WO2020218871A1 - Silver nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor - Google Patents

Silver nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor Download PDF

Info

Publication number
WO2020218871A1
WO2020218871A1 PCT/KR2020/005428 KR2020005428W WO2020218871A1 WO 2020218871 A1 WO2020218871 A1 WO 2020218871A1 KR 2020005428 W KR2020005428 W KR 2020005428W WO 2020218871 A1 WO2020218871 A1 WO 2020218871A1
Authority
WO
WIPO (PCT)
Prior art keywords
dissimilar metal
silver
doped
group
formula
Prior art date
Application number
PCT/KR2020/005428
Other languages
French (fr)
Korean (ko)
Inventor
이동일
김민석
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200049638A external-priority patent/KR102266900B1/en
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2020218871A1 publication Critical patent/WO2020218871A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Definitions

  • the present invention relates to a silver nanocluster magnetic material doped with dissimilar metal atoms and a method of manufacturing the same.
  • a nanocluster or superatom composed of a certain number of metal atoms and ligands follows the macroatomic orbital theory, in which the valence electrons of the particles are newly defined, and this is considered to be one giant atom. It is a theory.
  • Nanoclusters are stable compared to one atom or nanoparticles, and have strong molecular properties than metallic properties, and thus have optical and electrochemical properties that are completely different from nanoparticles.
  • optical, electrical and catalytic properties of nanoclusters are sensitively changed depending on the number of metal atoms, types of metal atoms, and ligands, research on nanoclusters is actively in progress in a wide variety of fields.
  • magnetic nanoparticles have a very diverse range of applications, and interest in magnetic nanoparticles is further amplified as various application fields using magnetism are developed, especially in the biomedical industry.
  • Such applications include magnetic resonance imaging (MRI) contrast agents, material separation using magnetism, drug delivery using magnetism, material sensor using magnetism, and high-frequency magnetic field heat treatment.
  • MRI magnetic resonance imaging
  • magnetic nanoparticles have a disadvantage in that the size and shape of the particles are non-uniform, and it is difficult to control the surface properties equally, so that the form of spin clustering is not clear and non-uniform.
  • nanocluster magnetic material has a very clear spin shape due to its completely uniform size and structure, and has excellent dispersibility in solution, so it can be used in various applications using magnetism. It can be possible.
  • the nanocluster magnetic material has a disadvantage in that magnets are smaller than that of magnetic nanoparticles, there is a need to develop a nanocluster magnetic material having a greater magnetic property.
  • Korean Patent Publication No. 10-1178512 is proposed as a prior document similar to this.
  • an object of the present invention is to provide a silver nanocluster magnetic material doped with dissimilar metal atoms, which has excellent magnetic properties, has a completely uniform size and structure, and has a very clear spin shape, and a method of manufacturing the same.
  • One aspect of the present invention relates to a silver nanocluster magnetic material doped with a dissimilar metal atom satisfying the following Formula 1.
  • SR is an organothiol-based ligand
  • M is ruthenium (Ru) or rhodium (Rh).
  • the organothiol-based ligand in Formula 1 may be an arylthiol having 6 to 30 carbon atoms in which C1-C10 alkyl is substituted.
  • another aspect of the present invention is a) preparing a reaction solution by reacting a silver precursor and an organic thiol-based ligand compound; And b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a nanocluster magnetic material that satisfies the following formula (1); including, a method for producing a silver nanocluster magnetic material doped with a dissimilar metal atom. will be.
  • SR is an organothiol-based ligand
  • M is ruthenium (Ru) or rhodium (Rh).
  • the molar ratio of the silver precursor: the dissimilar metal precursor may be 50: 0.8 to 1.2.
  • the silver precursor according to an embodiment of the present invention may be any one or two or more selected from the group consisting of AgNO 3 , AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgO 2 CCH 3 and AgPF 6 .
  • the magnetic material of the silver nanocluster doped with dissimilar metal atoms according to the present invention may maintain the intrinsic characteristics of the doped atom as it is by doping one ruthenium atom or rhodium atom into the silver nanocluster, and thus may have excellent magnetic properties.
  • the size and structure may be completely uniform, and accordingly, the spin shape may be very clear.
  • MRI magnetic resonance imaging
  • RhAg 24 SPhMe 2 18 .
  • RhAg 24 (SPhMe 2 ) 18 is a 1 H NMR analysis result of RhAg 24 (SPhMe 2 ) 18 .
  • UV-Vis ultraviolet-visible light
  • first, second, A, B, (a) and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
  • Existing magnetic nanoparticles have very good magnetic properties, but the size and shape of the particles are non-uniform, and it is difficult to control the same surface properties, and thus, there is a disadvantage in that the spin dense form is not clear and non-uniform.
  • nanocluster magnetic bodies unlike magnetic nanoparticles of non-uniform size and shape, nanocluster magnetic bodies have a very clear spin shape as they are completely uniform in size and structure, but have a disadvantage in that magnets are smaller than magnetic nanoparticles.
  • the present inventors showed that the nanoclusters in which 24 silver atoms and 1 dissimilar metal atom are bonded in a specific structure have the same configuration, so that the size and structure are completely uniform, and the intrinsic characteristics of the doped atoms
  • the present invention was completed by discovering that it can be maintained as it is and has excellent magnetic properties.
  • one aspect of the present invention relates to a silver nanocluster magnetic material doped with a dissimilar metal atom satisfying the following Formula 1.
  • SR is an organothiol-based ligand
  • M is ruthenium (Ru) or rhodium (Rh).
  • the magnetic material of the silver nanocluster doped with dissimilar metal atoms according to the present invention is doped with one ruthenium atom or rhodium atom in the silver nanocluster, so that the intrinsic characteristics of the doped atom can be maintained as it is, and thus can have excellent magnetic properties. .
  • the size and structure may be completely uniform, and accordingly, the spin shape may be very clear.
  • MRI magnetic resonance imaging
  • the organic thiol-based ligand SR is a C1-C30 alkanthiol, a C6-C30 arylthiol, a C3-C30 cycloalcanthiol, a C5-C30 hetero It may be any one or two or more selected from the group consisting of arylthiol, heterocycloalkanethiol having 3 to 30 carbon atoms, and arylalkanethiol having 6 to 30 carbon atoms, and the organothiol-based ligand is one or more hydrogens in the functional group as a substituent.
  • the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I), a nitro group, a cyano group, a hydroxy group, an amino group, and 6 to 20 carbon atoms.
  • an aryl group an alkenyl group having 2 to 7 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 20 carbon atoms, or a heteroaryl group having 4 to 20 carbon atoms, provided that the number of carbon atoms of the organic thiol-based ligand described above is It does not include the number of carbon atoms of the substituent.
  • the alkyl group may be linear or branched.
  • the organothiol-based ligand is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronin, thiolated poly(ethylene glycol), It may be any one or two or more selected from the group consisting of p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane), but is not limited thereto.
  • the organic thiol-based ligand SR may be any one or two or more selected from the group consisting of arylthiol having 6 to 30 carbon atoms, heteroaryl thiol having 5 to 30 carbon atoms, arylalkanthiol having 6 to 30 carbon atoms, etc.
  • one or more hydrogens in the functional group may be further substituted or not substituted with a substituent, in which case, the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I) , A nitro group, a cyano group, a hydroxy group, an amino group, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 20 carbon atoms or a heterocycloalkyl group having 4 to 20 carbon atoms It is an aryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent.
  • the alkyl group may be linear or branched
  • the organothiol-based ligand may be 2,4-dimethylbenzenethiol.
  • the use of an alkylarylthiol-based compound as a ligand can greatly improve the yield of a silver nanocluster magnetic body doped with a dissimilar metal atom during synthesis.
  • the organothiol-based ligand according to an embodiment of the present invention may be an arylthiol having 6 to 30 carbon atoms in which C1-C10 alkyl is substituted.
  • another aspect of the present invention relates to a method for manufacturing a method of manufacturing a magnetic substance doped with a silver nanocluster of the heterometallic atom, comprising: a) preparing a reaction solution by reacting a silver precursor and an organic thiol-based ligand compound; And b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a magnetic nanocluster that satisfies Formula 1 below.
  • SR is an organothiol-based ligand
  • M is ruthenium (Ru) or rhodium (Rh)
  • SR in Formula 1 is the same as described above, and redundant descriptions are omitted.
  • the silver nanoclusters are doped with one ruthenium atom or rhodium atom, so that the intrinsic properties of the doped atoms are maintained as they are, so that a nanocluster magnetic body having excellent magnetic properties can be effectively manufactured.
  • nanocluster magnetic body having the same configuration with 24 silver atoms, 1 heterometal atom, and 18 organothiol-based ligands, and the nanocluster magnetic body prepared accordingly can be completely uniform in size and structure.
  • the spin shape can be very clear.
  • the mixing ratio between the metal precursors, the addition amount of the reducing agent, and the selection of the solvent may be important, and this will be described in detail below.
  • a step of reacting a reaction solution including a silver precursor and an organic thiol-based ligand compound may be performed.
  • the silver precursor may be used without particular limitation as long as it is commonly used in the art, and as a specific example, AgNO 3 , AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgO 2 CCH 3 and AgPF 6 may be any one or two or more selected from the group consisting of, preferably AgNO 3 is good in improving the synthesis efficiency to use.
  • the organothiol-based ligand compound may be RSH, which is a compound before hydrogen falls compared to the SR, and as a specific example, an alkanethiol having 1 to 30 carbon atoms, an arylthiol having 6 to 30 carbon atoms , C3-C30 cycloalkanethiol, C5-C30 heteroarylthiol, C3-C30 heterocycloalkanethiol, C6-C30 arylalkanethiol, etc.
  • RSH is a compound before hydrogen falls compared to the SR
  • an alkanethiol having 1 to 30 carbon atoms an arylthiol having 6 to 30 carbon atoms
  • C3-C30 cycloalkanethiol C5-C30 heteroarylthiol
  • C3-C30 heterocycloalkanethiol C6-C30 arylalkanethiol
  • one or more hydrogens in the functional group may be further substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I ), nitro group, cyano group, hydroxy group, amino group, aryl group having 6 to 20 carbon atoms, alkenyl group having 2 to 7 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, heterocycloalkyl group having 3 to 20 carbon atoms or 4 to 20 carbon atoms It is a heteroaryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent.
  • the alkyl group may be linear or branched.
  • the organothiol-based ligand compound is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronin, thiolated poly(ethylene glycol) , p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane) may be any one or two or more selected from the group consisting of, but is not limited thereto.
  • the organic thiol-based ligand compound SR may be any one or two or more selected from the group consisting of arylthiol having 6 to 30 carbon atoms, heteroaryl thiol having 5 to 30 carbon atoms, arylalkanthiol having 6 to 30 carbon atoms, etc.
  • one or more hydrogens in the functional group may be further substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I ), nitro group, cyano group, hydroxy group, amino group, aryl group having 6 to 20 carbon atoms, alkenyl group having 2 to 7 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, heterocycloalkyl group having 3 to 20 carbon atoms or 4 to 20 carbon atoms It is a heteroaryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent.
  • the alkyl group may be linear or branched.
  • the organothiol-based ligand compound may be 2,4-dimethylbenzenethiol.
  • the yield of the silver nanocluster magnetic material doped with dissimilar metal atoms can be greatly improved during synthesis.
  • the mixing ratio of the silver precursor and the organic thiol-based ligand compound may be a ratio commonly mixed in the art, and as a specific example, the molar ratio of the silver precursor: the organic thiol-based ligand compound is 1: It may be 1 to 10, more preferably 1: 1.5 to 6, even more preferably 1: 2 to 4. In such a range, the synthesis efficiency is excellent and reaction impurities can be reduced.
  • the reaction solution of step a) may further include a solvent to improve the dissolution and reaction ease of the silver precursor, and the solvent is specifically limited if it is commonly used in the art Can be used without.
  • the solvent is dichloromethane, water, alcohol having 1 to 5 carbon atoms, acetonitrile, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, tetrahydrofuran (THF) and 1,4- It may be any one or two or more mixed solvents selected from the group consisting of dioxane and the like, preferably methanol, tetrahydrofuran, or a mixed solvent thereof. In this case, 50 to 100 ml of the solvent may be added based on 1 mmol of the silver precursor, but is not limited thereto.
  • b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a nanocluster magnetic material satisfying Formula 1 may be performed.
  • the mixing ratio of the silver precursor to the dissimilar metal precursor may be particularly important in manufacturing the silver nanocluster magnetic body doped with dissimilar metal atoms.
  • the molar ratio of the silver precursor: the dissimilar metal precursor may be 50: 0.8 to 1.2, more preferably 50: 0.9 to 1.1, particularly preferably 50: 1.
  • a silver nanocluster magnetic material doped with a dissimilar metal atom can be effectively prepared, and when the number of moles of the dissimilar metal precursor is too large relative to the molar ratio, a reaction in which the silver atom is substituted with a dissimilar metal atom may not be performed.
  • Ru ruthenium
  • the dissimilar metal precursor may be dissolved in the second solvent and added to the reaction solution.
  • the second solvent may be the same as the solvent, and in particular, the second solvent may be a mixed solvent of water and tetrahydrofuran (THF).
  • THF tetrahydrofuran
  • the volume ratio of water: tetrahydrofuran (THF) may be 1: 2 to 8, more preferably 1: 2.5 to 6, and most preferably 1: 3 to 5. Synthesis efficiency may be excellent in this range.
  • the reaction catalyst and the reducing agent may be used without particular limitation as long as they are commonly used in the art, and as a specific example, the reaction catalyst may be tetraphenylphosphine bromide (PPh 4 Br), etc. And, the reducing agent may be NaBH 4 or the like, but is not limited thereto.
  • reaction catalyst may be added in an amount of 0.01 to 0.1 mmol based on 1 mmol of the silver precursor, and the reducing agent may be added in an amount of 1 to 3 mmol based on 1 mmol of the silver precursor, but this is only an example and the present invention is It is not limited.
  • an additional purification process may be further performed to obtain a high-purity nanocluster magnetic material, and the additional purification process may be performed through a conventional method.
  • RuCl 3 was dissolved in 1 ml of a mixed solvent of THF:H 2 O mixed in a volume ratio of 4:1 and added to the reaction solution, and then tetraphenylphosphine bromide (PPh 4 Br) 0.014 mmol (in 0.5 Ml methanol) was added sequentially, and NaBH 4 0.4 mmol (in 0.5 ml H 2 O) was quickly added at once. Then, the mixture was further stirred for 5 hours to synthesize RuAg 24 (SPhMe 2 ) 18 .
  • PPh 4 Br tetraphenylphosphine bromide
  • the mixture was aged for 12 hours, and then the supernatant and the precipitate were separated through centrifugation to dry the precipitate.
  • RhAg 24 SPhMe 2
  • RhAg 24 (SPhMe 2) 18 in each of the electrospray ionization mass spectrometry (ESI-MS) results, showing the measured value that exactly matches the structure RuAg 24 (SPhMe 2) 18, and It was confirmed that RhAg 24 (SPhMe 2 ) 18 was well synthesized as a single substance.
  • RhAg 24 (SPhMe 2 ) 18 , as shown in FIG. 2, Ag 3d peaks appear at 368.2 eV and 374.7 eV, and peak areas Was 19548. The Rh 3d peak appeared at 307.63 eV and 312.33 eV, and the peak area was 1054. The S 2p peak appeared at 162.25 eV and 163.41 eV, and the peak area was 13405. The P 2p peak appeared at 133 eV and 133.87 eV, and the peak area was 1041. When this peak area is expressed as a ratio, it can be expressed as [Rh 1.3 Ag 23.7 (SPhMe 2 ) 17.2 ] 1- (PPh 4 ) 1+ , and it was observed that it has a -1 charge.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 3 and 4 are RuAg 24 (SPhMe 2) 18 and RhAg 24 (SPhMe 2) 18 in each of the 1 H NMR results, as in the XPS results, Figure 3 is [Ru 1 Ag 24 (SPhMe 2 ) 18] 1 - (PPh 4 ) 1+ , FIG. 4 shows the structure of [Rh 1 Ag 24 (SPhMe 2 ) 18 ] 1- (PPh 4 ) 1+ , confirming that the two nanoclusters each have -1 charge. there was.
  • UV-Vis ultraviolet-visible light
  • RhAg 24 (SPhMe 2 ) 18 it was confirmed that characteristic absorption occurs at 1.1 V and 1.82 V, respectively. At this time. The absorption peak near 1 V indicates that the nanocluster is a distortion structure. On the other hand, in the case of RhAg 24 (SPhMe 2 ) 18 , absorption occurred at 1.84 V and 2.51 V, respectively, and no absorption peak appeared near 1 V. Rhodium (Rh)-substituted nanoclusters are also structurally distorted, but absorption at low energy is forbidden, and thus does not appear in UV-Vis absorption.
  • FIG. 6 is a square wave voltamogram analysis data of RuAg 24 (SPhMe 2 ) 18 and RhAg 24 (SPhMe 2 ) 18 , wherein the horizontal axis is voltage (V vs AgQRE), and the vertical axis is current (A).

Abstract

The present invention relates to a silver nanocluster magnetic body doped with a dissimilar metal atom, and a preparation method therefor, and can provide: a silver nanocluster magnetic body doped with a dissimilar metal atom, having excellent magnetic characteristics, having a completely uniform size and structure so as to have a very clear spin form, and having excellent dispersibility in a solution; and a preparation method therefor.

Description

이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법Silver nanocluster magnetic material doped with dissimilar metal atoms and manufacturing method thereof
본 발명은 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법에 관한 것이다.The present invention relates to a silver nanocluster magnetic material doped with dissimilar metal atoms and a method of manufacturing the same.
특정 개수의 금속 원자와 리간드로 구성되는 나노클러스터(nanocluster) 또는 거대원자(superatom)는 입자가 가지는 정전위상 전자(valence electron)가 새롭게 정의되는 거대원자 오비탈 이론을 따르며, 이를 하나의 거대한 원자로 보겠다는 이론이다.A nanocluster or superatom composed of a certain number of metal atoms and ligands follows the macroatomic orbital theory, in which the valence electrons of the particles are newly defined, and this is considered to be one giant atom. It is a theory.
나노클러스터는 원자 하나 또는 나노입자(nanoparticle) 대비 안정적이며, 금속적인 성질보다 분자적인 성질이 강해 나노입자와는 전혀 다른 광학적 및 전기화학적 성질을 가진다. 특히, 나노클러스터는 금속 원자의 개수, 금속 원자의 종류 및 리간드 등에 따라 광학적, 전기적 및 촉매적 성질이 민감하게 달라짐에 따라, 매우 다양한 분야에서 나노클러스터에 관한 연구가 활발하게 진행 중이다.Nanoclusters are stable compared to one atom or nanoparticles, and have strong molecular properties than metallic properties, and thus have optical and electrochemical properties that are completely different from nanoparticles. In particular, as the optical, electrical and catalytic properties of nanoclusters are sensitively changed depending on the number of metal atoms, types of metal atoms, and ligands, research on nanoclusters is actively in progress in a wide variety of fields.
한편, 자성 나노입자는 매우 다양한 응용 범위를 가지고 있으며, 특히 바이오 의료 산업에 있어 자성을 이용한 다양한 응용 분야가 개발됨에 따라 자성 나노입자에 대한 관심이 더욱 증폭되고 있다. 이러한 응용 범위는 자기공명영상(MRI) 조영제, 자성을 이용한 물질 분리, 자성을 이용한 약물 전달, 자성을 이용한 물질 센서 및 고주파 자기장 열 치료 등이 있다.Meanwhile, magnetic nanoparticles have a very diverse range of applications, and interest in magnetic nanoparticles is further amplified as various application fields using magnetism are developed, especially in the biomedical industry. Such applications include magnetic resonance imaging (MRI) contrast agents, material separation using magnetism, drug delivery using magnetism, material sensor using magnetism, and high-frequency magnetic field heat treatment.
그러나, 자성 나노입자는 입자의 크기 및 모양이 불균일하고, 그 표면 특성을 동일하게 제어하는 것이 어려움에 따라, 스핀 밀집 형태가 분명하지 않고 불균일하다는 단점이 있다.However, magnetic nanoparticles have a disadvantage in that the size and shape of the particles are non-uniform, and it is difficult to control the surface properties equally, so that the form of spin clustering is not clear and non-uniform.
반면, 나노클러스터 자성체는 크기 및 모양이 불균일한 자성 나노입자와는 달리 크기와 구조가 완전히 균일함에 따라 스핀 형태가 매우 분명하고, 용액에서의 분산성이 우수하여 자성을 이용한 다양한 응용 분야에 활용이 가능할 수 있다.On the other hand, unlike magnetic nanoparticles of non-uniform size and shape, nanocluster magnetic material has a very clear spin shape due to its completely uniform size and structure, and has excellent dispersibility in solution, so it can be used in various applications using magnetism. It can be possible.
다만, 상기 나노클러스터 자성체는 자성 나노입자 대비 자성(magnets)이 작다는 단점이 있음에 따라, 보다 큰 자성을 가진 나노클러스터 자성체에 대한 개발이 요구되고 있다.However, since the nanocluster magnetic material has a disadvantage in that magnets are smaller than that of magnetic nanoparticles, there is a need to develop a nanocluster magnetic material having a greater magnetic property.
이와 유사한 선행문헌으로는 대한민국 등록특허공보 제10-1178512호가 제시되어 있다.Korean Patent Publication No. 10-1178512 is proposed as a prior document similar to this.
상기와 같은 문제점을 해결하기 위하여 본 발명은 우수한 자성 특성을 가지며, 크기와 구조가 완전히 균일하여 스핀 형태가 매우 분명한 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a silver nanocluster magnetic material doped with dissimilar metal atoms, which has excellent magnetic properties, has a completely uniform size and structure, and has a very clear spin shape, and a method of manufacturing the same.
본 발명의 일 양태는 하기 화학식 1을 만족하는 이종금속 원자가 도핑된 은 나노클러스터 자성체에 관한 것이다.One aspect of the present invention relates to a silver nanocluster magnetic material doped with a dissimilar metal atom satisfying the following Formula 1.
[화학식 1][Formula 1]
MAg 24(SR) 18 MAg 24 (SR) 18
(상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 로듐(Rh)이다.)(In Formula 1, SR is an organothiol-based ligand, and M is ruthenium (Ru) or rhodium (Rh).)
바람직하게 본 발명의 일 실시예에 따른, 화학식 1에서 유기티올계 리간드는 C1-C10알킬이 치환된 탄소수 6 내지 30의 아릴티올일 수 있다.Preferably, the organothiol-based ligand in Formula 1 according to an embodiment of the present invention may be an arylthiol having 6 to 30 carbon atoms in which C1-C10 alkyl is substituted.
또한, 본 발명의 다른 일 양태는 a) 은 전구체 및 유기티올계 리간드 화합물을 반응시켜 반응용액을 제조하는 단계; 및 b) 상기 반응용액에 이종금속 전구체, 반응 촉매 및 환원제를 첨가하여 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함하는, 이종금속 원자가 도핑된 은 나노클러스터 자성체의 제조방법에 관한 것이다.In addition, another aspect of the present invention is a) preparing a reaction solution by reacting a silver precursor and an organic thiol-based ligand compound; And b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a nanocluster magnetic material that satisfies the following formula (1); including, a method for producing a silver nanocluster magnetic material doped with a dissimilar metal atom. will be.
[화학식 1][Formula 1]
MAg 24(SR) 18 MAg 24 (SR) 18
(상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 로듐(Rh)이다.)(In Formula 1, SR is an organothiol-based ligand, and M is ruthenium (Ru) or rhodium (Rh).)
상기 다른 일 양태에 있어, 상기 은 전구체 : 이종금속 전구체의 몰비는 50 : 0.8 내지 1.2일 수 있다.In the other aspect, the molar ratio of the silver precursor: the dissimilar metal precursor may be 50: 0.8 to 1.2.
바람직하게 본 발명의 일 실시예에 따른 은 전구체는 AgNO 3, AgBF 4, AgCF 3SO 3, AgClO 4, AgO 2CCH 3 및 AgPF 6으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있다.Preferably, the silver precursor according to an embodiment of the present invention may be any one or two or more selected from the group consisting of AgNO 3 , AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgO 2 CCH 3 and AgPF 6 .
바람직하게 본 발명의 일 실시예에 따른 이종금속 전구체는 RuCl 3, Ru(NO)Cl 3 및 Ru(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.)에서 선택되는 어느 하나 또는 둘 이상이거나, RhCl 3, Rh(NO)Cl 3 및 Rh(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.)에서 선택되는 어느 하나 또는 둘 이상일 수 있다.Preferably, the dissimilar metal precursor according to an embodiment of the present invention is RuCl 3 , Ru(NO)Cl 3 and Ru(NO)(NO 3 ) a (OH) b (where a and b are each selected from 0 to 3 Or two or more selected from RhCl 3 , Rh(NO)Cl 3 and Rh(NO)(NO 3 ) a (OH) b (where a and b is an integer selected from 0 to 3, respectively, and may be any one or more than one selected from a+b=3).
본 발명에 따른 이종금속 원자가 도핑된 은 나노클러스터 자성체는 은 나노클러스터에 루테늄 원자 또는 로듐 원자가 하나 도핑됨으로써 도핑된 원자의 고유 특성이 그대로 유지될 수 있으며, 이에 따라 우수한 자성 특성을 가질 수 있다.The magnetic material of the silver nanocluster doped with dissimilar metal atoms according to the present invention may maintain the intrinsic characteristics of the doped atom as it is by doping one ruthenium atom or rhodium atom into the silver nanocluster, and thus may have excellent magnetic properties.
아울러, 은 원자 24개, 이종금속 원자 1개 및 유기티올계 리간드 18개로 동일한 구성을 가짐에 따라 그 크기와 구조가 완전히 균일할 수 있으며, 이에 따라 스핀 형태가 매우 분명할 수 있다.In addition, as they have the same configuration with 24 silver atoms, 1 heterometallic atom, and 18 organothiol-based ligands, the size and structure may be completely uniform, and accordingly, the spin shape may be very clear.
또한, 우수한 자성 특성을 가짐과 동시에 용매에 대한 분산성이 우수하여 자기공명영상(MRI) 조영제로써의 응용성이 높을 수 있다.In addition, since it has excellent magnetic properties and has excellent dispersibility in a solvent, its applicability as a magnetic resonance imaging (MRI) contrast medium may be high.
도 1은 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 전기분무 이온화 질량 분석(ESI-MS) 결과이다.1 is a result of electrospray ionization mass spectrometry (ESI-MS) of each of RuAg 24 (SPhMe 2 ) 18 and RhAg 24 (SPhMe 2 ) 18 .
도 2는 RhAg 24(SPhMe 2) 18의 X선 광전자 분광법(XPS, X-ray photoelectron spectroscopy) 분석 결과이다.2 is an X-ray photoelectron spectroscopy (XPS, X-ray photoelectron spectroscopy) analysis result of RhAg 24 (SPhMe 2 ) 18 .
도 3은 RuAg 24(SPhMe 2) 181H NMR 분석 결과이다.3 is a 1 H NMR analysis result of RuAg 24 (SPhMe 2 ) 18 .
도 4는 RhAg 24(SPhMe 2) 181H NMR 분석 결과이다.4 is a 1 H NMR analysis result of RhAg 24 (SPhMe 2 ) 18 .
도 5는 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 자외선-가시광선(UV-Vis) 광(optical) 스펙트럼 분석 결과이다.5 is an analysis result of ultraviolet-visible light (UV-Vis) light (optical) spectrum of each of RuAg 24 (SPhMe 2 ) 18 and RhAg 24 (SPhMe 2 ) 18 .
도 6은 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 구형파 볼타모그램 분석 자료이다.6 is a square wave voltagram analysis data of RuAg 24 (SPhMe 2 ) 18 and RhAg 24 (SPhMe 2 ) 18, respectively.
도 7은 평행(parallel) 또는 수직(perpendicular) 모드에서 측정한 [RuAg 24(SPhMe 2) 18] -1 및 [RhAg 24(SPhMe 2) 18] -1 각각의 전자스핀공명 분광도(EPR, electron paramagnetic resonance)이다.7 is a [RuAg 24 (SPhMe 2 ) 18 ] -1 and [RhAg 24 (SPhMe 2 ) 18 ] -1 electron spin resonance spectroscopy (EPR, electron) measured in a parallel or vertical mode. paramagnetic resonance).
이하 첨부한 도면들을 참조하여 본 발명에 따른 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법에 대하여 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. Hereinafter, a magnetic material of a silver nanocluster doped with a dissimilar metal atom and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided as examples so that the spirit of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. Also, throughout the specification, the same reference numerals indicate the same elements.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, unless there are other definitions in the technical terms and scientific terms used, they have the meanings commonly understood by those of ordinary skill in the technical field to which this invention belongs, and the gist of the present invention in the following description and accompanying drawings Description of known functions and configurations that may be unnecessarily obscure will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.In addition, in describing the constituent elements of the present invention, terms such as first, second, A, B, (a) and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
기존 자성 나노입자는 매우 우수한 자성 특성을 가지나, 입자의 크기 및 모양이 불균일하고, 그 표면 특성을 동일하게 제어하는 것이 어려움에 따라, 스핀 밀집 형태가 분명하지 않고 불균일하다는 단점이 있었다. 반면, 나노클러스터 자성체는 크기 및 모양이 불균일한 자성 나노입자와는 달리 크기와 구조가 완전히 균일함에 따라 스핀 형태가 매우 분명하나, 자성 나노입자 대비 자성(magnets)이 작다는 단점이 있었다.Existing magnetic nanoparticles have very good magnetic properties, but the size and shape of the particles are non-uniform, and it is difficult to control the same surface properties, and thus, there is a disadvantage in that the spin dense form is not clear and non-uniform. On the other hand, unlike magnetic nanoparticles of non-uniform size and shape, nanocluster magnetic bodies have a very clear spin shape as they are completely uniform in size and structure, but have a disadvantage in that magnets are smaller than magnetic nanoparticles.
이에 본 발명자들은 연구를 심화한 결과, 은 원자 24개 및 이종금속 원자 1개가 특정 구조로 결합된 나노클러스터가 동일한 구성을 가짐에 따라 그 크기와 구조가 완전히 균일하면서도, 도핑된 원자의 고유 특성이 그대로 유지되어 우수한 자성 특성을 가질 수 있음을 발견하여 본 발명을 완성하기에 이르렀다.Accordingly, as a result of intensifying research, the present inventors showed that the nanoclusters in which 24 silver atoms and 1 dissimilar metal atom are bonded in a specific structure have the same configuration, so that the size and structure are completely uniform, and the intrinsic characteristics of the doped atoms The present invention was completed by discovering that it can be maintained as it is and has excellent magnetic properties.
상세하게, 본 발명의 일 양태는 하기 화학식 1을 만족하는 이종금속 원자가 도핑된 은 나노클러스터 자성체에 관한 것이다.In detail, one aspect of the present invention relates to a silver nanocluster magnetic material doped with a dissimilar metal atom satisfying the following Formula 1.
[화학식 1][Formula 1]
MAg 24(SR) 18 MAg 24 (SR) 18
(상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 로듐(Rh)이다.)(In Formula 1, SR is an organothiol-based ligand, and M is ruthenium (Ru) or rhodium (Rh).)
이처럼, 본 발명에 따른 이종금속 원자가 도핑된 은 나노클러스터 자성체는 은 나노클러스터에 루테늄 원자 또는 로듐 원자가 하나 도핑됨으로써 도핑된 원자의 고유 특성이 그대로 유지될 수 있으며, 이에 따라 우수한 자성 특성을 가질 수 있다.As described above, the magnetic material of the silver nanocluster doped with dissimilar metal atoms according to the present invention is doped with one ruthenium atom or rhodium atom in the silver nanocluster, so that the intrinsic characteristics of the doped atom can be maintained as it is, and thus can have excellent magnetic properties. .
아울러, 은 원자 24개, 이종금속 원자 1개 및 유기티올계 리간드 18개로 동일한 구성을 가짐에 따라 그 크기와 구조가 완전히 균일할 수 있으며, 이에 따라 스핀 형태가 매우 분명할 수 있다.In addition, as they have the same configuration with 24 silver atoms, 1 heterometallic atom, and 18 organothiol-based ligands, the size and structure may be completely uniform, and accordingly, the spin shape may be very clear.
또한, 우수한 자성 특성을 가짐과 동시에 용매에 대한 분산성이 우수하여 자기공명영상(MRI) 조영제로써의 응용성이 높을 수 있다.In addition, since it has excellent magnetic properties and has excellent dispersibility in a solvent, its applicability as a magnetic resonance imaging (MRI) contrast medium may be high.
보다 구체적으로, 본 발명의 일 예에 따른 상기 유기티올계 리간드인 SR은 탄소수 1 내지 30의 알칸티올, 탄소수 6 내지 30의 아릴티올, 탄소수 3 내지 30의 사이클로알칸티올, 탄소수 5 내지 30의 헤테로아릴티올, 탄소수 3 내지 30의 헤테로사이클로알칸티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.More specifically, the organic thiol-based ligand SR according to an embodiment of the present invention is a C1-C30 alkanthiol, a C6-C30 arylthiol, a C3-C30 cycloalcanthiol, a C5-C30 hetero It may be any one or two or more selected from the group consisting of arylthiol, heterocycloalkanethiol having 3 to 30 carbon atoms, and arylalkanethiol having 6 to 30 carbon atoms, and the organothiol-based ligand is one or more hydrogens in the functional group as a substituent. It may be further substituted or unsubstituted, and in this case, the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I), a nitro group, a cyano group, a hydroxy group, an amino group, and 6 to 20 carbon atoms. An aryl group, an alkenyl group having 2 to 7 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 20 carbon atoms, or a heteroaryl group having 4 to 20 carbon atoms, provided that the number of carbon atoms of the organic thiol-based ligand described above is It does not include the number of carbon atoms of the substituent. In addition, in all functional groups including the alkyl group, the alkyl group may be linear or branched.
더욱 구체적인 일 예시로, 상기 유기티올계 리간드는 펜탄티올, 헥산티올, 헵탄티올, 2,4-디메틸벤젠티올, 2-페닐에탄티올, 글루타티온, 티오프로닌, 티올레이티드 폴리(에틸렌글리콜), p-머캅토페놀 및 (r-머캅토프로필)-트리메톡시실란) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.In a more specific example, the organothiol-based ligand is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronin, thiolated poly(ethylene glycol), It may be any one or two or more selected from the group consisting of p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane), but is not limited thereto.
바람직하게, 상기 유기티올계 리간드인 SR은 탄소수 6 내지 30의 아릴티올, 탄소수 5 내지 30의 헤테로아릴티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.Preferably, the organic thiol-based ligand SR may be any one or two or more selected from the group consisting of arylthiol having 6 to 30 carbon atoms, heteroaryl thiol having 5 to 30 carbon atoms, arylalkanthiol having 6 to 30 carbon atoms, etc. , In the organic thiol-based ligand, one or more hydrogens in the functional group may be further substituted or not substituted with a substituent, in which case, the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I) , A nitro group, a cyano group, a hydroxy group, an amino group, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 20 carbon atoms or a heterocycloalkyl group having 4 to 20 carbon atoms It is an aryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent. In addition, in all functional groups including the alkyl group, the alkyl group may be linear or branched.
더욱 바람직한 일 구체예로, 상기 유기티올계 리간드는 2,4-디메틸벤젠티올일 수 있다. 이처럼 알킬아릴티올계 화합물을 리간드로 사용함으로써 합성 시 이종금속 원자가 도핑된 은 나노클러스터 자성체의 수득률을 매우 크게 향상시킬 수 있어 좋다.In a more preferred embodiment, the organothiol-based ligand may be 2,4-dimethylbenzenethiol. As described above, the use of an alkylarylthiol-based compound as a ligand can greatly improve the yield of a silver nanocluster magnetic body doped with a dissimilar metal atom during synthesis.
바람직하게 본 발명의 일 실시예에 따른 유기티올계 리간드는 C1-C10알킬이 치환된 탄소수 6 내지 30의 아릴티올일 수 있다.Preferably, the organothiol-based ligand according to an embodiment of the present invention may be an arylthiol having 6 to 30 carbon atoms in which C1-C10 alkyl is substituted.
또한, 본 발명의 다른 일 양태는 상기 이종금속 원자가 도핑된 은 나노클러스터 자성체의 제조방법의 제조방법에 관한 것으로, a) 은 전구체 및 유기티올계 리간드 화합물을 반응시켜 반응용액을 제조하는 단계; 및 b) 상기 반응용액에 이종금속 전구체, 반응 촉매 및 환원제를 첨가하여 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함할 수 있다.In addition, another aspect of the present invention relates to a method for manufacturing a method of manufacturing a magnetic substance doped with a silver nanocluster of the heterometallic atom, comprising: a) preparing a reaction solution by reacting a silver precursor and an organic thiol-based ligand compound; And b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a magnetic nanocluster that satisfies Formula 1 below.
[화학식 1][Formula 1]
MAg 24(SR) 18 MAg 24 (SR) 18
상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 로듐(Rh)으로, 화학식 1의 SR은 상기에 기재된 바와 동일한 바, 중복설명은 생략한다.In Formula 1, SR is an organothiol-based ligand, M is ruthenium (Ru) or rhodium (Rh), and SR in Formula 1 is the same as described above, and redundant descriptions are omitted.
이와 같은 방법을 통해 은 나노클러스터에 루테늄 원자 또는 로듐 원자가 하나 도핑됨으로써 도핑된 원자의 고유 특성이 그대로 유지되어, 우수한 자성 특성을 가진 나노클러스터 자성체를 효과적으로 제조할 수 있다.Through this method, the silver nanoclusters are doped with one ruthenium atom or rhodium atom, so that the intrinsic properties of the doped atoms are maintained as they are, so that a nanocluster magnetic body having excellent magnetic properties can be effectively manufactured.
아울러, 은 원자 24개, 이종금속 원자 1개 및 유기티올계 리간드 18개로 동일한 구성을 가진 나노클러스터 자성체를 제조할 수 있으며, 이에 따라 제조된 나노클러스터 자성체는 그 크기와 구조가 완전히 균일할 수 있으며, 스핀 형태가 매우 분명할 수 있다.In addition, it is possible to prepare a nanocluster magnetic body having the same configuration with 24 silver atoms, 1 heterometal atom, and 18 organothiol-based ligands, and the nanocluster magnetic body prepared accordingly can be completely uniform in size and structure. , The spin shape can be very clear.
이하, 이종금속 원자가 도핑된 은 나노클러스터 자성체의 제조방법에 대하여 보다 상세하게 설명한다.Hereinafter, a method of manufacturing a magnetic silver nanocluster doped with dissimilar metal atoms will be described in more detail.
이때, 화학식 1을 만족하는 나노클러스터 자성체를 효과적으로 합성하기 위해서는 각 금속 전구체 간의 혼합 비율, 환원제의 첨가량 및 용매의 선정이 중요할 수 있으며, 이에 대하여는 하기에 상세하게 설명한다.In this case, in order to effectively synthesize the magnetic nanocluster material satisfying Formula 1, the mixing ratio between the metal precursors, the addition amount of the reducing agent, and the selection of the solvent may be important, and this will be described in detail below.
먼저, a) 은 전구체 및 유기티올계 리간드 화합물을 포함하는 반응용액을 반응시키는 단계를 수행할 수 있다.First, a) a step of reacting a reaction solution including a silver precursor and an organic thiol-based ligand compound may be performed.
본 발명의 일 예에 있어, 상기 은 전구체는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적인 일 예시로, AgNO 3, AgBF 4, AgCF 3SO 3, AgClO 4, AgO 2CCH 3 및 AgPF 6으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 AgNO 3를 사용하는 것이 합성 효율을 향상시킴에 있어 좋다.In an example of the present invention, the silver precursor may be used without particular limitation as long as it is commonly used in the art, and as a specific example, AgNO 3 , AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgO 2 CCH 3 and AgPF 6 may be any one or two or more selected from the group consisting of, preferably AgNO 3 is good in improving the synthesis efficiency to use.
본 발명의 일 예에 있어, 상기 유기티올계 리간드 화합물은 상기 SR 대비 수소가 떨어지기 전의 화합물인 RSH일 수 있으며, 구체적인 일 예시로, 탄소수 1 내지 30의 알칸티올, 탄소수 6 내지 30의 아릴티올, 탄소수 3 내지 30의 사이클로알칸티올, 탄소수 5 내지 30의 헤테로아릴티올, 탄소수 3 내지 30의 헤테로사이클로알칸티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.In one example of the present invention, the organothiol-based ligand compound may be RSH, which is a compound before hydrogen falls compared to the SR, and as a specific example, an alkanethiol having 1 to 30 carbon atoms, an arylthiol having 6 to 30 carbon atoms , C3-C30 cycloalkanethiol, C5-C30 heteroarylthiol, C3-C30 heterocycloalkanethiol, C6-C30 arylalkanethiol, etc. Can be any one or two or more selected from the group consisting of In the organic thiol-based ligand, one or more hydrogens in the functional group may be further substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I ), nitro group, cyano group, hydroxy group, amino group, aryl group having 6 to 20 carbon atoms, alkenyl group having 2 to 7 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, heterocycloalkyl group having 3 to 20 carbon atoms or 4 to 20 carbon atoms It is a heteroaryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent. In addition, in all functional groups including the alkyl group, the alkyl group may be linear or branched.
보다 구체적인 일 예시로, 상기 유기티올계 리간드 화합물은 펜탄티올, 헥산티올, 헵탄티올, 2,4-디메틸벤젠티올, 2-페닐에탄티올, 글루타티온, 티오프로닌, 티올레이티드 폴리(에틸렌글리콜), p-머캅토페놀 및 (r-머캅토프로필)-트리메톡시실란) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.In a more specific example, the organothiol-based ligand compound is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronin, thiolated poly(ethylene glycol) , p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane) may be any one or two or more selected from the group consisting of, but is not limited thereto.
바람직하게, 상기 유기티올계 리간드 화합물인 SR은 탄소수 6 내지 30의 아릴티올, 탄소수 5 내지 30의 헤테로아릴티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.Preferably, the organic thiol-based ligand compound SR may be any one or two or more selected from the group consisting of arylthiol having 6 to 30 carbon atoms, heteroaryl thiol having 5 to 30 carbon atoms, arylalkanthiol having 6 to 30 carbon atoms, etc. In the organic thiol-based ligand, one or more hydrogens in the functional group may be further substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I ), nitro group, cyano group, hydroxy group, amino group, aryl group having 6 to 20 carbon atoms, alkenyl group having 2 to 7 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, heterocycloalkyl group having 3 to 20 carbon atoms or 4 to 20 carbon atoms It is a heteroaryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent. In addition, in all functional groups including the alkyl group, the alkyl group may be linear or branched.
더욱 바람직한 일 구체예로, 상기 유기티올계 리간드 화합물은 2,4-디메틸벤젠티올일 수 있다. 이처럼 알킬아릴티올계 화합물을 리간드 화합물로 사용함으로써 합성 시 이종금속 원자가 도핑된 은 나노클러스터 자성체의 수득률을 매우 크게 향상시킬 수 있어 좋다.In a more preferred embodiment, the organothiol-based ligand compound may be 2,4-dimethylbenzenethiol. As described above, by using the alkylarylthiol-based compound as a ligand compound, the yield of the silver nanocluster magnetic material doped with dissimilar metal atoms can be greatly improved during synthesis.
본 발명의 일 예에 있어, 은 전구체 및 유기티올계 리간드 화합물의 혼합 비율은 당업계에서 통상적으로 혼합하는 비율일 수 있으며, 구체적인 일 예시로, 은 전구체 : 유기티올계 리간드 화합물의 몰비는 1 : 1 내지 10, 보다 좋게는 1 : 1.5 내지 6, 더욱 좋게는 1 : 2 내지 4일 수 있다. 이와 같은 범위에서 합성 효율이 우수하면서도 반응 불순물을 줄일 수 있어 좋다.In an example of the present invention, the mixing ratio of the silver precursor and the organic thiol-based ligand compound may be a ratio commonly mixed in the art, and as a specific example, the molar ratio of the silver precursor: the organic thiol-based ligand compound is 1: It may be 1 to 10, more preferably 1: 1.5 to 6, even more preferably 1: 2 to 4. In such a range, the synthesis efficiency is excellent and reaction impurities can be reduced.
아울러, 본 발명의 일 예에 있어, 상기 a)단계의 반응용액은 은 전구체의 용해 및 반응 용이성의 향상을 위해 용매를 더 포함할 수 있으며, 상기 용매는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있다. 구체적인 일 예시로, 상기 용매는 디클로로메탄, 물, 탄소수 1~5의 알코올, 아세토니트릴, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 아세톤, 테트라히드로푸란(THF) 및 1,4-디옥산 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합용매일 수 있으며, 바람직하게는 메탄올, 테트라하드로푸란 또는 이들의 혼합용매를 사용하는 것이 좋다. 이때, 상기 용매는 은 전구체 1 mmol을 기준으로 50 내지 100 ㎖가 첨가될 수 있으나, 이에 한정되는 것은 아니다.In addition, in an example of the present invention, the reaction solution of step a) may further include a solvent to improve the dissolution and reaction ease of the silver precursor, and the solvent is specifically limited if it is commonly used in the art Can be used without. In a specific example, the solvent is dichloromethane, water, alcohol having 1 to 5 carbon atoms, acetonitrile, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, tetrahydrofuran (THF) and 1,4- It may be any one or two or more mixed solvents selected from the group consisting of dioxane and the like, preferably methanol, tetrahydrofuran, or a mixed solvent thereof. In this case, 50 to 100 ml of the solvent may be added based on 1 mmol of the silver precursor, but is not limited thereto.
다음으로, b) 상기 반응용액에 이종금속 전구체, 반응 촉매 및 환원제를 첨가하여 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계를 수행할 수 있다.Next, b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a nanocluster magnetic material satisfying Formula 1 may be performed.
이때, 상기 은 전구체 대비 이종금속 전구체의 혼합 비율이 이종금속 원자가 도핑된 은 나노클러스터 자성체를 제조함에 있어 특히 중요할 수 있다.In this case, the mixing ratio of the silver precursor to the dissimilar metal precursor may be particularly important in manufacturing the silver nanocluster magnetic body doped with dissimilar metal atoms.
구체적인 일 예시로, 상기 은 전구체 : 이종금속 전구체의 몰비는 50 : 0.8 내지 1.2일 수 있으며, 보다 좋게는 50 : 0.9 내지 1.1, 특히 좋게는 50 : 1일 수 있다. 이와 같은 범위에서 이종금속 원자가 도핑된 은 나노클러스터 자성체가 효과적으로 제조될 수 있으며, 상기 몰비 대비 이종금속 전구체의 몰수가 너무 많을 경우 은 원자가 이종금속 원자로 치환되는 반응이 이루어지지 않을 수 있다.As a specific example, the molar ratio of the silver precursor: the dissimilar metal precursor may be 50: 0.8 to 1.2, more preferably 50: 0.9 to 1.1, particularly preferably 50: 1. In this range, a silver nanocluster magnetic material doped with a dissimilar metal atom can be effectively prepared, and when the number of moles of the dissimilar metal precursor is too large relative to the molar ratio, a reaction in which the silver atom is substituted with a dissimilar metal atom may not be performed.
본 발명의 일 예에 있어, 상기 이종금속 전구체는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적인 일 예시로, 이종금속이 루테늄(Ru)인 경우, 루테늄 전구체는 RuCl 3, Ru(NO)Cl 3 및 Ru(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.) 등으로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 RuCl 3를 사용하는 것이 합성 효율을 향상시킴에 있어 보다 좋다. 이종금속이 로듐(Rh)인 경우, 로듐 전구체는 RhCl 3, Rh(NO)Cl 3 및 Rh(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.) 등으로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 RhCl 3를 사용하는 것이 합성 효율을 향상시킴에 있어 보다 좋다.In an example of the present invention, the dissimilar metal precursor may be used without particular limitation as long as it is commonly used in the art, and as a specific example, when the dissimilar metal is ruthenium (Ru), the ruthenium precursor is RuCl 3 , From the group consisting of Ru(NO)Cl 3 and Ru(NO)(NO 3 ) a (OH) b (where a and b are integers selected from 0 to 3, respectively, and a+b=3), etc. It may be any one or two or more selected, preferably, it is better to use RuCl 3 to improve the synthesis efficiency. When the dissimilar metal is rhodium (Rh), the rhodium precursor is RhCl 3 , Rh(NO)Cl 3 and Rh(NO)(NO 3 ) a (OH) b (where a and b are each selected from 0 to 3 As an integer, a+b=3.) It may be any one or two or more selected from the group consisting of, and the like, preferably RhCl 3 is more preferable in improving the synthesis efficiency.
이때, 상기 이종금속 전구체는 제2용매에 용해되어 상기 반응용액에 첨가될 수 있다. 구체적으로 상기 제2용매는 상기 용매와 동일할 수 있으며, 특히 상기 제2용매는 물과 테트라히드로푸란(THF)의 혼합용매일 수 있다. 이처럼 물과 테트라히드로푸란(THF)의 혼합용매를 사용함으로써 은 나노클러스터에 루테늄 원자 또는 로듐 원자를 효과적으로 도핑할 수 있다. 아울러, 물:테트라히드로푸란(THF)의 부피비는 1 : 2 내지 8일 수 있으며, 보다 좋게는 1 : 2.5 내지 6, 가장 좋게는 1 : 3 내지 5일 수 있다. 이와 같은 범위에서 합성 효율이 우수할 수 있다.At this time, the dissimilar metal precursor may be dissolved in the second solvent and added to the reaction solution. Specifically, the second solvent may be the same as the solvent, and in particular, the second solvent may be a mixed solvent of water and tetrahydrofuran (THF). In this way, by using a mixed solvent of water and tetrahydrofuran (THF), the silver nanoclusters can be effectively doped with ruthenium atoms or rhodium atoms. In addition, the volume ratio of water: tetrahydrofuran (THF) may be 1: 2 to 8, more preferably 1: 2.5 to 6, and most preferably 1: 3 to 5. Synthesis efficiency may be excellent in this range.
한편, 본 발명의 일 예에 있어, 상기 반응 촉매 및 환원제는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 있으며, 구체적인 일 예로, 반응 촉매는 테트라페닐포스핀 브로마이드(PPh 4Br) 등일 수 있으며, 환원제는 NaBH 4 등일 수 있으나, 이에 한정되는 것은 아니다.Meanwhile, in an example of the present invention, the reaction catalyst and the reducing agent may be used without particular limitation as long as they are commonly used in the art, and as a specific example, the reaction catalyst may be tetraphenylphosphine bromide (PPh 4 Br), etc. And, the reducing agent may be NaBH 4 or the like, but is not limited thereto.
아울러, 반응 촉매는 은 전구체 1 mmol을 기준으로 0.01 내지 0.1 mmol로 첨가될 수 있으며, 환원제는 은 전구체 1 mmol을 기준으로 1 내지 3 mmol로 첨가될 수 있으나, 이는 일 예시일 뿐 본 발명이 이에 제한되는 것은 아니다.In addition, the reaction catalyst may be added in an amount of 0.01 to 0.1 mmol based on 1 mmol of the silver precursor, and the reducing agent may be added in an amount of 1 to 3 mmol based on 1 mmol of the silver precursor, but this is only an example and the present invention is It is not limited.
또한, b)단계의 반응 완료 후 고순도의 나노클러스터 자성체를 수득하기 위하여 추가적인 정제 과정이 더 수행될 수 있음은 물론이며, 추가적인 정제 과정은 통상적인 방법을 통해 수행될 수 있다.In addition, after completion of the reaction in step b), an additional purification process may be further performed to obtain a high-purity nanocluster magnetic material, and the additional purification process may be performed through a conventional method.
이하, 실시예를 통해 본 발명에 따른 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, a silver nanocluster magnetic body doped with a dissimilar metal atom according to the present invention and a method of manufacturing the same will be described in more detail through examples. However, the following examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.Further, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. The terms used in the description herein are merely to effectively describe specific embodiments and are not intended to limit the invention. In addition, the unit of the additive not specifically described in the specification may be a weight %.
[실시예 1] RuAg 24(SPhMe 2) 18의 합성[Example 1] Synthesis of RuAg 24 (SPhMe 2 ) 18
먼저, 2,4-디메틸벤젠티올(HSPhMe 2) 0.66 mmol 및 AgNO 3 0.22 mmol(in 2 ㎖ 메탄올)을 테트라히드로푸란(THF) 15 ㎖에 넣고, 얼음 욕조(ice bath) 하에서 20분 동안 교반하였다.First, 2,4-dimethylbenzenethiol (HSPhMe 2 ) 0.66 mmol and AgNO 3 0.22 mmol (in 2 ml methanol) were added to 15 ml of tetrahydrofuran (THF) and stirred for 20 minutes under an ice bath. .
다음으로, 4:1의 부피비로 혼합된 THF:H 2O 혼합용매 1 ㎖에 RuCl 3 0.0044 mmol을 녹여 상기 반응용액에 첨가한 후, 테트라페닐포스핀 브로마이드(PPh 4Br) 0.014 mmol(in 0.5 ㎖ 메탄올)을 순차적으로 첨가하고, NaBH 4 0.4 mmol(in 0.5 ㎖ H 2O)을 신속하게 한 번에 첨가하였다. 이후, 5시간 동안 추가 교반하여 RuAg 24(SPhMe 2) 18을 합성하였다.Next, 0.0044 mmol of RuCl 3 was dissolved in 1 ml of a mixed solvent of THF:H 2 O mixed in a volume ratio of 4:1 and added to the reaction solution, and then tetraphenylphosphine bromide (PPh 4 Br) 0.014 mmol (in 0.5 Ml methanol) was added sequentially, and NaBH 4 0.4 mmol (in 0.5 ml H 2 O) was quickly added at once. Then, the mixture was further stirred for 5 hours to synthesize RuAg 24 (SPhMe 2 ) 18 .
반응이 완료되면, 12시간 동안 숙성시킨 후 원심 분리를 통해 상청액과 침전물을 분리하여 침전물을 건조시켰다.When the reaction was completed, the mixture was aged for 12 hours, and then the supernatant and the precipitate were separated through centrifugation to dry the precipitate.
이후, 사이즈 선별을 위하여 디클로로메탄에 녹인 후 메탄올(디클로로메탄의 2 부피배)을 첨가하여 RuAg 24(SPhMe 2) 18 침전물을 수득하였다.Thereafter, for size selection, after dissolving in dichloromethane, methanol (2 times the volume of dichloromethane) was added to obtain RuAg 24 (SPhMe 2 ) 18 precipitate.
[실시예 2] RhAu 24(SC 6H 13) 18의 합성[Example 2] Synthesis of RhAu 24 (SC 6 H 13 ) 18
RuCl 3 대신 RhCl 3를 사용한 것 외 모든 과정을 실시예 1과 동일하게 진행하여 RhAg 24(SPhMe 2) 18 침전물을 수득하였다.RuCl 3 was used instead of outside the RhCl 3 proceeds in the same manner every step in Example 1 to give the RhAg 24 (SPhMe 2) 18 precipitates.
[결과 분석][Result Analysis]
1) 합성 확인1) Synthesis confirmation
도 1은 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 전기분무 이온화 질량 분석(ESI-MS) 결과로, 구조와 정확히 일치하는 측정값을 보여 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18가 단일물질로 잘 합성된 것을 확인하였다.1 is RuAg 24 (SPhMe 2) 18 and RhAg 24 (SPhMe 2) 18 in each of the electrospray ionization mass spectrometry (ESI-MS) results, showing the measured value that exactly matches the structure RuAg 24 (SPhMe 2) 18, and It was confirmed that RhAg 24 (SPhMe 2 ) 18 was well synthesized as a single substance.
도 2는 RhAg 24(SPhMe 2) 18의 X선 광전자 분광법(XPS, X-ray photoelectron spectroscopy) 분석 결과로, 도 2에 도시된 바와 같이, Ag 3d 피크는 368.2 eV 및 374.7 eV에서 나타나며, 피크 면적은 19548이었다. Rh 3d 피크는 307.63 eV 및 312.33 eV에서 나타나며, 피크 면적은 1054이었다. S 2p 피크는 162.25 eV 및 163.41 eV에서 나타나며, 피크 면적은 13405이었다. P 2p 피크는 133 eV 및 133.87 eV에서 나타나며, 피크 면적은 1041이었다. 이 피크 면적을 비율로 나타내면, [Rh 1.3Ag 23.7(SPhMe 2) 17.2] 1-(PPh 4) 1+로 나타낼 수 있으며, -1 전하를 가지고 있음을 관찰할 수 있었다.2 is an X-ray photoelectron spectroscopy (XPS, X-ray photoelectron spectroscopy) analysis result of RhAg 24 (SPhMe 2 ) 18 , as shown in FIG. 2, Ag 3d peaks appear at 368.2 eV and 374.7 eV, and peak areas Was 19548. The Rh 3d peak appeared at 307.63 eV and 312.33 eV, and the peak area was 1054. The S 2p peak appeared at 162.25 eV and 163.41 eV, and the peak area was 13405. The P 2p peak appeared at 133 eV and 133.87 eV, and the peak area was 1041. When this peak area is expressed as a ratio, it can be expressed as [Rh 1.3 Ag 23.7 (SPhMe 2 ) 17.2 ] 1- (PPh 4 ) 1+ , and it was observed that it has a -1 charge.
도 3 및 도 4는 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 1H NMR 결과로, XPS 결과와 동일하게, 도 3은 [Ru 1Ag 24(SPhMe 2) 18] 1-(PPh 4) 1+, 도 4는 [Rh 1Ag 24(SPhMe 2) 18] 1-(PPh 4) 1+의 구조를 보여, 두 나노클러스터가 각각 -1 전하를 가지고 있음을 다시 확인할 수 있었다.3 and 4 are RuAg 24 (SPhMe 2) 18 and RhAg 24 (SPhMe 2) 18 in each of the 1 H NMR results, as in the XPS results, Figure 3 is [Ru 1 Ag 24 (SPhMe 2 ) 18] 1 - (PPh 4 ) 1+ , FIG. 4 shows the structure of [Rh 1 Ag 24 (SPhMe 2 ) 18 ] 1- (PPh 4 ) 1+ , confirming that the two nanoclusters each have -1 charge. there was.
도 5는 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 자외선-가시광선(UV-Vis) 광(optical) 스펙트럼으로, 가로축은 에너지(eV)이며, 세로축은 흡광도(E=Abs(λ)λ 2])이다.5 is an ultraviolet-visible light (UV-Vis) optical spectrum of each of RuAg 24 (SPhMe 2 ) 18 and RhAg 24 (SPhMe 2 ) 18 , the horizontal axis being energy (eV), and the vertical axis being absorbance (E= Abs(λ)λ 2 ]).
RuAg 24(SPhMe 2) 18의 경우 1.1 V, 1.82 V에서 각각 특유의 흡수가 일어나는 것을 확인할 수 있었다. 이때. 1 V 근처의 흡수 피크은 나노클러스터가 뒤틀린(distortion) 구조임을 나타낸다. 반면, RhAg 24(SPhMe 2) 18의 경우 1.84 V, 2.51 V에서 각각 흡수가 일어났으며, 1 V 근처에서는 흡수 피크가 나타나지 않았다. 로듐(Rh)이 치환된 나노클러스터 또한 구조적으로 뒤틀림이 일어난 형태이나, 낮은 에너지에서의 흡수가 금지(forbidden)되어 UV-Vis 흡수에서는 나타나지 않는다.In the case of RuAg 24 (SPhMe 2 ) 18 , it was confirmed that characteristic absorption occurs at 1.1 V and 1.82 V, respectively. At this time. The absorption peak near 1 V indicates that the nanocluster is a distortion structure. On the other hand, in the case of RhAg 24 (SPhMe 2 ) 18 , absorption occurred at 1.84 V and 2.51 V, respectively, and no absorption peak appeared near 1 V. Rhodium (Rh)-substituted nanoclusters are also structurally distorted, but absorption at low energy is forbidden, and thus does not appear in UV-Vis absorption.
2) 전기화학적 특성 분석2) Analysis of electrochemical properties
도 6은 RuAg 24(SPhMe 2) 18 및 RhAg 24(SPhMe 2) 18 각각의 구형파 볼타모그램 분석 자료로, 가로축은 전압(V vs AgQRE)이며, 세로축은 전류(A)이다.6 is a square wave voltamogram analysis data of RuAg 24 (SPhMe 2 ) 18 and RhAg 24 (SPhMe 2 ) 18 , wherein the horizontal axis is voltage (V vs AgQRE), and the vertical axis is current (A).
도 6에 도시된 바와 같이, RuAg 24(SPhMe 2) 18의 경우 0.67 V와 0.25 V에서 두 개의 산화 피크가 나타났으며, -0.50 V와 -0.82 V에서 두 개의 환원 피크가 나타났고, 0.75 V의 밴드갭을 갖는 것을 확인할 수 있었다. RhAg 24(SPhMe 2) 18의 경우 0.45 V와 0.17 V에서 두 개의 산화 피크가 나타났으며, -0.68 V와 -1.05 V에서 두 개의 환원 피크가 나타났고, 0.84 V의 밴드갭을 갖는 것을 확인할 수 있었다.6, in the case of RuAg 24 (SPhMe 2 ) 18 , two oxidation peaks appeared at 0.67 V and 0.25 V, two reduction peaks appeared at -0.50 V and -0.82 V, and 0.75 V It was confirmed that it had a band gap of. In the case of RhAg 24 (SPhMe 2 ) 18 , two oxidation peaks appeared at 0.45 V and 0.17 V, two reduction peaks appeared at -0.68 V and -1.05 V, and it was confirmed that it had a band gap of 0.84 V. there was.
이는 기존 금(Au), 백금(Pt), 팔라듐(Pd)가 각각 도핑된 은 나노클러스터가 1.5 V보다 더 큰 밴드갭을 가진 것과 비교하여 크게 줄어든 결과로, p 오비탈이 갈라져(split) 뒤틀림(distortion)이 일어났음을 의미한다.This is a result of a significant reduction compared to the conventional silver nanoclusters doped with gold (Au), platinum (Pt), and palladium (Pd), respectively, having a band gap larger than 1.5 V, and the p orbital is split and distorted ( distortion) has occurred.
3) 자성 확인3) magnetic check
도 7은 평행(parallel) 또는 수직(perpendicular) 모드에서 측정한 [RuAg 24(SPhMe 2) 18] 1- 및 [RhAg 24(SPhMe 2) 18] 1- 각각의 전자스핀공명 분광도(EPR, electron paramagnetic resonance)로, [RuAg 24(SPhMe 2) 18] 1-의 경우 평행 모드에서는 피크가 관찰되지 않았지만 수직 모드에서는 피크가 관찰되었다. 이는 d 오비탈에 홀전자가 한 개 존재함을 의미하며, 이로부터 RuAg 24(SPhMe 2) 18 나노클러스터가 자성 특성을 가진 것을 확인할 수 있었다.7 is a [RuAg 24 (SPhMe 2 ) 18 ] 1- and [RhAg 24 (SPhMe 2 ) 18 ] 1- each of the electron spin resonance spectroscopy (EPR, electrons) measured in a parallel or vertical mode. paramagnetic resonance), in the case of [RuAg 24 (SPhMe 2 ) 18 ] 1- , a peak was not observed in parallel mode, but a peak was observed in vertical mode. This means that there is one single electron in the d orbital, from which it was confirmed that the RuAg 24 (SPhMe 2 ) 18 nanocluster has magnetic properties.
반면, [RhAg 24(SPhMe 2) 18] 1-의 경우 평행 모드 및 수직 모드에서 모두 피크가 관찰되지 않았지만, 짝이온을 제거하여 산화시킴으로써 자성을 나타나게 제어할 수 있었다.On the other hand, in the case of [RhAg 24 (SPhMe 2 ) 18 ] 1- , no peak was observed in both the parallel mode and the vertical mode, but by removing counter ions and oxidizing them, the magnetism could be controlled to appear.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. Although the present invention has been described through the above-specified matters and limited embodiments, this is only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention pertains to Those of ordinary skill in the field can make various modifications and variations from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the described embodiments and should not be defined, and all things that are equivalent or equivalent to the claims as well as the claims to be described later fall within the scope of the spirit of the present invention. .

Claims (6)

  1. 하기 화학식 1을 만족하는 이종금속 원자가 도핑된 은 나노클러스터 자성체.Silver nanocluster magnetic material doped with dissimilar metal atoms satisfying the following Formula 1.
    [화학식 1][Formula 1]
    MAg 24(SR) 18 MAg 24 (SR) 18
    (상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 로듐(Rh)이다.)(In Formula 1, SR is an organothiol-based ligand, and M is ruthenium (Ru) or rhodium (Rh).)
  2. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1에서 유기티올계 리간드는 C1-C10알킬이 치환된 탄소수 6 내지 30의 아릴티올인 이종금속 원자가 도핑된 은 나노클러스터 자성체.In Formula 1, the organothiol-based ligand is a C1-C10 alkyl substituted arylthiol having 6 to 30 carbon atoms, which is a silver nanocluster magnetic material doped with a heterometallic atom.
  3. a) 은 전구체 및 유기티올계 리간드 화합물을 반응시켜 반응용액을 제조하는 단계; 및a) preparing a reaction solution by reacting a silver precursor and an organic thiol-based ligand compound; And
    b) 상기 반응용액에 이종금속 전구체, 반응 촉매 및 환원제를 첨가하여 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함하는, 이종금속 원자가 도핑된 은 나노클러스터 자성체의 제조방법.b) adding a dissimilar metal precursor, a reaction catalyst, and a reducing agent to the reaction solution to prepare a nanocluster magnetic material that satisfies the following Formula 1; Containing, a method of producing a silver nanocluster magnetic material doped with a dissimilar metal atom.
    [화학식 1][Formula 1]
    MAg 24(SR) 18 MAg 24 (SR) 18
    (상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 로듐(Rh)이다.)(In Formula 1, SR is an organothiol-based ligand, and M is ruthenium (Ru) or rhodium (Rh).)
  4. 제 3항에 있어서,The method of claim 3,
    상기 은 전구체 : 이종금속 전구체의 몰비는 50 : 0.8 내지 1.2인, 이종금속 원자가 도핑된 은 나노클러스터 자성체의 제조방법.The silver precursor: the molar ratio of the dissimilar metal precursor is 50: 0.8 to 1.2, the method of manufacturing a silver nanocluster magnetic material doped with dissimilar metal atoms.
  5. 제 3항에 있어서,The method of claim 3,
    상기 은 전구체는 AgNO 3, AgBF 4, AgCF 3SO 3, AgClO 4, AgO 2CCH 3 및 AgPF 6으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상인, 이종금속 원자가 도핑된, 은 나노클러스터 자성체의 제조방법.The silver precursor is any one or two or more selected from the group consisting of AgNO 3 , AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgO 2 CCH 3 and AgPF 6 , doped with dissimilar metal atoms, a method of manufacturing a silver nanocluster magnetic body .
  6. 제 3항에 있어서,The method of claim 3,
    상기 이종금속 전구체는 RuCl 3, Ru(NO)Cl 3 및 Ru(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.)에서 선택되는 어느 하나 또는 둘 이상이거나, RhCl 3, Rh(NO)Cl 3 및 Rh(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.)에서 선택되는 어느 하나 또는 둘 이상인, 이종금속 원자가 도핑된 은 나노클러터 자성체의 제조방법.The dissimilar metal precursors are RuCl 3 , Ru(NO)Cl 3 and Ru(NO)(NO 3 ) a (OH) b (where a and b are integers selected from 0 to 3, respectively, a+b=3 Is any one or two or more selected from, or RhCl 3 , Rh(NO)Cl 3 and Rh(NO)(NO 3 ) a (OH) b (where a and b are each selected from 0 to 3 As an integer, a+b=3.) Any one or two or more selected from, a method of manufacturing a silver nano-clutter magnetic body doped with a dissimilar metal atom.
PCT/KR2020/005428 2019-04-26 2020-04-24 Silver nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor WO2020218871A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0049049 2019-04-26
KR20190049049 2019-04-26
KR10-2020-0049638 2020-04-23
KR1020200049638A KR102266900B1 (en) 2019-04-26 2020-04-23 Dissimilar metal atom doped silver nanocluster magnetic material, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2020218871A1 true WO2020218871A1 (en) 2020-10-29

Family

ID=72941084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005428 WO2020218871A1 (en) 2019-04-26 2020-04-24 Silver nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2020218871A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342838A (en) * 1980-03-31 1982-08-03 Exxon Research & Engineering Co. Bimetallic clusters of ruthenium with copper, silver and gold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342838A (en) * 1980-03-31 1982-08-03 Exxon Research & Engineering Co. Bimetallic clusters of ruthenium with copper, silver and gold

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOOTHARAJU, MEGALAMANE S., JOSHI CHAKRA P., PARIDA MANAS R., MOHAMMED OMAR F., BAKR OSMAN M.: "Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster", ANGEWANDTE CHEMIE, vol. 55, no. 3, 18 January 2016 (2016-01-18), pages 922 - 926, XP055758452, DOI: 10.1002/anie.201509381 *
KWAK, KYUJU, TANG QING, KIM MINSEOK, JIANG DE-EN, LEE DONGIL: "Interconversion between superatomic 6-electron and 8-electron configurations of M@Au24(SR)18 clusters (M= Pd, Pt", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 137, no. 33, August 2015 (2015-08-01), pages 10833 - 10840, XP055758446, DOI: 10.1021/jacs.5b06946 *
RODRIGUEZ-KESSLER, P. L., PAN SUDIP, FLOREZ ELIZABETH, CABELLOS JOSÉ LUIS, MERINO GABRIEL: "Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh(n?15) and Their Reactivity toward NO", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 121, no. 35, 2017, pages 19420 - 19427, XP055758448, DOI: 10.1021/acs.jpcc.7b05048 *
WANG, ZHI, SENANAYAKE RAVITHREE, AIKENS CHRISTINE M., CHEN WEN-MIAO, TUNG CHEN-HO, SUN DI: "Gold-doped silver nanocluster [Au3Ag38(SCH2Ph)24X5]2-(X= Cl or Br)", NANOSCALE, vol. 8, no. 45, 2016, pages 18905 - 18911, XP055758443, DOI: 10.1039/C6NR06615A *

Similar Documents

Publication Publication Date Title
Cao et al. Formation mechanism of carbon dots: From chemical structures to fluorescent behaviors
Chen et al. Vinyl-functionalized multicolor benzothiadiazoles: design, synthesis, crystal structures and mechanically-responsive performance
CN111875597B (en) Hypoxic fluorescent imaging probe and preparation method and application thereof
WO2020218871A1 (en) Silver nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor
Farmery et al. Monoalkyl derivatives of the cobalt (III) complexes of a tetradentate macrocyclic ligand containing. alpha.-diimine groups
Shang et al. Multinuclear Phthalocyanine‐Fused Molecular Nanoarrays: Synthesis, Spectroscopy, and Semiconducting Property
WO2020218873A1 (en) Gold nanocluster magnetic body doped with dissimilar metal atom, and preparation method therefor
KR102266900B1 (en) Dissimilar metal atom doped silver nanocluster magnetic material, and method for producing the same
KR102266919B1 (en) Dissimilar metal atom doped gold nanocluster magnetic material, and method for producing the same
KR20080104855A (en) Method for separating carbon nanotube selectively, electrode comprising the carbon nanotube separated by the method and oligomer dispersant for carbon nanotube
Ceyhan et al. Synthesis, characterization, and electrochemical and electrical properties of a novel ball-type hexanuclear metallophthalo-cyanine, bridged by calix [4] arenes substituted with four hexyl-thiometallophthalocyanines through nitro coupling
JP5167533B2 (en) Synthesis of ultrafine hose with supramolecular structure
KR100880095B1 (en) Dispersing agent of metal nanoparticle composed of polyethylenimine derivative and use hereof
CN110922418A (en) Pyrrolo-pyrrole-dione conjugated oligomer, nanoparticle based on pyrrolo-pyrrole-dione conjugated oligomer and preparation methods of pyrrolo-pyrrole-dione conjugated oligomer and nanoparticle
KR102076979B1 (en) A water-soluble catalyst for hydrogen evolution reaction and a method for manufacturing thereof
Schulze et al. Synthesis and Characterization of Bola‐Amphiphilic Porphyrin‐Perylenebisimide Architectures
WO2020218875A1 (en) Nickel nanocluster bifunctional catalyst for oxygen and hydrogen evolution reactions, and method for producing same
CN113121501B (en) C 2 Symmetrical compound, lanthanide series organic polyhedron and preparation method and application thereof
Liu et al. Antitumor Platinum (II) Compounds of a Chiral Diamine with Functionalized Cyclobutane-1, 1-Dicarboxylates as Leaving Ligands
KR102296595B1 (en) Conductor based on imidazolium, preparation method thereof and anion exchange membrane fuel cell comprising the same
US20230144367A1 (en) Mechanical-bond-protected stable bisradicals
CN106883242B (en) A kind of preparation method of the embedding hexa-atomic oxa- ring diphenol generation -3,4,9,10- tetracarboxylic acid diimide in gulf position
JP2004217626A (en) Organic platinum group element compound of fullerenol and/or fullerenol hydrogen sulfate ester, its use and method for producing the same
Alazemi et al. Covalently linked thieno [2, 3-b] thiophene-fullerene dimers: synthesis and physical characterization
Qin et al. H2 and ZnII-5, 15-carbozole-10, 20-H-porphyrin: Synthesis, electronic structure and their self-assembled nano-aggregations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796448

Country of ref document: EP

Kind code of ref document: A1