WO2020218449A1 - Method for manufacturing three-dimensionally shaped molded article, and device for manufacturing three-demonsionally shaped molded article - Google Patents

Method for manufacturing three-dimensionally shaped molded article, and device for manufacturing three-demonsionally shaped molded article Download PDF

Info

Publication number
WO2020218449A1
WO2020218449A1 PCT/JP2020/017562 JP2020017562W WO2020218449A1 WO 2020218449 A1 WO2020218449 A1 WO 2020218449A1 JP 2020017562 W JP2020017562 W JP 2020017562W WO 2020218449 A1 WO2020218449 A1 WO 2020218449A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
precursor
height
shaped object
dimensional shaped
Prior art date
Application number
PCT/JP2020/017562
Other languages
French (fr)
Japanese (ja)
Inventor
武 松本
田中 健一
裕紀 吉永
阿部 諭
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020218449A1 publication Critical patent/WO2020218449A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional shaped object and an apparatus for producing a three-dimensional shaped object. More specifically, the present invention relates to a method for producing a three-dimensional shaped object that forms a solidified layer by irradiating a powder layer with a light beam, and an apparatus for producing the three-dimensional shaped object.
  • a method of producing a three-dimensional shaped object by irradiating a powder material with a light beam has been conventionally known.
  • powder layer formation and solidified layer formation are alternately and repeatedly carried out based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
  • the obtained three-dimensional shaped object can be used as a mold.
  • an organic resin powder is used as the powder material, the obtained three-dimensional shaped model can be used as various models.
  • the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 11A).
  • a predetermined portion of the powder layer 22 is irradiated with a light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 11B).
  • a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer.
  • the solidification layer 24 is laminated (see FIG. 11C), and finally, the three-dimensional structure composed of the laminated solidification layer 24 is formed.
  • a shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the modeling plate 21, the three-dimensional shaped model and the modeling plate 21 form an integrated product, and the integrated product can be used as a mold.
  • Japanese Patent No. 6062940 Japanese Patent No. 6254036 JP-A-2017-66023 Japanese Unexamined Patent Publication No. 2004-306612
  • the production of the three-dimensional shaped object by forming the solidified layer 24'using the light beam L' is performed on the modeling table 20'adjusted to a predetermined constant temperature by the temperature control device 50'. In some cases (see FIG. 14).
  • the distance from the modeling plate 21' located on the temperature-controlled modeling table 20' is relatively short. Due to this, the difference between the upper surface (surface) temperature of the precursor 100'of the three-dimensional shaped object having a relatively low height and the temperature of the modeling plate 21'is small. On the other hand, in the precursor 100'of a three-dimensional shaped object having a relatively high height during manufacturing, the height is relatively low due to the relatively long distance from the modeling plate 21'. There is a large difference between the upper surface (surface) temperature of the precursor 100'of the original shape model and the temperature of the model plate 21'.
  • the inventors of the present application when the above temperature difference is present, correspond to the expansion of the solidified layer 24', which is a component of the precursor 100' of the three-dimensional shaped model, along the height direction.
  • contraction can occur.
  • the solidified layer 24'located on the upper surface side of the precursor 100'of the three-dimensionally shaped model having a relatively high height corresponding to the above-mentioned temperature difference expands or expands along the height direction. It was newly found that the degree of contraction increases.
  • the height of the precursor 100'of the three-dimensional shaped model in the middle of production after a lapse of a predetermined time after the start of production may not be the desired height. Therefore, the thickness of the new powder layer 22'formed later may change. If the production is continued under the same laser irradiation conditions in this state, for example, the amount of sputtering (sparks) and / or fume (smoke) increases, and the density of the finally obtained three-dimensional shaped object 100A'is increased. Problems such as lowering and more likely to cause pores (vacancy) may occur. As a result, the quality of the finally obtained three-dimensional shaped object 100A'may change. That is, the dimensional accuracy (particularly the height accuracy) of the finally obtained three-dimensional shaped object 100A'may decrease.
  • an object of the present invention is a method for manufacturing a three-dimensional shaped object capable of suitably suppressing a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object, and the three-dimensional object. It is to provide a manufacturing apparatus for shaped objects.
  • a three-dimensional shaped product is manufactured by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer by alternately and repeatedly laminating the powder layer and the solidified layer.
  • a method for producing a three-dimensional shape model is provided, in which the modeling process conditions are changed according to the height of the precursor of the three-dimensional shape model.
  • It is a device for manufacturing three-dimensional shaped objects.
  • Powder layer forming part Light beam irradiation unit for forming a solidified layer from a powder layer
  • An arithmetic control unit that can change and control the modeling process conditions during the manufacturing of the three-dimensional shaped object
  • An apparatus provided with at least one of a height measuring unit capable of measuring the height of the precursor of the three-dimensional shape model and a temperature measuring unit capable of measuring the temperature of the upper surface of the precursor of the three-dimensional shape model. Will be done.
  • Schematic diagram for explaining the heat balance in the solidified layer formation stage using an optical beam Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention.
  • Schematic to illustrate the heat balance during the manufacture of "slender and tall” shaped precursors Schematic to illustrate the heat balance during the manufacture of "large area and short” shaped precursors
  • Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention.
  • Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention.
  • Perspective view schematically showing the configuration of the stereolithography compound processing machine Flowchart showing general operation of stereolithography multi-tasking machine Schematic cross-sectional view showing the technical problems of the present application
  • the "powder layer” means, for example, a "metal powder layer made of metal powder” or a “resin powder layer made of resin powder”.
  • the “predetermined location of the powder layer” substantially refers to the region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melt-solidified to form a three-dimensional shaped object.
  • the "up and down” direction described directly or indirectly in the present specification is, for example, a direction based on the positional relationship between the modeling plate and the three-dimensionally shaped object, and is three-dimensional with respect to the modeling plate.
  • the side on which the shaped object is manufactured is referred to as "upward”, and the opposite side is referred to as "downward”.
  • FIG. 11 schematically shows a process mode of stereolithography composite processing
  • FIGS. 12 and 13 are flowcharts of main configurations and operations of a stereolithography composite processing machine capable of performing a powder bed fusion bonding method and a cutting process. Are shown respectively.
  • the stereolithography composite processing machine 1 includes a powder layer forming portion 2, a light beam irradiation portion 3, and a cutting portion 4.
  • the powder layer forming portion 2 is for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness.
  • the light beam irradiation unit 3 is for irradiating a predetermined portion of the powder layer with the light beam L.
  • the cutting portion 4 is for cutting the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
  • the powder layer forming portion 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21.
  • the powder table 25 is a table that can be raised and lowered in a powder material tank 28 whose outer circumference is surrounded by a wall 26.
  • the squeezing blade 23 is a blade capable of horizontally moving the powder 19 on the powder table 25 onto the modeling table 20 to obtain the powder layer 22.
  • the modeling table 20 is a table that can be raised and lowered in a modeling tank 29 whose outer circumference is surrounded by a wall 27.
  • the modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a base for a three-dimensionally shaped object.
  • the light beam irradiation unit 3 mainly includes a light beam oscillator 30 and a galvanometer mirror 31.
  • the optical beam oscillator 30 is a device that emits an optical beam L.
  • the galvanometer mirror 31 is a means for scanning the emitted light beam L on the powder layer 22, that is, a means for scanning the light beam L.
  • the cutting portion 4 mainly includes an end mill 40 and a drive mechanism 41.
  • the end mill 40 is a cutting tool for scraping the surface of a laminated solidified layer, that is, the surface of a three-dimensional shaped object.
  • the drive mechanism 41 moves the end mill 40 to a desired position to be cut.
  • the operation of the stereolithography composite processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3).
  • the powder layer forming step (S1) is a step for forming the powder layer 22.
  • the modeling table 20 is lowered by ⁇ t (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 is ⁇ t.
  • the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the modeling tank 29 as shown in FIG. 11A.
  • the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13).
  • the powder material for forming the powder layer 22 include "metal powder having an average particle size of about 5 ⁇ m to 100 ⁇ m" and "resin powder such as nylon, polypropylene, or ABS having an average particle size of about 30 ⁇ m to 100 ⁇ m". it can.
  • the process proceeds to the solidified layer forming step (S2).
  • the solidified layer forming step (S2) is a step of forming the solidified layer 24 by irradiation with a light beam.
  • the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined position on the powder layer 22 by the galvanometer mirror 31 (S22).
  • the powder at a predetermined position in the powder layer 22 is sintered or melt-solidified to form the solidified layer 24 as shown in FIG. 11 (b) (S23).
  • a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser, ultraviolet rays, or the like may be used.
  • the powder layer forming step (S1) and the solidified layer forming step (S2) are alternately and repeatedly carried out. As a result, as shown in FIG. 11C, a plurality of solidified layers 24 are laminated.
  • the cutting step (S3) is a step for cutting the surface of the laminated solidified layer 24, that is, the surface of the three-dimensional shaped object.
  • the cutting step is started by driving the end mill 40 (see FIGS. 11C and 12) (S31).
  • the end mill 40 has an effective blade length of 3 mm
  • a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object. Therefore, if ⁇ t is 0.05 mm, it is equivalent to 60 layers.
  • the end mill 40 is driven when the solidified layers 24 are laminated.
  • the surface of the laminated solidified layer 24 is subjected to a cutting process while the end mill 40 is moved by the drive mechanism 41 (S32).
  • a cutting step S3
  • the powder bed melt-bonding method can be roughly divided into a desired three-dimensional shape by alternately performing (A) a powder layer forming step and (B) a solidifying layer forming step by irradiating a predetermined portion of the powder layer with a light beam. It is possible to manufacture a modeled object.
  • the inventors of the present application focused on the heat balance during the implementation of the powder bed fusion bonding method. The contents of such heat balance are as follows (see Table 1 below).
  • heat input / heating does not occur in the powder layer forming step (A) because no light beam is used.
  • step (A) of forming the powder layer heat dissipation from the surface (specifically, the upper surface) of the modeled precursor, heat conduction inside the modeled precursor, and heat removal by the temperature control device are simultaneously generated.
  • the surface of the modeled precursor 100 (specifically, the upper surface 101). Is heated.
  • heat is dissipated from the surface (specifically, the upper surface 101) of the model precursor 100, heat conduction inside the model precursor 100, and removal by the temperature control device 50. Heat is generated at the same time.
  • the temperature of the modeled precursor 100 can change in the (B) solidified layer forming step in which heat inflow and outflow coexist.
  • a temperature difference may occur between the temperature of the upper surface of the model precursor 100 and the temperature of the model plate 21 (that is, the base plate 20 ⁇ ) located on the model table 20 adjusted to a constant temperature.
  • the precursor 100 of the modeled object 100 Expansion or contraction along the height direction of the solidified layer 24 located on the upper surface side may occur.
  • the height of the precursor 100X can be higher or lower than the desired height.
  • the inventors of the present application will explain in detail below, but the modeling process conditions are not maintained constant during the production of the three-dimensional shape model, but the three-dimensional shape during the production. I have noticed that it is preferable to change it as appropriate according to the height of the precursor 100 of the modeled object. Based on this viewpoint, the inventors of the present application have come up with the present invention having the following technical ideas.
  • the modeling process conditions are not maintained constant during the production of the 3D shaped object, but depend on the height of the precursor 100 of the 3D shaped object during the production. Will be changed as appropriate. Specifically, instead of making the modeling process conditions continuously constant during the production of the three-dimensionally shaped object, the actual height of the precursor 100 during production is different from the predetermined ideal height. If it is grasped, change the modeling process conditions on the way. By changing the molding process conditions, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the “modeling process conditions” referred to in the present specification are the temperature, flow rate and flow velocity of the temperature control medium contained in the base plate 20 ⁇ which is the base of the three-dimensional shape model to be manufactured, the temperature of the heat source element, and the thickness of the powder layer 22. Also refers to at least one selected from the group consisting of the irradiation conditions of the light beam L.
  • the "base plate 20 ⁇ ” as used herein is a general term for the modeling table 20 and the modeling plate 21 positioned on the modeling table 20.
  • the "temperature control source 60" as used herein is a general term for a temperature control medium and a heat source element (heater source, etc.).
  • the "upper surface of the precursor 100 of the modeled product” as used herein refers to the surface of the uppermost solidified layer among the laminated solidified layers which are the constituent elements of the precursor 100 of the modeled product in the intermediate stage of manufacturing. Specifically, it refers to the main surface).
  • the modification of the modeling process conditions is carried out according to the height of the precursor 100 of the modeled product, and the criteria for implementing the change are as follows: (1) During production. It can be divided into a temperature measurement value of the upper surface of the precursor 100 of the modeled object and / or (2) a measured height value of the precursor 100 of the modeled object.
  • the temperature of the upper surface of the precursor 100 when the precursor 100 in the middle of production has a predetermined height is measured by using a temperature sensor 80 or the like. If it is determined that the temperature is different from the top surface temperature of the precursor 100 or the surface temperature of the base plate 20 ⁇ at a height relatively lower than the predetermined height, the modeling process conditions are changed.
  • the above-mentioned modeling process conditions include temperature control flowing through the temperature control pipeline as the temperature control source 60. It may be the temperature, flow rate, and / or flow rate of the medium 61. Further, the modeling process condition may be the temperature of the heat source element as the temperature control source 60.
  • the modeling process conditions are not limited to this, and may be the thickness of the powder layer 22 and the irradiation conditions of the light beam L. Examples of the irradiation conditions of the light beam include the irradiation energy, spot diameter, scanning speed, and the like of the light beam described later. However, the irradiation conditions of the light beam are not limited to these.
  • the temperature, flow rate, and / or flow velocity of the temperature control medium 61 flowing through the temperature control line in the base plate 20 ⁇ is changed in the middle stage.
  • the temperature sensor 80 or the like under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the surface temperature of the base plate 20 ⁇ . Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. When it is determined that there is a difference, the temperature control device 50 is driven under the instruction of the arithmetic control unit 70, and the temperature control medium supplied from the temperature control device 50 to the temperature control source 60 (temperature control line). The temperature, flow rate, and / or flow velocity are changed and controlled in the middle.
  • the temperature from the temperature control device 50 to the temperature control source 60 is relatively lower or higher than that before the change.
  • the conditioning medium may flow.
  • a temperature control medium in which the flow rate is relatively increased or decreased as compared with that before the change is supplied from the temperature control device 50 to the temperature control source 60 (temperature control line). You can let it flow.
  • a temperature control medium having a relatively high or slow flow velocity as compared with that before the change is flowed from the temperature control device 50 to the temperature control source 60 (temperature control line). You can.
  • the temperature is set relatively lower than the medium temperature whose temperature is controlled to be constant at the beginning, and the medium is preferably added to this. Increase the flow rate.
  • the low region where the height of the model precursor 100 adjacent to the base plate 20 ⁇ is low can be cooled first.
  • the cooling action on the high region where the height of the model precursor 100 away from the base plate 20 ⁇ is high is small.
  • the change control for lowering the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20 ⁇ is high also begins to be cooled.
  • the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be lowered. As a result, the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20 ⁇ can be finally reduced. As a result, even when the height of the precursor 100 of the three-dimensional shaped object is high in the middle of the manufacturing process, the temperature of the upper surface of the precursor 100, that is, the surface temperature of the solidified layer 24 which is a component thereof is constant. Can be.
  • the temperature, flow rate, and / or flow velocity of the temperature control medium 61 flowing through the temperature control line in the base plate 20 ⁇ is changed in the middle stage.
  • the temperature sensor 80 or the like under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the top surface temperature of the precursor 100 at a height relatively lower than the predetermined height. Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. When it is determined that there is a difference, the temperature control device 50 is driven under the instruction of the arithmetic control unit 70, and the temperature control medium supplied from the temperature control device 50 to the temperature control source 60 (temperature control line). The temperature, flow rate, and / or flow velocity are changed and controlled in the middle.
  • the temperature of the upper surface of the relatively high precursor 100 during production is higher than the temperature of the upper surface of the relatively low precursor 100 formed in the previous stage.
  • the temperature is relatively lower than the initially constant temperature controlled medium temperature, preferably in addition to increasing the medium flow rate.
  • the cooling action on the high region where the height of the model precursor 100 away from the base plate 20 ⁇ is high is small.
  • the change control for lowering the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20 ⁇ is high also begins to be cooled.
  • the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be lowered.
  • the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage are obtained.
  • the temperature difference between them can be reduced.
  • the temperature of the upper surface of the precursor 100 of the three-dimensional shape model that is, the surface temperature of the solidified layer 24 which is a component thereof can be made constant.
  • the case where the upper surface temperature of the precursor 100 in the middle of production at a predetermined height is higher than the upper surface temperature of the precursor 100 or the surface temperature of the base plate 20 ⁇ at a height relatively lower than the predetermined height is higher than the upper surface temperature of the precursor 100 or the surface temperature of the base plate 20 ⁇ at a height relatively lower than the predetermined height.
  • the case where the upper surface temperature of the precursor 100 at a predetermined height is lower than the upper surface temperature of the precursor 100 or the surface temperature of the base plate 20 ⁇ at a relatively low height is not limited to this. Is also applicable.
  • the temperature is set relatively higher than the medium temperature whose temperature is controlled to be constant at the beginning, preferably this. In addition, reduce the medium flow rate.
  • the low region where the height of the model precursor 100 adjacent to the base plate 20 ⁇ is low can be first heated.
  • the warming effect on the high region where the height of the model precursor 100 away from the base plate 20 ⁇ is high is small.
  • the change control for increasing the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20 ⁇ is high also begins to be heated.
  • the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be raised. As a result, the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20 ⁇ can be finally reduced. As a result, even when the height of the precursor 100 of the three-dimensional shaped object is high in the middle of the manufacturing process, the temperature of the upper surface of the precursor 100, that is, the surface temperature of the solidified layer 24 which is a component thereof is constant. Can be.
  • the temperature of the upper surface of the relatively high precursor 100 during production is lower than the temperature of the upper surface of the relatively low precursor 100 formed in the previous stage.
  • the temperature is relatively higher than the initially constant temperature-controlled medium temperature, preferably in addition to reducing the medium flow rate.
  • the heating action on the high region where the height of the model precursor 100 away from the base plate 20 ⁇ is high is small.
  • the change control for increasing the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20 ⁇ is high also begins to be heated.
  • the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be raised.
  • the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage are obtained.
  • the temperature difference between them can be reduced.
  • the temperature of the upper surface of the precursor 100 of the three-dimensional shape model that is, the surface temperature of the solidified layer 24 which is a component thereof can be made constant.
  • the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20 ⁇ can be reduced. Further, the temperature difference between the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage is determined. It can be made smaller. Therefore, the occurrence of expansion or contraction of the solidified layer 24, which is a component of the precursor 100 corresponding to the temperature difference, can be suitably suppressed. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height.
  • the temperature sensor 80 or the like is driven to measure the top surface temperature of the precursor 100 at a height relatively lower than the predetermined height.
  • the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both.
  • the temperature control device 50 is driven under the instruction of the arithmetic control unit 70 to change the temperature of the heat source element (heater element) as the temperature control source 60 from the temperature control device 50 on the way. Take control.
  • the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20 ⁇ can be reduced. Further, the temperature difference between the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage is determined. It can be made smaller. Therefore, the occurrence of expansion or contraction of the solidified layer 24, which is a component of the precursor 100 corresponding to the temperature difference, can be suitably suppressed. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the powder layer 22 by the light beam irradiation unit 3 may be changed.
  • the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height.
  • the temperature sensor 80 or the like is driven to measure the surface temperature of the base plate 20 ⁇ .
  • the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both.
  • the light beam irradiation unit 3 is driven under the instruction of the arithmetic control unit 70, and the irradiation energy of the light beam L irradiated from the light beam irradiation unit 3 to a predetermined portion of the powder layer 22. , Spot diameter, and / or scanning speed may be changed.
  • the instruction of the arithmetic control unit 70 when the thickness of the new powder layer 22 to be formed immediately after shrinking along the height direction of the solidified layer 24 on the upper surface region side of the precursor 100 increases, the instruction of the arithmetic control unit 70 below, the irradiation energy density of the light beam may be changed to increase during the manufacturing process so that the sintered state becomes as initially expected. Without being limited to this, in such a case, for example, under the instruction of the arithmetic control unit 70, the scanning speed of the light beam may be changed so as to be slower in the middle so that the sintered state becomes as initially expected. ..
  • the instruction of the arithmetic control unit 70 when the thickness of the new powder layer 22 to be formed immediately after the solidification layer 24 on the upper surface region side of the precursor 100 is reduced due to the expansion along the height direction, the instruction of the arithmetic control unit 70 below, the irradiation energy density of the light beam may be changed to be small during the manufacturing process so that the sintered state is as initially expected. Without being limited to this, in such a case, for example, under the instruction of the arithmetic control unit 70, the scanning speed of the light beam may be changed so as to be faster in the middle so that the sintered state is as initially expected. ..
  • the powder is sintered by irradiating a predetermined portion of the new powder layer 22 with a light beam. Can be adjusted and changed as originally expected. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height.
  • the temperature sensor 80 or the like is driven to measure the surface temperature of the base plate 20 ⁇ .
  • the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. If there is such a difference, it is determined that the solidified layer 24 on the upper surface region side of the precursor 100 of the modeled product can expand or contract along the height direction after a lapse of a predetermined time after the start of production.
  • the lowering width of the base plate 20 ⁇ (particularly the modeling table 20) is changed and controlled under the instruction of the arithmetic control unit 70.
  • the lowering width of the modeling table 20 may be reduced during manufacturing so that the thickness of the powder layer 22 becomes a predetermined thickness.
  • the thickness of the new powder layer 22 formed immediately after the manufacturing process is changed and controlled, it is initially assumed that the powder is sintered by irradiating a predetermined portion of the new powder layer 22 with a light beam. You can adjust and change as you like. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the surface area (also referred to as heat dissipation area) that contributes to heat dissipation of the “slender and tall” model precursor 100X during manufacturing can be reduced as a whole. Therefore, it is difficult for the heat located in the model precursor 100X to be released from the surface of the model precursor 100X (specifically, the upper surface 101X) due to the surface heating of the model precursor 100X by the light beam L, and the temperature is controlled. It is difficult for the device 50 to remove heat.
  • the temperature of the upper surface 101X of the modeled object precursor 100X becomes high, and the temperature of the upper surface 101X of the modeled object precursor 100X and the temperature-controlled modeling A temperature difference may occur with the temperature of the modeling plate 21 (that is, the base plate 20 ⁇ ) located on the table 20.
  • the solidified layer 24X located on the upper surface 101X side of the precursor 100X of the modeled object can expand along the height direction.
  • the height of the precursor 100X of the model being manufactured can be higher than the desired height. Therefore, the thickness of the next new powder layer can be reduced.
  • the temperature of the upper surface 101X (that is, the surface) of the model precursor becomes relatively high, and as a result, the powder layer 22 is predetermined.
  • the powder 19 located at the location is easily melted and solidified.
  • the surface area also referred to as heat dissipation area
  • the surface area that contributes to heat dissipation of the modeled precursor 100Y that is "wide and short" during manufacturing can be large as a whole. Therefore, the heat located in the model precursor 100Y is likely to be released from the surface of the model precursor 100Y (specifically, the upper surface 101Y) due to the surface heating of the model precursor 100Y by the light beam L.
  • the temperature of the upper surface 101Y of the modeled object precursor 100Y becomes low, and the temperature of the upper surface 101Y of the modeled object precursor 100Y and the temperature-controlled modeling table 20
  • the temperature of the modeling plate 21 ie, base plate 20 ⁇
  • the solidified layer 24Y located on the upper surface 101Y side of the precursor 100Y of the modeled object can shrink along the height direction.
  • the height of the precursor 100Y of the model being manufactured can be lower than the desired height. Therefore, the thickness of the next new powder layer can be increased.
  • the temperature of the upper surface 101Y (that is, the surface) of the model precursor becomes relatively low, and as a result, the powder layer 22 is located at a predetermined position. It becomes difficult to melt and solidify the located powder 19.
  • Predetermined time interval for changing the modeling process conditions it is preferable to change the modeling process conditions a plurality of times at predetermined time intervals and change the time interval based on the difference in height of the precursor 100 of the three-dimensional shaped model (FIG. 3). reference).
  • the technical idea of the present invention is to "change the modeling process conditions according to the height of the precursor of the three-dimensional shaped object during the manufacturing of the three-dimensional shaped object".
  • the present invention has a technical idea that the modeling process conditions are changed in the middle of the production of the modeled object rather than being fixed.
  • the modeling process conditions are changed a plurality of times at predetermined time intervals, and the difference in height of the precursor 100 of the three-dimensional shaped model is used. It is characterized in that the time interval of change is changed.
  • the distance from the modeling table 21 is relatively short in the precursor 100A of the three-dimensionally shaped model having a relatively low height during manufacturing. Due to this, the difference between the top surface temperature of the precursor 100A and the temperature of the modeling table 21 is small. On the other hand, in the precursor 100B of the three-dimensional shaped model having a relatively high height during manufacturing, the upper surface temperature of the precursor 100B and the modeling table 21 are caused by the relatively short distance from the modeling table 21. There is a large difference from the temperature of.
  • the precursor of the three-dimensional shape model during production It is determined that the height of 100 is relatively high.
  • modeling is performed at a time interval relatively shorter than the time interval for carrying out the modeling process when the height of the precursor 100 of the three-dimensional shaped model in the process of manufacturing is relatively low. Change the process conditions. That is, in this embodiment, the time interval between the change and adjustment of the modeling process conditions at a predetermined timing and the change and adjustment of the next modeling process conditions is relatively shortened.
  • the above The frequency of changing the modeling process conditions to reduce the temperature difference can be increased. Therefore, it is possible to more preferably suppress the occurrence of expansion or contraction of the solidified layer 24 located in the upper surface region of the precursor 100 having a relatively high height along the height direction.
  • the temperature of the upper surface of the precursor 100 of the three-dimensional shaped object may be measured based on the infrared rays provided from the upper surface (see FIG. 4).
  • an infrared radiation temperature sensor 81 may be used to receive infrared rays 82 from the upper surface 101 of the precursor 100, and indirectly measure the temperature on the upper surface 101 of the precursor 100 from the received infrared rays 82.
  • infrared rays may be received from the upper surface 101 of the precursor 100 to measure the overall temperature of the upper surface 101 (see the lower left figure of FIG. 4).
  • the upper surface 101 of the precursor 100 may be divided into a grid pattern in a monitor shape, and the temperature of a portion of the upper surface 101 located in a predetermined section may be measured (see the lower right figure of FIG. 4).
  • the infrared radiation temperature sensor 81 is driven to generate infrared rays 82 from the upper surface 101 of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. It receives and converts the received information about the infrared ray 82 into the infrared radiation temperature sensor 81 itself or the arithmetic control unit 70. Thereby, the temperature on the upper surface 101 of the precursor 100 may be indirectly measured.
  • the temperature difference between the temperature of the surface of the base plate 20 ⁇ measured separately and the temperature of the upper surface 101 of the precursor 100 measured through the infrared radiation temperature sensor 81.
  • the temperature difference exists, particularly when it can be determined that the temperature difference is relatively large, the occurrence of the temperature difference can be suitably suppressed by changing the above-mentioned modeling process conditions.
  • the infrared radiation temperature sensor 81 used in this embodiment is a non-contact type sensor, there is an advantage in that the temperature of the upper surface 101 of the precursor 100 can be measured without damaging the upper surface 101.
  • a step of cutting a three-dimensional shaped object using a cutting tool is included, and a cutting tool having a temperature sensor 83 on the spindle is used, and the three-dimensional shaped object is used by the temperature sensor 83.
  • the temperature of the upper surface 101 of the precursor 100 of the above may be measured (see FIG. 5).
  • the temperature of the upper surface 101 of the precursor 100 is measured by using the temperature sensor 83 arranged on the spindle of the cutting tool used for surface cutting of the three-dimensional shaped object.
  • the temperature measurement may be performed after being in direct contact with the upper surface 101 of the precursor 100. Without being limited to this, the temperature measurement may be performed in a non-contact state with respect to the upper surface 101 of the precursor 100.
  • the temperature sensor 83 arranged on the spindle of the cutting tool is driven to drive the upper surface of the precursor 100 in the case where the precursor 100 in the process of manufacturing has a predetermined height. 101 is measured. Further, for example, it is confirmed whether or not there is a temperature difference between the temperature of the surface of the base plate 20 ⁇ measured separately and the temperature of the upper surface 101 of the precursor 100 measured through the temperature sensor 83 arranged on the spindle of the cutting tool.
  • the temperature difference exists, particularly when it can be determined that the temperature difference is relatively large, the occurrence of the temperature difference can be suitably suppressed by changing the above-mentioned modeling process conditions.
  • the temperature sensor 83 since the temperature sensor 83 is arranged on the main shaft of the cutting tool, the temperature sensor 83 can be indirectly moved with the operation of the cutting tool, so that the temperature sensor 83 can be moved independently. No separate mechanism is required to make it. Therefore, there is an advantage in that it is possible to preferably avoid the limitation of the modeling space in the chamber.
  • the powder layer 22 is formed using a squeezing blade 23, a squeezing blade 22 provided with a temperature sensor 84 is used, and the temperature sensor 84 is used as a precursor of a three-dimensional shaped object.
  • the temperature of the top surface 101 of 100 may be measured (see FIG. 6).
  • the temperature sensor 84 arranged on the squeezing blade 23 is used to measure the temperature of the upper surface 101 of the precursor 100.
  • the temperature measurement may be performed using a non-contact type temperature sensor 84A. Without being limited to this, the temperature measurement may be performed using the contact type temperature sensor 84B.
  • the temperature sensor 84 arranged on the squeezing blade 23 is driven under the instruction of the arithmetic control unit 70, and the precursor 100 in the process of being manufactured has a predetermined height.
  • the top surface 101 is measured. Further, for example, it is confirmed whether or not there is a temperature difference between the temperature of the surface of the base plate 20 ⁇ measured separately and the temperature of the upper surface 101 of the precursor 100 measured through the temperature sensor 84 arranged on the squeezing blade 23. ..
  • the temperature difference exists, particularly when it can be determined that the temperature difference is relatively large, the occurrence of the temperature difference can be suitably suppressed by changing the above-mentioned modeling process conditions.
  • the temperature sensor 84 since the temperature sensor 84 is arranged on the squeezing blade 23, the temperature sensor 84 can be indirectly moved according to the operation of the squeezing blade 23, so that the temperature sensor 84 is used. No separate mechanism is required to move it independently. Therefore, there is an advantage in that it is possible to preferably avoid the limitation of the modeling space in the chamber.
  • the judgment criteria for changing the modeling process conditions are mainly based on the "temperature measurement value of the upper surface of the precursor 100 of the modeled product in the process of manufacturing".
  • the present invention is not limited to this, and the “measured height value of the precursor 100 of the modeled object” may be used as a criterion for changing the modeling process conditions (see FIG. 7).
  • the height of the precursor 100 in the middle of production after a lapse of a predetermined time after the start of production is directly measured by using a height sensor 90 (also referred to as a height measuring unit) such as a laser displacement meter. To measure. Then, it is determined whether or not the actual height of the precursor 100 in the middle of production is different from the predetermined ideal height. If it can be determined that they are different, the modeling process conditions are changed in the middle.
  • a height sensor 90 also referred to as a height measuring unit
  • a laser displacement meter such as a laser displacement meter
  • a case where the temperature, flow rate, and / or flow velocity of the temperature control medium 61 flowing through the temperature control line as the temperature control source 60 is selected as the modeling process condition is taken as an example.
  • the height sensor 90 is driven to measure the actual height of the precursor 100 in the middle of production when a predetermined time has elapsed after the start of production.
  • the arithmetic control unit 70 compares the predetermined ideal height of the precursor 100 in the middle of production with the lapse of a predetermined time after the start of production with the actual measured height.
  • the temperature control device 50 is driven under the instruction of the arithmetic control unit 70 to move from the temperature control device 50 to the temperature control source 60 (temperature control line). The temperature, flow rate, and / or flow velocity of the provided temperature control medium is changed and controlled in the middle.
  • the temperature control device 50 increases the temperature of the upper surface region of the precursor 100 under the instruction of the arithmetic control unit 70.
  • a relatively high temperature temperature control medium may be flowed into the temperature control source 60 (temperature control line).
  • the thermal energy of the temperature control medium 61 can be suitably transferred to the upper surface region of the precursor 100 having a predetermined height after a lapse of a predetermined time after the start of production, and thereby the upper surface region of the precursor 100.
  • the temperature of the can be changed. If the temperature of the upper surface region of the precursor 100 can be changed, the occurrence of a temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20 ⁇ can be suitably suppressed.
  • the height of the precursor 100 of the three-dimensional shape model is different from the ideal height, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, its constituent elements.
  • the surface temperature of the solidified layer 24 can be kept constant. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the modeling process conditions may be changed according to the area of the upper surface 101 of the precursor 100 during the production of the precursor 100 of the three-dimensional shaped model (see FIG. 8).
  • the irradiation heat of the light beam is more easily transmitted than when the area of the solidified layer 24 is relatively large. Due to this, the heat storage state of the solidified layer 24 is likely to continue. As a result, in the stacking direction of the solidified layer 24, it is relative to the surface temperature of the solidified layer having a relatively small area (that is, the temperature of the upper surface 101 ⁇ of the precursor 100 having a relatively small area (area: S 1 )).
  • the solidified layer 24 expands or contracts in the height direction correspondingly, and the height of the finally obtained three-dimensional shaped object is different from that desired. obtain.
  • the change control of the modeling process conditions may be performed after paying attention to the area of the upper surface 101 of the precursor 100 during the manufacturing process.
  • the upper surface 101 of the precursor 100 in the middle of production after a lapse of a predetermined time after the start of production is photographed using a camera 95 or the like. Then, the area of the upper surface 101 is calculated from the upper surface 101 of the photographed precursor 100 via the arithmetic control unit 70.
  • the modeling process conditions are changed on the way. Without being limited to this, when it can be determined that the area of the upper surface 101 of the precursor 100 after a lapse of a predetermined time is different from the predetermined ideal area as compared with the predetermined ideal area, the modeling process condition is set in the middle. You may change it.
  • the thermal energy of the temperature control medium 61 can be transmitted to the region of the solidified layer having a relatively large area (that is, the upper surface of the precursor 100 having a relatively large area), whereby the precursor 100 can be transmitted.
  • the temperature of the upper surface area of the can be changed (increased or decreased).
  • the temperature of the upper surface of the precursor 100 of the three-dimensional shape model that is, the solidified layer 24 which is a component thereof.
  • the surface temperature of the can be kept constant. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the modeling process conditions are changed a plurality of times at predetermined time intervals, and three-dimensional shape modeling is performed when a predetermined time elapses after the start of production.
  • the time interval may be changed based on the difference in the amount of heat of the precursor 100 of the substance (see FIG. 9).
  • the temperature of the precursor 100 having a relatively large calorific value due to this, particularly The top surface temperature can be high.
  • the calorific value of the precursor 101 does not exceed the predetermined calorific value threshold after the elapse of a predetermined time after the start of production, the calorific value of the precursor 101 is relatively larger than the predetermined calorific value threshold value of the precursor 100.
  • the temperature, especially the top surface temperature does not rise.
  • the calorific value of the precursor 101 after a lapse of a predetermined time after the start of production is measured with a calorimeter. Then, when it can be determined that the calorific value of the precursor 100 exceeds the predetermined calorific value threshold value after a lapse of a predetermined time, the modeling process is performed at a relatively short time interval as compared with the case where the calorific value does not exceed the predetermined calorific value threshold value. Change the conditions multiple times.
  • the calorific value of the precursor 100 exceeds the predetermined calorific value threshold value after a lapse of a predetermined time, the time from the change adjustment of the modeling process conditions to the next change adjustment of the modeling process conditions. Make the target interval relatively short on the way.
  • the frequency of changing the modeling process conditions can be increased due to the relatively short time interval. ..
  • the thermal energy of the temperature control medium 61 is suitably transmitted to the upper surface region of the precursor 100 having a calorific value exceeding a predetermined calorific value threshold, specifically, the precursor 100 having a calorific value exceeding a predetermined calorific value threshold. be able to. Therefore, the temperature of the upper surface region of the precursor 100 having a calorific value exceeding a predetermined calorific value threshold value can be changed (increased or decreased).
  • the temperature of the upper surface of the precursor 100 of the three-dimensional shape model that is, the solidified layer 24 which is a component thereof.
  • the surface temperature of the can be kept constant. Therefore, it is possible to suitably suppress a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object.
  • the modeling process conditions may be changed based on the temperature of each upper surface 101 of the precursor 100 of the three-dimensional shaped model having different heights (see FIG. 10).
  • a temperature sensor or the like is driven to measure the temperature of the upper surface 101 of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. If it can be determined that there is a temperature change on the surface of the solidified layer 24 at the temperature measurement stage, the light beam irradiation unit 3 irradiates a predetermined portion of the powder layer 22 at a later stage under the instruction of the arithmetic control unit 70.
  • the conditions irradiation energy, spot diameter, and / or scanning speed of the light beam L irradiated from the light beam irradiation unit 3 to a predetermined portion of the powder layer 22 may be changed.
  • the optimum "best" irradiation condition of the light beam L can be appropriately changed during the manufacturing of the modeled object. Therefore, the temperature of the upper surface 101 of the precursor 100 of the three-dimensional shape model, that is, the surface temperature of the solidified layer 24 which is a component thereof can be made constant. Therefore, it is possible to suitably suppress a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object. From the viewpoint of making the temperature of the upper surface 101 of the precursor 100, that is, the surface temperature of the solidifying layer 24 which is a component thereof, more constant, the optimum "best" irradiation of the light beam L for each formation of each solidifying layer 24 is performed. It is more preferable to change and adjust the conditions as appropriate.
  • the actual height of the precursor 100 of the modeled product may be estimated based on the temperature of the upper surface 101 of the precursor 100 of the modeled product after a lapse of a predetermined time after the start of production.
  • the "actual height estimate" after a lapse of a predetermined time after the start of production can be calculated, for example, in the following manner.
  • the temperature for each integral unit thickness is estimated from the temperature of the outermost surface of the modeled precursor at the lapse of a predetermined time after the start of production.
  • the degree of expansion in each integration unit is estimated from the temperature of each integration unit thickness.
  • the estimated value of the degree of expansion in each integration unit is integrated.
  • the "actual height estimate" is calculated when a predetermined time has elapsed since the start of production.
  • the calculation method is based on the idea that when the area of the integration unit changes when estimating the temperature and the degree of expansion, the area of the changing integration unit is also taken into consideration from the viewpoint of further improving the estimation accuracy. ..
  • the "actual height estimate" of the precursor 100 of the three-dimensional shape model is calculated from the temperature of the upper surface 101 of the precursor 100, the modeling process conditions can be appropriately changed according to the calculated value. It becomes.
  • the "actual height estimate" of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • the apparatus for manufacturing a three-dimensional shaped object includes a powder layer forming unit 2, a light beam irradiation unit 3, an arithmetic control unit 70, and at least one of a height measuring unit and a temperature measuring unit. To be equipped. Since the powder layer forming unit 2 and the light beam irradiation unit 3 have already been described in the [Powder bed fusion bonding method] column, description thereof will be omitted.
  • the arithmetic control unit 70 is a device capable of changing and controlling the above-mentioned modeling process conditions during the manufacturing of a three-dimensional shaped object.
  • the height measuring unit (corresponding to the height sensor 90) is a measuring unit capable of measuring the height of the precursor 100 of the three-dimensional shaped object.
  • the temperature measuring unit (corresponding to the temperature sensor 80, the infrared radiation temperature sensor 81, the temperature sensor 83, and the temperature sensors 84, 84A, 84B) can measure the temperature of the upper surface 101 of the precursor 100 of the three-dimensional shaped object. It is a department. Further, the device may be connected to the temperature control device 50.
  • each component is individually configured to be able to control the operation according to the instruction of the calculation control unit 70.
  • the arithmetic control unit 70 drives the temperature measuring unit to measure the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20 ⁇ when the precursor 100 in the process of manufacturing has a predetermined height. It is possible to instruct to do so.
  • the arithmetic control unit 70 determines whether or not there is a difference between the two temperature measurement values based on the two temperature measurement values. When it is determined that there is a difference, the arithmetic control unit 70 is configured to drive the powder layer forming unit 2 so that the lowering width of the base plate 20 ⁇ (particularly the modeling table 20) can be changed and controlled.
  • the arithmetic control unit 70 drives the light beam irradiation unit 3 to determine the irradiation energy, spot diameter, and / or scanning speed of the light beam L irradiated from the light beam irradiation unit 3 to a predetermined portion of the powder layer 22. It is configured to be change controllable.
  • the arithmetic control unit 70 drives the temperature control device 50 to change the temperature, flow rate, and / or flow velocity of the temperature control medium provided from the temperature control device 50 to the temperature control source 60 (temperature control line) on the way. It is controllable. Further, the arithmetic control unit 70 can drive the temperature control device 50 to change and control the temperature of the heat source element (heater element) as the temperature control source 60 from the temperature control device 50 on the way.
  • the temperature of the upper surface region of the precursor 100 having a predetermined height after a lapse of a predetermined time after the start of production, and the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20 ⁇ is generated. It can be suitably suppressed.
  • the temperature of the upper surface of the precursor 100 of the three-dimensional shape model when the height of the precursor 100 of the three-dimensional shape model is different from the ideal height, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, its constituent elements.
  • the surface temperature of the solidified layer 24 can be kept constant. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
  • First aspect (I) A step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer, and (ii) a new powder on the obtained solidified layer.
  • a three-dimensional shaped product is manufactured by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer by alternately and repeatedly laminating the powder layer and the solidified layer.
  • Second aspect a method for manufacturing a three-dimensional shaped object, wherein the modeling process conditions are changed according to the height of the precursor based on the temperature of the upper surface of the precursor of the three-dimensional shaped object.
  • the modeling process is based on the difference between the temperature of the upper surface of the precursor of the three-dimensional shape model and the temperature of the base plate that is the base of the three-dimensional shape model to be manufactured.
  • the three-dimensional shape modeling is performed by changing the modeling process conditions based on the temperature of each upper surface of the precursor of the three-dimensional shape modeling object having different heights. How to make things.
  • the modeling process conditions are changed a plurality of times at predetermined time intervals. A method for producing a three-dimensionally shaped object, wherein the time interval is changed based on the difference in height of the precursor of the three-dimensionally shaped object.
  • Sixth aspect In the fifth aspect, when the height of the precursor of the three-dimensional shape model is relatively high, the three-dimensional shape modeling is performed by changing the modeling process conditions at the relatively short time interval. How to make things.
  • the modeling process conditions include the temperature, flow rate and flow velocity of the temperature control medium contained in the base plate, the temperature of the heat source element contained in the base plate, and the powder layer.
  • a method for manufacturing a three-dimensional shaped object in which at least one is selected from the group consisting of the thickness and the irradiation conditions of the light beam.
  • the temperature of the upper surface of the precursor of the three-dimensional shape model is measured based on the infrared rays provided from the upper surface. Production method.
  • the step of cutting the three-dimensional shaped object by using a cutting tool is included.
  • a method for manufacturing a three-dimensional shaped object wherein a cutting tool having a temperature sensor on a spindle is used, and the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured by the temperature sensor.
  • Tenth aspect In any of the second to ninth aspects, the formation of the powder layer is carried out using a squeezing blade.
  • a method for manufacturing a three-dimensional shaped object wherein a squeezing blade provided with a temperature sensor is used, and the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured by the temperature sensor.
  • Eleventh aspect In the first aspect, the height of the precursor of the three-dimensionally shaped object is actually measured, and there is a difference between the measured value of the height and the theoretical value of the predetermined height of the precursor calculated in advance.
  • a method for manufacturing a three-dimensional shaped object, in which the modeling process conditions are changed in some cases. 12th aspect It is a device for manufacturing three-dimensional shaped objects.
  • Powder layer forming part Light beam irradiation unit for forming a solidified layer from a powder layer
  • An arithmetic control unit that can change and control the modeling process conditions during the manufacturing of the three-dimensional shaped object
  • An apparatus including at least one of a height measuring unit capable of measuring the height of a precursor of the three-dimensional shape model and a temperature measuring unit capable of measuring the temperature of the upper surface of the precursor of the three-dimensional shape model.
  • Various articles can be manufactured by implementing the method for manufacturing a three-dimensional shaped object according to an embodiment of the present invention.
  • the obtained three-dimensional shaped product is a plastic injection molding die, a press die, a die casting die, and the like. It can be used as a die for casting dies, forging dies, and the like.
  • the obtained three-dimensional shaped molded product can be used as a resin molded product.
  • Powder layer forming part 3 Powder layer forming part 3
  • Light beam irradiation part 19 Powder 20
  • Powder layer 23 Squeezing blade 24
  • Solidification layer 40 Cutting tool 60
  • Temperature control medium 70 Calculation control unit 80, 81, 83, 84, 84A, 84B
  • Temperature measuring unit (temperature sensor) 90 Height measuring unit (height sensor) 100, 100A, 100B, 100X, 100Y Precursor of 3D shape model 101, 101X, 101Y Top surface of precursor of 3D shape model L light beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

An embodiment of the present invention is a method for manufacturing a three-dimensionally shaped molded article by alternately and repeatedly layering a powder layer and a solidification layer, by (i) a step for radiating a light beam to a predetermined portion of a powder layer and sintering or melt-solidifying the powder in the predetermined portion to form a solidification layer, and (ii) a step for forming a new powder layer on the resultant solidification layer and radiating a light beam to a predetermined portion of the new powder layer to form another solidification layer. In particular, in an embodiment of the present invention, a shaping process condition is changed in accordance with the height of a precursor of the three-dimensionally shaped molded article, in the course of manufacturing the three-dimensionally shaped molded article.

Description

三次元形状造形物の製造方法および三次元形状造形物を製造するための装置Manufacturing method of three-dimensional shaped object and device for manufacturing three-dimensional shaped object
 本発明は、三次元形状造形物の製造方法および三次元形状造形物を製造するための装置に関する。より詳細には、本発明は、粉末層への光ビーム照射によって固化層を形成する三次元形状造形物の製造方法および当該三次元形状造形物を製造するための装置に関する。 The present invention relates to a method for manufacturing a three-dimensional shaped object and an apparatus for producing a three-dimensional shaped object. More specifically, the present invention relates to a method for producing a three-dimensional shaped object that forms a solidified layer by irradiating a powder layer with a light beam, and an apparatus for producing the three-dimensional shaped object.
 光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末床溶融結合法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
 (i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
A method of producing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as a "powder bed fusion bonding method") has been conventionally known. In such a method, powder layer formation and solidified layer formation are alternately and repeatedly carried out based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melt-solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating with a light beam to form a further solidified layer.
 このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。 According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as a mold. On the other hand, when an organic resin powder is used as the powder material, the obtained three-dimensional shaped model can be used as various models.
 粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図11に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図11(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図11(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図11(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレート21とは一体化物を成すことになり、その一体化物を金型として使用できる。 Take as an example the case where metal powder is used as the powder material and the three-dimensional shaped object obtained by it is used as a mold. As shown in FIG. 11, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 11A). Next, a predetermined portion of the powder layer 22 is irradiated with a light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 11B). Subsequently, a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer. When the powder layer formation and the solidification layer formation are alternately and repeatedly performed in this way, the solidification layer 24 is laminated (see FIG. 11C), and finally, the three-dimensional structure composed of the laminated solidification layer 24 is formed. A shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the modeling plate 21, the three-dimensional shaped model and the modeling plate 21 form an integrated product, and the integrated product can be used as a mold.
特許第6062940号公報Japanese Patent No. 6062940 特許第6254036号公報Japanese Patent No. 6254036 特開2017-66023号公報JP-A-2017-66023 特開2004-306612号公報Japanese Unexamined Patent Publication No. 2004-306612
 ここで、光ビームL’を用いた固化層24’の形成による三次元形状造形物の製造については、温度調節デバイス50’により所定の一定温度に調節された造形テーブル20’上にて行われる場合がある(図14参照)。 Here, the production of the three-dimensional shaped object by forming the solidified layer 24'using the light beam L'is performed on the modeling table 20'adjusted to a predetermined constant temperature by the temperature control device 50'. In some cases (see FIG. 14).
 この場合、製造途中における高さが相対的に低い三次元形状造形物の前駆体100’では、温度調整された造形テーブル20’上に位置する造形プレート21’との距離が相対的に短いことに起因して、高さが相対的に低い三次元形状造形物の前駆体100’の上面(表面)温度と造形プレート21’の温度との差が小さい。一方、製造途中における高さが相対的に高い三次元形状造形物の前駆体100’では、造形プレート21’との距離が相対的に長いことに起因して、高さが相対的に低い三次元形状造形物の前駆体100’の上面(表面)温度と造形プレート21’との温度との差が大きい。 In this case, in the precursor 100'of the three-dimensional shaped model having a relatively low height during manufacturing, the distance from the modeling plate 21' located on the temperature-controlled modeling table 20'is relatively short. Due to this, the difference between the upper surface (surface) temperature of the precursor 100'of the three-dimensional shaped object having a relatively low height and the temperature of the modeling plate 21'is small. On the other hand, in the precursor 100'of a three-dimensional shaped object having a relatively high height during manufacturing, the height is relatively low due to the relatively long distance from the modeling plate 21'. There is a large difference between the upper surface (surface) temperature of the precursor 100'of the original shape model and the temperature of the model plate 21'.
 この点につき、本願発明者らは、上記温度差が存在すると、これに対応して高さ方向に沿って三次元形状造形物の前駆体100’の構成要素である固化層24’の膨張又は収縮が発生し得ることを新たに見出した。特に、上記温度差が大きい場合、これに対応して高さが相対的に高い三次元形状造形物の前駆体100’の上面側に位置する固化層24’の高さ方向に沿った膨張又は収縮の程度が大きくなることを新たに見出した。そのため、これに起因して、製造開始後所定時間経過時における製造途中の三次元形状造形物の前駆体100’の高さが所望の高さとはならない虞がある。そのため、後刻に形成する新たな粉末層22’の厚みが変わり得る。この状態で、同じレーザ照射条件で継続して製造を行うと、例えば、スパッタ(火花)および/またはヒューム(煙)が多くなったり、最終的に得られる三次元形状造形物100A’の密度が低くなりポア(空孔)が発生しやすくなる等の不具合が生じ得る。その結果として、最終的に得られる三次元形状造形物100A’の品質に変化が生じ得る。即ち、最終的に得られる三次元形状造形物100A’の寸法精度(特に高さ精度)の低下が生じ得る。 In this regard, the inventors of the present application, when the above temperature difference is present, correspond to the expansion of the solidified layer 24', which is a component of the precursor 100' of the three-dimensional shaped model, along the height direction. We have newly found that contraction can occur. In particular, when the temperature difference is large, the solidified layer 24'located on the upper surface side of the precursor 100'of the three-dimensionally shaped model having a relatively high height corresponding to the above-mentioned temperature difference expands or expands along the height direction. It was newly found that the degree of contraction increases. Therefore, due to this, there is a possibility that the height of the precursor 100'of the three-dimensional shaped model in the middle of production after a lapse of a predetermined time after the start of production may not be the desired height. Therefore, the thickness of the new powder layer 22'formed later may change. If the production is continued under the same laser irradiation conditions in this state, for example, the amount of sputtering (sparks) and / or fume (smoke) increases, and the density of the finally obtained three-dimensional shaped object 100A'is increased. Problems such as lowering and more likely to cause pores (vacancy) may occur. As a result, the quality of the finally obtained three-dimensional shaped object 100A'may change. That is, the dimensional accuracy (particularly the height accuracy) of the finally obtained three-dimensional shaped object 100A'may decrease.
 本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することが可能な三次元形状造形物の製造方法および当該三次元形状造形物の製造装置を供することである。 The present invention has been made in view of such circumstances. That is, an object of the present invention is a method for manufacturing a three-dimensional shaped object capable of suitably suppressing a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object, and the three-dimensional object. It is to provide a manufacturing apparatus for shaped objects.
 上記目的を達成するために、本発明の一実施形態では、
 (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
 (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
 前記製造の途中において、前記三次元形状造形物の前駆体の高さに応じて造形プロセス条件を変更する、三次元形状造形物の製造方法が供される。
In order to achieve the above object, in one embodiment of the present invention,
(I) A step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer, and (ii) a new powder on the obtained solidified layer. A three-dimensional shaped product is manufactured by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer by alternately and repeatedly laminating the powder layer and the solidified layer. How to do
In the middle of the production, a method for producing a three-dimensional shape model is provided, in which the modeling process conditions are changed according to the height of the precursor of the three-dimensional shape model.
 上記目的を達成するために、本発明の一実施形態では、
 三次元形状造形物を製造するための装置であって、
 粉末層形成部、
 粉末層から固化層を形成するための光ビーム照射部、
 前記三次元形状造形物の製造途中における造形プロセス条件を変更制御可能な演算制御部、ならびに、
 前記三次元形状造形物の前駆体の高さを測定可能な高さ測定部および該三次元形状造形物の前駆体の上面の温度を測定可能な温度測定部の少なくとも一方
を備える、装置が供される。
In order to achieve the above object, in one embodiment of the present invention,
It is a device for manufacturing three-dimensional shaped objects.
Powder layer forming part,
Light beam irradiation unit for forming a solidified layer from a powder layer,
An arithmetic control unit that can change and control the modeling process conditions during the manufacturing of the three-dimensional shaped object, and
An apparatus provided with at least one of a height measuring unit capable of measuring the height of the precursor of the three-dimensional shape model and a temperature measuring unit capable of measuring the temperature of the upper surface of the precursor of the three-dimensional shape model. Will be done.
 本発明の一実施形態に従えば、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することが可能である。 According to one embodiment of the present invention, it is possible to suitably suppress a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object.
光ビームを用いた固化層形成段階における熱収支を説明するための概略図Schematic diagram for explaining the heat balance in the solidified layer formation stage using an optical beam 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. “細長くて背が高い”造形物前駆体の製造中における熱収支を説明するための概略図Schematic to illustrate the heat balance during the manufacture of "slender and tall" shaped precursors “面積が広く背が低い”造形物前駆体の製造中における熱収支を説明するための概略図Schematic to illustrate the heat balance during the manufacture of "large area and short" shaped precursors 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 本発明の一実施形態に係る三次元形状造形物の製造方法を示す概略図Schematic diagram showing the manufacturing method of the three-dimensional shaped object which concerns on one Embodiment of this invention. 粉末床溶融結合法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図11(a):粉末層形成時、図11(b):固化層形成時、図11(c):積層途中)A cross-sectional view schematically showing a process mode of stereolithography composite processing in which the powder bed melt bonding method is carried out (FIG. 11 (a): at the time of forming a powder layer, FIG. 11 (b): at the time of forming a solidified layer, FIG. c): During stacking) 光造形複合加工機の構成を模式的に示した斜視図Perspective view schematically showing the configuration of the stereolithography compound processing machine 光造形複合加工機の一般的な動作を示すフローチャートFlowchart showing general operation of stereolithography multi-tasking machine 本願の技術的課題を示した模式断面図Schematic cross-sectional view showing the technical problems of the present application
 以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples and do not reflect the actual forms and dimensions.
 本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。 In the present specification, the "powder layer" means, for example, a "metal powder layer made of metal powder" or a "resin powder layer made of resin powder". Further, the “predetermined location of the powder layer” substantially refers to the region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melt-solidified to form a three-dimensional shaped object.
 また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば造形プレートと三次元形状造形物との位置関係に基づく方向であって、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」とする。 Further, the "up and down" direction described directly or indirectly in the present specification is, for example, a direction based on the positional relationship between the modeling plate and the three-dimensionally shaped object, and is three-dimensional with respect to the modeling plate. The side on which the shaped object is manufactured is referred to as "upward", and the opposite side is referred to as "downward".
[粉末床溶融結合法]
 まず、本発明の製造方法の前提となる粉末床溶融結合法について説明する。特に粉末床溶融結合法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図11は、光造形複合加工のプロセス態様を模式的に示しており、図12および図13は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
[Powder bed melt bonding method]
First, the powder bed melt-bonding method, which is a premise of the production method of the present invention, will be described. In particular, the stereolithography composite processing in which the cutting process of the three-dimensional shaped object is additionally performed in the powder bed fusion bonding method will be given as an example. FIG. 11 schematically shows a process mode of stereolithography composite processing, and FIGS. 12 and 13 are flowcharts of main configurations and operations of a stereolithography composite processing machine capable of performing a powder bed fusion bonding method and a cutting process. Are shown respectively.
 光造形複合加工機1は、図12に示すように、粉末層形成部2、光ビーム照射部3および切削部4を備えている。 As shown in FIG. 12, the stereolithography composite processing machine 1 includes a powder layer forming portion 2, a light beam irradiation portion 3, and a cutting portion 4.
 粉末層形成部2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するためのものである。光ビーム照射部3は、粉末層の所定箇所に光ビームLを照射するためのものである。切削部4は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るためのものである。 The powder layer forming portion 2 is for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness. The light beam irradiation unit 3 is for irradiating a predetermined portion of the powder layer with the light beam L. The cutting portion 4 is for cutting the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
 粉末層形成部2は、図11に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、造形テーブル20上に配され、三次元形状造形物の土台となるプレートである。 As shown in FIG. 11, the powder layer forming portion 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21. The powder table 25 is a table that can be raised and lowered in a powder material tank 28 whose outer circumference is surrounded by a wall 26. The squeezing blade 23 is a blade capable of horizontally moving the powder 19 on the powder table 25 onto the modeling table 20 to obtain the powder layer 22. The modeling table 20 is a table that can be raised and lowered in a modeling tank 29 whose outer circumference is surrounded by a wall 27. The modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a base for a three-dimensionally shaped object.
 光ビーム照射部3は、図12に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。 As shown in FIG. 12, the light beam irradiation unit 3 mainly includes a light beam oscillator 30 and a galvanometer mirror 31. The optical beam oscillator 30 is a device that emits an optical beam L. The galvanometer mirror 31 is a means for scanning the emitted light beam L on the powder layer 22, that is, a means for scanning the light beam L.
 切削部4は、図12に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させるものである。 As shown in FIG. 12, the cutting portion 4 mainly includes an end mill 40 and a drive mechanism 41. The end mill 40 is a cutting tool for scraping the surface of a laminated solidified layer, that is, the surface of a three-dimensional shaped object. The drive mechanism 41 moves the end mill 40 to a desired position to be cut.
 光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図13のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図11(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm~100μm程度の金属粉末」および「平均粒径30μm~100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図11(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。 The operation of the stereolithography compound processing machine 1 will be described in detail. As shown in the flowchart of FIG. 13, the operation of the stereolithography composite processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3). The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the modeling table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 is Δt. Next, after raising the powder table 25 by Δt, the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the modeling tank 29 as shown in FIG. 11A. As a result, the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13). Examples of the powder material for forming the powder layer 22 include "metal powder having an average particle size of about 5 μm to 100 μm" and "resin powder such as nylon, polypropylene, or ABS having an average particle size of about 30 μm to 100 μm". it can. After the powder layer 22 is formed, the process proceeds to the solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by irradiation with a light beam. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined position on the powder layer 22 by the galvanometer mirror 31 (S22). As a result, the powder at a predetermined position in the powder layer 22 is sintered or melt-solidified to form the solidified layer 24 as shown in FIG. 11 (b) (S23). As the light beam L, a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser, ultraviolet rays, or the like may be used.
 粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図11(c)に示すように複数の固化層24が積層化する。 The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately and repeatedly carried out. As a result, as shown in FIG. 11C, a plurality of solidified layers 24 are laminated.
 積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の表面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図11(c)および図12参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の表面を切削処理に付すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)~切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。 When the laminated solidified layer 24 reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for cutting the surface of the laminated solidified layer 24, that is, the surface of the three-dimensional shaped object. The cutting step is started by driving the end mill 40 (see FIGS. 11C and 12) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object. Therefore, if Δt is 0.05 mm, it is equivalent to 60 layers. The end mill 40 is driven when the solidified layers 24 are laminated. Specifically, the surface of the laminated solidified layer 24 is subjected to a cutting process while the end mill 40 is moved by the drive mechanism 41 (S32). At the final stage of such a cutting step (S3), it is determined whether or not a desired three-dimensional shaped object is obtained (S33). If the desired three-dimensional shaped object has not yet been obtained, the process returns to the powder layer forming step (S1). After that, the powder layer forming step (S1) to the cutting step (S3) are repeatedly carried out to further stack the solidified layer and perform the cutting process, whereby a desired three-dimensional shaped object is finally obtained.
[本発明の製造方法]
 以下、本発明の一実施形態に係る三次元形状造形物の製造方法について説明する。
[Manufacturing method of the present invention]
Hereinafter, a method for manufacturing a three-dimensional shaped object according to an embodiment of the present invention will be described.
 まず、本発明の技術的思想について説明する前に、当該技術的思想を案出するに至った経緯について説明する(図1A参照)。 First, before explaining the technical idea of the present invention, the background leading to the idea of the technical idea will be explained (see FIG. 1A).
 上述のように、粉末床溶融結合法による三次元形状造形物の製造においては、温度調節デバイスにより所定の一定温度に調節された造形テーブル上にて行われる場合がある。当該粉末床溶融結合法では、大きく分けて、(A)粉末層形成工程と(B)粉末層の所定箇所への光ビームの照射による固化層形成工程との交互実施により、所望の三次元形状造形物を製造することができる。この場合において、本願発明者らは、粉末床溶融結合法実施中における熱収支に着目した。かかる熱収支に関する内容は以下のとおりである(下記表1参照)。 As described above, in the production of a three-dimensional shaped object by the powder bed fusion bonding method, it may be performed on a modeling table adjusted to a predetermined constant temperature by a temperature adjusting device. The powder bed melt-bonding method can be roughly divided into a desired three-dimensional shape by alternately performing (A) a powder layer forming step and (B) a solidifying layer forming step by irradiating a predetermined portion of the powder layer with a light beam. It is possible to manufacture a modeled object. In this case, the inventors of the present application focused on the heat balance during the implementation of the powder bed fusion bonding method. The contents of such heat balance are as follows (see Table 1 below).
[表1]粉末床溶融結合法実施段階における熱収支
Figure JPOXMLDOC01-appb-I000001
[Table 1] Heat balance at the stage of implementing the powder bed fusion bonding method
Figure JPOXMLDOC01-appb-I000001
 上記表1の上段および図11(a)からも分かるように、(A)粉末層形成工程では、光ビームを用いないため、入熱/加熱は発生しない。一方、(A)粉末層形成工程では、造形物前駆体の表面(具体的には上面)からの放熱、造形物前駆体内部における熱伝導、および温度調節デバイスによる除熱が同時に発生する。 As can be seen from the upper part of Table 1 and FIG. 11A, heat input / heating does not occur in the powder layer forming step (A) because no light beam is used. On the other hand, in the step (A) of forming the powder layer, heat dissipation from the surface (specifically, the upper surface) of the modeled precursor, heat conduction inside the modeled precursor, and heat removal by the temperature control device are simultaneously generated.
 一方、上記表1の下段および図1Aからも分かるように、(B)光ビーム照射による固化層形成工程では、光ビームを用いるため、造形物前駆体100の表面(具体的には上面101)が加熱される。これと併せて、(B)固化層形成工程では、造形物前駆体100の表面(具体的には上面101)からの放熱、造形物前駆体100内部における熱伝導、および温度調節デバイス50による除熱が同時に発生する。 On the other hand, as can be seen from the lower part of Table 1 and FIG. 1A, since the light beam is used in the step of forming the solidified layer by (B) light beam irradiation, the surface of the modeled precursor 100 (specifically, the upper surface 101). Is heated. In addition to this, in the step (B) of forming the solidified layer, heat is dissipated from the surface (specifically, the upper surface 101) of the model precursor 100, heat conduction inside the model precursor 100, and removal by the temperature control device 50. Heat is generated at the same time.
 以上の事から、熱収支に着目すると、(A)粉末層形成工程では、放熱および除熱のみが熱収支に影響を与える。一方、(B)固化層形成工程では、加熱と放熱/除熱とが併存状態にあり、放熱/除熱よりも入熱/加熱の方の影響が大きい場合、又は入熱/加熱よりも放熱/除熱の方の影響が大きい場合が生じ得る。そのため、加熱と放熱/除熱の両方が熱収支に影響を与える。 From the above, focusing on the heat balance, in the (A) powder layer forming process, only heat dissipation and heat removal affect the heat balance. On the other hand, in the (B) solidification layer forming step, heating and heat dissipation / heat removal coexist, and the influence of heat input / heating is greater than that of heat dissipation / heat removal, or heat dissipation is greater than heat input / heating. / There may be cases where the effect of heat removal is greater. Therefore, both heating and heat dissipation / removal affect the heat balance.
 かかる事項をふまえると、熱の出入りが併存状態にある(B)固化層形成工程では、造形物前駆体100の温度が変化し得るということができる。この場合、造形物前駆体100の上面の温度と、一定温度に調節された造形テーブル20上に位置する造形プレート21(すなわちベースプレート20α)の温度との間に温度差が生じ得る。かかる温度差が生じている状況(すなわち前駆体100の温度が変化し得る状況)では、既述のように本願発明者らにより新たに見出されているように、造形物の前駆体100の上面側に位置する固化層24の高さ方向に沿った膨張又は収縮が生じ得る。その結果として、前駆体100Xの高さが所望の高さよりも高く又は低くなり得る。 Based on these matters, it can be said that the temperature of the modeled precursor 100 can change in the (B) solidified layer forming step in which heat inflow and outflow coexist. In this case, a temperature difference may occur between the temperature of the upper surface of the model precursor 100 and the temperature of the model plate 21 (that is, the base plate 20α) located on the model table 20 adjusted to a constant temperature. In a situation where such a temperature difference occurs (that is, a situation in which the temperature of the precursor 100 can change), as described above, as newly discovered by the inventors of the present application, the precursor 100 of the modeled object 100 Expansion or contraction along the height direction of the solidified layer 24 located on the upper surface side may occur. As a result, the height of the precursor 100X can be higher or lower than the desired height.
 以上の事から、本願発明者らは、下記で詳述するが、造形プロセス条件については、三次元形状造形物の製造の間に一定に維持されるのではなく、製造途中にて三次元形状造形物の前駆体100の高さに応じて適宜変更されることが好ましいことに気付いた。かかる観点に基づき、本願発明者らは下記の技術的思想を有する本発明を案出するに至った。 From the above, the inventors of the present application will explain in detail below, but the modeling process conditions are not maintained constant during the production of the three-dimensional shape model, but the three-dimensional shape during the production. I have noticed that it is preferable to change it as appropriate according to the height of the precursor 100 of the modeled object. Based on this viewpoint, the inventors of the present application have come up with the present invention having the following technical ideas.
(本発明の技術的思想)
 具体的には、本願発明者らは「三次元形状造形物の製造途中において、三次元形状造形物の前駆体の高さに応じて造形プロセス条件を変更する」という技術的思想を有する本発明を案出するに至った(図1B参照)。
(Technical Idea of the Present Invention)
Specifically, the inventors of the present application have the technical idea that "the modeling process conditions are changed according to the height of the precursor of the three-dimensional shaped object during the production of the three-dimensional shaped object". (See Fig. 1B).
 かかる技術的思想に従えば、造形プロセス条件が、三次元形状造形物の製造の間に一定に維持されるのではなく、製造途中にて三次元形状造形物の前駆体100の高さに応じて適宜変更される。具体的には、三次元形状造形物の製造の間に造形プロセス条件を連続して一定にするのではなく、製造途中の前駆体100が所定の理想高さと比べて実際の高さが異なると把握される場合には造形プロセス条件を途中で変更する。かかる造形プロセス条件の変更により、製造途中の前駆体100の実際の高さを所定の理想高さに近づけることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 According to such a technical idea, the modeling process conditions are not maintained constant during the production of the 3D shaped object, but depend on the height of the precursor 100 of the 3D shaped object during the production. Will be changed as appropriate. Specifically, instead of making the modeling process conditions continuously constant during the production of the three-dimensionally shaped object, the actual height of the precursor 100 during production is different from the predetermined ideal height. If it is grasped, change the modeling process conditions on the way. By changing the molding process conditions, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
 本明細書でいう「造形プロセス条件」とは、製造する三次元形状造形物の土台となるベースプレート20α内に含まれる温度調節媒体の温度、流量および流速、熱源要素の温度、粉末層22の厚さ、ならびに光ビームLの照射条件から構成される群から選択される少なくとも1つを指す。本明細書でいう「ベースプレート20α」とは造形テーブル20および造形テーブル20上に位置付けられる造形プレート21の総称を意味する。本明細書でいう「温度調節源60」とは温度調節媒体および熱源要素(ヒーター源等)の総称を意味する。本明細書でいう「造形物の前駆体100の上面」とは、製造途中段階における造形物の前駆体100の構成要素である積層化された固化層のうち、最上位の固化層の表面(具体的には主面)を指す。 The "modeling process conditions" referred to in the present specification are the temperature, flow rate and flow velocity of the temperature control medium contained in the base plate 20α which is the base of the three-dimensional shape model to be manufactured, the temperature of the heat source element, and the thickness of the powder layer 22. Also refers to at least one selected from the group consisting of the irradiation conditions of the light beam L. The "base plate 20α" as used herein is a general term for the modeling table 20 and the modeling plate 21 positioned on the modeling table 20. The "temperature control source 60" as used herein is a general term for a temperature control medium and a heat source element (heater source, etc.). The "upper surface of the precursor 100 of the modeled product" as used herein refers to the surface of the uppermost solidified layer among the laminated solidified layers which are the constituent elements of the precursor 100 of the modeled product in the intermediate stage of manufacturing. Specifically, it refers to the main surface).
 なお、本発明の一実施形態では、造形プロセス条件の変更については造形物の前駆体100の高さに応じて実施するところ、当該変更実施のための判断基準については、(1)製造途中の造形物の前駆体100の上面の温度測定値、および/または(2)造形物の前駆体100の高さ実測値に分けることができる。 In one embodiment of the present invention, the modification of the modeling process conditions is carried out according to the height of the precursor 100 of the modeled product, and the criteria for implementing the change are as follows: (1) During production. It can be divided into a temperature measurement value of the upper surface of the precursor 100 of the modeled object and / or (2) a measured height value of the precursor 100 of the modeled object.
 以下では、造形プロセス条件の変更実施のための判断基準として、主として前者の「製造途中の造形物の前駆体100の上面の温度測定値」に基づく場合を前提として説明する(図2参照)。 In the following, the criteria for changing the modeling process conditions will be described mainly on the premise that the former is based on the "temperature measurement value of the upper surface of the precursor 100 of the modeled product in the process of manufacturing" (see FIG. 2).
 かかる場合、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度を、温度センサ80等を用いて測定する。当該温度が、当該所定の高さよりも相対的に低い高さにおける前駆体100の上面温度又はベースプレート20αの表面温度と差異があると判断される場合には、造形プロセス条件の変更を行う。 In such a case, the temperature of the upper surface of the precursor 100 when the precursor 100 in the middle of production has a predetermined height is measured by using a temperature sensor 80 or the like. If it is determined that the temperature is different from the top surface temperature of the precursor 100 or the surface temperature of the base plate 20α at a height relatively lower than the predetermined height, the modeling process conditions are changed.
 具体的には、内部に温度調節源60を備えるベースプレート20α上にて三次元形状造形物の製造を行う場合、上記造形プロセス条件としては、温度調節源60としての温度調節管路に流す温度調節媒体61の温度、流量、および/または流速であってよい。又、上記造形プロセス条件としては、温度調節源60としての熱源要素の温度であってよい。これに限定されることなく、上記造形プロセス条件としては、粉末層22の厚さおよび光ビームLの照射条件であってよい。光ビームの照射条件とは、例えば後述する光ビームの照射エネルギー、スポット径、走査速度等が挙げられる。しかしながら、光ビームの照射条件は、これらに限定されない。 Specifically, when manufacturing a three-dimensional shaped object on a base plate 20α having a temperature control source 60 inside, the above-mentioned modeling process conditions include temperature control flowing through the temperature control pipeline as the temperature control source 60. It may be the temperature, flow rate, and / or flow rate of the medium 61. Further, the modeling process condition may be the temperature of the heat source element as the temperature control source 60. The modeling process conditions are not limited to this, and may be the thickness of the powder layer 22 and the irradiation conditions of the light beam L. Examples of the irradiation conditions of the light beam include the irradiation energy, spot diameter, scanning speed, and the like of the light beam described later. However, the irradiation conditions of the light beam are not limited to these.
●温度差を小さくするための対応パターン
(造形プロセス条件:温度調節媒体61の温度、流量、および/または流速)
 以下、上記造形プロセス条件として、温度調節媒体61の温度、流量、および/または流速を用いる態様を例に採る。かかる態様は、下記で具体的に説明するが、温度差(前駆体100の上面の温度とベースプレート20αの表面温度との温度差)を可能な限り小さくするという思想に基づいている。
● Corresponding pattern for reducing the temperature difference (modeling process conditions: temperature, flow rate, and / or flow velocity of the temperature control medium 61)
Hereinafter, an embodiment in which the temperature, flow rate, and / or flow velocity of the temperature control medium 61 are used as the above-mentioned modeling process conditions will be taken as an example. This aspect, which will be specifically described below, is based on the idea of minimizing the temperature difference (the temperature difference between the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α).
 例えば、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度とベースプレート20αの表面温度と差があると判断される場合に、造形プロセス条件の1つである、ベースプレート20α内の温度調節管路に流す温度調節媒体61の温度、流量、および/または流速を途中段階で変更する。 For example, it is one of the modeling process conditions when it is determined that there is a difference between the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α when the precursor 100 in the middle of production has a predetermined height. The temperature, flow rate, and / or flow velocity of the temperature control medium 61 flowing through the temperature control line in the base plate 20α is changed in the middle stage.
 具体的には、演算制御部70の指示下で、温度センサ80等を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度を測定する。同様に、温度センサ80等を駆動させて、ベースプレート20αの表面温度を測定する。両者の温度測定値に基づき、演算制御部70により両者の温度測定値に差があるかどうかを判断する。差があると判断される場合、演算制御部70の指示下で、温度調節デバイス50を駆動させて、温度調節デバイス50から温度調節源60(温度調節管路)に供される温度調節媒体の温度、流量、および/または流速を途中で変更制御を行う。 Specifically, under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the surface temperature of the base plate 20α. Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. When it is determined that there is a difference, the temperature control device 50 is driven under the instruction of the arithmetic control unit 70, and the temperature control medium supplied from the temperature control device 50 to the temperature control source 60 (temperature control line). The temperature, flow rate, and / or flow velocity are changed and controlled in the middle.
 より具体的には、一態様では、演算制御部70の指示下で、温度調節デバイス50から温度調節源60(温度調節管路)に、変更前と比べて温度が相対的に低い又は高い温度調節媒体を流してよい。一態様では、演算制御部70の指示下で、温度調節デバイス50から温度調節源60(温度調節管路)に、変更前と比べて流量が相対的に増した又は減じられた温度調節媒体を流してよい。又、一態様では、演算制御部70の指示下で、温度調節デバイス50から温度調節源60(温度調節管路)に、変更前と比べて流速が相対的に速い又は遅い温度調節媒体を流してよい。 More specifically, in one embodiment, under the instruction of the arithmetic control unit 70, the temperature from the temperature control device 50 to the temperature control source 60 (temperature control line) is relatively lower or higher than that before the change. The conditioning medium may flow. In one aspect, under the direction of the arithmetic control unit 70, a temperature control medium in which the flow rate is relatively increased or decreased as compared with that before the change is supplied from the temperature control device 50 to the temperature control source 60 (temperature control line). You can let it flow. Further, in one embodiment, under the instruction of the arithmetic control unit 70, a temperature control medium having a relatively high or slow flow velocity as compared with that before the change is flowed from the temperature control device 50 to the temperature control source 60 (temperature control line). You can.
 例えば、前駆体100の上面の温度がベースプレート20αの表面温度よりも高いと判断された場合、当初に一定に温度制御された媒体温度よりも相対的に低くして、好ましくはこれに加えて媒体流量を増やす。この場合、媒体温度が低くなるような変更制御を開始した時点又はその付近においては、ベースプレート20αと近接する造形物前駆体100の高さが低い低領域がまず冷却され得る。この時点においては、ベースプレート20αから離れている造形物前駆体100の高さが高い高領域に対する冷却作用は少ない。その後、媒体温度が低くなるような変更制御を開始して所定時間経過すると、ベースプレート20αから離れた造形物前駆体100の高さが高い高領域も冷却されはじめる。 For example, when it is determined that the temperature of the upper surface of the precursor 100 is higher than the surface temperature of the base plate 20α, the temperature is set relatively lower than the medium temperature whose temperature is controlled to be constant at the beginning, and the medium is preferably added to this. Increase the flow rate. In this case, at the time when the change control for lowering the medium temperature is started or in the vicinity thereof, the low region where the height of the model precursor 100 adjacent to the base plate 20α is low can be cooled first. At this point, the cooling action on the high region where the height of the model precursor 100 away from the base plate 20α is high is small. After that, when the change control for lowering the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20α is high also begins to be cooled.
 そして、最終的に、温度調節媒体61の熱エネルギーを相対的に高さの高い前駆体100の上面領域にまで伝えることができ、それによって当該上面領域の温度を低下させることができる。これにより、最終的には、前駆体100の上面とベースプレート20αの表面との温度差を小さくすることができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の高さが高い場合においても、前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。 Finally, the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be lowered. As a result, the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20α can be finally reduced. As a result, even when the height of the precursor 100 of the three-dimensional shaped object is high in the middle of the manufacturing process, the temperature of the upper surface of the precursor 100, that is, the surface temperature of the solidified layer 24 which is a component thereof is constant. Can be.
 同様に、例えば、製造途中の所定の高さを有する前駆体100の上面と、当該所定の高さよりも相対的に低い高さにおける前駆体100の上面との間に温度差ある場合と判断される場合、ベースプレート20α内の温度調節管路に流す温度調節媒体61の温度、流量、および/または流速を途中段階で変更する。 Similarly, for example, it is determined that there is a temperature difference between the upper surface of the precursor 100 having a predetermined height during production and the upper surface of the precursor 100 at a height relatively lower than the predetermined height. If so, the temperature, flow rate, and / or flow velocity of the temperature control medium 61 flowing through the temperature control line in the base plate 20α is changed in the middle stage.
 具体的には、演算制御部70の指示下で、温度センサ80等を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度を測定する。同様に、温度センサ80等を駆動させて、当該所定の高さよりも相対的に低い高さにおける前駆体100の上面温度を測定する。両者の温度測定値に基づき、演算制御部70により両者の温度測定値に差があるかどうかを判断する。差があると判断される場合、演算制御部70の指示下で、温度調節デバイス50を駆動させて、温度調節デバイス50から温度調節源60(温度調節管路)に供される温度調節媒体の温度、流量、および/または流速を途中で変更制御を行う。 Specifically, under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the top surface temperature of the precursor 100 at a height relatively lower than the predetermined height. Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. When it is determined that there is a difference, the temperature control device 50 is driven under the instruction of the arithmetic control unit 70, and the temperature control medium supplied from the temperature control device 50 to the temperature control source 60 (temperature control line). The temperature, flow rate, and / or flow velocity are changed and controlled in the middle.
 製造途中の相対的に高さの高い前駆体100の上面の温度が、これよりも前段階で形成した相対的に高さの低い前駆体100の上面の温度よりも高いと判断された場合、当初に一定に温度制御された媒体温度よりも相対的に低くして、好ましくはこれに加えて媒体流量を増やす。この場合、媒体温度が低くなるような変更制御を開始した時点又はその付近においては、ベースプレート20αから離れた造形物前駆体100の高さが高い高領域に対する冷却作用は少ない。その後、媒体温度が低くなるような変更制御を開始して所定時間経過すると、ベースプレート20αから離れた造形物前駆体100の高さが高い高領域も冷却されはじめる。 When it is determined that the temperature of the upper surface of the relatively high precursor 100 during production is higher than the temperature of the upper surface of the relatively low precursor 100 formed in the previous stage. The temperature is relatively lower than the initially constant temperature controlled medium temperature, preferably in addition to increasing the medium flow rate. In this case, at the time when the change control for lowering the medium temperature is started or in the vicinity thereof, the cooling action on the high region where the height of the model precursor 100 away from the base plate 20α is high is small. After that, when the change control for lowering the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20α is high also begins to be cooled.
 そして、最終的に、温度調節媒体61の熱エネルギーを相対的に高さの高い前駆体100の上面領域にまで伝えることができ、それによって当該上面領域の温度を低下させることができる。これにより、最終的には、製造途中の相対的に高さの高い前駆体100の上面の温度と、これよりも前段階で形成した相対的に高さの低い前駆体100の上面の温度との間の温度差を小さくすることができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。 Finally, the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be lowered. As a result, finally, the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage are obtained. The temperature difference between them can be reduced. As a result, in the middle of the manufacturing process, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, the surface temperature of the solidified layer 24 which is a component thereof can be made constant.
 なお、上記では、製造途中の前駆体100の所定高さにおける上面温度が、当該所定の高さよりも相対的に低い高さにおける前駆体100の上面温度又はベースプレート20αの表面温度よりも高い場合を例にとり説明したが、これに限定されることなく、前駆体100の所定高さにおける上面温度が、相対的に低い高さにおける前駆体100の上面温度又はベースプレート20αの表面温度よりも低い場合にも適用可能である。 In the above, the case where the upper surface temperature of the precursor 100 in the middle of production at a predetermined height is higher than the upper surface temperature of the precursor 100 or the surface temperature of the base plate 20α at a height relatively lower than the predetermined height. Although described as an example, the case where the upper surface temperature of the precursor 100 at a predetermined height is lower than the upper surface temperature of the precursor 100 or the surface temperature of the base plate 20α at a relatively low height is not limited to this. Is also applicable.
 この場合、例えば、前駆体100の上面の温度がベースプレート20αの表面温度よりも低いと判断された場合、当初に一定に温度制御された媒体温度よりも相対的に高くして、好ましくはこれに加えて媒体流量を減らす。この場合、媒体温度が高くなるような変更制御を開始した時点又はその付近においては、ベースプレート20αと近接する造形物前駆体100の高さが低い低領域がまず加温され得る。この時点においては、ベースプレート20αから離れている造形物前駆体100の高さが高い高領域に対する加温作用は少ない。その後、媒体温度が高くなるような変更制御を開始して所定時間経過すると、ベースプレート20αから離れた造形物前駆体100の高さが高い高領域も加温されはじめる。 In this case, for example, when it is determined that the temperature of the upper surface of the precursor 100 is lower than the surface temperature of the base plate 20α, the temperature is set relatively higher than the medium temperature whose temperature is controlled to be constant at the beginning, preferably this. In addition, reduce the medium flow rate. In this case, at the time when the change control for increasing the medium temperature is started or in the vicinity thereof, the low region where the height of the model precursor 100 adjacent to the base plate 20α is low can be first heated. At this point, the warming effect on the high region where the height of the model precursor 100 away from the base plate 20α is high is small. After that, when the change control for increasing the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20α is high also begins to be heated.
 そして、最終的に、温度調節媒体61の熱エネルギーを相対的に高さの高い前駆体100の上面領域にまで伝えることができ、それによって当該上面領域の温度を上げることができる。これにより、最終的には、前駆体100の上面とベースプレート20αの表面との温度差を小さくすることができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の高さが高い場合においても、前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。 Finally, the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be raised. As a result, the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20α can be finally reduced. As a result, even when the height of the precursor 100 of the three-dimensional shaped object is high in the middle of the manufacturing process, the temperature of the upper surface of the precursor 100, that is, the surface temperature of the solidified layer 24 which is a component thereof is constant. Can be.
 同様に、製造途中の相対的に高さの高い前駆体100の上面の温度が、これよりも前段階で形成した相対的に高さの低い前駆体100の上面の温度よりも低いと判断された場合、当初に一定に温度制御された媒体温度よりも相対的に高くして、好ましくはこれに加えて媒体流量を減らす。この場合、媒体温度が高くなるような変更制御を開始した時点又はその付近においては、ベースプレート20αから離れた造形物前駆体100の高さが高い高領域に対する加温作用は少ない。その後、媒体温度が高くなるような変更制御を開始して所定時間経過すると、ベースプレート20αから離れた造形物前駆体100の高さが高い高領域も加温されはじめる。 Similarly, it is determined that the temperature of the upper surface of the relatively high precursor 100 during production is lower than the temperature of the upper surface of the relatively low precursor 100 formed in the previous stage. In this case, the temperature is relatively higher than the initially constant temperature-controlled medium temperature, preferably in addition to reducing the medium flow rate. In this case, at the time when the change control for increasing the medium temperature is started or in the vicinity thereof, the heating action on the high region where the height of the model precursor 100 away from the base plate 20α is high is small. After that, when the change control for increasing the medium temperature is started and a predetermined time elapses, the high region where the height of the modeled precursor 100 away from the base plate 20α is high also begins to be heated.
 そして、最終的に、温度調節媒体61の熱エネルギーを相対的に高さの高い前駆体100の上面領域にまで伝えることができ、それによって当該上面領域の温度を上げることができる。これにより、最終的には、製造途中の相対的に高さの高い前駆体100の上面の温度と、これよりも前段階で形成した相対的に高さの低い前駆体100の上面の温度との間の温度差を小さくすることができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。 Finally, the thermal energy of the temperature control medium 61 can be transmitted to the upper surface region of the precursor 100 having a relatively high height, whereby the temperature of the upper surface region can be raised. As a result, finally, the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage are obtained. The temperature difference between them can be reduced. As a result, in the middle of the manufacturing process, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, the surface temperature of the solidified layer 24 which is a component thereof can be made constant.
 以上の事からも、上記温度制御変更によれば、前駆体100の上面とベースプレート20αの表面との温度差を小さくすることができる。又、製造途中の相対的に高さの高い前駆体100の上面の温度と、これよりも前段階で形成した相対的に高さの低い前駆体100の上面の温度との間の温度差を小さくすることができる。そのため、温度差に対応した前駆体100の構成要素である固化層24の膨張又は収縮の発生を好適に抑制することができる。これにより、製造途中の前駆体100の実際の高さを所定の理想高さに近づけることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 From the above, according to the above temperature control change, the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20α can be reduced. Further, the temperature difference between the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage is determined. It can be made smaller. Therefore, the occurrence of expansion or contraction of the solidified layer 24, which is a component of the precursor 100 corresponding to the temperature difference, can be suitably suppressed. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
(造形プロセス条件:熱源要素の温度)
 なお、上記態様に限定されることなく、例えば、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度とベースプレート20αの表面温度と差があると判断される場合に、温度調節源60としての熱源要素(ヒータ要素)の温度を変更してよい。
(Modeling process conditions: temperature of heat source element)
Not limited to the above embodiment, for example, when it is determined that there is a difference between the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α when the precursor 100 in the process of production has a predetermined height. In addition, the temperature of the heat source element (heater element) as the temperature control source 60 may be changed.
 具体的には、演算制御部70の指示下で、温度センサ80等を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度を測定する。同様に、温度センサ80等を駆動させて、当該所定の高さよりも相対的に低い高さにおける前駆体100の上面温度を測定する。両者の温度測定値に基づき、演算制御部70により両者の温度測定値に差があるかどうかを判断する。差があると判断される場合、演算制御部70の指示下で、温度調節デバイス50を駆動させて、温度調節デバイス50から温度調節源60としての熱源要素(ヒータ要素)の温度を途中で変更制御を行う。 Specifically, under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the top surface temperature of the precursor 100 at a height relatively lower than the predetermined height. Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. When it is determined that there is a difference, the temperature control device 50 is driven under the instruction of the arithmetic control unit 70 to change the temperature of the heat source element (heater element) as the temperature control source 60 from the temperature control device 50 on the way. Take control.
 この場合にも、前駆体100の上面とベースプレート20αの表面との温度差を小さくすることができる。又、製造途中の相対的に高さの高い前駆体100の上面の温度と、これよりも前段階で形成した相対的に高さの低い前駆体100の上面の温度との間の温度差を小さくすることができる。そのため、温度差に対応した前駆体100の構成要素である固化層24の膨張又は収縮の発生を好適に抑制することができる。これにより、製造途中の前駆体100の実際の高さを所定の理想高さに近づけることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 Also in this case, the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20α can be reduced. Further, the temperature difference between the temperature of the upper surface of the precursor 100 having a relatively high height during production and the temperature of the upper surface of the precursor 100 having a relatively low height formed in the previous stage is determined. It can be made smaller. Therefore, the occurrence of expansion or contraction of the solidified layer 24, which is a component of the precursor 100 corresponding to the temperature difference, can be suitably suppressed. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
●温度差有り前提下での対応パターン
 上記では、造形プロセス条件として、温度調節媒体61の温度、流量、および/または流速を選択する場合を例に採った。しかしながら、これに限定されることなく、造形プロセス条件として、光ビームLの照射条件および/または粉末層22の厚さが選択されてよい。なお、これら態様は、下記で具体的に説明するが、温度差(前駆体100の上面の温度とベースプレート20αの表面温度との温度差)有りの前提下にて対応するという思想に基づいている。
● Correspondence pattern under the premise that there is a temperature difference In the above, the case where the temperature, the flow rate, and / or the flow velocity of the temperature control medium 61 is selected as the modeling process condition is taken as an example. However, without being limited to this, the irradiation conditions of the light beam L and / or the thickness of the powder layer 22 may be selected as the modeling process conditions. Although these embodiments will be described in detail below, they are based on the idea that they correspond on the premise that there is a temperature difference (the temperature difference between the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α). ..
 例えば、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度とベースプレート20αの表面温度と差があると判断される場合に、光ビーム照射部3による粉末層22の所定箇所への照射条件を変更してよい。 For example, when it is determined that there is a difference between the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α when the precursor 100 in the middle of production has a predetermined height, the powder layer 22 by the light beam irradiation unit 3 The irradiation conditions for the predetermined location may be changed.
 具体的には、演算制御部70の指示下で、温度センサ80等を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度を測定する。同様に、温度センサ80等を駆動させて、ベースプレート20αの表面温度を測定する。両者の温度測定値に基づき、演算制御部70により両者の温度測定値に差があるかどうかを判断する。差があると判断される場合、演算制御部70の指示下で、光ビーム照射部3を駆動させて、光ビーム照射部3から粉末層22の所定箇所に照射される光ビームLの照射エネルギー、スポット径、および/又は走査速度を変更してよい。 Specifically, under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the surface temperature of the base plate 20α. Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. When it is determined that there is a difference, the light beam irradiation unit 3 is driven under the instruction of the arithmetic control unit 70, and the irradiation energy of the light beam L irradiated from the light beam irradiation unit 3 to a predetermined portion of the powder layer 22. , Spot diameter, and / or scanning speed may be changed.
 例えば、前駆体100の上面領域側にある固化層24の高さ方向に沿った収縮に伴い、直後に形成する新たな粉末層22の厚さが大きくなっている場合、演算制御部70の指示下で、焼結状態が当初想定どおりになるように、製造途中で光ビームの照射エネルギー密度を大きくなるように変更してよい。これに限定されることなく、かかる場合、例えば、演算制御部70の指示下で、焼結状態が当初想定どおりになるように、光ビームの走査速度を途中で遅くなるように変更してよい。 For example, when the thickness of the new powder layer 22 to be formed immediately after shrinking along the height direction of the solidified layer 24 on the upper surface region side of the precursor 100 increases, the instruction of the arithmetic control unit 70 Below, the irradiation energy density of the light beam may be changed to increase during the manufacturing process so that the sintered state becomes as initially expected. Without being limited to this, in such a case, for example, under the instruction of the arithmetic control unit 70, the scanning speed of the light beam may be changed so as to be slower in the middle so that the sintered state becomes as initially expected. ..
 一方、前駆体100の上面領域側にある固化層24の高さ方向に沿った膨張に伴い、直後に形成する新たな粉末層22の厚さが小さくなっている場合、演算制御部70の指示下で、焼結状態が当初想定どおりになるように、製造途中で光ビームの照射エネルギー密度を小さくなるように変更してよい。これに限定されることなく、かかる場合、例えば、演算制御部70の指示下で、焼結状態が当初想定どおりになるように、光ビームの走査速度を途中で速くなるように変更してよい。 On the other hand, when the thickness of the new powder layer 22 to be formed immediately after the solidification layer 24 on the upper surface region side of the precursor 100 is reduced due to the expansion along the height direction, the instruction of the arithmetic control unit 70 Below, the irradiation energy density of the light beam may be changed to be small during the manufacturing process so that the sintered state is as initially expected. Without being limited to this, in such a case, for example, under the instruction of the arithmetic control unit 70, the scanning speed of the light beam may be changed so as to be faster in the middle so that the sintered state is as initially expected. ..
 以上により、製造工程の途中において、直後に形成する新たな粉末層22の厚さが大きく又は小さくなっている場合にも、新たな粉末層22の所定箇所に対する光ビーム照射による粉末の焼結状態を当初想定どおりに調節変更することができる。これにより、製造途中の前駆体100の実際の高さを所定の理想高さに近づけることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 As described above, even when the thickness of the new powder layer 22 formed immediately after the manufacturing process is increased or decreased in the middle of the manufacturing process, the powder is sintered by irradiating a predetermined portion of the new powder layer 22 with a light beam. Can be adjusted and changed as originally expected. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
(造形プロセス条件:粉末層の厚さ)
 又、例えば、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度とベースプレート20αの表面温度と差があると判断される場合に、ベースプレート20α(特に造形テーブル20)の下げ幅をそれまでの場合と比べて変更して、次なる新たな粉末層22の厚さを変更してよい。
(Modeling process conditions: thickness of powder layer)
Further, for example, when it is determined that there is a difference between the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α when the precursor 100 in the process of manufacturing has a predetermined height, the base plate 20α (particularly the modeling table 20) ) May be changed as compared with the previous case, and the thickness of the next new powder layer 22 may be changed.
 具体的には、演算制御部70の指示下で、温度センサ80等を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度を測定する。同様に、温度センサ80等を駆動させて、ベースプレート20αの表面温度を測定する。両者の温度測定値に基づき、演算制御部70により両者の温度測定値に差があるかどうかを判断する。当該差がある場合、製造開始後所定時間経過時における造形物の前駆体100の上面領域側にある固化層24が高さ方向に沿って膨張又は収縮し得ると判断する。かかる判断がされる場合には、演算制御部70の指示下で、ベースプレート20α(特に造形テーブル20)の下げ幅の変更制御を行う。例えば、前駆体100の上面領域側にある固化層24の高さ方向に沿った膨張又は収縮に伴い、直後に形成する新たな粉末層22の厚さが所定厚さよりも大きくなっている場合、演算制御部70の指示下で、粉末層22の厚さが所定厚さになるように造形テーブル20の下げ幅を製造途中で小さくしてよい。 Specifically, under the instruction of the arithmetic control unit 70, the temperature sensor 80 or the like is driven to measure the temperature of the upper surface of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. Similarly, the temperature sensor 80 or the like is driven to measure the surface temperature of the base plate 20α. Based on the temperature measurement values of both, the arithmetic control unit 70 determines whether or not there is a difference between the temperature measurement values of both. If there is such a difference, it is determined that the solidified layer 24 on the upper surface region side of the precursor 100 of the modeled product can expand or contract along the height direction after a lapse of a predetermined time after the start of production. When such a determination is made, the lowering width of the base plate 20α (particularly the modeling table 20) is changed and controlled under the instruction of the arithmetic control unit 70. For example, when the thickness of the new powder layer 22 formed immediately after the expansion or contraction of the solidified layer 24 on the upper surface region side of the precursor 100 along the height direction is larger than the predetermined thickness. Under the instruction of the calculation control unit 70, the lowering width of the modeling table 20 may be reduced during manufacturing so that the thickness of the powder layer 22 becomes a predetermined thickness.
 以上により、製造工程の途中において、直後に形成する新たな粉末層22の厚さが変更制御されるため、当該新たな粉末層22の所定箇所に対する光ビーム照射による粉末の焼結状態を当初想定どおりに調節変更することができる。これにより、製造途中の前駆体100の実際の高さを所定の理想高さに近づけることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 As described above, since the thickness of the new powder layer 22 formed immediately after the manufacturing process is changed and controlled, it is initially assumed that the powder is sintered by irradiating a predetermined portion of the new powder layer 22 with a light beam. You can adjust and change as you like. As a result, the actual height of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
“細長くて背が高い”形状の造形物前駆体100Xを製造する場合
 なお、上記の“温度差を小さくするための対応パターン”においては、相対的に平面視における面積が小さく高さが相対的に高い、いわゆる“細長くて背が高い”造形物を製造する場合には、媒体温度を下げたり媒体流量を増やすことが好ましい。又、上記の“温度差有り前提下での対応パターン”においては、相対的に平面視における面積が小さく高さが相対的に高い、いわゆる“細長くて背が高い”造形物を製造する場合には、低照射エネルギー条件にしたり走査速度を遅くすることが好ましい(図1C参照)。
When manufacturing a model precursor 100X having a "slender and tall" shape In the above "corresponding pattern for reducing the temperature difference", the area in the plan view is relatively small and the height is relative. In the case of producing a so-called "slender and tall" model, it is preferable to lower the medium temperature or increase the medium flow rate. Further, in the above-mentioned "correspondence pattern under the premise that there is a temperature difference", when a so-called "slender and tall" modeled object having a relatively small area in a plan view and a relatively high height is manufactured. Is preferably set to a low irradiation energy condition or the scanning speed is slowed down (see FIG. 1C).
 製造途中にて“細長くて背が高い”造形物前駆体100Xは、放熱に資する表面積(放熱面積ともいう。)が全体的に小さくなり得る。そのため、光ビームLによる造形物前駆体100Xの表面加熱等に伴い造形物前駆体100X内に位置する熱が造形物前駆体100Xの表面(具体的には上面101X)から放出しにくく、温度調節デバイス50による除熱がされにくい。 The surface area (also referred to as heat dissipation area) that contributes to heat dissipation of the “slender and tall” model precursor 100X during manufacturing can be reduced as a whole. Therefore, it is difficult for the heat located in the model precursor 100X to be released from the surface of the model precursor 100X (specifically, the upper surface 101X) due to the surface heating of the model precursor 100X by the light beam L, and the temperature is controlled. It is difficult for the device 50 to remove heat.
 その結果、造形物前駆体100X内部に熱が残存又は蓄熱しやすくなり、造形物前駆体100Xの上面101Xの温度が高くなり、造形物前駆体100Xの上面101Xの温度と、温度調節された造形テーブル20上に位置する造形プレート21(すなわちベースプレート20α)の温度との間に温度差が生じ得る。かかる温度差が生じる場合、造形物の前駆体100Xの上面101X側に位置する固化層24Xの高さ方向に沿った膨張し得る。その結果として、製造途中の造形物の前駆体100Xの高さが所望の高さよりも高くなり得る。そのため、次なる新たな粉末層の厚みが小さくなり得る。これに加え、造形物前駆体100X内部に熱が残存又は蓄熱しやすいため、造形物前駆体の上面101X(すなわち表面)の温度が相対的に高くなり、それに起因して、粉末層22の所定箇所に位置する粉末19を溶融固化しやすくなる。 As a result, heat tends to remain or be stored inside the modeled object precursor 100X, the temperature of the upper surface 101X of the modeled object precursor 100X becomes high, and the temperature of the upper surface 101X of the modeled object precursor 100X and the temperature-controlled modeling A temperature difference may occur with the temperature of the modeling plate 21 (that is, the base plate 20α) located on the table 20. When such a temperature difference occurs, the solidified layer 24X located on the upper surface 101X side of the precursor 100X of the modeled object can expand along the height direction. As a result, the height of the precursor 100X of the model being manufactured can be higher than the desired height. Therefore, the thickness of the next new powder layer can be reduced. In addition to this, since heat tends to remain or be stored inside the model precursor 100X, the temperature of the upper surface 101X (that is, the surface) of the model precursor becomes relatively high, and as a result, the powder layer 22 is predetermined. The powder 19 located at the location is easily melted and solidified.
 かかる理由から、上記のとおり、温度差を小さくするための対応パターンにおいては、相対的に平面視における面積が小さく高さが相対的に高い、いわゆる“細長くて背が高い”造形物を製造する場合には、媒体温度を下げたり媒体流量を増やすことが好ましい。又、上記の温度差有り前提下での対応パターンにおいては、相対的に平面視における面積が小さく高さが相対的に高い、いわゆる“細長くて背が高い”造形物を製造する場合には、低照射エネルギー条件にしたり走査速度を遅くすることが好ましい(図1C参照)。 For this reason, as described above, in the corresponding pattern for reducing the temperature difference, a so-called "slender and tall" model having a relatively small area in a plan view and a relatively high height is manufactured. In some cases, it is preferable to lower the medium temperature or increase the medium flow rate. Further, in the corresponding pattern under the premise that there is a temperature difference described above, in the case of manufacturing a so-called "slender and tall" model having a relatively small area in a plan view and a relatively high height, It is preferable to set low irradiation energy conditions or slow down the scanning speed (see FIG. 1C).
“面積が広く背が低い”造形物前駆体100Yを製造する場合
 これに対して、上記の“温度差を小さくするための対応パターン”においては、相対的に平面視における面積が大きく高さが相対的に低い、いわゆる“面積が広く背が低い”造形物を製造する場合には、媒体温度を上げたり媒体流量を減らすことが好ましい。又、上記の“温度差有り前提下での対応パターン”においては、相対的に平面視における面積が大きく高さが相対的に低い、いわゆる“面積が広く背が低い”造形物を製造する場合には、高照射エネルギー条件にしたり走査速度を速めることが好ましい(図1D参照)。
When manufacturing a model precursor 100Y that has a large area and a short height. On the other hand, in the above-mentioned "corresponding pattern for reducing the temperature difference", the area in the plan view is relatively large and the height is high. In the case of producing a relatively low, so-called "wide area and short" model, it is preferable to raise the medium temperature or reduce the medium flow rate. Further, in the above-mentioned "corresponding pattern under the premise that there is a temperature difference", in the case of manufacturing a so-called "wide area and short" modeled object having a relatively large area in a plan view and a relatively low height. It is preferable to set a high irradiation energy condition or increase the scanning speed (see FIG. 1D).
 製造途中にて“面積が広く背が低い”造形物前駆体100Yは、放熱に資する表面積(放熱面積ともいう。)が全体的に大きくなり得る。そのため、光ビームLによる造形物前駆体100Yの表面加熱等に伴い造形物前駆体100Y内に位置する熱が造形物前駆体100Yの表面(具体的には上面101Y)から放出しやすい。 The surface area (also referred to as heat dissipation area) that contributes to heat dissipation of the modeled precursor 100Y that is "wide and short" during manufacturing can be large as a whole. Therefore, the heat located in the model precursor 100Y is likely to be released from the surface of the model precursor 100Y (specifically, the upper surface 101Y) due to the surface heating of the model precursor 100Y by the light beam L.
 その結果、造形物前駆体100Y内部に熱が残存しにくくなり、造形物前駆体100Yの上面101Yの温度が低くなり、造形物前駆体100Yの上面101Yの温度と、温度調節された造形テーブル20上に位置する造形プレート21(すなわちベースプレート20α)の温度との間に温度差が生じ得る。かかる温度差が生じる場合、造形物の前駆体100Yの上面101Y側に位置する固化層24Yの高さ方向に沿った収縮し得る。その結果として、製造途中の造形物の前駆体100Yの高さが所望の高さよりも低くなり得る。そのため、次なる新たな粉末層の厚みが大きくなり得る。これに加え、造形物前駆体100Y内部に熱が残存しにくいため、造形物前駆体の上面101Y(すなわち表面)の温度が相対的に低くなり、それに起因して、粉末層22の所定箇所に位置する粉末19を溶融固化しにくくなる。 As a result, heat is less likely to remain inside the modeled object precursor 100Y, the temperature of the upper surface 101Y of the modeled object precursor 100Y becomes low, and the temperature of the upper surface 101Y of the modeled object precursor 100Y and the temperature-controlled modeling table 20 There may be a temperature difference with the temperature of the modeling plate 21 (ie, base plate 20α) located above. When such a temperature difference occurs, the solidified layer 24Y located on the upper surface 101Y side of the precursor 100Y of the modeled object can shrink along the height direction. As a result, the height of the precursor 100Y of the model being manufactured can be lower than the desired height. Therefore, the thickness of the next new powder layer can be increased. In addition to this, since heat is unlikely to remain inside the model precursor 100Y, the temperature of the upper surface 101Y (that is, the surface) of the model precursor becomes relatively low, and as a result, the powder layer 22 is located at a predetermined position. It becomes difficult to melt and solidify the located powder 19.
 かかる理由から、上記のとおり、温度差を小さくするための対応パターンにおいては、相対的に平面視における面積が大きく高さが相対的に低い、いわゆる“面積が広く背が低い”造形物を製造する場合には、媒体温度を上げたり媒体流量を減らすことが好ましい。又、上記の温度差有り前提下での対応パターンにおいては、相対的に平面視における面積が大きく高さが相対的に低い、いわゆる“面積が広く背が低い”造形物を製造する場合には、高照射エネルギー条件にしたり走査速度を速めることが好ましい(図1D参照)。 For this reason, as described above, in the corresponding pattern for reducing the temperature difference, a so-called "wide area and short" model having a relatively large area in a plan view and a relatively low height is manufactured. In this case, it is preferable to raise the medium temperature or reduce the medium flow rate. Further, in the corresponding pattern under the premise that there is a temperature difference described above, in the case of manufacturing a so-called "wide area and short" modeled object having a relatively large area in a plan view and a relatively low height. It is preferable to set a high irradiation energy condition or increase the scanning speed (see FIG. 1D).
 なお、本発明の一実施形態では、下記態様を採ることが好ましい。 In one embodiment of the present invention, it is preferable to adopt the following aspects.
(造形プロセス条件の変更実施のための所定の時間的間隔)
 一態様では、造形プロセス条件の変更を所定の時間的間隔をおいて複数回行い、三次元形状造形物の前駆体100の高さの違いに基づき当該時間的間隔を変えることが好ましい(図3参照)。
(Predetermined time interval for changing the modeling process conditions)
In one aspect, it is preferable to change the modeling process conditions a plurality of times at predetermined time intervals and change the time interval based on the difference in height of the precursor 100 of the three-dimensional shaped model (FIG. 3). reference).
 上述のように、本発明の技術的思想は、「三次元形状造形物の製造途中において、三次元形状造形物の前駆体の高さに応じて造形プロセス条件を変更する」というものである。換言すれば、本発明は、造形物の製造の間に造形プロセス条件を一定にするのではなく途中で変更するという技術的思想を有する。 As described above, the technical idea of the present invention is to "change the modeling process conditions according to the height of the precursor of the three-dimensional shaped object during the manufacturing of the three-dimensional shaped object". In other words, the present invention has a technical idea that the modeling process conditions are changed in the middle of the production of the modeled object rather than being fixed.
 この点につき、本態様は、当該技術的思想に加え、造形プロセス条件の変更を所定の時間的間隔をおいて複数回行い、三次元形状造形物の前駆体100の高さの違いに基づきその変更の時間的間隔を変えるという点に特徴を有する。 In this regard, in this aspect, in addition to the technical idea, the modeling process conditions are changed a plurality of times at predetermined time intervals, and the difference in height of the precursor 100 of the three-dimensional shaped model is used. It is characterized in that the time interval of change is changed.
 温度調節源60がベースプレート20α内に位置付けられている場合において、製造途中における高さが相対的に低い三次元形状造形物の前駆体100Aでは、造形テーブル21との距離が相対的に短いことに起因して、前駆体100Aの上面温度と造形テーブル21の温度との差が小さい。一方、製造途中における高さが相対的に高い三次元形状造形物の前駆体100Bでは、造形テーブル21との距離が相対的に短いことに起因して、前駆体100Bの上面温度と造形テーブル21の温度との差が大きい。 When the temperature control source 60 is positioned in the base plate 20α, the distance from the modeling table 21 is relatively short in the precursor 100A of the three-dimensionally shaped model having a relatively low height during manufacturing. Due to this, the difference between the top surface temperature of the precursor 100A and the temperature of the modeling table 21 is small. On the other hand, in the precursor 100B of the three-dimensional shaped model having a relatively high height during manufacturing, the upper surface temperature of the precursor 100B and the modeling table 21 are caused by the relatively short distance from the modeling table 21. There is a large difference from the temperature of.
 この点につき、本願発明者らにより新たに見出されているように、上記温度差に対応して、高さ方向に沿って三次元形状造形物の前駆体100の構成要素である固化層24の膨張又は収縮が発生し得る。この事から、上記温度差が大きい場合、これに対応して高さが相対的に高い三次元形状造形物の前駆体100Bの上面側に位置する固化層24の高さ方向に沿った膨張又は収縮の程度が大きくなり得る。一方、上記温度差が小さい場合、これに対応して高さが相対的に低い三次元形状造形物の前駆体100Aの上面側に位置する固化層24の高さ方向に沿った膨張又は収縮の程度は小さくなり得る。 In this regard, as newly discovered by the inventors of the present application, the solidified layer 24, which is a component of the precursor 100 of the three-dimensionally shaped model along the height direction, corresponds to the above temperature difference. Expansion or contraction can occur. From this fact, when the temperature difference is large, the solidified layer 24 located on the upper surface side of the precursor 100B of the three-dimensionally shaped model having a relatively high height corresponding to the above-mentioned temperature difference expands or expands along the height direction. The degree of contraction can be large. On the other hand, when the temperature difference is small, the expansion or contraction of the solidified layer 24 located on the upper surface side of the precursor 100A of the three-dimensional shaped object having a relatively low height corresponding to the temperature difference along the height direction. The degree can be small.
 以上の事から、製造途中における三次元形状造形物の前駆体100の上面と造形テーブル21との間の距離が所定の基準値を上回る場合には、製造途中の三次元形状造形物の前駆体100の高さが相対的に高くなっていると判断する。かかる判断がなされると、製造途中の三次元形状造形物の前駆体100の高さが相対的に低い場合における造形プロセスを実施する時間的間隔よりも相対的に短い時間的間隔にて、造形プロセス条件の変更を行う。即ち、本態様では、所定のタイミングにおける造形プロセス条件の変更調整の実施した後、次なる造形プロセス条件の変更調整実施までの時間的間隔を相対的に短くする。 From the above, when the distance between the upper surface of the precursor 100 of the three-dimensional shape model during manufacturing and the modeling table 21 exceeds a predetermined reference value, the precursor of the three-dimensional shape model during production It is determined that the height of 100 is relatively high. When such a judgment is made, modeling is performed at a time interval relatively shorter than the time interval for carrying out the modeling process when the height of the precursor 100 of the three-dimensional shaped model in the process of manufacturing is relatively low. Change the process conditions. That is, in this embodiment, the time interval between the change and adjustment of the modeling process conditions at a predetermined timing and the change and adjustment of the next modeling process conditions is relatively shortened.
 これにより、製造途中の三次元形状造形物の前駆体100の高さが相対的に低い場合と比べて、三次元形状造形物の前駆体100の高さが相対的に高い場合には、上記温度差を小さくするための造形プロセス条件変更の頻度を増やすことができる。従って、相対的に高さが高い前駆体100の上面領域に位置する固化層24の高さ方向に沿った膨張又は収縮の発生をより好適に抑制することができる。 As a result, when the height of the precursor 100 of the three-dimensionally shaped object is relatively high as compared with the case where the height of the precursor 100 of the three-dimensionally shaped object being manufactured is relatively low, the above The frequency of changing the modeling process conditions to reduce the temperature difference can be increased. Therefore, it is possible to more preferably suppress the occurrence of expansion or contraction of the solidified layer 24 located in the upper surface region of the precursor 100 having a relatively high height along the height direction.
(三次元形状造形物の前駆体の上面の温度測定のための具体的態様)
 以下、三次元形状造形物の前駆体100の上面の温度測定のための具体的態様について説明する。特に限定されるものではないが、例えば下記態様を採りうる。
(Specific mode for measuring the temperature of the upper surface of the precursor of the three-dimensional shaped object)
Hereinafter, a specific mode for measuring the temperature of the upper surface of the precursor 100 of the three-dimensional shaped model will be described. Although not particularly limited, for example, the following aspects can be adopted.
 一態様では、三次元形状造形物の前駆体100の上面の温度を、当該上面から供される赤外線に基づき測定してよい(図4参照)。 In one aspect, the temperature of the upper surface of the precursor 100 of the three-dimensional shaped object may be measured based on the infrared rays provided from the upper surface (see FIG. 4).
 本態様では、例えば赤外線放射温度センサ81を用いて、前駆体100の上面101からの赤外線82を受信し、受信した赤外線82から前駆体100の上面101における温度を間接的に測定してよい。なお、特に限定されるものではないが、前駆体100の上面101から赤外線を受信して、当該上面101の全体的な温度を測定してよい(図4左下図参照)。又、モニター状にて前駆体100の上面101を格子状に区分けして、当該上面101のうち所定の区画部分に位置する部分の温度を測定してよい(図4右下図参照)。 In this embodiment, for example, an infrared radiation temperature sensor 81 may be used to receive infrared rays 82 from the upper surface 101 of the precursor 100, and indirectly measure the temperature on the upper surface 101 of the precursor 100 from the received infrared rays 82. Although not particularly limited, infrared rays may be received from the upper surface 101 of the precursor 100 to measure the overall temperature of the upper surface 101 (see the lower left figure of FIG. 4). Further, the upper surface 101 of the precursor 100 may be divided into a grid pattern in a monitor shape, and the temperature of a portion of the upper surface 101 located in a predetermined section may be measured (see the lower right figure of FIG. 4).
 具体的には、演算制御部70の指示下で、赤外線放射温度センサ81を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面101からの赤外線82を受信し、受信した赤外線82に関する情報を赤外線放射温度センサ81自体又は演算制御部70に温度換算する。これにより、前駆体100の上面101における温度を間接的に測定してよい。 Specifically, under the instruction of the arithmetic control unit 70, the infrared radiation temperature sensor 81 is driven to generate infrared rays 82 from the upper surface 101 of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. It receives and converts the received information about the infrared ray 82 into the infrared radiation temperature sensor 81 itself or the arithmetic control unit 70. Thereby, the temperature on the upper surface 101 of the precursor 100 may be indirectly measured.
 又、例えば、別途測定したベースプレート20αの表面の温度と、当該赤外線放射温度センサ81を通じて測定した前駆体100の上面101の温度との温度差があるか否かを確認する。当該温度差が存在する、特に当該温度差が相対的に大きいと判断できる場合には、上記造形プロセス条件を変更することで当該温度差の発生が好適に抑制され得る。 Further, for example, it is confirmed whether or not there is a temperature difference between the temperature of the surface of the base plate 20α measured separately and the temperature of the upper surface 101 of the precursor 100 measured through the infrared radiation temperature sensor 81. When the temperature difference exists, particularly when it can be determined that the temperature difference is relatively large, the occurrence of the temperature difference can be suitably suppressed by changing the above-mentioned modeling process conditions.
 なお、本態様で用いる赤外線放射温度センサ81は非接触式タイプのセンサであるため、前駆体100の上面101にダメージを与えることなく、当該上面101の温度を測定できる点で利点がある。 Since the infrared radiation temperature sensor 81 used in this embodiment is a non-contact type sensor, there is an advantage in that the temperature of the upper surface 101 of the precursor 100 can be measured without damaging the upper surface 101.
 一態様では、切削工具(エンドミル40)を用いて三次元形状造形物を切削する工程を含み、切削工具として主軸に温度センサ83を備えるものを用い、当該温度センサ83により、三次元形状造形物の前駆体100の上面101の温度を測定してよい(図5参照)。 In one aspect, a step of cutting a three-dimensional shaped object using a cutting tool (end mill 40) is included, and a cutting tool having a temperature sensor 83 on the spindle is used, and the three-dimensional shaped object is used by the temperature sensor 83. The temperature of the upper surface 101 of the precursor 100 of the above may be measured (see FIG. 5).
 本態様では、三次元形状造形物の表面切削のために用いる切削工具の主軸に配置された温度センサ83を用いて、前駆体100の上面101の温度を測定する。当該温度測定については、前駆体100の上面101に直接接触させた上で行ってよい。これに限定されることなく、当該温度測定については、前駆体100の上面101に対して非接触状態にて行ってもよい。 In this embodiment, the temperature of the upper surface 101 of the precursor 100 is measured by using the temperature sensor 83 arranged on the spindle of the cutting tool used for surface cutting of the three-dimensional shaped object. The temperature measurement may be performed after being in direct contact with the upper surface 101 of the precursor 100. Without being limited to this, the temperature measurement may be performed in a non-contact state with respect to the upper surface 101 of the precursor 100.
 具体的には、演算制御部70の指示下で、切削工具の主軸に配置された温度センサ83を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面101を測定する。又、例えば、別途測定したベースプレート20αの表面の温度と、切削工具の主軸に配置した温度センサ83を通じて測定した前駆体100の上面101の温度との温度差があるか否かを確認する。当該温度差が存在する、特に当該温度差が相対的に大きいと判断できる場合には、上記造形プロセス条件を変更することで当該温度差の発生が好適に抑制され得る。 Specifically, under the instruction of the arithmetic control unit 70, the temperature sensor 83 arranged on the spindle of the cutting tool is driven to drive the upper surface of the precursor 100 in the case where the precursor 100 in the process of manufacturing has a predetermined height. 101 is measured. Further, for example, it is confirmed whether or not there is a temperature difference between the temperature of the surface of the base plate 20α measured separately and the temperature of the upper surface 101 of the precursor 100 measured through the temperature sensor 83 arranged on the spindle of the cutting tool. When the temperature difference exists, particularly when it can be determined that the temperature difference is relatively large, the occurrence of the temperature difference can be suitably suppressed by changing the above-mentioned modeling process conditions.
 なお、本態様では、温度センサ83が切削工具の主軸に配置されているため、切削工具の動作に伴って温度センサ83を間接的に移動させることができるため、温度センサ83を独立して移動させるための別途の機構を必要としない。そのため、チャンバー内の造形スペースが制限されることを好適に回避することができる点で利点がある。 In this embodiment, since the temperature sensor 83 is arranged on the main shaft of the cutting tool, the temperature sensor 83 can be indirectly moved with the operation of the cutting tool, so that the temperature sensor 83 can be moved independently. No separate mechanism is required to make it. Therefore, there is an advantage in that it is possible to preferably avoid the limitation of the modeling space in the chamber.
 一態様では、粉末層22の形成をスキージング・ブレード23を用いて実施し、スキージング・ブレード22として温度センサ84を備えるものを用い、当該温度センサ84により、三次元形状造形物の前駆体100の上面101の温度を測定してよい(図6参照)。 In one aspect, the powder layer 22 is formed using a squeezing blade 23, a squeezing blade 22 provided with a temperature sensor 84 is used, and the temperature sensor 84 is used as a precursor of a three-dimensional shaped object. The temperature of the top surface 101 of 100 may be measured (see FIG. 6).
 本態様では、例えばスキージング・ブレード23に配置された温度センサ84を用いて、前駆体100の上面101の温度を測定する。当該温度測定については、非接触型の温度センサ84Aを用いて行われてよい。これに限定されることなく、当該温度測定については、接触型の温度センサ84Bを用いて行われてよい。 In this embodiment, for example, the temperature sensor 84 arranged on the squeezing blade 23 is used to measure the temperature of the upper surface 101 of the precursor 100. The temperature measurement may be performed using a non-contact type temperature sensor 84A. Without being limited to this, the temperature measurement may be performed using the contact type temperature sensor 84B.
 具体的には、演算制御部70の指示下で、スキージング・ブレード23に配置された温度センサ84を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面101を測定する。又、例えば、別途測定したベースプレート20αの表面の温度と、スキージング・ブレード23に配置された温度センサ84を通じて測定した前駆体100の上面101の温度との温度差があるか否かを確認する。当該温度差が存在する、特に当該温度差が相対的に大きいと判断できる場合には、上記造形プロセス条件を変更することで当該温度差の発生が好適に抑制され得る。 Specifically, the temperature sensor 84 arranged on the squeezing blade 23 is driven under the instruction of the arithmetic control unit 70, and the precursor 100 in the process of being manufactured has a predetermined height. The top surface 101 is measured. Further, for example, it is confirmed whether or not there is a temperature difference between the temperature of the surface of the base plate 20α measured separately and the temperature of the upper surface 101 of the precursor 100 measured through the temperature sensor 84 arranged on the squeezing blade 23. .. When the temperature difference exists, particularly when it can be determined that the temperature difference is relatively large, the occurrence of the temperature difference can be suitably suppressed by changing the above-mentioned modeling process conditions.
 なお、本態様では、温度センサ84がスキージング・ブレード23に配置されているため、スキージング・ブレード23の動作に伴って温度センサ84を間接的に移動させることができるため、温度センサ84を独立して移動させるための別途の機構を必要としない。そのため、チャンバー内の造形スペースが制限されることを好適に回避することができる点で利点がある。 In this embodiment, since the temperature sensor 84 is arranged on the squeezing blade 23, the temperature sensor 84 can be indirectly moved according to the operation of the squeezing blade 23, so that the temperature sensor 84 is used. No separate mechanism is required to move it independently. Therefore, there is an advantage in that it is possible to preferably avoid the limitation of the modeling space in the chamber.
 上記では、造形プロセス条件の変更実施のための判断基準として、主として「製造途中の造形物の前駆体100の上面の温度測定値」に基づく場合を前提として説明した。しかしながら、これに限定されることなく、造形プロセス条件の変更実施のための判断基準として、「造形物の前駆体100の高さ実測値」を用いてもよい(図7参照)。 The above description has been made on the premise that the judgment criteria for changing the modeling process conditions are mainly based on the "temperature measurement value of the upper surface of the precursor 100 of the modeled product in the process of manufacturing". However, the present invention is not limited to this, and the “measured height value of the precursor 100 of the modeled object” may be used as a criterion for changing the modeling process conditions (see FIG. 7).
 具体的には、かかる場合、製造開始後所定時間経過時における製造途中の前駆体100の高さを、レーザ変位計等の高さセンサ90(高さ測定部ともいう。)を用いて直接的に測定する。そして、当該製造途中の前駆体100の実際の高さが所定の理想高さと比べて異なるか否かを判断する。異なると判断できる場合、造形プロセス条件を途中で変更する。 Specifically, in such a case, the height of the precursor 100 in the middle of production after a lapse of a predetermined time after the start of production is directly measured by using a height sensor 90 (also referred to as a height measuring unit) such as a laser displacement meter. To measure. Then, it is determined whether or not the actual height of the precursor 100 in the middle of production is different from the predetermined ideal height. If it can be determined that they are different, the modeling process conditions are changed in the middle.
 一例として、造形プロセス条件として、温度調節源60としての温度調節管路に流す温度調節媒体61の温度、流量、および/または流速を選択する場合を例に採る。この場合、製造開始後所定時間経過時における製造途中の前駆体100の実際の高さが所定の理想高さと比べて異なると判断できる場合、ベースプレート20α内の温度調節管路に流す温度調節媒体61の温度、流量、および/または流速を途中段階で変更する。 As an example, a case where the temperature, flow rate, and / or flow velocity of the temperature control medium 61 flowing through the temperature control line as the temperature control source 60 is selected as the modeling process condition is taken as an example. In this case, if it can be determined that the actual height of the precursor 100 in the middle of production after a lapse of a predetermined time after the start of production is different from the predetermined ideal height, the temperature control medium 61 to be passed through the temperature control pipe in the base plate 20α Change the temperature, flow rate, and / or flow rate of.
 具体的には、演算制御部70の指示下で、高さセンサ90を駆動させて、製造開始後所定時間経過時における製造途中の前駆体100の実際の高さを測定する。次いで、演算制御部70が有する、製造開始後所定時間経過時における製造途中の前駆体100の所定の理想高さと実際の測定高さとを比べる。次いで、実際の高さが理想高さと異なると判断できる場合、演算制御部70の指示下で、温度調節デバイス50を駆動させて、温度調節デバイス50から温度調節源60(温度調節管路)に供される温度調節媒体の温度、流量、および/または流速を途中で変更制御を行う。例えば、当該前駆体100の実際の高さが理想高さと比べて低いと判断できる場合、演算制御部70の指示下で、前駆体100の上面領域の温度が高くなるように、温度調節デバイス50から温度調節源60(温度調節管路)内に相対的に高温の温度調節媒体を流してよい。 Specifically, under the instruction of the arithmetic control unit 70, the height sensor 90 is driven to measure the actual height of the precursor 100 in the middle of production when a predetermined time has elapsed after the start of production. Next, the arithmetic control unit 70 compares the predetermined ideal height of the precursor 100 in the middle of production with the lapse of a predetermined time after the start of production with the actual measured height. Next, when it can be determined that the actual height is different from the ideal height, the temperature control device 50 is driven under the instruction of the arithmetic control unit 70 to move from the temperature control device 50 to the temperature control source 60 (temperature control line). The temperature, flow rate, and / or flow velocity of the provided temperature control medium is changed and controlled in the middle. For example, when it can be determined that the actual height of the precursor 100 is lower than the ideal height, the temperature control device 50 increases the temperature of the upper surface region of the precursor 100 under the instruction of the arithmetic control unit 70. A relatively high temperature temperature control medium may be flowed into the temperature control source 60 (temperature control line).
 これにより、製造開始後所定時間経過時における所定の高さを有する前駆体100の上面領域にまで温度調節媒体61の熱エネルギーを好適に伝えることができ、それに起因して前駆体100の上面領域の温度を変化させることができる。前駆体100の上面領域の温度を変化させることが可能であると、前駆体100の上面とベースプレート20αの表面との温度差の発生を好適に抑制することができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の高さが理想高さと比べて異なる場合において、三次元形状造形物の前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 As a result, the thermal energy of the temperature control medium 61 can be suitably transferred to the upper surface region of the precursor 100 having a predetermined height after a lapse of a predetermined time after the start of production, and thereby the upper surface region of the precursor 100. The temperature of the can be changed. If the temperature of the upper surface region of the precursor 100 can be changed, the occurrence of a temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20α can be suitably suppressed. As a result, in the middle of the manufacturing process, when the height of the precursor 100 of the three-dimensional shape model is different from the ideal height, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, its constituent elements. The surface temperature of the solidified layer 24 can be kept constant. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
 なお、本発明の一実施形態では、下記態様を採ってよい。 In one embodiment of the present invention, the following aspects may be adopted.
 一態様では、三次元形状造形物の前駆体100の製造途中において、当該前駆体100の上面101の面積に応じて造形プロセス条件を変更してよい(図8参照)。 In one aspect, the modeling process conditions may be changed according to the area of the upper surface 101 of the precursor 100 during the production of the precursor 100 of the three-dimensional shaped model (see FIG. 8).
 光ビームを用いた固化層24の形成段階において、当該固化層24の面積が相対的に小さいと、固化層24の面積が相対的に大きい場合と比べて光ビームの照射熱が伝わりやすく、これに起因して当該固化層24の蓄熱状態が継続しやすい。その結果として、固化層24の積層方向において、相対的に面積が小さい固化層の表面温度(即ち、相対的に面積が小さい(面積:S)前駆体100の上面101αの温度)と相対的に面積が大きい固化層の表面温度(即ち、相対的に面積が大きい(面積:S(>S))前駆体100の上面101βの温度)との間で差が生じ得る。当該温度差が生じると、これに対応して高さ方向に沿って固化層24の膨張又は収縮が生じて、最終的に得られる三次元形状造形物の高さが所望のものと比べて異なり得る。 In the stage of forming the solidified layer 24 using the light beam, when the area of the solidified layer 24 is relatively small, the irradiation heat of the light beam is more easily transmitted than when the area of the solidified layer 24 is relatively large. Due to this, the heat storage state of the solidified layer 24 is likely to continue. As a result, in the stacking direction of the solidified layer 24, it is relative to the surface temperature of the solidified layer having a relatively small area (that is, the temperature of the upper surface 101α of the precursor 100 having a relatively small area (area: S 1 )). There may be a difference from the surface temperature of the solidified layer having a large area (that is, the temperature of the upper surface 101β of the precursor 100 having a relatively large area (area: S 2 (> S 1 ))). When the temperature difference occurs, the solidified layer 24 expands or contracts in the height direction correspondingly, and the height of the finally obtained three-dimensional shaped object is different from that desired. obtain.
 そこで、製造途中における前駆体100の上面101の面積に着目した上で、造形プロセス条件の変更制御を行ってよい。 Therefore, the change control of the modeling process conditions may be performed after paying attention to the area of the upper surface 101 of the precursor 100 during the manufacturing process.
 例えば、製造開始後所定時間経過時における製造途中の前駆体100の上面101をカメラ95等を用いて撮影する。そして、当該撮影した前駆体100の上面101から演算制御部70を介して上面101の面積を算出する。所定時間経過時における前駆体100の上面101の面積が所定の面積閾値を超えると判断できる場合、造形プロセス条件を途中で変更する。これに限定されることなく、所定時間経過時における前駆体100の上面101の面積が所定の理想面積と比べて、当該面積が所定の理想面積と異なると判断できる場合、造形プロセス条件を途中で変更してよい。 For example, the upper surface 101 of the precursor 100 in the middle of production after a lapse of a predetermined time after the start of production is photographed using a camera 95 or the like. Then, the area of the upper surface 101 is calculated from the upper surface 101 of the photographed precursor 100 via the arithmetic control unit 70. When it can be determined that the area of the upper surface 101 of the precursor 100 exceeds the predetermined area threshold value after the lapse of a predetermined time, the modeling process conditions are changed on the way. Without being limited to this, when it can be determined that the area of the upper surface 101 of the precursor 100 after a lapse of a predetermined time is different from the predetermined ideal area as compared with the predetermined ideal area, the modeling process condition is set in the middle. You may change it.
 これにより、例えば温度調節媒体61の熱エネルギーを、相対的に面積が大きい固化層(即ち、相対的に面積が大きい前駆体100の上面)の領域にまで伝えることができ、それによって前駆体100の上面領域の温度を変化(上昇又は低下)させることができる。前駆体100の上面領域の温度を変化させることが可能であると、相対的に面積が大きい前駆体100の上面と相対的に面積が小さい前駆体100の上面との温度差の発生を好適に抑制することができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の高さ方向に沿って、三次元形状造形物の前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 Thereby, for example, the thermal energy of the temperature control medium 61 can be transmitted to the region of the solidified layer having a relatively large area (that is, the upper surface of the precursor 100 having a relatively large area), whereby the precursor 100 can be transmitted. The temperature of the upper surface area of the can be changed (increased or decreased). When it is possible to change the temperature of the upper surface region of the precursor 100, it is preferable to generate a temperature difference between the upper surface of the precursor 100 having a relatively large area and the upper surface of the precursor 100 having a relatively small area. It can be suppressed. As a result, in the middle of the manufacturing process, along the height direction of the precursor 100 of the three-dimensional shape model, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, the solidified layer 24 which is a component thereof. The surface temperature of the can be kept constant. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
 又、上記の図3に示す態様に限定されることなく、一態様では、造形プロセス条件の変更を所定の時間的間隔をおいて複数回行い、製造開始後所定時間経過時における三次元形状造形物の前駆体100の熱量の違いに基づき当該時間的間隔を変えてよい(図9参照)。 Further, without being limited to the embodiment shown in FIG. 3, in one embodiment, the modeling process conditions are changed a plurality of times at predetermined time intervals, and three-dimensional shape modeling is performed when a predetermined time elapses after the start of production. The time interval may be changed based on the difference in the amount of heat of the precursor 100 of the substance (see FIG. 9).
 製造途中において、製造開始後所定時間経過時における前駆体101の熱量が所定の熱量閾値と比べて相対的に大きい場合、これに起因して当該熱量が相対的に大きい前駆体100の温度、特に上面側温度が高くなり得る。一方、製造開始後所定時間経過時における前駆体101の熱量が所定の熱量閾値を超えない場合、前駆体101の熱量が所定熱量閾値と比べて相対的に大きい場合と比べて、前駆体100の温度、特に上面側温度は高くならない。 In the middle of production, when the calorific value of the precursor 101 after a lapse of a predetermined time after the start of production is relatively large compared to the predetermined calorific value threshold value, the temperature of the precursor 100 having a relatively large calorific value due to this, particularly The top surface temperature can be high. On the other hand, when the calorific value of the precursor 101 does not exceed the predetermined calorific value threshold after the elapse of a predetermined time after the start of production, the calorific value of the precursor 101 is relatively larger than the predetermined calorific value threshold value of the precursor 100. The temperature, especially the top surface temperature, does not rise.
 かかる事情を鑑み、本態様では、所定時間経過時における前駆体100の熱量に着目し、所定時間経過時における前駆体100の熱量の違いに基づき、造形プロセス条件の変更を行う時間的間隔を変える。 In view of such circumstances, in this embodiment, attention is paid to the calorific value of the precursor 100 after the elapse of a predetermined time, and the time interval for changing the modeling process conditions is changed based on the difference in the calorific value of the precursor 100 after the elapse of a predetermined time. ..
 例えば、温度調節源60がベースプレート20α内に位置付けられている場合において、製造開始後所定時間経過時における前駆体101の熱量を熱量計にて測定する。そして、所定時間経過時における前駆体100の熱量が所定の熱量閾値を超えると判断できる場合、当該熱量が所定の熱量閾値を超えない場合と比べて相対的に短い時間的間隔にて、造形プロセス条件の変更を複数回行う。即ち、本態様では、所定時間経過時における前駆体100の熱量が所定の熱量閾値を超える場合に、造形プロセス条件の変更調整の実施をした後、次なる造形プロセス条件の変更調整実施までの時間的間隔を途中で相対的に短くする。 For example, when the temperature control source 60 is positioned in the base plate 20α, the calorific value of the precursor 101 after a lapse of a predetermined time after the start of production is measured with a calorimeter. Then, when it can be determined that the calorific value of the precursor 100 exceeds the predetermined calorific value threshold value after a lapse of a predetermined time, the modeling process is performed at a relatively short time interval as compared with the case where the calorific value does not exceed the predetermined calorific value threshold value. Change the conditions multiple times. That is, in this embodiment, when the calorific value of the precursor 100 exceeds the predetermined calorific value threshold value after a lapse of a predetermined time, the time from the change adjustment of the modeling process conditions to the next change adjustment of the modeling process conditions. Make the target interval relatively short on the way.
 これにより、所定時間経過時における前駆体100の熱量が所定の熱量閾値を超えると判断できる場合、時間的間隔が相対的に短くなることに起因して造形プロセス条件変更の頻度を増やすことができる。これにより、所定の熱量閾値を超える熱量を有する前駆体100、具体的には所定の熱量閾値を超える熱量を有する前駆体100の上面領域にまで、例えば温度調節媒体61の熱エネルギーを好適に伝えることができる。従って、所定の熱量閾値を超える熱量を有する前駆体100の上面領域の温度を変化(上昇又は低下)させることができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の高さ方向に沿って、三次元形状造形物の前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。従って、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 As a result, when it can be determined that the calorific value of the precursor 100 exceeds the predetermined calorific value threshold value after a lapse of a predetermined time, the frequency of changing the modeling process conditions can be increased due to the relatively short time interval. .. Thereby, for example, the thermal energy of the temperature control medium 61 is suitably transmitted to the upper surface region of the precursor 100 having a calorific value exceeding a predetermined calorific value threshold, specifically, the precursor 100 having a calorific value exceeding a predetermined calorific value threshold. be able to. Therefore, the temperature of the upper surface region of the precursor 100 having a calorific value exceeding a predetermined calorific value threshold value can be changed (increased or decreased). As a result, in the middle of the manufacturing process, along the height direction of the precursor 100 of the three-dimensional shape model, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, the solidified layer 24 which is a component thereof. The surface temperature of the can be kept constant. Therefore, it is possible to suitably suppress a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object.
 一態様では、互いに高さの異なる三次元形状造形物の前駆体100の各上面101の温度に基づき、上記造形プロセス条件の変更を行ってよい(図10参照)。 In one aspect, the modeling process conditions may be changed based on the temperature of each upper surface 101 of the precursor 100 of the three-dimensional shaped model having different heights (see FIG. 10).
 上記では、例えば製造途中における高さが相対的に高い三次元形状造形物の前駆体の上面温度と造形テーブル21の温度との差の有無を確認した上で、造形プロセス条件の変更を行うかを判断する旨を説明した。これに限定されることなく、製造途中における互いに高さの異なる前駆体100の各上面101における温度変化の有無を確認することも好ましい。これにより、高さ方向のみならず、製造途中における互いに高さの異なる前駆体100の各上面101、即ちその構成要素である固化層24(固化部24a)の表面に温度変化があると判断できる場合、光ビーム照射部3による粉末層22の所定箇所への後刻の照射において照射条件を変更してよい。 In the above, for example, whether to change the modeling process conditions after confirming whether there is a difference between the upper surface temperature of the precursor of the three-dimensional shaped model having a relatively high height during manufacturing and the temperature of the modeling table 21. Explained to judge. Without being limited to this, it is also preferable to confirm the presence or absence of a temperature change on each upper surface 101 of the precursors 100 having different heights during production. As a result, it can be determined that there is a temperature change not only in the height direction but also on the upper surfaces 101 of the precursors 100 having different heights during production, that is, on the surface of the solidified layer 24 (solidified portion 24a) which is a component thereof. In this case, the irradiation conditions may be changed in the later irradiation of the powder layer 22 to the predetermined portion by the light beam irradiation unit 3.
 具体的には、演算制御部70の指示下で、温度センサ等を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面101の温度を測定する。当該温度測定段階にて、固化層24の表面に温度変化があると判断できる場合、演算制御部70の指示下で、光ビーム照射部3による粉末層22の所定箇所への後刻の照射において照射条件(光ビーム照射部3から粉末層22の所定箇所に照射される光ビームLの照射エネルギー、スポット径、および/又は走査速度)を変更してよい。 Specifically, under the instruction of the arithmetic control unit 70, a temperature sensor or the like is driven to measure the temperature of the upper surface 101 of the precursor 100 when the precursor 100 in the process of manufacturing has a predetermined height. If it can be determined that there is a temperature change on the surface of the solidified layer 24 at the temperature measurement stage, the light beam irradiation unit 3 irradiates a predetermined portion of the powder layer 22 at a later stage under the instruction of the arithmetic control unit 70. The conditions (irradiation energy, spot diameter, and / or scanning speed of the light beam L irradiated from the light beam irradiation unit 3 to a predetermined portion of the powder layer 22) may be changed.
 これにより、造形物の製造途中において、光ビームLの最適な“ベストな”照射条件を適宜変更することができる。従って、三次元形状造形物の前駆体100の上面101の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。それ故、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。なお、前駆体100の上面101の温度、即ちその構成要素である固化層24の表面温度をより一定にする観点から、各固化層24の形成毎に光ビームLの最適な“ベストな”照射条件を適宜変更調整することがより好ましい。 As a result, the optimum "best" irradiation condition of the light beam L can be appropriately changed during the manufacturing of the modeled object. Therefore, the temperature of the upper surface 101 of the precursor 100 of the three-dimensional shape model, that is, the surface temperature of the solidified layer 24 which is a component thereof can be made constant. Therefore, it is possible to suitably suppress a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object. From the viewpoint of making the temperature of the upper surface 101 of the precursor 100, that is, the surface temperature of the solidifying layer 24 which is a component thereof, more constant, the optimum "best" irradiation of the light beam L for each formation of each solidifying layer 24 is performed. It is more preferable to change and adjust the conditions as appropriate.
 なお、本態様において、製造開始後所定時間経過時における造形物の前駆体100の上面101の温度に基づき、当該造形物の前駆体100の実際の高さを推定してよい。 In this embodiment, the actual height of the precursor 100 of the modeled product may be estimated based on the temperature of the upper surface 101 of the precursor 100 of the modeled product after a lapse of a predetermined time after the start of production.
 製造開始後所定時間経過時における“実際の高さ推定値”については、例えば下記態様に算出することができる。一例としては、まず、製造開始後所定時間経過時における造形物前駆体の最表面の温度から積分単位厚さ毎の温度を推定する。次いで、積分単位厚さ毎の温度から各積分単位での膨張度合いを推定する。そして、各積分単位での膨張度合いの推定値を積分する。これにより、製造開始後所定時間経過時における“実際の高さ推定値”を算出する。当該算出法は、温度の推定および膨張度合いの推定の際にて、上記積分単位の面積が変化する場合、推定精度をより向上させる観点から当該変化する積分単位の面積も考慮するという考え方に基づく。前駆体100の上面101の温度から三次元形状造形物の前駆体100の“実際の高さ推定値”が算出されると、当該算出値に応じて、造形プロセス条件を適宜変更することが可能となる。かかる造形プロセス条件の変更により、製造途中の前駆体100の“実際の高さ推定値”を所定の理想高さに近づけることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 The "actual height estimate" after a lapse of a predetermined time after the start of production can be calculated, for example, in the following manner. As an example, first, the temperature for each integral unit thickness is estimated from the temperature of the outermost surface of the modeled precursor at the lapse of a predetermined time after the start of production. Next, the degree of expansion in each integration unit is estimated from the temperature of each integration unit thickness. Then, the estimated value of the degree of expansion in each integration unit is integrated. As a result, the "actual height estimate" is calculated when a predetermined time has elapsed since the start of production. The calculation method is based on the idea that when the area of the integration unit changes when estimating the temperature and the degree of expansion, the area of the changing integration unit is also taken into consideration from the viewpoint of further improving the estimation accuracy. .. When the "actual height estimate" of the precursor 100 of the three-dimensional shape model is calculated from the temperature of the upper surface 101 of the precursor 100, the modeling process conditions can be appropriately changed according to the calculated value. It becomes. By changing the molding process conditions, the "actual height estimate" of the precursor 100 in the process of being manufactured can be brought close to a predetermined ideal height. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
[本発明の三次元形状造形物の製造装置]
 最後に、本発明の一実施形態に係る三次元形状造形物の製造装置について確認的に説明を行う。
[Manufacturing device for three-dimensional shaped object of the present invention]
Finally, a confirmatory description will be given of the three-dimensionally shaped object manufacturing apparatus according to the embodiment of the present invention.
 本発明の一実施形態に係る三次元形状造形物の製造装置は、上述のとおり粉末層形成部2、光ビーム照射部3、演算制御部70、ならびに高さ測定部および温度測定部の少なくとも一方を備える。粉末層形成部2および光ビーム照射部3については既に[粉末床溶融結合法]の欄内にて既述しているので説明を省略する。 As described above, the apparatus for manufacturing a three-dimensional shaped object according to an embodiment of the present invention includes a powder layer forming unit 2, a light beam irradiation unit 3, an arithmetic control unit 70, and at least one of a height measuring unit and a temperature measuring unit. To be equipped. Since the powder layer forming unit 2 and the light beam irradiation unit 3 have already been described in the [Powder bed fusion bonding method] column, description thereof will be omitted.
 本発明の一実施形態において、演算制御部70は三次元形状造形物の製造途中における上記造形プロセス条件を変更制御可能な装置である。高さ測定部(上記高さセンサ90に相当)は三次元形状造形物の前駆体100の高さを測定可能な測定部である。温度測定部(上記温度センサ80、赤外線放射温度センサ81、温度センサ83、温度センサ84、84A、84Bに相当)は、三次元形状造形物の前駆体100の上面101の温度を測定可能な測定部である。又、当該装置は、温度調節デバイス50と接続されていてよい。 In one embodiment of the present invention, the arithmetic control unit 70 is a device capable of changing and controlling the above-mentioned modeling process conditions during the manufacturing of a three-dimensional shaped object. The height measuring unit (corresponding to the height sensor 90) is a measuring unit capable of measuring the height of the precursor 100 of the three-dimensional shaped object. The temperature measuring unit (corresponding to the temperature sensor 80, the infrared radiation temperature sensor 81, the temperature sensor 83, and the temperature sensors 84, 84A, 84B) can measure the temperature of the upper surface 101 of the precursor 100 of the three-dimensional shaped object. It is a department. Further, the device may be connected to the temperature control device 50.
 上記構成要素は演算制御部70に電気的に接続されており、演算制御部70の指示により、各構成要素が個別に動作制御可能に構成されている。 The above-mentioned components are electrically connected to the calculation control unit 70, and each component is individually configured to be able to control the operation according to the instruction of the calculation control unit 70.
 具体的には、演算制御部70は、上記温度測定部を駆動させて、製造途中の前駆体100が所定の高さを有する場合における前駆体100の上面の温度およびベースプレート20αの表面温度を測定するよう指示可能となっている。演算制御部70は、両者の温度測定値に基づき、両者の温度測定値に差があるかどうかを判断する。差があると判断する場合、演算制御部70は、粉末層形成部2を駆動させて、ベースプレート20α(特に造形テーブル20)の下げ幅の変更制御可能に構成されている。 Specifically, the arithmetic control unit 70 drives the temperature measuring unit to measure the temperature of the upper surface of the precursor 100 and the surface temperature of the base plate 20α when the precursor 100 in the process of manufacturing has a predetermined height. It is possible to instruct to do so. The arithmetic control unit 70 determines whether or not there is a difference between the two temperature measurement values based on the two temperature measurement values. When it is determined that there is a difference, the arithmetic control unit 70 is configured to drive the powder layer forming unit 2 so that the lowering width of the base plate 20α (particularly the modeling table 20) can be changed and controlled.
 又、演算制御部70は、光ビーム照射部3を駆動させて、光ビーム照射部3から粉末層22の所定箇所に照射される光ビームLの照射エネルギー、スポット径、および/又は走査速度を変更制御可能に構成されている。演算制御部70は、温度調節デバイス50を駆動させて、温度調節デバイス50から温度調節源60(温度調節管路)に供される温度調節媒体の温度、流量、および/または流速を途中で変更制御可能となっている。又、演算制御部70は、温度調節デバイス50を駆動させて、温度調節デバイス50から温度調節源60としての熱源要素(ヒータ要素)の温度を途中で変更制御可能となっている。 Further, the arithmetic control unit 70 drives the light beam irradiation unit 3 to determine the irradiation energy, spot diameter, and / or scanning speed of the light beam L irradiated from the light beam irradiation unit 3 to a predetermined portion of the powder layer 22. It is configured to be change controllable. The arithmetic control unit 70 drives the temperature control device 50 to change the temperature, flow rate, and / or flow velocity of the temperature control medium provided from the temperature control device 50 to the temperature control source 60 (temperature control line) on the way. It is controllable. Further, the arithmetic control unit 70 can drive the temperature control device 50 to change and control the temperature of the heat source element (heater element) as the temperature control source 60 from the temperature control device 50 on the way.
 これにより、製造開始後所定時間経過時における所定の高さを有する前駆体100の上面領域の温度を変化させることが可能となり、前駆体100の上面とベースプレート20αの表面との温度差の発生を好適に抑制することができる。その結果として、製造工程の途中において、三次元形状造形物の前駆体100の高さが理想高さと比べて異なる場合において、三次元形状造形物の前駆体100の上面の温度、即ちその構成要素である固化層24の表面温度を一定にすることができる。その結果として、最終的に得られる三次元形状造形物の寸法精度(特に高さ精度)の低下を好適に抑制することができる。 As a result, it is possible to change the temperature of the upper surface region of the precursor 100 having a predetermined height after a lapse of a predetermined time after the start of production, and the temperature difference between the upper surface of the precursor 100 and the surface of the base plate 20α is generated. It can be suitably suppressed. As a result, in the middle of the manufacturing process, when the height of the precursor 100 of the three-dimensional shape model is different from the ideal height, the temperature of the upper surface of the precursor 100 of the three-dimensional shape model, that is, its constituent elements. The surface temperature of the solidified layer 24 can be kept constant. As a result, a decrease in dimensional accuracy (particularly height accuracy) of the finally obtained three-dimensional shaped object can be suitably suppressed.
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely exemplifies a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.
 なお、上述のような本発明の一実施形態は、次の好適な態様を包含している。
第1態様
 (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
 (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
 前記製造の途中において、前記三次元形状造形物の前駆体の高さに応じて造形プロセス条件を変更する、三次元形状造形物の製造方法。
第2態様
 上記第1態様において、前記三次元形状造形物の前記前駆体の上面の温度に基づき、該前駆体の高さに応じた前記造形プロセス条件の変更を行う、三次元形状造形物の製造方法。
第3態様: 
 上記第1態様又は第2態様において、前記三次元形状造形物の前記前駆体の上面の温度と、製造する該三次元形状造形物の土台となるベースプレートの温度との差に基づき、前記造形プロセス条件の変更を行う、三次元形状造形物の製造方法。
第4態様: 
 上記第1態様~上記第3態様のいずれかにおいて、互いに高さの異なる前記三次元形状造形物の前記前駆体の各上面の温度に基づき、前記造形プロセス条件の変更を行う、三次元形状造形物の製造方法。
第5態様: 
 上記第1態様~上記第4態様のいずれかにおいて、前記造形プロセス条件の変更を所定の時間的間隔をおいて複数回行い、
 前記三次元形状造形物の前記前駆体の前記高さの違いに基づき前記時間的間隔を変える、三次元形状造形物の製造方法。
第6態様
 上記第5態様において、前記三次元形状造形物の前記前駆体の高さが相対的に高い場合に、相対的に短い前記時間的間隔にて前記造形プロセス条件の変更を行う、三次元形状造形物の製造方法。
第7態様
 上記第1態様~上記第6態様のいずれかにおいて、前記造形プロセス条件として、ベースプレート内に含まれる温度調節媒体の温度、流量および流速、該ベースプレート内に含まれる熱源要素の温度、前記粉末層の厚さ、ならびに前記光ビームの照射条件から構成される群から少なくとも1つを選択する、三次元形状造形物の製造方法。
第8態様
 上記第2態様~上記第7態様のいずれかにおいて、前記三次元形状造形物の前記前駆体の前記上面の前記温度を、該上面から供される赤外線に基づき測定する、三次元形状造形物の製造方法。
第9態様
 上記第2態様~上記第8態様のいずれかにおいて、切削工具を用いて前記三次元形状造形物を切削する工程を含み、
 前記切削工具として主軸に温度センサを備えるものを用い、該温度センサにより、前記三次元形状造形物の前記前駆体の前記上面の前記温度を測定する、三次元形状造形物の製造方法。
第10態様
 上記第2態様~上記第9態様のいずれかにおいて、前記粉末層の形成をスキージング・ブレードを用いて実施し、
 前記スキージング・ブレードとして温度センサを備えるものを用い、該温度センサにより、前記三次元形状造形物の前記前駆体の前記上面の前記温度を測定する、三次元形状造形物の製造方法。
第11態様
 上記第1態様において、前記三次元形状造形物の前記前駆体の高さを実測し、該高さの実測値と予め算出した所定の該前駆体の高さの理論値との間に差がある場合に、該造形プロセス条件の変更を行う、三次元形状造形物の製造方法。
第12態様
 三次元形状造形物を製造するための装置であって、
 粉末層形成部、
 粉末層から固化層を形成するための光ビーム照射部、
 前記三次元形状造形物の製造途中における造形プロセス条件を変更制御可能な演算制御部、ならびに、
 前記三次元形状造形物の前駆体の高さを測定可能な高さ測定部および該三次元形状造形物の前駆体の上面の温度を測定可能な温度測定部の少なくとも一方
を備える、装置。
It should be noted that one embodiment of the present invention as described above includes the following preferred embodiments.
First aspect :
(I) A step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer, and (ii) a new powder on the obtained solidified layer. A three-dimensional shaped product is manufactured by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer by alternately and repeatedly laminating the powder layer and the solidified layer. How to do
A method for manufacturing a three-dimensional shaped object, in which the modeling process conditions are changed according to the height of the precursor of the three-dimensional shaped object during the production.
Second aspect :
In the first aspect, a method for manufacturing a three-dimensional shaped object, wherein the modeling process conditions are changed according to the height of the precursor based on the temperature of the upper surface of the precursor of the three-dimensional shaped object.
Third aspect :
In the first or second aspect, the modeling process is based on the difference between the temperature of the upper surface of the precursor of the three-dimensional shape model and the temperature of the base plate that is the base of the three-dimensional shape model to be manufactured. A method of manufacturing a three-dimensional shaped object that changes the conditions.
Fourth aspect :
In any of the first aspect to the third aspect, the three-dimensional shape modeling is performed by changing the modeling process conditions based on the temperature of each upper surface of the precursor of the three-dimensional shape modeling object having different heights. How to make things.
Fifth aspect :
In any of the first to fourth aspects, the modeling process conditions are changed a plurality of times at predetermined time intervals.
A method for producing a three-dimensionally shaped object, wherein the time interval is changed based on the difference in height of the precursor of the three-dimensionally shaped object.
Sixth aspect :
In the fifth aspect, when the height of the precursor of the three-dimensional shape model is relatively high, the three-dimensional shape modeling is performed by changing the modeling process conditions at the relatively short time interval. How to make things.
Seventh aspect :
In any of the first to sixth aspects, the modeling process conditions include the temperature, flow rate and flow velocity of the temperature control medium contained in the base plate, the temperature of the heat source element contained in the base plate, and the powder layer. A method for manufacturing a three-dimensional shaped object, in which at least one is selected from the group consisting of the thickness and the irradiation conditions of the light beam.
Eighth aspect :
In any one of the second aspect to the seventh aspect, the temperature of the upper surface of the precursor of the three-dimensional shape model is measured based on the infrared rays provided from the upper surface. Production method.
Ninth aspect :
In any one of the second aspect to the eighth aspect, the step of cutting the three-dimensional shaped object by using a cutting tool is included.
A method for manufacturing a three-dimensional shaped object, wherein a cutting tool having a temperature sensor on a spindle is used, and the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured by the temperature sensor.
Tenth aspect :
In any of the second to ninth aspects, the formation of the powder layer is carried out using a squeezing blade.
A method for manufacturing a three-dimensional shaped object, wherein a squeezing blade provided with a temperature sensor is used, and the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured by the temperature sensor.
Eleventh aspect :
In the first aspect, the height of the precursor of the three-dimensionally shaped object is actually measured, and there is a difference between the measured value of the height and the theoretical value of the predetermined height of the precursor calculated in advance. A method for manufacturing a three-dimensional shaped object, in which the modeling process conditions are changed in some cases.
12th aspect :
It is a device for manufacturing three-dimensional shaped objects.
Powder layer forming part,
Light beam irradiation unit for forming a solidified layer from a powder layer,
An arithmetic control unit that can change and control the modeling process conditions during the manufacturing of the three-dimensional shaped object, and
An apparatus including at least one of a height measuring unit capable of measuring the height of a precursor of the three-dimensional shape model and a temperature measuring unit capable of measuring the temperature of the upper surface of the precursor of the three-dimensional shape model.
 本発明の一実施形態に係る三次元形状造形物の製造方法を実施することによって、種々の物品を製造することができる。例えば、『粉末層が無機質の金属粉末層であって、固化層が焼結層となる場合』では、得られる三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。一方、『粉末層が有機質の樹脂粉末層であって、固化層が硬化層となる場合』では、得られる三次元形状造形物を樹脂成形品として用いることができる。 Various articles can be manufactured by implementing the method for manufacturing a three-dimensional shaped object according to an embodiment of the present invention. For example, in "when the powder layer is an inorganic metal powder layer and the solidified layer is a sintered layer", the obtained three-dimensional shaped product is a plastic injection molding die, a press die, a die casting die, and the like. It can be used as a die for casting dies, forging dies, and the like. On the other hand, in the case of "when the powder layer is an organic resin powder layer and the solidified layer is a cured layer", the obtained three-dimensional shaped molded product can be used as a resin molded product.
関連出願の相互参照Cross-reference of related applications
 本出願は、日本国特許出願第2019-085882号(出願日:2019年4月26日、発明の名称:「三次元形状造形物の製造方法および三次元形状造形物を製造するための装置」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。 This application is based on Japanese Patent Application No. 2019-085882 (Filing date: April 26, 2019, title of invention: "Method for manufacturing a three-dimensional shaped object and an apparatus for manufacturing a three-dimensional shaped object". ) Under the Paris Convention. All content disclosed in this application is incorporated herein by reference.
 2 粉末層形成部
 3 光ビーム照射部
 19 粉末
 20 造形テーブル
 20α ベースプレート
 21 造形プレート
 22 粉末層
 23 スキージング・ブレード
 24 固化層
 40 切削工具
 60 温度調節源
 61 温度調整媒体
 70 演算制御部
 80、81、83、84、84A、84B 温度測定部(温度センサ)
 90 高さ測定部(高さセンサ)
 100、100A、100B、100X、100Y 三次元形状造形物の前駆体
 101、101X、101Y 三次元形状造形物の前駆体の上面
 L 光ビーム
2 Powder layer forming part 3 Light beam irradiation part 19 Powder 20 Modeling table 20α Base plate 21 Modeling plate 22 Powder layer 23 Squeezing blade 24 Solidification layer 40 Cutting tool 60 Temperature control source 61 Temperature control medium 70 Calculation control unit 80, 81, 83, 84, 84A, 84B Temperature measuring unit (temperature sensor)
90 Height measuring unit (height sensor)
100, 100A, 100B, 100X, 100Y Precursor of 3D shape model 101, 101X, 101Y Top surface of precursor of 3D shape model L light beam

Claims (12)

  1.  (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
     (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
    により粉末層および固化層を交互に繰り返して積層させることで三次元形状造形物を製造する方法であって、
     前記製造の途中において、前記三次元形状造形物の前駆体の高さに応じて造形プロセス条件を変更する、三次元形状造形物の製造方法。
    (I) A step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer, and (ii) a new powder on the obtained solidified layer. A three-dimensional shaped product is manufactured by forming a layer and irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer by alternately and repeatedly laminating the powder layer and the solidified layer. How to do
    A method for manufacturing a three-dimensional shaped object, in which the modeling process conditions are changed according to the height of the precursor of the three-dimensional shaped object during the production.
  2.  前記三次元形状造形物の前記前駆体の上面の温度に基づき、該前駆体の高さに応じた前記造形プロセス条件の変更を行う、請求項1に記載の三次元形状造形物の製造方法。 The method for manufacturing a three-dimensional shaped object according to claim 1, wherein the modeling process conditions are changed according to the height of the precursor based on the temperature of the upper surface of the precursor of the three-dimensional shaped object.
  3.  前記三次元形状造形物の前記前駆体の上面の温度と、製造する該三次元形状造形物の土台となるベースプレートの温度との差に基づき、前記造形プロセス条件の変更を行う、請求項1又は2に記載の三次元形状造形物の製造方法。 The modeling process conditions are changed based on the difference between the temperature of the upper surface of the precursor of the three-dimensionally shaped object and the temperature of the base plate that is the base of the three-dimensionally shaped object to be manufactured. 2. The method for manufacturing a three-dimensional shaped object according to 2.
  4.  互いに高さの異なる前記三次元形状造形物の前記前駆体の各上面の温度に基づき、前記造形プロセス条件の変更を行う、請求項1~3のいずれかに記載の三次元形状造形物の製造方法。 The production of the three-dimensional shape model according to any one of claims 1 to 3, wherein the modeling process conditions are changed based on the temperature of each upper surface of the precursor of the three-dimensional shape model having different heights from each other. Method.
  5.  前記造形プロセス条件の変更を所定の時間的間隔をおいて複数回行い、
     前記三次元形状造形物の前記前駆体の前記高さの違いに基づき前記時間的間隔を変える、請求項1~4のいずれかに記載の三次元形状造形物の製造方法。
    The modeling process conditions are changed a plurality of times at predetermined time intervals.
    The method for producing a three-dimensional shaped object according to any one of claims 1 to 4, wherein the time interval is changed based on the difference in the height of the precursor of the three-dimensional shaped object.
  6.  前記三次元形状造形物の前記前駆体の高さが相対的に高い場合に、相対的に短い前記時間的間隔にて前記造形プロセス条件の変更を行う、請求項5に記載の三次元形状造形物の製造方法。 The three-dimensional shape modeling according to claim 5, wherein when the height of the precursor of the three-dimensional shape model is relatively high, the modeling process conditions are changed at the relatively short time interval. How to make things.
  7.  前記造形プロセス条件として、ベースプレート内に含まれる温度調節媒体の温度、流量および流速、該ベースプレート内に含まれる熱源要素の温度、前記粉末層の厚さ、ならびに前記光ビームの照射条件から構成される群から少なくとも1つを選択する、請求項1~6のいずれかに記載の三次元形状造形物の製造方法。 The modeling process conditions include the temperature, flow rate and flow velocity of the temperature control medium contained in the base plate, the temperature of the heat source element contained in the base plate, the thickness of the powder layer, and the irradiation conditions of the light beam. The method for producing a three-dimensional shaped object according to any one of claims 1 to 6, wherein at least one is selected from the group.
  8.  前記三次元形状造形物の前記前駆体の前記上面の前記温度を、該上面から供される赤外線に基づき測定する、請求項2~7のいずれかに記載の三次元形状造形物の製造方法。 The method for manufacturing a three-dimensional shaped object according to any one of claims 2 to 7, wherein the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured based on infrared rays provided from the upper surface.
  9.  切削工具を用いて前記三次元形状造形物を切削する工程を含み、
     前記切削工具として主軸に温度センサを備えるものを用い、該温度センサにより、前記三次元形状造形物の前記前駆体の前記上面の前記温度を測定する、請求項2~8のいずれかに記載の三次元形状造形物の製造方法。
    Including the step of cutting the three-dimensional shaped object using a cutting tool.
    The method according to any one of claims 2 to 8, wherein a cutting tool having a temperature sensor on the spindle is used, and the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured by the temperature sensor. A method for manufacturing a three-dimensional shaped object.
  10.  前記粉末層の形成をスキージング・ブレードを用いて実施し、
     前記スキージング・ブレードとして温度センサを備えるものを用い、該温度センサにより、前記三次元形状造形物の前記前駆体の前記上面の前記温度を測定する、請求項2~9のいずれかに記載の三次元形状造形物の製造方法。
    The formation of the powder layer was carried out using a squeezing blade.
    The invention according to any one of claims 2 to 9, wherein a squeezing blade provided with a temperature sensor is used, and the temperature of the upper surface of the precursor of the three-dimensional shaped object is measured by the temperature sensor. A method for manufacturing a three-dimensional shaped object.
  11.  前記三次元形状造形物の前記前駆体の高さを実測し、該高さの実測値と予め算出した所定の該前駆体の高さの理論値との間に差がある場合に、該造形プロセス条件の変更を行う、請求項1に記載の三次元形状造形物の製造方法。 The height of the precursor of the three-dimensional shape model is actually measured, and when there is a difference between the measured value of the height and the theoretical value of the predetermined height of the precursor calculated in advance, the modeling is performed. The method for manufacturing a three-dimensional shaped object according to claim 1, wherein the process conditions are changed.
  12.  三次元形状造形物を製造するための装置であって、
     粉末層形成部、
     粉末層から固化層を形成するための光ビーム照射部、
     前記三次元形状造形物の製造途中における造形プロセス条件を変更制御可能な演算制御部、ならびに、
     前記三次元形状造形物の前駆体の高さを測定可能な高さ測定部および該三次元形状造形物の前駆体の上面の温度を測定可能な温度測定部の少なくとも一方
    を備える、装置。
    It is a device for manufacturing three-dimensional shaped objects.
    Powder layer forming part,
    Light beam irradiation unit for forming a solidified layer from a powder layer,
    An arithmetic control unit that can change and control the modeling process conditions during the manufacturing of the three-dimensional shaped object, and
    An apparatus including at least one of a height measuring unit capable of measuring the height of a precursor of the three-dimensional shape model and a temperature measuring unit capable of measuring the temperature of the upper surface of the precursor of the three-dimensional shape model.
PCT/JP2020/017562 2019-04-26 2020-04-23 Method for manufacturing three-dimensionally shaped molded article, and device for manufacturing three-demonsionally shaped molded article WO2020218449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085882 2019-04-26
JP2019085882A JP2022096005A (en) 2019-04-26 2019-04-26 Method of producing three-dimensionally shaped molded article, and apparatus for producing three-dimensionally shaped molded article

Publications (1)

Publication Number Publication Date
WO2020218449A1 true WO2020218449A1 (en) 2020-10-29

Family

ID=72941959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017562 WO2020218449A1 (en) 2019-04-26 2020-04-23 Method for manufacturing three-dimensionally shaped molded article, and device for manufacturing three-demonsionally shaped molded article

Country Status (2)

Country Link
JP (1) JP2022096005A (en)
WO (1) WO2020218449A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113979A (en) * 2015-12-24 2017-06-29 キヤノン株式会社 Molding apparatus, molding method, and program
JP2017155291A (en) * 2016-03-02 2017-09-07 株式会社コイワイ Manufacturing method of high strength aluminum alloy laminate molded body
WO2017154971A1 (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Three-dimensional molded object production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113979A (en) * 2015-12-24 2017-06-29 キヤノン株式会社 Molding apparatus, molding method, and program
JP2017155291A (en) * 2016-03-02 2017-09-07 株式会社コイワイ Manufacturing method of high strength aluminum alloy laminate molded body
WO2017154971A1 (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Three-dimensional molded object production method

Also Published As

Publication number Publication date
JP2022096005A (en) 2022-06-29

Similar Documents

Publication Publication Date Title
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
JP5764753B2 (en) Manufacturing method of three-dimensional shaped object
JP5584019B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP6443698B2 (en) Manufacturing method of three-dimensional shaped object
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
CN107848212B (en) Method for manufacturing three-dimensional shaped object
JP6471975B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP6628024B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP6414588B2 (en) Manufacturing method of three-dimensional shaped object
JP6857861B2 (en) Manufacturing method of three-dimensional shaped object
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
WO2020218449A1 (en) Method for manufacturing three-dimensionally shaped molded article, and device for manufacturing three-demonsionally shaped molded article
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
WO2018003798A1 (en) Method for manufacturing three-dimensionally shaped molding
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
JP6643644B2 (en) Manufacturing method of three-dimensional shaped object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP