WO2020218313A1 - Separator and separation method of stationary phase member and nanostructure - Google Patents

Separator and separation method of stationary phase member and nanostructure Download PDF

Info

Publication number
WO2020218313A1
WO2020218313A1 PCT/JP2020/017264 JP2020017264W WO2020218313A1 WO 2020218313 A1 WO2020218313 A1 WO 2020218313A1 JP 2020017264 W JP2020017264 W JP 2020017264W WO 2020218313 A1 WO2020218313 A1 WO 2020218313A1
Authority
WO
WIPO (PCT)
Prior art keywords
stationary phase
nanoparticles
light
plasmon structure
containing layer
Prior art date
Application number
PCT/JP2020/017264
Other languages
French (fr)
Japanese (ja)
Inventor
鳥本 司
達矢 亀山
奈緒子 山口
竹岡 敬和
一孝 秋吉
結衣 前田
泰之 坪井
一 石原
Original Assignee
国立大学法人東海国立大学機構
公立大学法人大阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 公立大学法人大阪 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021516145A priority Critical patent/JP7431418B2/en
Publication of WO2020218313A1 publication Critical patent/WO2020218313A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate

Definitions

  • the technical field of the present specification relates to a separation device for separating nanoparticles and the like, and a method for separating stationary phase members and nanostructures.
  • Liquid chromatography is a method for separating the target compound from the mixture.
  • an adsorbent such as silica gel is used as a stationary phase, and a mobile phase is passed through the stationary phase.
  • This mobile phase is a liquid containing the compound of interest.
  • the target compound passes through the inside of the stationary phase while repeatedly adsorbing and desorbing to the stationary phase.
  • the degree of adsorption / desorption and the adsorption force of the target compound are different from those of other impurities. Therefore, the target compound can be separated from the mixture.
  • Patent Document 1 discloses a technique for gradient elution using two or more types of mobile phase liquids. The value of the internal volume of the mobile phase liquid flow path from the confluence point where multiple mobile phase liquids merge to the sample injection point is stored, and the time from this value until the composition of the mobile phase liquid begins to change at the sample injection point is calculated. A technique for calculating is disclosed (paragraph [0005] of Patent Document 1).
  • the problem to be solved by the technique of the present specification is to reduce the moving speed of the nanostructures which are separation targets existing in the mobile phase by light irradiation, or to reduce the moving speed of the nanostructures in the mobile phase to the stationary phase.
  • the purpose of the present invention is to provide a separation device capable of separating a target nanostructure by keeping it within a certain region, and a method for separating a stationary phase member and the nanostructure.
  • the separation device in the first aspect includes a stationary phase member having a stationary phase, a developing tank capable of accommodating the stationary phase member and the mobile phase, and a light irradiation unit that irradiates light toward the stationary phase member.
  • the stationary phase has an adsorbent and a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent.
  • the stationary phase member can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
  • This separation device can excite surface plasmon resonance in the plasmon structure by irradiating it with light. As a result, an attractive force is generated between the plasmon structure and the nanostructure in the mobile phase. Therefore, the separator can capture and separate the nanostructures by slowing them down in the liquid of the mobile phase or by keeping them within a region. Therefore, this separation device can be used as a test device. In addition, this separation device can be used for manufacturing nanostructures.
  • light irradiation slows down the moving speed of the nanostructures that are separation targets existing in the mobile phase, or keeps the nanostructures in the mobile phase within a region in the stationary phase.
  • Separators capable of separating the nanostructures of interest and methods for separating stationary phase members and nanostructures are provided.
  • 6 is a graph showing the relationship between the irradiation light intensity and the Rf value when ZAIS nanoparticles having a particle diameter of 19 nm are developed while irradiating the gold nanoparticles-containing layer with monochromatic light having a wavelength of 820 nm.
  • the relationship between the diffuse reflection spectrum (vertical axis: Kubelker-Munk function) of the plasmon structure-containing layer carrying gold nanoparticles at different densities and the particle number density (numerical values in the figure) of the supported gold nanoparticles is shown. It is a graph. It is a graph which shows the relationship between the Rf value and the irradiation light intensity when rice-shaped ZAIS nanoparticles (19 nm) are developed by irradiating LED light with a wavelength of 610 nm, and the dependence of the particle number density of gold nanoparticles.
  • the particle number density of gold nanoparticles in the gold nanoparticles-containing layer which is a plasmon structure-containing layer, and the minimum irradiation light intensity (wavelength) capable of capturing rice-shaped ZAIS nanoparticles (particle size 19 nm) in the gold nanoparticles-containing layer. It is a graph which shows the relationship with 610 nm). It is an electron micrograph of gold nanoparticles used as a plasmon structure. It is a table summarizing the number of gold atoms contained in the plasmon structure-containing layer and the particle density when gold nanoparticles having different sizes and shapes are supported.
  • FIG. 1 Rf value and irradiation light intensity when rice-shaped ZAIS nanoparticles (19 nm) are developed by irradiating LED light having a wavelength of 610 nm using a plasmon structure-containing layer carrying gold nanoparticles of various shapes shown in FIG.
  • FIG. 2 It is a graph which shows the relationship with.
  • FIG. 33 is a graph showing the relationship between the monochromatic light intensity at a wavelength of 460 nm and the Rf value of rice-shaped ZAIS nanoparticles (19 nm) in FIG. 33.
  • the plasmon structure is a material capable of exciting surface plasmon resonance.
  • the plasmon structure is a metal nanoparticle having a surface plasmon resonance peak such as gold (Au) nanoparticles or silver (Ag) nanoparticles, or a metal compound having a surface plasmon resonance peak such as indium tin oxide (ITO) or copper sulfide. It is a nanoparticle.
  • nanostructures are nanoparticles or molecules composed of inorganic or organic compounds.
  • the size of the particles in the present specification shall be measured by observation with an electron microscope such as a scanning electron microscope or a transmission electron microscope.
  • the particle size is the length of the longest line segment that virtually crosses the three-dimensional shape of the particle.
  • the length of one side of the octahedron is taken as the particle size.
  • FIG. 1 is a diagram showing a schematic configuration of the separation device 1000 of the first embodiment. As shown in FIG. 1, the separator 1000 separates nanoparticles using the stationary phase member 100. As shown in FIG. 1, the separation device 1000 includes a light irradiation unit 1100 and a development tank 1200.
  • the light irradiation unit 1100 is for irradiating light toward the stationary phase member 100 arranged inside the developing tank 1200.
  • the light emitted by the light irradiation unit 1100 irradiates the fixed material (plasmon structure) in the stationary phase member 100 with light capable of exciting surface plasmon resonance.
  • the energy required to excite surface plasmon resonance depends on the material and the surface plasmon resonance peak wavelength.
  • the light emitted by the light irradiation unit 1100 may be monochromatic light as long as it can photoexcitate the surface plasmon resonance of the plasmon structure.
  • the light irradiation unit 1100 is, for example, an Xe lamp light source that is monochromaticized through an LED light source or a bandpass filter. Of course, it may be another light source.
  • the developing tank 1200 can accommodate the stationary phase member 100 and the liquid L1 which is the mobile phase.
  • the developing tank 1200 is preferably made of a transparent material. This is because the light from the light irradiation unit 1100 is transmitted and the stationary phase member 100 is irradiated with the light.
  • the material of the developing tank 1200 is, for example, glass. Of course, other transparent materials may be used.
  • the liquid L1 is a solvent that is a mobile phase.
  • the liquid L1 may contain inorganic nanoparticles as the nanostructure that is the separation target.
  • FIG. 2 is a diagram for explaining the structure of the stationary phase member 100 of the first embodiment.
  • the stationary phase member 100 is a member having a stationary phase of a liquid chromatograph. As shown in FIG. 2, the stationary phase member 100 has a base material 110, a carrier layer 120, a plasmon structure-containing layer 130, and a carrier layer 140.
  • the stationary phase member 100 has a structure substantially similar to that of a thin layer plate (plate) of thin layer chromatography, except for the plasmon structure-containing layer 130. Therefore, both the carrier layers 120 and 140 and the plasmon structure-containing layer 130 act as stationary phases in the chromatograph on the base material 110.
  • the stationary phase of the stationary phase member 100 can be supplied with a liquid containing inorganic nanoparticles, which is a separation target described later, and moves the mobile phase along the stationary phase.
  • the base material 110 is for supporting the carrier layers 120 and 140 and the plasmon structure-containing layer 130.
  • the base material 110 does not absorb the liquid L1 and does not allow the liquid L1 to permeate.
  • the base material 110 is, for example, a glass plate.
  • the carrier layer 120 is a layer capable of permeating the liquid L1 which is a mobile phase.
  • the carrier layer 120 is a first carrier layer that does not contain a plasmon structure but contains an adsorbent.
  • the material of the adsorbent include silica gel, alumina, activated carbon, diatomaceous earth, filter paper, cellulose, zeolite, and organic polymer. Alternatively, it may be another material having high adsorptivity.
  • the carrier layer 120 is a solid.
  • the plasmon structure-containing layer 130 is a layer for capturing the target inorganic nanoparticles in the mixture.
  • the plasmon structure-containing layer 130 is arranged between the carrier layer 120 and the carrier layer 140 at a position sandwiched between them.
  • the plasmon structure-containing layer 130 is a solid.
  • the plasmon structure-containing layer 130 can permeate the liquid L1 which is the mobile phase.
  • the plasmon structure-containing layer 130 contains an adsorbent and a plasmon structure (metal nanoparticles).
  • metal nanoparticles are sufficiently discretely fixed and arranged on adsorbent particles such as silica gel.
  • the metal nanoparticles may be separated one by one or may form aggregates to some extent.
  • the metal nanoparticles used here may be any material as long as they exhibit a surface plasmon resonance peak, and are, for example, gold nanoparticles, silver nanoparticles, copper nanoparticles, or alloy nanoparticles containing them.
  • the metal nanoparticles are plasmon structures capable of exciting the surface plasmon resonance peak by being irradiated with light from the light irradiation unit 1100.
  • the plasmon structure-containing layer 130 contains a plasmon structure.
  • the carrier layer 140 is a layer capable of permeating the liquid L1 which is a mobile phase.
  • the carrier layer 140 is a second carrier layer that does not contain a plasmon structure but contains an adsorbent.
  • the material of the adsorbent include silica gel, alumina, activated carbon, diatomaceous earth, filter paper, cellulose, zeolite, and organic polymer. Alternatively, it may be another material having high adsorptivity.
  • the carrier layer 140 is a solid.
  • the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140 are stationary phases capable of moving the liquid L1 which is the mobile phase into the carrier layer 120. That is, the liquid L1 which is the mobile phase can move inside the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140 along the stationary phase.
  • FIG. 3 is a diagram conceptually showing the inside of the plasmon structure-containing layer 130.
  • the plasmon structure include metal nanoparticles P1 having a particle size of 1 nm or more and 500 nm or less.
  • the metal nanoparticles P1 may be discretely arranged on the adsorbent while aggregating in the order of several to several hundreds. Alternatively, the metal nanoparticles P1 may be completely dispersed and uniformly dispersed and fixed on the adsorbent one by one.
  • Metal nanoparticles P1 are sparsely arranged in the adsorbent at a level of several hundred ⁇ m or less.
  • the liquid L1 is a mobile phase that moves relative to the stationary phase.
  • the nanostructure to be separated moves in the stationary phase together with the mobile phase while repeating adsorption and desorption to the stationary phase between the mobile phase and the stationary phase.
  • the nanostructure is, for example, inorganic nanoparticles. Therefore, the liquid L1 to be used may have even a slight ability to uniformly disperse or dissolve the inorganic nanoparticles to be separated.
  • the mixture containing the target inorganic nanoparticles does not need to be dispersed in the liquid L1 from the beginning.
  • FIG. 4 is a diagram showing the flow of the mobile phase in the separation device 1000 of the first embodiment.
  • the liquid L1 penetrates into the stationary phase in the direction of arrow J1.
  • the liquid L1 as the mobile phase moves inside the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140, which are the stationary phases, but cannot move inside the base material 110. This is similar to thin layer chromatography.
  • Inorganic nanoparticles are nanostructures that are targets for the plasmon structure to capture or slow down its movement rate.
  • the size of the inorganic nanoparticles is, for example, 0.5 nm or more and 100 nm or less. Similar to thin layer chromatography, the inorganic nanoparticles may be supported in advance in dots on a small part of the carrier layer 120. In this case, the inorganic nanoparticles are supplied to the mobile phase when the mobile phase (liquid L1) penetrates into the stationary phase in the direction of arrow J1. Alternatively, the liquid L1 in which the inorganic nanoparticles are dispersed may be supplied to the carrier layer 120 of the stationary phase member 100.
  • examples of the inorganic nanoparticles include nanoparticles such as metals, alloys, semiconductors, and metal oxides.
  • Elements that form inorganic nanoparticles include, for example, Mg, Zn, Cd, Hg, Al, Ga, In, Ti, Zr, Si, Ge, Sn, Pb, Fe, Ru, Co, Rh, Ir, Ni, Pd. , Pt, V, Ta, Nb, Cr, Mo, W, Mn, Re, Cu, Ag, Au, Sb, Bi, S, Se, Te, F, Cl, Br, I. Further, it may be an element other than the above.
  • FIG. 5 is a diagram illustrating conventional thin layer chromatography.
  • the separator 1000 of this embodiment is different from thin layer chromatography. However, the separator 1000 has some parts in common with thin layer chromatography. Therefore, thin layer chromatography will be briefly described.
  • the TLC plate C1 is, for example, supported on the surface of glass with silica gel particles as a stationary phase and having a thickness of several hundred ⁇ m.
  • Sample S1 is dropped in dots at the position of the origin (K1) of the TLC plate C1, dried and supported. Then, when the lower part (K1 side) of the TLC plate C1 is immersed in the developing solvent, the developing solvent moves in a direction parallel to the arrow J2 due to the capillary phenomenon.
  • the silica gel of the TLC plate C1 is a stationary phase
  • the developing solvent is a mobile phase.
  • Sample S1 moves in the direction of arrow J2.
  • the sample S1 actually rises in the direction of the arrow J2 while repeating adsorption and desorption to the silica gel which is the carrier. Therefore, for example, when the developing solvent reaches the position K1 to the position K3, the sample S1 reaches the position K1 to the position K2. In this way, there is a difference between the arrival position of the developing solvent and the arrival position of the sample S1. There is a difference between the moving distance of the mobile phase itself and the moving distance of the target compound in the mobile phase.
  • the distance W1 is the moving distance of the developing solvent.
  • the distance W2 is the moving distance of the sample S1. If the composition, temperature, carrier, and spot amount of the developing solvent are controlled, the Rf value has reproducibility. Therefore, thin layer chromatography can be used for the separation and identification of sample S1.
  • the nanoparticles are used as sample S1 and separation and identification are attempted by this method, the arrival position K2 at which the target nanoparticles stop is not always sufficiently separated from the arrival position of the contaminants. .. Also, the nanoparticles to be separated do not always have color.
  • a mixture of inorganic nanoparticles containing an object is developed by a liquid L1 and the surface plasmon resonance of the metal nanoparticles of the plasmon structure-containing layer 130 is photoexcited.
  • the target inorganic nanoparticles are selectively captured by utilizing the force that selectively acts on the inorganic nanoparticles.
  • the moving speed of the target inorganic nanoparticles is selectively reduced.
  • the desired nanoparticles are separated from the contaminants present in the mixture used as the sample.
  • FIG. 6 is a conceptual diagram for explaining the local surface plasmon resonance of the first embodiment.
  • the horizontal axis of FIG. 6 represents the traveling direction of the light wave.
  • the vertical axis of FIG. 6 represents the electric field intensity of light.
  • metal nanoparticles exhibiting surface plasmon resonance for example, gold nanoparticles P1a, P1b, P1c are drawn.
  • the gold nanoparticles P1a, P1b, and P1c may be regarded as three particles at different positions. Further, the gold nanoparticles P1a, P1b, and P1c may be considered to indicate the appearance of one gold nanoparticle P1 at different times.
  • the gold nanoparticles P1a are receiving an upward electric field formed by light. Therefore, the electrons of the gold nanoparticles P1a gather at the lower side in the figure.
  • the gold nanoparticles P1b are subjected to a downward electric field formed by light. Therefore, the electrons of the gold nanoparticles P1b are concentrated on the upper side in the figure.
  • the gold nanoparticles P1c are subject to an upward electric field formed by light. Therefore, the electrons of the gold nanoparticles P1c are collected at the lower side in the figure.
  • the electrons of the gold nanoparticles P1 vibrate in response to the electric field of light. That is, a collective vibration phenomenon of electrons occurs.
  • surface plasmon resonance is photoexcited.
  • this surface plasmon resonance forms a strong local electric field in the vicinity of the metal nanoparticles, and the local electric field plays an important role in capturing the nanoparticles.
  • the nanoparticles in the mobile phase receive the attractive force F represented by the following equation.
  • F (1/2) ⁇ ⁇ ⁇ ⁇ E 2
  • F Attractive force acting on nanoparticles in mobile phase
  • Polarizability of nanoparticles in mobile phase
  • E Local electric field formed by gold nanoparticles
  • FIG. 7 is a diagram showing how the gold nanoparticles P1 of the plasmon structure-containing layer 130 capture the inorganic nanoparticles N1 in the mobile phase in the separation device 1000 of the first embodiment.
  • the light irradiation unit 1100 continues to irradiate the stationary phase member 100 with light
  • the photoexcited gold nanoparticles P1 continue to form a local electric field E.
  • the inorganic nanoparticles N1 in the mobile phase are decelerated by the attractive force of the local electric field E.
  • the local electric field E is strong, the inorganic nanoparticles N1 in the mobile phase are captured by the gold nanoparticles P1.
  • the gold nanoparticles P1 in the stationary phase selectively reduce the moving speed of the inorganic nanoparticles N1 in the mobile phase. Or continue to capture the inorganic nanoparticles N1 completely.
  • the inorganic nanoparticles N1 have different sizes. Each inorganic nanoparticle N1 having a different size has a different polarizability. That is, different forces act on the inorganic nanoparticles N1 having different particle diameters.
  • the plasmon structure (metal nanoparticles) of the plasmon structure-containing layer 130 exerts an attractive force on the inorganic nanoparticles N1 in the mobile phase by exciting the surface plasmon. Therefore, the plasmon structure-containing layer 130 captures the inorganic nanoparticles N1 in the mobile phase during the period of being irradiated with light, or slows down the moving speed of the inorganic nanoparticles N1 in the mobile phase.
  • FIG. 8 is a diffuse reflection spectrum of the stationary phase member 100 of the first embodiment in which gold nanoparticles P1 are used as the plasmon structure and silica gel particles are used as the stationary phase.
  • the horizontal axis of FIG. 8 is the wavelength of light.
  • the vertical axis of FIG. 8 is the Kubelker-Munch function.
  • the plasmon structure-containing layer 130 of the stationary phase member 100 has gold nanoparticles (particle diameter: 12 nm).
  • a broad surface plasmon resonance peak is observed in a wavelength region of 500 nm or more with respect to the stationary phase member 100 having the plasmon structure-containing layer 130.
  • the Kubelker-Munch function is large in the wavelength region of 600 nm or more and 900 nm or less. That is, it shows that the light absorption and scattering of the stationary phase member 100 is large in this wavelength region.
  • the light emitted by the light irradiation unit 1100 is preferably light in this wavelength region.
  • the energy of the irradiated light is used for surface plasmon excitation of the plasmon structure-containing layer 130 of the stationary phase member 100.
  • the light irradiation unit 1100 irradiates, for example, red light having a wavelength of 610 nm toward the stationary phase member 100. Therefore, in the plasmon structure-containing layer 130, the gold nanoparticles P1 cause relatively strong plasmon excitation.
  • the stationary phase member 100 and the liquid L1 (mobile phase) are housed inside the developing tank 1200, the mobile phase begins to rise along the stationary phase due to the capillary phenomenon.
  • the light irradiation unit 1100 irradiates the stationary phase member 100 of the developing tank 1200 with light.
  • the light irradiation unit 1100 may particularly preferably irradiate the plasmon structure-containing layer 130 with light.
  • the localized electric field generated by the surface plasmon generated in the vicinity of the gold nanoparticles P1 causes the gold nanoparticles P1 which is a plasmon structure and the inorganic nanoparticles in the mobile phase.
  • An attractive force acts with the particles N1 to reduce the moving speed of the inorganic nanoparticles N1 in the mobile phase.
  • the inorganic nanoparticles N1 in the mobile phase are completely captured in the vicinity of the gold nanoparticles P1.
  • the mobile phase of the liquid L1 reaches the carrier layer 140 above the plasmon structure-containing layer 130.
  • an attractive force is applied between the gold nanoparticles P1 of the plasmon structure-containing layer 130 and the inorganic nanoparticles N1 in the mobile phase. Will continue to work. Therefore, the moving speed of the inorganic nanoparticles N1 in the plasmon structure-containing layer 130 slows down, or the inorganic nanoparticles N1 are completely captured in the vicinity of the gold nanoparticles P1 which is the plasmon structure and are contained in the sample. Separated from existing contaminants.
  • the mobile phase and the inorganic nanoparticles N1 move at a normal moving speed.
  • the moving speed of the inorganic nanoparticles N1 is slower than the moving speed of the mobile phase.
  • the mobile phase moves at a normal moving speed, and the inorganic nanoparticles N1 are further decelerated or captured.
  • the stationary phase member 100 is dried so that the desired nanoparticles do not move, and the mobile phase is removed. Then, the plasmon structure-containing layer 130 can be peeled off from the base material 110, and the target inorganic nanoparticles N1 can be extracted with a solvent. When the plasmon structure-containing layer 130 is peeled off, it is not necessary to irradiate with light because there is no mobile phase. The target inorganic nanoparticles N1 are separated in this way. For example, the inorganic nanoparticles N1 thus collected may be sent for inspection.
  • the technique of the first embodiment can be said to be a kind of liquid chromatograph in which a liquid is used as the mobile phase and a solid is used as the stationary phase.
  • a stationary phase containing a plasmon structure capable of photoexciting surface plasmon resonance is used, and a liquid containing the nanostructure is used as the mobile phase.
  • surface plasmon resonance is excited in the plasmon structure, and the plasmon structure (gold nanoparticles P1) in the stationary phase and the nanostructure (inorganic nanoparticles) in the mobile phase are excited.
  • An attractive force is generated between the N1) and the particle. This causes the plasmon structure to capture the nanostructure or slows down the movement speed of the nanostructure in the mobile phase.
  • the effect separation device 1000 of the first embodiment can separate the target inorganic nanoparticles N1 from the mixture. In doing so, it does not require a high-power laser like optical tweezers technology. Further, during the period in which the plasmon structure-containing layer 130 is irradiated with light, the plasmon structure-containing layer 130 slows down the movement speed of the mobile phase inorganic nanoparticles N1 in the liquid L1, or the inorganic nanoparticles N1 Maintain the state of capturing.
  • this separation device 1000 can be used as an inspection device for separating nanoparticles. Further, the separation device 1000 can also be used as a manufacturing device for separating and mass-producing nanoparticles.
  • FIG. 9 is a diagram showing a stationary phase member 200 in a modified example of the first embodiment.
  • the stationary phase member 200 has a base material 110, a supporting layer 120, a first plasmon structure-containing layer 230, a supporting layer 140, a second plasmon structure-containing layer 250, and a supporting layer 160.
  • the first plasmon structure-containing layer 230 and the second plasmon structure-containing layer 250 have plasmon structures exhibiting different plasmon wavelengths. For example, one contains gold nanoparticles and the other contains silver nanoparticles.
  • the first plasmon structure-containing layer 230 can capture the first inorganic nanoparticles in the mixture
  • the second plasmon structure-containing layer 250 can capture the second inorganic nanoparticles in the mixture.
  • the stationary phase member may include a plurality of plasmon structure-containing layers.
  • the separated inorganic nanoparticles N1 can be used for inspection. However, the separated inorganic nanoparticles N1 may be sent to the subsequent processing step. As a result, a material using the inorganic nanoparticles N1 as a raw material is produced.
  • Wavelength of light The wavelength of light emitted by the light irradiation unit 1100 is as long as it can photoexcitate the surface plasmon resonance of the plasmon structure of the plasmon structure-containing layer 130, and is about the visible light wavelength or the near infrared wavelength.
  • the wavelength of light is, for example, about 400 nm or more and 1000 nm or less. However, wavelengths shorter or longer than this wavelength region may be used.
  • the light irradiation unit 1100 may irradiate the development tank 1200 with light even before the stationary phase member 100 is arranged inside the development tank 1200.
  • the stationary phase member 100 may be immersed in a solvent in advance. This is because the mobile phase containing the inorganic nanoparticles N1 may easily rise to a position higher than the stationary phase member 100.
  • the solvent include chloroform, toluene and oleylamine. Of course, a solvent other than the above may be used.
  • the base material stationary phase member 100 has a base material 110.
  • the base material 110 may be omitted as long as the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140 can stand on their own and the characteristics of the stationary phase of the stationary phase member 100 are satisfied.
  • FIG. 10 is a diagram for explaining the structure of the fixed phase member 300 of the second embodiment.
  • the stationary phase member 300 has a base material 110, a carrier layer 120, a plasmon structure-containing layer 330, and a carrier layer 140.
  • the stationary phase member 300 has an adsorbent and a plasmon structure-containing layer 330 in which a plasmon structure is arranged on the adsorbent.
  • the stationary phase member 300 can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
  • metal compound nanoparticles capable of exciting surface plasmon resonance can be used as the plasmon structure fixed to the stationary phase.
  • the metal compound nanoparticles have a size capable of exciting surface plasmon resonance and a surface plasmon resonance peak. Examples of the size capable of exciting surface plasmon resonance include particles having a particle size of 1 nm or more and 500 nm or less.
  • Examples of the material of the plasmon structure include metal compounds such as metal oxides and conductive metal composite oxides.
  • metal oxide include molybdenum oxide, rhenium oxide, tungsten oxide and the like.
  • examples of other metal compounds include copper sulfide and silver sulfide.
  • Examples of the conductive metal composite oxide include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and IGZO (Indium Gallium Zinc Oxide).
  • the plasmon structure-containing layer of the stationary phase member 300 excites surface plasmon resonance during a period in which the light irradiation unit 1100 irradiates the stationary phase member with light.
  • the plasmon structure captures the inorganic nanoparticles N1 or slows down the moving speed of the inorganic nanoparticles N1 in the mobile phase.
  • a third embodiment will be described.
  • the nanostructures of the third embodiment are different from the nanostructures of the first embodiment. Therefore, the nanostructure to be separated will be described.
  • the mobile phase liquid L1 may or may not contain nanostructures.
  • the nanostructure refers to a structure having a size of 0.5 nm or more and 100 nm or less.
  • nanostructures include organic compounds.
  • organic compounds include organic polymers such as polyethylene and polystyrene, macromolecular molecules such as dendrimers and ⁇ -conjugated molecules, and biomolecules such as DNA, proteins, peptides, antigens, antibodies, exosomes, viruses, and cells. And bio-related substances.
  • the organic compound may be a nano-sized aggregate of organic molecules such as micelles and vesicles. These are examples, and other compounds may be used.
  • the plasmon structure-containing layer of the stationary phase excites surface plasmon resonance during the period in which the light irradiation unit 1100 irradiates the stationary phase member with light. As a result, the plasmon structure captures the nanostructure or slows down the movement speed of the nanostructure in the mobile phase.
  • Example 1 Gold nanoparticles (plasmon structure) 1.
  • Experimental method 1-1 Fixed phase member (fixed phase supporting plate) Two types of stationary phase supporting plates were prepared.
  • the first type of stationary phase-supporting plate is a normal TLC plate on which a plasmon structure-containing layer is formed.
  • the plasmon structure is gold nanoparticles.
  • This first type of stationary phase supporting plate corresponds to the stationary phase member 100 of the first embodiment.
  • the second type of stationary phase supporting plate is a conventional TLC plate.
  • An octadecyl group-modified reverse phase silica gel TLC plate (Uniplatate P50013 manufactured by Analtech) was used in which silica gel particles were applied and fixed on a glass plate and the surface thereof was chemically treated.
  • Hydrophilic gold nanoparticles (particle size: 12 nm) whose surface is modified with citric acid are applied to the region located in a band shape in a direction orthogonal to the flow direction of the mobile phase (arrow J1), dried, and contained in a plasmon structure. A layer was formed. These particles do not disperse in an organic solvent such as chloroform.
  • the region for fixing the gold nanoparticles is a region in which the Rf value becomes 0.20 to 0.375 after the development by the mobile phase is finally completed.
  • Rice-shaped ZAIS nanoparticles (quantum dots) Rice-shaped ZAIS nanoparticles were prepared using the method of the literature (ACS Appl. Mater. Interfaces 8 (2016) 27151-27161).
  • ZAIS indicates a solid solution semiconductor between ZnS and AgInS 2, and its composition is represented by (AgIn) x Zn 2 (1-x) S 2 .
  • ZAIS nanoparticles having an average particle diameter of 19 nm and 12 nm were obtained, respectively.
  • the particle diameter is the longest length of a particle. Observation was performed with a transmission electron microscope (TEM) to measure the particle size.
  • TEM transmission electron microscope
  • FIG. 11 is a TEM image showing rice-shaped ZAIS nanoparticles (average particle diameter 19 nm) obtained by the above method.
  • the particle size of the ZAIS nanoparticles can be changed by changing the manufacturing conditions.
  • Light irradiation unit A red LED light source was used as the light irradiation unit.
  • the red LED light source can irradiate monochromatic light having a peak wavelength of 610 nm.
  • Procedure A chloroform solution containing ZAIS nanoparticles was added dropwise to the central position of the region of the carrier layer 120 of the stationary phase member (stationary phase supporting plate). Then, the sample solution was dried, and ZAIS nanoparticles were supported on the stationary phase of the stationary phase supporting plate in dots as target inorganic nanoparticles for light capture.
  • a stationary phase-supported plate carrying ZAIS nanoparticles was placed in a developing tank.
  • a developing solvent a mixed solution of oleylamine and chloroform
  • monochromatic light having a wavelength of 610 nm. Then, the situation after that was observed.
  • FIG. 12 is a photograph of a stationary phase member having a gold nanoparticle-containing layer after supplying a mobile phase while irradiating a monochromatic light having a wavelength of 610 nm. As shown by the arrow at the bottom center of FIG. 12, the inorganic nanoparticles (quantum dots: QD) are trapped in the region of the gold nanoparticle-containing layer.
  • QD quantum dots
  • FIG. 13 is a photograph of the stationary phase member having the gold nanoparticle-containing layer after supplying the mobile phase without irradiating the stationary phase member with light. As shown by the arrow near the upper part of FIG. 13, the ZAIS nanoparticles (quantum dots) are located above the region of the gold nanoparticles-containing layer.
  • FIG. 14 is a photograph of the stationary phase member after supplying the mobile phase while irradiating the stationary phase member having no gold nanoparticle-containing layer with monochromatic light having a wavelength of 610 nm.
  • the light irradiation was performed at the same position as the stationary phase member having the gold nanoparticle-containing layer of FIG.
  • ZAIS nanoparticles Quantum dots
  • This position was almost the same as the position of the ZAIS nanoparticles in FIG.
  • FIG. 15 is a photograph of the stationary phase member after supplying the mobile phase without irradiating the stationary phase member having no gold nanoparticle-containing layer with light.
  • ZAIS nanoparticles Quantum dots
  • This position was approximately the same as the position of the ZAIS nanoparticles in FIGS. 13 and 14.
  • Table 1 is a table summarizing the above results. As shown in Table 1, only when the stationary phase member 100 of the first embodiment is irradiated with light, the stationary phase member 100 contains ZAIS nanoparticles (quantum dots) in a gold nanoparticle-containing layer (plasmon structure-containing layer). Can be captured in.
  • FIG. 16 is a graph showing the relationship between the particle size and the arrival position of the quantum dots.
  • the horizontal axis of FIG. 16 is the particle diameter of the quantum dots.
  • the vertical axis of FIG. 16 is the Rf value of the arrival position of the quantum dot in the stationary phase member.
  • the region of the gold nanoparticle-containing layer is a region in which the Rf value becomes 0.20 to 0.375 after the development of the mobile phase.
  • the gold nanoparticle-containing layer region was irradiated with LED light having a wavelength of 610 nm at an output of 0.89 W / cm 2 , and quantum dots were developed by the mobile phase.
  • inorganic nanoparticles having a particle diameter of about 8 nm or less pass through the region of the gold nanoparticles-containing layer.
  • inorganic nanoparticles having a particle size larger than about 8 nm are captured by the gold nanoparticle-containing layer.
  • the separation device 1000 tends to capture inorganic nanoparticles having a larger particle size.
  • FIG. 17 shows a stationary phase member after light irradiation is performed on a stationary phase member of a gold nanoparticles-containing layer by changing the irradiation light intensity when developing rice-shaped ZAIS nanoparticles having a particle diameter of 19 nm by a mobile phase. It is a photograph of. As shown in FIG. 17, when the particle size is 19 nm, when the stationary phase member is irradiated with LED light having a wavelength of 610 nm at an output of 0.63 W / cm 2 or more, the gold nanoparticles-containing layer captures the inorganic nanoparticles. We were able to.
  • FIG. 18 is a photograph of the stationary phase member after light irradiation is performed on the stationary phase member of the gold nanoparticles-containing layer by changing the light intensity when developing rice-shaped ZAIS nanoparticles having a particle diameter of 12 nm by the mobile phase.
  • the particle size is 12 nm
  • the stationary phase member is irradiated with LED light having a wavelength of 610 nm at an output of 0.76 W / cm 2 or more
  • the gold nanoparticle-containing layer captures inorganic nanoparticles. We were able to.
  • FIG. 19 is a graph showing the relationship between the intensity of monochromatic light having a wavelength of 610 nm irradiating the gold nanoparticles-containing layer and the arrival position of the rice-shaped ZAIS nanoparticles.
  • the horizontal axis of FIG. 19 is the intensity of monochromatic light irradiating the gold nanoparticle-containing layer.
  • the vertical axis of FIG. 19 is the Rf value of the arrival position of the inorganic nanoparticles in the stationary phase member.
  • FIG. 19 is a graph summarizing the results of FIGS. 17 and 18.
  • the gold nanoparticles-containing layer can suitably capture the inorganic nanoparticles. Further, even when the light intensity is not sufficient for capturing the inorganic nanoparticles, the Rf value at the arrival position of the nanoparticles is smaller than that when no light is irradiated. This indicates that the movement speed of the inorganic nanoparticles in the mobile phase can be reduced by irradiating the gold nanoparticles-containing layer with light.
  • FIG. 20 is a transmission electron micrograph of a quantum dot mixture composed of elliptical spherical ZAIS nanoparticles and dumbbell-shaped ZAIS nanoparticles. Dumbbell-shaped ZAIS nanoparticles were prepared using the method of the literature (J. Phys. Chem. C. 122, 25, (2016) 13705-13715). Elliptical spherical ZAIS nanoparticles are present in the circles on the left side of FIG. 20. Dumbbell-shaped ZAIS nanoparticles are present in the circles on the right side of FIG. 20.
  • FIG. 21 is a particle size distribution showing the particle size and the ratio of the elliptical spherical ZAIS nanoparticles and the dumbbell-shaped ZAIS nanoparticles contained in the quantum dot mixture.
  • the horizontal axis of FIG. 21 is the particle size of the ZAIS nanoparticles.
  • the vertical axis of FIG. 21 is the frequency of appearance of ZAIS nanoparticles having that particle size.
  • FIG. 22A is a photograph of the stationary phase member after developing the quantum dot mixture in the mobile phase while irradiating the quantum dot mixture with LED light having a wavelength of 610 nm (light intensity: 0.63 W / cm 2 ). It can be seen that the quantum dots captured by the gold nanoparticle-containing layer, which is the plasmon structure-containing layer, and the quantum dots expanded above it were separated.
  • FIG. 22B is a graph showing the particle size distribution of ZAIS nanoparticles at a position above the gold nanoparticle-containing layer.
  • FIG. 22C is a graph showing the particle size distribution of ZAIS nanoparticles at the position of the gold nanoparticles-containing layer.
  • the gold nanoparticle-containing layer selectively captures ZAIS nanoparticles having a particle size larger than about 8 nm, and captures smaller ZAIS nanoparticles having a particle size of 8 nm or less. There wasn't. In this way, the separation device can separate nanoparticles having different particle diameters according to the particle diameter.
  • FIG. 23 shows the diffuse reflection spectrum (vertical axis: Kubelker-Munk function), red LED light (wavelength: 610 nm), and Xe lamp light of the gold nanoparticles-containing layer, which is the plasmon structure-containing layer. It is a graph which shows the relationship with the wavelength region of the near infrared light (wavelength: 820 nm) which became monochromatic by passing through a pass filter.
  • the horizontal axis of FIG. 23 is the wavelength. Both the wavelength region of red light with a wavelength of 610 nm and the wavelength region of near-infrared light with a wavelength of 820 nm overlap the broad surface plasmon resonance peak of the gold nanoparticles. Therefore, surface plasmon resonance can be effectively photoexcited.
  • FIG. 24 is a graph showing the spectra of near-infrared light (wavelength: 820 nm) converted into monochromatic light by passing red LED light (wavelength: 610 nm) and Xe lamp light through a bandpass filter.
  • the horizontal axis of FIG. 24 is the wavelength of light.
  • the vertical axis of FIG. 24 is the intensity of light.
  • the vertical axis is standardized by the value of the maximum peak intensity of each optical spectrum.
  • the stationary phase member of the gold nanoparticles-containing layer was irradiated with light by changing the irradiation light wavelength.
  • FIG. 25 is a graph showing the relationship between the light intensity and the Rf value when monochromatic light having a wavelength of 820 nm having the spectrum of FIG. 24 is irradiated.
  • the horizontal axis of FIG. 25 is the intensity of light.
  • the vertical axis of FIG. 25 is the Rf value.
  • the light intensity of the Rf value was also when irradiated with light having a wavelength of 820 nm (FIG. 25). There was no significant difference in dependence.
  • the values of the Kubelker-Munk function at the wavelength of 610 nm and the wavelength of 820 nm are almost the same. Therefore, when the stationary phase member is irradiated with light at the same light intensity, the excitation efficiencies of surface plasmon resonance at wavelengths of 610 nm and 820 nm are almost the same. Therefore, there is almost no difference in the Rf value.
  • FIG. 26 is a graph showing the relationship between the diffuse reflection spectrum of the gold nanoparticle-containing layer and the particle number density of the gold nanoparticles.
  • the horizontal axis of FIG. 26 is the wavelength of light.
  • the vertical axis of FIG. 26 is the value of the Kubelker-Munch function. As shown in FIG. 26, the higher the particle number density of the gold nanoparticles as the plasmon structure, the larger the value of the Kubelker-Munk function.
  • rice-shaped ZAIS nanoparticles having a particle diameter of 19 nm are developed by a mobile phase, and at that time, the irradiation light intensity is changed to change the wavelength.
  • the LED light of 610 nm was irradiated.
  • FIG. 27 is a graph showing the relationship between the light intensity and the Rf value of the ZAIS nanoparticles and the dependence of the particle number density of the gold nanoparticles.
  • the horizontal axis of FIG. 27 is the intensity of light.
  • the vertical axis of FIG. 27 is the Rf value.
  • the number in FIG. 27 is the particle number density of the supported gold nanoparticles. As shown in FIG. 27, the higher the particle number density of the gold nanoparticles as the plasmon structure, the weaker the irradiation light intensity can capture the ZAIS nanoparticles.
  • FIG. 28 shows the particle number density of gold nanoparticles in the plasmon structure-containing layer and the minimum irradiation light intensity (Imin) (irradiation) capable of capturing rice-shaped ZAIS nanoparticles (particle size 19 nm) in the gold nanoparticles-containing layer. It is a graph which shows the relationship with the light wavelength (610 nm).
  • the horizontal axis of FIG. 28 is the particle number density of gold nanoparticles.
  • the vertical axis of FIG. 28 is the intensity of the irradiation light. As shown in FIG. 28, the higher the particle number density of the gold nanoparticles, the weaker the intensity of light, the more ZAIS nanoparticles having a particle size of 19 nm can be captured.
  • FIG. 29 is an electron micrograph of gold nanoparticles used as a plasmon structure. As shown in FIG. 29, spherical gold nanoparticles having a particle size of 12 nm, octahedral gold nanoparticles having a particle size of 75 nm, and spherical gold nanoparticles having a particle size of 82 nm are formed into a plasmon structure. Using. The octahedral particle size is the length of one side of the octahedron.
  • the gold nanoparticles of FIG. 29 were used for the plasmon structure-containing layer.
  • FIG. 30 is a table summarizing the number of gold atoms in the gold nanoparticle-containing layer and the particle density of the gold nanoparticles.
  • FIG. 31 shows the Rf value when rice-shaped ZAIS nanoparticles (particle size 19 nm) irradiated with LED light having a wavelength of 610 nm using the gold nanoparticles-containing layers of various shapes of FIG. 30 as the plasmon structure-containing layer. It is a graph which shows the relationship between and the irradiation light intensity.
  • the horizontal axis of FIG. 31 is the intensity of light.
  • the vertical axis of FIG. 31 is the Rf value.
  • the ZAIS nanoparticles were captured by the gold nanoparticle-containing layer at a light intensity of about 1 W / cm 2 or more.
  • the ZAIS nanoparticles were not captured by the gold nanoparticles-containing layer at any light intensity. It is suggested that the size of the plasmon structure is greatly related to the success or failure of the capture of ZAIS nanoparticles.
  • Silver nanoparticles (plasmon structure) 1.
  • Experimental method 1-1 Preparation of Silver Nanoparticles 4.8 mL of an aqueous solution containing 2 mM NaBH 4 and 2 mM trisodium citrate was prepared. After holding this aqueous solution at 60 ° C. for 30 minutes, 0.2 mL of a 1.17 mM AgNO 3 aqueous solution was added. The temperature of this mixed solution was raised to 90 ° C., a 0.01 M aqueous NaOH solution was added, and the mixture was heated for 20 minutes. The pH of the aqueous NaOH solution was 10.5. In this way, silver nanoparticles having a particle size of 10 nm were obtained.
  • FIG. 32 is a graph showing a diffuse reflection spectrum of a plasmon structure-containing layer using silver nanoparticles.
  • the horizontal axis of FIG. 32 is the wavelength of light.
  • the vertical axis of FIG. 32 is the value of the Kubelker-Munch function.
  • Surface plasmon resonance peaks were observed between about 400 nm and 600 nm. In order to photoexcit the surface plasmon resonance peak, a blue LED capable of irradiating monochromatic light having a peak wavelength of 460 nm was used as the light irradiation unit.
  • FIG. 33 is a photograph of a stationary phase member after developing rice-shaped ZAIS nanoparticles (19 nm) while using silver nanoparticles as a plasmon structure and irradiating the portion with blue LED light having a wavelength of 460 nm at various light intensities. Is. As shown in FIG. 33, as the light intensity is increased, the moving distance of the ZAIS nanoparticles becomes smaller, and the ZAIS nanoparticles can be effectively captured.
  • FIG. 34 is a graph showing the relationship between the irradiation light intensity in FIG. 33 and the Rf value of the rice-shaped ZAIS nanoparticles.
  • the horizontal axis of FIG. 34 is the intensity of blue LED light having a wavelength of 460 nm.
  • the vertical axis of FIG. 34 is the Rf value.
  • the silver nanoparticle-containing layer which is a plasmon structure, can capture ZAIS nanoparticles.
  • Fig. 35 shows the wavelength of monochromatic light ( ⁇ irrad) irradiating the silver nanoparticles-containing layer, which is the plasmon structure-containing layer, and the rice-shaped ZAIS nanoparticles (19 nm) in the silver nanoparticles-containing layer. It is a graph which shows the relationship with the minimum required light intensity (Imin).
  • the horizontal axis of FIG. 35 is the wavelength of light.
  • the vertical axis of FIG. 35 is the minimum light intensity required to capture ZAIS nanoparticles in the gold nanoparticles-containing layer.
  • the minimum light intensity required for capturing the ZAIS nanoparticles decreases as the wavelength of the irradiation light shortens from 820 nm to 460 nm.
  • the value of the Kubelker-Munk function increases as the wavelength becomes shorter from 820 nm to 460 nm. From these facts, it is possible to capture ZAIS nanoparticles with a smaller light intensity by using irradiation light having a short wavelength capable of more effectively photoexciting surface plasmon resonance. That is, when light of 820 nm, which is a wavelength region where the value of the Kubelka-Munk function is small, is irradiated near the hem of the peak of surface plasmon resonance, ZAIS nanoparticles should be captured unless the light intensity is sufficiently high. I can't.
  • quantum dots of various sizes were developed while irradiating blue LED light with a wavelength of 460 nm.
  • FIG. 36 is a graph showing the relationship between the particle size of the quantum dots used and the Rf value.
  • the horizontal axis of FIG. 36 is the particle size of the quantum dot which is the separation target.
  • the vertical axis of FIG. 36 is the Rf value.
  • the plasmon structure can capture ZAIS nanoparticles or AgInGaS nanoparticles.
  • ITO particles (plasmon structure) 1.
  • An stationary phase-supporting plate was produced by applying ITO particles (manufactured by Aldrich) as a plasmon structure-containing layer to the above-mentioned octadecyl group-modified reverse phase silica gel TLC plate and drying it.
  • the particle size of the ITO particles was 100 nm.
  • the number density of ITO particles in the plasmon structure-containing layer was 1.1 ⁇ 10 13 particles / cm 3 .
  • Rice-shaped ZAIS nanoparticles with a particle diameter of 19 nm were used as the nanostructure as the separation target.
  • FIG. 37 is a graph showing the diffuse reflection spectrum of the ITO particle-containing layer.
  • the horizontal axis of FIG. 37 is the wavelength of light.
  • the vertical axis of FIG. 37 is the Kubelker-Munch function.
  • a broad surface plasmon resonance peak exists in the near infrared region of 600 nm or more.
  • the value of the Kubelker-Munch function at 820 nm in FIG. 37 is similar to the value of the Kubelker-Munch function at the irradiation wavelength in FIGS. 23 and 32. Therefore, the surface plasmon resonance of the ITO particles is sufficiently effectively photoexcited by irradiating with near-infrared monochromatic light having a wavelength of 820 nm.
  • FIG. 38 shows rice-shaped ZAIS nanoparticles (particle size: 19 nm) while irradiating 820 nm monochromatic light extracted from Xe lamp light using a plasmon structure-containing layer supporting ITO particles as a plasmon structure. It is a photograph of a stationary phase supporting plate after unfolding. As shown in FIG. 38, when not irradiated with light, the ZAIS nanoparticles moved to the upper part of the stationary phase supporting plate with little capture by the ITO particle-containing layer. However, when the light intensity was 0.31 W / cm 2 , the moving distance of the ZAIS nanoparticles was shorter than that when the light was not irradiated. When the light intensity was 0.45 W / cm 2 or more, rice-shaped ZAIS nanoparticles were captured in the ITO particle-containing layer portion of the stationary phase-supported plate.
  • FIG. 39 is a graph showing the relationship between the light intensity and the Rf value when rice-shaped ZAIS nanoparticles (particle diameter 19 nm) are developed while irradiating monochromatic light of 820 nm using ITO particles as a plasmon structure. ..
  • the horizontal axis of FIG. 39 is the intensity of light.
  • the vertical axis of FIG. 39 is the Rf value of the rice-shaped ZAIS nanoparticles.
  • rice-shaped ZAIS nanoparticles can be captured in the ITO particle-containing layer portion.
  • metal nanoparticles not only metal nanoparticles but also nanoparticles made of a metal compound such as a metal oxide can be used as a plasmon structure.
  • FIG. 40 is a photograph of a stationary phase-supported plate after developing polystyrene beads as nanostructures with methanol while irradiating LED light having a wavelength of 610 nm with various light intensities.
  • the gold nanoparticle-containing layer can capture polystyrene beads.
  • the light intensity was 0.63 W / cm 2
  • most polystyrene beads could be captured in the upper part of the gold nanoparticle-containing layer.
  • the light intensity was 0.88 W / cm 2
  • all polystyrene beads could be captured in the central part of the gold nanoparticle-containing layer.
  • FIG. 41 is a graph showing the relationship between the moving distance of polystyrene beads and the irradiation light intensity when the polystyrene beads are developed with methanol from the position (origin) where the polystyrene beads are dropped and fixed on the TLC.
  • the horizontal axis of FIG. 41 is the intensity of light.
  • the vertical axis of FIG. 41 is the moving distance (cm) from the origin of the polystyrene beads.
  • the plasmon structure can capture the polystyrene beads by irradiating the stationary phase-supported plate with light of sufficient intensity.
  • the gold nanoparticles-containing layer By irradiating the surface of the gold nanoparticles-containing layer, which is a plasmon structure, with light of sufficient intensity at a wavelength capable of exciting plasmon resonance, the gold nanoparticles-containing layer becomes inorganic nanoparticles (quantum dots) in the mobile phase. ) was able to be captured.
  • the higher the light intensity the stronger the ability of the gold nanoparticles-containing layer to capture the inorganic nanoparticles.
  • the smaller the particle size of the inorganic nanoparticles the more difficult it is for the gold nanoparticles-containing layer to capture the inorganic nanoparticles.
  • the moving speed of the inorganic nanoparticles in the mobile phase could be reduced.
  • the stop position of the inorganic nanoparticles has a smaller Rf value than when no light is irradiated.
  • the plasmon structure is not limited to metal nanoparticles.
  • the material of the plasmon structure is not particularly limited as long as it is a particle capable of exciting surface plasmon resonance, such as gold nanoparticles, silver nanoparticles, and ITO particles.
  • the nanostructure that is the capture target or the separation target may be either an inorganic compound or an organic compound.
  • it may be a conductor, a semiconductor, or an insulator.
  • a highly insulating material such as polystyrene beads, an attractive force is generated between the plasmon structure and the nanostructure due to the microscopic localized electric field generated by the plasmon structure.
  • the separation device in the first aspect includes a stationary phase member having a stationary phase, a developing tank capable of accommodating the stationary phase member and the mobile phase, and a light irradiation unit that irradiates light toward the stationary phase member.
  • the stationary phase has an adsorbent and a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent.
  • the stationary phase member can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
  • the light irradiation unit irradiates the plasmon structure with light capable of exciting surface plasmon resonance.
  • the plasmon structure captures the nanostructure or the nanostructure in the mobile phase while the light-irradiating unit irradiates the stationary phase member with light. Decelerate the movement speed of.
  • the stationary phase has a first carrier layer and a second carrier layer that do not contain a plasmon structure but contain an adsorbent.
  • the plasmon structure-containing layer is arranged at a position between the first carrier layer and the second carrier layer.
  • the plasmon structure is a metal nanoparticle having a surface plasmon resonance peak.
  • the plasmon structure is a metal compound nanoparticles having a surface plasmon resonance peak.
  • the nanostructure is nanoparticles composed of an inorganic compound or an organic compound.
  • the stationary phase member in the eighth aspect has a stationary phase.
  • the stationary phase has an adsorbent and a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent.
  • the stationary phase member can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
  • the plasmon structure captures the nanostructure or the rate of movement of the nanostructure in the mobile phase during the period of irradiation of the stationary phase member with light. Decelerate.
  • the stationary phase has a first carrier layer and a second carrier layer that do not contain a plasmon structure but contain an adsorbent.
  • the plasmon structure-containing layer is arranged at a position between the first carrier layer and the second carrier layer.
  • the plasmon structure has a surface plasmon resonance peak.
  • a liquid chromatograph using a liquid as the mobile phase and a solid as the stationary phase is used.
  • a stationary phase containing a plasmon structure capable of exciting surface plasmon resonance is used.
  • a liquid containing nanostructures is used as the mobile phase.
  • the plasmon structure is irradiated with light to excite surface plasmon resonance in the plasmon structure, and an attractive force is generated between the plasmon structure and the nanostructure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

[Problem] To provide a separator and a separation method of a stationary phase member and a nanostructure, which can separate a target nanostructure by reducing the moving speed of the nanostructure, which is a separation target and present in a mobile phase, by irradiation with light, or by fixing, in any region of the stationary phase, the nanostructure in the mobile phase. [Solution] This separator 1000 comprises: a substrate 110; a stationary phase member 100 having a stationary phase on the substrate 110; a developing tank 1200 capable of accommodating the stationary phase member 100; and a light irradiation unit 1100 for irradiating light to the stationary phase member 100. The stationary phase of the stationary phase member 100 has an adsorbent and a plasmon structure-containing layer 130 in which gold nanoparticles P1 are dispersed in the adsorbent. The stationary phase member 100 moves the mobile phase including inorganic nanoparticles N1 and liquid L1 along the stationary phase.

Description

分離装置および固定相部材およびナノ構造体の分離方法Separation device and method for separating stationary phase members and nanostructures
 本明細書の技術分野は、ナノ粒子等を分離する分離装置および固定相部材およびナノ構造体の分離方法に関する。 The technical field of the present specification relates to a separation device for separating nanoparticles and the like, and a method for separating stationary phase members and nanostructures.
 混合物から目的化合物を分離する方法として、液体クロマトグラフィーがある。液体クロマトグラフィーでは、シリカゲル等の吸着剤を固定相として、その内部に移動相を通過させる。この移動相は、目的とする化合物を含む液体である。目的化合物は固定相への吸着と脱着とを繰り返しながら、固定相の内部を通過する。ここで、目的化合物の吸着・脱着の程度や吸着力が他の夾雑物と異なっている。そのため、混合物から目的化合物を分離することができる。 Liquid chromatography is a method for separating the target compound from the mixture. In liquid chromatography, an adsorbent such as silica gel is used as a stationary phase, and a mobile phase is passed through the stationary phase. This mobile phase is a liquid containing the compound of interest. The target compound passes through the inside of the stationary phase while repeatedly adsorbing and desorbing to the stationary phase. Here, the degree of adsorption / desorption and the adsorption force of the target compound are different from those of other impurities. Therefore, the target compound can be separated from the mixture.
 液体クロマトグラフィーを用いた種々の分離装置が開発されている。例えば、特許文献1には、移動相液体を2種類以上用いるグラディエント溶離についての技術が開示されている。複数の移動相液体が合流する合流点から試料注入点までの移動相液体流路の内容積の値を記憶し、この値から移動相液体の組成が試料注入点で変化し始めるまでの時間を計算する技術が開示されている(特許文献1の段落[0005])。 Various separation devices using liquid chromatography have been developed. For example, Patent Document 1 discloses a technique for gradient elution using two or more types of mobile phase liquids. The value of the internal volume of the mobile phase liquid flow path from the confluence point where multiple mobile phase liquids merge to the sample injection point is stored, and the time from this value until the composition of the mobile phase liquid begins to change at the sample injection point is calculated. A technique for calculating is disclosed (paragraph [0005] of Patent Document 1).
特開2002-014084号公報Japanese Unexamined Patent Publication No. 2002-014084
 このように通常の液体クロマトグラフィーでは、固定相中の吸着剤と、移動相中の化合物との間の基底状態あるいは光励起していない状態での相互作用を利用している。そして、同一固定相で一定の組成の移動相を用い、かつ、一定温度下での分析では、分離対象の化合物は、ある決まった位置に分離されるか、あるいは決まった保持時間で溶出する。そのため、通常の液体クロマトグラフィーでは、分離するターゲットとなる物質をその決まった分離位置以外の別の領域内に留めることは困難である。 As described above, in ordinary liquid chromatography, the interaction between the adsorbent in the stationary phase and the compound in the mobile phase in the ground state or in the non-photoexcited state is utilized. Then, in the analysis using a mobile phase having the same stationary phase and a constant composition and at a constant temperature, the compound to be separated is separated at a fixed position or eluted with a fixed retention time. Therefore, in ordinary liquid chromatography, it is difficult to keep the target substance to be separated in a region other than the fixed separation position.
 本明細書の技術が解決しようとする課題は、光照射によって、移動相中に存在する分離ターゲットであるナノ構造体の移動速度を減速し、または移動相中のナノ構造体を固定相中のある領域内に留めることにより、目的とするナノ構造体を分離することができる分離装置および固定相部材およびナノ構造体の分離方法を提供することである。 The problem to be solved by the technique of the present specification is to reduce the moving speed of the nanostructures which are separation targets existing in the mobile phase by light irradiation, or to reduce the moving speed of the nanostructures in the mobile phase to the stationary phase. The purpose of the present invention is to provide a separation device capable of separating a target nanostructure by keeping it within a certain region, and a method for separating a stationary phase member and the nanostructure.
 第1の態様における分離装置は、固定相を有する固定相部材と、固定相部材および移動相を収容可能な展開槽と、固定相部材に向けて光を照射する光照射部と、を有する。固定相は、吸着剤と、吸着剤にプラズモン構造体を配置したプラズモン構造体含有層と、を有する。固定相部材は、ナノ構造体を含む移動相を供給されることが可能であるとともに、移動相を固定相に沿って移動させることが可能である。 The separation device in the first aspect includes a stationary phase member having a stationary phase, a developing tank capable of accommodating the stationary phase member and the mobile phase, and a light irradiation unit that irradiates light toward the stationary phase member. The stationary phase has an adsorbent and a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent. The stationary phase member can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
 この分離装置は、光を照射することによりプラズモン構造体に表面プラズモン共鳴を励起させることができる。これにより、プラズモン構造体と移動相中のナノ構造体との間に引力が発生する。このため、分離装置は、移動相の液体中でナノ構造体の移動速度を減速させるか、または、ある領域内に留めることによりナノ構造体を捕捉して分離することができる。そのため、この分離装置を試験装置に用いることができる。また、この分離装置をナノ構造体の製造に用いることができる。 This separation device can excite surface plasmon resonance in the plasmon structure by irradiating it with light. As a result, an attractive force is generated between the plasmon structure and the nanostructure in the mobile phase. Therefore, the separator can capture and separate the nanostructures by slowing them down in the liquid of the mobile phase or by keeping them within a region. Therefore, this separation device can be used as a test device. In addition, this separation device can be used for manufacturing nanostructures.
 本明細書では、光照射によって、移動相中に存在する分離ターゲットであるナノ構造体の移動速度を減速し、または移動相中のナノ構造体を固定相中のある領域内に留めることにより、目的とするナノ構造体を分離することができる分離装置および固定相部材およびナノ構造体の分離方法が提供されている。 In the present specification, light irradiation slows down the moving speed of the nanostructures that are separation targets existing in the mobile phase, or keeps the nanostructures in the mobile phase within a region in the stationary phase. Separators capable of separating the nanostructures of interest and methods for separating stationary phase members and nanostructures are provided.
第1の実施形態の分離装置の概略構成を示す図である。It is a figure which shows the schematic structure of the separation device of 1st Embodiment. 第1の実施形態の固定相部材の構造を説明するための図である。It is a figure for demonstrating the structure of the stationary phase member of 1st Embodiment. 第1の実施形態のプラズモン構造体含有層の内部を概念的に示す図である。It is a figure which conceptually shows the inside of the plasmon structure containing layer of 1st Embodiment. 第1の実施形態の分離装置における移動相の流れを示す図である。It is a figure which shows the flow of the mobile phase in the separation apparatus of 1st Embodiment. 従来の薄層クロマトグラフィーを説明する図である。It is a figure explaining the conventional thin layer chromatography. 第1の実施形態の表面プラズモン共鳴を説明するための概念的な図である。It is a conceptual diagram for demonstrating the surface plasmon resonance of the first embodiment. 第1の実施形態の分離装置においてプラズモン構造体含有層の金ナノ粒子が移動相中の無機ナノ粒子を捕捉している様子を示す図である。It is a figure which shows the state that the gold nanoparticles of the plasmon structure-containing layer capture the inorganic nanoparticles in a mobile phase in the separation apparatus of 1st Embodiment. 第1の実施形態の固定相部材(金ナノ粒子を担持させたシリカゲル粒子層)の拡散反射スペクトル(縦軸:クベルカ-ムンク関数)である。It is a diffuse reflection spectrum (vertical axis: Kubelker-Munk function) of the stationary phase member (silica gel particle layer carrying gold nanoparticles) of 1st Embodiment. 第1の実施形態の変形例における固定相部材を示す図である。It is a figure which shows the stationary phase member in the modification of 1st Embodiment. 第2の実施形態の固定相部材の構造を説明するための図である。It is a figure for demonstrating the structure of the stationary phase member of the 2nd Embodiment. ライス形状ZAISナノ粒子を示すTEM画像である。9 is a TEM image showing rice-shaped ZAIS nanoparticles. 金ナノ粒子含有層を有する固定相部材に光を照射しながらZAISナノ粒子を展開した後の固定相部材の写真である。It is a photograph of the stationary phase member after developing ZAIS nanoparticles while irradiating the stationary phase member having the gold nanoparticles-containing layer with light. 金ナノ粒子含有層を有する固定相部材に光を照射せずにZAISナノ粒子を展開した後の固定相部材の写真である。It is a photograph of the stationary phase member after developing ZAIS nanoparticles without irradiating the stationary phase member having the gold nanoparticles-containing layer with light. 金ナノ粒子含有層を有さない固定相部材に光を照射しながらZAISナノ粒子を展開した後の固定相部材の写真である。It is a photograph of the stationary phase member after developing ZAIS nanoparticles while irradiating the stationary phase member having no gold nanoparticles-containing layer with light. 金ナノ粒子含有層を有さない固定相部材に光を照射せずにZAISナノ粒子を展開した後の固定相部材の写真である。It is a photograph of the stationary phase member after developing ZAIS nanoparticles without irradiating the stationary phase member having no gold nanoparticles-containing layer with light. 粒子径と量子ドットの到達位置(Rf値)との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter and the arrival position (Rf value) of a quantum dot. 粒子径が19nmのZAISナノ粒子に対して波長610nmの単色光を光強度を変えて固定相部材に展開した場合を示す写真である。It is a photograph showing the case where monochromatic light having a wavelength of 610 nm is developed on a stationary phase member by changing the light intensity with respect to ZAIS nanoparticles having a particle diameter of 19 nm. 粒子径が12nmのZAISナノ粒子に対して波長610nmの単色光を光強度を変えて固定相部材に展開した場合を示す写真である。It is a photograph showing the case where monochromatic light having a wavelength of 610 nm is developed on a stationary phase member by changing the light intensity with respect to ZAIS nanoparticles having a particle diameter of 12 nm. 金ナノ粒子含有層に照射する単色光(波長610nm)の光強度とZAISナノ粒子の到達位置(Rf値)との関係を示すグラフである。It is a graph which shows the relationship between the light intensity of monochromatic light (wavelength 610 nm) which irradiates a gold nanoparticle-containing layer, and the arrival position (Rf value) of ZAIS nanoparticles. 楕円球形ZAISナノ粒子とダンベル形状ZAISナノ粒子との混合状態を示す顕微鏡写真である。It is a micrograph which shows the mixed state of elliptical spherical ZAIS nanoparticles and dumbbell-shaped ZAIS nanoparticles. 楕円球形ZAISナノ粒子およびダンベル形状ZAISナノ粒子の粒子径分布を示すグラフである。It is a graph which shows the particle diameter distribution of elliptical spherical ZAIS nanoparticles and dumbbell-shaped ZAIS nanoparticles. (a)金ナノ粒子含有層を有する固定相部材に単色光(波長610nm)を照射しながら複数の粒子形状をもつZAISナノ粒子を展開した後の固定相部材の写真、(b)金ナノ粒子含有層に捕捉されなかったZAISナノ粒子の粒子径分布のグラフ、(c)光照射によって金ナノ粒子含有層に捕捉されたZAISナノ粒子の粒子径分布のグラフである。(A) Photograph of the stationary phase member after developing ZAIS nanoparticles having a plurality of particle shapes while irradiating the stationary phase member having the gold nanoparticles-containing layer with monochromatic light (wavelength 610 nm), (b) gold nanoparticles. It is a graph of the particle size distribution of ZAIS nanoparticles not captured in the containing layer, and (c) is a graph of the particle size distribution of ZAIS nanoparticles captured in the gold nanoparticles-containing layer by light irradiation. 金ナノ粒子の拡散反射スペクトル(縦軸:クベルカ-ムンク関数)と赤色LED光(610nm)およびバンドパスフィルターで単色光化したXeランプ光の近赤外光(820nm)の波長分布との関係を示すグラフである。The relationship between the diffuse reflection spectrum of gold nanoparticles (vertical axis: Kubelker-Munk function) and the wavelength distribution of red LED light (610 nm) and near-infrared light (820 nm) of Xe lamp light monochromaticized by a bandpass filter. It is a graph which shows. 赤色LED光(波長610nm)およびバンドパスフィルターで単色光したXeランプ光の近赤外光(波長820nm)のスペクトルを示すグラフである。It is a graph which shows the spectrum of the near-infrared light (wavelength 820 nm) of the red LED light (wavelength 610 nm), and the Xe lamp light monochromatically lit by a bandpass filter. 金ナノ粒子含有層に波長820nmの単色光を照射しながら粒子径19nmのZAISナノ粒子を展開した場合における照射光強度とRf値との関係を示すグラフである。6 is a graph showing the relationship between the irradiation light intensity and the Rf value when ZAIS nanoparticles having a particle diameter of 19 nm are developed while irradiating the gold nanoparticles-containing layer with monochromatic light having a wavelength of 820 nm. 異なる密度で金ナノ粒子を担持させたプラズモン構造体含有層の拡散反射スペクトル(縦軸:クベルカ-ムンク関数)と担持させた金ナノ粒子の粒子数密度(図中の数値)との関係を示すグラフである。The relationship between the diffuse reflection spectrum (vertical axis: Kubelker-Munk function) of the plasmon structure-containing layer carrying gold nanoparticles at different densities and the particle number density (numerical values in the figure) of the supported gold nanoparticles is shown. It is a graph. 波長610nmのLED光を照射してライス形状ZAISナノ粒子(19nm)を展開したときのRf値と照射光強度との関係および金ナノ粒子の粒子数密度の依存性を示すグラフである。It is a graph which shows the relationship between the Rf value and the irradiation light intensity when rice-shaped ZAIS nanoparticles (19 nm) are developed by irradiating LED light with a wavelength of 610 nm, and the dependence of the particle number density of gold nanoparticles. プラズモン構造体含有層である金ナノ粒子含有層中の金ナノ粒子の粒子数密度と金ナノ粒子含有層中にライス形状ZAISナノ粒子(粒子径19nm)を捕捉可能な最小の照射光強度(波長610nm)との関係を示すグラフである。The particle number density of gold nanoparticles in the gold nanoparticles-containing layer, which is a plasmon structure-containing layer, and the minimum irradiation light intensity (wavelength) capable of capturing rice-shaped ZAIS nanoparticles (particle size 19 nm) in the gold nanoparticles-containing layer. It is a graph which shows the relationship with 610 nm). プラズモン構造体として用いる金ナノ粒子の電子顕微鏡写真である。It is an electron micrograph of gold nanoparticles used as a plasmon structure. 大きさおよび形状の異なる金ナノ粒子を担持させた際のプラズモン構造体含有層に含まれる金原子数と粒子密度とをまとめた表である。It is a table summarizing the number of gold atoms contained in the plasmon structure-containing layer and the particle density when gold nanoparticles having different sizes and shapes are supported. 図30の種々の形状の金ナノ粒子を担持させたプラズモン構造体含有層を用いて波長610nmのLED光を照射してライス形状ZAISナノ粒子(19nm)を展開したときのRf値と照射光強度との関係を示すグラフである。Rf value and irradiation light intensity when rice-shaped ZAIS nanoparticles (19 nm) are developed by irradiating LED light having a wavelength of 610 nm using a plasmon structure-containing layer carrying gold nanoparticles of various shapes shown in FIG. It is a graph which shows the relationship with. 銀ナノ粒子を担持させたプラズモン構造体含有層の拡散反射スペクトル(縦軸:クベルカ-ムンク関数)を示すグラフである。It is a graph which shows the diffuse reflection spectrum (vertical axis: Kubelka-Munk function) of the plasmon structure-containing layer carrying silver nanoparticles. 銀ナノ粒子を担持させたプラズモン構造体含有層に波長460nmの青色LED光を種々の光強度で照射しながらライス形状ZAISナノ粒子(19nm)を展開した後の固定相担持プレートの写真である。It is a photograph of a stationary phase supporting plate after developing rice-shaped ZAIS nanoparticles (19 nm) while irradiating a plasmon structure-containing layer carrying silver nanoparticles with blue LED light having a wavelength of 460 nm at various light intensities. 図33における波長460nmの単色光強度とライス形状ZAISナノ粒子(19nm)のRf値との関係を示すグラフである。FIG. 33 is a graph showing the relationship between the monochromatic light intensity at a wavelength of 460 nm and the Rf value of rice-shaped ZAIS nanoparticles (19 nm) in FIG. 33. プラズモン構造体含有層である銀ナノ粒子含有層に照射する単色光強度と銀ナノ粒子含有層でのライス形状ZAISナノ粒子(19nm)の捕捉に必要な最小の照射光強度との関係を示すグラフである。A graph showing the relationship between the monochromatic light intensity of irradiating the silver nanoparticles-containing layer, which is a plasmon structure-containing layer, and the minimum irradiation light intensity required for capturing rice-shaped ZAIS nanoparticles (19 nm) in the silver nanoparticles-containing layer. Is. プラズモン構造体として銀ナノ粒子を用いて波長460nmの単色光を照射しながら種々の粒子径の量子ドットを展開した場合の量子ドットの粒子径とRf値との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter of a quantum dot, and the Rf value at the time of developing the quantum dot of various particle diameters while irradiating monochromatic light with a wavelength of 460 nm using silver nanoparticles as a plasmon structure. ITO粒子を担持させた固定相担持プレートの拡散反射スペクトル(縦軸:クベルカ-ムンク)を示すグラフである。It is a graph which shows the diffuse reflection spectrum (vertical axis: Kubelka-munch) of the stationary phase-supported plate which supported ITO particles. ITO粒子を担持させたプラズモン構造体含有層に波長820nmの単色光を照射しながらライス形状ZAISナノ粒子(19nm)を展開したときの固定相担持プレートの写真である。It is a photograph of a stationary phase supporting plate when rice-shaped ZAIS nanoparticles (19 nm) are developed while irradiating a plasmon structure-containing layer carrying ITO particles with monochromatic light having a wavelength of 820 nm. ITO粒子を担持させたプラズモン構造体含有層に波長820nmの単色光を照射しながらライス形状ZAISナノ粒子(19nm)を展開したときの照射光強度とRf値との関係を示すグラフであるIt is a graph which shows the relationship between the irradiation light intensity and the Rf value when rice-shaped ZAIS nanoparticles (19 nm) are developed while irradiating the plasmon structure-containing layer carrying ITO particles with monochromatic light having a wavelength of 820 nm. 金ナノ粒子含有層に波長610nmの単色光を照射しながらナノ構造体としてポリスチレンビーズを展開した後の固定相担持プレートの写真である。It is a photograph of a stationary phase-supported plate after developing polystyrene beads as nanostructures while irradiating a gold nanoparticle-containing layer with monochromatic light having a wavelength of 610 nm. 図40におけるポリスチレンビーズの原点からの移動距離(cm)と照射光強度との関係を示すグラフである。It is a graph which shows the relationship between the moving distance (cm) from the origin of polystyrene beads in FIG. 40, and irradiation light intensity.
 以下、具体的な実施形態について、分離装置および固定相部材およびナノ構造体の分離方法を例に挙げて図を参照しつつ説明する。本明細書において、プラズモン構造体は、表面プラズモン共鳴を励起可能な材料である。プラズモン構造体は、金(Au)ナノ粒子や銀(Ag)ナノ粒子などの表面プラズモン共鳴ピークをもつ金属ナノ粒子、または酸化インジウムスズ(ITO)や硫化銅などの表面プラズモン共鳴ピークをもつ金属化合物ナノ粒子である。本明細書において、ナノ構造体は、無機化合物または有機化合物からなるナノ粒子または分子である。また、本明細書における粒子の大きさは、走査型電子顕微鏡または透過型電子顕微鏡等の電子顕微鏡による観察により測定することとする。粒子の大きさは、粒子の立体形状を仮想的に横切る場合における最も長い線分の長さである。ただし、八面体粒子の大きさは、八面体の一辺の長さを粒子の大きさとする。 Hereinafter, a specific embodiment will be described with reference to the drawings, taking as an example a separation device, a stationary phase member, and a method for separating nanostructures. As used herein, the plasmon structure is a material capable of exciting surface plasmon resonance. The plasmon structure is a metal nanoparticle having a surface plasmon resonance peak such as gold (Au) nanoparticles or silver (Ag) nanoparticles, or a metal compound having a surface plasmon resonance peak such as indium tin oxide (ITO) or copper sulfide. It is a nanoparticle. As used herein, nanostructures are nanoparticles or molecules composed of inorganic or organic compounds. In addition, the size of the particles in the present specification shall be measured by observation with an electron microscope such as a scanning electron microscope or a transmission electron microscope. The particle size is the length of the longest line segment that virtually crosses the three-dimensional shape of the particle. However, for the size of octahedral particles, the length of one side of the octahedron is taken as the particle size.
(第1の実施形態)
1.分離装置
 図1は、第1の実施形態の分離装置1000の概略構成を示す図である。図1に示すように、分離装置1000は、固定相部材100を用いてナノ粒子を分離する。図1に示すように、分離装置1000は、光照射部1100と、展開槽1200と、を有する。
(First Embodiment)
1. 1. Separation device FIG. 1 is a diagram showing a schematic configuration of the separation device 1000 of the first embodiment. As shown in FIG. 1, the separator 1000 separates nanoparticles using the stationary phase member 100. As shown in FIG. 1, the separation device 1000 includes a light irradiation unit 1100 and a development tank 1200.
 光照射部1100は、展開槽1200の内部に配置された固定相部材100に向けて光を照射するためのものである。光照射部1100が発する光は、固定相部材100における固定された材料(プラズモン構造体)に表面プラズモン共鳴を励起可能な光を照射する。表面プラズモン共鳴を励起するために必要なエネルギーは、材料および表面プラズモン共鳴ピーク波長によって異なっている。光照射部1100が発する光は、プラズモン構造体の表面プラズモン共鳴を光励起できればよく、単色光であってもよい。光照射部1100は、例えば、LED光源、バンドパスフィルターを通して単色光化したXeランプ光源である。もちろん、その他の光源であってもよい。 The light irradiation unit 1100 is for irradiating light toward the stationary phase member 100 arranged inside the developing tank 1200. The light emitted by the light irradiation unit 1100 irradiates the fixed material (plasmon structure) in the stationary phase member 100 with light capable of exciting surface plasmon resonance. The energy required to excite surface plasmon resonance depends on the material and the surface plasmon resonance peak wavelength. The light emitted by the light irradiation unit 1100 may be monochromatic light as long as it can photoexcitate the surface plasmon resonance of the plasmon structure. The light irradiation unit 1100 is, for example, an Xe lamp light source that is monochromaticized through an LED light source or a bandpass filter. Of course, it may be another light source.
 展開槽1200は、固定相部材100および移動相である液体L1を収容可能なものである。展開槽1200は、透明材料からなるとよい。光照射部1100からの光を透過し、固定相部材100に光を照射するためである。展開槽1200の材質は、例えば、ガラスである。もちろん、その他の透明材料であってもよい。液体L1は、移動相である溶媒である。液体L1は、分離ターゲットであるナノ構造体として、無機ナノ粒子を含有してもよい。 The developing tank 1200 can accommodate the stationary phase member 100 and the liquid L1 which is the mobile phase. The developing tank 1200 is preferably made of a transparent material. This is because the light from the light irradiation unit 1100 is transmitted and the stationary phase member 100 is irradiated with the light. The material of the developing tank 1200 is, for example, glass. Of course, other transparent materials may be used. The liquid L1 is a solvent that is a mobile phase. The liquid L1 may contain inorganic nanoparticles as the nanostructure that is the separation target.
2.固定相部材(固定相担持プレート)
 図2は、第1の実施形態の固定相部材100の構造を説明するための図である。固定相部材100は、液体クロマトグラフの固定相を有する部材である。図2に示すように、固定相部材100は、基材110と、担体層120と、プラズモン構造体含有層130と、担体層140と、を有する。固定相部材100は、プラズモン構造体含有層130を除いて、薄層クロマトグラフィーの薄層板(プレート)とほぼ同様の構造を有する。そのため、担体層120、140と、プラズモン構造体含有層130とは、いずれも、基材110の上でクロマトグラフにおける固定相として働く。固定相部材100の固定相は、後述する分離ターゲットである無機ナノ粒子を含む液体を供給されることが可能であるとともに、移動相を固定相に沿って移動させるものである。
2. Fixed phase member (fixed phase supporting plate)
FIG. 2 is a diagram for explaining the structure of the stationary phase member 100 of the first embodiment. The stationary phase member 100 is a member having a stationary phase of a liquid chromatograph. As shown in FIG. 2, the stationary phase member 100 has a base material 110, a carrier layer 120, a plasmon structure-containing layer 130, and a carrier layer 140. The stationary phase member 100 has a structure substantially similar to that of a thin layer plate (plate) of thin layer chromatography, except for the plasmon structure-containing layer 130. Therefore, both the carrier layers 120 and 140 and the plasmon structure-containing layer 130 act as stationary phases in the chromatograph on the base material 110. The stationary phase of the stationary phase member 100 can be supplied with a liquid containing inorganic nanoparticles, which is a separation target described later, and moves the mobile phase along the stationary phase.
 基材110は、担体層120、140と、プラズモン構造体含有層130と、を支持するためのものである。基材110は、液体L1を吸収せず、液体L1を浸透させない。基材110は、例えば、ガラス板である。 The base material 110 is for supporting the carrier layers 120 and 140 and the plasmon structure-containing layer 130. The base material 110 does not absorb the liquid L1 and does not allow the liquid L1 to permeate. The base material 110 is, for example, a glass plate.
 担体層120は、移動相である液体L1を浸透させることができる層である。担体層120は、プラズモン構造体を含有せず吸着剤を含有する第1担体層である。吸着剤の材質として、例えば、シリカゲル、アルミナ、活性炭、珪藻土、濾紙、セルロース、ゼオライト、有機高分子などが挙げられる。または、その他の吸着性の高い材料であるとよい。担体層120は、固体である。 The carrier layer 120 is a layer capable of permeating the liquid L1 which is a mobile phase. The carrier layer 120 is a first carrier layer that does not contain a plasmon structure but contains an adsorbent. Examples of the material of the adsorbent include silica gel, alumina, activated carbon, diatomaceous earth, filter paper, cellulose, zeolite, and organic polymer. Alternatively, it may be another material having high adsorptivity. The carrier layer 120 is a solid.
 プラズモン構造体含有層130は、混合物中にある目的とする無機ナノ粒子を捕捉するための層である。プラズモン構造体含有層130は、担体層120と担体層140との間にこれらに挟まれた位置に配置されている。プラズモン構造体含有層130は、固体である。プラズモン構造体含有層130は、移動相である液体L1を浸透させることができる。プラズモン構造体含有層130は、吸着剤とプラズモン構造体(金属ナノ粒子)とを含有する。 The plasmon structure-containing layer 130 is a layer for capturing the target inorganic nanoparticles in the mixture. The plasmon structure-containing layer 130 is arranged between the carrier layer 120 and the carrier layer 140 at a position sandwiched between them. The plasmon structure-containing layer 130 is a solid. The plasmon structure-containing layer 130 can permeate the liquid L1 which is the mobile phase. The plasmon structure-containing layer 130 contains an adsorbent and a plasmon structure (metal nanoparticles).
 プラズモン構造体含有層130では、シリカゲルなどの吸着剤粒子上に、金属ナノ粒子が十分に離散的に固定されて配置されている。金属ナノ粒子は、一つ一つが分離されていてもよいし、ある程度の凝集体を形成していてもよい。ここで用いる金属ナノ粒子は、表面プラズモン共鳴ピークを示すものであればどのような材料でもよく、例えば、金ナノ粒子、銀ナノ粒子、銅ナノ粒子あるいはそれらを含む合金ナノ粒子である。 In the plasmon structure-containing layer 130, metal nanoparticles are sufficiently discretely fixed and arranged on adsorbent particles such as silica gel. The metal nanoparticles may be separated one by one or may form aggregates to some extent. The metal nanoparticles used here may be any material as long as they exhibit a surface plasmon resonance peak, and are, for example, gold nanoparticles, silver nanoparticles, copper nanoparticles, or alloy nanoparticles containing them.
 金属ナノ粒子は、光照射部1100から光を照射されることによりその表面プラズモン共鳴ピークを励起可能なプラズモン構造体である。プラズモン構造体含有層130は、プラズモン構造体を含有する。 The metal nanoparticles are plasmon structures capable of exciting the surface plasmon resonance peak by being irradiated with light from the light irradiation unit 1100. The plasmon structure-containing layer 130 contains a plasmon structure.
 担体層140は、移動相である液体L1を浸透させることができる層である。担体層140は、プラズモン構造体を含有せず吸着剤を含有する第2担体層である。吸着剤の材質として、例えば、シリカゲル、アルミナ、活性炭、珪藻土、濾紙、セルロース、ゼオライト、有機高分子などが挙げられる。または、その他の吸着性の高い材料であるとよい。担体層140は、固体である。 The carrier layer 140 is a layer capable of permeating the liquid L1 which is a mobile phase. The carrier layer 140 is a second carrier layer that does not contain a plasmon structure but contains an adsorbent. Examples of the material of the adsorbent include silica gel, alumina, activated carbon, diatomaceous earth, filter paper, cellulose, zeolite, and organic polymer. Alternatively, it may be another material having high adsorptivity. The carrier layer 140 is a solid.
 担体層120、プラズモン構造体含有層130、担体層140は、移動相である液体L1をその内部に移動させることのできる固定相である。つまり、移動相である液体L1は、担体層120、プラズモン構造体含有層130、担体層140の内部を固定相に沿って移動することができる。 The carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140 are stationary phases capable of moving the liquid L1 which is the mobile phase into the carrier layer 120. That is, the liquid L1 which is the mobile phase can move inside the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140 along the stationary phase.
 図3は、プラズモン構造体含有層130の内部を概念的に示す図である。プラズモン構造体として、例えば、粒径が1nm以上500nm以下の金属ナノ粒子P1が挙げられる。金属ナノ粒子P1は、数個から数百個程度で凝集しながら吸着剤上で離散的に配置されていればよい。または、金属ナノ粒子P1が吸着剤上で一つ一つ完全に離散して均一に分散して固定されていてもよい。吸着剤中には、数百μmレベル以下で金属ナノ粒子P1がまばらに配置されている。 FIG. 3 is a diagram conceptually showing the inside of the plasmon structure-containing layer 130. Examples of the plasmon structure include metal nanoparticles P1 having a particle size of 1 nm or more and 500 nm or less. The metal nanoparticles P1 may be discretely arranged on the adsorbent while aggregating in the order of several to several hundreds. Alternatively, the metal nanoparticles P1 may be completely dispersed and uniformly dispersed and fixed on the adsorbent one by one. Metal nanoparticles P1 are sparsely arranged in the adsorbent at a level of several hundred μm or less.
3.液体(移動相)
 液体L1は、固定相に対して移動する移動相である。分離の目的とするナノ構造体は、移動相と固定相との間を固定相に吸着と脱着とを繰り返しながら、移動相とともに固定相中を移動する。ナノ構造体は、例えば、無機ナノ粒子である。したがって、用いる液体L1は、分離対象となる無機ナノ粒子を均一に分散あるいは溶解させる能力をわずかでも有していればよい。目的とする無機ナノ粒子を含む混合物は、液体L1にはじめから分散させておく必要はない。
3. 3. Liquid (mobile phase)
The liquid L1 is a mobile phase that moves relative to the stationary phase. The nanostructure to be separated moves in the stationary phase together with the mobile phase while repeating adsorption and desorption to the stationary phase between the mobile phase and the stationary phase. The nanostructure is, for example, inorganic nanoparticles. Therefore, the liquid L1 to be used may have even a slight ability to uniformly disperse or dissolve the inorganic nanoparticles to be separated. The mixture containing the target inorganic nanoparticles does not need to be dispersed in the liquid L1 from the beginning.
 図4は、第1の実施形態の分離装置1000における移動相の流れを示す図である。図4に示すように、液体L1は矢印J1の向きに固定相の内部に浸入する。移動相である液体L1は、固定相である担体層120、プラズモン構造体含有層130、担体層140の内部を移動するが、基材110の内部を移動することはできない。これは、薄層クロマトグラフィーと同様である。 FIG. 4 is a diagram showing the flow of the mobile phase in the separation device 1000 of the first embodiment. As shown in FIG. 4, the liquid L1 penetrates into the stationary phase in the direction of arrow J1. The liquid L1 as the mobile phase moves inside the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140, which are the stationary phases, but cannot move inside the base material 110. This is similar to thin layer chromatography.
4.無機ナノ粒子(ナノ構造体)
 無機ナノ粒子は、プラズモン構造体が捕捉もしくは移動速度を減速させるための標的となるナノ構造体である。無機ナノ粒子の大きさは、例えば、0.5nm以上100nm以下である。無機ナノ粒子は、薄層クロマトグラフィーと同様に、担体層120のごく一部に点状に予め担持させておくとよい。この場合には、移動相(液体L1)が矢印J1の向きに固定相の内部に浸入する際に無機ナノ粒子は移動相に供給される。あるいは、無機ナノ粒子が分散された液体L1を固定相部材100の担体層120に供給してもよい。ここで、無機ナノ粒子として、例えば、金属、合金、半導体、金属酸化物などのナノ粒子が挙げられる。
4. Inorganic nanoparticles (nanostructures)
Inorganic nanoparticles are nanostructures that are targets for the plasmon structure to capture or slow down its movement rate. The size of the inorganic nanoparticles is, for example, 0.5 nm or more and 100 nm or less. Similar to thin layer chromatography, the inorganic nanoparticles may be supported in advance in dots on a small part of the carrier layer 120. In this case, the inorganic nanoparticles are supplied to the mobile phase when the mobile phase (liquid L1) penetrates into the stationary phase in the direction of arrow J1. Alternatively, the liquid L1 in which the inorganic nanoparticles are dispersed may be supplied to the carrier layer 120 of the stationary phase member 100. Here, examples of the inorganic nanoparticles include nanoparticles such as metals, alloys, semiconductors, and metal oxides.
 無機ナノ粒子を形成する元素として、例えば、Mg、Zn、Cd、Hg、Al、Ga、In、Ti、Zr、Si、Ge、Sn、Pb、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、V、Ta、Nb、Cr、Mo、W、Mn、Re、Cu、Ag、Au、Sb、Bi、S、Se、Te、F、Cl、Br、Iが挙げられる。また、上記以外の元素であってもよい。 Elements that form inorganic nanoparticles include, for example, Mg, Zn, Cd, Hg, Al, Ga, In, Ti, Zr, Si, Ge, Sn, Pb, Fe, Ru, Co, Rh, Ir, Ni, Pd. , Pt, V, Ta, Nb, Cr, Mo, W, Mn, Re, Cu, Ag, Au, Sb, Bi, S, Se, Te, F, Cl, Br, I. Further, it may be an element other than the above.
5.薄層クロマトグラフィー(TLC)
 図5は、従来の薄層クロマトグラフィーを説明する図である。本実施形態の分離装置1000は、薄層クロマトグラフィーとは異なっている。しかし、分離装置1000は、薄層クロマトグラフィーと共通する部分がある。そのため、薄層クロマトグラフィーについて簡単に説明する。
5. Thin Layer Chromatography (TLC)
FIG. 5 is a diagram illustrating conventional thin layer chromatography. The separator 1000 of this embodiment is different from thin layer chromatography. However, the separator 1000 has some parts in common with thin layer chromatography. Therefore, thin layer chromatography will be briefly described.
 TLCプレートC1は、例えば、ガラスの表面にシリカゲル粒子を固定相として数百μmの厚みで担持したものである。TLCプレートC1の原点(K1)の位置に試料S1を点状に滴下し、乾燥させて担持させる。そして、TLCプレートC1の下部(K1側)を展開溶媒に浸すと、毛細管現象によって、展開溶媒は矢印J2に平行な向きに移動する。ここで、TLCプレートC1のシリカゲルは固定相であり、展開溶媒は移動相である。 The TLC plate C1 is, for example, supported on the surface of glass with silica gel particles as a stationary phase and having a thickness of several hundred μm. Sample S1 is dropped in dots at the position of the origin (K1) of the TLC plate C1, dried and supported. Then, when the lower part (K1 side) of the TLC plate C1 is immersed in the developing solvent, the developing solvent moves in a direction parallel to the arrow J2 due to the capillary phenomenon. Here, the silica gel of the TLC plate C1 is a stationary phase, and the developing solvent is a mobile phase.
 試料S1は、矢印J2の向きに移動する。しかし、試料S1は実際には担体であるシリカゲルへの吸着と脱着とを繰り返しながら矢印J2の向きに上昇する。そのため、例えば、展開溶媒が位置K1から位置K3まで達したときに、試料S1は、位置K1から位置K2まで達する。このように、展開溶媒の到達位置と試料S1の到達位置とに差が生じる。移動相自体の移動距離と、移動相中の目的化合物の移動距離とに差が生じるのである。 Sample S1 moves in the direction of arrow J2. However, the sample S1 actually rises in the direction of the arrow J2 while repeating adsorption and desorption to the silica gel which is the carrier. Therefore, for example, when the developing solvent reaches the position K1 to the position K3, the sample S1 reaches the position K1 to the position K2. In this way, there is a difference between the arrival position of the developing solvent and the arrival position of the sample S1. There is a difference between the moving distance of the mobile phase itself and the moving distance of the target compound in the mobile phase.
 ここで、Rf値を下記のように定義することができる。
    Rf = W2/W1
距離W1は、展開溶媒の移動距離である。距離W2は、試料S1の移動距離である。展開溶媒の組成、温度、担体、スポット量を管理すれば、Rf値は再現性を備えている。そのため、試料S1の分離および同定に薄層クロマトグラフィーを用いることができる。
Here, the Rf value can be defined as follows.
Rf = W2 / W1
The distance W1 is the moving distance of the developing solvent. The distance W2 is the moving distance of the sample S1. If the composition, temperature, carrier, and spot amount of the developing solvent are controlled, the Rf value has reproducibility. Therefore, thin layer chromatography can be used for the separation and identification of sample S1.
 このように薄層クロマトグラフィーを用いると、展開溶媒を用いて混合物試料から目的とする化合物を分離することもできる。しかし、ナノ粒子を試料S1として、この方法によって分離および同定しようとする場合に、目的ナノ粒子が停止する到達位置K2は、夾雑物の到達位置に対して十分に分離しているとは限らない。また、分離しようとするナノ粒子が必ずしも色彩を備えているとは限らない。 Using thin layer chromatography in this way, it is also possible to separate the target compound from the mixture sample using a developing solvent. However, when the nanoparticles are used as sample S1 and separation and identification are attempted by this method, the arrival position K2 at which the target nanoparticles stop is not always sufficiently separated from the arrival position of the contaminants. .. Also, the nanoparticles to be separated do not always have color.
6.粒子を分離する原理
 第1の実施形態では、対象物を含む無機ナノ粒子混合物を液体L1により展開し、プラズモン構造体含有層130の金属ナノ粒子の表面プラズモン共鳴を光励起する。これにより無機ナノ粒子に選択的に働く力を利用して、目的とする無機ナノ粒子を選択的に捕捉する。または、目的とする無機ナノ粒子の移動速度を選択的に減速させる。これにより、サンプルとして用いた混合物中に存在する夾雑物から目的とするナノ粒子を分離する。
6. Principle of Separation of Particles In the first embodiment, a mixture of inorganic nanoparticles containing an object is developed by a liquid L1 and the surface plasmon resonance of the metal nanoparticles of the plasmon structure-containing layer 130 is photoexcited. As a result, the target inorganic nanoparticles are selectively captured by utilizing the force that selectively acts on the inorganic nanoparticles. Alternatively, the moving speed of the target inorganic nanoparticles is selectively reduced. As a result, the desired nanoparticles are separated from the contaminants present in the mixture used as the sample.
6-1.表面プラズモン共鳴
 図6は、第1の実施形態の局所的な表面プラズモン共鳴を説明するための概念的な図である。図6の横軸は光の波の進行方向を表している。図6の縦軸は光の電場強度を表している。図6には、表面プラズモン共鳴を示す金属ナノ粒子、例えば、金ナノ粒子P1a、P1b、P1cが描かれている。金ナノ粒子P1a、P1b、P1cは、異なる位置にある3個の粒子とみなしてもよい。また、金ナノ粒子P1a、P1b、P1cは、1個の金ナノ粒子P1の異なる時刻における様子を示しているものと考えてもよい。
6-1. Surface plasmon resonance FIG. 6 is a conceptual diagram for explaining the local surface plasmon resonance of the first embodiment. The horizontal axis of FIG. 6 represents the traveling direction of the light wave. The vertical axis of FIG. 6 represents the electric field intensity of light. In FIG. 6, metal nanoparticles exhibiting surface plasmon resonance, for example, gold nanoparticles P1a, P1b, P1c are drawn. The gold nanoparticles P1a, P1b, and P1c may be regarded as three particles at different positions. Further, the gold nanoparticles P1a, P1b, and P1c may be considered to indicate the appearance of one gold nanoparticle P1 at different times.
 光は、振動する電場と磁場とを形成しながら伝播する。人が肉眼で認識できる程度の大きさの物体は、光の波長に比べて十分に大きい。そのため、光の電場の影響が現象として現れることは稀である。しかし、光の波長程度以下のサイズのナノ粒子は、光が形成する局所的な電場の影響を受ける。 Light propagates while forming a vibrating electric and magnetic fields. An object that is large enough to be perceived by the naked eye is sufficiently large compared to the wavelength of light. Therefore, the influence of the electric field of light rarely appears as a phenomenon. However, nanoparticles with a size smaller than the wavelength of light are affected by the local electric field formed by light.
 金ナノ粒子P1aは、光が形成する上向きの電場を受けている。そのため、金ナノ粒子P1aの電子は、図中の下側に集まる。金ナノ粒子P1bは、光が形成する下向きの電場を受けている。そのため、金ナノ粒子P1bの電子は、図中の上側に集まる。金ナノ粒子P1cは、光が形成する上向きの電場を受けている。そのため、金ナノ粒子P1cの電子は、図中の下側に集まる。 The gold nanoparticles P1a are receiving an upward electric field formed by light. Therefore, the electrons of the gold nanoparticles P1a gather at the lower side in the figure. The gold nanoparticles P1b are subjected to a downward electric field formed by light. Therefore, the electrons of the gold nanoparticles P1b are concentrated on the upper side in the figure. The gold nanoparticles P1c are subject to an upward electric field formed by light. Therefore, the electrons of the gold nanoparticles P1c are collected at the lower side in the figure.
 そのため、金ナノ粒子P1の電子は、光の電場を受けて振動する。つまり、電子の集団振動現象が生じる。このようにして、表面プラズモン共鳴が光励起される。後述するように、この表面プラズモン共鳴は、金属ナノ粒子近傍に強い強度の局所電場を形成し、その局所電場がナノ粒子を捕捉するために重要な役割を果たす。 Therefore, the electrons of the gold nanoparticles P1 vibrate in response to the electric field of light. That is, a collective vibration phenomenon of electrons occurs. In this way, surface plasmon resonance is photoexcited. As will be described later, this surface plasmon resonance forms a strong local electric field in the vicinity of the metal nanoparticles, and the local electric field plays an important role in capturing the nanoparticles.
6-2.移動相中の無機ナノ粒子に働く力
 上記のようにプラズモン励起された金ナノ粒子P1の周囲には、光の電場強度に応じた局所電場が発生する。金ナノ粒子P1は、固定相に固定されている。そして、移動相中のナノ粒子は、光の電場および固定相中の金ナノ粒子P1が形成する電場の中を移動する。しかし、目的とする無機ナノ粒子が感じる光の電場は非常に弱く、移動相中のナノ粒子が感じる電場は、より強度の大きい金ナノ粒子P1が形成する局在電場で近似してよい。
6-2. Force acting on the inorganic nanoparticles in the mobile phase A local electric field is generated around the plasmon-excited gold nanoparticles P1 as described above according to the electric field intensity of light. The gold nanoparticles P1 are fixed in the stationary phase. Then, the nanoparticles in the mobile phase move in the electric field of light and the electric field formed by the gold nanoparticles P1 in the stationary phase. However, the electric field of light felt by the target inorganic nanoparticles is very weak, and the electric field felt by the nanoparticles in the mobile phase may be approximated by the localized electric field formed by the stronger gold nanoparticles P1.
 そこで、移動相中のナノ粒子は、次式で示される引力Fを受ける。
    F = (1/2)・α・∇E
        F:移動相中のナノ粒子に働く引力
        α:移動相中のナノ粒子の分極率
        E:金ナノ粒子が形成する局所的な電場
Therefore, the nanoparticles in the mobile phase receive the attractive force F represented by the following equation.
F = (1/2) ・ α ・ ∇E 2
F: Attractive force acting on nanoparticles in mobile phase α: Polarizability of nanoparticles in mobile phase E: Local electric field formed by gold nanoparticles
 図7は、第1の実施形態の分離装置1000においてプラズモン構造体含有層130の金ナノ粒子P1が移動相中の無機ナノ粒子N1を捕捉している様子を示す図である。このように、光照射部1100が固定相部材100に向けて光を照射し続けている間には、光励起された金ナノ粒子P1が、局所的な電場Eを形成し続ける。移動相中の無機ナノ粒子N1は、局所的な電場Eによる引力により減速される。局所的な電場Eが強い場合には、移動相中の無機ナノ粒子N1は、金ナノ粒子P1に捕捉される。つまり、光照射部1100が固定相部材100に向けて光を照射し続けている間には、固定相中の金ナノ粒子P1は移動相中の無機ナノ粒子N1の移動速度を選択的に減速するか、あるいは無機ナノ粒子N1を完全に捕捉し続ける。 FIG. 7 is a diagram showing how the gold nanoparticles P1 of the plasmon structure-containing layer 130 capture the inorganic nanoparticles N1 in the mobile phase in the separation device 1000 of the first embodiment. In this way, while the light irradiation unit 1100 continues to irradiate the stationary phase member 100 with light, the photoexcited gold nanoparticles P1 continue to form a local electric field E. The inorganic nanoparticles N1 in the mobile phase are decelerated by the attractive force of the local electric field E. When the local electric field E is strong, the inorganic nanoparticles N1 in the mobile phase are captured by the gold nanoparticles P1. That is, while the light irradiation unit 1100 continues to irradiate the stationary phase member 100 with light, the gold nanoparticles P1 in the stationary phase selectively reduce the moving speed of the inorganic nanoparticles N1 in the mobile phase. Or continue to capture the inorganic nanoparticles N1 completely.
 なお、無機ナノ粒子N1は、それぞれ異なる大きさを備えている。大きさの異なるそれぞれの無機ナノ粒子N1は、それぞれ異なる分極率を有する。つまり、粒子径の異なる無機ナノ粒子N1に対して、異なる力が働くこととなる。 The inorganic nanoparticles N1 have different sizes. Each inorganic nanoparticle N1 having a different size has a different polarizability. That is, different forces act on the inorganic nanoparticles N1 having different particle diameters.
 このように、プラズモン構造体含有層130のプラズモン構造体(金属ナノ粒子)は、表面プラズモンを励起することによって移動相中の無機ナノ粒子N1に引力を作用させる。そのため、プラズモン構造体含有層130は、光を照射されている期間内に移動相中の無機ナノ粒子N1を捕捉するか、または移動相中の無機ナノ粒子N1の移動速度を減速させる。 As described above, the plasmon structure (metal nanoparticles) of the plasmon structure-containing layer 130 exerts an attractive force on the inorganic nanoparticles N1 in the mobile phase by exciting the surface plasmon. Therefore, the plasmon structure-containing layer 130 captures the inorganic nanoparticles N1 in the mobile phase during the period of being irradiated with light, or slows down the moving speed of the inorganic nanoparticles N1 in the mobile phase.
6-3.光照射部の波長
 分離装置1000の光照射部1100が照射する光の出力が大きいほど、形成される電場は大きくなる傾向がある。また、プラズモン構造体(金ナノ粒子P1)をプラズモン励起するために、好適な光の波長領域が存在する。
6-3. The larger the output of the light emitted by the light irradiation unit 1100 of the wavelength separator 1000 of the light irradiation unit, the larger the electric field formed tends to be. In addition, there is a suitable wavelength region of light for plasmon-exciting the plasmon structure (gold nanoparticles P1).
 図8は、プラズモン構造体として金ナノ粒子P1を用いるとともに固定相としてシリカゲル粒子を用いた第1の実施形態の固定相部材100の拡散反射スペクトルである。図8の横軸は光の波長である。図8の縦軸はクベルカ-ムンク関数である。ここで、固定相部材100のプラズモン構造体含有層130は、金ナノ粒子(粒子径:12nm)を有している。図8に示すように、プラズモン構造体含有層130を有する固定相部材100に対して、500nm以上の波長領域でブロードな表面プラズモン共鳴ピークが観察される。特に、600nm以上900nm以下の波長領域でクベルカ-ムンク関数が大きい。つまり、この波長領域で固定相部材100の光の吸収および散乱が大きいことを示している。 FIG. 8 is a diffuse reflection spectrum of the stationary phase member 100 of the first embodiment in which gold nanoparticles P1 are used as the plasmon structure and silica gel particles are used as the stationary phase. The horizontal axis of FIG. 8 is the wavelength of light. The vertical axis of FIG. 8 is the Kubelker-Munch function. Here, the plasmon structure-containing layer 130 of the stationary phase member 100 has gold nanoparticles (particle diameter: 12 nm). As shown in FIG. 8, a broad surface plasmon resonance peak is observed in a wavelength region of 500 nm or more with respect to the stationary phase member 100 having the plasmon structure-containing layer 130. In particular, the Kubelker-Munch function is large in the wavelength region of 600 nm or more and 900 nm or less. That is, it shows that the light absorption and scattering of the stationary phase member 100 is large in this wavelength region.
 そのため、この金ナノ粒子に対しては、光照射部1100が発する光は、この波長領域の光であるとよい。光照射部1100がこの波長領域の光を固定相部材100に向けて照射すると、照射された光のエネルギーは固定相部材100のプラズモン構造体含有層130の表面プラズモン励起に利用される。 Therefore, for the gold nanoparticles, the light emitted by the light irradiation unit 1100 is preferably light in this wavelength region. When the light irradiation unit 1100 irradiates the stationary phase member 100 with light in this wavelength region, the energy of the irradiated light is used for surface plasmon excitation of the plasmon structure-containing layer 130 of the stationary phase member 100.
 第1の実施形態では、光照射部1100は、例えば、波長610nmの赤色光を固定相部材100に向けて照射する。そのため、プラズモン構造体含有層130においては、金ナノ粒子P1が比較的強いプラズモン励起を起こす。 In the first embodiment, the light irradiation unit 1100 irradiates, for example, red light having a wavelength of 610 nm toward the stationary phase member 100. Therefore, in the plasmon structure-containing layer 130, the gold nanoparticles P1 cause relatively strong plasmon excitation.
7.移動相中のナノ粒子の分離方法
7-1.展開槽収容工程
 まず、固定相部材100の下部で、薄層クロマトグラフィーの薄層板(プレート)のときと同様(図5のK1の位置)に、目的とする無機ナノ粒子を含むサンプル溶液を少量滴下し、乾燥させて担持する。この際、サンプルの固定位置は、プラズモン構造体含有層130よりも外側の担体層120の領域である。この固定相部材100を、展開槽1200の内部に収容する。これにより、プラズモン構造体含有層130を有する固定相が展開槽1200の内部に収容される。また、液体L1を展開槽1200の内部に収容する。このときに固定相部材100に担持させたサンプルの位置が、液体L1の液面よりも高い位置になるように、液体L1の量を調節する。
7. Separation method of nanoparticles in mobile phase 7-1. Development tank accommodating step First, in the lower part of the stationary phase member 100, a sample solution containing the target inorganic nanoparticles is applied in the same manner as in the case of the thin layer plate (plate) of thin layer chromatography (position of K1 in FIG. 5). A small amount is dropped, dried and supported. At this time, the fixed position of the sample is the region of the carrier layer 120 outside the plasmon structure-containing layer 130. The stationary phase member 100 is housed inside the developing tank 1200. As a result, the stationary phase having the plasmon structure-containing layer 130 is housed inside the developing tank 1200. Further, the liquid L1 is housed inside the developing tank 1200. At this time, the amount of the liquid L1 is adjusted so that the position of the sample supported on the stationary phase member 100 is higher than the liquid level of the liquid L1.
7-2.光照射工程
 展開槽1200の内部に固定相部材100および液体L1(移動相)を収容するとすぐに、毛細管現象によって移動相は固定相に沿って上昇し始める。この後すぐに、光照射部1100から展開槽1200の固定相部材100に光を照射する。光照射部1100は、特に、プラズモン構造体含有層130に光を照射するとよい。
7-2. Light irradiation step As soon as the stationary phase member 100 and the liquid L1 (mobile phase) are housed inside the developing tank 1200, the mobile phase begins to rise along the stationary phase due to the capillary phenomenon. Immediately after this, the light irradiation unit 1100 irradiates the stationary phase member 100 of the developing tank 1200 with light. The light irradiation unit 1100 may particularly preferably irradiate the plasmon structure-containing layer 130 with light.
 このように、固定相部材100に向けて光を照射することにより、プラズモン構造体含有層130中の金ナノ粒子P1には表面プラズモンが励起される。液体L1の移動相は、固定相部材100の担体層120からプラズモン構造体含有層130に向けて移動する。プラズモン構造体含有層130では、金ナノ粒子P1が離散的に配置されており、その表面プラズモン共鳴が励起されることにより局在電場が生じる。目的とする無機ナノ粒子N1は移動相である液体L1とともに固定相との吸着と脱着とを繰り返しながら、固定相部材100を上昇する。このとき、移動相が金ナノ粒子P1の箇所を通過する際には金ナノ粒子P1近傍に生じた表面プラズモンによる局在電場によって、プラズモン構造体である金ナノ粒子P1と移動相中の無機ナノ粒子N1との間で引力が働き、移動相中の無機ナノ粒子N1の移動速度が減速する。または移動相中の無機ナノ粒子N1が金ナノ粒子P1の近傍に完全に捕捉される。 By irradiating the stationary phase member 100 with light in this way, surface plasmons are excited to the gold nanoparticles P1 in the plasmon structure-containing layer 130. The mobile phase of the liquid L1 moves from the carrier layer 120 of the stationary phase member 100 toward the plasmon structure-containing layer 130. In the plasmon structure-containing layer 130, gold nanoparticles P1 are discretely arranged, and a localized electric field is generated by exciting the surface plasmon resonance thereof. The target inorganic nanoparticles N1 ascend the stationary phase member 100 while repeating adsorption and desorption with the stationary phase together with the liquid L1 which is the mobile phase. At this time, when the mobile phase passes through the location of the gold nanoparticles P1, the localized electric field generated by the surface plasmon generated in the vicinity of the gold nanoparticles P1 causes the gold nanoparticles P1 which is a plasmon structure and the inorganic nanoparticles in the mobile phase. An attractive force acts with the particles N1 to reduce the moving speed of the inorganic nanoparticles N1 in the mobile phase. Alternatively, the inorganic nanoparticles N1 in the mobile phase are completely captured in the vicinity of the gold nanoparticles P1.
 そして、液体L1の移動相はプラズモン構造体含有層130より上の担体層140にまで達する。一方、しかし、光照射部1100が固定相部材100に光を照射している期間内には、プラズモン構造体含有層130の金ナノ粒子P1と移動相中の無機ナノ粒子N1との間で引力が働いている状態が持続される。そのため、プラズモン構造体含有層130の中で無機ナノ粒子N1の移動速度が減速するか、あるいは、無機ナノ粒子N1はプラズモン構造体である金ナノ粒子P1の近傍に完全に捕捉され、サンプル中に存在した夾雑物から分離される。 Then, the mobile phase of the liquid L1 reaches the carrier layer 140 above the plasmon structure-containing layer 130. On the other hand, however, during the period in which the light irradiation unit 1100 irradiates the stationary phase member 100 with light, an attractive force is applied between the gold nanoparticles P1 of the plasmon structure-containing layer 130 and the inorganic nanoparticles N1 in the mobile phase. Will continue to work. Therefore, the moving speed of the inorganic nanoparticles N1 in the plasmon structure-containing layer 130 slows down, or the inorganic nanoparticles N1 are completely captured in the vicinity of the gold nanoparticles P1 which is the plasmon structure and are contained in the sample. Separated from existing contaminants.
 このように、担体層120、140の内部では、移動相および無機ナノ粒子N1は、通常の移動速度で移動する。前述のように、無機ナノ粒子N1の移動速度は、移動相の移動速度よりも遅い。一方、光照射中のプラズモン構造体含有層130の内部では、移動相は通常の移動速度で移動し、無機ナノ粒子N1は、さらに減速されるか、捕捉される。 In this way, inside the carrier layers 120 and 140, the mobile phase and the inorganic nanoparticles N1 move at a normal moving speed. As described above, the moving speed of the inorganic nanoparticles N1 is slower than the moving speed of the mobile phase. On the other hand, inside the plasmon structure-containing layer 130 under light irradiation, the mobile phase moves at a normal moving speed, and the inorganic nanoparticles N1 are further decelerated or captured.
7-3.その他の工程
 その後、目的とするナノ粒子が移動しないように固定相部材100を乾燥させ、移動相を除去する。そして、プラズモン構造体含有層130ごと基材110から剥がし、目的とする無機ナノ粒子N1を溶媒により抽出することができる。プラズモン構造体含有層130を剥がすときには、移動相が無い状態なので光照射を行う必要は無い。目的とする無機ナノ粒子N1はこのようにして分離される。例えば、このように採取した無機ナノ粒子N1を検査にまわしてもよい。
7-3. Other Steps After that, the stationary phase member 100 is dried so that the desired nanoparticles do not move, and the mobile phase is removed. Then, the plasmon structure-containing layer 130 can be peeled off from the base material 110, and the target inorganic nanoparticles N1 can be extracted with a solvent. When the plasmon structure-containing layer 130 is peeled off, it is not necessary to irradiate with light because there is no mobile phase. The target inorganic nanoparticles N1 are separated in this way. For example, the inorganic nanoparticles N1 thus collected may be sent for inspection.
 このように第1の実施形態の技術は、移動相に液体を用いるとともに固定相に固体を用いる液体クロマトグラフの一種といえる。また、第1の実施形態では、表面プラズモン共鳴を光励起可能なプラズモン構造体を含有する固定相を用い、移動相としてナノ構造体を含む液体を用いる。プラズモン構造体含有層130に光を照射することによりプラズモン構造体に表面プラズモン共鳴を励起させて、固定相中のプラズモン構造体(金ナノ粒子P1)と移動相中のナノ構造体(無機ナノ粒子N1)との間に引力を発生させる。これにより、プラズモン構造体にナノ構造体を捕捉させるか、または、移動相中のナノ構造体の移動速度を減速させる。 As described above, the technique of the first embodiment can be said to be a kind of liquid chromatograph in which a liquid is used as the mobile phase and a solid is used as the stationary phase. Further, in the first embodiment, a stationary phase containing a plasmon structure capable of photoexciting surface plasmon resonance is used, and a liquid containing the nanostructure is used as the mobile phase. By irradiating the plasmon structure-containing layer 130 with light, surface plasmon resonance is excited in the plasmon structure, and the plasmon structure (gold nanoparticles P1) in the stationary phase and the nanostructure (inorganic nanoparticles) in the mobile phase are excited. An attractive force is generated between the N1) and the particle. This causes the plasmon structure to capture the nanostructure or slows down the movement speed of the nanostructure in the mobile phase.
8.第1の実施形態の効果
 分離装置1000は、混合物から目的とする無機ナノ粒子N1を分離することができる。その際に、光ピンセット技術のような高出力なレーザーを必要としない。また、プラズモン構造体含有層130に光を照射している期間内には、プラズモン構造体含有層130は液体L1における移動相の無機ナノ粒子N1の移動速度が減速するか、あるいは無機ナノ粒子N1を捕捉している状態を維持する。
8. The effect separation device 1000 of the first embodiment can separate the target inorganic nanoparticles N1 from the mixture. In doing so, it does not require a high-power laser like optical tweezers technology. Further, during the period in which the plasmon structure-containing layer 130 is irradiated with light, the plasmon structure-containing layer 130 slows down the movement speed of the mobile phase inorganic nanoparticles N1 in the liquid L1, or the inorganic nanoparticles N1 Maintain the state of capturing.
 そのため、この分離装置1000は、ナノ粒子を分離するための検査装置に用いることができる。また、分離装置1000は、ナノ粒子を分離して量産する製造装置として用いることもできる。 Therefore, this separation device 1000 can be used as an inspection device for separating nanoparticles. Further, the separation device 1000 can also be used as a manufacturing device for separating and mass-producing nanoparticles.
9.変形例
9-1.複数層のプラズモン構造体含有層
 図9は、第1の実施形態の変形例における固定相部材200を示す図である。固定相部材200は、基材110と、担持層120と、第1プラズモン構造体含有層230と、担持層140と、第2プラズモン構造体含有層250と、担持層160と、を有する。第1プラズモン構造体含有層230と、第2プラズモン構造体含有層250とは、異なるプラズモン波長を示すプラズモン構造体を有する。例えば、一方が金ナノ粒子を含有し、他方が銀ナノ粒子を含有する。そのため、第1プラズモン構造体含有層230が混合物中の第1無機ナノ粒子を捕捉し、第2プラズモン構造体含有層250が混合物中の第2無機ナノ粒子を捕捉することができる。このように固定相部材は、複数のプラズモン構造体含有層を含んでもよい。
9. Modification 9-1. Multiple layers of plasmon structure-containing layers FIG. 9 is a diagram showing a stationary phase member 200 in a modified example of the first embodiment. The stationary phase member 200 has a base material 110, a supporting layer 120, a first plasmon structure-containing layer 230, a supporting layer 140, a second plasmon structure-containing layer 250, and a supporting layer 160. The first plasmon structure-containing layer 230 and the second plasmon structure-containing layer 250 have plasmon structures exhibiting different plasmon wavelengths. For example, one contains gold nanoparticles and the other contains silver nanoparticles. Therefore, the first plasmon structure-containing layer 230 can capture the first inorganic nanoparticles in the mixture, and the second plasmon structure-containing layer 250 can capture the second inorganic nanoparticles in the mixture. As described above, the stationary phase member may include a plurality of plasmon structure-containing layers.
9-2.製造工程
 分離後の無機ナノ粒子N1については検査に用いることができる。しかし、分離された無機ナノ粒子N1をその後の加工工程にまわしてもよい。これにより、無機ナノ粒子N1を原料とする材料が製造される。
9-2. Manufacturing process The separated inorganic nanoparticles N1 can be used for inspection. However, the separated inorganic nanoparticles N1 may be sent to the subsequent processing step. As a result, a material using the inorganic nanoparticles N1 as a raw material is produced.
9-3.光の波長
 光照射部1100が発する光の波長はプラズモン構造体含有層130のプラズモン構造体の表面プラズモン共鳴を光励起することができればよく、可視光波長あるいは近赤外線波長程度である。光の波長は、例えば、400nm以上1000nm以下の程度である。しかし、この波長領域よりも短い波長または長い波長を用いてもよい。
9-3. Wavelength of light The wavelength of light emitted by the light irradiation unit 1100 is as long as it can photoexcitate the surface plasmon resonance of the plasmon structure of the plasmon structure-containing layer 130, and is about the visible light wavelength or the near infrared wavelength. The wavelength of light is, for example, about 400 nm or more and 1000 nm or less. However, wavelengths shorter or longer than this wavelength region may be used.
9-4.光を照射するタイミング
 固定相部材100を展開槽1200の内部に配置する前から、光照射部1100が展開槽1200に向けて光を照射してもよい。
9-4. Timing of Irradiating Light The light irradiation unit 1100 may irradiate the development tank 1200 with light even before the stationary phase member 100 is arranged inside the development tank 1200.
9-5.溶媒への浸漬
 固定相部材100を予め溶媒に浸漬してもよい。これにより、無機ナノ粒子N1を含む移動相が固定相部材100のより上側の位置に上がりやすくなる場合があるからである。溶媒として例えば、クロロホルム、トルエン、オレイルアミンが挙げられる。もちろん、上記以外の溶媒を用いてもよい。
9-5. Immersion in solvent The stationary phase member 100 may be immersed in a solvent in advance. This is because the mobile phase containing the inorganic nanoparticles N1 may easily rise to a position higher than the stationary phase member 100. Examples of the solvent include chloroform, toluene and oleylamine. Of course, a solvent other than the above may be used.
9-6.基材
 固定相部材100は基材110を有する。担体層120とプラズモン構造体含有層130と担体層140とが自立することができ、固定相部材100の固定相の特性が満たされていれば、基材110はなくてもよい。
9-6. The base material stationary phase member 100 has a base material 110. The base material 110 may be omitted as long as the carrier layer 120, the plasmon structure-containing layer 130, and the carrier layer 140 can stand on their own and the characteristics of the stationary phase of the stationary phase member 100 are satisfied.
9-7.組み合わせ
 上記の変形例を自由に組み合わせてもよい。
9-7. Combination The above modified examples may be freely combined.
(第2の実施形態)
 第2の実施形態について説明する。第2の実施形態の固定相部材が、第1の実施形態の固定相部材と異なっている。そのため、固定相部材について説明する。
(Second Embodiment)
A second embodiment will be described. The stationary phase member of the second embodiment is different from the stationary phase member of the first embodiment. Therefore, the stationary phase member will be described.
1.固定相部材
 図10は、第2の実施形態の固定相部材300の構造を説明するための図である。固定相部材300は、基材110と、担体層120と、プラズモン構造体含有層330と、担体層140と、を有する。固定相部材300は、吸着剤と、吸着剤にプラズモン構造体を配置したプラズモン構造体含有層330と、を有する。固定相部材300は、ナノ構造体を含む移動相を供給されることが可能であるとともに、移動相を固定相に沿って移動させることが可能である。
1. 1. Fixed phase member FIG. 10 is a diagram for explaining the structure of the fixed phase member 300 of the second embodiment. The stationary phase member 300 has a base material 110, a carrier layer 120, a plasmon structure-containing layer 330, and a carrier layer 140. The stationary phase member 300 has an adsorbent and a plasmon structure-containing layer 330 in which a plasmon structure is arranged on the adsorbent. The stationary phase member 300 can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
 固定相に固定されたプラズモン構造体として表面プラズモン共鳴を励起可能な金属化合物ナノ粒子を用いることができる。この金属化合物ナノ粒子は、表面プラズモン共鳴を励起可能な大きさと、表面プラズモン共鳴ピークと、を有する。表面プラズモン共鳴を励起可能な大きさとして、例えば、粒径が1nm以上500nm以下の粒子が挙げられる。 As the plasmon structure fixed to the stationary phase, metal compound nanoparticles capable of exciting surface plasmon resonance can be used. The metal compound nanoparticles have a size capable of exciting surface plasmon resonance and a surface plasmon resonance peak. Examples of the size capable of exciting surface plasmon resonance include particles having a particle size of 1 nm or more and 500 nm or less.
 プラズモン構造体の材質として、例えば、金属酸化物等の金属化合物、導電性金属複合酸化物等が挙げられる。金属酸化物として、例えば、酸化モリブデン、酸化レニウム、酸化タングステンなどが挙げられる。その他の金属化合物として、例えば、硫化銅、硫化銀などが挙げられる。導電性金属複合酸化物として、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IGZO(Indium Gallium Zinc Oxide)等が挙げられる。 Examples of the material of the plasmon structure include metal compounds such as metal oxides and conductive metal composite oxides. Examples of the metal oxide include molybdenum oxide, rhenium oxide, tungsten oxide and the like. Examples of other metal compounds include copper sulfide and silver sulfide. Examples of the conductive metal composite oxide include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and IGZO (Indium Gallium Zinc Oxide).
2.第2の実施形態の効果
 固定相部材300のプラズモン構造体含有層は、光照射部1100が光を固定相部材に照射している期間内に、表面プラズモン共鳴を励起させる。これにより、プラズモン構造体は、無機ナノ粒子N1を捕捉し、または、移動相中の無機ナノ粒子N1の移動速度を減速させる。
2. Effect of the second embodiment The plasmon structure-containing layer of the stationary phase member 300 excites surface plasmon resonance during a period in which the light irradiation unit 1100 irradiates the stationary phase member with light. As a result, the plasmon structure captures the inorganic nanoparticles N1 or slows down the moving speed of the inorganic nanoparticles N1 in the mobile phase.
(第3の実施形態)
 第3の実施形態について説明する。第3の実施形態のナノ構造体が、第1の実施形態のナノ構造体と異なっている。そのため、分離対象となるナノ構造体について説明する。
(Third Embodiment)
A third embodiment will be described. The nanostructures of the third embodiment are different from the nanostructures of the first embodiment. Therefore, the nanostructure to be separated will be described.
1.ナノ構造体
 移動相の液体L1は、ナノ構造体を含有しても含有しなくともよい。ナノ構造体とは、大きさが0.5nm以上100nm以下の構造体をいう。
1. 1. Nanostructures The mobile phase liquid L1 may or may not contain nanostructures. The nanostructure refers to a structure having a size of 0.5 nm or more and 100 nm or less.
 ナノ構造体として、例えば、有機化合物が挙げられる。有機化合物として、例えば、ポリエチレン、ポリスチレンなどの有機高分子、あるいは、デンドリマー、π共役分子などの巨大有機分子、さらには、DNA、たんぱく質、ペプチド、抗原、抗体、エクソソーム、ウイルス、細胞などの生体分子や生体関連物質が挙げられる。また、有機化合物は、ミセル、ベシクル等の有機分子のナノサイズの集合体であってもよい。これらは例示であり、これ以外の化合物であってもよい。 Examples of nanostructures include organic compounds. Examples of organic compounds include organic polymers such as polyethylene and polystyrene, macromolecular molecules such as dendrimers and π-conjugated molecules, and biomolecules such as DNA, proteins, peptides, antigens, antibodies, exosomes, viruses, and cells. And bio-related substances. Further, the organic compound may be a nano-sized aggregate of organic molecules such as micelles and vesicles. These are examples, and other compounds may be used.
3.第3の実施形態の効果
 固定相のプラズモン構造体含有層は、光照射部1100が光を固定相部材に照射している期間内に、表面プラズモン共鳴を励起させる。これにより、プラズモン構造体は、ナノ構造体を捕捉し、または、移動相中のナノ構造体の移動速度を減速させる。
3. 3. Effect of the Third Embodiment The plasmon structure-containing layer of the stationary phase excites surface plasmon resonance during the period in which the light irradiation unit 1100 irradiates the stationary phase member with light. As a result, the plasmon structure captures the nanostructure or slows down the movement speed of the nanostructure in the mobile phase.
(実施形態の組み合わせ)
 第1の実施形態およびその変形例と、第2の実施形態と、第3の実施形態とを自由に組み合わせてもよい。
(Combination of embodiments)
The first embodiment and its modifications, the second embodiment, and the third embodiment may be freely combined.
(実験)
A.金ナノ粒子(プラズモン構造体)
1.実験方法
1-1.固定相部材(固定相担持プレート)
 2種類の固定相担持プレートを準備した。1種類目の固定相担持プレートは、通常のTLCプレートにプラズモン構造体含有層を形成したものである。ここで、プラズモン構造体は、金ナノ粒子である。この1種類目の固定相担持プレートは、第1の実施形態の固定相部材100に該当する。2種類目の固定相担持プレートは、通常のTLCプレートである。
(Experiment)
A. Gold nanoparticles (plasmon structure)
1. 1. Experimental method 1-1. Fixed phase member (fixed phase supporting plate)
Two types of stationary phase supporting plates were prepared. The first type of stationary phase-supporting plate is a normal TLC plate on which a plasmon structure-containing layer is formed. Here, the plasmon structure is gold nanoparticles. This first type of stationary phase supporting plate corresponds to the stationary phase member 100 of the first embodiment. The second type of stationary phase supporting plate is a conventional TLC plate.
 ガラス板の上にシリカゲル粒子を塗布し固定してその表面を化学処理したオクタデシル基修飾逆相シリカゲルTLCプレート(Analtech社製、Uniplate P50031)を用いた。移動相の流れる向き(矢印J1)に直交する向きに帯状に位置する領域に、クエン酸で表面が修飾された親水性金ナノ粒子(粒子径:12nm)を塗布し乾燥し、プラズモン構造体含有層を形成した。この粒子はクロロホルムなどの有機溶媒には分散しない。なお、金ナノ粒子を固定する領域は、最終的に移動相による展開が終了した後に、Rf値が0.20から0.375となる領域である。 An octadecyl group-modified reverse phase silica gel TLC plate (Uniplatate P50013 manufactured by Analtech) was used in which silica gel particles were applied and fixed on a glass plate and the surface thereof was chemically treated. Hydrophilic gold nanoparticles (particle size: 12 nm) whose surface is modified with citric acid are applied to the region located in a band shape in a direction orthogonal to the flow direction of the mobile phase (arrow J1), dried, and contained in a plasmon structure. A layer was formed. These particles do not disperse in an organic solvent such as chloroform. The region for fixing the gold nanoparticles is a region in which the Rf value becomes 0.20 to 0.375 after the development by the mobile phase is finally completed.
1-2.ライス形状ZAISナノ粒子(量子ドット)
 文献(ACS Appl. Mater. Interfaces 8 (2016) 27151-27161)の方法を用いて、ライス形状ZAISナノ粒子を作製した。ここで、ZAISとは、ZnSとAgInSとの間の固溶体半導体を示し、その組成は、(AgIn)Zn2(1-x)で表される。
1-2. Rice-shaped ZAIS nanoparticles (quantum dots)
Rice-shaped ZAIS nanoparticles were prepared using the method of the literature (ACS Appl. Mater. Interfaces 8 (2016) 27151-27161). Here, ZAIS indicates a solid solution semiconductor between ZnS and AgInS 2, and its composition is represented by (AgIn) x Zn 2 (1-x) S 2 .
 金属源として、酢酸銀と酢酸インジウムと酢酸亜鉛を用い、それぞれの比がAg(OAc):In(OAc):Zn(OAc)=x:x:2(1-x)となるようにした。これらの混合物を、硫黄化合物とともにオレイルアミン中で150℃から250℃で熱分解することにより、ライス形状ZAISナノ粒子を得た。 Silver acetate, indium acetate, and zinc acetate are used as metal sources, and their respective ratios are Ag (OAc): In (OAc) 3 : Zn (OAc) 2 = x: x: 2 (1-x). did. Rice-shaped ZAIS nanoparticles were obtained by thermally decomposing these mixtures together with a sulfur compound in oleylamine at 150 ° C. to 250 ° C.
 仕込み比xを0.50および0.90とすることにより、それぞれ、平均粒子径19nmおよび12nmのZAISナノ粒子が得られた。ここで、粒子径とは、粒子における最も長い長さのことである。粒子径を測定するために、透過型電子顕微鏡(TEM)により観察を行った。 By setting the charging ratio x to 0.50 and 0.90, ZAIS nanoparticles having an average particle diameter of 19 nm and 12 nm were obtained, respectively. Here, the particle diameter is the longest length of a particle. Observation was performed with a transmission electron microscope (TEM) to measure the particle size.
 図11は、上記方法により得られたライス形状ZAISナノ粒子(平均粒子径19nm)を示すTEM画像である。 FIG. 11 is a TEM image showing rice-shaped ZAIS nanoparticles (average particle diameter 19 nm) obtained by the above method.
 なお、製造条件を変えることにより、ZAISナノ粒子の粒子径を変えることができる。 The particle size of the ZAIS nanoparticles can be changed by changing the manufacturing conditions.
1-3.光照射部
 光照射部として赤色LED光源を用いた。赤色LED光源は、ピーク波長610nmの単色光を照射することができる。
1-3. Light irradiation unit A red LED light source was used as the light irradiation unit. The red LED light source can irradiate monochromatic light having a peak wavelength of 610 nm.
1-4.手順
 ZAISナノ粒子を含有するクロロホルム溶液を固定相部材(固定相担持プレート)の担体層120の領域の中央の位置に滴下した。そして、サンプル溶液を乾燥させ、光捕捉のためのターゲットとなる無機ナノ粒子としてZAISナノ粒子を固定相担持プレートの固定相に点状に担持させた。
1-4. Procedure A chloroform solution containing ZAIS nanoparticles was added dropwise to the central position of the region of the carrier layer 120 of the stationary phase member (stationary phase supporting plate). Then, the sample solution was dried, and ZAIS nanoparticles were supported on the stationary phase of the stationary phase supporting plate in dots as target inorganic nanoparticles for light capture.
 ZAISナノ粒子を担持させた固定相担持プレートを展開槽に配置した。次に、展開槽に展開溶媒(オレイルアミンおよびクロロホルムの混合溶液)を入れるとともに固定相担持プレートに波長610nmの単色光を照射した。そして、その後の様子を観察した。 A stationary phase-supported plate carrying ZAIS nanoparticles was placed in a developing tank. Next, a developing solvent (a mixed solution of oleylamine and chloroform) was placed in the developing tank, and the stationary phase-supported plate was irradiated with monochromatic light having a wavelength of 610 nm. Then, the situation after that was observed.
2.実験結果
2-1.プラズモン構造体含有層の有無
 図12は、金ナノ粒子含有層を有する固定相部材に波長610nmの単色光を照射しながら移動相を供給した後の固定相部材の写真である。図12の中央下の矢印に示すように、無機ナノ粒子(量子ドット:QD)は、金ナノ粒子含有層の領域内に捕捉されている。
2. Experimental results 2-1. Presence or absence of plasmon structure-containing layer FIG. 12 is a photograph of a stationary phase member having a gold nanoparticle-containing layer after supplying a mobile phase while irradiating a monochromatic light having a wavelength of 610 nm. As shown by the arrow at the bottom center of FIG. 12, the inorganic nanoparticles (quantum dots: QD) are trapped in the region of the gold nanoparticle-containing layer.
 図13は、金ナノ粒子含有層を有する固定相部材に光を照射せずに移動相を供給した後の固定相部材の写真である。図13の上部付近の矢印に示すように、ZAISナノ粒子(量子ドット)は、金ナノ粒子含有層の領域を超えた上方の位置に存在する。 FIG. 13 is a photograph of the stationary phase member having the gold nanoparticle-containing layer after supplying the mobile phase without irradiating the stationary phase member with light. As shown by the arrow near the upper part of FIG. 13, the ZAIS nanoparticles (quantum dots) are located above the region of the gold nanoparticles-containing layer.
 図14は、金ナノ粒子含有層を有さない固定相部材に波長610nmの単色光を照射しながら移動相を供給した後の固定相部材の写真である。光照射は、図12の金ナノ粒子含有層を有する固定相部材と同じ位置に行った。図14に示すように、ZAISナノ粒子(量子ドット)は、固定相部材の上部の矢印の付近に存在する。この位置は、図13のZAISナノ粒子の位置とほぼ同じであった。 FIG. 14 is a photograph of the stationary phase member after supplying the mobile phase while irradiating the stationary phase member having no gold nanoparticle-containing layer with monochromatic light having a wavelength of 610 nm. The light irradiation was performed at the same position as the stationary phase member having the gold nanoparticle-containing layer of FIG. As shown in FIG. 14, ZAIS nanoparticles (quantum dots) are present near the arrow at the top of the stationary phase member. This position was almost the same as the position of the ZAIS nanoparticles in FIG.
 図15は、金ナノ粒子含有層を有さない固定相部材に光を照射せずに移動相を供給した後の固定相部材の写真である。図15に示すように、ZAISナノ粒子(量子ドット)は、固定相部材の上部の矢印の付近に存在する。この位置は、図13および図14のZAISナノ粒子の位置とほぼ同じであった。 FIG. 15 is a photograph of the stationary phase member after supplying the mobile phase without irradiating the stationary phase member having no gold nanoparticle-containing layer with light. As shown in FIG. 15, ZAIS nanoparticles (quantum dots) are present near the arrow at the top of the stationary phase member. This position was approximately the same as the position of the ZAIS nanoparticles in FIGS. 13 and 14.
 表1は、上記の結果をまとめた表である。表1に示すように、第1の実施形態の固定相部材100に光を照射した場合のみ、固定相部材100はZAISナノ粒子(量子ドット)を金ナノ粒子含有層(プラズモン構造体含有層)に捕捉することができる。 Table 1 is a table summarizing the above results. As shown in Table 1, only when the stationary phase member 100 of the first embodiment is irradiated with light, the stationary phase member 100 contains ZAIS nanoparticles (quantum dots) in a gold nanoparticle-containing layer (plasmon structure-containing layer). Can be captured in.
[表1]
 サンプル   金ナノ粒子含有層   光    捕捉
 サンプル1     有り      有り   ○
 サンプル2     有り      無し   ×
 サンプル3     無し      有り   ×
 サンプル4     無し      無し   ×
[Table 1]
Sample Gold nanoparticle-containing layer Light capture sample 1 Yes Yes Yes ○
Sample 2 Yes No ×
Sample 3 None Yes Yes ×
Sample 4 None None ×
2-2.分離ターゲットである量子ドットの粒子径依存性
 粒子径が、7.7nm、12nm、19nmのライス形状ZAISナノ粒子は、文献(ACS Appl. Mater. Interfaces 8 (2016) 27151-27161)の方法を基に反応条件を変更して作製した。粒子径が3.0nm、4.5nm、6.0nmの球状AgInGaSナノ粒子は、文献(ACS Appl. Mater. Interfaces 10 (2018) 42844-42855 )の方法を改良して作製した。これらの粒子を量子ドットとして用いた。
2-2. Particle size dependence of quantum dots as separation targets Rice-shaped ZAIS nanoparticles with particle sizes of 7.7 nm, 12 nm, and 19 nm are based on the method of the literature (ACS Appl. Mater. Interfaces 8 (2016) 27151-27161). It was prepared by changing the reaction conditions. Spherical AgInGaS nanoparticles having particle diameters of 3.0 nm, 4.5 nm, and 6.0 nm were prepared by improving the method of the literature (ACS Appl. Mater. Interfaces 10 (2018) 42844-42855). These particles were used as quantum dots.
 図16は、粒子径と量子ドットの到達位置との関係を示すグラフである。図16の横軸は量子ドットの粒子径である。図16の縦軸は量子ドットの固定相部材における到達位置のRf値である。なお、金ナノ粒子含有層の領域は、移動相の展開後にRf値が0.20から0.375となる領域である。金ナノ粒子含有層領域に0.89W/cmの出力で波長610nmのLED光を照射して、量子ドットを移動相により展開した。 FIG. 16 is a graph showing the relationship between the particle size and the arrival position of the quantum dots. The horizontal axis of FIG. 16 is the particle diameter of the quantum dots. The vertical axis of FIG. 16 is the Rf value of the arrival position of the quantum dot in the stationary phase member. The region of the gold nanoparticle-containing layer is a region in which the Rf value becomes 0.20 to 0.375 after the development of the mobile phase. The gold nanoparticle-containing layer region was irradiated with LED light having a wavelength of 610 nm at an output of 0.89 W / cm 2 , and quantum dots were developed by the mobile phase.
 図16に示すように、光照射を行っても、粒子径が約8nm以下の無機ナノ粒子は金ナノ粒子含有層の領域を透過してしまう。一方、光照射を行うことにより、粒子径が約8nmより大きい無機ナノ粒子は金ナノ粒子含有層で捕捉される。このように、分離装置1000は、粒子径が大きい無機ナノ粒子ほど捕捉しやすい傾向にある。 As shown in FIG. 16, even if light irradiation is performed, inorganic nanoparticles having a particle diameter of about 8 nm or less pass through the region of the gold nanoparticles-containing layer. On the other hand, by light irradiation, inorganic nanoparticles having a particle size larger than about 8 nm are captured by the gold nanoparticle-containing layer. As described above, the separation device 1000 tends to capture inorganic nanoparticles having a larger particle size.
2-3.光強度依存性
 図17は、粒子径が19nmのライス形状ZAISナノ粒子を移動相により展開する際に照射光強度を変えて金ナノ粒子含有層の固定相部材に光照射した後の固定相部材の写真である。図17に示すように、粒子径が19nmの場合には、0.63W/cm以上の出力で波長610nmのLED光を固定相部材に照射すると、金ナノ粒子含有層は無機ナノ粒子を捕捉することができた。
2-3. Light intensity dependence FIG. 17 shows a stationary phase member after light irradiation is performed on a stationary phase member of a gold nanoparticles-containing layer by changing the irradiation light intensity when developing rice-shaped ZAIS nanoparticles having a particle diameter of 19 nm by a mobile phase. It is a photograph of. As shown in FIG. 17, when the particle size is 19 nm, when the stationary phase member is irradiated with LED light having a wavelength of 610 nm at an output of 0.63 W / cm 2 or more, the gold nanoparticles-containing layer captures the inorganic nanoparticles. We were able to.
 図18は、粒子径が12nmのライス形状ZAISナノ粒子を移動相により展開する際に光強度を変えて金ナノ粒子含有層の固定相部材に光照射した後の固定相部材の写真である。図18に示すように、粒子径が12nmの場合には、0.76W/cm以上の出力で波長610nmのLED光を固定相部材に照射すると、金ナノ粒子含有層は無機ナノ粒子を捕捉することができた。 FIG. 18 is a photograph of the stationary phase member after light irradiation is performed on the stationary phase member of the gold nanoparticles-containing layer by changing the light intensity when developing rice-shaped ZAIS nanoparticles having a particle diameter of 12 nm by the mobile phase. As shown in FIG. 18, when the particle size is 12 nm, when the stationary phase member is irradiated with LED light having a wavelength of 610 nm at an output of 0.76 W / cm 2 or more, the gold nanoparticle-containing layer captures inorganic nanoparticles. We were able to.
 図19は、金ナノ粒子含有層に照射する波長610nmの単色光の強度とライス形状ZAISナノ粒子の到達位置との関係を示すグラフである。図19の横軸は金ナノ粒子含有層に照射する単色光の強度である。図19の縦軸は無機ナノ粒子の固定相部材における到達位置のRf値である。図19は、図17および図18の結果をまとめたグラフである。 FIG. 19 is a graph showing the relationship between the intensity of monochromatic light having a wavelength of 610 nm irradiating the gold nanoparticles-containing layer and the arrival position of the rice-shaped ZAIS nanoparticles. The horizontal axis of FIG. 19 is the intensity of monochromatic light irradiating the gold nanoparticle-containing layer. The vertical axis of FIG. 19 is the Rf value of the arrival position of the inorganic nanoparticles in the stationary phase member. FIG. 19 is a graph summarizing the results of FIGS. 17 and 18.
 図19に示すように、粒子径によらず、光強度を増加させれば、金ナノ粒子含有層は、無機ナノ粒子を好適に捕捉することができる。また、光強度が無機ナノ粒子の捕捉に十分でない場合であっても、ナノ粒子の到達位置のRf値は光を照射しない場合に比べて小さくなった。このことは、金ナノ粒子含有層への光照射によって、移動相中の無機ナノ粒子の移動速度を減速できることを示す。 As shown in FIG. 19, if the light intensity is increased regardless of the particle size, the gold nanoparticles-containing layer can suitably capture the inorganic nanoparticles. Further, even when the light intensity is not sufficient for capturing the inorganic nanoparticles, the Rf value at the arrival position of the nanoparticles is smaller than that when no light is irradiated. This indicates that the movement speed of the inorganic nanoparticles in the mobile phase can be reduced by irradiating the gold nanoparticles-containing layer with light.
2-4.粒子径の異なる量子ドット混合物の分離
 図20は、楕円球形ZAISナノ粒子とダンベル形状ZAISナノ粒子とからなる量子ドット混合物の透過型電子顕微鏡写真である。ダンベル形状ZAISナノ粒子は、文献(J. Phys. Chem. C. 122, 25, (2018) 13705-13715 )の方法を用いて作製した。図20の左側の丸印の中には楕円球形ZAISナノ粒子が存在する。図20の右側の丸印の中にはダンベル形状ZAISナノ粒子が存在する。
2-4. Separation of Quantum Dot Mixtures with Different Particle Diameters FIG. 20 is a transmission electron micrograph of a quantum dot mixture composed of elliptical spherical ZAIS nanoparticles and dumbbell-shaped ZAIS nanoparticles. Dumbbell-shaped ZAIS nanoparticles were prepared using the method of the literature (J. Phys. Chem. C. 122, 25, (2018) 13705-13715). Elliptical spherical ZAIS nanoparticles are present in the circles on the left side of FIG. 20. Dumbbell-shaped ZAIS nanoparticles are present in the circles on the right side of FIG. 20.
 図21は、量子ドット混合物中に含まれる楕円球形ZAISナノ粒子およびダンベル形状ZAISナノ粒子の粒子径とその割合とを示す粒子径分布である。図21の横軸はZAISナノ粒子の粒子径である。図21の縦軸はその粒子径のZAISナノ粒子の出現頻度である。 FIG. 21 is a particle size distribution showing the particle size and the ratio of the elliptical spherical ZAIS nanoparticles and the dumbbell-shaped ZAIS nanoparticles contained in the quantum dot mixture. The horizontal axis of FIG. 21 is the particle size of the ZAIS nanoparticles. The vertical axis of FIG. 21 is the frequency of appearance of ZAIS nanoparticles having that particle size.
 図22(a)は、量子ドット混合物に波長610nmのLED光(光強度:0.63W/cm)を照射しながら移動相で展開した後の固定相部材の写真である。プラズモン構造体含有層である金ナノ粒子含有層で捕捉された量子ドットと、それよりも上部にまで展開された量子ドットと、に分離されたことが分かる。 FIG. 22A is a photograph of the stationary phase member after developing the quantum dot mixture in the mobile phase while irradiating the quantum dot mixture with LED light having a wavelength of 610 nm (light intensity: 0.63 W / cm 2 ). It can be seen that the quantum dots captured by the gold nanoparticle-containing layer, which is the plasmon structure-containing layer, and the quantum dots expanded above it were separated.
 図22(b)は、金ナノ粒子含有層より上の位置におけるZAISナノ粒子の粒子径分布を示すグラフである。図22(c)は、金ナノ粒子含有層の位置におけるZAISナノ粒子の粒子径分布を示すグラフである。 FIG. 22B is a graph showing the particle size distribution of ZAIS nanoparticles at a position above the gold nanoparticle-containing layer. FIG. 22C is a graph showing the particle size distribution of ZAIS nanoparticles at the position of the gold nanoparticles-containing layer.
 図22(b)(c)に示すように、金ナノ粒子含有層は粒子径が約8nmより大きいZAISナノ粒子を選択的に捕捉し、粒径が8nm以下のより小さいZAISナノ粒子を捕捉しなかった。このように、分離装置は、粒子径の異なるナノ粒子をその粒子径に応じて分離することができる。 As shown in FIGS. 22 (b) and 22 (c), the gold nanoparticle-containing layer selectively captures ZAIS nanoparticles having a particle size larger than about 8 nm, and captures smaller ZAIS nanoparticles having a particle size of 8 nm or less. There wasn't. In this way, the separation device can separate nanoparticles having different particle diameters according to the particle diameter.
2-5.照射光の波長の影響
 図23は、プラズモン構造体含有層である金ナノ粒子含有層の拡散反射スペクトル(縦軸:クベルカ-ムンク関数)と赤色LED光(波長:610nm)およびXeランプ光をバンドパスフィルターを通すことにより単色化した近赤外光(波長:820nm)の波長領域との関係を示すグラフである。図23の横軸は波長である。波長610nmの赤色光の波長領域および波長820nmの近赤外光の波長領域のいずれも、金ナノ粒子のブロードな表面プラズモン共鳴ピークに重なっている。このため、表面プラズモン共鳴を効果的に光励起できる。
2-5. Effect of wavelength of irradiation light FIG. 23 shows the diffuse reflection spectrum (vertical axis: Kubelker-Munk function), red LED light (wavelength: 610 nm), and Xe lamp light of the gold nanoparticles-containing layer, which is the plasmon structure-containing layer. It is a graph which shows the relationship with the wavelength region of the near infrared light (wavelength: 820 nm) which became monochromatic by passing through a pass filter. The horizontal axis of FIG. 23 is the wavelength. Both the wavelength region of red light with a wavelength of 610 nm and the wavelength region of near-infrared light with a wavelength of 820 nm overlap the broad surface plasmon resonance peak of the gold nanoparticles. Therefore, surface plasmon resonance can be effectively photoexcited.
 図24は、赤色LED光(波長:610nm)およびXeランプ光をバンドパスフィルターに通すことにより単色光化した近赤外光(波長:820nm)のスペクトルを示すグラフである。図24の横軸は光の波長である。図24の縦軸は光の強度である。なお、縦軸はそれぞれの光スペクトルの最大ピーク強度の値で規格化されている。 FIG. 24 is a graph showing the spectra of near-infrared light (wavelength: 820 nm) converted into monochromatic light by passing red LED light (wavelength: 610 nm) and Xe lamp light through a bandpass filter. The horizontal axis of FIG. 24 is the wavelength of light. The vertical axis of FIG. 24 is the intensity of light. The vertical axis is standardized by the value of the maximum peak intensity of each optical spectrum.
 粒子径が19nmのライス形状ZAISナノ粒子を移動相により展開する際に、照射光波長を変えて金ナノ粒子含有層の固定相部材に光を照射した。 When the rice-shaped ZAIS nanoparticles having a particle diameter of 19 nm were developed by the mobile phase, the stationary phase member of the gold nanoparticles-containing layer was irradiated with light by changing the irradiation light wavelength.
 図25は、図24のスペクトルをもつ波長820nmの単色光を照射した場合の光の強度とRf値との間の関係を示すグラフである。図25の横軸は光の強度である。図25の縦軸はRf値である。波長610nmの単色光を照射しながら粒子径19nmのライス形状ZAISナノ粒子を展開した場合(図19)と比較すると、波長820nmの光を照射した場合(図25)においても、Rf値の光強度依存性に大きな差はみられなかった。 FIG. 25 is a graph showing the relationship between the light intensity and the Rf value when monochromatic light having a wavelength of 820 nm having the spectrum of FIG. 24 is irradiated. The horizontal axis of FIG. 25 is the intensity of light. The vertical axis of FIG. 25 is the Rf value. Compared with the case where rice-shaped ZAIS nanoparticles having a particle diameter of 19 nm were developed while irradiating monochromatic light having a wavelength of 610 nm (FIG. 19), the light intensity of the Rf value was also when irradiated with light having a wavelength of 820 nm (FIG. 25). There was no significant difference in dependence.
 プラズモン構造体含有層である金ナノ粒子含有層の拡散反射スペクトル(図23)では、波長610nmおよび波長820nmでのクベルカ-ムンク関数の値がほとんど同じである。このため、同じ光強度で固定相部材に光を照射した場合には、波長610nmおよび波長820nmにおける表面プラズモン共鳴の励起効率はほとんど同じである。したがって、Rf値にほとんど差が生じない。 In the diffuse reflection spectrum (FIG. 23) of the gold nanoparticle-containing layer, which is the plasmon structure-containing layer, the values of the Kubelker-Munk function at the wavelength of 610 nm and the wavelength of 820 nm are almost the same. Therefore, when the stationary phase member is irradiated with light at the same light intensity, the excitation efficiencies of surface plasmon resonance at wavelengths of 610 nm and 820 nm are almost the same. Therefore, there is almost no difference in the Rf value.
2-6.担持された金ナノ粒子の粒子数密度の影響
 金ナノ粒子の粒子数密度を変えてプラズモン構造体含有層を作製した。
2-6. Effect of Particle Number Density of Supported Gold Nanoparticles A plasmon structure-containing layer was prepared by changing the particle number density of gold nanoparticles.
 図26は、金ナノ粒子含有層の拡散反射スペクトルと金ナノ粒子の粒子数密度との関係を示すグラフである。図26の横軸は光の波長である。図26の縦軸はクベルカ-ムンク関数の値である。図26に示すように、プラズモン構造体である金ナノ粒子の粒子数密度が高いほどクベルカ-ムンク関数の値が大きい。 FIG. 26 is a graph showing the relationship between the diffuse reflection spectrum of the gold nanoparticle-containing layer and the particle number density of the gold nanoparticles. The horizontal axis of FIG. 26 is the wavelength of light. The vertical axis of FIG. 26 is the value of the Kubelker-Munch function. As shown in FIG. 26, the higher the particle number density of the gold nanoparticles as the plasmon structure, the larger the value of the Kubelker-Munk function.
 図26のプラズモン構造体含有層として金ナノ粒子含有層を有する固定相部材を用いて、粒子径が19nmのライス形状ZAISナノ粒子を移動相により展開し、その際に照射光強度を変えて波長610nmのLED光を照射した。 Using a stationary phase member having a gold nanoparticle-containing layer as the plasmon structure-containing layer of FIG. 26, rice-shaped ZAIS nanoparticles having a particle diameter of 19 nm are developed by a mobile phase, and at that time, the irradiation light intensity is changed to change the wavelength. The LED light of 610 nm was irradiated.
 図27は、光強度とZAISナノ粒子のRf値との関係および金ナノ粒子の粒子数密度の依存性を示すグラフである。図27の横軸は光の強度である。図27の縦軸はRf値である。図27中の数字は担持した金ナノ粒子の粒子数密度である。図27に示すように、プラズモン構造体である金ナノ粒子の粒子数密度が高いほど、弱い照射光強度でZAISナノ粒子を捕捉することができる。 FIG. 27 is a graph showing the relationship between the light intensity and the Rf value of the ZAIS nanoparticles and the dependence of the particle number density of the gold nanoparticles. The horizontal axis of FIG. 27 is the intensity of light. The vertical axis of FIG. 27 is the Rf value. The number in FIG. 27 is the particle number density of the supported gold nanoparticles. As shown in FIG. 27, the higher the particle number density of the gold nanoparticles as the plasmon structure, the weaker the irradiation light intensity can capture the ZAIS nanoparticles.
 図28は、プラズモン構造体含有層中の金ナノ粒子の粒子数密度と金ナノ粒子含有層中にライス形状ZAISナノ粒子(粒子径19nm)を捕捉可能な最小の照射光強度(Imin)(照射光波長:610nm)との関係を示すグラフである。図28の横軸は金ナノ粒子の粒子数密度である。図28の縦軸は照射光の強度である。図28に示すように、金ナノ粒子の粒子数密度が高いほど、弱い強度の光で粒径19nmのZAISナノ粒子を捕捉することができる。 FIG. 28 shows the particle number density of gold nanoparticles in the plasmon structure-containing layer and the minimum irradiation light intensity (Imin) (irradiation) capable of capturing rice-shaped ZAIS nanoparticles (particle size 19 nm) in the gold nanoparticles-containing layer. It is a graph which shows the relationship with the light wavelength (610 nm). The horizontal axis of FIG. 28 is the particle number density of gold nanoparticles. The vertical axis of FIG. 28 is the intensity of the irradiation light. As shown in FIG. 28, the higher the particle number density of the gold nanoparticles, the weaker the intensity of light, the more ZAIS nanoparticles having a particle size of 19 nm can be captured.
2-7.プラズモン構造体として用いる金ナノ粒子の形状依存性
 図29は、プラズモン構造体として用いる金ナノ粒子の電子顕微鏡写真である。図29に示すように、粒径が12nmの球形の金ナノ粒子と、粒径が75nmの八面体形状の金ナノ粒子と、粒径が82nmの球形の金ナノ粒子と、をプラズモン構造体に用いた。なお、八面体形状の粒径とは、八面体の一辺の長さである。
2-7. Shape Dependency of Gold Nanoparticles Used as Plasmon Structure FIG. 29 is an electron micrograph of gold nanoparticles used as a plasmon structure. As shown in FIG. 29, spherical gold nanoparticles having a particle size of 12 nm, octahedral gold nanoparticles having a particle size of 75 nm, and spherical gold nanoparticles having a particle size of 82 nm are formed into a plasmon structure. Using. The octahedral particle size is the length of one side of the octahedron.
 図29の金ナノ粒子をプラズモン構造体含有層に用いた。 The gold nanoparticles of FIG. 29 were used for the plasmon structure-containing layer.
 図30は、金ナノ粒子含有層中の金原子数と金ナノ粒子の粒子密度とをまとめた表である。 FIG. 30 is a table summarizing the number of gold atoms in the gold nanoparticle-containing layer and the particle density of the gold nanoparticles.
 図31は、図30の種々の形状の金ナノ粒子含有層をプラズモン構造体含有層として用いて波長610nmのLED光を照射したライス形状ZAISナノ粒子(粒子径19nm)を展開したときのRf値と照射光強度との関係を示すグラフである。図31の横軸は光の強度である。図31の縦軸はRf値である。 FIG. 31 shows the Rf value when rice-shaped ZAIS nanoparticles (particle size 19 nm) irradiated with LED light having a wavelength of 610 nm using the gold nanoparticles-containing layers of various shapes of FIG. 30 as the plasmon structure-containing layer. It is a graph which shows the relationship between and the irradiation light intensity. The horizontal axis of FIG. 31 is the intensity of light. The vertical axis of FIG. 31 is the Rf value.
 図31に示すように、粒子径が75nmの八面体形状の金ナノ粒子と粒子径が82nmの球形の金ナノ粒子とで光強度依存性に大きな差はみられなかった。いずれの粒子を用いた場合でも約1W/cm以上の光強度においてZAISナノ粒子は金ナノ粒子含有層に捕捉された。一方、より小さな粒子径である12nmの球形の金ナノ粒子を用いた場合には、いずれの光強度においても、ZAISナノ粒子は金ナノ粒子含有層に捕捉されなかった。ZAISナノ粒子の捕捉の成否には、プラズモン構造体の大きさが大きく関わっていることが示唆される。 As shown in FIG. 31, there was no significant difference in light intensity dependence between the octahedral gold nanoparticles having a particle diameter of 75 nm and the spherical gold nanoparticles having a particle diameter of 82 nm. Regardless of which particle was used, the ZAIS nanoparticles were captured by the gold nanoparticle-containing layer at a light intensity of about 1 W / cm 2 or more. On the other hand, when spherical gold nanoparticles having a smaller particle diameter of 12 nm were used, the ZAIS nanoparticles were not captured by the gold nanoparticles-containing layer at any light intensity. It is suggested that the size of the plasmon structure is greatly related to the success or failure of the capture of ZAIS nanoparticles.
B.銀ナノ粒子(プラズモン構造体)
1.実験方法
1-1.銀ナノ粒子の製造
 2mMのNaBHと2mMのクエン酸三ナトリウムとを含む水溶液を4.8mL準備した。この水溶液を60℃で30分保持した後、1.17mMのAgNO水溶液0.2mLを加えた。この混合溶液を90℃まで昇温し、0.01MのNaOH水溶液を添加して20分加熱した。NaOH水溶液のpHは10.5であった。こうして粒径10nmの銀ナノ粒子を得た。
B. Silver nanoparticles (plasmon structure)
1. 1. Experimental method 1-1. Preparation of Silver Nanoparticles 4.8 mL of an aqueous solution containing 2 mM NaBH 4 and 2 mM trisodium citrate was prepared. After holding this aqueous solution at 60 ° C. for 30 minutes, 0.2 mL of a 1.17 mM AgNO 3 aqueous solution was added. The temperature of this mixed solution was raised to 90 ° C., a 0.01 M aqueous NaOH solution was added, and the mixture was heated for 20 minutes. The pH of the aqueous NaOH solution was 10.5. In this way, silver nanoparticles having a particle size of 10 nm were obtained.
 そして、前述のオクタデシル基修飾逆相シリカゲルTLCプレートに銀ナノ粒子を塗布して乾燥させた。 Then, silver nanoparticles were applied to the above-mentioned octadecyl group-modified reversed-phase silica gel TLC plate and dried.
2.実験結果
2-1.光強度依存性
 図32は、銀ナノ粒子を用いたプラズモン構造体含有層の拡散反射スペクトルを示すグラフである。図32の横軸は光の波長である。図32の縦軸はクベルカ-ムンク関数の値である。表面プラズモン共鳴ピークが約400nmから600nmの間に観察された。この表面プラズモン共鳴ピークを光励起するために、ピーク波長460nmの単色光を照射できる青色LEDを光照射部として用いた。
2. Experimental results 2-1. Light intensity dependence FIG. 32 is a graph showing a diffuse reflection spectrum of a plasmon structure-containing layer using silver nanoparticles. The horizontal axis of FIG. 32 is the wavelength of light. The vertical axis of FIG. 32 is the value of the Kubelker-Munch function. Surface plasmon resonance peaks were observed between about 400 nm and 600 nm. In order to photoexcit the surface plasmon resonance peak, a blue LED capable of irradiating monochromatic light having a peak wavelength of 460 nm was used as the light irradiation unit.
 図33は、プラズモン構造体として銀ナノ粒子を用いてその部分に波長460nmの青色LED光を種々の光強度で照射しながらライス形状ZAISナノ粒子(19nm)を展開した後の固定相部材の写真である。図33に示すように、光の強度を増加させるほど、ZAISナノ粒子の移動距離が小さくなり、ZAISナノ粒子を効果的に捕捉することができる。 FIG. 33 is a photograph of a stationary phase member after developing rice-shaped ZAIS nanoparticles (19 nm) while using silver nanoparticles as a plasmon structure and irradiating the portion with blue LED light having a wavelength of 460 nm at various light intensities. Is. As shown in FIG. 33, as the light intensity is increased, the moving distance of the ZAIS nanoparticles becomes smaller, and the ZAIS nanoparticles can be effectively captured.
 図34は、図33における照射光強度とライス形状ZAISナノ粒子のRf値との関係を示すグラフである。図34の横軸は波長460nmの青色LED光の強度である。図34の縦軸はRf値である。図34に示すように、光の強度を0.30W/cm以上にすると、プラズモン構造体である銀ナノ粒子含有層はZAISナノ粒子を捕捉することができる。 FIG. 34 is a graph showing the relationship between the irradiation light intensity in FIG. 33 and the Rf value of the rice-shaped ZAIS nanoparticles. The horizontal axis of FIG. 34 is the intensity of blue LED light having a wavelength of 460 nm. The vertical axis of FIG. 34 is the Rf value. As shown in FIG. 34, when the light intensity is 0.30 W / cm 2 or more, the silver nanoparticle-containing layer, which is a plasmon structure, can capture ZAIS nanoparticles.
2-2.照射光の波長依存性
 図35は、プラズモン構造体含有層である銀ナノ粒子含有層に照射する単色光の波長(λirrad)と銀ナノ粒子含有層におけるライス形状ZAISナノ粒子(19nm)の捕捉に必要な最小の光強度(Imin)との関係を示すグラフである。図35の横軸は光の波長である。図35の縦軸は金ナノ粒子含有層にZAISナノ粒子を捕捉するために必要な最小の光強度である。図35に示すように、プラズモン構造体として銀ナノ粒子を用いた場合には、照射光の波長が820nmから460nmへと短くなるにつれてZAISナノ粒子の捕捉に必要な最小の光強度は小さくなる。
2-2. Wavelength Dependence of Irradiation Light Fig. 35 shows the wavelength of monochromatic light (λirrad) irradiating the silver nanoparticles-containing layer, which is the plasmon structure-containing layer, and the rice-shaped ZAIS nanoparticles (19 nm) in the silver nanoparticles-containing layer. It is a graph which shows the relationship with the minimum required light intensity (Imin). The horizontal axis of FIG. 35 is the wavelength of light. The vertical axis of FIG. 35 is the minimum light intensity required to capture ZAIS nanoparticles in the gold nanoparticles-containing layer. As shown in FIG. 35, when silver nanoparticles are used as the plasmon structure, the minimum light intensity required for capturing the ZAIS nanoparticles decreases as the wavelength of the irradiation light shortens from 820 nm to 460 nm.
 図32の銀ナノ粒子含有層の拡散反射スペクトルでは、波長820nmから460nmへと短波長になるにつれてクベルカ-ムンク関数の値は大きくなる。これらのことから、表面プラズモン共鳴をより効果的に光励起することができる波長の短い照射光を用いると、より小さい光の強度でZAISナノ粒子を捕捉することができる。すなわち、表面プラズモン共鳴のピークの裾の付近でクベルカ-ムンク関数の値が小さい波長領域である820nmの光を照射した場合には、光の強度が十分に大きくなければZAISナノ粒子を捕捉することができない。 In the diffuse reflection spectrum of the silver nanoparticle-containing layer of FIG. 32, the value of the Kubelker-Munk function increases as the wavelength becomes shorter from 820 nm to 460 nm. From these facts, it is possible to capture ZAIS nanoparticles with a smaller light intensity by using irradiation light having a short wavelength capable of more effectively photoexciting surface plasmon resonance. That is, when light of 820 nm, which is a wavelength region where the value of the Kubelka-Munk function is small, is irradiated near the hem of the peak of surface plasmon resonance, ZAIS nanoparticles should be captured unless the light intensity is sufficiently high. I can't.
2-3.分離ターゲットであるナノ構造体の粒子径依存性
 プラズモン構造体含有層として銀ナノ粒子含有層を用いる場合において、種々の粒子径の量子ドット(ZAISナノ粒子またはAgInGaSナノ粒子)を展開し、分離ターゲットである量子ドットの粒子径と捕捉効率との関係を調べた。用いるZAISナノ粒子およびAgInGaSナノ粒子は、プラズモン構造体含有層として金ナノ粒子を用いた場合と同様に作製した。
2-3. Particle size dependence of the nanostructure that is the separation target When a silver nanoparticle-containing layer is used as the plasmon structure-containing layer, quantum dots (ZAIS nanoparticles or AgInGaS nanoparticles) of various particle sizes are developed to develop the separation target. The relationship between the particle size of the quantum dots and the capture efficiency was investigated. The ZAIS nanoparticles and AgInGaS nanoparticles used were prepared in the same manner as when gold nanoparticles were used as the plasmon structure-containing layer.
 プラズモン構造体として銀ナノ粒子を用い、波長460nmの青色LED光を照射しながら種々のサイズの量子ドットを展開した。 Using silver nanoparticles as the plasmon structure, quantum dots of various sizes were developed while irradiating blue LED light with a wavelength of 460 nm.
 図36は、用いた量子ドットの粒子径とRf値との関係を示すグラフである。図36の横軸は分離ターゲットである量子ドットの粒子径である。図36の縦軸はRf値である。図36に示すように、粒子径が7.8nm以上の場合には、プラズモン構造体はZAISナノ粒子またはAgInGaSナノ粒子を捕捉することができる。 FIG. 36 is a graph showing the relationship between the particle size of the quantum dots used and the Rf value. The horizontal axis of FIG. 36 is the particle size of the quantum dot which is the separation target. The vertical axis of FIG. 36 is the Rf value. As shown in FIG. 36, when the particle size is 7.8 nm or more, the plasmon structure can capture ZAIS nanoparticles or AgInGaS nanoparticles.
C.ITO粒子(プラズモン構造体)
1.実験方法
 前述のオクタデシル基修飾逆相シリカゲルTLCプレートにプラズモン構造体含有層としてITO粒子(Aldrich社製)を塗布して乾燥させた固定相担持プレートを製作した。ITO粒子の粒子径は100nmであった。プラズモン構造体含有層中のITO粒子の個数密度は1.1×1013個/cmであった。分離ターゲットであるナノ構造体として粒子径19nmのライス形状ZAISナノ粒子を用いた。
C. ITO particles (plasmon structure)
1. 1. Experimental Method An stationary phase-supporting plate was produced by applying ITO particles (manufactured by Aldrich) as a plasmon structure-containing layer to the above-mentioned octadecyl group-modified reverse phase silica gel TLC plate and drying it. The particle size of the ITO particles was 100 nm. The number density of ITO particles in the plasmon structure-containing layer was 1.1 × 10 13 particles / cm 3 . Rice-shaped ZAIS nanoparticles with a particle diameter of 19 nm were used as the nanostructure as the separation target.
 図37は、ITO粒子含有層の拡散反射スペクトルを示すグラフである。図37の横軸は光の波長である。図37の縦軸はクベルカ-ムンク関数である。図37に示すように、ブロードな表面プラズモン共鳴ピークが600nm以上の近赤外領域に存在する。また、波長820nmでは、表面プラズモン共鳴ピークの裾野である。しかし、図37の820nmでのクベルカ-ムンク関数の値は図23および図32における照射波長でのクベルカ-ムンク関数の値と同程度である。このため、波長820nmの近赤外単色光を照射することによりITO粒子の表面プラズモン共鳴は十分効果的に光励起される。 FIG. 37 is a graph showing the diffuse reflection spectrum of the ITO particle-containing layer. The horizontal axis of FIG. 37 is the wavelength of light. The vertical axis of FIG. 37 is the Kubelker-Munch function. As shown in FIG. 37, a broad surface plasmon resonance peak exists in the near infrared region of 600 nm or more. At a wavelength of 820 nm, it is the base of the surface plasmon resonance peak. However, the value of the Kubelker-Munch function at 820 nm in FIG. 37 is similar to the value of the Kubelker-Munch function at the irradiation wavelength in FIGS. 23 and 32. Therefore, the surface plasmon resonance of the ITO particles is sufficiently effectively photoexcited by irradiating with near-infrared monochromatic light having a wavelength of 820 nm.
2.実験結果
 図38は、プラズモン構造体としてITO粒子を担持させたプラズモン構造体含有層を用いてXeランプ光より取り出した820nmの単色光を照射しながらライス形状ZAISナノ粒子(粒子径:19nm)を展開した後の固定相担持プレートの写真である。図38に示すように、光を照射していない場合には、ZAISナノ粒子はITO粒子含有層にほとんど捕捉されることなく固定相担持プレートの上部にまで移動した。ただし、光の強度が0.31W/cmの場合には、光を照射しなかった場合に比べて、ZAISナノ粒子の移動距離が短くなった。光の強度が0.45W/cm以上の場合には、固定相担持プレートのITO粒子含有層部分において、ライス形状ZAISナノ粒子が捕捉された。
2. Experimental Results FIG. 38 shows rice-shaped ZAIS nanoparticles (particle size: 19 nm) while irradiating 820 nm monochromatic light extracted from Xe lamp light using a plasmon structure-containing layer supporting ITO particles as a plasmon structure. It is a photograph of a stationary phase supporting plate after unfolding. As shown in FIG. 38, when not irradiated with light, the ZAIS nanoparticles moved to the upper part of the stationary phase supporting plate with little capture by the ITO particle-containing layer. However, when the light intensity was 0.31 W / cm 2 , the moving distance of the ZAIS nanoparticles was shorter than that when the light was not irradiated. When the light intensity was 0.45 W / cm 2 or more, rice-shaped ZAIS nanoparticles were captured in the ITO particle-containing layer portion of the stationary phase-supported plate.
 図39は、プラズモン構造体としてITO粒子を用いて820nmの単色光を照射しながらライス形状ZAISナノ粒子(粒子径19nm)を展開したときの光の強度とRf値との関係を示すグラフである。図39の横軸は光の強度である。図39の縦軸はライス形状ZAISナノ粒子のRf値である。図39に示すように、0.45W/cm程度以上の強度の光を固定相担持プレートに照射すれば、ITO粒子含有層部分でライス形状ZAISナノ粒子を捕捉することができる。このように、金属ナノ粒子に限らず、金属酸化物等の金属化合物からなるナノ粒子をプラズモン構造体として用いることができる。 FIG. 39 is a graph showing the relationship between the light intensity and the Rf value when rice-shaped ZAIS nanoparticles (particle diameter 19 nm) are developed while irradiating monochromatic light of 820 nm using ITO particles as a plasmon structure. .. The horizontal axis of FIG. 39 is the intensity of light. The vertical axis of FIG. 39 is the Rf value of the rice-shaped ZAIS nanoparticles. As shown in FIG. 39, when the stationary phase supporting plate is irradiated with light having an intensity of about 0.45 W / cm 2 or more, rice-shaped ZAIS nanoparticles can be captured in the ITO particle-containing layer portion. As described above, not only metal nanoparticles but also nanoparticles made of a metal compound such as a metal oxide can be used as a plasmon structure.
D.分離ターゲットであるナノ構造体として有機化合物を用いる場合の光捕捉
1.実験方法
 前述のオクタデシル基修飾逆相シリカゲルTLCプレートにプラズモン構造体含有層として金ナノ粒子を担持させた固定相担持プレートを製作した。金ナノ粒子の粒子径は12nmであった。金ナノ粒子の個数密度は3.5×1013個/cmであった。ターゲットであるナノ構造体として粒子径47nmの蛍光ポリスチレンビーズ(Thermo SCIENTIFIC社製)を用いた。展開溶媒はメタノールであった。
D. Light capture when an organic compound is used as the nanostructure that is the separation target 1. Experimental Method A stationary phase-supported plate in which gold nanoparticles were supported as a plasmon structure-containing layer on the above-mentioned octadecyl group-modified reverse-phase silica gel TLC plate was produced. The particle size of the gold nanoparticles was 12 nm. The number density of gold nanoparticles was 3.5 × 10 13 / cm 3 . Fluorescent polystyrene beads (manufactured by Thermo SCIENTIFIC) having a particle diameter of 47 nm were used as the target nanostructure. The developing solvent was methanol.
2.実験結果
 図40は、波長610nmのLED光を種々の光強度で照射しながらナノ構造体としてポリスチレンビーズをメタノールで展開した後の固定相担持プレートの写真である。図40に示すように、光の強度を上げると金ナノ粒子含有層はポリスチレンビーズを捕捉することができる。光の強度が0.63W/cmの場合には、金ナノ粒子含有層の上部において大部分のポリスチレンビーズを捕捉することができた。光の強度が0.88W/cmの場合には、金ナノ粒子含有層の中央部においてすべてのポリスチレンビーズを捕捉することができた。
2. Experimental Results FIG. 40 is a photograph of a stationary phase-supported plate after developing polystyrene beads as nanostructures with methanol while irradiating LED light having a wavelength of 610 nm with various light intensities. As shown in FIG. 40, when the light intensity is increased, the gold nanoparticle-containing layer can capture polystyrene beads. When the light intensity was 0.63 W / cm 2 , most polystyrene beads could be captured in the upper part of the gold nanoparticle-containing layer. When the light intensity was 0.88 W / cm 2 , all polystyrene beads could be captured in the central part of the gold nanoparticle-containing layer.
 図41は、TLC上にポリスチレンビーズを滴下固定した位置(原点)からメタノールで展開した際のポリスチレンビーズの移動距離と照射光強度との関係を示すグラフである。図41の横軸は光の強度である。図41の縦軸はポリスチレンビーズの原点からの移動距離(cm)である。図41に示すように、十分な強度の光を固定相担持プレートに照射すれば、プラズモン構造体はポリスチレンビーズを捕捉することができる。 FIG. 41 is a graph showing the relationship between the moving distance of polystyrene beads and the irradiation light intensity when the polystyrene beads are developed with methanol from the position (origin) where the polystyrene beads are dropped and fixed on the TLC. The horizontal axis of FIG. 41 is the intensity of light. The vertical axis of FIG. 41 is the moving distance (cm) from the origin of the polystyrene beads. As shown in FIG. 41, the plasmon structure can capture the polystyrene beads by irradiating the stationary phase-supported plate with light of sufficient intensity.
E.実験のまとめ
 プラズモン構造体である金ナノ粒子含有層の表面プラズモン共鳴を励起できる波長で十分な強度の光を照射することにより、金ナノ粒子含有層は、移動相中の無機ナノ粒子(量子ドット)を捕捉することができた。光強度が大きいほど、金ナノ粒子含有層が無機ナノ粒子を捕捉する力が強まる傾向がある。また、無機ナノ粒子の粒子径が小さいほど、金ナノ粒子含有層が無機ナノ粒子を捕捉することは困難な傾向がある。
E. Summary of Experiments By irradiating the surface of the gold nanoparticles-containing layer, which is a plasmon structure, with light of sufficient intensity at a wavelength capable of exciting plasmon resonance, the gold nanoparticles-containing layer becomes inorganic nanoparticles (quantum dots) in the mobile phase. ) Was able to be captured. The higher the light intensity, the stronger the ability of the gold nanoparticles-containing layer to capture the inorganic nanoparticles. Further, the smaller the particle size of the inorganic nanoparticles, the more difficult it is for the gold nanoparticles-containing layer to capture the inorganic nanoparticles.
 また、光の強度が無機ナノ粒子の捕捉に十分でない場合であっても、移動相中の無機ナノ粒子の移動速度を減速させることができた。これにより、無機ナノ粒子の停止位置が、光を照射しない場合に比べて小さなRf値になった。 Moreover, even when the light intensity was not sufficient for capturing the inorganic nanoparticles, the moving speed of the inorganic nanoparticles in the mobile phase could be reduced. As a result, the stop position of the inorganic nanoparticles has a smaller Rf value than when no light is irradiated.
 プラズモン構造体は金属ナノ粒子に限らない。プラズモン構造体は金ナノ粒子、銀ナノ粒子、ITO粒子等、表面プラズモン共鳴を励起可能な粒子であれば特に材料を限定されない。 The plasmon structure is not limited to metal nanoparticles. The material of the plasmon structure is not particularly limited as long as it is a particle capable of exciting surface plasmon resonance, such as gold nanoparticles, silver nanoparticles, and ITO particles.
 捕捉ターゲットまたは分離ターゲットであるナノ構造体は、無機化合物、有機化合物のいずれであってもよい。例えば、導電体、半導体、絶縁体のいずれであってもよい。ポリスチレンビーズのように絶縁性の高い材料であっても、プラズモン構造体が発生する微視的な局在電場を受けて、プラズモン構造体とナノ構造体との間に引力が発生する。 The nanostructure that is the capture target or the separation target may be either an inorganic compound or an organic compound. For example, it may be a conductor, a semiconductor, or an insulator. Even with a highly insulating material such as polystyrene beads, an attractive force is generated between the plasmon structure and the nanostructure due to the microscopic localized electric field generated by the plasmon structure.
(付記)
 第1の態様における分離装置は、固定相を有する固定相部材と、固定相部材および移動相を収容可能な展開槽と、固定相部材に向けて光を照射する光照射部と、を有する。固定相は、吸着剤と、吸着剤にプラズモン構造体を配置したプラズモン構造体含有層と、を有する。固定相部材は、ナノ構造体を含む移動相を供給されることが可能であるとともに、移動相を固定相に沿って移動させることが可能である。
(Additional note)
The separation device in the first aspect includes a stationary phase member having a stationary phase, a developing tank capable of accommodating the stationary phase member and the mobile phase, and a light irradiation unit that irradiates light toward the stationary phase member. The stationary phase has an adsorbent and a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent. The stationary phase member can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
 第2の態様における分離装置においては、光照射部は、プラズモン構造体に表面プラズモン共鳴を励起可能な光を照射する。 In the separation device of the second aspect, the light irradiation unit irradiates the plasmon structure with light capable of exciting surface plasmon resonance.
 第3の態様における分離装置においては、プラズモン構造体は、光照射部が光を固定相部材に照射している期間内に、ナノ構造体を捕捉するか、または、移動相中のナノ構造体の移動速度を減速させる。 In the separation device of the third aspect, the plasmon structure captures the nanostructure or the nanostructure in the mobile phase while the light-irradiating unit irradiates the stationary phase member with light. Decelerate the movement speed of.
 第4の態様における分離装置においては、固定相は、プラズモン構造体を含有せず吸着剤を含有する第1担体層および第2担体層を有する。プラズモン構造体含有層は、第1担体層と第2担体層との間の位置に配置されている。 In the separation device of the fourth aspect, the stationary phase has a first carrier layer and a second carrier layer that do not contain a plasmon structure but contain an adsorbent. The plasmon structure-containing layer is arranged at a position between the first carrier layer and the second carrier layer.
 第5の態様における分離装置においては、プラズモン構造体は、表面プラズモン共鳴ピークをもつ金属ナノ粒子である。 In the separation device of the fifth aspect, the plasmon structure is a metal nanoparticle having a surface plasmon resonance peak.
 第6の態様における分離装置においては、プラズモン構造体は、表面プラズモン共鳴ピークをもつ金属化合物ナノ粒子である。 In the separation device according to the sixth aspect, the plasmon structure is a metal compound nanoparticles having a surface plasmon resonance peak.
 第7の態様における分離装置においては、ナノ構造体は、無機化合物または有機化合物からなるナノ粒子である。 In the separation device according to the seventh aspect, the nanostructure is nanoparticles composed of an inorganic compound or an organic compound.
 第8の態様における固定相部材は、固定相を有する。固定相は、吸着剤と、吸着剤にプラズモン構造体を配置したプラズモン構造体含有層と、を有する。固定相部材は、ナノ構造体を含む移動相を供給されることが可能であるとともに、移動相を固定相に沿って移動させることが可能である。 The stationary phase member in the eighth aspect has a stationary phase. The stationary phase has an adsorbent and a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent. The stationary phase member can be supplied with a mobile phase containing nanostructures and can move the mobile phase along the stationary phase.
 第9の態様における固定相部材においては、プラズモン構造体は、光を固定相部材に照射している期間内に、ナノ構造体を捕捉するか、または、移動相中のナノ構造体の移動速度を減速させる。 In the stationary phase member of the ninth aspect, the plasmon structure captures the nanostructure or the rate of movement of the nanostructure in the mobile phase during the period of irradiation of the stationary phase member with light. Decelerate.
 第10の態様における固定相部材においては、固定相は、プラズモン構造体を含有せず吸着剤を含有する第1担体層および第2担体層を有する。プラズモン構造体含有層は、第1担体層と第2担体層との間の位置に配置されている。 In the stationary phase member according to the tenth aspect, the stationary phase has a first carrier layer and a second carrier layer that do not contain a plasmon structure but contain an adsorbent. The plasmon structure-containing layer is arranged at a position between the first carrier layer and the second carrier layer.
 第11の態様における固定相部材においては、プラズモン構造体は、表面プラズモン共鳴ピークをもつ。 In the stationary phase member in the eleventh aspect, the plasmon structure has a surface plasmon resonance peak.
 第12の態様におけるナノ構造体の分離方法においては、移動相に液体を用いるとともに固定相に固体を用いる液体クロマトグラフを用いる。表面プラズモン共鳴を励起可能なプラズモン構造体を含有する固定相を用いる。移動相としてナノ構造体を含む液体を用いる。プラズモン構造体に光を照射することによりプラズモン構造体に表面プラズモン共鳴を励起させる。プラズモン構造体にナノ構造体を捕捉させるか、または、移動相中のナノ構造体の移動速度を減速させる。 In the method for separating nanostructures in the twelfth aspect, a liquid chromatograph using a liquid as the mobile phase and a solid as the stationary phase is used. A stationary phase containing a plasmon structure capable of exciting surface plasmon resonance is used. A liquid containing nanostructures is used as the mobile phase. By irradiating the plasmon structure with light, the surface plasmon resonance is excited in the plasmon structure. The plasmon structure captures the nanostructures or slows the rate of movement of the nanostructures in the mobile phase.
 第13の態様におけるナノ構造体の分離方法においては、プラズモン構造体に光を照射することによりプラズモン構造体に表面プラズモン共鳴を励起させて、プラズモン構造体とナノ構造体との間に引力を発生させる。 In the method for separating nanostructures in the thirteenth aspect, the plasmon structure is irradiated with light to excite surface plasmon resonance in the plasmon structure, and an attractive force is generated between the plasmon structure and the nanostructure. Let me.
1000…分離装置
1100…光照射部
1200…展開槽
100…固定相部材
110…基材
120、140…担体層
130…プラズモン構造体含有層
L1…液体
P1…金ナノ粒子
N1…無機ナノ粒子
1000 ... Separation device 1100 ... Light irradiation unit 1200 ... Development tank 100 ... Fixed phase member 110 ... Base material 120, 140 ... Carrier layer 130 ... Plasmon structure-containing layer L1 ... Liquid P1 ... Gold nanoparticles N1 ... Inorganic nanoparticles

Claims (13)

  1. 固定相を有する固定相部材と、
    前記固定相部材および移動相を収容可能な展開槽と、
    前記固定相部材に向けて光を照射する光照射部と、
    を有し、
     前記固定相は、
      吸着剤と、
      前記吸着剤にプラズモン構造体を配置したプラズモン構造体含有層と、を有し、
     前記固定相部材は、
      ナノ構造体を含む前記移動相を供給されることが可能であるとともに、
      前記移動相を前記固定相に沿って移動させることが可能であること
    を含む分離装置。
    A stationary phase member having a stationary phase and
    An expansion tank capable of accommodating the stationary phase member and the mobile phase,
    A light irradiation unit that irradiates light toward the stationary phase member,
    Have,
    The stationary phase is
    Adsorbent and
    It has a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent.
    The stationary phase member is
    It is possible to supply the mobile phase containing nanostructures and
    A separator comprising the ability to move the mobile phase along the stationary phase.
  2. 請求項1に記載の分離装置において、
     前記光照射部は、
      前記プラズモン構造体に表面プラズモン共鳴を励起可能な光を照射すること
    を含む分離装置。
    In the separation device according to claim 1,
    The light irradiation unit is
    A separator comprising irradiating the plasmon structure with light capable of exciting surface plasmon resonance.
  3. 請求項1または請求項2に記載の分離装置において、
     前記プラズモン構造体は、
      前記光照射部が光を前記固定相部材に照射している期間内に、
       前記ナノ構造体を捕捉するか、または、前記移動相中の前記ナノ構造体の移動速度を減速させること
    を含む分離装置。
    In the separation device according to claim 1 or 2.
    The plasmon structure is
    During the period when the light irradiation unit irradiates the stationary phase member with light,
    A separator comprising capturing the nanostructures or slowing the movement rate of the nanostructures in the mobile phase.
  4. 請求項1から請求項3までのいずれか1項に記載の分離装置において、
     前記固定相は、
      前記プラズモン構造体を含有せず前記吸着剤を含有する第1担体層および第2担体層を有し、
     前記プラズモン構造体含有層は、
      前記第1担体層と前記第2担体層との間の位置に配置されていること
    を含む分離装置。
    In the separation device according to any one of claims 1 to 3.
    The stationary phase is
    It has a first carrier layer and a second carrier layer that do not contain the plasmon structure but contain the adsorbent.
    The plasmon structure-containing layer is
    A separation device including being arranged at a position between the first carrier layer and the second carrier layer.
  5. 請求項1から請求項4までのいずれか1項に記載の分離装置において、
     前記プラズモン構造体は、
      表面プラズモン共鳴ピークをもつ金属ナノ粒子であること
    を含む分離装置。
    In the separation device according to any one of claims 1 to 4.
    The plasmon structure is
    Separator comprising being metal nanoparticles with surface plasmon resonance peaks.
  6. 請求項1から請求項4までのいずれか1項に記載の分離装置において、
     前記プラズモン構造体は、
      表面プラズモン共鳴ピークをもつ金属化合物ナノ粒子であること
    を含む分離装置。
    In the separation device according to any one of claims 1 to 4.
    The plasmon structure is
    Separator comprising being a metal compound nanoparticles with a surface plasmon resonance peak.
  7. 請求項1から請求項6までのいずれか1項に記載の分離装置において、
     前記ナノ構造体は、
      無機化合物または有機化合物からなるナノ粒子であること
    を含む分離装置。
    In the separation device according to any one of claims 1 to 6.
    The nanostructure is
    A separator comprising being nanoparticles composed of an inorganic compound or an organic compound.
  8. 固定相を有する固定相部材において、
     前記固定相は、
      吸着剤と、
      前記吸着剤にプラズモン構造体を配置したプラズモン構造体含有層と、を有し、
     前記固定相部材は、
      ナノ構造体を含む前記移動相を供給されることが可能であるとともに、
      前記移動相を前記固定相に沿って移動させることが可能であること
    を含む固定相部材。
    In a stationary phase member having a stationary phase,
    The stationary phase is
    Adsorbent and
    It has a plasmon structure-containing layer in which a plasmon structure is arranged on the adsorbent.
    The stationary phase member is
    It is possible to supply the mobile phase containing nanostructures and
    A stationary phase member comprising the ability to move the mobile phase along the stationary phase.
  9. 請求項8に記載の固定相部材において、
     前記プラズモン構造体は、
      光を前記固定相部材に照射している期間内に、
       前記ナノ構造体を捕捉するか、または、前記移動相中の前記ナノ構造体の移動速度を減速させること
    を含む固定相部材。
    In the stationary phase member according to claim 8,
    The plasmon structure is
    During the period of irradiating the stationary phase member with light,
    A stationary phase member comprising capturing the nanostructures or reducing the moving speed of the nanostructures in the mobile phase.
  10. 請求項8または請求項9に記載の固定相部材において、
     前記固定相は、
      前記プラズモン構造体を含有せず前記吸着剤を含有する第1担体層および第2担体層を有し、
     前記プラズモン構造体含有層は、
      前記第1担体層と前記第2担体層との間の位置に配置されていること
    を含む固定相部材。
    In the stationary phase member according to claim 8 or 9.
    The stationary phase is
    It has a first carrier layer and a second carrier layer that do not contain the plasmon structure but contain the adsorbent.
    The plasmon structure-containing layer is
    A stationary phase member including being arranged at a position between the first carrier layer and the second carrier layer.
  11. 請求項8から請求項10までのいずれか1項に記載の固定相部材において、
     前記プラズモン構造体は、
      表面プラズモン共鳴ピークをもつこと
    を含む固定相部材。
    The stationary phase member according to any one of claims 8 to 10.
    The plasmon structure is
    A stationary phase member comprising having a surface plasmon resonance peak.
  12. 移動相に液体を用いるとともに固定相に固体を用いる液体クロマトグラフを用い、
    表面プラズモン共鳴を励起可能なプラズモン構造体を含有する前記固定相を用い、
    前記移動相としてナノ構造体を含む液体を用い、
    前記プラズモン構造体に光を照射することにより前記プラズモン構造体に前記表面プラズモン共鳴を励起させ、
    前記プラズモン構造体に前記ナノ構造体を捕捉させるか、または、前記移動相中の前記ナノ構造体の移動速度を減速させること
    を含むナノ構造体の分離方法。
    Using a liquid chromatograph that uses a liquid as the mobile phase and a solid as the stationary phase,
    Using the stationary phase containing a plasmon structure capable of exciting surface plasmon resonance,
    A liquid containing nanostructures was used as the mobile phase.
    By irradiating the plasmon structure with light, the surface plasmon resonance is excited in the plasmon structure.
    A method for separating nanostructures, which comprises causing the plasmon structure to capture the nanostructures or slowing down the moving speed of the nanostructures in the mobile phase.
  13. 請求項12に記載のナノ構造体の分離方法において、
    前記プラズモン構造体に光を照射することにより前記プラズモン構造体に前記表面プラズモン共鳴を励起させて、
     前記プラズモン構造体と前記ナノ構造体との間に引力を発生させること
    を含むナノ構造体の分離方法。
    In the method for separating nanostructures according to claim 12,
    By irradiating the plasmon structure with light, the surface plasmon resonance is excited in the plasmon structure.
    A method for separating nanostructures, which comprises generating an attractive force between the plasmon structure and the nanostructures.
PCT/JP2020/017264 2019-04-25 2020-04-21 Separator and separation method of stationary phase member and nanostructure WO2020218313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516145A JP7431418B2 (en) 2019-04-25 2020-04-21 Separation device, stationary phase member, and nanostructure separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084653 2019-04-25
JP2019-084653 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020218313A1 true WO2020218313A1 (en) 2020-10-29

Family

ID=72942141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017264 WO2020218313A1 (en) 2019-04-25 2020-04-21 Separator and separation method of stationary phase member and nanostructure

Country Status (2)

Country Link
JP (1) JP7431418B2 (en)
WO (1) WO2020218313A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047105A (en) * 2005-08-12 2007-02-22 Fujifilm Holdings Corp Biosensor and molecular weight fractionation method
US20190072493A1 (en) * 2017-09-05 2019-03-07 Oregon State University Device and method for on-chip chemical separation and detection
WO2019059171A1 (en) * 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 Detection device and detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047105A (en) * 2005-08-12 2007-02-22 Fujifilm Holdings Corp Biosensor and molecular weight fractionation method
US20190072493A1 (en) * 2017-09-05 2019-03-07 Oregon State University Device and method for on-chip chemical separation and detection
WO2019059171A1 (en) * 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 Detection device and detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMANISHI, DAIKI ET AL.: "Efficient Trapping of a Semiconductor and Metal Nanoparticles using Liquid/liquid Interface-Assisted Optical Tweezers", LECTURE PREPRINTS OF THE 79TH JSAP AUTUMN MEETING, 2018 *

Also Published As

Publication number Publication date
JPWO2020218313A1 (en) 2020-10-29
JP7431418B2 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
KR101886619B1 (en) Surface Enhanced Raman Scattering Substrate, Device for Detecting Molecule and the Fabrication Method thereof
Ma et al. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion
Wei et al. Oriented Gold Nanorod Arrays: Self‐Assembly and Optoelectronic Applications
Schick et al. Inorganic Janus particles for biomedical applications
US20180238868A1 (en) Core-shell nanoparticles with multiple cores and method for fabricating them
US10161874B2 (en) Polarization dependent surface enhanced Raman scattering system
JP2017523472A (en) Silica-coated quantum dots with improved quantum efficiency
WO2011143288A2 (en) Tuning of metal enhanced emissions of long-lived luminescent compounds
CN106660004A (en) Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device
WO2008057633A1 (en) Water-stable semiconductor nanocrystal complexes and methods of making same
Toropov 1.03 Noble Metal Nanoparticles: Synthesis and Optical Properties* Nikita Toropov and Tigran Vartanyan, ITMO University, St. Petersburg, Russia 2019 Elsevier BV All rights reserved.
Cademartiri et al. On the nature and importance of the transition between molecules and nanocrystals: towards a chemistry of “nanoscale perfection”
WO2013069732A1 (en) Magnetic nanoparticles
JP2016505157A (en) Surface-enhanced fluorescence spectrometer
JPWO2009066548A1 (en) Semiconductor nanoparticles, fluorescent labeling substances and molecular / cell imaging methods using them
WO2020218313A1 (en) Separator and separation method of stationary phase member and nanostructure
JP5620154B2 (en) Hollow micro object and method for producing the same
JP2011062607A (en) Circular nanoparticle assembly and method for producing the same
Torimoto et al. Development of plasmonic thin-layer chromatography for size-selective and optical-property-dependent separation of quantum dots
JP2010284603A (en) Multilayer film substrate having multilayer formed from metal fine particles and method of manufacturing the same
Li et al. Laser-induced assembly of Au nano-polyhedron clusters as stable 3D superstructures with ultrabroadband plasmonic resonance for promoting multi-band SERS
Liu et al. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence
EP2075581A1 (en) Semiconductor nanoparticle aggregate, process for producing the semiconductor nanoparticle aggregate, and biological substance labeling agent using the semiconductor nanoparticle aggregate
WO2022070330A1 (en) Metal nanoparticle dispersion
Lestini et al. Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796103

Country of ref document: EP

Kind code of ref document: A1