WO2020218496A1 - 計測装置、計測方法、及び、放射線照射装置 - Google Patents
計測装置、計測方法、及び、放射線照射装置 Download PDFInfo
- Publication number
- WO2020218496A1 WO2020218496A1 PCT/JP2020/017668 JP2020017668W WO2020218496A1 WO 2020218496 A1 WO2020218496 A1 WO 2020218496A1 JP 2020017668 W JP2020017668 W JP 2020017668W WO 2020218496 A1 WO2020218496 A1 WO 2020218496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- head
- distance
- unit
- human
- measuring device
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
Definitions
- the present invention relates to a measuring device, a measuring method, and a radiation irradiation device.
- Patent Document 1 describes a technique for adjusting the position of a patient on a support base based on two-dimensional image data and three-dimensional image data acquired by using measurement light and a camera.
- Patent Document 2 describes a technique for monitoring the movement of a patient's neck or the like and stopping the irradiation of radiation when the movement of the patient is detected.
- Japanese Unexamined Patent Publication No. 2008-43567 (published on February 28, 2008) Japanese Unexamined Patent Publication No. 2012-509691 (published on April 26, 2012)
- Patent Document 1 it takes time to acquire and process two-dimensional image data and three-dimensional image data, and a high-performance data processing device is required.
- Patent Document 2 monitors the movement of the neck, which is a site to be irradiated to treat a thyroid disease, and has a problem that it cannot be applied to other diseases.
- One aspect of the present invention has been made to solve the above problems, and an object of the present invention is to realize a technique for detecting the movement of the head with a simple configuration.
- the present invention provides, for example, the invention according to the following aspects.
- a measuring device that measures the displacement of the head of a human object that receives therapeutic electromagnetic waves on the head, and is an irradiation target based on a laser that irradiates the human object with a laser beam and a laser beam emitted from the laser.
- a measuring unit that measures the distance to the distance and a detecting unit that detects the displacement of the head of the human object based on the change in the distance measured by the measuring unit are provided, and the detecting unit receives a therapeutic electromagnetic wave.
- the measuring device according to any one of 1) to 4), wherein the displacement of the head is a two-dimensional displacement or a three-dimensional displacement. 6) The measuring device according to any one of 1) to 5), further comprising a bed on which the human subject lies. 7) The measuring device according to any one of 1) to 6), wherein the human subject is a child. 8) Viewing of the image based on a display unit for displaying an image, a line-of-sight tracking unit for tracking the movement of the line of sight of the human object with respect to the image, and a line-of-sight tracking unit for tracking the human object The measuring device according to any one of 1) to 7), further including a classification unit for determining the restlessness of the human object at the time.
- An irradiation apparatus comprising the measuring apparatus according to any one of 1) to 9) and an irradiation unit for irradiating the head of the human object with radiation.
- the radiation irradiation device according to 10), wherein the radiation irradiation unit stops irradiation of the human object with radiation when the detection unit detects a displacement of the head of the human object.
- a measurement method for measuring the displacement of the head of a human object that receives a therapeutic electromagnetic wave on the head the measurement step of measuring the distance to the irradiation target based on the laser beam irradiated to the human object, and the above-mentioned.
- the head of the human subject is positioned to receive a therapeutic electromagnetic wave in the detection step, including a detection step of detecting the displacement of the head of the human subject based on the change in distance measured by the measurement step.
- a change in the distance from the reference distance is obtained by using a distance measured as an irradiation target at a feature point which is at least one portion protruding from another portion as a reference distance.
- the movement of the head can be detected with a simple configuration. it can.
- FIG. 1 is a block diagram showing a main configuration of a measuring device according to an embodiment of the present invention
- FIG. 2 is a schematic diagram showing an example of measurement using the measuring device according to the embodiment of the present invention.
- the measuring device 1 is a measuring device that measures the displacement of the head of the human object 100 that receives a therapeutic electromagnetic wave on the head.
- the measuring device 1 includes a laser 10, a measuring unit 11, and a detecting unit 12.
- the measuring device 1 may further include an operation unit 13, a storage unit 14, and a display unit 15.
- the target for measuring the displacement of the head by the measuring device 1 is a human target 100 that receives a therapeutic electromagnetic wave on the head. That is, the human subject 100 is a patient who is treated by receiving a therapeutic electromagnetic wave on the head.
- the therapeutic electromagnetic wave radiated from the outside to the head of the human subject 100 is, for example, radiation such as an electron beam, an X-ray, a ⁇ -ray, a proton beam, and a heavy particle beam.
- the human subject 100 When the human subject 100 is irradiated with a therapeutic electromagnetic wave on the head, it is usually in a state of lying on its back on the bed 102. Therefore, the human subject 100 for measuring the displacement of the head by the measuring device 1 , Can be an object lying on its back.
- the bed 102 may be a component of the measuring device 1.
- the 100 human subjects can be children. Especially when the patient to be treated by irradiating the therapeutic electromagnetic wave is a child, it is difficult to prevent the head from being displaced during the irradiation with the therapeutic electromagnetic wave. According to the measuring device 1, since the displacement of the head can be measured, it is also suitable when the patient to be treated is a child.
- the bed 102 included in the measuring device 1 can be a pediatric bed.
- the patient's head When treating a patient by irradiating the patient with therapeutic electromagnetic waves such as radiation, the patient's head must not move from the treatment position positioned at the start of treatment so that the affected area is properly irradiated with the therapeutic electromagnetic waves. preferable. Therefore, conventionally, the patient's head is fixed to the treatment position by covering the patient's head with a mask or the like and pressing the patient's head against the bed to fix it. When the patient's head is fixed in this way, the patient's head is difficult to move from the treatment position, and while the therapeutic electromagnetic wave can be appropriately irradiated to the affected area, there is a problem that the patient under treatment is greatly stressed. There is.
- the treatment with the therapeutic electromagnetic wave needs to be repeated, the stress received by the patient has a great influence on the therapeutic effect.
- the patient is a child, it is difficult to prevent the patient from moving from the treatment position, and the stress caused by pressing the head is very large. Therefore, the treatment may become traumatic and it may not be possible to continue the subsequent treatment.
- the measuring device 1 uses the distance of the feature points on the head of the human subject 100, which is positioned to receive the therapeutic electromagnetic wave, as the reference distance, and determines whether or not the distance measured during the treatment deviates from the reference distance. That is, the displacement of the head of the human subject 100 can be detected only by detecting the change of the distance from the reference distance. Therefore, when a displacement of the patient's head is detected, the patient's head is fixed and does not move by returning the position to the original position or adjusting the irradiation position of the therapeutic electromagnetic wave by the displacement. There is no need to. As a result, the stress given to the patient can be reduced, and the treatment with the therapeutic electromagnetic wave can be performed.
- the measuring device 1 since the measuring device 1 only detects a change in the distance measured during treatment from the reference distance, it can be used for data acquisition as in the conventional technique for acquiring two-dimensional image data and three-dimensional image data. It doesn't take long and doesn't require a high-performance data processor.
- the laser 10 irradiates the human target 100 with a laser beam.
- the laser 10 is provided in a laser sensor (distance measuring sensor) for distance measurement.
- the laser 10 is selected from a semiconductor laser (visible light), an infrared light laser, and the like according to the distance measuring method in the measuring unit 11.
- the laser 10 In order to install the measuring device 1 on the bed 102 and irradiate the head of the human object 100 lying on the bed 102 with the laser beam, the laser 10 lasers downward from a position higher than the bed 102. It is preferable that it is provided so as to irradiate light.
- the laser 10 may be fixed on a bed 102 or a pedestal whose tilt with respect to the human object 100 can be adjusted. Thereby, the irradiation direction of the laser beam from the laser 10 can be adjusted.
- the measuring unit 11 measures the distance to the irradiation target based on the laser beam emitted from the laser 10.
- the measurement unit 11 receives a signal representing an operation input from the operation unit 13
- the measurement unit 11 irradiates the laser beam from the laser 10 toward the irradiation target.
- the measuring unit 11 receives the reflected light reflected by the laser beam emitted from the laser 10 at the irradiation target and measures the distance to the irradiation target.
- the measuring unit 11 sends the result of measuring the distance to the detecting unit 12.
- the measuring unit 11 is a so-called ranging sensor.
- a laser 10 and a light receiving element are provided in the distance measuring sensor.
- Examples of the distance measuring sensor include a ToF (Time of Flight) sensor, a phase difference detection sensor, a triangular distance measuring sensor, and the like.
- the ToF sensor measures the distance to the irradiation target based on the time from the irradiation of infrared light from the infrared laser to the reception of reflected light by the light receiving element.
- the phase difference detection sensor measures the distance to the irradiation target based on the phase difference between the laser light emitted from the semiconductor laser and the reflected light reflected by the irradiation target.
- the triangulation sensor measures the distance to the irradiation target by a triangulation method based on the light receiving position where the reflected light diffusely reflected from the irradiation target is collected.
- the measurement unit 11 is a feature point that is at least one portion of the head of the human subject 100 that is positioned to receive the therapeutic electromagnetic wave and that protrudes from the other portions. Is the irradiation target, and the distance to the irradiation target is measured. The distance to this feature point is the reference distance for detecting the displacement of the head of the human object 100.
- Examples of parts of the head of the human subject 100 that protrude from other parts include the forehead, eyebrows, nose, nose tip, nasal column, cheeks, chin, chin tip, and the like, preferably the nose. Nose column or chin tip.
- the distance of the part of the head of the human subject 100 that protrudes more than the other parts is suitable as a reference distance because it is easy to compare with the distance of the other parts.
- the reference distance may be measured by the measuring unit 11 at the time or immediately before the start of the treatment using the therapeutic electromagnetic wave, or may be measured in advance and stored in the storage unit 14 and read out at the start of the treatment.
- the measuring unit 11 Even if the measuring unit 11 continuously or intermittently irradiates the human target 100 with a laser beam while the head of the human target 100 is irradiated with the therapeutic electromagnetic wave, the measuring unit 11 measures the distance to the irradiated target. Good. Even if the patient's head is positioned before irradiating the therapeutic electromagnetic wave, if the patient's head is displaced during irradiation, the irradiation position of the therapeutic electromagnetic wave may shift and effective treatment may not be possible. is there. Since the measuring device 1 measures the distance to the irradiation target continuously or intermittently while the therapeutic electromagnetic wave is irradiated to the head of the human target 100 in the measuring unit 11, the head of the human target 100 is measured. The displacement of the head of the human subject 100 can be monitored continuously or intermittently while the therapeutic electromagnetic wave is being irradiated.
- the detection unit 12 detects the displacement of the head of the human target 100 based on the change in the distance measured by the measurement unit 11.
- the detection unit 12 refers to a distance measured with a feature point, which is at least one of the parts protruding from the other parts of the head of the human target 100 positioned to receive the therapeutic electromagnetic wave, as the irradiation target. As the distance, the change in the distance from the reference distance is obtained.
- the detection unit 12 is based on a distance targeting at least one of the forehead, eyebrows, nose, nose tip, nasal column, cheek, chin, or chin tip, which is a portion protruding from other portions. Get as a distance.
- the detection unit 12 acquires the distance L1 measured with the nose P1 of the human subject 100 whose head is positioned to receive the therapeutic electromagnetic wave as the irradiation target as a reference distance. To do.
- the head is displaced in the two-dimensional direction (the plane direction of the bed 102 shown in FIG. 2), the irradiation target to be irradiated with the laser beam is displaced from the nose P1, for example, the cheek is the irradiation target. ..
- the detection unit 12 compares the distance L1 to the nose P1 with the distance to the cheek and obtains the change to obtain the change in the head. Detects the displacement of the part.
- the detection unit 12 compares the reference distance to the nose before the head is displaced with the distance to the nose after the head is mutated, and obtains the change to detect the displacement of the head. In this way, the detection unit 12 can detect not only the two-dimensional displacement of the head but also the three-dimensional displacement.
- the detection unit 12 may use a portion having a length that protrudes from other regions, such as the nasal column, as a feature point (feature region).
- a feature point feature region
- the detection unit 12 sets any plurality of points on the nasal column as feature points, sets the distance to each feature point as a reference distance, and sets each feature point from the reference distance. Get the change in distance. Since there are a plurality of feature points for acquiring changes, the displacement of the head can be monitored more accurately.
- the detection unit 12 acquires the distance to the irradiation target continuously or intermittently measured from the measurement unit 11 while the head of the human target 100 is irradiated with the therapeutic electromagnetic wave. Then, the detection unit 12 continuously or intermittently obtains a change from the reference distance with respect to the acquired distance. As a result, the measuring device 1 can continuously or intermittently monitor the displacement of the head of the human subject 100 while the head of the human subject 100 is irradiated with the therapeutic electromagnetic wave.
- the operation unit 13 When the operation unit 13 receives an operation input for measuring the displacement of the head of the human target 100 from the user, the operation unit 13 sends a signal representing the operation input to the measurement unit 11.
- the operation input by the user is performed via, for example, a keyboard, a mouse, a touch panel, or the like.
- the storage unit 14 stores distance data measured by the measuring unit 11, data such as the presence / absence of a change in the distance from the reference distance obtained by the detection unit 12, the amount of change, and the presence / absence of displacement of the head. Further, the storage unit 14 stores a program executed by the control block of the measuring device 1.
- the storage unit 14 may be, for example, a hard disk, a memory on a cloud server, or the like.
- the display unit 15 notifies the user of the detection result by the detection unit 12 by displaying the presence / absence of displacement of the head detected by the detection unit 12 and the amount of change from the reference distance.
- the display unit 15 may be a computer display, a display of a smartphone or a tablet terminal, or the like.
- the measuring device 1 may further include a fixture 101 that temporarily fixes the head of the human subject 100 to a therapeutic position positioned to receive therapeutic electromagnetic waves.
- the fixture 101 may be one that can be temporarily fixed to facilitate positioning, rather than pressing the head of the human object 100 in order to reduce the stress applied to the human object 100.
- the fixture 101 is, for example, a pillow.
- the pillow may have a recess formed in advance along the head of the human target 100, or when the head of the human target 100 is placed on the pillow, the pillow is recessed according to the shape and the recess is maintained for a certain period of time. It may be composed of a repulsive cushion.
- FIG. 5 is a flowchart illustrating a flow of measurement processing of the measuring device 1. Unless otherwise specified, the measurement process of the measuring device 1 is controlled by the control block of the measuring device 1.
- the measuring unit 11 irradiates the human target 100 with a laser beam from the laser 10 to irradiate the human target 100 with a laser beam.
- the distance to a distance target of 100 is measured (step S61).
- the measurement by the measuring unit 11 may be set to be started by detecting that the human target 100 is lying on the bed, or is started in conjunction with the start of irradiation of the therapeutic electromagnetic wave. It may be set as.
- the measuring unit 11 sends the result of measuring the distance to the detecting unit 12, and the detecting unit 12 compares the distance measured by the measuring unit 11 with the reference distance of the human target 100 and changes the distance from the reference distance.
- Obtain step S62.
- step S62 when it is determined that the measured distance and the reference distance do not differ and there is no change in the distance from the reference distance (No), the process returns to step S61 and the measurement process is repeated.
- the detection unit 12 detects the displacement of the head of the human target 100 (step S63). ). The detection unit 12 sends the result of detecting the displacement of the head of the human object 100 to the storage unit 14 and the display unit 15, and the display unit 15 displays on the display that the displacement of the head has been detected and displays the head. Notify the user of the displacement of (step S64).
- the measuring device 1 may execute the above-mentioned measurement process continuously or intermittently during the irradiation of the therapeutic electromagnetic wave, or may execute it before the irradiation.
- the head of the human target 100 can be positioned at the therapeutic position in order to receive the therapeutic electromagnetic wave.
- the display unit 15 displays on the display that the head has been positioned. Notify the user.
- the measuring device 1 may execute the measuring process at the time of creating the treatment plan by the therapeutic electromagnetic wave of the human target 100.
- the human subject 100 When treating a human subject 100 with a therapeutic electromagnetic wave, before starting the treatment, the human subject 100 is positioned at the same position as at the time of treatment, the position and range of the affected area irradiated with the electromagnetic wave are grasped, and the treatment is performed. Make a plan.
- the measurement process by the measuring device 1 is also useful when an image of the affected area is taken by CT or the like in order to determine such a treatment plan.
- FIG. 6 is a block diagram showing a main configuration of a measuring device according to a modified example of the present invention.
- the measuring device 50 is different from the measuring device 1 shown in FIG. 1 in that the control unit 51 includes a classification unit 52 and a line-of-sight tracking unit 53. Therefore, in the present embodiment, only the parts different from the above-described embodiment will be described in detail, and other details will be omitted.
- the measuring device 50 includes a laser 10, a control unit 51, an operation unit 13, a storage unit 14, and a display unit 15.
- the control unit 51 includes a measurement unit 11, a detection unit 12, a classification unit 52, and a line-of-sight tracking unit 53.
- the measuring unit 11 and the detecting unit 12 are included in the control block of the measuring device 1.
- the display unit 15 displays an image.
- the display unit 15 displays an image that the human subject gazes at in order to suppress the displacement of the head of the human subject during irradiation with the therapeutic electromagnetic wave.
- the image displayed by the display unit 15 may be a moving image or a still image.
- the line-of-sight tracking unit 53 tracks the movement of the line of sight of a human object with respect to the image.
- the line-of-sight tracking unit 53 can include a known line-of-sight tracking sensor.
- Examples of eye-tracking sensors include, but are not limited to, infrared LEDs and infrared cameras. When an infrared LED and an infrared camera are used, the line of sight can be tracked by detecting the corneal reflex and the pupil from the image of the human eye image taken by the camera by irradiating infrared rays.
- a remote line-of-sight tracking sensor provided in the frame of the display of the display unit 15 or a glasses-type line-of-sight tracking sensor provided in the glasses worn by a human object is used.
- the eyeglass-type eye-tracking sensor can measure the movement of the pupil precisely, it is necessary to precisely combine the position information of the glasses themselves and the measurement result by the sensor.
- the measurement result by the sensor may be appropriately corrected based on the position information of the glasses themselves, depending on the required accuracy of eye-tracking.
- the remote line-of-sight tracking sensor recognizes the face and eyes in a wide range of captured images and measures the movement of the pupils in the face and eyes. Therefore, in order to prevent the pupil movement from failing to be detected due to the inability to follow the large displacement of the face and the resolution for the pupil movement to decrease, the image taken by the camera when a remote line-of-sight tracking sensor is used. Processing may be performed to improve the accuracy of the recognition processing of the inner face and eyes.
- the remote type eye tracking sensor does not need to be worn by a human subject and is less likely to cause stress, so it is more preferable to use it in the eye tracking unit 53.
- the measuring device 50 measures a human object with the displacement of the head suppressed on a customized pillow, and since the acquired image is limited to the eyes, even if it is a remote line-of-sight tracking sensor. There are few detection failures, and highly accurate eye tracking is possible.
- the classification unit 52 determines the stillness of the human target when viewing an image, based on the movement of the line of sight of the human target tracked by the line-of-sight tracking unit 53. The classification unit 52 determines whether or not the human target is gazing at the image based on the line-of-sight tracking result of the human target by the line-of-sight tracking unit 53. Then, the classification unit 52 determines that the human subject has a high degree of rest with respect to the image when the human subject is gazing at the image being viewed, and when the human subject is not gazing at the image. , It is determined that the human subject has a low degree of rest with respect to the image.
- the rest degree is evaluated on a 5-point scale, for example, and the rest degree 5 is set so that the displacement of the head of the human object is the smallest, and the rest degree 1 is set so that the displacement of the head of the human object is the largest.
- the rest degree 5 is set so that the displacement of the head of the human object is the smallest
- the rest degree 1 is set so that the displacement of the head of the human object is the largest.
- a case where the displacement of the head of the human object is small is expressed as a high degree of rest
- a case where the displacement of the head of the human object is large is expressed as a low degree of rest.
- the classification unit 52 determines the restness of the human object for each of the plurality of images, and the restness of the human object for one image is low, but the restness of the human object for another image is high.
- the degree of rest of a human object may be determined. Based on the determination result, the classification unit 52 creates data in which an image and the degree of rest with respect to the image are associated with each human object, and stores the data in the storage unit 14.
- the classification unit 52 does not change the movement of the line of sight for each image, and if all the images are gazed at, the classification unit 52 even images the human object regardless of the type of image. If shown, it may be determined that the degree of rest is high. Further, the classification unit 52 may determine that the human object has a high degree of rest regardless of viewing the image if there is no change in the movement of the line of sight of the human object before and after viewing the image.
- the measurement unit 11 causes the display unit 15 to display an image selected by referring to the stillness of the human object when measuring the distance to the irradiation target in the human object. Based on the determination result of the degree of rest by the classification unit 52, the measuring unit 11 may display the image on the display unit 15 and perform the measurement in the case of a human object having a high degree of rest when the image is displayed. .. Further, the measuring unit 11 may select an image having a high degree of rest of the human object and display it on the display unit 15 based on the determination result of the resting degree by the classification unit 52 to perform the measurement.
- the measuring unit 11 selects the presence / absence of image display during measurement and the type of image to be displayed for each human target to be measured, and measures the distance to the irradiation target in the human target to measure the distance to the irradiation target of the human target.
- the accuracy of alignment can be improved.
- the image may be displayed from the alignment of the head of the human subject to the end of irradiation of the therapeutic electromagnetic wave. As a result, the positional deviation due to the movement of the human target can be effectively suppressed.
- the measuring device 50 before the distance measurement by the measuring unit 11, the resting degree of the human object with respect to the image is determined by eye tracking, or the resting degree of the human object stored in the storage unit 14 is read out. Then, the measurement unit 11 causes the display unit 15 to display an image associated with a high degree of rest, and executes the distance measurement process in step S61.
- the measuring device 50 may continuously execute the line-of-sight tracking process during the measurement process and during the irradiation of the therapeutic electromagnetic wave, and feed back the determination result of the rest degree as necessary.
- the control unit 51 causes the display unit 15 to display an image (step S71).
- the display of the image on the display unit 15 may be set to start by detecting that the human target 100 is lying on the bed.
- the line-of-sight tracking unit 53 tracks the line of sight of a human object viewing the image displayed on the display unit 15 (step S72), and transmits the tracking result to the classification unit 52. Based on the received tracking result, the classification unit 52 determines whether or not the line of sight of the human subject has been on the screen continuously for a predetermined time (step S73).
- step S73 when it is determined that the line of sight of the human subject has been on the screen continuously for a predetermined time (Yes), the image displayed on the display unit 15 is classified by associating it with a high degree of rest (step S74). The result is stored in the storage unit 14 or displayed on the display unit 15.
- step S73 when it is determined that the line of sight of the human subject has not been on the screen continuously for a predetermined time (No), the image is classified by associating it with a low degree of rest, and the classification result is stored in the storage unit 14 or displayed. Display on 15.
- the control unit 51 causes the display unit 15 to display an image different from the image displayed immediately before (step S75).
- the line-of-sight tracking unit 53 tracks the line of sight of a human object viewing the image displayed on the display unit 15 (step S76), and transmits the tracking result to the classification unit 52. Based on the received tracking result, the classification unit 52 determines whether or not the line of sight of the human subject has been on the screen continuously for a predetermined time (step S77).
- step S77 when it is determined that the line of sight of the human subject has been on the screen continuously for a predetermined time (Yes), the image displayed on the display unit 15 is classified by associating it with a high degree of rest (step S74). The result is stored in the storage unit 14 or displayed on the display unit 15.
- step S77 when it is determined that the line of sight of the human subject has not been on the screen continuously for a predetermined time (No), the image displayed on the display unit 15 is classified by associating it with a low degree of rest (step S74), and the classification result. Is stored in the storage unit 14 or displayed on the display unit 15. At the same time, the control unit 51 determines whether or not the line-of-sight tracking unit 53 has repeated the line-of-sight tracking a predetermined number of times (step S78).
- step S78 when it is determined that the line-of-sight tracking unit 53 has repeated the line-of-sight tracking a predetermined number of times (Yes), it is determined that the human subject has a low degree of rest due to an image. Then, the information is associated with the human subject and classified (step S74), and the classification result is stored in the storage unit 14 or displayed on the display unit 15.
- step S78 when it is determined that the line-of-sight tracking unit 53 has not repeated the line-of-sight tracking a predetermined number of times (Yes), a different image is displayed on the display unit 15 and the processes of steps S75 to S77 are repeated.
- the measuring device 50 can suppress the displacement of the head by allowing a human object to view the image without pressing the head with a mask or the like and fixing the head to the bed. In addition, since the measuring device 50 monitors the displacement of the head with a simple configuration, it is possible to reduce the stress on the human object and suppress the displacement of the head to improve the irradiation accuracy of the therapeutic electromagnetic wave. ..
- the measuring device 50 in addition to detecting the displacement of the head, the following 1) and 2) can be realized, so that the irradiation accuracy of the therapeutic electromagnetic wave can be realized without pressing the head and fixing it to the bed. 1) Evaluate the reproducibility of head immobility to determine if it is a human subject that does not need to hold the head; 2) Preliminary head displacement trends Get to and deal with before making a big move.
- the above 1) and 2) can be realized by observing the state of viewing the image before the treatment with the therapeutic electromagnetic wave and classifying the rest.
- the measuring device 50 quantitatively determines whether or not the image is focused, that is, whether or not the image is gazed, by tracking the line of sight by the line-of-sight tracking unit 53. It can be evaluated by observing.
- the measuring device 50 is not interested in the image (the line of sight does not face the image), cannot concentrate on the image due to anxiety (the line of sight moves), or looks at surrounding devices due to discomfort, anxiety, etc. (the line of sight deviates). ), Etc., the tendency of human subjects to not view images continuously for a predetermined time can be detected by eye tracking.
- the measuring device 50 obtains by observing whether or not the "trend of displacement of the head" of 2) is concentrated on the image by continuous line-of-sight tracking of the line-of-sight tracking unit 53. If you are not interested in the image, or if you cannot gaze at the image due to discomfort, anxiety, etc., the human subject may suddenly be greatly displaced. On the other hand, when gazing at an image, even a slight displacement is unlikely to cause a sudden large displacement. In the measuring device 50, by obtaining the tendency of whether or not the human object gazes at the image, it is possible to know the tendency of whether or not the head of the human object is easily displaced. As a result, even when the human object is greatly displaced, it can be appropriately dealt with.
- the measurement method according to the embodiment of the present invention is a measurement method for measuring the displacement of the head of a human object that receives a therapeutic electromagnetic wave on the head, and is based on the laser beam irradiating the human object to the irradiation target.
- the detection step which includes a measurement step for measuring the distance of the human object and a detection step for detecting the displacement of the head of the human object based on the change in the distance measured by the measurement step.
- the distance measured as the irradiation target at least one feature point that protrudes from the other parts is used as the reference distance, and the distance from the reference distance is It is a measurement method that obtains changes.
- the measurement method according to the embodiment of the present invention is realized by the measuring device according to the embodiment of the present invention described above, a detailed description of the measurement method according to the embodiment of the present invention is given. , The above description of the measuring device according to the embodiment of the present invention is followed.
- FIG. 3 is a block diagram showing a main configuration of the radiation irradiation device according to the embodiment of the present invention.
- the radiation irradiation device 30 includes the measurement device 1 according to the embodiment of the present invention described above, and the radiation irradiation unit 31 that irradiates the head of the human object 100 with radiation.
- the irradiation unit 31 irradiates the head of the human target 100 with radiation such as an electron beam, an X-ray, a ⁇ -ray, a proton beam, and a heavy particle beam.
- the radiation irradiation unit 31 includes a radiation source and a control unit (not shown) that controls irradiation of radiation from the radiation source.
- the control unit controls the irradiation range, irradiation intensity, irradiation time, and the like.
- a radiation irradiation unit provided in a known radiation irradiation device can be preferably used.
- the radiation irradiation unit 31 stops the irradiation of the human target 100 with radiation. If the head of the human subject 100 is displaced while irradiating the patient with radiation, the affected area will not be properly irradiated and the treatment will not be performed properly, and the radiation will be applied to unnecessary parts. The side effects of being treated are also a problem. Since the irradiation unit 31 stops the irradiation of the human target 100 when the head of the human target 100 is mutated, the side effect is prevented and the head of the human target 100 is repositioned to the correct position to restart the irradiation. Therefore, the treatment can be appropriately performed.
- Example 1 Comparative Examples 1 and 2
- An embodiment of the present invention will be described below.
- an adult female was used as the subject.
- the experiment was conducted by placing the pillow on a precision stage that has a scale that displays the amount of vertical displacement and can be raised and lowered, and placing the subject's head on the pillow.
- a measuring device as shown in FIG. 2 was used as the head mutation amount measuring device.
- the laser of the measuring device was pointed at the nose or cheek, which is the evaluation point of the subject's head, and the direction of the laser was fixed at that position. It was confirmed that the display scale of the precision stage was 5 mm, and this position was used as the reference height. The distance to the evaluation point at the reference height was measured by a measuring device, and this was used as the reference distance.
- the precision stage was lowered while measuring the distance to the irradiation target with a measuring device, and the descent of the precision stage was stopped when the display memory of the precision stage reached 0 mm. Subsequently, the precision stage was raised while measuring the distance to the irradiation target with the measuring device, and the rise of the precision stage was stopped when the measured distance matched the reference distance. The display scale of the precision stage at this time was read, and the difference from the reference height (5 mm) was calculated as the amount of deviation. This operation was repeated 5 times, and the average deviation amount and the standard deviation were calculated. The results are shown in Table 1.
- Comparative Examples 1 and 2 are both devices that use a three-dimensional camera to align the target during radiotherapy.
- Table 2 shows the average and standard deviation of the deviation amounts in Comparative Examples 1 and 2.
- FIG. 4 shows a diagram comparing the results of Examples, Comparative Example 1 and Comparative Example 2.
- FIG. 4 is a graph comparing the results of Examples and Comparative Examples. As shown in FIG. 4, according to the embodiment, the displacement of the measurement target can be detected easily and accurately.
- Example 2 Other examples of the present invention will be described below.
- an adult female was used as the subject.
- the experiment was conducted with the subject lying on his back on the bed as shown in FIG. 2 and the subject's head placed on a pillow.
- a monitor for viewing the subject was installed in front of the subject lying on his back on the bed.
- a line-of-sight tracking sensor was installed above the monitor, and a moving image was displayed on the monitor.
- Line-of-sight tracking was started by measuring the position of the pupil, and a moving image was displayed on the lower right edge of the monitor at a size of about 1/10 of the screen.
- the subject's line-of-sight tracking was continued while displaying the video on the monitor. Next, the video on the monitor was hidden and the subject's line of sight was tracked.
- FIG. 8 is a graph showing the line-of-sight tracking result when the moving image is displayed.
- FIG. 9 is a graph showing the line-of-sight tracking result when the moving image is not displayed.
- the average pixel of the pupil position at the time of moving image display was 178, and the standard deviation was 17.4.
- the average pixel of the pupil position when the moving image was not displayed was 276, and the standard deviation was 113. In this way, it was shown that the movement of the line of sight is unlikely to change when the subject gazes at the moving image by displaying the moving image. As a result, it can be determined that the subject has a line of sight continuously on the screen for a predetermined time and has a high degree of rest with respect to the moving image.
- the present invention can be used in the medical field of performing treatment using therapeutic electromagnetic waves.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
治療用電磁波を受けるヒト対象の頭部の動きを検出する技術を実現する計測装置(1)は、レーザ(10)と、レーザ光に基づき、照射対象までの距離を計測する計測部(11)と、計測した距離の変化に基づき、ヒト対象の頭部の変位を検出する検出部(12)とを備えている。検出部(12)は、他の部位よりも突出している部位である特徴点を照射対象として計測した基準距離からの距離の変化を得る。
Description
本発明は、計測装置、計測方法、及び、放射線照射装置に関する。
放射線治療時においては、腫瘍位置に正確に放射線を照射するため、放射線の照射前に患者の位置合わせを正確に行うことだけでなく、位置合わせしてから放射線の照射が終了するまでの間、その位置から患者を動かさないことが望ましい。そのため、従来、頭部に放射線を照射する場合には、患者の頭部をマスクにより押さえ付けてベッドに固定し、患者を動かさないようにしている。しかしながら、患者をベッドに押さえ付けるような方法では、患者のストレスが増大し、治療がトラウマになってしまう恐れがある。この問題は特に患者が小児である場合にはより深刻である。したがって、患者のストレスが軽減され、かつ高精度の放射線治療が行うことが可能な技術が求められている。
特許文献1には、計測光とカメラを用いて取得した二次元画像データ及び三次元画像データに基づき、支持台における患者の位置を調整する技術が記載されている。特許文献2には、患者の頸部等の動きを監視し、患者が動いたことを検出した場合には、放射線の照射を停止させる技術が記載されている。
しかしながら、特許文献1に記載された技術では、二次元画像データ及び三次元画像データの取得及び処理に時間がかかる上に、高性能のデータ処理装置が必要である。また、特許文献2に記載された技術では、甲状腺の疾患を治療するために放射線を照射する部位である頸部の動きを監視するものであり、他の疾患に適用できないという問題がある。
本発明の一態様は、上記課題を解決するためになされたものであり、その目的は、簡易な構成で頭部の動きを検出する技術を実現することを目的とする。
上記の課題を解決するために、本発明は、例えば、以下に示す態様に係る発明を提供する。
1)頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測装置であって、前記ヒト対象にレーザ光を照射するレーザと、前記レーザから照射したレーザ光に基づき、照射対象までの距離を計測する計測部と、前記計測部が計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出部とを備え、前記検出部は、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、計測装置。
2)前記ヒト対象は、仰向けに横たわっている、1)に記載の計測装置。
3)前記計測部は、前記ヒト対象の頭部に治療用電磁波が照射されている間、連続的又は断続的に、前記ヒト対象に前記レーザ光を照射して、照射対象までの距離を計測する、1)又は2)に記載の計測装置。
4)前記ヒト対象の頭部を、治療用電磁波を受けるために位置決めした治療位置に仮固定する固定具をさらに備えた、1)から3)のいずれかに記載の計測装置。
5)前記頭部の変位は、二次元的な変位又は三次元的な変位である、1)から4)のいずれかに記載の計測装置。
6)前記ヒト対象が横たわるベッドをさらに備えた、1)から5)のいずれかに記載の計測装置。
7)前記ヒト対象が小児である、1)から6)のいずれかに記載の計測装置。
8)画像を表示する表示部と、前記画像に対する前記ヒト対象の視線の動きを追跡する視線追跡部と、前記視線追跡部が追跡した前記ヒト対象の視線の動きに基づいて、前記画像の視聴時の当該ヒト対象の静止度を判定する分類部とをさらに備えた、1)から7)のいずれか1項に記載の計測装置。
9)前記計測部は、前記ヒト対象における前記照射対象までの距離の計測時に、当該ヒト対象の前記静止度を参照して選択された画像を前記表示部に表示させる、8)に記載の計測装置。
10)1)から9)のいずれかに記載の計測装置と、前記ヒト対象の頭部に放射線を照射する放射線照射部とを備えた、放射線照射装置。
11)前記放射線照射部は、前記検出部が前記ヒト対象の頭部の変位を検出した場合に、前記ヒト対象への放射線の照射を停止させる、10)に記載の放射線照射装置。
12)頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測方法であって、前記ヒト対象に照射したレーザ光に基づき、照射対象までの距離を計測する計測ステップと、前記計測ステップが計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出ステップとを含み、前記検出ステップにおいて、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、計測方法。
1)頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測装置であって、前記ヒト対象にレーザ光を照射するレーザと、前記レーザから照射したレーザ光に基づき、照射対象までの距離を計測する計測部と、前記計測部が計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出部とを備え、前記検出部は、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、計測装置。
2)前記ヒト対象は、仰向けに横たわっている、1)に記載の計測装置。
3)前記計測部は、前記ヒト対象の頭部に治療用電磁波が照射されている間、連続的又は断続的に、前記ヒト対象に前記レーザ光を照射して、照射対象までの距離を計測する、1)又は2)に記載の計測装置。
4)前記ヒト対象の頭部を、治療用電磁波を受けるために位置決めした治療位置に仮固定する固定具をさらに備えた、1)から3)のいずれかに記載の計測装置。
5)前記頭部の変位は、二次元的な変位又は三次元的な変位である、1)から4)のいずれかに記載の計測装置。
6)前記ヒト対象が横たわるベッドをさらに備えた、1)から5)のいずれかに記載の計測装置。
7)前記ヒト対象が小児である、1)から6)のいずれかに記載の計測装置。
8)画像を表示する表示部と、前記画像に対する前記ヒト対象の視線の動きを追跡する視線追跡部と、前記視線追跡部が追跡した前記ヒト対象の視線の動きに基づいて、前記画像の視聴時の当該ヒト対象の静止度を判定する分類部とをさらに備えた、1)から7)のいずれか1項に記載の計測装置。
9)前記計測部は、前記ヒト対象における前記照射対象までの距離の計測時に、当該ヒト対象の前記静止度を参照して選択された画像を前記表示部に表示させる、8)に記載の計測装置。
10)1)から9)のいずれかに記載の計測装置と、前記ヒト対象の頭部に放射線を照射する放射線照射部とを備えた、放射線照射装置。
11)前記放射線照射部は、前記検出部が前記ヒト対象の頭部の変位を検出した場合に、前記ヒト対象への放射線の照射を停止させる、10)に記載の放射線照射装置。
12)頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測方法であって、前記ヒト対象に照射したレーザ光に基づき、照射対象までの距離を計測する計測ステップと、前記計測ステップが計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出ステップとを含み、前記検出ステップにおいて、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、計測方法。
本発明の一態様によれば、ヒト対象の頭部の特徴点に照射したレーザ光に基づき、ヒト対象の頭部の変位を計測するので、簡易な構成で頭部の動きを検出することができる。
〔計測装置〕
[実施形態1]
以下、本発明の一実施形態に係る計測装置について、図1及び2を参照して以下に説明する。図1は、本発明の一実施形態に計測装置の要部構成を示すブロック図であり、図2は、本発明の一実施形態に係る計測装置を用いた計測の例を示す概略図である。計測装置1は、頭部に治療用電磁波を受けるヒト対象100の頭部の変位を計測する計測装置である。計測装置1は、レーザ10、計測部11及び検出部12を備えている。計測装置1は、操作部13、記憶部14及び表示部15をさらに備えていてもよい。
[実施形態1]
以下、本発明の一実施形態に係る計測装置について、図1及び2を参照して以下に説明する。図1は、本発明の一実施形態に計測装置の要部構成を示すブロック図であり、図2は、本発明の一実施形態に係る計測装置を用いた計測の例を示す概略図である。計測装置1は、頭部に治療用電磁波を受けるヒト対象100の頭部の変位を計測する計測装置である。計測装置1は、レーザ10、計測部11及び検出部12を備えている。計測装置1は、操作部13、記憶部14及び表示部15をさらに備えていてもよい。
計測装置1により頭部の変位を計測する対象は、頭部に治療用電磁波を受けるヒト対象100である。すなわち、ヒト対象100は、頭部に治療用電磁波を受けることで治療される患者である。ヒト対象100の頭部に外部から照射される治療用電磁波は、例えば、電子線、X線、γ線、陽子線、重粒子線等の放射線である。
ヒト対象100は、頭部に治療用電磁波を照射される場合には、通常、ベッド102上に仰向けに横たわっている状態であるため、計測装置1により頭部の変位を計測するヒト対象100は、仰向けに横たわっている対象であり得る。ベッド102は、計測装置1の構成要素としてもよい。
また、ヒト対象100が小児であり得る。治療用電磁波を照射して治療する患者が小児である場合、特に、治療用電磁波を照射中に頭部を変位させないようにすることが困難である。計測装置1によれば、頭部の変位を計測することができるので、治療する患者が小児である場合にも好適である。ヒト対象100が小児である場合、計測装置1が備えるベッド102は、小児用ベッドであり得る。
放射線のような治療用の電磁波を患者に照射して治療する場合、患部に適切に治療用電磁波が照射されるように、患者の頭部が治療開始時に位置決めされた治療位置から動かないことが好ましい。そのため、従来、マスク等で患者の頭部を覆い、このマスクでベッドに押さえつけて固定することで、患者の頭部を治療位置に固定していた。このように患者の頭部を固定すると、患者の頭部が治療位置から動きにくく治療用電磁波を適切に患部に照射することができる一方で、治療中の患者に大きなストレスがかかってしまうという問題がある。治療用電磁波による治療は繰り返し行う必要があるため、患者が受けるストレスが治療効果に与える影響も大きい。特に、患者が小児である場合には、治療位置から動かないようにさせることが難しい上に、頭部を押さえつけられることにより受けるストレスが非常に大きい。そのため、治療がトラウマになってしまい、以後の治療が継続できなくなってしまう可能性もある。
また、治療用電磁波を照射中に患者が動かないように、患者に全身麻酔をかける場合もあるが、患者に大きな負担になる上に、麻酔医による処置が必要であるため、麻酔医の確保も問題となる。さらに、二次元画像データ及び三次元画像データに基づき、支持台における患者の位置を調整する従来技術では、位置調整のためのデータの取得に時間がかかり、さらに患者に負担をかけることになってしまう。また、二次元画像データ及び三次元画像データを取得するために、高性能のデータ処理装置が必要である。
計測装置1は、治療用電磁波を受けるために位置決めされているヒト対象100の頭部における特徴点の距離を基準距離とすることで、治療中に測定される距離が基準距離からずれているか否か、すなわちその距離の基準距離からの変化を検出するのみで、ヒト対象100の頭部の変位を検出することができる。したがって、患者の頭部の変位が検出された場合には、その位置を元に戻す、変位した分だけ治療用電磁波の照射位置を調整する等により、患者の頭部を固定して動かないようにする必要がない。その結果、患者に与えるストレスを低減させて、治療用電磁波による治療を行うことができる。
また、計測装置1を用いれば、患者を固定することなく短時間で頭部の変位を計測することができるので、患者を全身麻酔する必要がなく、患者にかける負担をより低減することができる。さらに、計測装置1は、治療中に測定される距離の基準距離からの変化を検出するのみであるため、二次元画像データ及び三次元画像データを取得する従来技術のように、データの取得に時間がかからない上に、高性能のデータ処理装置も必要ない。
(レーザ)
レーザ10は、ヒト対象100にレーザ光を照射するものである。レーザ10は、距離計測用のレーザセンサ(測距センサ)内に設けられている。レーザ10は、計測部11における距離の測定方式に応じて、半導体レーザ(可視光)、赤外光レーザ等から選択される。
レーザ10は、ヒト対象100にレーザ光を照射するものである。レーザ10は、距離計測用のレーザセンサ(測距センサ)内に設けられている。レーザ10は、計測部11における距離の測定方式に応じて、半導体レーザ(可視光)、赤外光レーザ等から選択される。
計測装置1をベッド102上に設置して、ベッド102上に仰向けに横たわっているヒト対象100の頭部にレーザ光を照射するために、レーザ10は、ベッド102よりも高い位置から下向きにレーザ光を照射するように設けられていることが好ましい。レーザ10は、ベッド102又はヒト対象100に対するその傾きを調整可能な台座上に固定されていてもよい。これにより、レーザ10からのレーザ光の照射方向を調整することができる。
(計測部)
計測部11は、レーザ10から照射したレーザ光に基づき、照射対象までの距離を計測する。計測部11は、操作部13から操作入力を表す信号を受け取った場合に、レーザ10から照射対象に向けてレーザ光を照射する。計測部11は、レーザ10から照射されたレーザ光が照射対象において反射した反射光を受光して、照射対象までの距離を計測する。計測部11は、距離を計測した結果を検出部12に送る。
計測部11は、レーザ10から照射したレーザ光に基づき、照射対象までの距離を計測する。計測部11は、操作部13から操作入力を表す信号を受け取った場合に、レーザ10から照射対象に向けてレーザ光を照射する。計測部11は、レーザ10から照射されたレーザ光が照射対象において反射した反射光を受光して、照射対象までの距離を計測する。計測部11は、距離を計測した結果を検出部12に送る。
計測部11は、いわゆる測距センサである。測距センサ内には、レーザ10及び受光素子が備えられている。測距センサの例として、ToF(Time of Flight)センサ、位相差検出センサ、三角測距センサ等が挙げられる。ToFセンサは、赤外光レーザから赤外光を照射してから受光素子で反射光を受光するまでの時間に基づき、照射対象までの距離を測定する。位相差検出センサは、半導体レーザから照射されるレーザ光と照射対象において反射した反射光との位相差に基づき、照射対象までの距離を測定する。三角測距センサは、照射対象から乱反射した反射光を集光した受光位置に基づき、三角測量法により照射対象までの距離を測定する。
計測部11は、操作部13からの指示に基づき、治療用電磁波を受けるために位置決めされているヒト対象100の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を照射対象として、照射対象までの距離を計測する。この特徴点までの距離が、ヒト対象100の頭部の変位を検出する基準距離となる。
ヒト対象100の頭部において、他の部位よりも突出している部位の例として、例えば、額、眉、鼻、鼻先、鼻柱、頬、顎、顎先等が挙げられ、好ましくは、鼻、鼻柱、又は顎先である。ヒト対象100の頭部において他の部位よりも突出している部位の距離は、他の部位の距離との比較がしやすいため、基準距離とするのに適している。
計測部11による基準距離の計測は、治療用電磁波による治療を開始する時点又は直前に行ってもよいし、事前に計測して記憶部14に記憶しておき、治療開始時に読み出してもよい。
計測部11は、ヒト対象100の頭部に治療用電磁波が照射されている間、連続的又は断続的に、ヒト対象100にレーザ光を照射して、照射対象までの距離を計測してもよい。治療用電磁波を照射する前に患者の頭部を位置決めしたとしても、照射中に患者の頭部が変位すると、治療用電磁波の照射位置がずれてしまい、効果的に治療が行えない可能性がある。計測装置1は、計測部11において、ヒト対象100の頭部に治療用電磁波が照射されている間、連続的又は断続的に照射対象までの距離を計測するので、ヒト対象100の頭部に治療用電磁波が照射されている間、連続的又は断続的にヒト対象100の頭部の変位を監視することができる。
(検出部)
検出部12は、計測部11が計測した距離の変化に基づき、ヒト対象100の頭部の変位を検出する。検出部12は、治療用電磁波を受けるために位置決めされているヒト対象100の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を照射対象として計測した距離を基準距離として、当該基準距離からの距離の変化を得る。
検出部12は、計測部11が計測した距離の変化に基づき、ヒト対象100の頭部の変位を検出する。検出部12は、治療用電磁波を受けるために位置決めされているヒト対象100の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を照射対象として計測した距離を基準距離として、当該基準距離からの距離の変化を得る。
検出部12は、他の部位よりも突出している部位である、例えば、額、眉、鼻、鼻先、鼻柱、頬、顎、又は顎先の少なくとも1か所を照射対象とした距離を基準距離として取得する。
例えば、鼻P1を特徴点とした場合、検出部12は、治療用電磁波を受けるために頭部が位置決めされているヒト対象100の鼻P1を照射対象として計測された距離L1を基準距離として取得する。頭部が二次元方向(図2に示すベッド102の平面方向)に変位した場合には、レーザ光が照射される照射対象が鼻P1からずれてしまい、例えば、頬が照射対象になってしまう。基準距離である鼻P1までの距離L1と、頬までの距離とは異なるため、検出部12は、鼻P1までの距離L1と頬までの距離とを比較し、その変化を得ることで、頭部の変位を検出する。
また、頭部が三次元方向(図2に示すベッド102の垂直方向)に変位した場合には、鼻が垂直方向に計測部11に近づく。そのため、頭部の変位の前後で照射対象は鼻から変化しないが、計測部11から鼻までの距離は変化する。検出部12は、頭部が変位する前の鼻までの基準距離と、頭部が変異した後の鼻までの距離とを比較し、その変化を得ることで、頭部の変位を検出する。このように、検出部12は、頭部の二次元的な変位だけでなく、三次元的な変位をも検出することができる。
また、検出部12は、鼻柱のように、他の部位よりも突出している長さのある部位を特徴点(特徴領域)としてもよい。鼻柱を特徴点とする場合、検出部12は、鼻柱上の任意の複数の点をそれぞれ特徴点とし、それぞれの特徴点までの距離を基準距離とし、それぞれの特徴点について基準距離からの距離の変化を取得する。変化を取得する特徴点が複数存在することで、より正確に頭部の変位を監視することができる。
検出部12は、ヒト対象100の頭部に治療用電磁波が照射されている間、連続的又は断続的に計測された照射対象までの距離を、計測部11から取得する。そして、検出部12は、取得した距離について、連続的又は断続的に基準距離からの変化を得る。その結果、計測装置1は、ヒト対象100の頭部に治療用電磁波が照射されている間、連続的又は断続的にヒト対象100の頭部の変位を監視することができる。
(操作部)
操作部13は、ヒト対象100の頭部の変位を計測する操作入力をユーザから受け付けた場合に、その操作入力を表す信号を計測部11に送る。ユーザによる操作入力は、例えば、キーボード、マウス、タッチパネル等を介して行われる。
操作部13は、ヒト対象100の頭部の変位を計測する操作入力をユーザから受け付けた場合に、その操作入力を表す信号を計測部11に送る。ユーザによる操作入力は、例えば、キーボード、マウス、タッチパネル等を介して行われる。
(記憶部)
記憶部14は、計測部11が計測した距離データや、検出部12が得た基準距離からの距離の変化の有無、変化量、頭部の変位の有無等のデータを記憶する。また、記憶部14は、計測装置1の制御ブロックが実行するプログラムを記憶する。記憶部14は、例えば、ハードディスク、クラウドサーバ上のメモリ等であり得る。
記憶部14は、計測部11が計測した距離データや、検出部12が得た基準距離からの距離の変化の有無、変化量、頭部の変位の有無等のデータを記憶する。また、記憶部14は、計測装置1の制御ブロックが実行するプログラムを記憶する。記憶部14は、例えば、ハードディスク、クラウドサーバ上のメモリ等であり得る。
(表示部)
表示部15は、検出部12が検出した頭部の変位の有無、基準距離からの変化量を表示することで、検出部12による検出結果をユーザに通知する。表示部15は、コンピュータのディスプレイ、スマートフォンやタブレット端末のディスプレイ等であり得る。
表示部15は、検出部12が検出した頭部の変位の有無、基準距離からの変化量を表示することで、検出部12による検出結果をユーザに通知する。表示部15は、コンピュータのディスプレイ、スマートフォンやタブレット端末のディスプレイ等であり得る。
(固定具)
計測装置1は、ヒト対象100の頭部を、治療用電磁波を受けるために位置決めした治療位置に仮固定する固定具101をさらに備えていてもよい。固定具101は、ヒト対象100に与えるストレスを軽減するために、ヒト対象100の頭部を押さえつけるようなものではなく、位置決めしやすくするために仮固定できるものであればよい。固定具101は、例えば、枕である。枕は、ヒト対象100の頭部に沿った形状の窪みが予め形成されていてもよいし、ヒト対象100の頭部を載せるとその形状に合わせて窪み、その窪みが一定時間維持される低反発クッションで構成されたものでもよい。
計測装置1は、ヒト対象100の頭部を、治療用電磁波を受けるために位置決めした治療位置に仮固定する固定具101をさらに備えていてもよい。固定具101は、ヒト対象100に与えるストレスを軽減するために、ヒト対象100の頭部を押さえつけるようなものではなく、位置決めしやすくするために仮固定できるものであればよい。固定具101は、例えば、枕である。枕は、ヒト対象100の頭部に沿った形状の窪みが予め形成されていてもよいし、ヒト対象100の頭部を載せるとその形状に合わせて窪み、その窪みが一定時間維持される低反発クッションで構成されたものでもよい。
(計測処理の流れ)
ここで、計測装置1における計測処理の流れについて、図5を参照して説明する。図5は、計測装置1の計測処理の流れを説明するフローチャートである。なお、計測装置1の計測処理は、特に明示しない限り、計測装置1の制御ブロックにおいて制御される。
ここで、計測装置1における計測処理の流れについて、図5を参照して説明する。図5は、計測装置1の計測処理の流れを説明するフローチャートである。なお、計測装置1の計測処理は、特に明示しない限り、計測装置1の制御ブロックにおいて制御される。
計測装置1において、操作部13がヒト対象100の頭部の変位を計測する操作入力をユーザから受け付けた場合に、計測部11は、レーザ10からヒト対象100にレーザ光を照射し、ヒト対象100の距離対象までの距離を計測する(ステップS61)。なお、計測部11による計測は、ヒト対象100がベッドに仰向けに横たわったことを検知して開始されるように設定してもよいし、治療用電磁波の照射の開始と連動して開始されるように設定してもよい。
計測部11は、距離を計測した結果を検出部12に送り、検出部12は、計測部11が計測した距離とヒト対象100の基準距離とを比較して、基準距離からの距離の変化を得る(ステップS62)。ステップS62において、計測した距離と基準距離とが異ならず、基準距離からの距離の変化はないと判定した場合(No)、ステップS61に戻って計測処理を繰り返す。
ステップS62において、計測した距離と基準距離とが異なり、基準距離からの距離の変化があると判定した場合(Yes)、検出部12は、ヒト対象100の頭部の変位を検出する(ステップS63)。検出部12は、ヒト対象100の頭部の変位を検出した結果を記憶部14及び表示部15に送り、表示部15は、頭部の変位を検出したことをディスプレイに表示して、頭部の変位をユーザに通知する(ステップS64)。
計測装置1は、上述した計測処理を、治療用電磁波の照射中に連続的又は断続的に実行してもよいし、照射前に実行してもよい。計測装置1による計測処理を、治療用電磁波を照射する前に実行した場合、ヒト対象100の頭部を、治療用電磁波を受けるために治療位置に位置決めすることができる。この場合、図5に示す計測処理のステップS62において、計測した距離と基準距離とが異ならないと判定した後(No)、表示部15は、頭部が位置決めされたことをディスプレイに表示し、ユーザに通知する。
さらに、計測装置1は、ヒト対象100の治療用電磁波による治療計画の作成時に計測処理を実行してもよい。ヒト対象100に対して治療用電磁波による治療を行う場合、治療を開始する前に、ヒト対象100を治療時と同一の位置に位置決めし、電磁波を照射する患部の位置や範囲を把握し、治療計画を作成する。計測装置1による計測処理は、このような治療計画の決定のために、患部の画像をCT等により撮影する場合にも有益である。
[実施形態2]
本発明の他の実施形態について、図6を参照して以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図6は、本発明の変形例に係る計測装置の要部構成を示すブロック図である。
本発明の他の実施形態について、図6を参照して以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図6は、本発明の変形例に係る計測装置の要部構成を示すブロック図である。
図5に示すように、本実施形態に係る計測装置50は、制御部51に分類部52及び視線追跡部53を備えている点において、図1に示す計測装置1と異なっている。したがって、本実施形態においては、上述した実施形態と異なる部分についてのみ詳細に説明し、他の詳細については省略する。
計測装置50は、レーザ10、制御部51、操作部13、記憶部14、及び表示部15を備えている。そして、制御部51は、計測部11、検出部12、分類部52、及び視線追跡部53を備えている。なお、明示していないが、実施形態1の計測装置1においても、計測部11及び検出部12は、計測装置1の制御ブロックに含まれる。
表示部15は、画像を表示する。表示部15は、治療用電磁波を照射中のヒト対象の頭部の変位を抑えるために、ヒト対象が注視するような画像を表示する。表示部15が表示する画像は、動画であっても、静止画であってもよい。
視線追跡部53は、画像に対するヒト対象の視線の動きを追跡する。視線追跡部53は、公知の視線追跡センサを備えることができる。視線追跡センサの例として、赤外線LED及び赤外線カメラが挙げられるが、これに限定されない。赤外線LED及び赤外線カメラを用いる場合、赤外線を照射してカメラで撮像したヒト対象の眼の画像から、角膜反射及び瞳孔を検出することにより、視線を追跡することができる。
視線追跡センサとして赤外線LED及び赤外線カメラを用いる場合、これらを表示部15のディスプレイの枠に設けた遠隔型の視線追跡センサ、又は、ヒト対象が装着するメガネに設けたメガネ型の視線追跡センサであってもよい。なお、メガネ型の視線追跡センサによれば精緻な瞳孔の動きを計測できるが、メガネ自体の位置情報とセンサによる計測結果とを精緻に組み合わせる必要がある。メガネ型の視線追跡センサを用いる場合には、求められる視線追跡の精度に応じて、センサによる計測結果をメガネ自体の位置情報に基づいて適宜補正してもよい。また、遠隔型の視線追跡センサによれば、広範に撮影した画像中の顔及び眼を認識し、その中にある瞳孔の動きを計測する。したがって、顔の大きな変位に追随できずに瞳孔の動きの検出に失敗し、瞳孔の動きに対する分解能が低下することを防ぐために、遠隔型の視線追跡センサを用いる場合には、カメラが撮影した画像中の顔及び眼の認識処理の精度を高める処理を行ってもよい。
遠隔型の視線追跡センサは、ヒト対象が装着する必要がなく、ストレスを与えにくいため、視線追跡部53において用いるのにより好ましい。計測装置50は、カスタマイズされた枕上で、頭部の変位を抑えた状態のヒト対象を計測する上に、取得する画像が眼に限定されているので、遠隔型の視線追跡センサであっても検出の失敗が少なく、高精度の視線追跡が可能である。
分類部52は、視線追跡部53が追跡したヒト対象の視線の動きに基づいて、画像の視聴時の当該ヒト対象の静止度を判定する。分類部52は、視線追跡部53によるヒト対象の視線追跡結果に基づいて、ヒト対象が画像を注視していたか否かを判定する。そして、分類部52は、ヒト対象が視聴中の画像を注視していた場合には、当該画像に対するヒト対象の静止度が高いと判定し、ヒト対象が画像を注視していなかった場合には、当該画像に対するヒト対象の静止度が低いと判定する。ここで、静止度は、例えば、5段階評価にし、静止度5が最もヒト対象の頭部の変位が小さく、静止度1が最もヒト対象の頭部の変位が大きい、のように設定する。本実施形態では、例として、ヒト対象の頭部の変位が小さい場合を静止度が高いと表現し、ヒト対象の頭部の変位が大きい場合を静止度が低いと表現する。
分類部52は、複数の画像のそれぞれに対するヒト対象の静止度を判定し、一の画像に対するヒト対象の静止度は低いが、他の画像に対するヒト対象の静止度は高いというように、画像毎にヒト対象の静止度を判定してもよい。分類部52は、判定結果に基づき、ヒト対象毎に、画像と当該画像に対する静止度とを関連付けたデータを作成し、記憶部14に記憶させる。
分類部52は、複数の画像を視聴したヒト対象において、画像毎に視線の動きに変化がなく、全ての画像を注視していた場合には、当該ヒト対象を画像の種類に関わらず画像さえ表示すれば静止度が高いと判定してもよい。また、分類部52は、画像を視聴する前と後とで、ヒト対象の視線の動きに変化がない場合、当該ヒト対象を画像の視聴に関係なく静止度が高いと判定してもよい。
計測部11は、ヒト対象における照射対象までの距離の計測時に、当該ヒト対象の静止度を参照して選択された画像を表示部15に表示させる。計測部11は、分類部52による静止度の判定結果に基づいて、画像を表示した場合の静止度が高いヒト対象の場合には、表示部15に画像を表示させて計測を行ってもよい。また、計測部11は、分類部52による静止度の判定結果に基づいて、ヒト対象の静止度の高い画像を選択して表示部15に表示させて計測を行ってもよい。
計測部11が、計測中の画像表示の有無及び表示させる画像の種類を、計測するヒト対象毎に選択して、ヒト対象における照射対象までの距離を計測することにより、ヒト対象の頭部の位置合わせの精度を向上させることができる。なお、画像の視聴時の静止度が高いヒト対象の場合、ヒト対象の頭部の位置合わせから治療用電磁波の照射が終了するまで画像を表示させてもよい。これにより、ヒト対象が動くことによる位置ズレを効果的に抑えることができる。
(計測処理の流れ)
ここで、計測装置50における計測処理について説明する。計測装置50における計測処理の流れは、図5に示す計測装置1の計測処理の流れと同一であるが、ステップS61の距離計測の前又は距離計測時に、ヒト対象の静止度を参照して選択された画像を表示部15に表示させる処理が含まれる。
ここで、計測装置50における計測処理について説明する。計測装置50における計測処理の流れは、図5に示す計測装置1の計測処理の流れと同一であるが、ステップS61の距離計測の前又は距離計測時に、ヒト対象の静止度を参照して選択された画像を表示部15に表示させる処理が含まれる。
すなわち、計測装置50においては、計測部11による距離計測の前に、視線追跡によりヒト対象の画像に対する静止度を判定する、又は、記憶部14に記憶された当該ヒト対象の静止度を読み出す。そして、計測部11は、高い静止度に関連付けられた画像を表示部15に表示させ、ステップS61の距離計測処理を実行する。なお、計測装置50は、計測処理中及び治療用電磁波の照射中も継続して視線追跡処理を実行し、必要に応じて静止度の判定結果をフィードバックしてもよい。
(視線追跡処理の流れ)
ここで、計測装置50における視線追跡処理の流れについて、図7を参照して説明する。図7は、本発明の変形例に係る計測装置の視線追跡処理の流れを説明するフローチャートである。なお、計測装置50の視線追跡処理は、特に明示しない限り、計測装置50の制御部51において制御される。
ここで、計測装置50における視線追跡処理の流れについて、図7を参照して説明する。図7は、本発明の変形例に係る計測装置の視線追跡処理の流れを説明するフローチャートである。なお、計測装置50の視線追跡処理は、特に明示しない限り、計測装置50の制御部51において制御される。
計測装置50において、操作部13が視線追跡処理を行う操作入力をユーザから受け付けた場合に、制御部51は、表示部15に画像を表示させる(ステップS71)。なお、表示部15における画像の表示は、ヒト対象100がベッドに仰向けに横たわったことを検知して開始されるように設定してもよい。
視線追跡部53は、表示部15に表示された画像を視聴するヒト対象の視線を追跡し(ステップS72)、追跡結果を分類部52に送信する。分類部52は、受信した追跡結果に基づいて、ヒト対象の視線が所定時間継続して画面上に有ったか否かを判定する(ステップS73)。
ステップS73において、ヒト対象の視線が所定時間継続して画面上に有ったと判定した場合(Yes)、表示部15に表示させた画像に高い静止度を関連付けて分類し(ステップS74)、分類結果を記憶部14に記憶させる又は表示部15に表示させる。
ステップS73において、ヒト対象の視線が所定時間継続して画面上になかったと判定した場合(No)、当該画像に低い静止度を関連付けて分類し、分類結果を記憶部14に記憶させる又は表示部15に表示させる。これと共に、制御部51は、表示部15に直前に表示した画像とは異なる画像を表示させる(ステップS75)。視線追跡部53は、表示部15に表示された画像を視聴するヒト対象の視線を追跡し(ステップS76)、追跡結果を分類部52に送信する。分類部52は、受信した追跡結果に基づいて、ヒト対象の視線が所定時間継続して画面上に有ったか否かを判定する(ステップS77)。
ステップS77において、ヒト対象の視線が所定時間継続して画面上に有ったと判定した場合(Yes)、表示部15に表示させた画像に高い静止度を関連付けて分類し(ステップS74)、分類結果を記憶部14に記憶させる又は表示部15に表示させる。
ステップS77において、ヒト対象の視線が所定時間継続して画面上になかったと判定した場合(No)、表示部15に表示させた画像に低い静止度を関連付けて分類し(ステップS74)、分類結果を記憶部14に記憶させる又は表示部15に表示させる。これと共に、制御部51は、視線追跡部53による視線追跡を所定回数繰り返したか否かを判定する(ステップS78)。
ステップS78において、視線追跡部53による視線追跡を所定回数繰り返したと判定した場合(Yes)、当該ヒト対象は画像による静止度が低いと判定する。そして、ヒト対象に当該情報を関連付けて分類し(ステップS74)、分類結果を記憶部14に記憶させる又は表示部15に表示させる。
ステップS78において、視線追跡部53による視線追跡を所定回数繰り返していないと判定した場合(Yes)、表示部15にさらに異なる画像を表示させ、ステップS75~S77の処理を繰り返す。
計測装置50は、ヒト対象に画像を視聴させることによって、マスク等により頭部を押さえ付けてベッドに固定することなく、頭部の変位を抑制することができる。加えて、計測装置50は、簡易な構成で頭部の変位を監視するので、ヒト対象へのストレスを低減すると共に、頭部の変位を抑制して治療用電磁波の照射精度を高めることができる。
計測装置50によれば、頭部の変位を検出することに加え、以下の1)及び2)が実現できるので、頭部を押さえ付けてベッドに固定しなくても、治療用電磁波の照射精度を高めることができる:1)頭部が動かないことの再現性を評価して、頭部を抑える必要がないヒト対象であるか否かを判定する;2)頭部の変位の傾向を事前に取得し、大きく動く前に対処する。
ヒト対象が小児である場合、特に、画像を視聴することで静止度が向上し、頭部の変位を減らすことが期待できる。計測装置50によれば、治療用電磁波による治療前に画像を視聴している状態を観測して静止度を分類することで、上記1)及び2)を実現することができる。
計測装置50は、1)の「頭部が動かないことの再現性」について、画像を集中してみているか否か、すなわち注視しているか否かを、視線追跡部53による視線追跡により定量的に観測することで評価できる。計測装置50は、画像に興味がない(視線が画像に向かない)、不安のため画像に集中できない(視線が動く)、不快、不安等のため周囲の機器を見てしまう(視線がそれる)等の所定時間継続して画像を視聴しないというヒト対象の傾向を、視線追跡により検出できる。
計測装置50は、2)の「頭部の変位の傾向」について、画像に集中しているか否かを、視線追跡部53の連続的な視線追跡により観測することで得る。画像に興味がない、又は、不快、不安等のため画像を注視できていない場合、ヒト対象が突然大きく変位する可能性がある。一方、画像を注視している場合、わずかな変位があっても、突然大きく変位する可能性は低い。計測装置50では、ヒト対象が画像を注視するか否かの傾向を得ることで、ヒト対象の頭部が変位しやすいか否かの傾向を知ることができる。その結果、ヒト対象が大きく変位するような場合にも、適切に対処することができる。
〔計測方法〕
本発明の一実施形態に係る計測方法は、頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測方法であって、前記ヒト対象に照射したレーザ光に基づき、照射対象までの距離を計測する計測ステップと、前記計測ステップが計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出ステップとを含み、前記検出ステップにおいて、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、計測方法である。
本発明の一実施形態に係る計測方法は、頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測方法であって、前記ヒト対象に照射したレーザ光に基づき、照射対象までの距離を計測する計測ステップと、前記計測ステップが計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出ステップとを含み、前記検出ステップにおいて、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、計測方法である。
すなわち、本発明の一実施形態に係る計測方法は、上述した本発明の一実施形態に係る計測装置により実現されるものであるため、本発明の一実施形態に係る計測方法の詳細な説明は、上述した本発明の一実施形態に係る計測装置の説明に準じる。
〔放射線照射装置〕
本発明の一実施形態に係る放射線照射装置について、図3を参照して以下に説明する。図3は、本発明の一実施形態に係る放射線照射装置の要部構成を示すブロック図である。図3に示すように、放射線照射装置30は、上述した本発明の一実施形態に係る計測装置1と、ヒト対象100の頭部に放射線を照射する放射線照射部31とを備えている。
本発明の一実施形態に係る放射線照射装置について、図3を参照して以下に説明する。図3は、本発明の一実施形態に係る放射線照射装置の要部構成を示すブロック図である。図3に示すように、放射線照射装置30は、上述した本発明の一実施形態に係る計測装置1と、ヒト対象100の頭部に放射線を照射する放射線照射部31とを備えている。
放射線照射部31は、電子線、X線、γ線、陽子線、重粒子線等の放射線をヒト対象100の頭部に向けて照射する。放射線照射部31は、放射線源と、放射線源からの放射線の照射を制御する制御部(図示せず)とを備えている。制御部は、放射線の照射範囲、照射強度、照射時間等を制御する。放射線照射部31として、公知の放射線照射装置に備えられた放射線照射部を好適に使用することができる。
放射線照射部31は、検出部12がヒト対象100の頭部の変位を検出した場合に、ヒト対象100への放射線の照射を停止させる。放射線を患者に照射している間にヒト対象100の頭部が変位してしまうと、放射線が患部に適切に照射されず治療が適切に行われない上に、必要のない箇所に放射線が照射されることによる副作用も問題となる。放射線照射部31は、ヒト対象100の頭部が変異した場合に放射線の照射を停止させるので、副作用を防ぐとともに、正しい位置にヒト対象100の頭部を位置決めし直して放射線の照射を再開させることで、適切に治療を行うことができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
〔実施例1、比較例1及び2〕
本発明の一実施例について以下に説明する。本実施例では、成人女性を被験者とした。上下の変位量を表示する目盛りを有し、昇降可能な精密ステージ上に枕を設置し、被験者頭部を枕の上に載置して、実験を行った。頭部変異量計測装置として、図2に示すような計測装置を用いた。
本発明の一実施例について以下に説明する。本実施例では、成人女性を被験者とした。上下の変位量を表示する目盛りを有し、昇降可能な精密ステージ上に枕を設置し、被験者頭部を枕の上に載置して、実験を行った。頭部変異量計測装置として、図2に示すような計測装置を用いた。
計測装置から被験者頭部の評価点までの距離を計測するために、計測装置のレーザを被験者頭部の評価点である鼻又は頬に向け、その位置でレーザの向きを固定した。精密ステージの表示目盛りが5mmであることを確認し、この位置を基準高さとした。計測装置により、基準高さにおける評価点までの距離を計測し、これを基準距離とした。
計測装置により照射対象までの距離を計測しながら精密ステージを降下させ、精密ステージの表示メモリが0mmになったところで精密ステージの降下を停止させた。つづけて、計測装置により照射対象までの距離を計測しながら精密ステージを上昇させ、計測した距離が基準距離と一致したところで精密ステージの上昇を停止させた。このときの精密ステージの表示目盛りを読み取り、基準高さ(5mm)との差分をずれ量として算出した。この操作を5回繰り返し、ずれ量の平均と標準偏差とを算出した。結果を表1に示す。
結果として得られたずれ量の平均及び標準偏差を、比較例の装置におけるずれ量と比較した。比較例1として、Cataystシステム(C-RAD社製)を用いた臨床的な実験結果が示された文献(参考文献1:Walter, F., Freislederer, P., Belka, C., Heinz, C., Sohn, M., & Roeder, F. (2016). Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (CatalystTM). Radiation Oncology, 11(1), 1-8)に記載された実験結果を参照した。具体的には、参考文献1の第4頁に記載された実験結果における、Cataystを単独で用いた場合に生じ得る平均理論セットアップエラーが、垂直方向では、1.4±3.2mmであったとの記載を参照した。
比較例2として、AlignRT(VisionRT社製)を用いた臨床的な実験結果が示された文献(参考文献2:Gopan, O., & Wu, Q. (2012). Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy. International Journal of Radiation Oncology Biology Physics, 84(2), 547-552)に記載された実験結果を参照した。具体的には、参考文献2の第4頁に記載された実験結果を示す表2のRegistration type:Rigid(head)の行のTranslations(mm)の列のなかのd_vrtの列の平均及び標準偏差の記載を参照した。
比較例1及び2は、いずれも三次元カメラを用いて、放射線治療時の対象の位置合わせを行う装置である。比較例1及び2におけるずれ量の平均及び標準偏差を表2に示す。
実施例、比較例1及び比較例2の結果を比較する図を、図4に示す。図4は、実施例及び比較例の結果を比較するグラフである。図4に示すように、実施例によれば、計測対象の変位を簡易かつ精確に検出することができる。
〔実施例2〕
本発明の他の実施例について以下に説明する。本実施例では、成人女性を被験者とした。被験者を、図2に示すようなベッドに仰向けに横たわった状態とし、被験者の頭部を枕の上に載置して、実験を行った。ベッドに仰向けに横たわった状態の被験者の前方に、被験者視聴用モニターを設置した。当該モニターの上方に視線追跡センサを設置し、当該モニターに動画を表示させた。瞳孔位置計測による視線追跡を開始し、モニターの右下縁に、画面の1/10程度の大きさで動画を表示した。モニターに動画を表示させながら、被験者の視線追跡を継続した。次に、モニターの動画を非表示にし、被験者の視線追跡を行った。
本発明の他の実施例について以下に説明する。本実施例では、成人女性を被験者とした。被験者を、図2に示すようなベッドに仰向けに横たわった状態とし、被験者の頭部を枕の上に載置して、実験を行った。ベッドに仰向けに横たわった状態の被験者の前方に、被験者視聴用モニターを設置した。当該モニターの上方に視線追跡センサを設置し、当該モニターに動画を表示させた。瞳孔位置計測による視線追跡を開始し、モニターの右下縁に、画面の1/10程度の大きさで動画を表示した。モニターに動画を表示させながら、被験者の視線追跡を継続した。次に、モニターの動画を非表示にし、被験者の視線追跡を行った。
動画表示時と動画非表示時とで、被験者の瞳孔位置の経時的な変動を比較し、結果を図8及び9に示す。図8は、動画表示時の視線追跡結果を表すグラフである。図9は、動画非表示時視線追跡結果を表すグラフである。動画表示時の瞳孔位置の平均ピクセルは、178であり、標準偏差は17.4であった。動画非表示時の瞳孔位置の平均ピクセルは、276であり、標準偏差は113であった。このように、動画の表示により被験者が動画を注視することで、視線の動きに変化が生じにくいことが示された。これにより、この被験者は視線が所定時間継続して画面上にあり、当該動画に対する静止度が高いと判定することができる。
本発明は、治療用電磁波を用いた治療を行う医療分野に利用することができる。
1、50 計測装置
10 レーザ
11 計測部
12 検出部
15 表示部
51 制御部
52 分類部
53 視線追跡部
100 ヒト対象
101 固定具
102 ベッド
10 レーザ
11 計測部
12 検出部
15 表示部
51 制御部
52 分類部
53 視線追跡部
100 ヒト対象
101 固定具
102 ベッド
Claims (12)
- 頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測装置であって、
前記ヒト対象にレーザ光を照射するレーザと、
前記レーザから照射したレーザ光に基づき、照射対象までの距離を計測する計測部と、
前記計測部が計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出部と
を備え、
前記検出部は、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、
計測装置。 - 前記ヒト対象は、仰向けに横たわっている、請求項1に記載の計測装置。
- 前記計測部は、前記ヒト対象の頭部に治療用電磁波が照射されている間、連続的又は断続的に、前記ヒト対象に前記レーザ光を照射して、照射対象までの距離を計測する、
請求項1又は2に記載の計測装置。 - 前記ヒト対象の頭部を、治療用電磁波を受けるために位置決めした治療位置に仮固定する固定具をさらに備えた、請求項1から3のいずれか1項に記載の計測装置。
- 前記頭部の変位は、二次元的な変位又は三次元的な変位である、請求項1から4のいずれか1項に記載の計測装置。
- 前記ヒト対象が横たわるベッドをさらに備えた、請求項1から5のいずれか1項に記載の計測装置。
- 前記ヒト対象が小児である、請求項1から6のいずれか1項に記載の計測装置。
- 画像を表示する表示部と、
前記画像に対する前記ヒト対象の視線の動きを追跡する視線追跡部と、
前記視線追跡部が追跡した前記ヒト対象の視線の動きに基づいて、前記画像の視聴時の当該ヒト対象の静止度を判定する分類部と
をさらに備えた、請求項1から7のいずれか1項に記載の計測装置。 - 前記計測部は、前記ヒト対象における前記照射対象までの距離の計測時に、当該ヒト対象の前記静止度を参照して選択された画像を前記表示部に表示させる、請求項8に記載の計測装置。
- 請求項1から9のいずれか1項に記載の計測装置と、
前記ヒト対象の頭部に放射線を照射する放射線照射部と
を備えた、放射線照射装置。 - 前記放射線照射部は、前記検出部が前記ヒト対象の頭部の変位を検出した場合に、前記ヒト対象への放射線の照射を停止させる、請求項10に記載の放射線照射装置。
- 頭部に治療用電磁波を受けるヒト対象の頭部の変位を計測する計測方法であって、
前記ヒト対象に照射したレーザ光に基づき、照射対象までの距離を計測する計測ステップと、
前記計測ステップが計測した距離の変化に基づき、前記ヒト対象の頭部の変位を検出する検出ステップと
を含み、
前記検出ステップにおいて、治療用電磁波を受けるために位置決めされている前記ヒト対象の頭部において、他の部位よりも突出している部位の少なくとも一箇所である特徴点を前記照射対象として計測した距離を基準距離として、当該基準距離からの前記距離の変化を得る、
計測方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021516253A JPWO2020218496A1 (ja) | 2019-04-24 | 2020-04-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019083294 | 2019-04-24 | ||
JP2019-083294 | 2019-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218496A1 true WO2020218496A1 (ja) | 2020-10-29 |
Family
ID=72942178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017668 WO2020218496A1 (ja) | 2019-04-24 | 2020-04-24 | 計測装置、計測方法、及び、放射線照射装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020218496A1 (ja) |
WO (1) | WO2020218496A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08745A (ja) * | 1994-06-16 | 1996-01-09 | Technol Res Assoc Of Medical & Welfare Apparatus | 定位的放射線治療装置 |
JP2004057559A (ja) * | 2002-07-30 | 2004-02-26 | Shimadzu Corp | 呼吸同期x線撮影装置 |
WO2005099820A1 (en) * | 2004-03-31 | 2005-10-27 | Accuray, Inc. | Radiosurgery x-ray system with collision avoidance subsystem |
JP2017035348A (ja) * | 2015-08-11 | 2017-02-16 | 株式会社東芝 | 患者の位置決め装置、方法及びプログラム |
-
2020
- 2020-04-24 WO PCT/JP2020/017668 patent/WO2020218496A1/ja active Application Filing
- 2020-04-24 JP JP2021516253A patent/JPWO2020218496A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08745A (ja) * | 1994-06-16 | 1996-01-09 | Technol Res Assoc Of Medical & Welfare Apparatus | 定位的放射線治療装置 |
JP2004057559A (ja) * | 2002-07-30 | 2004-02-26 | Shimadzu Corp | 呼吸同期x線撮影装置 |
WO2005099820A1 (en) * | 2004-03-31 | 2005-10-27 | Accuray, Inc. | Radiosurgery x-ray system with collision avoidance subsystem |
JP2017035348A (ja) * | 2015-08-11 | 2017-02-16 | 株式会社東芝 | 患者の位置決め装置、方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020218496A1 (ja) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210345982A1 (en) | Method of reducing the x-ray dose in an x-ray system | |
US9095283B1 (en) | Radiation control and minimization system and method using collimation/filtering | |
US9439592B2 (en) | Eye tracking headset and system for neuropsychological testing including the detection of brain damage | |
US8223915B2 (en) | Method and apparatus for radiographic imaging | |
EP3799782B1 (en) | Human body measurement using thermographic images | |
Otero-Millan et al. | Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion | |
US9351635B2 (en) | Assembly and method for the automatic rough positioning of ophthalmological equipment | |
JP5717524B2 (ja) | 3次元超音波診断装置およびその動作方法 | |
KR102097390B1 (ko) | 시선 검출 기반의 스마트 안경 표시 장치 | |
US9724051B2 (en) | Medical X-ray CT photography apparatus using positional shift based on rotation angle | |
US10335108B2 (en) | System and method for increasing the accuracy of a medical imaging device | |
EP3203914B1 (en) | Radiation dose applied to different anatomical stages | |
WO2020218496A1 (ja) | 計測装置、計測方法、及び、放射線照射装置 | |
Weigle et al. | Analysis of eye-tracking experiments performed on a Tobii T60 | |
US20190167231A1 (en) | System and method for ultrasonic tissue screening | |
JP2019018010A (ja) | 放射線治療システム | |
JP6278483B2 (ja) | 治療支援システム、治療支援システムの動作方法及び治療支援プログラム | |
CN114980802A (zh) | 视网膜成像系统 | |
US20230225690A1 (en) | Setting device, setting method, and setting program | |
JP2024110468A (ja) | 呼吸監視装置及び呼吸監視方法 | |
JP2024110692A (ja) | 位置合わせ装置及び放射線治療システム | |
CN118141319A (zh) | 一种人眼波前像差的测量系统、测量装置及其测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20796361 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021516253 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20796361 Country of ref document: EP Kind code of ref document: A1 |