WO2020218134A1 - Method for producing tetracarboxylic acid dianhydride - Google Patents

Method for producing tetracarboxylic acid dianhydride Download PDF

Info

Publication number
WO2020218134A1
WO2020218134A1 PCT/JP2020/016653 JP2020016653W WO2020218134A1 WO 2020218134 A1 WO2020218134 A1 WO 2020218134A1 JP 2020016653 W JP2020016653 W JP 2020016653W WO 2020218134 A1 WO2020218134 A1 WO 2020218134A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
general formula
relative permittivity
bis
diol
Prior art date
Application number
PCT/JP2020/016653
Other languages
French (fr)
Japanese (ja)
Inventor
匡彦 西原
啓太 小嶋
思博 郭
利恵 藤岡
惇英 高雄
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to CN202080025972.XA priority Critical patent/CN113646302A/en
Priority to KR1020217031843A priority patent/KR20220004021A/en
Priority to JP2021516042A priority patent/JPWO2020218134A1/ja
Publication of WO2020218134A1 publication Critical patent/WO2020218134A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides

Definitions

  • the present invention relates to a method for producing a tetracarboxylic acid dianhydride, which is useful as a raw material for a heat-resistant resin such as a polyesterimide resin, a heat-resistant curing agent such as an epoxy resin, or a resin modifier.
  • a heat-resistant resin such as a polyesterimide resin
  • a heat-resistant curing agent such as an epoxy resin
  • a resin modifier such as an epoxy resin
  • Polyimide not only has excellent heat resistance, but also has characteristics such as chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties. Therefore, FPC substrates, TAB substrates, semiconductor element protective films, etc. It is widely used in various electronic devices such as interlayer insulating films for integrated circuits. In addition to these properties, polyimide has become more and more important in recent years due to its simplicity of manufacturing method, extremely high film purity, and ease of improving physical properties using various available monomers.
  • a tetracarboxylic acid dianhydride represented by the general formula (1-1) is known (for example, Patent Document 1).
  • R 1 represents a linear or branched-chain alkyl group having 1 to 6 carbon atoms
  • m represents an integer of 2 to 4
  • n represents an integer of 0 to 4.
  • naphthalene bis is also known as a raw material for polyimide that can be suitably used for a base film for a flexible printed circuit board, a carrier tape for a TAB, a resin for a laminated board, or the like (trimellitic acid monoesteric acid dianhydride).
  • Patent Document 2 Patent Document 2
  • Patent Document 3 describes a method in which N, N-dimethylacetamide is used as a solvent in the reaction, and p-toluenesulfonyl chloride, which is an acid halogenating agent, is used in combination so that the target compound can be obtained in a high yield and low temperature in a short time.
  • Patent Document 4 describes a method of using toluene as a solvent in the reaction.
  • the present invention has been made against the background of such circumstances, and has a reaction selectivity of a tetracarboxylic dianhydride having any one of a biphenylene group, a terphenylene group, a quarterphenylene group, and a naphthylene group as a main skeleton. It is an object of the present invention to provide a production method having an improved quality, high purity, high yield and industrial advantage.
  • the present invention is as follows. 1.
  • the following general formula (1) is characterized in that the diol compound represented by the following general formula (2) and trimellitic anhydride halide are reacted in the presence of lactones and / and nitriles having a relative permittivity of 25 or more.
  • X represents a divalent group represented by the following general formula (3-1) or the following general formula (3-2).
  • R 1 indicates a linear or branched-chain alkyl group having 1 to 6 carbon atoms
  • m indicates an integer of 2 to 4
  • n indicates an integer of 0 to 4
  • * indicates an integer of 0 to 4. Indicates the bond position.
  • * indicates the bonding position.
  • X is the same as that of the general formula (2).
  • the reaction selectivity of the tetracarboxylic dianhydride represented by the above general formula (1) is improved, the formation of impurity oligomers is suppressed, the reaction is rapid, high purity and high yield. Moreover, it becomes possible to provide an industrially advantageous manufacturing method.
  • Diol compound represented by the general formula (2) One of the starting materials used in the production method of the present invention is a diol compound represented by the following general formula (2).
  • X represents a divalent group represented by the following general formula (3-1) or the following general formula (3-2).
  • R 1 indicates a linear or branched-chain alkyl group having 1 to 6 carbon atoms
  • m indicates an integer of 2 to 4
  • n indicates an integer of 0 to 4
  • * indicates an integer of 0 to 4.
  • R 1 in the general formula (3-1) represents a linear or branched alkyl group having 1 to 6 carbon atoms, and specifically, for example, a methyl group, an ethyl group, an n-propyl group, and the like. Examples thereof include isopropyl group, n-butyl group, t-butyl group, pentyl group, 2-methylpentyl group and hexyl group. Among them, a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, a methyl group or a butyl group is more preferable, and a methyl group is particularly preferable.
  • m represents an integer of 2 to 4, and m is preferably 2.
  • N in the general formula (3-1) represents an integer of 0 to 4, and n is preferably 1 to 4 from the viewpoint of solubility of the diol and its derivative in the solvent.
  • the positions of the two * bond positions in the naphthalene ring of the general formula (3-2) are, for example, 1,4, 1,5, 1,8, 2,3, 2,6,2. 7th, 2nd and 8th place can be mentioned.
  • the positions of the bonding positions are preferably 1,4, 1,5, 2,6, 2,7, and 2,8, more preferably 1,5, 2,6, and 2,7. , 2, 6th, 2nd and 7th positions are more preferable, and 2nd and 6th positions are particularly preferable.
  • the diol compound represented by the general formula (2) when X is the general formula (3-1), it is represented by the following general formula (2-1).
  • R 1 , m, and n are the same as those in the general formula (3-1).
  • Preferable examples of the diol compound represented by the general formula (2-1) include the ease of synthesizing the diol compound as a raw material, the availability of raw materials for synthesizing the diol compound, the raw material cost, and the diol compound.
  • biphenyl-4,4'-diol 3,3'-dimethyl-biphenyl-4,4'-diol, 3,3', 5,5'-tetramethyl -Biphenyl-4,4'-diol, 2,2', 3,3', 5,5'-hexamethyl-biphenyl-4,4'-diol, 3,3'-dimethyl-5,5'-di- t-butyl-biphenyl-4,4'-diol, 4,4 "-dihydroxy-p-terphenyl, 4,4" -dihydroxy-3-methyl-p-terphenyl, 4,4 "-dihydroxy-3- Examples thereof include isopropyl-p-terphenyl, 4,4'''-dihydroxy-p-quarterphenyl, 4,4'''-dihydroxy-3,3'''-dimethyl-p-quarterphenyl.
  • X is the general formula (3-2)
  • X is the general formula (3-2)
  • X is the general formula (2-2)
  • 2-2 it is represented by the following general formula (2-2).
  • 1,4-dihydroxynaphthalene 1,5-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2 , 8-Dihydroxynaphthalene.
  • diol compound represented by the general formula (2-2) are 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2, Examples include 8-dihydroxynaphthalene.
  • 1,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene are more preferable, and 2,6-dihydroxynaphthalene and 2,7 are more preferable.
  • -Dihydroxynaphthalene is more preferable, and 2,6-dihydroxynaphthalene is particularly preferable.
  • trimellitic anhydride halide One of the starting materials used in the production method of the present invention is trimellitic anhydride halide.
  • trimellitic anhydride halide examples include trimellitic anhydride chloride, trimellitic anhydride bromide, trimellitic anhydride iodine, and trimellitic anhydride fluoride, and among these trimellitic anhydride halides, the cheapest Trimellitic anhydride chloride is preferably used because of its good availability.
  • the amount of trimellitic anhydride used is usually 2 to 3 mol, preferably 2.1 to 2.5 mol, based on 1 mol of the diol compound represented by the general formula (2).
  • the production method of the present invention is characterized in that the reaction is carried out in the presence of lactones and / and nitriles having a relative permittivity of 25 or more.
  • the solvent is preferably in the presence of lactones or lactones and nitriles from the viewpoint of reaction rate, and from the viewpoint of reaction rate and reduction of impurity oligomer production amount, lactones and nitriles. It is even more preferred to be in the presence.
  • the relative permittivity of these solvents is preferably 30 or more, and more preferably 35 or more.
  • lactones having a relative permittivity of 25 or more when lactones having a relative permittivity of 25 or more are used, lactones having a relative permittivity of 30 or more are preferable, and lactones having a relative permittivity of 35 or more are more preferable.
  • the upper limit is preferably 55 or less, and more preferably 50 or less.
  • nitriles having a relative permittivity of 25 or more are used, nitriles having a relative permittivity of 30 or more are preferable, and nitriles having a relative permittivity of 35 or more are more preferable.
  • the upper limit is preferably 55 or less, and more preferably 50 or less.
  • lactones and nitriles having a relative permittivity of 25 or more When lactones and nitriles having a relative permittivity of 25 or more are used, lactones and nitriles having a relative permittivity of 30 or more are preferable, and lactones and nitriles having a relative permittivity of 35 or more are more preferable.
  • the upper limit is preferably 55 or less, and more preferably 50 or less.
  • lactones having a relative permittivity of 25 or more include ⁇ -butyrolactone (relative permittivity: 42) and ⁇ -valerolactone (relative permittivity: 34).
  • nitriles having a relative permittivity of 25 or more include acetonitrile (relative permittivity: 37.5), propionitrile (relative permittivity: 29.7), benzonitrile (relative permittivity: 25.2), and methoxy. Examples thereof include propionitrile (relative permittivity: 25) and dimethoxypropionitrile (relative permittivity: 28).
  • Aprotonic polar solvents with a relative permittivity of 25 or more include, for example, amides such as dimethylformamide (relative permittivity: 37) and dimethylacetamide (relative permittivity: 37.8), and N-methylpyrrolidone (ratio). There are lactams such as dielectric constant: 32.2).
  • these aprotonic polar solvents generate a large amount of impurities in the reaction of the diol compound represented by the above general formula (2) with trimellitic anhydride halide. It was confirmed. It is believed that the formation of this impurity is due to the reaction of these aprotonic polar solvents with the trimellitic acid halide or the promotion of the decomposition of the trimellitic acid halide. That is, the production method using amides or lactams among the aprotonic polar solvents having a relative permittivity of 25 or more is inferior in reaction selectivity as compared with the production method of the present invention.
  • an organic solvent other than lactones or nitriles having a relative permittivity of 25 or more may be used in combination as long as the effects of the present invention are not impaired, but lactones and nitriles having a relative permittivity of 25 or more. , Or preferably composed of lactones and nitriles.
  • the amount of the reaction solvent used in the present invention is in the range of 4 to 30 times the weight of the diol compound represented by the general formula (2).
  • the reaction solvent may be added during the reaction.
  • hydrogen chloride is generated by the reaction of the diol compound represented by the above general formula (2) with trimellitic anhydride halide, and a base for capturing this is used.
  • the base is not particularly limited, but organic tertiary amines such as pyridine, triethylamine, N, N-dimethylaniline, epoxys such as propylene oxide, and inorganic bases such as potassium carbonate and sodium hydroxide are used. It is possible to do.
  • pyridine is preferably used from the viewpoint of separation operation after the reaction, cost, toxicity and the like.
  • the target compound is a tetracarboxylic dianhydride represented by the following general formula (1).
  • X is the same as that of the general formula (2).
  • the tetracarboxylic dianhydride represented by the general formula (1) when X is the general formula (3-1), it is represented by the following general formula (1-1).
  • R 1 , m, and n are the same as those in the general formula (3-1).
  • Specific examples and suitable examples of R 1 , m, and n in the general formula (1-1) are the same as those in the general formula (3-1).
  • the tetracarboxylic acid dianhydride represented by the general formula (1-1) is, for example, biphenyl-4,4'-diol-bis ( Trimeritate anhydride), 3,3'-dimethyl-biphenyl-4,4'-diol-bis (trimeritate anhydride), 3,3'-diethyl-biphenyl-4,4'-diol-bis (trimeritate anhydride) Trimeritate anhydride), 3,3'-diisopropyl-biphenyl-4,4'-diol-bis (trimeritate anhydride), 3,3', 5,5'-tetramethyl-biphenyl-4,4 '-Diol-bis (Trimeritate Anhydride), 3,3', 6,6'-Tetramethyl-biphenyl-4,4'-diol-bis (Trimeritate Anhydride),
  • p-Quarter Phenyl-Bis Trimeritate Amhydride
  • 4,4''-Dihydroxy-3-ethyl-p-Quarter Phenyl-Bis Trimeritate Amhydride
  • 4,4'''-dihydroxy-3,5-dimethyl-p-quarter phenyl-bis trimeritate hydride
  • 4 , 4'''-Dihydroxy-3,3'''-Dimethyl-p-Quarterphenyl-Bis Trimeritate Amhydride
  • tetracarboxylic acid dianhydride represented by the general formula (1-1) are the ease of synthesizing the diol as a raw material, the availability of the raw material when synthesizing the diol, the raw material cost, and the diol. From the viewpoint of solubility of and its derivatives in solvents, biphenyl-4,4'-diol-bis (trimeritate hydride), 3,3'-dimethyl-biphenyl-4,4'-diol-bis (trimeric).
  • tetracarboxylic dianhydride represented by the general formula (1) when X is the general formula (3-2), it is represented by the following general formula (1-2).
  • Specific examples of the tetracarboxylic acid dianhydride represented by the general formula (1-2) include 1,4-naphthalenediol-bis (trimeritate hydride) and 1,5-naphthalenediol-bis (1,5-naphthalenediol-bis).
  • Trimeritate umhydride 1,8-naphthalenediol-bis (trimeritate hydride), 2,3-naphthalenediol-bis (trimeritate hydride), 2,6-naphthalenediol-bis (trimeritate) Tate unhydride), 2,7-naphthalenediol-bis (trimeritate unhydride), 2,8-naphthalenediol-bis (trimelite anhydrate) and the like.
  • tetracarboxylic acid dianhydride represented by the general formula (1-2), 1,4-naphthalenediol-bis (trimeritate hydride) and 1,5-naphthalenediol-bis (trimeritate hydride)
  • 2,8-naphthalenediol-bis trimelite anhydrate
  • Is more preferable, 2,6-naphthalenediol-bis (trimeritate unhydride) and 2,7-naphthalenediol-bis (trimeritate unhydride) are even more preferable, and 2,6-naphthalenediol-bis (
  • a solution of lactones and / and nitriles having a relative permittivity of 25 or more and a diol compound represented by the general formula (2) is added to trimellitic anhydride chloride dissolved in lactones and / and nitriles having a relative permittivity of 25 or more.
  • the reaction is initiated by mixing.
  • a base such as pyridine is contained in the solution on the diol compound side represented by the general formula (2), which is a mixed solution.
  • a base such as pyridine
  • the molar ratio of the starting material to the base used in the reaction is 1.0 / 2.1 to 2.5 / 3.0 to diol compound / trimellitic anhydride chloride / base represented by the general formula (2). It is preferably in the range of 5.0.
  • the above solutions are mixed at a low temperature.
  • the temperature in the reaction system is preferably in the range of ⁇ 10 to 10 ° C., more preferably in the range of ⁇ 5 to 7 ° C., and particularly preferably in the range of 0 to 5 ° C.
  • post-stirring 1 Stirring immediately after the completion of mixing (hereinafter, may be referred to as “post-stirring 1”) is preferably carried out at a low temperature, and the temperature in the reaction system is preferably in the range of -10 to 10 ° C. It is more preferably carried out in the range of 7 ° C., and particularly preferably carried out in the range of 0 to 5 ° C. "Post-stirring 1" is preferably performed within about 5 hours in such a temperature range, and more preferably 2 to 3 hours. After “post-stirring 1", in order to promote the reaction, further stirring at a temperature higher than "post-stirring 1" (hereinafter, may be referred to as "post-stirring 2”) is continued to complete the reaction. Can be done.
  • Post-stirring 2 is preferably carried out in a reaction system in a temperature range of 20 to 75 ° C., more preferably in a range of 20 to 70 ° C., and particularly preferably in a range of 25 to 65 ° C. .. "Post-stirring 2" is preferably performed within about 5 hours in such a temperature range, and more preferably 2 to 3 hours.
  • a conventionally known method can be used as a method for isolating the target compound after completion of the reaction.
  • a precipitate present after completion of the reaction or precipitated after cooling is filtered off, and water, an organic solvent or the like is used. Examples include a method of cleaning the precipitate.
  • Reaction selectivity of target compound Reaction selectivity area% of target compound (tetracarboxylic dianhydride represented by general formula (1)) / (100- (diol represented by general formula (2)) Compound area% + Trimellitic dianhydride area% + Trimellitic acid area%))) x 100
  • Reaction selectivity of impurity oligomer Reaction selectivity Area% of impurity oligomer / (100- (Area% of diol compound represented by general formula (2) + Area% of trimellitic anhydride halide + Trimellitic acid Area%)) x 100
  • Example 1 A four-necked flask equipped with a thermometer, a stirrer, and a cooling tube is charged with 48.4 g (0.23 mol) of trimellitic anhydride (b) and 143.0 g of acetonitrile (relative permittivity: 37.5) and stirred. The container was replaced with nitrogen while dissolving, and cooled to 5 ° C. or lower.
  • the target compound (c) in the above reaction formula was 92.2% (GPC RI area% reaction selectivity: the same applies hereinafter), and the impurity oligomer was 1. It was .2%. Then, the temperature was raised to 65 ° C. and the mixture was stirred for 3 hours (post-stirring 2). As a result of analyzing the reaction completion solution by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 95.9%, and the impurity oligomer was 1.6%.
  • Impurities produced as a by-product in the above reaction are known to have a higher molecular weight than the target compound (c) from the analysis results of gel permeation chromatography (GPC), and are presumed to be oligomers having the following chemical structure. There is.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to ⁇ -butyrolactone (relative permittivity: 42).
  • the target compound (c) in the above reaction formula was 97.3%, and the impurity oligomer was 2.6%.
  • the target compound (c) in the above reaction formula was 96.9%, and the impurity oligomer was 2.8%. there were.
  • Example 3 The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to a mixed solvent of acetonitrile (relative permittivity: 37.5) and ⁇ -butyrolactone (relative permittivity: 42) in a weight ratio of 1: 1.
  • the target compound (c) in the above reaction formula was 96.8%, and the impurity oligomer was 2.0%.
  • the target compound (c) in the above reaction formula was 96.8%, and the impurity oligomer was 2.0. %Met.
  • Example 4 A four-necked flask equipped with a thermometer, a stirrer, and a cooling tube is charged with 48.4 g (0.23 mol) of trimellitic anhydride (b) and 112.6 g of acetonitrile (relative permittivity: 37.5) and stirred. The container was replaced with nitrogen while dissolving, and cooled to 5 ° C. or lower. Then, a preparation solution prepared by dissolving 16.0 g (0.10 mol) of the diol compound (d), 143.4 g of acetonitrile (relative permittivity: 37.5), and 39.6 g (0.50 mol) of the pyridine in the above reaction formula was prepared.
  • Impurities produced as a by-product in the above reaction are known to have a higher molecular weight than the target compound (e) from the analysis results of gel permeation chromatography (GPC), and are presumed to be oligomers having the following chemical structure. There is.
  • Example 5 The reaction was carried out in the same manner as in Example 4 except that the solvent was changed to a mixed solvent of acetonitrile (relative permittivity: 37.5) and ⁇ -butyrolactone (relative permittivity: 42) in a weight ratio of 1: 1.
  • the target compound (e) in the above reaction formula was 98.6%, and the impurity oligomer was 0.5%.
  • the target compound (e) in the above reaction formula was 98.9%, and the impurity oligomer was 0.5. %Met.
  • Example 6 48.4 g (0.23 mol) of trimellitic anhydride (b), acetonitrile (relative permittivity: 37.5) and ⁇ -butyrolactone (relative permittivity) in a four-necked flask equipped with a thermometer, agitator and a condenser. Ratio: 42) 112.6 g of a mixed solvent having a weight ratio of 1: 1 was charged, the container was replaced with nitrogen while stirring and dissolving, and the temperature was cooled to 5 ° C. or lower.
  • the target compound (g) in the above reaction formula was 98.3% (GPC RI area% reaction selectivity: the same applies hereinafter), and the impurity oligomer was 0. It was 9.9%. Then, the temperature was raised to 65 ° C. and the mixture was stirred for 2 hours (post-stirring 2). As a result of analyzing the reaction completion solution by gel permeation chromatography (GPC), the target compound (g) in the above reaction formula was 98.4%, and the impurity oligomer was 0.8%.
  • Impurities produced as a by-product in the above reaction are known to have a higher molecular weight than the target compound (g) from the results of gel permeation chromatography (GPC) analysis, and are presumed to be oligomers having the following chemical structure. There is.
  • Example 6 ⁇ Consideration on reaction selectivity> From the results of Example 6 and Comparative Example 6 above, when the reaction is carried out in the presence of lactones and nitriles having a relative permittivity of 25 or more (Example 6), the reaction rate is improved and impurity oligomers are produced. It was confirmed that an extremely excellent effect of being suppressed was obtained. On the other hand, when the reaction is carried out in the presence of a solvent other than lactones and nitriles having a relative permittivity of 25 or more (Comparative Example 6), the reaction rate is slow and the formation of impurity oligomers is not suppressed, so that the reaction is selected. Since the rate is low, it was confirmed that it is inferior as an industrial manufacturing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention addresses the problem of providing an industrially advantageous production method with high purity and high yield, which has an improved reaction selectivity for a tetracarboxylic acid dianhydride that has, as a main skeleton, a biphenylene group, a terphenylene group, a quaterphenylene group or a naphthylene group. The present invention provides, as a solution, a method for producing a tetracarboxylic acid dianhydride represented by general formula (1), which is characterized by reacting a diol compound represented by general formula (2) and anhydrous trimellitic acid halide with each other in the presence of a nitrile and/or a lactone having a relative dielectric constant of 25 or more.

Description

テトラカルボン酸二無水物の製造方法Method for producing tetracarboxylic dianhydride
 本発明は、ポリエステルイミド樹脂等の耐熱樹脂の原料、エポキシ樹脂等の耐熱性硬化剤、或いは樹脂改質剤として有用な、テトラカルボン酸二無水物の製造方法に関する。 The present invention relates to a method for producing a tetracarboxylic acid dianhydride, which is useful as a raw material for a heat-resistant resin such as a polyesterimide resin, a heat-resistant curing agent such as an epoxy resin, or a resin modifier.
 ポリイミドは優れた耐熱性のみならず、耐薬品性、耐放射線性、電気絶縁性、優れた機械的性質などの特性を併せ持つことから、FPC用基板、TAB用基材、半導体素子の保護膜、集積回路の層間絶縁膜等、様々な電子デバイスに広く利用されている。ポリイミドはこれらの特性以外にも、製造方法の簡便さ、極めて高い膜純度、入手可能な種々のモノマーを用いた物性改良のしやすさといったことから、近年益々その重要性が高まっている。
 中でも、高いガラス転移温度、金属箔と同等の低い線熱膨張係数、極めて低い吸水率、高い弾性率、十分な靭性且つ金属箔との十分な密着性を併せ持つ新規なポリエステルイミドの原料として、下記一般式(1-1)で表されるテトラカルボン酸二無水物が知られている(例えば、特許文献1)。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは炭素原子数1~6である直鎖状又は分岐鎖状のアルキル基を示し、mは2~4の整数を示し、nは0~4の整数を示す。)
また、フレキシブルプリント基板用ベースフィルム、TAB用キャリアテープあるいは積層板用樹脂等に好適に供することができるポリイミドの原料として、ナフタレンビス(トリメリット酸モノエステル酸二無水物)も知られている(例えば、特許文献2)。
Polyimide not only has excellent heat resistance, but also has characteristics such as chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties. Therefore, FPC substrates, TAB substrates, semiconductor element protective films, etc. It is widely used in various electronic devices such as interlayer insulating films for integrated circuits. In addition to these properties, polyimide has become more and more important in recent years due to its simplicity of manufacturing method, extremely high film purity, and ease of improving physical properties using various available monomers.
Among them, as a raw material for a novel polyesterimide having a high glass transition temperature, a low coefficient of linear thermal expansion equivalent to that of a metal foil, an extremely low water absorption rate, a high elastic modulus, sufficient toughness and sufficient adhesion to a metal foil, the following A tetracarboxylic acid dianhydride represented by the general formula (1-1) is known (for example, Patent Document 1).
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 represents a linear or branched-chain alkyl group having 1 to 6 carbon atoms, m represents an integer of 2 to 4, and n represents an integer of 0 to 4.)
In addition, naphthalene bis (trimellitic acid monoesteric acid dianhydride) is also known as a raw material for polyimide that can be suitably used for a base film for a flexible printed circuit board, a carrier tape for a TAB, a resin for a laminated board, or the like (trimellitic acid monoesteric acid dianhydride). For example, Patent Document 2).
 一方、テトラカルボン酸二無水物の製造方法としては種々知られているが、その中でも、原料である無水トリメリット酸のハライド類が容易に入手可能なことから、ジオール化合物と無水トリメリット酸ハライドとを反応させる方法が種々検討されてきた。
 特許文献3では、反応に際し、N,N-ジメチルアセトアミドを溶媒に用い、高収率低温短時間で目的化合物が得られるように酸ハロゲン化剤であるp-トルエンスルホニルクロリドを併用する方法が記載されている。
 特許文献4では、反応に際し、トルエンを溶媒に用いる方法が記載されている。
On the other hand, various methods for producing tetracarboxylic dianhydride are known. Among them, diol compounds and trimellitic anhydride halides are available because halides of trimellitic anhydride as a raw material are easily available. Various methods have been studied for reacting with.
Patent Document 3 describes a method in which N, N-dimethylacetamide is used as a solvent in the reaction, and p-toluenesulfonyl chloride, which is an acid halogenating agent, is used in combination so that the target compound can be obtained in a high yield and low temperature in a short time. Has been done.
Patent Document 4 describes a method of using toluene as a solvent in the reaction.
国際公開第2008/091011号International Publication No. 2008/091011 特開2004-285364号公報Japanese Unexamined Patent Publication No. 2004-285364 特開昭63-303976号公報Japanese Unexamined Patent Publication No. 63-303976 特開平10-070157号公報Japanese Unexamined Patent Publication No. 10-070157
 上述したこれら公知の製法では、酸ハロゲン化物を追加で使用しなければならず、また、後段の比較例において具体的に示すように、目的化合物であるテトラカルボン酸二無水物の他に、不純物オリゴマーが多量に副生し、目的化合物の純度が低下する問題が判明した。純度が低い原料を使用してポリエステルイミド樹脂を製造すると、樹脂特性が劣ることは技術常識である。
 本発明は、このような事情を背景としてなされたものであって、主骨格としてビフェニレン基、ターフェニレン基、クオーターフェニレン基、ナフチレン基の何れかを有する、テトラカルボン酸二無水物の反応選択率が向上した、高純度、高収率かつ工業的有利な製造方法の提供を課題とする。
In these known production methods described above, an acid halide must be additionally used, and as specifically shown in the comparative example in the latter stage, in addition to the tetracarboxylic dianhydride which is the target compound, impurities are added. It has been found that a large amount of oligomers are produced as a by-product and the purity of the target compound is lowered. It is common general knowledge that the resin properties are inferior when the polyesterimide resin is produced using a raw material having low purity.
The present invention has been made against the background of such circumstances, and has a reaction selectivity of a tetracarboxylic dianhydride having any one of a biphenylene group, a terphenylene group, a quarterphenylene group, and a naphthylene group as a main skeleton. It is an object of the present invention to provide a production method having an improved quality, high purity, high yield and industrial advantage.
 本発明者は、上述の課題解決のために鋭意検討した結果、特定の溶媒存在下において、ジオール化合物と無水トリメリット酸ハライドを反応させることにより、前記課題を解決できることを見出し、本発明を完成した。 As a result of diligent studies for solving the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved by reacting a diol compound with trimellitic anhydride halide in the presence of a specific solvent, and completed the present invention. did.
 本発明は以下の通りである。
1.下記一般式(2)で表されるジオール化合物と無水トリメリット酸ハライドを、比誘電率25以上のラクトン類又は/及びニトリル類の存在下において反応させることを特徴とする、下記一般式(1)で表されるテトラカルボン酸二無水物の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、Xは下記一般式(3-1)または下記一般式(3-2)で表される2価の基を示す。)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは炭素原子数1~6である直鎖状又は分岐鎖状のアルキル基を示し、mは2~4の整数を示し、nは0~4の整数を示し、*は結合位置を示す。)
Figure JPOXMLDOC01-appb-C000008
(式中、*は結合位置を示す。)
Figure JPOXMLDOC01-appb-C000009
(式中、Xは一般式(2)のそれと同じである。)
The present invention is as follows.
1. 1. The following general formula (1) is characterized in that the diol compound represented by the following general formula (2) and trimellitic anhydride halide are reacted in the presence of lactones and / and nitriles having a relative permittivity of 25 or more. ) Is a method for producing a tetracarboxylic dianhydride.
Figure JPOXMLDOC01-appb-C000006
(In the formula, X represents a divalent group represented by the following general formula (3-1) or the following general formula (3-2).)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 indicates a linear or branched-chain alkyl group having 1 to 6 carbon atoms, m indicates an integer of 2 to 4, n indicates an integer of 0 to 4, and * indicates an integer of 0 to 4. Indicates the bond position.)
Figure JPOXMLDOC01-appb-C000008
(In the formula, * indicates the bonding position.)
Figure JPOXMLDOC01-appb-C000009
(In the formula, X is the same as that of the general formula (2).)
 本発明によれば、上記一般式(1)で表されるテトラカルボン酸二無水物の反応選択率が向上し、不純物オリゴマーの生成が抑制され、反応が速やかである、高純度、高収率かつ工業的有利な製造方法を提供することが可能となる。 According to the present invention, the reaction selectivity of the tetracarboxylic dianhydride represented by the above general formula (1) is improved, the formation of impurity oligomers is suppressed, the reaction is rapid, high purity and high yield. Moreover, it becomes possible to provide an industrially advantageous manufacturing method.
 以下、本発明を詳細に説明する。
<出発原料:一般式(2)で表されるジオール化合物について>
 本発明の製造方法において使用する出発原料の1つが、下記一般式(2)で表されるジオール化合物である。
Figure JPOXMLDOC01-appb-C000010
(式中、Xは下記一般式(3-1)または下記一般式(3-2)で表される2価の基を示す。)
Figure JPOXMLDOC01-appb-C000011
 (式中、Rは炭素原子数1~6である直鎖状又は分岐鎖状のアルキル基を示し、mは2~4の整数を示し、nは0~4の整数を示し、*は結合位置を示す。)
Figure JPOXMLDOC01-appb-C000012
(式中、*は結合位置を示す。)
 一般式(3-1)中のRは、炭素原子数1~6の直鎖状もしくは分岐鎖状アルキル基を表し、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ペンチル基、2-メチルペンチル基、ヘキシル基が挙げられる。中でも、炭素原子数1~4の直鎖状もしくは分岐鎖状アルキル基が好ましく、メチル基又はブチル基がより好ましく、メチル基が特に好ましい。
 一般式(3-1)中のmは2~4の整数を示し、mが2であることが好ましい。
 一般式(3-1)中のnは0~4の整数を示し、ジオール及びその誘導体の溶媒に対する溶解性の観点から、nが1~4であることが好ましい。
一般式(3-2)のナフタレン環における2つの*の結合位置の位置は、例えば、1,4位、1,5位、1,8位、2,3位、2,6位、2,7位、2,8位が挙げられる。結合位置の位置は、1,4位、1,5位、2,6位、2,7位、2,8位が好ましく、1,5位、2,6位、2,7位がより好ましく、2,6位、2,7位がさらに好ましく、2,6位が特に好ましい。
Hereinafter, the present invention will be described in detail.
<Starting material: Diol compound represented by the general formula (2)>
One of the starting materials used in the production method of the present invention is a diol compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000010
(In the formula, X represents a divalent group represented by the following general formula (3-1) or the following general formula (3-2).)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 1 indicates a linear or branched-chain alkyl group having 1 to 6 carbon atoms, m indicates an integer of 2 to 4, n indicates an integer of 0 to 4, and * indicates an integer of 0 to 4. Indicates the bond position.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, * indicates the bonding position.)
R 1 in the general formula (3-1) represents a linear or branched alkyl group having 1 to 6 carbon atoms, and specifically, for example, a methyl group, an ethyl group, an n-propyl group, and the like. Examples thereof include isopropyl group, n-butyl group, t-butyl group, pentyl group, 2-methylpentyl group and hexyl group. Among them, a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, a methyl group or a butyl group is more preferable, and a methyl group is particularly preferable.
In the general formula (3-1), m represents an integer of 2 to 4, and m is preferably 2.
N in the general formula (3-1) represents an integer of 0 to 4, and n is preferably 1 to 4 from the viewpoint of solubility of the diol and its derivative in the solvent.
The positions of the two * bond positions in the naphthalene ring of the general formula (3-2) are, for example, 1,4, 1,5, 1,8, 2,3, 2,6,2. 7th, 2nd and 8th place can be mentioned. The positions of the bonding positions are preferably 1,4, 1,5, 2,6, 2,7, and 2,8, more preferably 1,5, 2,6, and 2,7. , 2, 6th, 2nd and 7th positions are more preferable, and 2nd and 6th positions are particularly preferable.
 一般式(2)で表されるジオール化合物において、Xが一般式(3-1)である場合、下記一般式(2-1)で表される。
Figure JPOXMLDOC01-appb-C000013
(式中、R、m、nは一般式(3-1)のそれと同じである。)
具体的には、m=2のジオールは、例えば、ビフェニル-4,4’-ジオール、3,3’-ジメチル-ビフェニル-4,4’-ジオール、3,3’-ジエチル-ビフェニル-4,4’-ジオール、3,3’-ジイソプロピル-ビフェニル-4,4’-ジオール、3,3’,5,5’-テトラメチル-ビフェニル-4,4’-ジオール、3,3’,6,6’-テトラメチル-ビフェニル-4,4’-ジオール、2,2’,3,3’,5,5’-ヘキサメチル-ビフェニル-4,4’-ジオール、3,3’-ジメチル-5,5’-ジ-t-ブチル-ビフェニル-4,4’-ジオールが挙げられる。
 m=3のジオール化合物は、例えば、4,4”-ジヒドロキシ-p-ターフェニル、4,4”-ジヒドロキシ-3-メチル-p-ターフェニル、4,4”-ジヒドロキシ-3-エチル-p-ターフェニル、4,4”-ジヒドロキシ-3-n-プロピル-p-ターフェニル、4,4”-ジヒドロキシ-3-イソプロピル-p-ターフェニル、4,4”-ジヒドロキシ-3,5-ジメチル-p-ターフェニル、4,4”-ジヒドロキシ-3,3”-ジメチル-p-ターフェニルが挙げられる。
 m=4のジオールは、例えば、4,4’’’-ジヒドロキシ-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3-メチル-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3-エチル-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3-n-プロピル-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3,5-ジメチル-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3,3’’’-ジメチル-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3,3’’’-ジエチル-p-クオーターフェニル、4,4’’’’-ジヒドロキシ-3,3’’’-ジ-n-プロピル-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3,3’’’-ジイソプロピル-p-クオーターフェニルが挙げられる。
In the diol compound represented by the general formula (2), when X is the general formula (3-1), it is represented by the following general formula (2-1).
Figure JPOXMLDOC01-appb-C000013
(In the formula, R 1 , m, and n are the same as those in the general formula (3-1).)
Specifically, the m = 2 diol is, for example, biphenyl-4,4'-diol, 3,3'-dimethyl-biphenyl-4,4'-diol, 3,3'-diethyl-biphenyl-4, 4'-diol, 3,3'-diisopropyl-biphenyl-4,4'-diol, 3,3', 5,5'-tetramethyl-biphenyl-4,4'-diol, 3,3', 6, 6'-Tetramethyl-biphenyl-4,4'-diol, 2,2', 3,3', 5,5'-hexamethyl-biphenyl-4,4'-diol, 3,3'-dimethyl-5, Examples thereof include 5'-di-t-butyl-biphenyl-4,4'-diol.
The m = 3 diol compound is, for example, 4,4 "-dihydroxy-p-terphenyl, 4,4" -dihydroxy-3-methyl-p-terphenyl, 4,4 "-dihydroxy-3-ethyl-p. -Terphenyl, 4,4 "-dihydroxy-3-n-propyl-p-terphenyl, 4,4" -dihydroxy-3-isopropyl-p-terphenyl, 4,4 "-dihydroxy-3,5-dimethyl -P-terphenyl, 4,4 "-dihydroxy-3,3" -dimethyl-p-terphenyl can be mentioned.
The m = 4 diol is, for example, 4,4'''-dihydroxy-p-quarterphenyl, 4,4'''-dihydroxy-3-methyl-p-quarterphenyl, 4,4'''-dihydroxy-. 3-Ethyl-p-quarterphenyl, 4,4'''-dihydroxy-3-n-propyl-p-quarterphenyl, 4,4'''-dihydroxy-3,5-dimethyl-p-quarterphenyl, 4 , 4'''-dihydroxy-3,3'''-dimethyl-p-quarterphenyl, 4,4''-dihydroxy-3,3'''-diethyl-p-quarterphenyl, 4,4'' `` -Dihydroxy-3,3''''-di-n-propyl-p-quarterphenyl, 4,4''-dihydroxy-3,3''''-diisopropyl-p-quarterphenyl can be mentioned.
 一般式(2-1)で表されるジオール化合物の好適な例としては、原料であるジオール化合物の合成のしやすさ、ジオール化合物を合成する際の原材料の入手の可否及び原料コスト、ジオール化合物及びその誘導体の溶媒に対する溶解性等の観点から、ビフェニル-4,4’-ジオール、3,3’-ジメチル-ビフェニル-4,4’-ジオール、3,3’,5,5’-テトラメチル-ビフェニル-4,4’-ジオール、2,2’,3,3’,5,5’-ヘキサメチル-ビフェニル-4,4’-ジオール、3,3’-ジメチル-5,5’-ジ-t-ブチル-ビフェニル-4,4’-ジオール、4,4”-ジヒドロキシ-p-ターフェニル、4,4”-ジヒドロキシ-3-メチル-p-ターフェニル、4,4”-ジヒドロキシ-3-イソプロピル-p-ターフェニル、4,4’’’-ジヒドロキシ-p-クオーターフェニル、4,4’’’-ジヒドロキシ-3,3’’’-ジメチル-p-クオーターフェニルが挙げられる。 Preferable examples of the diol compound represented by the general formula (2-1) include the ease of synthesizing the diol compound as a raw material, the availability of raw materials for synthesizing the diol compound, the raw material cost, and the diol compound. From the viewpoint of solubility of and its derivatives in solvents, biphenyl-4,4'-diol, 3,3'-dimethyl-biphenyl-4,4'-diol, 3,3', 5,5'-tetramethyl -Biphenyl-4,4'-diol, 2,2', 3,3', 5,5'-hexamethyl-biphenyl-4,4'-diol, 3,3'-dimethyl-5,5'-di- t-butyl-biphenyl-4,4'-diol, 4,4 "-dihydroxy-p-terphenyl, 4,4" -dihydroxy-3-methyl-p-terphenyl, 4,4 "-dihydroxy-3- Examples thereof include isopropyl-p-terphenyl, 4,4'''-dihydroxy-p-quarterphenyl, 4,4'''-dihydroxy-3,3'''-dimethyl-p-quarterphenyl.
一般式(2)で表されるジオール化合物において、Xが一般式(3-2)である場合、下記一般式(2-2)で表される。
Figure JPOXMLDOC01-appb-C000014
具体的には、例えば、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレンが挙げられる。
一般式(2-2)で表されるジオール化合物の好適な例としては、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレンが挙げられる。一般式(2-2)で表されるジオール化合物のうち、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンがより好ましく、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンがさらに好ましく、2,6-ジヒドロキシナフタレンが特に好ましい。
In the diol compound represented by the general formula (2), when X is the general formula (3-2), it is represented by the following general formula (2-2).
Figure JPOXMLDOC01-appb-C000014
Specifically, for example, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2 , 8-Dihydroxynaphthalene.
Preferable examples of the diol compound represented by the general formula (2-2) are 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2, Examples include 8-dihydroxynaphthalene. Of the diol compounds represented by the general formula (2-2), 1,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene are more preferable, and 2,6-dihydroxynaphthalene and 2,7 are more preferable. -Dihydroxynaphthalene is more preferable, and 2,6-dihydroxynaphthalene is particularly preferable.
<出発原料:無水トリメリット酸ハライドについて>
 本発明の製造方法において使用する出発原料の1つが、無水トリメリット酸ハライドである。
 本発明で使用する無水トリメリット酸ハライドとしては、無水トリメリット酸クロライド、無水トリメリット酸ブロマイド、無水トリメリット酸ヨーダイド、無水トリメリット酸フルオライドが挙げられ、これら無水トリメリット酸ハライドの中でも、安価であり、かつ入手性が良いことから、無水トリメリット酸クロライドが好適に用いられる。無水トリメリット酸ハライドの使用量は、一般式(2)で表されるジオール化合物1モルに対して、通常2~3モル使用し、好ましくは2.1~2.5モル使用する。
<Starting material: Trimellitic anhydride halide>
One of the starting materials used in the production method of the present invention is trimellitic anhydride halide.
Examples of the trimellitic anhydride halide used in the present invention include trimellitic anhydride chloride, trimellitic anhydride bromide, trimellitic anhydride iodine, and trimellitic anhydride fluoride, and among these trimellitic anhydride halides, the cheapest Trimellitic anhydride chloride is preferably used because of its good availability. The amount of trimellitic anhydride used is usually 2 to 3 mol, preferably 2.1 to 2.5 mol, based on 1 mol of the diol compound represented by the general formula (2).
<反応溶媒について>
 本発明の製造方法は、比誘電率25以上のラクトン類又は/及びニトリル類の存在下において反応を行うことを特徴とするものである。中でも、溶媒については、反応速度の観点から、ラクトン類の存在下又はラクトン類及びニトリル類の存在下であることが好ましく、反応速度及び不純物オリゴマー生成量低減の観点から、ラクトン類及びニトリル類の存在下であることがさらに好ましい。これらの溶媒の比誘電率が30以上であることが好ましく、比誘電率が35以上であることがより好ましい。
 すなわち、比誘電率25以上のラクトン類を使用する場合、比誘電率が30以上のラクトン類が好ましく、比誘電率が35以上のラクトン類がより好ましい。また、その上限値は55以下が好ましく、50以下がより好ましい。
 比誘電率25以上のニトリル類を使用する場合、比誘電率が30以上のニトリル類が好ましく、比誘電率が35以上のニトリル類がより好ましい。また、その上限値は55以下が好ましく、50以下がより好ましい。
 比誘電率25以上のラクトン類及びニトリル類を使用する場合、比誘電率は30以上のラクトン類及びニトリル類が好ましく、比誘電率が35以上のラクトン類及びニトリル類がより好ましい。また、その上限値は55以下が好ましく、50以下がより好ましい。
<About reaction solvent>
The production method of the present invention is characterized in that the reaction is carried out in the presence of lactones and / and nitriles having a relative permittivity of 25 or more. Among them, the solvent is preferably in the presence of lactones or lactones and nitriles from the viewpoint of reaction rate, and from the viewpoint of reaction rate and reduction of impurity oligomer production amount, lactones and nitriles. It is even more preferred to be in the presence. The relative permittivity of these solvents is preferably 30 or more, and more preferably 35 or more.
That is, when lactones having a relative permittivity of 25 or more are used, lactones having a relative permittivity of 30 or more are preferable, and lactones having a relative permittivity of 35 or more are more preferable. The upper limit is preferably 55 or less, and more preferably 50 or less.
When nitriles having a relative permittivity of 25 or more are used, nitriles having a relative permittivity of 30 or more are preferable, and nitriles having a relative permittivity of 35 or more are more preferable. The upper limit is preferably 55 or less, and more preferably 50 or less.
When lactones and nitriles having a relative permittivity of 25 or more are used, lactones and nitriles having a relative permittivity of 30 or more are preferable, and lactones and nitriles having a relative permittivity of 35 or more are more preferable. The upper limit is preferably 55 or less, and more preferably 50 or less.
 比誘電率25以上のラクトン類として具体的には、例えば、γ-ブチロラクトン(比誘電率:42)、γ-バレロラクトン(比誘電率:34)などが挙げられる。
 比誘電率25以上のニトリル類としては、例えば、アセトニトリル(比誘電率:37.5)、プロピオニトリル(比誘電率:29.7)、ベンゾニトリル(比誘電率:25.2)、メトキシプロピオニトリル(比誘電率:25)、ジメトキシプロピオニトリル(比誘電率:28)などが挙げられる。
 比誘電率25以上のラクトン類及びニトリル類を使用する場合の重量比は、ラクトン類/ニトリル類=90/10~10/90であり、80/20~20/80が好ましく、70/30~30/70がより好ましい。
 比誘電率が25以上の非プロトン性極性溶媒には、例えば、ジメチルホルムアミド(比誘電率:37)やジメチルアセトアミド(比誘電率:37.8)等のアミド類や、N-メチルピロリドン(比誘電率:32.2)等のラクタム類がある。しかしながら、これらの非プロトン性極性溶媒は、下記比較例において具体的に示すように、上記一般式(2)で表されるジオール化合物と無水トリメリット酸ハライドの反応において、不純物が多く生成することを確認した。この不純物の生成は、これら非プロトン性極性溶媒が、トリメリット酸ハライドと反応するか、トリメリット酸ハライドの分解を促進することに起因すると考えている。すなわち、比誘電率が25以上の非プロトン性極性溶媒のうちアミド類やラクタム類を使用する製造方法は、本発明の製造方法と比較して、反応選択率において劣る方法である。
 本発明における反応溶媒は、本発明の効果を損なわない限り、比誘電率25以上のラクトン類又はニトリル類以外の有機溶媒を併用してもよいが、比誘電率25以上のラクトン類、ニトリル類、又はラクトン類及びニトリル類からなることが好ましい。
 本発明における反応溶媒の使用量は、上記一般式(2)で表されるジオール化合物の重量に対して4~30倍の範囲である。反応溶媒は、反応途中で追加しても良い。
Specific examples of the lactones having a relative permittivity of 25 or more include γ-butyrolactone (relative permittivity: 42) and γ-valerolactone (relative permittivity: 34).
Examples of nitriles having a relative permittivity of 25 or more include acetonitrile (relative permittivity: 37.5), propionitrile (relative permittivity: 29.7), benzonitrile (relative permittivity: 25.2), and methoxy. Examples thereof include propionitrile (relative permittivity: 25) and dimethoxypropionitrile (relative permittivity: 28).
When lactones and nitriles having a relative permittivity of 25 or more are used, the weight ratio is lactones / nitriles = 90/10 to 10/90, preferably 80/20 to 20/80, and 70/30 to 70. 30/70 is more preferable.
Aprotonic polar solvents with a relative permittivity of 25 or more include, for example, amides such as dimethylformamide (relative permittivity: 37) and dimethylacetamide (relative permittivity: 37.8), and N-methylpyrrolidone (ratio). There are lactams such as dielectric constant: 32.2). However, as specifically shown in the following comparative example, these aprotonic polar solvents generate a large amount of impurities in the reaction of the diol compound represented by the above general formula (2) with trimellitic anhydride halide. It was confirmed. It is believed that the formation of this impurity is due to the reaction of these aprotonic polar solvents with the trimellitic acid halide or the promotion of the decomposition of the trimellitic acid halide. That is, the production method using amides or lactams among the aprotonic polar solvents having a relative permittivity of 25 or more is inferior in reaction selectivity as compared with the production method of the present invention.
As the reaction solvent in the present invention, an organic solvent other than lactones or nitriles having a relative permittivity of 25 or more may be used in combination as long as the effects of the present invention are not impaired, but lactones and nitriles having a relative permittivity of 25 or more. , Or preferably composed of lactones and nitriles.
The amount of the reaction solvent used in the present invention is in the range of 4 to 30 times the weight of the diol compound represented by the general formula (2). The reaction solvent may be added during the reaction.
<塩基について>
 本発明の製造方法は、上記一般式(2)で表されるジオール化合物と無水トリメリット酸ハライドの反応により、塩化水素が発生するため、これを捕捉する塩基を使用する。このような塩基としては、特に限定されないが、ピリジン、トリエチルアミン、N,N-ジメチルアニリン等の有機3級アミン類、プロピレンオキサイド等のエポキシ類、炭酸カリウム、水酸化ナトリウム等の無機塩基等を使用することが可能である。中でも、反応後の分離操作、コスト、有害性等の観点からピリジンが好適に用いられる。
<About bases>
In the production method of the present invention, hydrogen chloride is generated by the reaction of the diol compound represented by the above general formula (2) with trimellitic anhydride halide, and a base for capturing this is used. The base is not particularly limited, but organic tertiary amines such as pyridine, triethylamine, N, N-dimethylaniline, epoxys such as propylene oxide, and inorganic bases such as potassium carbonate and sodium hydroxide are used. It is possible to do. Among them, pyridine is preferably used from the viewpoint of separation operation after the reaction, cost, toxicity and the like.
<目的化合物:一般式(1)で表されるテトラカルボン酸二無水物について>
 本発明の製造方法において目的化合物は、下記一般式(1)で表されるテトラカルボン酸二無水物である。
Figure JPOXMLDOC01-appb-C000015
(式中、Xは一般式(2)のそれと同じである。)
一般式(1)で表されるテトラカルボン酸二無水物において、Xが一般式(3-1)である場合、下記一般式(1-1)で表される。
Figure JPOXMLDOC01-appb-C000016
(式中、R、m、nは一般式(3-1)のそれと同じである。)
 一般式(1-1)中のR、m、nの具体例や好適な例は、上記一般式(3-1)と同じである。
 一般式(1-1)で表されるテトラカルボン酸二無水物としては、具体的には、m=2のテトラカルボン酸二無水物は、例えば、ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’-ジメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’-ジエチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’-ジイソプロピル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’,5,5’-テトラメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’,6,6’-テトラメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、2,2’,3,3’,5,5’-ヘキサメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’-ジメチル-5,5’-ジ-t-ブチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)が挙げられる。
 m=3のテトラカルボン酸二無水物は、例えば、4,4”-ジヒドロキシ-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4”-ジヒドロキシ-3-メチル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4”-ジヒドロキシ-3-エチル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4”-ジヒドロキシ-3-n-プロピル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4”-ジヒドロキシ-3-イソプロピル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4”-ジヒドロキシ-3,5-ジメチル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4”-ジヒドロキシ-3,3”-ジメチル-p-ターフェニル-ビス(トリメリテートアンハイドライド)が挙げられる。
 m=4のテトラカルボン酸二無水物は、例えば、4,4’’’-ジヒドロキシ-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3-メチル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3-エチル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3-n-プロピル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3,5-ジメチル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3,3’’’-ジメチル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3,3’’’-ジエチル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3,3’’’-ジ-n-プロピル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3,3’’’-ジイソプロピル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)が挙げられる。
<Target compound: Tetracarboxylic dianhydride represented by the general formula (1)>
In the production method of the present invention, the target compound is a tetracarboxylic dianhydride represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000015
(In the formula, X is the same as that of the general formula (2).)
In the tetracarboxylic dianhydride represented by the general formula (1), when X is the general formula (3-1), it is represented by the following general formula (1-1).
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 1 , m, and n are the same as those in the general formula (3-1).)
Specific examples and suitable examples of R 1 , m, and n in the general formula (1-1) are the same as those in the general formula (3-1).
As the tetracarboxylic acid dianhydride represented by the general formula (1-1), specifically, the tetracarboxylic acid dianhydride having m = 2 is, for example, biphenyl-4,4'-diol-bis ( Trimeritate anhydride), 3,3'-dimethyl-biphenyl-4,4'-diol-bis (trimeritate anhydride), 3,3'-diethyl-biphenyl-4,4'-diol-bis (trimeritate anhydride) Trimeritate anhydride), 3,3'-diisopropyl-biphenyl-4,4'-diol-bis (trimeritate anhydride), 3,3', 5,5'-tetramethyl-biphenyl-4,4 '-Diol-bis (Trimeritate Anhydride), 3,3', 6,6'-Tetramethyl-biphenyl-4,4'-diol-bis (Trimeritate Anhydride), 2,2', 3 , 3', 5,5'-Hexamethyl-biphenyl-4,4'-diol-bis (trimeritate anhydride), 3,3'-dimethyl-5,5'-di-t-butyl-biphenyl-4 , 4'-diol-bis (trimeritate anhydride).
The m = 3 tetracarboxylic acid dianhydride is, for example, 4,4 "-dihydroxy-p-terphenyl-bis (trimeritate hydride), 4,4" -dihydroxy-3-methyl-p-terphenyl. -Bis (Trimeritate Amhydride), 4,4 "-dihydroxy-3-ethyl-p-terphenyl-bis (Trimeritate Amhydride), 4,4" -Dihydroxy-3-n-propyl-p- Terphenyl-bis (trimeritate hydride), 4,4 "-dihydroxy-3-isopropyl-p-terphenyl-bis (trimeritate hydride), 4,4" -dihydroxy-3,5-dimethyl- Examples thereof include p-terphenyl-bis (trimeritate hydride) and 4,4 "-dihydroxy-3,3" -dimethyl-p-terphenyl-bis (trimeritate hydride).
The m = 4 tetracarboxylic acid dianhydride is, for example, 4,4''-dihydroxy-p-quarterphenyl-bis (trimeritate hydride), 4,4'''-dihydroxy-3-methyl-. p-Quarter Phenyl-Bis (Trimeritate Amhydride), 4,4''-Dihydroxy-3-ethyl-p-Quarter Phenyl-Bis (Trimeritate Amhydride), 4,4'''-Dihydroxy- 3-n-propyl-p-quarter phenyl-bis (trimeritate hydride), 4,4'''-dihydroxy-3,5-dimethyl-p-quarter phenyl-bis (trimeritate hydride), 4 , 4'''-Dihydroxy-3,3'''-Dimethyl-p-Quarterphenyl-Bis (Trimeritate Amhydride), 4,4'''-Dihydroxy-3,3''''-Diethyl-p -Quarter Phenyl-Bis (Trimeritate Amhydride), 4,4'''-Dihydroxy-3,3'''-Di-n-propyl-p-Quarter Phenyl-Bis (Trimeritate Amhydride), 4 , 4'''-dihydroxy-3,3'''-diisopropyl-p-quarterphenyl-bis (trimeritate anhydrate).
 一般式(1-1)で表されるテトラカルボン酸二無水物の好適な例は、原料であるジオールの合成のしやすさ、ジオールを合成する際の原材料の入手の可否及び原料コスト、ジオール及びその誘導体の溶媒に対する溶解性等の観点から、ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’-ジメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’,5,5’-テトラメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、2,2’,3,3’,5,5’-ヘキサメチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、3,3’-ジメチル-5,5’-ジ-t-ブチル-ビフェニル-4,4’-ジオール-ビス(トリメリテートアンハイドライド)、4,4’’-ジヒドロキシ-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’-ジヒドロキシ-3-メチル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’-ジヒドロキシ-3-イソプロピル-p-ターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)、4,4’’’-ジヒドロキシ-3,3’’’-ジメチル-p-クオーターフェニル-ビス(トリメリテートアンハイドライド)が挙げられる。 Preferable examples of the tetracarboxylic acid dianhydride represented by the general formula (1-1) are the ease of synthesizing the diol as a raw material, the availability of the raw material when synthesizing the diol, the raw material cost, and the diol. From the viewpoint of solubility of and its derivatives in solvents, biphenyl-4,4'-diol-bis (trimeritate hydride), 3,3'-dimethyl-biphenyl-4,4'-diol-bis (trimeric). Meritate Unhydride), 3,3', 5,5'-Tetramethyl-biphenyl-4,4'-diol-bis (Trimeritate Amhydride), 2,2', 3,3', 5,5 '-Hexamethyl-biphenyl-4,4'-diol-bis (trimeritate hydride), 3,3'-dimethyl-5,5'-di-t-butyl-biphenyl-4,4'-diol-bis (Trimeritate umhydride), 4,4''-dihydroxy-p-terphenyl-bis (trimeritate hydride), 4,4''-dihydroxy-3-methyl-p-terphenyl-bis (trimeritate ambilide) Meritate Amhydride), 4,4''-dihydroxy-3-isopropyl-p-terphenyl-bis (Trimeritate Amhydride), 4,4''-dihydroxy-p-quarterphenyl-bis (Trimerit) Tate an hydride), 4,4'''-dihydroxy-3,3'''-dimethyl-p-quarterphenyl-bis (trimeritate an hydride).
 一般式(1)で表されるテトラカルボン酸二無水物において、Xが一般式(3-2)である場合、下記一般式(1-2)で表される。
Figure JPOXMLDOC01-appb-C000017
 一般式(1-2)で表されるテトラカルボン酸二無水物としては、具体的には、1,4-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、1,5-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、1,8-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,3-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,6-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,7-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,8-ナフタレンジオール-ビス(トリメリテートアンハイドライド)などが挙げられる。
 一般式(1-2)で表されるテトラカルボン酸二無水物のうち、1,4-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、1,5-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,6-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,7-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,8-ナフタレンジオール-ビス(トリメリテートアンハイドライド)が好ましく、1,5-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,6-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,7-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、がより好ましく、2,6-ナフタレンジオール-ビス(トリメリテートアンハイドライド)、2,7-ナフタレンジオール-ビス(トリメリテートアンハイドライド)がさらに好ましく、2,6-ナフタレンジオール-ビス(トリメリテートアンハイドライド)が特に好ましい。
In the tetracarboxylic dianhydride represented by the general formula (1), when X is the general formula (3-2), it is represented by the following general formula (1-2).
Figure JPOXMLDOC01-appb-C000017
Specific examples of the tetracarboxylic acid dianhydride represented by the general formula (1-2) include 1,4-naphthalenediol-bis (trimeritate hydride) and 1,5-naphthalenediol-bis (1,5-naphthalenediol-bis). Trimeritate umhydride), 1,8-naphthalenediol-bis (trimeritate hydride), 2,3-naphthalenediol-bis (trimeritate hydride), 2,6-naphthalenediol-bis (trimeritate) Tate unhydride), 2,7-naphthalenediol-bis (trimeritate unhydride), 2,8-naphthalenediol-bis (trimelite anhydrate) and the like.
Among the tetracarboxylic acid dianhydride represented by the general formula (1-2), 1,4-naphthalenediol-bis (trimeritate hydride) and 1,5-naphthalenediol-bis (trimeritate hydride) ), 2,6-naphthalenediol-bis (trimeritate unhydride), 2,7-naphthalenediol-bis (trimeritate unhydride), 2,8-naphthalenediol-bis (trimelite anhydrate) Preferably, 1,5-naphthalenediol-bis (trimeritate hydride), 2,6-naphthalenediol-bis (trimeritate hydride), 2,7-naphthalenediol-bis (trimeritate hydride), Is more preferable, 2,6-naphthalenediol-bis (trimeritate unhydride) and 2,7-naphthalenediol-bis (trimeritate unhydride) are even more preferable, and 2,6-naphthalenediol-bis (trimeritate unhydride) is more preferable. Tate unhydride) is particularly preferred.
<反応条件について>
 比誘電率25以上のラクトン類又は/及びニトリル類に溶解した無水トリメリット酸クロリドに、一般式(2)で表されるジオール化合物の比誘電率25以上のラクトン類又は/及びニトリル類溶液を混合することで反応を開始させる。このとき、ピリジンなどの塩基は、混合する溶液である一般式(2)で表されるジオール化合物側の溶液に含有させる。なお、上記の混合方法とは反対に、一般式(2)で表されるジオール化合物の溶液中に、無水トリメリット酸クロリド溶液を混合すると、上記混合方法よりも副生成物が生成しやすい。したがって、前者の混合方法が好ましい。
 反応に使用する出発原料と塩基のモル比は、一般式(2)で表されるジオール化合物/無水トリメリット酸クロリド/塩基が、1.0/2.1~2.5/3.0~5.0の範囲内であることが好ましい。
 上記各溶液の混合は、低温下で行う。反応系内の温度は、-10~10℃の範囲が好ましく、-5~7℃の範囲がより好ましく、0~5℃の範囲が特に好ましい。混合にかける時間に制約はないが、2~4時間が好ましい。
<About reaction conditions>
A solution of lactones and / and nitriles having a relative permittivity of 25 or more and a diol compound represented by the general formula (2) is added to trimellitic anhydride chloride dissolved in lactones and / and nitriles having a relative permittivity of 25 or more. The reaction is initiated by mixing. At this time, a base such as pyridine is contained in the solution on the diol compound side represented by the general formula (2), which is a mixed solution. Contrary to the above mixing method, when a trimellitic anhydride chloride solution is mixed in a solution of a diol compound represented by the general formula (2), by-products are more likely to be produced than in the above mixing method. Therefore, the former mixing method is preferable.
The molar ratio of the starting material to the base used in the reaction is 1.0 / 2.1 to 2.5 / 3.0 to diol compound / trimellitic anhydride chloride / base represented by the general formula (2). It is preferably in the range of 5.0.
The above solutions are mixed at a low temperature. The temperature in the reaction system is preferably in the range of −10 to 10 ° C., more preferably in the range of −5 to 7 ° C., and particularly preferably in the range of 0 to 5 ° C. There is no limitation on the mixing time, but 2 to 4 hours is preferable.
 混合終了直後からの撹拌(以後、「後撹拌1」ということがある。)は、引き続き低温下で行い、反応系内の温度が-10~10℃の範囲で行うことが好ましく、-5~7℃の範囲で行うことがより好ましく、0~5℃の範囲で行うことが特に好ましい。「後撹拌1」は、このような温度範囲において、概ね5時間以内行うことが好ましく、中でも2~3時間がより好ましい。
 「後撹拌1」の後、反応を促進するために、さらに「後撹拌1」より高い温度において撹拌(以後、「後撹拌2」ということがある。)を継続して、反応を完結させることができる。「後撹拌2」は、反応系内の温度が20~75℃の範囲で行うことが好ましく、20~70℃の範囲で行うことがより好ましく、25~65℃の範囲で行うことが特に好ましい。「後撹拌2」は、このような温度範囲において、概ね5時間以内行うことが好ましく、中でも2~3時間がより好ましい。
Stirring immediately after the completion of mixing (hereinafter, may be referred to as “post-stirring 1”) is preferably carried out at a low temperature, and the temperature in the reaction system is preferably in the range of -10 to 10 ° C. It is more preferably carried out in the range of 7 ° C., and particularly preferably carried out in the range of 0 to 5 ° C. "Post-stirring 1" is preferably performed within about 5 hours in such a temperature range, and more preferably 2 to 3 hours.
After "post-stirring 1", in order to promote the reaction, further stirring at a temperature higher than "post-stirring 1" (hereinafter, may be referred to as "post-stirring 2") is continued to complete the reaction. Can be done. "Post-stirring 2" is preferably carried out in a reaction system in a temperature range of 20 to 75 ° C., more preferably in a range of 20 to 70 ° C., and particularly preferably in a range of 25 to 65 ° C. .. "Post-stirring 2" is preferably performed within about 5 hours in such a temperature range, and more preferably 2 to 3 hours.
 反応終了後、目的化合物を単離する方法として、従来公知の方法を用いることができ、例えば、反応終了後に存在する、若しくは冷却後析出する沈殿を濾別し、水や有機溶媒等を用いて沈殿を洗浄する方法が挙げられる。 As a method for isolating the target compound after completion of the reaction, a conventionally known method can be used. For example, a precipitate present after completion of the reaction or precipitated after cooling is filtered off, and water, an organic solvent or the like is used. Examples include a method of cleaning the precipitate.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、以下の例における反応選択率は、次の方法により分析した。
<分析方法>
1.ゲル浸透クロマトグラフィー
装置   :東ソー社製 高速GPC装置 HLC-8320GPC
カラム  :TSKgel guardcolum HXL-L 1本、
      TSKgel G2000HXL 2本、
      TSKgel G3000HXL 1本、
      TSKgel G4000HXL 1本
移動相溶媒:テトラヒドロフラン
流速   :ポンプ Sam.1.0ml/min、Ref.Sam.の1/3
カラム温度:40℃一定
検出器  :RI
<反応選択率>
(1)目的化合物の反応選択率
 反応選択率=目的化合物(一般式(1)で表されるテトラカルボン酸二無水物)の面積%/(100-(一般式(2)で表されるジオール化合物の面積%+無水トリメリット酸ハライドの面積%+トリメリット酸の面積%))×100
(2)不純物オリゴマーの反応選択率
 反応選択率=不純物オリゴマーの面積%/(100-(一般式(2)で表されるジオール化合物の面積%+無水トリメリット酸ハライドの面積%+トリメリット酸の面積%))×100
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
The reaction selectivity in the following examples was analyzed by the following method.
<Analysis method>
1. 1. Gel permeation chromatography device: Tosoh high-speed GPC device HLC-8320GPC
Column: TSKgel guardcolum HXL-L 1 bottle,
Two TSKgel G2000HXL,
1 TSKgel G3000HXL,
TSKgel G4000HXL 1 mobile phase solvent: tetrahydrofuran flow rate: pump Sam. 1.0 ml / min, Ref. Sam. 1/3 of
Column temperature: 40 ° C constant detector: RI
<Reaction selectivity>
(1) Reaction selectivity of target compound Reaction selectivity = area% of target compound (tetracarboxylic dianhydride represented by general formula (1)) / (100- (diol represented by general formula (2)) Compound area% + Trimellitic dianhydride area% + Trimellitic acid area%))) x 100
(2) Reaction selectivity of impurity oligomer Reaction selectivity = Area% of impurity oligomer / (100- (Area% of diol compound represented by general formula (2) + Area% of trimellitic anhydride halide + Trimellitic acid Area%)) x 100
<実施例1>
Figure JPOXMLDOC01-appb-C000018
  温度計、攪拌機、冷却管を備えた4つ口フラスコに、無水トリメリット酸クロライド(b)48.4g(0.23mol)、アセトニトリル(比誘電率:37.5)143.0gを仕込み、撹拌溶解しながら容器を窒素置換し、5℃以下に冷却した。その後、上記反応式中のジオール化合物(a)27.0g(0.10mol)、アセトニトリル182.2g、ピリジン39.8g(0.50mol)を溶解した調製液を、フラスコ内にフラスコ内の温度5℃以下を保持しながら2時間かけて一定の速度で滴下した。滴下終了後、5℃以下で2時間撹拌を行った(後撹拌1)。この時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は92.2%(GPC RI 面積%反応選択率:以下同様)、不純物オリゴマーは1.2%であった。
 その後、65℃に昇温し3時間撹拌した(後撹拌2)。反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は95.9%、不純物オリゴマーは1.6%であった。
<Example 1>
Figure JPOXMLDOC01-appb-C000018
A four-necked flask equipped with a thermometer, a stirrer, and a cooling tube is charged with 48.4 g (0.23 mol) of trimellitic anhydride (b) and 143.0 g of acetonitrile (relative permittivity: 37.5) and stirred. The container was replaced with nitrogen while dissolving, and cooled to 5 ° C. or lower. Then, a preparation solution prepared by dissolving 27.0 g (0.10 mol) of the diol compound (a), 182.2 g of acetonitrile, and 39.8 g (0.50 mol) of pyridine in the above reaction formula was placed in a flask at a temperature of 5 in the flask. The mixture was added dropwise at a constant rate over 2 hours while maintaining the temperature below ° C. After completion of the dropping, stirring was performed at 5 ° C. or lower for 2 hours (post-stirring 1). As a result of analyzing the reaction solution at this time by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 92.2% (GPC RI area% reaction selectivity: the same applies hereinafter), and the impurity oligomer was 1. It was .2%.
Then, the temperature was raised to 65 ° C. and the mixture was stirred for 3 hours (post-stirring 2). As a result of analyzing the reaction completion solution by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 95.9%, and the impurity oligomer was 1.6%.
 上記反応において副生する不純物は、そのゲル浸透クロマトグラフィー(GPC)の分析結果から、目的化合物(c)より分子量が大きいことがわかっており、以下の化学構造を有するオリゴマーであると推察している。
Figure JPOXMLDOC01-appb-C000019
Impurities produced as a by-product in the above reaction are known to have a higher molecular weight than the target compound (c) from the analysis results of gel permeation chromatography (GPC), and are presumed to be oligomers having the following chemical structure. There is.
Figure JPOXMLDOC01-appb-C000019
<実施例2>
 溶媒をγ-ブチロラクトン(比誘電率:42)に変更した以外は、実施例1と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は97.3%、不純物オリゴマーは2.6%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は96.9%、不純物オリゴマーは2.8%であった。
<Example 2>
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to γ-butyrolactone (relative permittivity: 42).
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 97.3%, and the impurity oligomer was 2.6%.
Further, as a result of analyzing the reaction completion liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 96.9%, and the impurity oligomer was 2.8%. there were.
<実施例3>
 溶媒を、アセトニトリル(比誘電率:37.5)とγ-ブチロラクトン(比誘電率:42)重量比1対1の混合溶媒に変更した以外は、実施例1と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は96.8%、不純物オリゴマーは2.0%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は、96.8%、不純物オリゴマーは、2.0%であった。
<Example 3>
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to a mixed solvent of acetonitrile (relative permittivity: 37.5) and γ-butyrolactone (relative permittivity: 42) in a weight ratio of 1: 1.
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 96.8%, and the impurity oligomer was 2.0%.
Further, as a result of analyzing the reaction termination liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 96.8%, and the impurity oligomer was 2.0. %Met.
<比較例1>
 溶媒をテトラヒドロフラン(比誘電率:7.6)に変更した以外は、実施例1と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は57.4%、不純物オリゴマーは4.1%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は、88.1%、不純物オリゴマーは、9.8%であった。
<Comparative example 1>
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to tetrahydrofuran (relative permittivity: 7.6).
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 57.4% and the impurity oligomer was 4.1%.
Further, as a result of analyzing the reaction completion liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 88.1%, and the impurity oligomer was 9.8. %Met.
<比較例2>
 溶媒をトルエン(比誘電率:2.4)に変更した以外は、実施例1と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は67.3%、不純物オリゴマーは7.1%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は、81.5%、不純物オリゴマーは、12.4%であった。
<Comparative example 2>
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to toluene (relative permittivity: 2.4).
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 67.3%, and the impurity oligomer was 7.1%.
Further, as a result of analyzing the reaction completion liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 81.5%, and the impurity oligomer was 12.4. %Met.
<比較例3>
 溶媒をN-メチルピロリドン(比誘電率:32.2)に変更した以外は、実施例1と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は73.6%、不純物オリゴマーは4.6%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は、88.9%、不純物オリゴマーは、9.2%であった。
<Comparative example 3>
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to N-methylpyrrolidone (relative permittivity: 32.2).
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 73.6%, and the impurity oligomer was 4.6%.
Further, as a result of analyzing the reaction termination liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 88.9%, and the impurity oligomer was 9.2. %Met.
<比較例4>
 溶媒をジメチルアセトアミド(比誘電率:37.8)に変更し、滴下終了後、5℃以下で2時間撹拌したこと以外は、実施例1と同じ様に反応を行った。
 この時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(c)は49.4%、不純物オリゴマーは5.7%であった。
<Comparative example 4>
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to dimethylacetamide (relative permittivity: 37.8) and the mixture was stirred at 5 ° C. or lower for 2 hours after completion of the dropwise addition.
As a result of analyzing the reaction solution at this time by gel permeation chromatography (GPC), the target compound (c) in the above reaction formula was 49.4%, and the impurity oligomer was 5.7%.
<反応選択性に関する考察>
 上記実施例1~3、比較例1~4の結果より、比誘電率25以上のラクトン類又は/及びニトリル類の存在下において反応を行う、本発明の製造方法は、一般式(1)で表されるテトラカルボン酸二無水物の反応選択率が高く、不純物オリゴマーの生成が抑制されるなど、工業的に有利な製造方法であることが確認された。中でも、比誘電率25以上のニトリル類の存在下において反応を行うと、不純物オリゴマーの生成抑制に優れることが(実施例1)、比誘電率25以上のラクトン類の存在下において反応を行うと(実施例2)、反応速度の向上効果に優れることが明らかとなった。特に、比誘電率25以上のラクトン類及びニトリル類の存在下において反応を行うと(実施例3)、反応速度が向上し、かつ、不純物オリゴマーの生成が抑制されるという、極めて優れた効果が得られることが確認された。
 これに対して、比誘電率25以上のラクトン類やニトリル類以外の溶媒の存在下において反応を行うと、反応速度が遅く、しかも不純物オリゴマーの生成が抑制されず、反応選択率が低いため、工業的な製造方法としては劣ることが明らかとなった。
<Consideration on reaction selectivity>
From the results of Examples 1 to 3 and Comparative Examples 1 to 4, the production method of the present invention in which the reaction is carried out in the presence of lactones and / and nitriles having a relative permittivity of 25 or more is represented by the general formula (1). It was confirmed that this is an industrially advantageous production method, as the reaction selectivity of the represented tetracarboxylic dianhydride is high and the formation of impurity oligomers is suppressed. Above all, when the reaction is carried out in the presence of nitriles having a relative permittivity of 25 or more, it is excellent in suppressing the formation of impurity oligomers (Example 1), and when the reaction is carried out in the presence of lactones having a relative permittivity of 25 or more. (Example 2), it was clarified that the effect of improving the reaction rate was excellent. In particular, when the reaction is carried out in the presence of lactones and nitriles having a relative permittivity of 25 or more (Example 3), the reaction rate is improved and the formation of impurity oligomers is suppressed, which is an extremely excellent effect. It was confirmed that it could be obtained.
On the other hand, when the reaction is carried out in the presence of a solvent other than lactones and nitriles having a relative permittivity of 25 or more, the reaction rate is slow, the formation of impurity oligomers is not suppressed, and the reaction selectivity is low. It became clear that it was inferior as an industrial manufacturing method.
<実施例4>
Figure JPOXMLDOC01-appb-C000020
  温度計、攪拌機、冷却管を備えた4つ口フラスコに、無水トリメリット酸クロライド(b)48.4g(0.23mol)、アセトニトリル(比誘電率:37.5)112.6gを仕込み、撹拌溶解しながら容器を窒素置換し、5℃以下に冷却した。その後、上記反応式中のジオール化合物(d)16.0g(0.10mol)、アセトニトリル(比誘電率:37.5)143.4g、ピリジン39.6g(0.50mol)を溶解した調製液を、フラスコ内にフラスコ内の温度5℃以下を保持しながら2時間かけて一定の速度で滴下した。滴下終了後、5℃以下で2時間撹拌を行った(後撹拌1)。この時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(e)は98.2%(GPC RI 面積%反応選択率:以下同様)、不純物オリゴマーは0.7%であった。その後、65℃に昇温し2時間撹拌した(後撹拌2)。反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(e)は98.5%、不純物オリゴマーは0.7%であった。
<Example 4>
Figure JPOXMLDOC01-appb-C000020
A four-necked flask equipped with a thermometer, a stirrer, and a cooling tube is charged with 48.4 g (0.23 mol) of trimellitic anhydride (b) and 112.6 g of acetonitrile (relative permittivity: 37.5) and stirred. The container was replaced with nitrogen while dissolving, and cooled to 5 ° C. or lower. Then, a preparation solution prepared by dissolving 16.0 g (0.10 mol) of the diol compound (d), 143.4 g of acetonitrile (relative permittivity: 37.5), and 39.6 g (0.50 mol) of the pyridine in the above reaction formula was prepared. , The mixture was added dropwise at a constant rate over 2 hours while maintaining the temperature inside the flask at 5 ° C. or lower. After completion of the dropping, stirring was performed at 5 ° C. or lower for 2 hours (post-stirring 1). As a result of analyzing the reaction solution at this time by gel permeation chromatography (GPC), the target compound (e) in the above reaction formula was 98.2% (GPC RI area% reaction selectivity: the same applies hereinafter), and the impurity oligomer was 0. It was 0.7%. Then, the temperature was raised to 65 ° C. and the mixture was stirred for 2 hours (post-stirring 2). As a result of analyzing the reaction completion solution by gel permeation chromatography (GPC), the target compound (e) in the above reaction formula was 98.5%, and the impurity oligomer was 0.7%.
 上記反応において副生する不純物は、そのゲル浸透クロマトグラフィー(GPC)の分析結果から、目的化合物(e)より分子量が大きいことがわかっており、以下の化学構造を有するオリゴマーであると推察している。
Figure JPOXMLDOC01-appb-C000021
Impurities produced as a by-product in the above reaction are known to have a higher molecular weight than the target compound (e) from the analysis results of gel permeation chromatography (GPC), and are presumed to be oligomers having the following chemical structure. There is.
Figure JPOXMLDOC01-appb-C000021
<実施例5>
 溶媒を、アセトニトリル(比誘電率:37.5)とγ-ブチロラクトン(比誘電率:42)重量比1対1の混合溶媒に変更した以外は、実施例4と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(e)は98.6%、不純物オリゴマーは0.5%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(e)は、98.9%、不純物オリゴマーは、0.5%であった。
<Example 5>
The reaction was carried out in the same manner as in Example 4 except that the solvent was changed to a mixed solvent of acetonitrile (relative permittivity: 37.5) and γ-butyrolactone (relative permittivity: 42) in a weight ratio of 1: 1.
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (e) in the above reaction formula was 98.6%, and the impurity oligomer was 0.5%.
Further, as a result of analyzing the reaction termination liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (e) in the above reaction formula was 98.9%, and the impurity oligomer was 0.5. %Met.
<比較例5>
 溶媒をテトラヒドロフラン(比誘電率:7.6)に変更した以外は、実施例4と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(e)は95.4%、不純物オリゴマーは1.5%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(e)は、97.8%、不純物オリゴマーは、1.5%であった。
<Comparative example 5>
The reaction was carried out in the same manner as in Example 4 except that the solvent was changed to tetrahydrofuran (relative permittivity: 7.6).
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (e) in the above reaction formula was 95.4%, and the impurity oligomer was 1.5%.
Further, as a result of analyzing the reaction completion liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (e) in the above reaction formula was 97.8%, and the impurity oligomer was 1.5. %Met.
<反応選択性に関する考察>
 上記実施例4、5、比較例5の結果より、比誘電率25以上のラクトン類又は/及びニトリル類の存在下において反応を行う本発明の製造方法は、一般式(2)で表されるジオール化合物がジオール化合物(d)に変わった場合においても、一般式(1)で表されるテトラカルボン酸二無水物の反応選択率が高く、不純物オリゴマーの生成が抑制され、反応速度の向上効果に優れることが明らかとなるなど、工業的に有利な製造方法であることが確認された。特に、比誘電率25以上のラクトン類及びニトリル類の存在下において反応を行うと(実施例5)、反応速度が向上し、かつ、不純物オリゴマーの生成が抑制されるという、極めて優れた効果が得られることが確認された。
 これに対して、比誘電率25以上のラクトン類やニトリル類以外の溶媒の存在下において反応を行うと(比較例5)、反応速度が遅く、しかも不純物オリゴマーの生成が抑制されず、反応選択率が低いため、工業的な製造方法としては劣ることが確認された。
<Consideration on reaction selectivity>
From the results of Examples 4 and 5 and Comparative Example 5, the production method of the present invention in which the reaction is carried out in the presence of lactones and / and nitriles having a relative permittivity of 25 or more is represented by the general formula (2). Even when the diol compound is changed to the diol compound (d), the reaction selectivity of the tetracarboxylic dianhydride represented by the general formula (1) is high, the formation of impurity oligomers is suppressed, and the reaction rate is improved. It was confirmed that it was an industrially advantageous manufacturing method, as it became clear that it was excellent in In particular, when the reaction is carried out in the presence of lactones and nitriles having a relative permittivity of 25 or more (Example 5), the reaction rate is improved and the formation of impurity oligomers is suppressed, which is an extremely excellent effect. It was confirmed that it could be obtained.
On the other hand, when the reaction is carried out in the presence of a solvent other than lactones and nitriles having a relative permittivity of 25 or more (Comparative Example 5), the reaction rate is slow and the formation of impurity oligomers is not suppressed, so that the reaction is selected. Due to the low rate, it was confirmed that it was inferior as an industrial manufacturing method.
<実施例6>
Figure JPOXMLDOC01-appb-C000022
  温度計、攪拌機、冷却管を備えた4つ口フラスコに、無水トリメリット酸クロライド(b)48.4g(0.23mol)、アセトニトリル(比誘電率:37.5)とγ-ブチロラクトン(比誘電率:42)重量比1対1の混合溶媒112.6gを仕込み、撹拌溶解しながら容器を窒素置換し、5℃以下に冷却した。その後、上記反応式中のジオール化合物(f)16.0g(0.10mol)、アセトニトリル(比誘電率:37.5)とγ-ブチロラクトン(比誘電率:42)重量比1対1の混合溶媒143.4g、ピリジン39.6g(0.50mol)を溶解した調製液を、フラスコ内にフラスコ内の温度5℃以下を保持しながら2時間かけて一定の速度で滴下した。滴下終了後、5℃以下で2時間撹拌を行った(後撹拌1)。この時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(g)は98.3%(GPC RI 面積%反応選択率:以下同様)、不純物オリゴマーは0.9%であった。その後、65℃に昇温し2時間撹拌した(後撹拌2)。反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(g)は98.4%、不純物オリゴマーは0.8%であった。
<Example 6>
Figure JPOXMLDOC01-appb-C000022
48.4 g (0.23 mol) of trimellitic anhydride (b), acetonitrile (relative permittivity: 37.5) and γ-butyrolactone (relative permittivity) in a four-necked flask equipped with a thermometer, agitator and a condenser. Ratio: 42) 112.6 g of a mixed solvent having a weight ratio of 1: 1 was charged, the container was replaced with nitrogen while stirring and dissolving, and the temperature was cooled to 5 ° C. or lower. Then, 16.0 g (0.10 mol) of the diol compound (f) in the above reaction formula, acetonitrile (relative permittivity: 37.5) and γ-butyrolactone (relative permittivity: 42), a mixed solvent having a weight ratio of 1: 1. A preparation solution prepared by dissolving 143.4 g and 39.6 g (0.50 mol) of pyridine was added dropwise to the solvent at a constant rate over 2 hours while maintaining the temperature inside the flask at 5 ° C. or lower. After completion of the dropping, stirring was performed at 5 ° C. or lower for 2 hours (post-stirring 1). As a result of analyzing the reaction solution at this time by gel permeation chromatography (GPC), the target compound (g) in the above reaction formula was 98.3% (GPC RI area% reaction selectivity: the same applies hereinafter), and the impurity oligomer was 0. It was 9.9%. Then, the temperature was raised to 65 ° C. and the mixture was stirred for 2 hours (post-stirring 2). As a result of analyzing the reaction completion solution by gel permeation chromatography (GPC), the target compound (g) in the above reaction formula was 98.4%, and the impurity oligomer was 0.8%.
 上記反応において副生する不純物は、そのゲル浸透クロマトグラフィー(GPC)の分析結果から、目的化合物(g)より分子量が大きいことがわかっており、以下の化学構造を有するオリゴマーであると推察している。
Figure JPOXMLDOC01-appb-C000023
Impurities produced as a by-product in the above reaction are known to have a higher molecular weight than the target compound (g) from the results of gel permeation chromatography (GPC) analysis, and are presumed to be oligomers having the following chemical structure. There is.
Figure JPOXMLDOC01-appb-C000023
<比較例6>
 溶媒をテトラヒドロフラン(比誘電率:7.6)に変更した以外は、実施例6と同じ様に反応を行った。
 後撹拌1終了時の反応液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(g)は95.7%、不純物オリゴマーは2.0%であった。
 さらに、後撹拌2を行った後の反応終了液をゲル浸透クロマトグラフィー(GPC)で分析した結果、上記反応式中の目的化合物(g)は、97.1%、不純物オリゴマーは、1.9%であった。
<Comparative Example 6>
The reaction was carried out in the same manner as in Example 6 except that the solvent was changed to tetrahydrofuran (relative permittivity: 7.6).
As a result of analyzing the reaction solution at the end of the post-stirring 1 by gel permeation chromatography (GPC), the target compound (g) in the above reaction formula was 95.7%, and the impurity oligomer was 2.0%.
Further, as a result of analyzing the reaction completion liquid after the post-stirring 2 by gel permeation chromatography (GPC), the target compound (g) in the above reaction formula was 97.1%, and the impurity oligomer was 1.9. %Met.
<反応選択性に関する考察>
 上記実施例6、比較例6の結果より、比誘電率25以上のラクトン類及びニトリル類の存在下において反応を行うと(実施例6)、反応速度が向上し、かつ、不純物オリゴマーの生成が抑制されるという、極めて優れた効果が得られることが確認された。
 これに対して、比誘電率25以上のラクトン類やニトリル類以外の溶媒の存在下において反応を行うと(比較例6)、反応速度が遅く、しかも不純物オリゴマーの生成が抑制されず、反応選択率が低いため、工業的な製造方法としては劣ることが確認された。
 
<Consideration on reaction selectivity>
From the results of Example 6 and Comparative Example 6 above, when the reaction is carried out in the presence of lactones and nitriles having a relative permittivity of 25 or more (Example 6), the reaction rate is improved and impurity oligomers are produced. It was confirmed that an extremely excellent effect of being suppressed was obtained.
On the other hand, when the reaction is carried out in the presence of a solvent other than lactones and nitriles having a relative permittivity of 25 or more (Comparative Example 6), the reaction rate is slow and the formation of impurity oligomers is not suppressed, so that the reaction is selected. Since the rate is low, it was confirmed that it is inferior as an industrial manufacturing method.

Claims (1)

  1.  下記一般式(2)で表されるジオール化合物と無水トリメリット酸ハライドを、比誘電率25以上のラクトン類又は/及びニトリル類の存在下において反応させることを特徴とする、下記一般式(1)で表されるテトラカルボン酸二無水物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは下記一般式(3-1)または下記一般式(3-2)で表される2価の基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素原子数1~6である直鎖状又は分岐鎖状のアルキル基を示し、mは2~4の整数を示し、nは0~4の整数を示し、*は結合位置を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、*は結合位置を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xは一般式(2)のそれと同じである。)
    The following general formula (1) is characterized in that the diol compound represented by the following general formula (2) and trimellitic anhydride halide are reacted in the presence of lactones and / and nitriles having a relative permittivity of 25 or more. ) Is a method for producing a tetracarboxylic dianhydride.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X represents a divalent group represented by the following general formula (3-1) or the following general formula (3-2).)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 indicates a linear or branched-chain alkyl group having 1 to 6 carbon atoms, m indicates an integer of 2 to 4, n indicates an integer of 0 to 4, and * indicates an integer of 0 to 4. Indicates the bond position.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, * indicates the bonding position.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, X is the same as that of the general formula (2).)
PCT/JP2020/016653 2019-04-24 2020-04-16 Method for producing tetracarboxylic acid dianhydride WO2020218134A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080025972.XA CN113646302A (en) 2019-04-24 2020-04-16 Method for producing tetracarboxylic dianhydride
KR1020217031843A KR20220004021A (en) 2019-04-24 2020-04-16 Method for preparing tetracarboxylic dianhydride
JP2021516042A JPWO2020218134A1 (en) 2019-04-24 2020-04-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082867 2019-04-24
JP2019-082867 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020218134A1 true WO2020218134A1 (en) 2020-10-29

Family

ID=72942582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016653 WO2020218134A1 (en) 2019-04-24 2020-04-16 Method for producing tetracarboxylic acid dianhydride

Country Status (5)

Country Link
JP (1) JPWO2020218134A1 (en)
KR (1) KR20220004021A (en)
CN (1) CN113646302A (en)
TW (1) TW202104200A (en)
WO (1) WO2020218134A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227789A (en) * 1995-12-22 1997-09-02 Bayer Ag Preparation of polycyclic compound
JPH1036506A (en) * 1996-07-18 1998-02-10 Kanegafuchi Chem Ind Co Ltd New polyimide composition and polyimide film
WO2008091011A1 (en) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. Novel ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
JP2010001250A (en) * 2008-06-20 2010-01-07 Air Water Inc METHOD FOR PRODUCING p-PHENYLENE-BIS (TRIMELLITIC ACID MONOESTER ACID ANHYDRIDE)
JP2011006330A (en) * 2009-06-23 2011-01-13 Air Water Inc Method for producing aromatic carboxylic acid dianhydride having ester group
WO2015151924A1 (en) * 2014-03-31 2015-10-08 日産化学工業株式会社 Acid dianhydride and use thereof
JP2017173454A (en) * 2016-03-22 2017-09-28 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal element, polymer and compound
JP2017203005A (en) * 2016-05-12 2017-11-16 田岡化学工業株式会社 Manufacturing method of tetracarboxylic acid dianhydride having ester group
JP2019026642A (en) * 2017-07-28 2019-02-21 三星電子株式会社Samsung Electronics Co.,Ltd. Monomer, polymer, compensation film, optical film, and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745485B2 (en) 1987-06-05 1995-05-17 東洋インキ製造株式会社 Process for producing ester carboxylic acid anhydrides
JP2004285364A (en) 2004-06-07 2004-10-14 Kaneka Corp Base film for flexible printed circuit board, polyimide film usable for carrier tape for tab

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227789A (en) * 1995-12-22 1997-09-02 Bayer Ag Preparation of polycyclic compound
JPH1036506A (en) * 1996-07-18 1998-02-10 Kanegafuchi Chem Ind Co Ltd New polyimide composition and polyimide film
WO2008091011A1 (en) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. Novel ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
JP2010001250A (en) * 2008-06-20 2010-01-07 Air Water Inc METHOD FOR PRODUCING p-PHENYLENE-BIS (TRIMELLITIC ACID MONOESTER ACID ANHYDRIDE)
JP2011006330A (en) * 2009-06-23 2011-01-13 Air Water Inc Method for producing aromatic carboxylic acid dianhydride having ester group
WO2015151924A1 (en) * 2014-03-31 2015-10-08 日産化学工業株式会社 Acid dianhydride and use thereof
JP2017173454A (en) * 2016-03-22 2017-09-28 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal element, polymer and compound
JP2017203005A (en) * 2016-05-12 2017-11-16 田岡化学工業株式会社 Manufacturing method of tetracarboxylic acid dianhydride having ester group
JP2019026642A (en) * 2017-07-28 2019-02-21 三星電子株式会社Samsung Electronics Co.,Ltd. Monomer, polymer, compensation film, optical film, and display device

Also Published As

Publication number Publication date
TW202104200A (en) 2021-02-01
KR20220004021A (en) 2022-01-11
JPWO2020218134A1 (en) 2020-10-29
CN113646302A (en) 2021-11-12

Similar Documents

Publication Publication Date Title
JP6699940B2 (en) Method for producing tetracarboxylic dianhydride having ester group
JP7096931B2 (en) Fluorinated amide compounds, fluorinated nitrogen-containing heterocyclic compounds and fluorinated compounds
WO2020218134A1 (en) Method for producing tetracarboxylic acid dianhydride
US20240092971A1 (en) Fluorine-containing polyether compound
US6433190B1 (en) 3,6-Di(3′,5′-bis(fluoroalkyl) phenyl) pyromellitic dianhydride and method for the preparation thereof
TWI833023B (en) Method for producing ester group-containing acid dianhydride derivative
CN113272359B (en) Method for producing polyimide resin
JP6266940B2 (en) Arylene dioxy-bis (succinic anhydride) and method for producing the same
JP2012136470A (en) 3,4&#39;-oxybisphthalimide compound, and process for producing the same
JP2022068939A (en) Production method of tetracarboxylic dianhydride
JP7184135B2 (en) Polymerizable s-triazine derivative, curable composition using the same, and cured product and molding material using the same
JP6515921B2 (en) Acid dianhydride and use thereof
JP3390189B2 (en) 1,3-bis (3-aminophenoxy) -4-trifluoromethylbenzene and method for producing the same
US7544847B1 (en) Method for producing 1,4-bis (dichloromethyl) tetrafluorobenzene
EP0372935A2 (en) Diimidodicarboxylic acids and process for the productionn thereof
WO2023022123A1 (en) Fluorine-containing polyamide compound and fluorine-containing polybenzoxazole
TW202024017A (en) Aromatic tetracarboxylic acid compounds
JP2005350434A (en) Method for producing oxydiphthalic anhydride
JP2004083497A (en) 2,2&#39;-thiodiethane (3,4-dicarboxythiobenzene) dianhydride and its preparing method
TW201946925A (en) Polymers for use in electronic devices
JPH06271516A (en) Fluorine-containing aromatic diamine and its production
JPS59231069A (en) Sulfur-containing aromatic compound, manufacture and use
JPS6121956B2 (en)
JP2003171374A (en) 4,4&#39;-thiobenzene(3,4-dicarboxythiobenzene)dianhydride and method for producing the same
JP2005082569A (en) NEW 4,4&#39;&#39;-DIALKOXY-p-TERPHENYLS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795177

Country of ref document: EP

Kind code of ref document: A1