WO2020220498A1 - Aube de turbine basse pression ayant une surface d'aspiration ondulée - Google Patents

Aube de turbine basse pression ayant une surface d'aspiration ondulée Download PDF

Info

Publication number
WO2020220498A1
WO2020220498A1 PCT/CN2019/099411 CN2019099411W WO2020220498A1 WO 2020220498 A1 WO2020220498 A1 WO 2020220498A1 CN 2019099411 W CN2019099411 W CN 2019099411W WO 2020220498 A1 WO2020220498 A1 WO 2020220498A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
low
pressure turbine
wavy
wave
Prior art date
Application number
PCT/CN2019/099411
Other languages
English (en)
Chinese (zh)
Inventor
崔佳欢
刘俭
王稳
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020220498A1 publication Critical patent/WO2020220498A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations

Definitions

  • the invention relates to the technical field of civil aviation, in particular to a low-pressure turbine blade with a wavy suction surface, which is suitable for high-load and ultra-high-load low-pressure turbine blades of aero engines.
  • the aero engine is known as the "Flower of Industry” and is the embodiment of a country's comprehensive national strength.
  • Low-pressure turbine is one of the important parts of aero engine, its weight is about 25% of the weight of the whole machine, and the cost is about 15% of the cost of the whole machine. If the efficiency of the low-pressure turbine is increased by 1%, the oil consumption of the whole machine will be reduced by 0.5%-1.0%.
  • the main way to improve the performance of the low-pressure turbine has shifted from the aerodynamic performance of a single blade to improving the overall performance of the low-pressure turbine. It mainly includes: increasing the load of a single blade, reducing the number of blades, reducing the weight of the low-pressure turbine, and then reducing the overall cost (manufacturing cost and Flight cost). However, increasing the load of low-pressure turbine blades will increase the risk of boundary layer separation, and even open separation. If the design is slightly deviated, the ultra-high-load low-pressure turbine will greatly increase the fuel consumption rate and overall cost. Due to conservative design and to avoid boundary layer separation, traditional low-pressure turbine design loads are relatively low. However, in recent years, companies such as Rolls-Royce/GE have tried to adopt the design concept of ultra-high-load low-pressure turbines. The design of ultra-high-load low-pressure turbines will greatly reduce the number of blades and the weight of the turbine.
  • ultra-high-load low-pressure turbines can greatly reduce the number of blades and the weight of low-pressure turbines
  • studies have found that compared with traditional blades, ultra-high-load blades are more difficult to maintain high efficiency operation under all working conditions.
  • researchers have begun to use flow control methods to suppress separation bubbles and secondary flow losses on the suction surface of low-pressure turbines.
  • the existing flow control schemes are divided into two categories: active control and passive control.
  • Active control methods include flow direction momentum injection, boundary layer suction, flow direction vortex generation and excitation instability.
  • Passive control includes vortex generators, endwall fences, and thickening of the junction between the leading edge of the blade and the end wall.
  • the invention belongs to a passive separation method, which utilizes a wave-shaped suction surface to generate a counter-turning vortex, enhances the momentum exchange between the main flow and the boundary layer, and finally suppresses the generation of separation bubbles on the suction surface of the ultra-high load low-pressure turbine, suppresses loss, and reduces the backward angle.
  • the suction surface fluid is easy to separate and the loss is increased.
  • the present invention provides a low-pressure turbine blade with a wave-shaped suction surface. The wave-shaped setting is added on the suction surface, which can reduce the loss caused by separation bubbles, thereby improving turbine efficiency.
  • a low-pressure turbine blade with a wavy suction surface which is suitable for reducing the blade shape loss of aero-engine high-load and ultra-high-load low-pressure turbine blades.
  • the low-pressure turbine blade includes the front of the blade.
  • the shape of the suction side of the blade is a wave surface extending along the height of the blade. The wave surface starts at the leading edge of the blade and ends at the trailing edge of the blade.
  • the wave surface consists of the peak and the trailing edge of the blade.
  • the wave troughs are alternately connected.
  • the distance between the wave crest and the trough along the cascade pitch direction changes linearly from 0 to 2A, and then linearly decreases from 2A to 0, where A is The maximum amplitude of the wave crest surface and the trough surface, and the maximum amplitude is the fluid separation position.
  • the shape of an interface of the wave surface along the blade height direction is a sine wave.
  • the surface wave shape of the low-pressure turbine blade provided by the present invention forms a counter-rotating vortex near the trailing edge, and the low-energy part is substituted into the main flow through the counter-rotating vortex, effectively strengthening the kinetic energy exchange between the main flow and the boundary layer , Increase the kinetic energy of the boundary layer, suppress the formation of separation bubbles, and transform the original separation loss into a lower loss of the counter-rotating vortex loss.
  • the average airflow deviation angle and loss coefficient at the trailing edge are smaller than the original turbine blades. Realize the improvement of low pressure turbine performance.
  • Figure 1 is a schematic diagram of the original blade shape, wave crest blade shape and wave trough blade shape of the low-pressure turbine blade provided by the present invention
  • Figure 2 is a three-dimensional schematic diagram of a low-pressure turbine blade provided by the present invention.
  • Figure 3 is a front view of the low-pressure turbine blade provided by the present invention.
  • Figure 4 is a perspective view of a low-pressure turbine blade provided by the present invention.
  • the invention provides a low-pressure turbine blade with a wavy suction surface, which is suitable for reducing the blade shape loss of aero-engine high-load and ultra-high-load low-pressure turbine blades.
  • the low-pressure turbine blade includes a blade leading edge 1, a blade suction side 2, and a blade pressure Side 3 and the trailing edge 4 of the blade.
  • the shape of the suction side 2 of the blade is a wavy surface extending along the height of the blade. The wavy surface starts from the leading edge 1 of the blade and ends at the trailing edge 4 of the blade.
  • the wave crests and troughs of the wavy surface are connected alternately From the leading edge of the blade to the trailing edge of the blade, the distance between the crest and trough of the wave surface along the cascade pitch direction changes linearly from 0 to 2A, and then linearly decreases from 2A to 0, where A is the peak surface and The maximum amplitude of the trough surface, where the maximum amplitude is the fluid separation position.
  • the above-mentioned wave crest profile 6 and trough profile 7 are alternately arranged along the blade height direction, and finally obtain a low-loss low-loss turbine blade with a wave-shaped suction surface, as shown in FIG. 4.
  • the working principle of the blade structure for improving the performance of the low-pressure turbine provided by the present invention is described as follows: the low-pressure turbine blade that flows through this structure generates multiple sets of counter-turning vortices in the fluid through the wave protrusions, and increases the energy exchange between the main flow and the boundary layer. Achieve the effect of inhibiting separation bubbles.
  • the loss changes from the original boundary separation loss to the vortex loss.
  • the local position loss is greater than the original blade loss here, but the average loss decreases.
  • the airflow deviation angle also increases locally, but the overall decrease phenomenon.
  • the wavy blade does not reduce the secondary flow loss on the end wall, and only works in the two-dimensional flow region.

Abstract

L'invention concerne une aube de turbine basse pression ayant une surface d'aspiration ondulée, applicable à la réduction de perte de profil d'une aube de turbine basse pression à charge élevée et d'une aube de turbine basse pression à charge très élevée sur un moteur aéronautique. L'aube de turbine basse pression comprend un bord d'attaque d'aube (1), un côté d'aspiration d'aube (2), un côté pression d'aube (3) et un bord de fuite d'aube (4). La forme du côté aspiration d'aube (2) est une surface ondulée s'étendant dans une direction de hauteur de l'aube. La surface ondulée commence au bord d'attaque d'aube (1), et se termine au bord de fuite d'aube (4). La surface ondulée est formée par agencement alterné de crêtes et de creux. Du bord d'attaque d'aube (1) au bord de fuite d'aube (4), la distance entre la crête ondulée et le creux ondulé dans une direction de pas d'aube augmente linéairement de 0 à 2A et diminue linéairement de 2A à 0, où A est la plus grande amplitude de la surface ondulée. Le fluide se sépare de l'aube dans la position correspondant à la plus grande amplitude. La structure d'aube réduit efficacement la séparation du fluide de l'aube, réduit la perte et améliore les performances d'une turbine basse pression.
PCT/CN2019/099411 2019-04-30 2019-08-06 Aube de turbine basse pression ayant une surface d'aspiration ondulée WO2020220498A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910362243.2A CN110145370A (zh) 2019-04-30 2019-04-30 一种吸力面波浪形的低压涡轮叶片
CN201910362243.2 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220498A1 true WO2020220498A1 (fr) 2020-11-05

Family

ID=67593882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099411 WO2020220498A1 (fr) 2019-04-30 2019-08-06 Aube de turbine basse pression ayant une surface d'aspiration ondulée

Country Status (2)

Country Link
CN (1) CN110145370A (fr)
WO (1) WO2020220498A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855284B (zh) * 2021-01-18 2022-11-08 西北工业大学 一种低压涡轮静子叶片波浪前缘的构造方法
CN113847277B (zh) * 2021-10-17 2023-06-23 西北工业大学 吸力面有波纹凹槽的超声速多孔吸附式压气机叶片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069403A (en) * 1985-05-31 1991-12-03 Minnesota Mining And Manufacturing Company Drag reduction article
US5114099A (en) * 1990-06-04 1992-05-19 W. L. Chow Surface for low drag in turbulent flow
CN101344014A (zh) * 2007-07-09 2009-01-14 通用电气公司 用于回转式机械的翼型件及其制造方法
CN101716995A (zh) * 2009-10-12 2010-06-02 章成谊 波形翼与物体的波形表面
WO2014026246A1 (fr) * 2012-08-16 2014-02-20 Adelaide Research & Innovation Pty Ltd Configuration d'aile améliorée
EP3176368A1 (fr) * 2015-12-02 2017-06-07 United Technologies Corporation Profile d'aube à surfaces modifiées revêtues et non revêtues pour un moteur à turbine à gaz et procédé pour contrôler la direction de réflexion de l'énergie incidente à partir du profile d'aube

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021502A (ja) * 2000-07-04 2002-01-23 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk 翼列圧力損失低減装置
DE102008033861A1 (de) * 2008-07-19 2010-01-21 Mtu Aero Engines Gmbh Schaufel einer Strömungsmaschine mit Vortex-Generator
EP2261462A1 (fr) * 2009-06-02 2010-12-15 Alstom Technology Ltd Paroi d'extrémité pour un étage de turbine
EP2369133B1 (fr) * 2010-03-22 2015-07-29 Rolls-Royce Deutschland Ltd & Co KG Aube pour turbomachine
US9670901B2 (en) * 2014-03-21 2017-06-06 Siemens Aktiengesellschaft Trailing edge modifications for wind turbine airfoil
CN104314618B (zh) * 2014-10-09 2015-08-19 中国科学院工程热物理研究所 一种低压涡轮叶片结构及降低叶片损失的方法
CN106050319B (zh) * 2016-06-14 2017-11-17 中国科学院工程热物理研究所 用于航空燃气涡轮发动机的大攻角包容性涡轮叶片
US10465520B2 (en) * 2016-07-22 2019-11-05 General Electric Company Blade with corrugated outer surface(s)
CN210422698U (zh) * 2019-04-30 2020-04-28 浙江大学 吸力面波浪形的低压涡轮叶片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069403A (en) * 1985-05-31 1991-12-03 Minnesota Mining And Manufacturing Company Drag reduction article
US5114099A (en) * 1990-06-04 1992-05-19 W. L. Chow Surface for low drag in turbulent flow
CN101344014A (zh) * 2007-07-09 2009-01-14 通用电气公司 用于回转式机械的翼型件及其制造方法
CN101716995A (zh) * 2009-10-12 2010-06-02 章成谊 波形翼与物体的波形表面
WO2014026246A1 (fr) * 2012-08-16 2014-02-20 Adelaide Research & Innovation Pty Ltd Configuration d'aile améliorée
EP3176368A1 (fr) * 2015-12-02 2017-06-07 United Technologies Corporation Profile d'aube à surfaces modifiées revêtues et non revêtues pour un moteur à turbine à gaz et procédé pour contrôler la direction de réflexion de l'énergie incidente à partir du profile d'aube

Also Published As

Publication number Publication date
CN110145370A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
Johansen et al. Aerodynamic investigation of winglets on wind turbine blades using CFD
CN105298924B (zh) 基于座头鲸鳍状肢的压气机仿生学静叶及其实现方法
WO2020220498A1 (fr) Aube de turbine basse pression ayant une surface d'aspiration ondulée
CN103742203B (zh) 汽轮机末级长叶片
US20160177919A1 (en) Rotor blade for a wind turbine, and wind turbine field
Senoo Development of design method for supersonic turbine aerofoils near the tip of long blades in steam turbines: Part 1—Overall configuration
CN210422698U (zh) 吸力面波浪形的低压涡轮叶片
Lang et al. Performance enhancement of a centrifugal compressor stage using profiled end wall (PEW) treatments in the radial vaned diffuser
CN107152419A (zh) 一种根部串联多段叶型的大弯折角压气机静子叶片
CN111734577A (zh) 一种开缝式风力机叶片装置及开缝方法
Yongzhen et al. Passage shock wave/boundary layer interaction control for transonic compressors using bumps
CN112922904B (zh) 基于中介机匣导流的压气机新型扩稳结构
CN207297229U (zh) 一种风力发电机组的联合增功结构
CN112523809A (zh) 一种抑制涡轮转子叶片非定常气流激振力的方法
CN107084092A (zh) 一种风力发电机组的联合增功结构以及方法
CN203809057U (zh) 汽轮机末级长叶片
CN111622808B (zh) 一种基于汽轮机叶型改造的仿生叶片及设计方法
CN116090129A (zh) 耦合非轴对称端壁和叶片弯曲的涡轮造型方法
CN105298912A (zh) 鼓包前缘进口导向器叶片
Song et al. A numerical investigation of boundary layer suction in compound lean compressor cascades
CN214698163U (zh) 一种风力机叶片尖部小翼
Xin et al. Impact of Slots on the Aerodynamic Performance of the Variable Inlet Guide Vane Cascade of a Centrifugal Compressor
CN109101722B (zh) 一种涡轮机叶片复合成型设计方法
CN109117552B (zh) 一种涡轮机叶片变载荷流型设计方法
CN104895618B (zh) 超高负荷低压涡轮叶片、高负荷低压涡轮、航空燃气涡轮发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926952

Country of ref document: EP

Kind code of ref document: A1