的方法,能够基于层次聚类方法确定出用户所处的目标室内定位场景的相邻楼层的气压差值,进一步根据气压与高度之间的对应关系容易求出单层楼的高度值以及用户与地面的相对高度值,从而根据单层楼的高度值以及相对高度值求出用户当前所在楼层的层数,相比起现有 技术中存在的由于无法准确获知单层楼高而导致的楼层层数定位不准确的问题,本方案提高了定位用户所在楼层层数的准确性;可以在定位用户所在楼层之后对用户位于该楼层的具体区域进行定位,使得家长能够精确掌握学生用户的具体位置坐标;此外,通过确定用户所在的具体区域的功能类别可以确定学生用户是否在预设的管控时间段内从事学习相关的活动,实现了对学生用户在学习上的监督与管控,提高了学习管控效率。
图2是本发明实施例公开的另一种基于层次聚类的楼层层数计算方法的流程示意图。如图2所示,该方法可以包括以下步骤:
本发明实施例中,该基于层次聚类的楼层层数计算方法包括步骤201~205,针对步骤201~205的描述,请参照实施例一中针对步骤101~105的详细描述,本发明实施例不再赘述。
206、电子设备检测是否接收到监控终端发送的位置共享请求,如果接收到位置共享请求,触发执行步骤207;如果未接收到该位置共享请求,继续执行步骤206。
本发明实施例中,举例来说,监控终端的用户可以是家长,当孩子外出时,家长希望能够及时获知孩子准确的位置情况,那么,家长可以通过监控终端向电子设备发送位置共享请求,以获得孩子当前所在的具体楼层层数。
207、电子设备获取用户的行走步数。
本发明实施例中,电子设备可以接收用户的智能设备(如智能手机)发送的用户的行走步数。
208、电子设备判断行走步数是否大于预设步数阈值,如果该行走步数大于预设步数阈值,触发执行步骤209~210;如果行走步数不大于预设步数阈值,触发执行步骤211。
209、电子设备获取实时网络连接数据,并计算实时网络连接数据与历史网络连接数据的重合度;其中,该历史网络连接数据的采集时刻与电子设备确定用户当前所在楼层的层数的时刻相同。
本发明实施例中,网络连接数据可以包括WiFi热点列表,而WiFi热点列表可以包括多个WiFi热点;并且每个WiFi热点列表所包括的WiFi热点的数量相同。
那么,电子设备计算实时网络连接数据与历史网络连接数据的重合度,可以包括:
将实时WiFi热点列表中的各个WiFi热点的名称与历史WiFi热点列表中各个WiFi热点的名称进行比较;
确定出名称相同的目标WiFi热点的数量为第一数量;
将第一数量与第二数量的比值确定为实时网络连接数据与历史网络连接数据的重合度;其中,第二数量为WiFi热点列表所包括的所有WiFi热点的数量。
举例来说,实时WiFi热点列表以及历史WiFi热点列表的WiFi热点数 量均为10个;将实时WiFi热点列表的WiFi热点的名称以及历史WiFi热点列表的WiFi热点的名称进行比较,得到名称相同的目标WiFi热点的数量为5个,那么,容易得到实时网络连接数据与历史网络连接数据的重合度为50%。
210、电子设备判断重合度是否高于预设重合度阈值,如果重合度高于预设重合度阈值,触发执行步骤211;如果该重合度不高于预设重合度阈值,触发执行步骤205。
本发明实施例中,如果上述重合度高于预设重合度阈值,可以说明用户当前未离开历史网络连接数据所对应的网络覆盖范围(例如WiFi热点的网络覆盖范围);反之,如果上述重合度高于预设重合度阈值,说明用户当前已离开该历史网络连接数据所对应的网络覆盖范围。
211、电子设备将用户当前所在楼层的层数共享给监控终端。
本发明实施例中,电子设备可以将目标室内定位场景对应的位置坐标以及用户当前所在楼层的层数发送给监控设备,以实现位置共享。
本发明实施例中,基于上述实施例内容可知,当接收到监控终端发送的位置共享请求之后,依次通过比较用户行走步数、网络连接数据的变化情况来判断用户是否离开当前所在楼层,并在判断出用户未离开当前所在楼层时将该楼层的层数共享给监控终端,避免了重复采集气压数据以及计算楼层层数的步骤,提高了定位共享的效率。
可见,通过图2所描述的方法,能够基于层次聚类方法确定出用户所处的目标室内定位场景的相邻楼层的气压差值,进一步根据气压与高度之间的对应关系容易求出单层楼的高度值以及用户与地面的相对高度值,从而根据单层楼的高度值以及相对高度值求出用户当前所在楼层的层数,相比起现有技术中存在的由于无法准确获知单层楼高而导致的楼层层数定位不准确的问题,本方案提高了定位用户所在楼层层数的准确性;可以在定位用户所在楼层之后对用户位于该楼层的具体区域进行定位,使得家长能够精确掌握学生用户的具体位置坐标;以及,通过确定用户所在的具体区域的功能类别可以确定学生用户是否在预设的管控时间段内从事学习相关的活动,实现了对学生用户在学习上的监督与管控,提高了学习管控效率;此外,在判断出用户未离开当前所在楼层时将该楼层的层数共享给监控终端,避免了重复采集气压数据以及计算楼层层数的步骤,提高了定位共享的效率。
图3是本发明实施例公开的一种电子设备的结构示意图。如图3所示,该电子设备可以包括:
第一获取单元301,用于获取目标室内定位场景下楼层对应的气压标准值,并将该气压标准值提供给计算单元302。
计算单元302,用于对所有气压标准值进行排序,计算排序后相邻两个气压标准值之间的差值,并根据差值确定楼层间距气压差值,以及将该楼层间距气压差值提供给聚类单元303。
聚类单元303,用于对所有楼层间距气压差值进行层次聚类,并根据层 次聚类结果确定目标室内场景中相邻楼层的气压差值,并将相邻楼层的气压差值提供给存储单元306。
本发明实施例中,可选的,聚类单元303对所有楼层间距气压差值进行层次聚类,并根据层次聚类结果确定目标室内场景中相邻楼层的气压差值的方式具体可以为:
对所有楼层间距气压差值进行聚类,得到若干个聚类簇;其中,每个聚类簇可以包括至少一个楼层间距气压差值;进一步地,计算每个聚类簇的算术平均值,并将所有聚类簇的算术平均值按照从小到大的顺序进行排序,计算排序后的相邻两个聚类簇的算术平均值之间的差值,并将其确定为新的楼层间距气压差值,将该新的楼层间距气压差值与上述所有聚类簇的算术平均值中数值最小的聚类簇的算术平均值进行层次聚类,直到聚类得到一个目标聚类簇,将目标聚类簇的算术平均值确定为目标室内场景中相邻楼层的气压差值。
存储单元306,用于将上述相邻楼层的气压差值存储到建筑物相邻楼层高度气压差值指纹库。
检测单元304,用于检测是否接收到楼层定位请求,并将检测结果提供给第二获取单元305;其中,该楼层定位请求用于请求获取用户当前所在楼层的层数。
第二获取单元305,用于在上述检测单元的检测结果为是时,获取目标室内定位场景的基准平面的初始气压值、用户当前所在楼层的测量气压值,以及从上述存储单元306的建筑物相邻楼层高度气压差值指纹库中获取相邻楼层的气压差值,并提供给确定单元307。
确定单元307,用于根据上述初始气压值、上述测量气压值以及上述相邻楼层的气压差值确定用户当前所在楼层的层数。
可见,通过图3所描述的电子设备,能够基于层次聚类方法确定出用户所处的目标室内定位场景的相邻楼层的气压差值,进一步根据气压与高度之间的对应关系容易求出单层楼的高度值以及用户与地面的相对高度值,从而根据单层楼的高度值以及相对高度值求出用户当前所在楼层的层数,相比起现有技术中存在的由于无法准确获知单层楼高而导致的楼层层数定位不准确的问题,本方案提高了定位用户所在楼层层数的准确性;可以在定位用户所在楼层之后对用户位于该楼层的具体区域进行定位,使得家长能够精确掌握学生用户的具体位置坐标;此外,通过确定用户所在的具体区域的功能类别可以确定学生用户是否在预设的管控时间段内从事学习相关的活动,实现了对学生用户在学习上的监督与管控,提高了学习管控效率。
请参阅图4,图4是本发明实施例提供的另一种电子设备的结构示意图,其中,图4所示的电子设备是由图3所示的电子设备进一步进行优化得到的。与图3所示的电子设备相比较,在图4所示的电子设备中,第一获取单元301可以包括:
选取子单元3011,用于选取定位在目标室内定位场景的样本用户数据,并提供给聚类子单元3012;其中,该样本用户数据至少可以包括样本气压数据。
本发明实施例中,选取子单元3011可以不间断地接收气压传感器采集到的预设时长内定位在目标室内定位场景的样本用户数据;其中,样本用户数据至少包括样本气压数据,还可以包括温度数据以及湿度数据等等。由于气压具有短期不变的特点,优选地,该预设时长可以设置为60分钟,而样本用户数据的数量可以是大于等于2的任意数量。此外,气压传感器可以设置在目标室内定位场景的各个楼层,也可以是定位在目标室内定位场景的用户随身携带的智能设备(例如手机、电话手表等)上装设的,本发明实施例不做限定。
聚类子单元3012,用于对样本气压数据进行层次聚类,得到目标室内定位场景下楼层对应的气压数据集合,并将该气压数据集合提供给第一确定子单元3013。
在本方案中,由于气压随楼层变化而变化的特性,相邻两层楼之间的气压的差值大于同一楼层气压值的波动值,即同一楼层在较短时间内的气压差值较小,楼层间差值较大;此外,建筑物的单层高度不变(建筑物的相邻楼层间的高度普遍不低于一米,且一般在两米以上),因此可以通过层次聚类(Hierarchical Clustering)的方法对样本气压数据进行层次聚类,可以得到目标室内定位场景下楼层对应的气压数据集合,再对每个气压数据集合的气压数据求算术平均值,将气压数据集合的算术平均值结果确定为对应楼层的气压标准值。具体来说,聚类子单元3012可以把每一个样本气压数据归为一类,并以欧式距离作为每两个类之间的相似度度量方法,同时设置距离阈值,当欧式距离最近的两个类的距离大于该距离阈值时,停止聚类,根据当前的聚类结果确定出目标室内定位场景下楼层对应的气压数据集合;其中优选地,距离阈值可以根据实际建筑物的普遍单楼层高度进行设置。
需要说明的是,当采集到的样本用户数据的数量较少时,可以得到目标室内定位场景中部分楼层的气压标准值;而当采集到的样本用户数据的数量足够多(覆盖目标室内定位场景的各个楼层)时,可以得到目标室内定位场景中每个楼层的气压标准值。
可见,本发明实施例,能够利用层次聚类法对样本气压数据进行处理,得到目标室内定位场景下楼层的气压标准值,相比较k-means聚类方法需要预先指定聚类中心点(k值,也就是对应气压数据集合的数量),本方案不需要指定初始的聚类中心点,而利用实际建筑物的普遍楼层高度作为阈值来确定类别数目,使得聚类结果更符合方案的实际需求。
第一确定子单元3013,用于根据上述气压数据集合的算术平均值确定出对应楼层的气压标准值。
作为一种可选的实施方式,如图4所示,上述确定单元307,可以包括:
第二确定子单元3071,用于根据相邻楼层间的气压差值确定出目标室内定位场景中的单楼层高度值,以及根据初始气压值以及测量气压值确定出用户当前所在楼层与基准平面之间的相对高度值,并将单楼层高度值以及相对高度值提供给计算子单元3072。
计算子单元3072,用于将相对高度值与单楼层高度值进行相除,根据相除结果确定用户当前所在楼层的层数。
作为另一种可选的实施方式,如图4所示,上述检测单元304,还用于在上述确定单元307根据上述初始气压值、上述测量气压值以及上述相邻楼层的气压差值确定用户当前所在楼层的层数之后,检测是否接收到监控终端发送的位置共享请求,并将检测结果提供给第二获取单元305。
上述第二获取单元305,还用于在上述检测单元304的检测结果为是时,获取用户的行走步数,并将该行走步数提供给判断单元308。
判断单元308,用于判断行走步数是否大于预设步数阈值,并将判断结果提供给共享单元309。
共享单元309,用于在上述判断单元308判断出行走步数不大于预设步数阈值时,将用户当前所在楼层的层数共享给监控终端。
作为另一种可选的实施方式,如图4所示,上述第二获取单元305,还用于在上述判断单元308断出行走步数大于预设步数阈值时,获取用户的实时网络连接数据。
上述计算单元302,还用于计算实时网络连接数据与历史网络连接数据的重合度,并提供给判断单元308;其中,该历史网络连接数据的采集时刻与电子设备确定用户当前所在楼层的层数的时刻相同。
上述判断单元308,还用于判断重合度是否高于预设重合度阈值,并将判断结果提供给共享单元309。
上述共享单元309,还用于在上述判断单元308判断出重合度高于预设重合度阈值时,将用户当前所在楼层的层数共享给监控终端。
可见,通过图4所描述的电子设备,能够基于层次聚类方法确定出用户所处的目标室内定位场景的相邻楼层的气压差值,进一步根据气压与高度之间的对应关系容易求出单层楼的高度值以及用户与地面的相对高度值,从而根据单层楼的高度值以及相对高度值求出用户当前所在楼层的层数,相比起现有技术中存在的由于无法准确获知单层楼高而导致的楼层层数定位不准确的问题,本方案提高了定位用户所在楼层层数的准确性;可以在定位用户所在楼层之后对用户位于该楼层的具体区域进行定位,使得家长能够精确掌握学生用户的具体位置坐标;以及,通过确定用户所在的具体区域的功能类别可以确定学生用户是否在预设的管控时间段内从事学习相关的活动,实现了对学生用户在学习上的监督与管控,提高了学习管控效率;此外,在判断出用户未离开当前所在楼层时将该楼层的层数共享给监控终端,避免了重复采集气压数据以及计算楼层层数的步骤,提高了定位共享的效率。
图5是本发明实施例公开的一种楼层层数的获取方法的流程示意图。本发明可以应用于电子设备,如图5所示,该方法可以包括以下步骤:
501、获取目标区域中的待确定楼层的气压检测值。
其中,该目标区域可以为图1所示实施例中的目标室内定位场景。
在本发明实施例中,可以通过但不限于以下方式获取该气压检测值:
方式一、一种情况为:由于位于待确定楼层的目标用户当前携带的终端设备(如移动手机、可穿戴设备等)中可以内置有气压传感器,因此,本发明可以将终端设备内置的气压传感器采集到的气压值作为该气压检测值。
另一种情况为:由于目标用户可能处于运动状态,从而可以由该气压传感器采集目标用户当前所在位置的预设位置范围内的多个气压值,并将该多个气压值的平均值作为该气压检测值。
综上,在终端设备获取到该气压检测值后,向该电子设备发送该气压检测值。
方式二、可以在目标区域内的不同位置安装气压传感器,该目标区域可以为:建筑物包括的各个楼层。当然,考虑到建筑物一楼室外也可以属于该建筑物的第一楼层,此时,该目标区域可以为:建筑物包括的各个楼层,以及建筑物周围的预设区域范围内的场地。此时,可以基于目标传感器当前采集到的气压值获取该气压检测值。
进一步地,一种情况为:该目标传感器可以为该待确定楼层中安装的至少一个气压传感器。
示例性的,可以将任一目标传感器采集到的气压值作为该气压检测值,该任一目标传感器通过内置的通信模块将该气压检测值发送至电子设备。或者,多个目标传感器可以将检测到的气压值发送至电子设备,以便电子设备计算多个目标传感器采集到的气压值的均值得到该气压检测值。
另一种情况为:若本发明应用于识别目标用户所在的待确定楼层,则该目标传感器可以为与该目标用户距离最近的气压传感器。此时,该目标传感器当前采集到的气压值为该气压检测值,从而目标传感器通过内置的通信模块向该电子设备发送该气压检测值。
或者,
若该目标传感器为该目标用户当前位置的预设位置范围内的多个气压传感器,则该多个目标传感器通过内置的通信模块将当前采集到的气压值发送至电子设备,以便电子设备计算该多个目标传感器当前采集到的气压值的平均值得到该气压检测值,上述示例只是举例说明,本发明对此不作限定。
502、获取目标区域包括的至少一个楼层区域分别对应的目标气压差值;目标气压差值为楼层区域中任意两个相邻楼层之间的气压差值。
在本发明实施例中,两个相邻楼层的层数之间的差值为1,不同楼层区域对应的单楼层高度不同,以及单个楼层区域中的单楼层高度相同。这样,基于气压值特征,不同楼层区域的目标气压差值均不相同。
示例地,对于某个住宅区域,各个楼层的楼层高度均相同;对于某个办公区域,一部分楼层的楼层高度均相同,另一部分楼层的楼层高度均相同,因此,可以将该某个办公区域划分为2个楼层区域,如1至4层为商场楼层区域,5至28层为办公楼层区域,其中,1至4层的单楼层高度通常较高,5至28层的单楼层高度通常较低。
在本发明实施例中,可以通过以下步骤获取该目标气压差值:
S11、获取目标区域中多个楼层对应的气压标准值。
在本步骤中,可以通过以下步骤获取该气压标准值:
步骤1、采集目标区域内的多个气压样本值。
其中,由于同一位置在短时间内存在气压值的不变性,即同一位置在预设时长内的气压变化值小于或者等于预设气压阈值。因此,可以在预设时长内采集目标区域内的多个气压样本值。
另外,气压传感器可以在预设时长内按照预设采集周期,采集多个气压样本值。示例地,该预设时长可以设置为60分钟。另外,考虑到用户携带的终端设备内置有气压传感器,因此,本步骤也可以为采集目标区域内的多个用户所处位置的气压样本值。
需要说明的是,当采集到的气压样本值的数量较少时,可能存在未采集到目标区域内的一部分楼层的气压样本值,后续步骤中无法得到目标区域内的全部楼层的气压标准值;当采集到的气压样本值数量足够多(覆盖目标区域内的各个楼层)时,后续步骤中可以得到目标区域中每个楼层的气压标准值。
步骤2、对气压样本值进行聚类,得到目标区域中多个楼层对应的气压样本集合。
在本发明实施例中,由于气压值随高度变化而变化,即楼层越高,气压值越小;楼层越低,气压值越大。
综上,本发明可以采用层次聚类方法、K-means聚类方法等。示例地,若采用层次聚类方法,则可以把每个气压样本值归为一个待聚合类,并计算每两个待聚合类之间的相似度,根据相似度对气压样本值进行层次聚类得到目标区域中多个楼层对应的气压样本集合。
进一步地,相似度可以为欧氏距离或者曼哈顿距离等参数,由于该气压样本值为一维参数,因此,该本发明中通过欧式距离或者曼哈顿距离获取相似度的结果相同。如若该相似度为欧式距离,则可以计算每两个待聚合类之间的气压差值得到每两个待聚合类的欧式距离;并将最小距离对应的两个待聚合类进行合并得到新待聚合类,最小距离对应的两个待聚合类的气压平均值为新待聚合类对应的气压样本值;接着将新待聚合类以及指定待聚合类作为目标待聚合类,循环执行目标类更新步骤,直至满足循环终止条件。示例地,该循环终止条件包括:根据更新后的目标待聚合类获取到的最大欧式距离小于或者等于第一距离阈值;目标类更新步骤包括:计算每两个目标待聚 合类之间的气压差值,得到每两个目标待聚合类的欧式距离,并判断最大欧式距离是否小于或者等于第一距离阈值,在最大欧式距离大于第一距离阈值的情况下,将最小欧式距离的两个目标待聚合类进行聚合,并根据聚合结果更新目标待聚合类;指定待聚合类为全部待聚合类中除新待聚合类以外的待聚合类,第一距离阈值可以根据实际建筑物的普遍单楼层高度进行设置。可见,根据最终的聚类结果确定出目标区域内不同楼层对应的气压样本集合。需要说明的是,由于可能未采集到目标区域中部分楼层的气压样本值,因此,气压样本集合对应的楼层可能并不包括目标区域中的全部楼层。
若采用K-means聚类方法,并相似度包括欧氏距离,则随机选取K个气压样本值,并将K个气压样本值作为初始聚类中心气压值,并将除K个初始聚类中心气压值以外的其他气压样本值作为待聚类气压值,并获取目标待聚类气压值与每个初始聚类中心气压值之间的欧式距离,该目标待聚类气压值可以为任一待聚类气压值;将该目标待聚类气压值分类至最小欧式距离对应的初始聚类中心气压值的类别中;然后可以获取每一类别的距离平均值,该距离平均值可以为每一类别中的初始聚类中心气压值与每一类别中的其他待聚类气压值之间的气压差值的平均值,若某一类别的距离平均值大于或者等于第二距离阈值,则可以继续将该某一类别划分为两类(参考上述划分K类的方法),并计算该两类对应的距离平均值,直至该两类对应的距离平均值均小于该第二距离阈值,上述示例只是举例说明,本发明对此不作限定。
步骤3、通过气压样本集合,获取目标区域中多个楼层对应的气压标准值。
其中,若该楼层的层数越高,则该气压标准值越小;相反,若该楼层的层数越低,则该气压标准值越大。
在本步骤中,可以通过但不限于以下方式获取气压标准值:
在一种可能的实现方式中,可以计算气压样本集合中包括的全部气压样本值的平均值,得到气压样本集合对应楼层的气压标准值,该平均值可以为算术平均值或者加权平均值。可以预先对目标区域进行划分得到多个子区域,并将各个子区域设置对应的权重,从而使得在不同子区域采集得到的气压样本值具备不同的权重。示例地,同一楼层中比较关注的区域设置的权重较大,同一楼层中比较不关注的区域设置的权重较小。
在又一种可能的实现方式中,本发明可以将气压样本集合中包括的气压样本值按照预设过滤条件进行过滤得到新气压样本集合,并计算新气压样本集合中包括的全部气压样本值的算术平均值,得到气压样本集合对应楼层的气压标准值。其中,预设过滤条件可以为将气压样本集合中包括的最大气压样本值以及最小气压样本值进行过滤,或者,获取气压样本集合中包括的全部气压样本值的正太分布图,并根据正太分布图将超出预设区间范围的气压样本值进行过滤,上述示例只是举例说明,本发明对此不作限定。
S12、根据气压标准值,对多个楼层进行排序,并获取排序相邻的两个 楼层的第一气压差值。
在本发明实施例中,若气压标准值越大,则楼层越低;若气压标准值越小,则楼层越高。因此,本发明可以根据气压标准值从大到小的顺序对多个楼层进行排序,以便得到从低到高的多个楼层;或者,本发明还可以根据气压标准值从小到大的顺序对该多个楼层进行排序,以便得到从高到低的多个楼层。
示例地,在楼层L1的气压标准值为p1、楼层L2的气压标准值为p2、楼层L3的气压标准值为p3,且p1>p2>p3的情况下,若根据气压标准值从大到小的顺序对多个楼层进行排序,则楼层的排序结果为:L1、L2以及L3,且楼层逐渐升高;若根据气压标准值从小到大的顺序对多个楼层进行排序,则楼层的排序结果为:L3、L2以及L1,且楼层逐渐降低。
需要说明的是,本发明中的第一气压差值可以包括:目标区域中的相邻两层之间的气压差值,和/或,目标区域中的非相邻两层之间的气压差值。例如,若该多个楼层包括1层、2层、3层、…、17层、18层,则可以获取到1层和2层之间的第一气压差值t1,2层和3层之间的第一气压差值t2,…,17层和18层之间的第一气压差值t17;又如,若该多个楼层包括1层、3层、6层、10层、13层、17层、18层,则可以获取1层和3层之间的第一气压差值q1,3层和6层之间的第一气压差值q2,6层和10层之间的第一气压差值q3,10层和13层之间的第一气压差值q4,13层和17层之间的第一气压差值q5,以及17层和18层之间的第一气压差值q6,上述具体的层数为了便于说明第一气压差值可以是目标区域中的相邻两层之间的气压差值,也可以是目标区域中的非相邻两层之间的气压差值,实际上示例中的层数为未知的。
可选地,本发明可以计算排序相邻的两个楼层的气压标准值之间的差值的绝对值,得到排序相邻的两个楼层的第一气压差值。综上,若采集到同一楼层的多个气压样本值,并基于该多个气压样本值得到该同一楼层的气压标准值,则可以将该同一楼层的气压标准值作为该同一楼层的气压值,从而本步骤基于该气压标准值得到的第一气压差值更加精确,避免了采集该同一楼层的单个气压样本值存在误差导致的获取的该同一楼层的气压值不准确的问题。
S13、对第一气压差值进行聚类,得到第一气压差值集合。
在本发明实施例中,可以同样采用层次聚类方法、K-means聚类方法等对该第一气压差值进行聚类,具体聚类过程不再赘述。
其中,不同两个楼层之间的第一气压差值与不同两个楼层之间的相差楼层数存在正相关关系,即相差楼层数越大,该第一气压差值越大,相差楼层数越小,该第一气压差值越小。基于此,通过本步骤中的聚类过程,可以将相差楼层数相同的第一气压差值归为一类,并根据归为一类的第一气压差值生成该第一气压差值集合。
示例地,继续以S12中的示例为例进行说明,若该多个楼层包括1层、3层、6层、10层、13层、17层、18层,且得到1层和3层之间的第一气压差值q1,3层和6层之间的第一气压差值q2,6层和10层之间的第一气压差值q3,10层和13层之间的第一气压差值q4,13层和17层之间的第一气压差值q5,以及17层和18层之间的第一气压差值q6,则第一气压差值q1的相差楼层数为2层,第一气压差值q2的相差楼层数为3层,第一气压差值q3的相差楼层数为4层,第一气压差值q4的相差楼层数为3层,第一气压差值q5的相差楼层数为4层,第一气压差值q6的相差楼层数为1层。此时,基于层次聚类方法可以将相差楼层数均为3层的第一气压差值q2、q4归为一类,将相差楼层数为2层的第一气压差值q1归为一类,将相差楼层数均为4层的第一气压差值q3、q5归为一类,将相差楼层数为1层的第一气压差值q6归为一类。这样,相差楼层数为3层的第一气压差值集合表示为{q2,q4},相差楼层数为2层的第一气压差值集合表示为{q1},相差楼层数为4层的第一气压差值集合表示为{q3,q5},相差楼层数为1层的第一气压差值集合表示为{q6},上述示例只是举例说明,本发明对此不作限定。
S14、通过第一气压差值集合,获取目标区域包括的至少一个楼层区域分别对应的目标气压差值。
在本步骤中,可以通过以下步骤获取目标气压差值:
步骤1、获取每个第一气压差值集合对应的气压差标准值。
其中,在该第一气压差值集合中包括单个第一气压差值的情况下,将该单个第一气压差值作为该气压差标准值;在该第一气压差值集合包括相差楼层数相同的多个第一气压差值的情况下,可以计算该多个第一气压差值的算术平均值,得到该第一气压差值集合对应的气压差标准值,当然,该多个第一气压差值中可能存在粗大误差,因此,本发明也可以将该多个第一气压差值进行过滤得到多个目标第一气压差值,并计算该多个目标第一气压差值的算术平均值,得到该第一气压差值集合对应的气压差标准值,上述过滤过程参考S11中的对气压样本值得过滤过程,不再赘述。
步骤2、通过但不限于以下方式获取单个目标聚类集合:
方式一、根据气压差标准值,对第一气压差值集合进行排序,并获取排序相邻的两个第一气压差值集合的第二气压差值,将第二气压差值作为待聚类气压差值,并循环执行待聚类气压差值更新步骤,直至满足循环终止条件;循环终止条件包括待聚类气压差值进行聚类后得到单个目标聚类集合。其中,待聚类气压差值更新步骤包括:将待聚类气压差值进行聚类得到聚类集合,判断聚类集合是否属于单个集合,在聚类集合不属于单个集合的情况下,获取聚类集合分别对应的待排序气压差标准值,通过待排序气压差标准值,对聚类集合进行排序,并将排序相邻的两个聚类集合的气压差值更新为待聚类气压差值。
在本步骤中,可以按照气压差标准值从小到大的顺序,对第一气压差值 集合进行排序;或者,按照气压差标准值从大到小的顺序,对第一气压差值集合进行排序,本发明对此不作限定。
进一步地,可以计算排序相邻的两个第一气压差值集合的气压差标准值之间的差值的绝对值,得到排序相邻的两个第一气压差值集合的第二气压差值。
示例地,在获取到的第一气压差值集合包括A1、A2、A3、A4、A5、A6,且A1的气压差标准值为s1,A2的气压差标准值为s2,A3的气压差标准值为s3,A4的气压差标准值为s4,A5的气压差标准值为s5,A6的气压差标准值为s6的情况下,若按照气压差标准值由小到大的顺序对第一气压差值集合进行排序,得到第一气压差值集合的排序结果为:A1、A2、A3、A4、A5以及A6,则本步骤中的第二气压差值可以包括:A1与A2之间的气压差值、A2与A3之间的气压差值、A3与A4之间的气压差值、A4与A5之间的气压差值、A5与A6之间的气压差值。其中,以第二气压差值包括A1与A2之间的气压差值为例进行说明,该第二气压差值可以为s2与s1之间的差值的绝对值。
方式二、本步骤可以根据气压差标准值,对第一气压差值集合进行排序,并获取排序相邻的两个第一气压差值集合的第二气压差值,将第二气压差值和最小气压差标准值作为待聚类气压差值,并循环执行待聚类气压差值更新步骤,直至满足循环终止条件。其中,循环终止条件包括待聚类气压差值进行聚类后得到单个目标聚类集合。待聚类气压差值更新步骤包括:将待聚类气压差值进行聚类得到聚类集合,判断聚类集合是否属于单个集合,在聚类集合不属于单个集合的情况下,获取聚类集合分别对应的待排序气压差标准值,通过待排序气压差标准值,对聚类集合进行排序,并将排序相邻的两个聚类集合的气压差值、以及最小待排序气压差标准值更新为待聚类气压差值。通过该方法,获取到的单个目标聚类集合即为相差楼层数为单层对应的气压差值,因此,计算该单个目标聚类集合对应的平均值,得到气压差标准值,后续步骤中基于该气压差标准值确定目标气压差值。
步骤3、若单个目标聚类集合对应的气压差标准值在预设数值区间内,则将单个目标聚类集合对应的气压差标准值作为目标区域包括的单个楼层区域对应的目标气压差值;或者,若单个目标聚类集合对应的气压差标准值大于预设数值区间的最大值,则根据单个目标聚类集合对应的气压差标准值,获取目标区域包括的单个楼层区域对应的目标气压差值;或者,若单个目标聚类集合对应的气压差标准值小于预设数值区间的最小值,则获取单个目标聚类集合未执行最新的待聚类气压差值更新步骤之前的待聚类气压差值集合,以及通过待聚类气压差值集合,获取目标区域包括的多个楼层区域分别对应的目标气压差值。
其中,该预设数值区间可以为目标区域中的两个相邻楼层之间的气压差值范围,并且通常该预设数值区间为一个闭区间。
在本发明实施例中,由于该单个目标聚类集合包括相差楼层数相同的气压差值,但是考虑到相差楼层数可能为单层,也可能为多层。因此,需要分情况进行说明:
情况一、在该单个目标聚类集合包括相差楼层数为单层的气压差值的情况下,则单个目标聚类集合对应的气压差标准值在预设数值区间内,该气压差标准值可以为单个目标聚类集合的平均值,该平均值可以为算术平均值或者加权平均值等。
情况二、在该单个目标聚类集合包括相差楼层数为多层的气压差值的情况下,则单个目标聚类集合对应的气压差标准值大于预设数值区间的最大值,此时,在一种可能的实现方式中,可以将该单个目标聚类集合对应的气压差标准值除以指定数值得到新气压差标准值,并判断新气压差标准值是否在预设数值区间内,在新气压差标准值在预设数值区间内的情况下,将该新气压差标准值作为该目标气压差值;在新气压差标准值大于该预设数值区间的最大值的情况下,更新指定数值,如可以计算该指定数值与1的和值得到更新后的指定数值,以及重新执行该气压差标准值除以指定数值得到新气压差标准值的步骤。
情况三、在该单个目标聚类集合包括各个楼层区域中相差楼层数相同的气压差值的情况下,若该单个目标聚类集合对应的气压差标准值小于预设数值区间的最小值,则可以获取单个目标聚类集合未执行最新的待聚类气压差值更新步骤之前的待聚类气压差值集合,并继续判断是否存在任一个待聚类气压差值集合的气压差标准值小于预设数值区间的最小值,若存在任一个待聚类气压差值集合的气压差标准值小于预设数值区间的最小值,则继续执行获取待聚类气压差值集合未执行最新的待聚类气压差值更新步骤之前的新待聚类气压差值集合,依次类推,若各个待聚类气压差值集合的气压差标准值均大于或者等于预设数值区间的最小值,则可以基于各个待聚类气压差值集合的气压差标准值,获取各个待聚类气压差值集合分别对应的楼层区域的目标气压差值。
在本发明的另一实施例中,可以基于标准气压高度公式,获取该单个目标聚类集合对应的气压差值标准的目标相对高度,从而判断该目标相对高度是否位于预设单楼层高度范围内。在该目标相对高度位于预设单楼层高度范围内的情况下,确定气压差标准值为该目标气压差值;或者,在该目标相对高度大于预设单楼层高度范围的最大值的情况下,可以基于经验确定该目标相对高度为指定层数的高度,从而计算该目标相对高度与该指定层数的比值得到更新后的目标相对高度,并重新执行判断该目标相对高度是否位于预设单楼层高度范围内的步骤,通过更改指定层数以使得更新后的目标相对高度位于预设单楼层高度范围内,从而更新后的目标相对高度对应的气压差值为该目标气压差值。在该目标相对高度小于预设单楼层高度范围的最小值的情况下,则需要按照上述所述的方法获取到最终的待聚类气压差值集合,并基 于各个待聚类气压差值集合的气压差标准值,获取各个待聚类气压差值集合分别对应的楼层区域的目标相对高度,从而根据楼层区域的目标相对高度,获取楼层区域的对应的目标气压差值。
在本发明实施例中,可以将该目标气压差值与目标区域之间的映射关系存储到建筑物相邻楼层的气压差值数据库中。这样,本步骤可以根据目标用户当前所在的位置信息,确定目标用户位于的目标区域;并根据气压差值数据库中存储的映射关系,获取该目标区域对应的目标气压差值。
需要说明的是,本发明可以通过不断采集气压样本值,并根据气压样本值,更新该目标气压差值,从而提高了层数的获取准确率。
503、根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。
在本方案中,该基准楼层可以为已知层数的楼层。在一种可能的实现方式中,通常在该目标区域中可以首先获取到目标用户在第一楼层的气压值,因此,将该第一楼层作为该基准楼层,并将该目标用户在第一楼层的气压值作为该气压基准值,即该目标用户进入该目标区域内的时刻测量得到的气压值为该气压基准值。另外,考虑到目标区域包括建筑物的各个楼层及建筑物周围的预设区域范围内的室外,建筑物周围的预设区域范围内的室外通常可以认为属于第一楼层,因此,本发明还可以通过各个用户的定位信息,获取建筑物周围的预设区域范围内的室外采集到多个区域气压值,并基于该区域气压值获取该气压基准值,即计算该多个区域气压值的平均值得到该气压基准值。在另一种可能的实现方式中,由于目标用户从第一楼层运动至目标楼层的情况下,可以根据本发明所述的楼层层数的获取方法得到该目标楼层的层数,因此,该目标楼层也可以作为该基准楼层,并将该目标用户在该基准楼层的气压值作为该气压基准值。
在本发明实施例中,可以通过但不限于以下方式获取待确定楼层的层数:
方式一、根据气压检测值以及气压基准值,获取待确定楼层与基准楼层之间的当前气压差值;以及通过当前气压差值以及目标气压差值,确定待确定楼层的层数。
其中,若该目标区域包括单个楼层区域,则将当前气压差值以及目标气压差值进行相除得到第一相除结果,根据第一相除结果确定待确定楼层的层数。其中,若该气压基准值为第一楼层的气压值,则该第一相除结果即为待确定楼层的层数;若该气压基准值为非第一楼层的气压值,则计算该第一相除结果与该非第一楼层的层数之间的和值得到待确定楼层的层数。
若该目标区域包括多个楼层区域,则可以采用列方程的方式,并通过迭代求解获取该待确定楼层与该第一楼层之间,包括的不同楼层区域的楼层数。其中,若该气压基准值为第一楼层的气压值,则计算该不同楼层区域的楼层数的和值,得到该待确定楼层的层数;若该气压基准值为非第一楼层的气压值,则可以计算该不同楼层区域的楼层数的层数和值,以及计算层数和值以 及非第一楼层的层数之间的和值得到该待确定楼层的层数。
方式二、根据至少一个楼层区域分别对应的目标气压差值,确定出至少一个楼层区域分别对应的单楼层高度值;以及根据气压基准值以及气压检测值,确定待确定楼层与基准楼层之间的相对高度值。
其中,若该目标区域包括单个楼层区域,则将相对高度值与单楼层高度值进行相除得到第二相除结果,根据第二相除结果确定待确定楼层的层数。其中,若该气压基准值为第一楼层的气压值,则该第二相除结果即为待确定楼层的层数;若该气压基准值为非第一楼层的气压值,则计算该第二相除结果与该非第一楼层的层数之间的和值得到待确定楼层的层数。
若该目标区域包括多个楼层区域,则同样可以采用列方程的方式,并通过迭代求解方式确定待确定楼层与该非第一楼层之间,包括的不同楼层区域的楼层数。其中,若该气压基准值为第一楼层的气压值,则该不同楼层区域的楼层数的和值即为待确定楼层的层数;若该气压基准值为非第一楼层的气压值,则计算不同楼层区域的楼层数的层数和值,并计算该层数和值与该非第一楼层的层数之间的和值得到待确定楼层的层数,需要说明的是,上述相对高度值指的是基准楼层与待确定楼层之间的垂直高度。
具体地,可以根据上述目标气压差值以及预设的标准气压高度公式计算出目标区域内的单楼层高度值;同理,还可以根据气压基准值以及气压检测值之间的差值的绝对值、以及该预设的标准气压高度公式可以计算出目标用户当前所在的待确定楼层与基准楼层之间的相对高度值。另外,本发明还可以根据目标区域中不同楼层采集到的气压样本值、温度样本值建立神经网络(如BP神经网络),并根据遗传算法的原理对该神经网络进行优化并完成其训练学习过程,得到上述的标准气压高度公式。
采用上述方法,获取目标区域中的待确定楼层的气压检测值;获取目标区域包括的至少一个楼层区域分别对应的目标气压差值;目标气压差值为楼层区域中任意两个相邻楼层之间的气压差值;根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。这样,本发明基于目标区域包括的任一楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,以便可以通过待确定楼层的气压检测值和基准楼层的气压基准值,获取到待确定楼层相对于基准楼层的当前气压差值,从而根据当前气压差值与目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。
图6是本发明实施例公开的一种楼层层数的获取方法的流程示意图。本实施例可以应用于楼层层数的获取系统中,如图7所示,该系统包括监控设备701、服务器702以及终端设备703,该监控设备701与该服务器702进行双向通信,该服务器702与该终端设备703进行双向通信。
如图6所示,该方法可以包括以下步骤:
601、监控设备向服务器发送楼层定位请求。
其中,监控设备中设置有楼层定位界面,在该楼层定位界面中展示有与该监控设备存在绑定关系的多个候选终端设备,以便携有该监控设备的监控人员从候选终端设备中选取需要进行定位的终端设备,并触发该楼层定位界面中的定位元素。这样,在该监控设备检测到该触发操作的情况下,生成该楼层定位请求,该楼层定位请求中包括该终端设备的设备标识。
602、服务器在接收到楼层定位请求的情况下,向终端设备发送气压值获取请求。
603、终端设备根据气压值获取请求,采集终端设备当前所在目标区域中的待确定楼层的气压检测值。
具体过程可以参考步骤501,不再赘述。
604、终端设备向服务器发送该气压检测值以及目标区域的区域标识。
605、服务器在接收到终端设备发送的气压检测值以及目标区域的区域标识的情况下,根据目标区域的区域标识,获取目标区域包括的至少一个楼层区域分别对应的目标气压差值;目标气压差值为楼层区域中任意两个相邻楼层之间的气压差值。
其中,两个相邻楼层的层数之间的差值为1,不同楼层区域对应的单楼层高度不同。
具体过程可以参考步骤502,不再赘述。
606、服务器根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。
具体过程可以参考步骤503,不再赘述。
607、服务器将待确定楼层的层数发送至监控设备。
在本发明实施例中,在一种可能的实现方式中,监控设备可以将待确定楼层的层数向监控用户进行展示,以便监控人员可以及时得到终端设备对应的目标用户的定位信息;在另一种可能的实现方式中,监控设备中预先设置有安全楼层范围,若该待确定楼层在该安全楼层范围内,则无需向监控人员进行提示;若该待确定楼层未在该安全楼层范围内,则可以向该监控人员进行提示,等等。
采用上述方法,服务器可以根据监控设备的定位获取需求获取终端设备当前所在的目标区域中的待确定楼层的气压检测值;并获取目标区域包括的至少一个楼层区域分别对应的的目标气压差值;以及根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。这样,本发明基于目标区域包括的任一楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,以便可以通过待确定楼层的气压检测值和基准楼层的气压基准值,获取到待确定楼层相对于基准楼层的当前气压差值,从而根据当前气压 差值与目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。
图8是本发明实施例公开的一种楼层层数的获取方法的流程示意图。本实施例可以应用于楼层层数的获取系统中,如图7所示,该系统包括监控设备701、服务器702以及终端设备703,该监控设备701与该服务器702进行双向通信,该服务器702与该终端设备703进行双向通信。
如图8所示,该方法可以包括以下步骤:
801、终端设备获取目标区域中的待确定楼层的气压检测值。
在本步骤中,终端设备可以按照预设周期采集该待确定楼层的气压检测值。具体过程可以参考步骤501,不再赘述。
802、终端设备向服务器发送气压检测值以及目标区域的区域标识。
803、服务器在接收到终端设备发送的气压检测值以及目标区域的区域标识的情况下,根据目标区域的区域标识,获取目标区域包括的至少一个楼层区域分别对应的目标气压差值;目标气压差值为楼层区域中任意两个相邻楼层之间的气压差值。
其中,两个相邻楼层的层数之间的差值为1,不同楼层区域对应的单楼层高度不同。
具体过程可以参考步骤502,不再赘述。
804、服务器根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。
具体过程可以参考步骤503,不再赘述。
805、服务器判断当前时刻是否属于预设的管控时间段内。
这样,可以通过设置管控时间段,以使得服务器无需实时向监控设备发送待确定楼层的层数,从而减少了数据传输量。其中,该管控时间段可以为监控设备对应的监控用户预先设置的时间段。
在当前时刻属于预设的管控时间段内的情况下,执行806;
在当前时刻不属于预设的管控时间段内的情况下,执行807。
806、服务器向监控设备发送待确定楼层的层数。
在本发明的另一实施例中,考虑到该待确定楼层中存在多个商铺,因此,在步骤806之前,还可以包括:确定该终端设备当前所在的目标商铺,判断该目标商铺是否属于预设的商铺集合;若该目标商铺不属于预设的商铺集合,则向监控设备发送提示消息,以提示终端设备对应的目标用户在管控时间段内处于非指定区域,若该目标商铺属于预设的商铺集合,则无需向监控设备发送提示消息,从而避免了该监控设备的提示消息较多导致的用户体验较差的问题。进一步地,本发明可以根据预设的楼层动态平面图确定目标用户当前所在待确定楼层对应的商铺列表;根据在目标用户的当前朝向位置检测到的WiFi热点列表,确定信号最强的目标WiFi热点;将目标WiFi热点的名 称与商铺列表所包括的商铺的名称进行匹配,将匹配成功的商铺确定为目标商铺,或者可以预先存储热点对应关系,该热点对应关系包括WiFi热点的名称与商铺名称之间的对应关系,从而基于该热点对应关系,获取该WiFi热点的名称对应的商铺名称。
示例地,该管控时间段可以为课余学习时间段,在该管控时间段内家长希望学生用户进行与学习有关的课余活动,例如在图书馆看书、去书店买书或者去课外教学辅导机构学习等等。因此,服务器可以通过查找楼层动态平面图确定出学生用户当前所在楼层所对应的商铺列表,并根据WiFi热点信号的强弱从商铺列表中确定出与学生用户距离最近的目标商铺,该目标商铺即为学生用户当前所在的商铺;进一步地,判断该目标商铺是否属于预设的与学习相关的商铺集合,如果不属于,说明该目标商铺不是与学习相关的商铺,因此可以向家长的监控设备发送提示信息,以提示用户在管控时间段内处于非学习区域;其中,上述楼层动态平面图可以包括目标区域中每个楼层的商铺的名称。
可见,本发明实施例,可以在定位目标用户所在楼层之后对目标用户位于该楼层的具体区域进行定位,使得监控用户能够精确掌握目标用户具体的位置坐标;另外,通过确定目标用户所在的具体区域的区域类别可以确定目标用户是否在预设的管控时间段内从事指定活动,实现了对目标用户精确管控,提高了学习管控效率。
807、服务器无需向监控设备发送待确定楼层的层数。
采用上述方法,本发明基于目标区域包括的任一楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,以便可以通过待确定楼层的气压检测值和基准楼层的气压基准值,获取到待确定楼层相对于基准楼层的当前气压差值,从而根据当前气压差值与目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。另外,本发明还可以预先设置有管控时间段,以使得服务器在管控时间段向监控设备发送楼层层数,减少了服务器的数据传输量。
图9是本发明实施例公开的一种楼层层数的获取方法的流程示意图。本实施例可以应用于楼层层数的获取系统中,如图7所示,该系统包括监控设备701、服务器702以及终端设备703,该监控设备701与该服务器702进行双向通信,该服务器702与该终端设备703进行双向通信。
如图9所示,该方法可以包括以下步骤:
901、终端设备获取目标区域中的待确定楼层的气压检测值。
在本步骤中,终端设备可以按照预设周期采集该待确定楼层的气压检测值。具体过程可以参考步骤501,不再赘述。
902、终端设备向服务器发送气压检测值以及目标区域的区域标识。
903、服务器在接收到终端设备发送的气压检测值以及目标区域的区域标识的情况下,根据目标区域的区域标识,获取目标区域包括的至少一个楼层区域分别对应的目标气压差值;目标气压差值为楼层区域中任意两个相邻楼层之间的气压差值。
其中,两个相邻楼层的层数之间的差值为1,不同楼层区域对应的单楼层高度不同,具体过程可以参考步骤502,不再赘述。
904、服务器根据气压检测值、目标气压差值以及目标区域中基准楼层的气压基准值,确定待确定楼层的层数。
具体过程可以参考步骤503,不再赘述。
905、服务器检测是否接收到监控设备发送的位置共享请求。
在接收到位置共享请求的情况下,执行906;
在未接收到位置共享请求的情况下,继续检测是否接收到监控设备发送的位置共享请求。
本发明实施例中,举例来说,监控设备的监控用户可以是家长,该目标用户可以为儿童,这样,当儿童外出时,家长希望能够及时获知儿童准确的位置情况,那么,家长可以通过监控设备向服务器发送位置共享请求,以获得孩子当前所在楼层的层数。
906、服务器获取目标用户的行走步数。
本发明实施例中,服务器可以接收目标用户携带的终端设备发送的目标用户的行走步数。进一步地,本发明可以按照预设采集周期,采集该目标用户的行走步数,其中,该行走步数的计数起始时刻为位置共享请求的接收时刻。
907、服务器判断行走步数是否大于预设步数阈值。
在该行走步数大于预设步数阈值的情况下,执行908和909;
在行走步数小于或者等于预设步数阈值,执行910。
需要说明的是,在本发明的另一实施例中,若该行走步数大于预设步数阈值,则可以确定该目标用户当前所在的楼层发生变更,从而返回步骤901,若该行走步数小于或者等于预设步数阈值,则可以确定该目标用户当前所在的楼层未发生变更,执行910。
908、服务器获取实时网络连接数据,并计算实时网络连接数据与历史网络连接数据的重合度;其中,该历史网络连接数据的采集时刻与服务器确定待确定楼层的层数的时刻相同。
本发明实施例中,网络连接数据可以包括WiFi热点列表,而WiFi热点列表可以包括多个WiFi热点;并且每个WiFi热点列表所包括的WiFi热点的数量可以相同。
这样,服务器计算实时网络连接数据与历史网络连接数据的重合度,可以包括:将实时WiFi热点列表中的各个WiFi热点的名称与历史WiFi热点列表中各个WiFi热点的名称进行比较;确定出名称相同的目标WiFi热点的 数量为第一数量;将第一数量与第二数量的比值确定为实时网络连接数据与历史网络连接数据的重合度;其中,第二数量为WiFi热点列表所包括的所有WiFi热点的数量。举例来说,实时WiFi热点列表以及历史WiFi热点列表的WiFi热点数量均为10个;将实时WiFi热点列表的WiFi热点的名称以及历史WiFi热点列表的WiFi热点的名称进行比较,得到名称相同的目标WiFi热点的数量为5个,那么,容易得到实时网络连接数据与历史网络连接数据的重合度为50%。
909、服务器判断重合度是否大于预设重合度阈值。
在重合度大于预设重合度阈值的情况下,执行910;
在该重合度小于或者等于预设重合度阈值,返回步骤901。
本发明实施例中,如果上述重合度大于预设重合度阈值,可以说明目标用户当前未离开历史网络连接数据所对应的网络覆盖范围(例如WiFi热点的网络覆盖范围);反之,如果上述重合度小于或者等于预设重合度阈值,说明用户当前已离开该历史网络连接数据所对应的网络覆盖范围。
910、服务器将待确定楼层的层数共享给监控设备。
本发明实施例中,服务器还可以将目标区域对应的位置坐标以及用户当前所在楼层的层数发送给监控设备,以实现位置共享。
另外,图9所示实施例为本发明中的一种可选实施例,本发明对此不作限定,需要说明的是,在步骤906之后,若行走步数小于或者等于预设步数阈值,则将该待确定楼层的层数共享给监控设备;在步骤909之后,若重合度小于或者等于预设重合度阈值,则可以确定目标用户所在楼层发生变更,因此,需要返回步骤901。
采用上述方法,本发明基于目标区域包括的任一楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,以便可以通过待确定楼层的气压检测值和基准楼层的气压基准值,获取到待确定楼层相对于基准楼层的当前气压差值,从而根据当前气压差值与目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。另外,在接收到监控设备发送的位置共享请求的情况下,依次通过比较用户行走步数、网络连接数据的变化情况来判断目标用户是否离开当前所在楼层,并在判断出目标用户未离开当前所在楼层时将待确定楼层的层数共享给监控设备,避免了重复采集气压检测值以及获取楼层的层数的步骤,提高了定位共享的效率。
需要说明的是,对于上述方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
图10是本发明实施例公开的一种楼层层数的获取装置的结构示意图。 如图10所示,该装置10可以包括:
检测值获取模块1001,用于获取目标区域中的待确定楼层的气压检测值;
目标气压差值获取模块1002,用于获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值;所述目标气压差值为所述楼层区域中任意两个相邻楼层之间的气压差值;
层数确定模块1003,用于根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数。
图11是本发明实施例公开的一种楼层层数的获取装置的结构示意图。如图11所示,该目标气压差值获取模块1002可以包括:
气压标准值获取子模块10021,用于获取所述目标区域中多个楼层对应的气压标准值;
气压差值获取子模块10022,用于根据所述气压标准值,对所述多个楼层进行排序,并获取排序相邻的两个楼层的第一气压差值;
气压差值聚类子模块10023,用于对所述第一气压差值进行聚类,得到第一气压差值集合;
目标气压差值获取子模块10024,用于通过所述第一气压差值集合,获取所述待确定楼层所属目标区域的目标气压差值。
可选地,所述气压标准值获取子模块10021,用于采集所述目标区域内的多个气压样本值;
对所述气压样本值进行聚类,得到所述目标区域中多个楼层对应的气压样本集合;以及,
通过所述气压样本集合,获取所述目标区域中多个楼层对应的气压标准值。
可选地,所述目标气压差值获取子模块10024,用于获取每个所述第一气压差值集合对应的气压差标准值;
根据所述气压差标准值,对所述第一气压差值集合进行排序,并获取排序相邻的两个所述第一气压差值集合的第二气压差值,将所述第二气压差值作为待聚类气压差值,并循环执行待聚类气压差值更新步骤,直至满足循环终止条件;所述循环终止条件包括所述待聚类气压差值进行聚类后得到单个目标聚类集合;
若所述单个目标聚类集合对应的气压差标准值在预设数值区间内,则将所述单个目标聚类集合对应的气压差标准值作为所述目标区域包括的单个楼层区域对应的目标气压差值;
若所述单个目标聚类集合对应的气压差标准值大于所述数值区间的最大值,则根据所述单个目标聚类集合对应的气压差标准值,获取所述目标区域包括的单个楼层区域对应的目标气压差值;以及,
若所述单个目标聚类集合对应的气压差标准值小于所述预设数值区间的最小值,则获取所述单个目标聚类集合未执行最新的待聚类气压差值更新 步骤之前的目标待聚类气压差值,以及通过所述目标待聚类气压差值,获取所述目标区域包括的多个楼层区域分别对应的目标气压差值。
可选地,所述待聚类气压差值更新步骤包括:将所述待聚类气压差值进行聚类得到聚类集合,判断所述聚类集合是否属于单个集合,在所述聚类集合不属于单个集合的情况下,获取所述聚类集合分别对应的待排序气压差标准值,通过所述待排序气压差标准值,对所述聚类集合进行排序,并将排序相邻的两个所述聚类集合的气压差值更新为所述待聚类气压差值。
可选地,所述目标气压差值获取子模块10024,还用于将所述第二气压差值和最小气压差标准值作为待聚类气压差值;
所述待聚类气压差值更新步骤包括:将所述待聚类气压差值进行聚类得到聚类集合,判断所述聚类集合是否属于单个集合,在所述聚类集合不属于单个集合的情况下,获取所述聚类集合分别对应的待排序气压差标准值,通过所述待排序气压差标准值,对所述聚类集合进行排序,并将排序相邻的两个所述聚类集合的气压差值、以及最小待排序气压差标准值更新为所述待聚类气压差值。
图12是本发明实施例公开的一种楼层层数的获取装置的结构示意图。如图12所示,所述层数确定模块1003,包括:
当前气压差值获取子模块10031,用于根据所述气压检测值以及所述气压基准值,获取所述待确定楼层与所述基准楼层之间的当前气压差值;
层数确定子模块10032,用于通过所述当前气压差值以及所述目标气压差值,确定所述待确定楼层的层数。
上述装置实施例的具体内容可以参考方法实施例,不再赘述。
采用上述装置,本发明基于目标区域包括的任一楼层区域中任两个相邻楼层的气压差值比较接近,因此可以预先获取到不同楼层区域中任两个相邻楼层对应的目标气压差值,以便可以通过待确定楼层的气压检测值和基准楼层的气压基准值,获取到待确定楼层相对于基准楼层的当前气压差值,从而根据当前气压差值与目标气压差值得到待确定楼层的层数,实现了对楼层的层数进行定位,提高了定位准确性。
请参阅图13,图13是本发明实施例公开的一种电子设备的结构示意图。其中,电子设备可以为终端设备、监控设备或服务器。如图13所示,该电子设备可以包括:
存储有可执行程序代码的存储器1301;
与存储器1301耦合的处理器1302;
其中,处理器1302调用存储器1301中存储的可执行程序代码,执行以上各方法实施例中的方法的部分或全部步骤。
本发明实施例还公开一种计算机可读存储介质,其中,计算机可读存储介质存储了程序代码,其中,程序代码包括用于执行以上各方法实施例中的方法的部分或全部步骤的指令。
本发明实施例还公开一种计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行如以上各方法实施例中的方法的部分或全部步骤。
本发明实施例还公开一种应用发布平台,其中,应用发布平台用于发布计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行如以上各方法实施例中的方法的部分或全部步骤。
应理解,说明书通篇中提到的“本发明实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在本发明实施例中”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明所提供的实施例中,应理解,“与A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可位于一个地方,或者也可以分布到多个网络单元上。可根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可获取的存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或者部分,可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干请求用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本发明的各个实施例上述方法的部分或全部步骤。
以上对本发明实施例公开的一种楼层层数的获取方法、装置、电子设备及存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (26)

  1. 一种基于层次聚类的楼层层数计算方法,其特征在于,包括:
    获取目标室内定位场景下楼层对应的气压标准值;
    对所有所述气压标准值进行排序,计算排序后相邻两个所述气压标准值之间的差值,并根据所述差值确定楼层间距气压差值;
    对所有所述楼层间距气压差值进行层次聚类,并根据层次聚类结果确定所述目标室内场景中相邻楼层的气压差值,以及将所述相邻楼层的气压差值存储到建筑物相邻楼层高度气压差值指纹库;
    检测是否接收到楼层定位请求;其中,所述楼层定位请求用于请求获取用户当前所在楼层的层数;
    如果是,获取所述目标室内定位场景的基准平面的初始气压值、用户当前所在楼层的测量气压值,并从所述建筑物相邻楼层高度气压差值指纹库中获取所述相邻楼层的气压差值,根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的层数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取目标室内定位场景下楼层的气压标准值,包括:
    选取定位在所述目标室内定位场景的样本用户数据;其中,所述样本用户数据至少包括样本气压数据;
    对所述样本气压数据进行层次聚类,得到所述目标室内定位场景下楼层对应的气压数据集合;
    根据每个所述气压数据集合的算术平均值确定出对应楼层的气压标准值。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的层数,包括:
    根据所述相邻楼层间的气压差值确定出所述目标室内定位场景中的单楼层高度值;
    根据所述初始气压值以及所述测量气压值确定出用户当前所在楼层与所述基准平面之间的相对高度值;
    将所述相对高度值与所述单楼层高度值进行相除,根据相除结果确定用户当前所在楼层的层数。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的 层数之后,所述方法还包括:
    检测是否接收到监控终端发送的位置共享请求;
    如果接收到所述位置共享请求,获取用户的行走步数;
    判断所述行走步数是否大于预设步数阈值;
    如果所述行走步数不大于所述预设步数阈值,将用户当前所在楼层的层数共享给所述监控终端。
  5. 根据权利要求4所述的方法,其特征在于,如果所述行走步数大于所述预设步数阈值,所述方法还包括:
    获取用户的实时网络连接数据;
    计算所述实时网络连接数据与历史网络连接数据的重合度;其中,所述历史网络连接数据的采集时刻与电子设备确定用户当前所在楼层的层数的时刻相同;
    判断所述重合度是否高于预设重合度阈值;
    如果所述重合度高于所述预设重合度阈值,执行所述的将用户当前所在楼层的层数共享给所述监控终端。
  6. 一种电子设备,其特征在于,包括:
    第一获取单元,用于获取目标室内定位场景下楼层对应的气压标准值;
    计算单元,用于对所有所述气压标准值进行排序,计算排序后相邻两个所述气压标准值之间的差值,并根据所述差值确定楼层间距气压差值;
    聚类单元,用于对所有所述楼层间距气压差值进行层次聚类,并根据层次聚类结果确定所述目标室内场景中相邻楼层的气压差值;
    存储单元,用于将所述相邻楼层的气压差值存储到建筑物相邻楼层高度气压差值指纹库;
    检测单元,用于检测是否接收到楼层定位请求;其中,所述楼层定位请求用于请求获取用户当前所在楼层的层数;
    第二获取单元,用于在所述检测单元的检测结果为是时,获取所述目标室内定位场景的基准平面的初始气压值、用户当前所在楼层的测量气压值,以及从所述建筑物相邻楼层高度气压差值指纹库中获取所述相邻楼层的气压差值;
    确定单元,用于根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的层数。
  7. 根据权利要求6所述的电子设备,其特征在于,所述第一获取单元,包括:
    选取子单元,用于选取定位在所述目标室内定位场景的样本用户数据; 其中,所述样本用户数据至少包括样本气压数据;
    聚类子单元,用于对所述样本气压数据进行层次聚类,得到所述目标室内定位场景下楼层对应的气压数据集合;
    第一确定子单元,用于根据每个所述气压数据集合的算术平均值确定出对应楼层的气压标准值。
  8. 根据权利要求7所述的电子设备,其特征在于,所述确定单元,包括:
    第二确定子单元,用于根据所述相邻楼层间的气压差值确定出所述目标室内定位场景中的单楼层高度值,以及根据所述初始气压值以及所述测量气压值确定出用户当前所在楼层与所述基准平面之间的相对高度值;
    计算子单元,用于将所述相对高度值与所述单楼层高度值进行相除,根据相除结果确定用户当前所在楼层的层数。
  9. 根据权利要求6所述的电子设备,其特征在于,所述检测单元,还用于在所述确定单元根据所述初始气压值、所述测量气压值以及所述相邻楼层的气压差值确定用户当前所在楼层的层数之后,检测是否接收到监控终端发送的位置共享请求;
    所述第二获取单元,还用于在所述检测单元的检测结果为是时,获取用户的行走步数;
    判断单元,用于判断所述行走步数是否大于预设步数阈值;
    共享单元,用于在所述判断单元判断出所述行走步数不大于所述预设步数阈值时,将用户当前所在楼层的层数共享给所述监控终端。
  10. 根据权利要求9所述的电子设备,其特征在于,所述第二获取单元,还用于在所述判断单元断出所述行走步数大于所述预设步数阈值时,获取用户的实时网络连接数据;
    所述计算单元,还用于计算所述实时网络连接数据与历史网络连接数据的重合度;其中,所述历史网络连接数据的采集时刻与电子设备确定用户当前所在楼层的层数的时刻相同;
    所述判断单元,还用于判断所述重合度是否高于预设重合度阈值;
    所述共享单元,还用于在所述判断单元判断出所述重合度高于所述预设重合度阈值时,将用户当前所在楼层的层数共享给所述监控终端。
  11. 一种楼层层数的获取方法,其特征在于,所述方法包括:
    获取目标区域中的待确定楼层的气压检测值;
    获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值;所述目标气压差值为所述楼层区域中任意两个相邻楼层之间的气压差值;
    根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数。
  12. 根据权利要求11所述的方法,其特征在于,所述获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值,包括:
    获取所述目标区域中多个楼层对应的气压标准值;
    根据所述气压标准值,对所述多个楼层进行排序,并获取排序相邻的两个楼层的第一气压差值;
    对所述第一气压差值进行聚类,得到第一气压差值集合;
    通过所述第一气压差值集合,获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值。
  13. 根据权利要求12所述的方法,其特征在于,所述获取所述目标区域中多个楼层对应的气压标准值,包括:
    采集所述目标区域内的多个气压样本值;
    对所述气压样本值进行聚类,得到所述目标区域中多个楼层对应的气压样本集合;
    通过所述气压样本集合,获取所述目标区域中多个楼层对应的气压标准值。
  14. 根据权利要求12所述的方法,其特征在于,所述通过所述第一气压差值集合,获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值,包括:
    获取每个所述第一气压差值集合对应的气压差标准值;
    根据所述气压差标准值,对所述第一气压差值集合进行排序,并获取排序相邻的两个所述第一气压差值集合的第二气压差值,将所述第二气压差值作为待聚类气压差值,并循环执行待聚类气压差值更新步骤,直至满足循环终止条件;所述循环终止条件包括所述待聚类气压差值进行聚类后得到单个目标聚类集合;
    若所述单个目标聚类集合对应的气压差标准值在预设数值区间内,则将所述单个目标聚类集合对应的气压差标准值作为所述目标区域包括的单个楼层区域对应的目标气压差值;
    若所述单个目标聚类集合对应的气压差标准值大于所述预设数值区间的最大值,则根据所述单个目标聚类集合对应的气压差标准值,获取所述目标区域包括的单个楼层区域对应的目标气压差值;以及,
    若所述单个目标聚类集合对应的气压差标准值小于所述预设数值区间的最小值,则获取所述单个目标聚类集合未执行最新的待聚类气压差值更新 步骤之前的待聚类气压差值集合,以及通过所述待聚类气压差值集合,获取所述目标区域包括的多个楼层区域分别对应的目标气压差值。
  15. 根据权利要求14所述的方法,其特征在于,所述待聚类气压差值更新步骤包括:将所述待聚类气压差值进行聚类得到聚类集合,判断所述聚类集合是否属于单个集合,在所述聚类集合不属于单个集合的情况下,获取所述聚类集合分别对应的待排序气压差标准值,通过所述待排序气压差标准值,对所述聚类集合进行排序,并将排序相邻的两个所述聚类集合的气压差值更新为所述待聚类气压差值。
  16. 根据权利要求14所述的方法,其特征在于,所述将所述第二气压差值作为待聚类气压差值,包括:
    将所述第二气压差值和最小气压差标准值作为待聚类气压差值;
    所述待聚类气压差值更新步骤包括:将所述待聚类气压差值进行聚类得到聚类集合,判断所述聚类集合是否属于单个集合,在所述聚类集合不属于单个集合的情况下,获取所述聚类集合分别对应的待排序气压差标准值,通过所述待排序气压差标准值,对所述聚类集合进行排序,并将排序相邻的两个所述聚类集合的气压差值、以及最小待排序气压差标准值更新为所述待聚类气压差值。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,所述根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数,包括:
    根据所述气压检测值以及所述气压基准值,获取所述待确定楼层与所述基准楼层之间的当前气压差值;
    通过所述当前气压差值以及所述目标气压差值,确定所述待确定楼层的层数。
  18. 一种楼层层数的获取装置,其特征在于,所述装置包括:
    检测值获取模块,用于获取目标区域中的待确定楼层的气压检测值;
    目标气压差值获取模块,用于获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值;所述目标气压差值为所述楼层区域中任意两个相邻楼层之间的气压差值;
    层数确定模块,用于根据所述气压检测值、所述目标气压差值以及所述目标区域中基准楼层的气压基准值,确定所述待确定楼层的层数。
  19. 根据权利要求18所述的装置,其特征在于,所述目标气压差值获取模块包括:
    气压标准值获取子模块,用于获取所述目标区域中多个楼层对应的气压 标准值;
    气压差值获取子模块,用于根据所述气压标准值,对所述多个楼层进行排序,并获取排序相邻的两个楼层的第一气压差值;
    气压差值聚类子模块,用于对所述第一气压差值进行聚类,得到第一气压差值集合;
    目标气压差值获取子模块,用于通过所述第一气压差值集合,获取所述目标区域包括的至少一个楼层区域分别对应的目标气压差值。
  20. 根据权利要求19所述的装置,其特征在于,所述气压标准值获取子模块,用于采集所述目标区域内的多个气压样本值;
    对所述气压样本值进行聚类,得到所述目标区域中多个楼层对应的气压样本集合;以及,
    通过所述气压样本集合,获取所述目标区域中多个楼层对应的气压标准值。
  21. 根据权利要求19所述的装置,其特征在于,所述目标气压差值获取子模块,用于获取每个所述第一气压差值集合对应的气压差标准值;
    根据所述气压差标准值,对所述第一气压差值集合进行排序,并获取排序相邻的两个所述第一气压差值集合的第二气压差值,将所述第二气压差值作为待聚类气压差值,并循环执行待聚类气压差值更新步骤,直至满足循环终止条件;所述循环终止条件包括所述待聚类气压差值进行聚类后得到单个目标聚类集合;
    若所述单个目标聚类集合对应的气压差标准值在预设数值区间内,则将所述单个目标聚类集合对应的气压差标准值作为所述目标区域包括的单个楼层区域对应的目标气压差值;
    若所述单个目标聚类集合对应的气压差标准值大于所述数值区间的最大值,则根据所述单个目标聚类集合对应的气压差标准值,获取所述目标区域包括的单个楼层区域对应的目标气压差值;以及,
    若所述单个目标聚类集合对应的气压差标准值小于所述预设数值区间的最小值,则获取所述单个目标聚类集合未执行最新的待聚类气压差值更新步骤之前的目标待聚类气压差值,以及通过所述目标待聚类气压差值,获取所述目标区域包括的多个楼层区域分别对应的目标气压差值。
  22. 根据权利要求21所述的装置,其特征在于,所述待聚类气压差值更新步骤包括:将所述待聚类气压差值进行聚类得到聚类集合,判断所述聚类集合是否属于单个集合,在所述聚类集合不属于单个集合的情况下,获取所述聚类集合分别对应的待排序气压差标准值,通过所述待排序气压差标准 值,对所述聚类集合进行排序,并将排序相邻的两个所述聚类集合的气压差值更新为所述待聚类气压差值。
  23. 根据权利要求21所述的装置,其特征在于,所述目标气压差值获取子模块,还用于将所述第二气压差值和最小气压差标准值作为待聚类气压差值;
    所述待聚类气压差值更新步骤包括:将所述待聚类气压差值进行聚类得到聚类集合,判断所述聚类集合是否属于单个集合,在所述聚类集合不属于单个集合的情况下,获取所述聚类集合分别对应的待排序气压差标准值,通过所述待排序气压差标准值,对所述聚类集合进行排序,并将排序相邻的两个所述聚类集合的气压差值、以及最小待排序气压差标准值更新为所述待聚类气压差值。
  24. 根据权利要求18至23任一项所述的装置,其特征在于,所述层数确定模块,包括:
    当前气压差值获取子模块,用于根据所述气压检测值以及所述气压基准值,获取所述待确定楼层与所述基准楼层之间的当前气压差值;
    层数确定子模块,用于通过所述当前气压差值以及所述目标气压差值,确定所述待确定楼层的层数。
  25. 一种电子设备,其特征在于,所述电子设备包括:
    存储有可执行程序代码的存储器;
    与所述存储器耦合的处理器;
    所述处理器调用所述存储器中存储的所述可执行程序代码,执行权利要求1至5任一项所述的基于层次聚类的楼层层数计算方法的步骤,或者,执行权利要求11至17任一项所述的楼层层数的获取方法的步骤。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行权利要求1至5任一项所述的基于层次聚类的楼层层数计算方法的步骤,或者,执行权利要求11至17任一项所述的楼层层数的获取方法的步骤。
PCT/CN2019/115116 2019-04-28 2019-11-01 楼层层数的获取方法、装置、电子设备及存储介质 WO2020220629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910347715 2019-04-28
CN201910347715.7 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020220629A1 true WO2020220629A1 (zh) 2020-11-05

Family

ID=70516979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115116 WO2020220629A1 (zh) 2019-04-28 2019-11-01 楼层层数的获取方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN111144434B (zh)
WO (1) WO2020220629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116628462A (zh) * 2023-07-19 2023-08-22 中南大学 城市三维空间用地功能属性识别与时空变化监测分析方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412894A (zh) * 2020-05-13 2020-07-14 广东星舆科技有限公司 一种高精度定位方法、计算机介质及智能安全帽
CN111707233B (zh) * 2020-06-15 2023-05-30 Oppo广东移动通信有限公司 终端设备的定位方法、装置、终端设备及存储介质
CN112929961B (zh) * 2021-01-20 2022-08-05 每日互动股份有限公司 一种网络设备的定位方法、计算机设备及介质
CN113037829A (zh) * 2021-03-03 2021-06-25 读书郎教育科技有限公司 一种住宅小区精准定位的系统及方法
CN113645568B (zh) * 2021-08-12 2024-02-27 山东卡尔电气股份有限公司 一种基于智能定位器的楼层定位系统及其方法
CN114189806B (zh) * 2021-12-09 2023-08-15 北京百度网讯科技有限公司 一种生成无线信号指纹数据库的方法、装置及电子设备
CN115127515A (zh) * 2022-04-01 2022-09-30 广东小天才科技有限公司 楼层确定方法、装置、终端设备及存储介质
CN115049757A (zh) * 2022-06-02 2022-09-13 杭州海康威视系统技术有限公司 一种楼户信息确定方法、装置及电子设备
CN115979215B (zh) * 2022-11-28 2023-10-31 应急管理部大数据中心 一种楼层识别方法、装置及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714102A (zh) * 2016-11-15 2017-05-24 南京航空航天大学 一种利用智能手机辅助室内定位的方法
CN106851585A (zh) * 2017-01-12 2017-06-13 杭州电子科技大学 一种基于气压计和WiFi的混合楼层定位方法
CN107860358A (zh) * 2017-11-06 2018-03-30 江西师范大学 楼层的定位方法、系统、可读存储介质及智能终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162368B2 (en) * 2004-11-09 2007-01-09 Honeywell International Inc. Barometric floor level indicator
JP2015135303A (ja) * 2014-01-20 2015-07-27 学校法人幾徳学園 携帯端末を使用した所在階数推定システム、携帯端末及びプログラム
JP6188077B2 (ja) * 2014-02-24 2017-08-30 Kddi株式会社 携帯端末の位置するフロアレベルを推定する管理装置、プログラム、システム及び方法
JP6366105B2 (ja) * 2015-02-10 2018-08-01 Kddi株式会社 気圧値又は高度を用いて建物毎の階高を推定する管理装置、プログラム及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714102A (zh) * 2016-11-15 2017-05-24 南京航空航天大学 一种利用智能手机辅助室内定位的方法
CN106851585A (zh) * 2017-01-12 2017-06-13 杭州电子科技大学 一种基于气压计和WiFi的混合楼层定位方法
CN107860358A (zh) * 2017-11-06 2018-03-30 江西师范大学 楼层的定位方法、系统、可读存储介质及智能终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116628462A (zh) * 2023-07-19 2023-08-22 中南大学 城市三维空间用地功能属性识别与时空变化监测分析方法
CN116628462B (zh) * 2023-07-19 2023-10-31 中南大学 城市三维空间用地功能属性识别与时空变化监测分析方法

Also Published As

Publication number Publication date
CN111144434B (zh) 2023-10-31
CN111144434A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2020220629A1 (zh) 楼层层数的获取方法、装置、电子设备及存储介质
JP5746378B2 (ja) 移動体ロケーション判定のための方法及び装置
CN102572390B (zh) 对监视对象者的行动进行监视的装置以及方法
CN104054360B (zh) 用于确定多层建筑物中位置的位置信息的方法和装置
JP3488104B2 (ja) 移動体の特性抽出装置,特性抽出方法およびそのプログラム記録媒体
US10057725B2 (en) Sensor-based geolocation of a user device
US20130162481A1 (en) Systems and methods for calibration of indoor geolocation
US20110081634A1 (en) Behaviour Pattern Analysis System, Mobile Terminal, Behaviour Pattern Analysis Method, and Program
US20140018095A1 (en) Systems and methods for calibration based indoor geolocation
WO2020207201A1 (zh) 用户行为预测模型构建方法、装置、存储介质及电子设备
JP7001067B2 (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
US9801026B2 (en) Automatically determining relative locations of collaboration endpoints within a building
WO2019134469A1 (zh) 实体店查询方法和电子设备
CN111311748A (zh) 室内立体图构建方法及装置、终端设备和存储介质
Hicks et al. SmartMart: IoT-based in-store mapping for mobile devices
CA2940966A1 (en) Systems and methods for tracking, marketing, and/or attributing interest in one or more real estate properties
CN113420054B (zh) 信息统计方法、服务器、客户端及存储介质
JP6854474B2 (ja) 位置情報を利用した行動分析システム及びそのプログラム
CN114547386A (zh) 基于Wi-Fi信号的定位方法、装置,以及电子设备
CN111757284B (zh) 一种室内入口定位方法及电子设备
Radaelli et al. Towards fully organic indoor positioning
Zhou et al. Automatic construction of floor plan with smartphone sensors
JP7329484B2 (ja) 接触解析システム、接触解析方法およびプログラム
KR102638409B1 (ko) 휴대형 복합 신호수집 기기와 qr 코드를 활용한 실내외 통합 위치인식 방법 및 시스템
CN111898322B (zh) 一种数据处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927185

Country of ref document: EP

Kind code of ref document: A1