WO2020218113A1 - Contamination inspection device, contamination inspection method, and solar power generation module management method - Google Patents

Contamination inspection device, contamination inspection method, and solar power generation module management method Download PDF

Info

Publication number
WO2020218113A1
WO2020218113A1 PCT/JP2020/016568 JP2020016568W WO2020218113A1 WO 2020218113 A1 WO2020218113 A1 WO 2020218113A1 JP 2020016568 W JP2020016568 W JP 2020016568W WO 2020218113 A1 WO2020218113 A1 WO 2020218113A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
degree
measurement
image
light receiving
Prior art date
Application number
PCT/JP2020/016568
Other languages
French (fr)
Japanese (ja)
Inventor
山田 秀雄
兼廣 東條
健司 香川
Original Assignee
竹内マネージメント株式会社
山田 秀雄
昭神電設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹内マネージメント株式会社, 山田 秀雄, 昭神電設株式会社 filed Critical 竹内マネージメント株式会社
Publication of WO2020218113A1 publication Critical patent/WO2020218113A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the photovoltaic power generation module it is important that the incident light reaches the solar cell without being diffusely reflected on the light receiving surface. As a factor of diffused reflection on the light receiving surface, dirt on the light receiving surface due to adhesion of dust, salt, oil, air pollutants, vegetation species, etc. can be considered. Due to the dirt on the light receiving surface, the amount of light reaching the solar cell decreases, and the generated power of the photovoltaic power generation module decreases.
  • Patent Document 1 forms an antifouling thin film having a coating surface in which a hydrophilic region and a hydrophobic region are mixed on the glass surface on the light receiving surface side of the solar cell module. Patent Document 1 makes it possible to efficiently remove dust and the like adhering to the light receiving surface with a small amount of rainfall or the like by forming an antifouling thin film.
  • a second object of the present invention is to provide a method for managing a photovoltaic power generation module that can theoretically determine the cleaning time of the light receiving surface.
  • the stain inspection device captures a housing that covers a part of the surface to be inspected, a lighting device that irradiates the part of the area with light, and the part of the area.
  • the degree of contamination of the surface to be inspected is calculated based on the first color coordinates in the color space of each pixel of the image pickup device and the measurement image captured by the image pickup device, and the reference color coordinates in the color space. It is configured to include an image processing unit (first configuration).
  • the stain inspection device having the first configuration may have a configuration in which the color space is a three-dimensional color space (second configuration).
  • the image processing unit has a reference in which the second color coordinates are within a reference color range of a predetermined size centered on the reference color coordinates in the color space.
  • the configuration may be such that the reference color coordinates are determined (third configuration) so that the number of pixels of the image is maximized.
  • the image processing unit has a reference color range having a predetermined size centered on the second color coordinates of each pixel of the reference image in the color space.
  • a configuration (fourth configuration) may be used in which the region having the largest overlap is calculated and the reference color coordinates are determined based on the region.
  • the image processing unit detects pixels of the measurement image having the first color coordinates within the reference color range in the color space. Then, the degree of contamination of the surface to be inspected may be calculated based on the detection result of the pixel (fifth configuration).
  • the image processing unit further calculates the degree of stain based on the correction value for each color component corresponding to the first color coordinates. (Sixth configuration) may be used.
  • the stain inspection method is a step of imaging a part of the surface to be inspected covered with a housing and illuminated by a lighting device with an imaging device.
  • the method of managing the photovoltaic power generation module is to irradiate the housing covering a part of the light receiving surface of the photovoltaic power generation module and the part of the area with light.
  • the illumination device an image pickup device that images a part of the region, a first color coordinate in the color space of each pixel of the measurement image captured by the image pickup device, and a reference color coordinate in the color space.
  • an image processing unit for calculating the degree of contamination of the light receiving surface is measured, and the generated power of the photovoltaic power generation module is measured.
  • the stain degree is measured by using the stain inspection device, and the second measurement for measuring the generated power is performed.
  • the correction measurement value of the degree of contamination is calculated in the first measurement step and the second measurement step, and the correction measurement value is the first measurement value. It is a configuration (ninth configuration) in which the measured value of the degree of stain based on the color coordinates and the reference color coordinates is corrected based on the correction value for each color component corresponding to the first color coordinates. May be good.
  • At least the first measurement step and the second measurement step are carried out at least one of the early morning and the evening of the day. (10th configuration) may be used.
  • the degree of stain on the surface to be inspected can be measured and quantified with high accuracy. Further, according to the management method of the photovoltaic power generation module of the present invention, the cleaning time of the light receiving surface can be theoretically determined.
  • the photovoltaic power generation module 300 is a power generation device that converts light incident on the light receiving surface 301 into electrical energy.
  • the photovoltaic power generation module 300 includes a translucent substrate 310, a sealing resin layer 320, a solar cell 330, and a back film 340.
  • the light receiving surface 301 is the upper surface of the substrate 310.
  • a sealing resin layer 320 is provided on the lower surface of the substrate 310.
  • a back film 340 is provided on the lower surface of the sealing resin layer 320.
  • the sealing resin layer 320 is a transparent filler that is filled between the substrate 310 and the back film 340.
  • the solar cell 330 is provided between the substrate 310 and the back film 340, and is sealed by the sealing resin layer 320.
  • Polycrystalline silicon is used for the solar cell 330 in this embodiment.
  • the present invention is not limited to this example, and compound semiconductor solar cells using materials such as GaAs-based, Cu-In-Se-based (CIS) -based, Cu-In-Ga-Se-based (CIGS) -based, and CdTe-based materials.
  • a dye-sensitized solar cell or the like may be used.
  • the photovoltaic power generation module 300 further includes a terminal box and a cable (not shown). The terminal box takes out the output of the solar cell 330 and outputs it to the outside of the photovoltaic power generation module 300 through a cable.
  • the stain inspection device 1 includes a housing 11, a lighting device 12, a lighting driving device 13, a camera 14, a memory 15, a control device 16, a display device 17, and an input device 18. , The communication device 19, the external power supply terminal 20, and the built-in power supply 21.
  • the housing 11 has a cylindrical shape with a covered cylinder.
  • the housing 11 internally houses the lighting drive device 13, the camera 14, the memory 15, the control device 16, the communication device 19, and the built-in power supply 21.
  • a display device 17 and an input device 18 are provided on the lid portion of the housing 11.
  • An external power supply terminal 20 is provided on the tubular portion of the housing 11. Further, the housing 11 has an opening 111 at an end on the light receiving surface 301 side.
  • a lighting device 12 is provided on the inner edge of the opening 111.
  • the housing 11 When the dirt inspection device 1 is placed on the light receiving surface 301, the housing 11 covers a part of the region Ap of the light receiving surface 301 of the photovoltaic power generation module 300. As a result, the dirt inspection device 1 can perform the measurement in a state where the partial region Ap is shielded from external light, so that the noise of the measurement result can be suppressed. Further, the housing 11 is made of resin in this embodiment. Therefore, even if the housing 11 hits the light receiving surface 301 during mounting, the light receiving surface 301 is less likely to be damaged.
  • the lighting device 12 irradiates a part of the region Ap of the light receiving surface 301 with light.
  • the illuminating device 12 has a ring-shaped substrate 121 and an LED array 122.
  • the LED array 122 is provided at the radial inner end of the substrate 121 and has a plurality of white LEDs (reference numerals omitted) arranged in the circumferential direction.
  • Each white LED emits white light inward in the radial direction with a predetermined radiation angle, and irradiates at least a part of the white light on a part region Ap of the light receiving surface 301 covered with the housing 11.
  • the partial region Ap is a region for the stain inspection device 1 to measure the degree of contamination of the light receiving surface 301, and in the present embodiment, it is a region having a diameter of ⁇ 50 [mm] to ⁇ 200 [mm]. is there.
  • the lighting drive device 13 drives the lighting device 12 based on the control signal output from the control device 16, and particularly controls the light emission of the LED array 122.
  • the camera 14 is an imaging device that images a partial region Ap of the light receiving surface 301.
  • the number of pixels of the image captured by the camera 14 is about 60,000 to 100,000 in this embodiment.
  • the camera 14 includes a lens 141 and an image sensor 142.
  • the light incident on the light receiving surface 301 from the above-mentioned partial region Ap is incident on the image sensor 142 through the lens 141.
  • a CCD (charge coupled device) image sensor, a CMOS (complementary metal-oxide-semiconductor) image sensor, or the like is used for the image sensor 142.
  • the memory 15 is a non-transient storage medium that maintains storage even when the power supply is stopped.
  • the memory 15 stores, for example, a program, control information, data, and the like used in each component of the dirt inspection device 1.
  • the memory 15 also stores, for example, image data captured by the camera 14.
  • the control device 16 controls each component of the dirt inspection device 1 by using the program, control information, data, and the like stored in the memory 15.
  • the control device 16 quantifies the degree of contamination of a partial region Ap of the light receiving surface 301 based on the reference image and the measurement image described later.
  • a stain inspection method for measuring the degree of stain and a method for quantifying the degree of stain will be described later.
  • the control device 16 has an image processing unit 161 that processes an image captured by the camera 14.
  • the image processing unit 161 calculates the degree of contamination of the light receiving surface 301 based on, for example, the color coordinates of each pixel of the measurement image captured by the camera 14 and the reference color coordinates described later. As a result, the degree of contamination of the light receiving surface 301 of the photovoltaic power generation module 300 can be measured and quantified with high accuracy.
  • the measurement image is an image obtained by the camera 14 of the light receiving surface 301 (a part of the region) for which the degree of stain is measured by the stain inspection device 1.
  • the reference color coordinates are color coordinates that serve as a reference when measuring the degree of stain, and in the present embodiment, the reference color coordinates are based on a reference image obtained by imaging (a part of a region) of a clean light receiving surface 301 using the stain inspection device 1. Will be decided.
  • the measurement image and the reference image are captured in a state where the imaging region of the light receiving surface 301 is covered by the housing 11 and the light is irradiated from the lighting device 12.
  • the imaging regions of the light receiving surface 301 of the reference image and the measurement image may be the same or different.
  • the input device 18 receives the user's operation input.
  • the input device 18 includes a power ON / OFF button (not shown) for operating the start / stop of the dirt inspection device 1, a teaching start button (not shown) for inputting the execution of teaching described later, and a dirt inspection. It includes a measurement start button (not shown) for inputting the measurement start of the device 1. These buttons are provided on the upper surface of the housing 11.
  • the present invention is not limited to this example, and an integrated device such as a touch panel may be used.
  • the communication device 19 can communicate with the external terminal OT wirelessly or by wire. In this embodiment, two-way wireless communication is possible by Bluetooth (registered trademark).
  • the external terminal OT is, for example, a portable device such as a personal computer or a smartphone.
  • the communication device 19 can transmit, for example, the measurement data of the dirt inspection device 1 (numerical value of the degree of dirt, etc.) to the external terminal OT.
  • the external terminal OT can also operate the dirt inspection device 1 by communicating with the communication device 19.
  • the external power supply terminal 20 can be electrically connected to the external power supply AC, and the power output from the external power supply AC can be supplied to each component of the dirt inspection device 1.
  • the built-in power supply 21 is a battery built in the dirt inspection device 1, and can be discharged to supply electric power to each component of the dirt inspection device 1. Further, the built-in power supply 21 can be charged by the electric power supplied from the external power supply AC via the external power supply terminal 20.
  • the photovoltaic power generation module 300 is installed outdoors and is installed at an inclination angle ⁇ v vertically upward with respect to the horizontal ground Hp.
  • the inclination angle ⁇ v is, for example, 0 ° to 30 °.
  • the degree of contamination of the light receiving surface 301 is actually measured.
  • the teaching is a step of setting a standard for the degree of dirt on the dirt inspection device 1.
  • the degree of contamination of the light receiving surface 301 is quantified from 0 to 100.
  • the measured value of the degree of contamination is 100 on the clean light receiving surface 301, and becomes smaller as the light receiving surface 301 becomes dirty. If dirt can be visually confirmed, the measured value is, for example, about 23 to 24.
  • the degree of dirt on the light receiving surface 301 is actually measured using the taught dirt inspection device 1.
  • the stain inspection device 1 is placed on the measurement area L1 on the light receiving surface 301, and when the measurement start button is pressed, the RGB color measurement image of the measurement area L1 is imaged (S111). ..
  • the imaging in the measurement area L1 may be performed once or a plurality of times.
  • the image processing unit 161 digitizes the degree of contamination in the measurement area L1 based on the captured image in the measurement area L1 and calculates the measured value (S113).
  • the display device 17 displays the calculated measured value on the display (S115). The user can look at the display and read the measured value in the measurement area L1.
  • the dirt inspection device 1 can also transmit the measured value to the external terminal OT.
  • step S117 The same processing as in steps S111 to S115 is performed in the measurement areas L2 to L5 (NO in step S117).
  • the number of measurement regions is five in the present embodiment, the number of measurement regions is not limited to this example, and may be one or a plurality of measurement regions other than five.
  • the degree of contamination of the light receiving surface 301 of the photovoltaic power generation module 300 is calculated based on the measured values in each measurement area L1 to L5 (S119). ..
  • the average value of the measured values in all the measurement areas L1 to L5 is calculated.
  • the control device 16 may calculate the average value of all the measured values and display it on the display device 17.
  • the average value of all the measured values may be calculated by the external terminal and displayed on the display (not shown) of the external terminal.
  • teaching is carried out using the photovoltaic power generation module 300 to be inspected for measuring the degree of stain.
  • the teaching is not limited to this example, and the teaching may be performed using a photovoltaic power generation module different from the inspection target.
  • the photovoltaic power generation module to which the teaching is performed preferably has the same or similar configuration as the photovoltaic power generation module 300 to be inspected for measuring the degree of contamination.
  • the teaching may be performed in advance at a place where the photovoltaic power generation module 300 to be inspected is different from the installation place before the actual measurement of the degree of dirt.
  • the teaching does not have to be performed every time the actual measurement is performed, and the teaching settings used in the previous actual measurement may be used as they are.
  • FIG. 4 is a flowchart for explaining a method for quantifying the degree of contamination in the embodiment of the first embodiment.
  • FIG. 5A is an example of the color space of the reference image in the embodiment.
  • FIG. 5B is an example of the color space of the measured image.
  • the black circles are the pixels Pa of the reference image.
  • the circles are pixels Pb of the measurement image.
  • the number of pixels Pa and Pb shown is significantly smaller than the actual number in order to make the figure easier to see.
  • the image processing unit 161 calculates the R component value, the G component value, and the B component value of each pixel Pa of the reference image. Then, the pixel Pa having each color component value as the color coordinate (R, G, B) is drawn in the color space (S301).
  • the color coordinates of the pixel Pa of the reference image are an example of the "second color coordinates" of the present invention.
  • the image processing unit 161 draws a spherical region having a predetermined radius r in the color space of the reference image (S303). Hereinafter, this spherical region is referred to as a reference sphere Sa.
  • the image processing unit 161 detects the reference color coordinates (Ra, Ga, Ba) that are the center of the reference sphere Sa when the most reference pixels Pam are included inside the reference sphere Sa. .. That is, the reference color coordinates (Ra, Ga, Ba) are the color coordinates (R) in the reference sphere Sa having a predetermined size centered on the reference color coordinates (Ra, Ga, Ba) in the color space of the reference image. , G, B) are set so that a certain reference pixel number m is maximized. Further, the reference pixel number m is also detected (S305). The reference color coordinates (Ra, Ga, Ba) and the reference pixel number m are stored in the memory 15.
  • the image processing unit 161 is used for each pixel Pb of the captured measurement image.
  • the R component value, the G component value, and the B component value are calculated, and pixels Pb having each color component value as color coordinates (R, G, B) are drawn in the color space of the measurement image (S311).
  • the color coordinates (R, G, B) of the pixels of the measured image are an example of the "first color coordinates" of the present invention.
  • the image processing unit 161 further draws a reference sphere Sa having a radius r whose center is located at the reference color coordinates (Ra, Ga, Ba) in the color space of the measurement image (S313).
  • the image processing unit 161 detects the pixels Pb of the measurement image having the color coordinates (R, G, B) in the reference sphere Sa, and detects the number of pixels Pb in the reference sphere Sa (S315).
  • the count value of each pixel Pb in the reference sphere Sa is 1 for one pixel Pb.
  • the pixel Pb in the reference sphere Sa is referred to as a range pixel Pbn
  • the number of the range pixel Pbn is referred to as a range pixel number n.
  • the number of pixels n in the range is a positive integer, greater than 1 and less than or equal to the total number of pixels constituting the measurement image.
  • the image processing unit 161 calculates the degree of contamination of the light receiving surface 301 based on the pixel detection result in S315. For example, the image processing unit 161 calculates the degree of contamination based on the reference pixel number m and the number of pixels in the range n, and calculates the measured value of the degree of contamination by the ratio of the number of pixels in the range n to the reference pixel number m (S317). ). In the present embodiment, the image processing unit 161 calculates the percentage of the value obtained by dividing the number of pixels n in the range by the reference number of pixels m, and uses this as the measured value of the degree of contamination based on the measured image. For example, in the case of FIG. 5B, the measured value is 80. Since the measured value is quantified in the range of 0 to 100, when the number of pixels n in the range is larger than the reference pixel number m (that is, when the percentage exceeds 100), the measured value for the measured image is set to 100. To.
  • the stain inspection method described above even if the basic image and the measurement image are images of different parts of the light receiving surface 301, the degree of contamination of the light receiving surface 301 of the photovoltaic module 300 is measured. It can be quantified with high accuracy.
  • FIG. 6 is a flowchart for explaining a method for quantifying the degree of contamination in the modified example of the first embodiment.
  • FIG. 7 is an example of the color space of the reference image in the modified example. In FIG. 7, the black circles are the pixels Pa of the reference image. Further, in FIG. 7, in order to make the figure easier to see, the number of the illustrated pixel Pa and the measurement sphere Sb described later is significantly smaller than the actual number.
  • the image processing unit 161 sets the R component value, the G component value, and the B component value of each pixel Pa of the reference image. Is calculated, and pixels Pa having each color component value as color coordinates (R, G, B) are drawn in the color space (S501).
  • steps S503 to S505 are performed in order to determine the reference sphere Sa so that the number of reference pixels m having color coordinates (R, G, B) in the reference sphere Sa of the reference image is maximized.
  • the image processing unit 161 sets a spherical region (hereinafter, referred to as a measurement sphere Sb) centered on the color coordinates (R, G, B) of each pixel Pa of the reference image in the color space of the reference image.
  • Draw (S503).
  • the measuring ball Sb is an example of the "reference color range" of the present invention.
  • the radius of the measurement sphere Sb is the same as the radius r of the reference sphere Sa of the above-described embodiment.
  • the image processing unit 161 has the most overlapping region Ar (FIG. 7) in which the measurement spheres Sb having a predetermined size centered on the color coordinates (R, G, B) of each pixel of the reference image have the largest overlap.
  • the area indicated by the diagonal line) is calculated, and the reference color coordinates (Rb, Bb, Gb) are determined based on the most multiplex area Ar (S505).
  • the reference color coordinates (Ra, Ga, Ba) can be calculated by averaging the color coordinates (R, G, B) of the pixel Pa corresponding to the reference sphere Sa including the most multiplex region Ar, for example.
  • the reference color coordinates (Ra, Ga, Ba) when there are a plurality of most multiplex regions Ar, for example, the reference color coordinates of any of the most multiplex regions Ar are adopted as the center of the reference sphere Sa. You may. Alternatively, the color coordinates obtained by averaging the reference color coordinates of the plurality of most multiplex regions Ar may be adopted as the center of the reference sphere Sa.
  • the image processing unit 161 draws a reference sphere Sa having a radius r centered on the reference color coordinates (Rb, Bb, Gb) in the color space of the reference image (S507). Then, the image processing unit 161 detects the reference pixel Pam in the reference sphere Sa from the reference image, and detects the number of reference pixels m included in the reference sphere Sa (S509).
  • the cleaning time of the light receiving surface 301 has been determined by practical experience or custom. Then, manual cleaning, high-pressure water cleaning, cleaning by a self-propelled automatic cleaning device mounted on the light receiving surface 301, etc. are performed, and the amount of recovery of the generated power is evaluated based on the difference in the generated power before and after the cleaning. It was only a wash. That is, the degree of contamination of the light receiving surface 301 and the amount of recovery of the generated power by cleaning were not quantified, and the correlation between the two was not theoretically managed.
  • the management method of the photovoltaic power generation module 300 described below is for newly improving these.
  • FIG. 8 is a flowchart for explaining an example of a management method of the photovoltaic power generation module 300.
  • the generated power Wb of the photovoltaic power generation module 300 and the degree of contamination Sb of the light receiving surface 301 are measured and recorded together with the measurement date and time (S701).
  • the degree of dirt Sb of the light receiving surface 301 is measured by, for example, the above-mentioned dirt inspection device 1 (see FIG. 1) and the above-mentioned dirt inspection method (see FIG. 3).
  • step S705 After a predetermined elapsed period T has elapsed from the time when S701 is executed (YES in step S703), the generated power Wa of the photovoltaic power generation module 300 and the degree of contamination Sa of the light receiving surface 301 are measured, and together with the measurement date and time. Record (S705).
  • the elapsed period T may be daily, weekly, monthly, or yearly.
  • step S705 is preferably carried out at the same time of solar radiation conditions (solar radiation intensity, weather) as in step S701.
  • the threshold value Ws of the generated power when cleaning the light receiving surface 301 is set, and the time when the generated power reaches the threshold Ws is calculated as the cleaning time of the light receiving surface 301 by using the above-mentioned fouling speed ⁇ S and change rate ⁇ W. ..
  • the threshold value Ws can be set based on, for example, the lower limit of the generated power required for the photovoltaic power generation module 300.
  • the threshold Ws can be set in consideration of the cost-effectiveness of the selling price of the generated power of the photovoltaic power generation module 300 with respect to the cleaning cost of the photovoltaic power generation module 300.
  • the profit obtained when the generated power of the photovoltaic power generation module 300 is sold in the elapsed period T is compared between the case where the current cleaning is performed and the case where the current cleaning is not performed, and the difference between the two.
  • the threshold Ws can be determined so that is greater than or equal to the cleaning cost. Further, the threshold value Ws can be determined so that the above-mentioned difference sufficiently exceeds the cleaning cost and a predetermined profit is obtained.
  • the threshold value Ws is set to a value of about 90 [%] of the generated power Wo at the installation start time of the photovoltaic power generation module 300.
  • the time or a date close to that time may be determined as the day when the photovoltaic power generation module 300 is washed. ..
  • steps S701 to S705 are performed a plurality of times, it is preferable that a part of the elapsed period T in each time has a different time length from the other part. More preferably, the elapsed period T at each time is set to a different time length. By doing so, it can be confirmed that a more accurate change in the dirt rate ⁇ S of the light receiving surface 301 and the rate of change ⁇ W of the generated power with respect to the degree of dirt can be obtained. Therefore, even if the change in the rate of change ⁇ W of the generated power with respect to the dirt rate ⁇ S and / or the degree of dirt on the light receiving surface 301 is non-linear, the cleaning time of the light receiving surface 301 can be determined more accurately.
  • steps S701 and S705 are preferably performed at least one of the early morning and the evening of the day.
  • the intensity ratio of light of each wavelength contained in sunlight does not change with time, but the solar radiation intensity of sunlight incident on the photovoltaic power generation module 300 changes mainly with the altitude and solar radiation angle of the sun. In the time zone of the day, the maximum is usually from 12:00 to 14:00.
  • the relationship between the power generated by the photovoltaic power generation module 300 and the solar radiation intensity in one day is as shown in FIG. 9, for example.
  • the solar radiation intensity is less than 0.20 [kW / m 2 ] at dawn including sunrise and dusk including sunset, and is larger than 0.60 [kW / m 2 ] at noon including noon.
  • the generated power of the photovoltaic power generation module 300 is usually PCS (power) so that the reverse power flow power sold from a plurality of photovoltaic power plants does not suddenly increase in a time zone close to the peak time of the generated power.
  • the control system controls the suppression so as not to exceed the upper limit threshold Wc. Therefore, as shown in FIG. 10, even if the above-mentioned management methods, particularly steps S701 and S705, are carried out at noon including, for example, before 10:00 to after 15:00, the difference in the generated power of the photovoltaic power generation module 300 is evaluated. There are things you can't do. Further, for example, at dawn before 6 o'clock and dusk after 17:00 in FIG.
  • the amount of increase in the generated power of the photovoltaic power generation module 300 before and after cleaning is very small. Therefore, it is difficult to understand the difference in the generated power of the photovoltaic power generation module 300.
  • the output suppression control of the PCS is not implemented, and the amount of increase in the generated power of the photovoltaic power generation module 300 is relatively large.
  • the degree of contamination is obtained. Can also be evaluated.
  • the size of the measurement area of the gloss meter and the luminance meter is very narrow as compared with the measurement area of the stain inspection device 1 of the present embodiment. Therefore, the accuracy tends to be lower than that of the dirt inspection device 1 of the present mobile phone. Therefore, in order to sufficiently accurately evaluate the degree of contamination of the light receiving surface 301, it is necessary to perform measurement at more measurement points as compared with the case where the contamination inspection device 1 is used.
  • the image processing unit 161 of the stain inspection device 1 describes the color coordinates (R, G, B) of each pixel of the measurement image, the reference color coordinates (Ra, Ga, Ba), and the measurement image.
  • the correction measurement value of the degree of contamination of the light receiving surface 301 is calculated based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B) of each pixel.
  • the correction values Nr, Ng, and Nb for each color component are set corresponding to the color coordinates (R, G, B) of each pixel Pb of the measurement image, respectively.
  • the setting information of the correction values Nr, Ng, and Nb for each color component is stored in, for example, the memory 15.
  • the correction values Nr, Ng, and Nb for each color component are set to the color coordinates (R, G, B) of the pixels (that is, the within-range pixels Pbn) in the reference sphere Sa in the color space of the measured image, respectively.
  • the correction values Nrn, Ngn, and Nbn for each corresponding color component are included.
  • the image processing unit 161 corrects the count value of each pixel Pbn in the range by the correction values Nrn, Ngn, and Nbn for each color component, and calculates the correction measurement value of the degree of stain using the corrected count value.
  • the corrected count value of each pixel Pbn in the range is referred to as a correction count value na.
  • the correction value Nrn corresponding to the R component value of the within-range pixel Pbn is set smaller as the R component value approaches the maximum gradation value (for example, 15), and when the R component value is the maximum gradation value. Is set to the minimum value (for example, a value smaller than 1).
  • the correction value Nrn is set larger as the R component value is closer to the minimum gradation value (for example, 0), and is the maximum value (for example, a value larger than 1) when the R component value is the minimum gradation value. Is set to.
  • the correction values Nrn, Ngn, and Nbn for each of these color components can be set based on, for example, the band gap of the material of the solar cell 330, the light reflectance according to the hue of the light incident on the light receiving surface 301, and the like.
  • FIG. 11 is a flowchart for explaining a method for quantifying the degree of contamination in the embodiment of the second embodiment. Note that steps S901 to S915 in FIG. 11 are the same as steps S301 to S315 in the embodiment (FIG. 4) of the first embodiment.
  • step S915 n in-range pixels Pbn included in the reference sphere Sa are detected.
  • the image processing unit 161 determines the correction values Nrn, Ngn, and Nbn for each color component of each within the range pixel Pbn with reference to the setting information stored in the memory 15 (S916). Then, the image processing unit 161 is based on the reference pixel number m detected in S905, the range pixel number n detected in S915, and the correction values Nrn, Ngn, Nbn for each color component of each range pixel Pbn. A correction measurement value of the degree of stain based on the measurement image is calculated (S917).
  • the image processing unit 161 has the color coordinates (R, G, B) of each pixel Pb of the measurement image, the reference color coordinates (Ra, Ga, Ba), and each pixel Pb of the measurement image.
  • the correction measurement value of the degree of contamination of the light receiving surface 301 is calculated based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B).
  • the image processing unit 161 measures the degree of contamination of the light receiving surface 301 based on the color coordinates (R, G, B) of each pixel Pb of the measurement image and the reference color coordinates (Ra, Ga, Ba). Further, the correction measurement value corrected based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B) of each pixel Pb of the measurement image is calculated.
  • the correction count value na is a value obtained by correcting the count value of the pixels Pbn in each range in consideration of the hue of the stain in the second embodiment.
  • the count value of the pixels Pbn in each range is 1.
  • the correction measurement value of the degree of contamination of the light receiving surface 301 is calculated.
  • the light receiving surface 301 for the fluctuation of the generated power of the photovoltaic power generation module 300 is covered.
  • the effect of the hue of stains can be considered. Therefore, the stain inspection device 1 can be used to more accurately detect the tendency of the generated power of the photovoltaic power generation module 300 to decrease.
  • FIG. 12 is a flowchart for explaining a method for quantifying the degree of contamination in the modified example of the second embodiment.
  • Steps S1101 to S1115 of FIG. 12 are the same as steps S501 to S515 of the modified example (FIG. 6) of the first embodiment.
  • steps S1116 to S1117 of FIG. 12 are the same as steps S916 to S917 of the second embodiment (FIG. 11).
  • the image processing unit 161 performs the processing of FIG. 12 every time the camera 14 captures the measured image. When a plurality of measurement images are captured when the measurement start button is pressed once, the average value of the measured values may be a representative measured value in one measurement.
  • the above-mentioned corrected measurement value is used in the management method (see FIG. 8) of the photovoltaic power generation module 300 to which the stain inspection method using the stain inspection device 1 is applied.
  • the corrected measurement values of the degree of dirt Sb and Sa of the light receiving surface 301 are the above-mentioned dirt inspection method (see FIG. 1) using, for example, the above-mentioned dirt inspection device 1 (see FIG. 1). 11. Measured according to FIG. 12).
  • the RBG color system space is exemplified as the color space representing the color coordinates.
  • the color space may be a color space of a CIE color system other than the RGB color system.
  • the color space of such a CIE color system for example, an XYZ color system, an xyY color system, an L * u * v * color system, an L * a * b * color system, or the like can be adopted. ..
  • the color space may be a CMY space, an HSV space, an HLS space, or the like.
  • the color coordinates (C, M, K) are represented by the C component value, the M component value, and the K component value.
  • the C component value represents the magnitude of the color component C (cyan) of the pixels of the image.
  • the M component value represents the size of the color component magenta of the pixels of the image.
  • the K component value represents the size of the color component K (black) of the pixels of the image.
  • the color coordinates (H, S, V) are represented by the hue value H, the saturation value S, and the brightness V of the pixels of the image.
  • the color coordinates (H, L, S) are represented by the hue value H, the luminance value L, and the saturation value S of the pixels of the image.
  • the present invention is applied to the measurement of the degree of contamination of the light receiving surface of the photovoltaic power generation module.
  • the scope of application of the present invention is not limited to the above-mentioned examples.
  • the present invention is also applicable to an apparatus for measuring the degree of contamination of the surface to be inspected other than the light receiving surface of the photovoltaic power generation module.
  • the surface to be inspected is a surface on which dirt accumulates over time.
  • the surface to be inspected may be a display surface of a liquid crystal display device, a surface of a table or desk top plate, a glass surface of a vehicle, a surface of an outer wall of a building, or a floor surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photovoltaic Devices (AREA)
  • Image Analysis (AREA)

Abstract

In this invention, an imaging device is used to capture an image of a partial area of a surface under inspection that is covered by a housing and illuminated with light from an illumination device. The degree of contamination of the surface under inspection is calculated on the basis of the color coordinates in a color space of each pixel in a measurement image captured by the imaging device and reference color coordinates in the color space.

Description

汚れ検査装置、汚れ検査方法、及び、太陽光発電モジュールの管理方法Stain inspection device, stain inspection method, and management method of photovoltaic power generation module
 本発明は、汚れ検査装置、汚れ検査方法、及び、太陽光発電モジュールの管理方法に関する。 The present invention relates to a dirt inspection device, a dirt inspection method, and a method for managing a photovoltaic power generation module.
 太陽光発電モジュールでは、入射光が受光面で乱反射することなく太陽電池セルに到達することが重要である。受光面での乱反射の要因としては、塵埃、塩分、油分、大気汚染物質、草木種などの付着による受光面の汚れが考えられる。受光面の汚れにより、太陽電池セルに到達する光量は減少し、太陽光発電モジュールの発電電力は減少する。 In the photovoltaic power generation module, it is important that the incident light reaches the solar cell without being diffusely reflected on the light receiving surface. As a factor of diffused reflection on the light receiving surface, dirt on the light receiving surface due to adhesion of dust, salt, oil, air pollutants, vegetation species, etc. can be considered. Due to the dirt on the light receiving surface, the amount of light reaching the solar cell decreases, and the generated power of the photovoltaic power generation module decreases.
 この点に対して、特許文献1は、太陽電池モジュールの受光面側のガラス表面に、親水性領域と疎水性領域とが混在したコーティング表面を有する防汚性薄膜を形成している。特許文献1は、防汚性薄膜の形成により、受光面に付着した粉塵などを少量の降雨などで効率よく除去できるようにしている。 In this regard, Patent Document 1 forms an antifouling thin film having a coating surface in which a hydrophilic region and a hydrophobic region are mixed on the glass surface on the light receiving surface side of the solar cell module. Patent Document 1 makes it possible to efficiently remove dust and the like adhering to the light receiving surface with a small amount of rainfall or the like by forming an antifouling thin film.
 但し、受光面に防汚性を付与しても、受光面の汚れを完全に防止することは非常に難しく、実際には受光面の汚れは経時的に進んでしまう。従って、低下した発電電力を回復させるためには、太陽光発電モジュールの受光面を所定の時期に洗浄する必要がある。 However, even if the light receiving surface is provided with antifouling properties, it is very difficult to completely prevent the light receiving surface from becoming dirty, and in reality, the light receiving surface becomes dirty over time. Therefore, in order to recover the reduced generated power, it is necessary to clean the light receiving surface of the photovoltaic power generation module at a predetermined time.
特開2012-256755号公報Japanese Unexamined Patent Publication No. 2012-256755
 しかしながら、受光面の汚れ度合いを測定して数値化する手法は未だ確立されていない。そのため、現状では、受光面の洗浄時期は、太陽光発電モジュールの管理者の実務経験又は慣例によって決定されている。 However, a method for measuring and quantifying the degree of dirt on the light receiving surface has not yet been established. Therefore, at present, the cleaning time of the light receiving surface is determined by the practical experience or custom of the manager of the photovoltaic power generation module.
 上記の状況を鑑みて、本発明は、被検査面の汚れ度合いを測定して精度良く数値化できる汚れ検査装置、及び汚れ検査方法を提供することを第1の目的とする。 In view of the above situation, the first object of the present invention is to provide a stain inspection device and a stain inspection method capable of measuring the degree of stain on the surface to be inspected and quantifying it with high accuracy.
 また、本発明は、受光面の洗浄時期を理論的に決定できる太陽光発電モジュールの管理方法を提供することを第2の目的とする。 A second object of the present invention is to provide a method for managing a photovoltaic power generation module that can theoretically determine the cleaning time of the light receiving surface.
 上記目的を達成するために本発明の一の態様による汚れ検査装置は、被検査面の一部領域を覆うハウジングと、前記一部領域に光を照射する照明装置と、前記一部領域を撮像する撮像装置と、前記撮像装置により撮像された測定画像の各々の画素の色空間における第1色座標と、前記色空間における基準色座標とに基づいて、前記被検査面の汚れ度合いを算出する画像処理部と、を備える構成(第1の構成)とされる。 In order to achieve the above object, the stain inspection device according to one aspect of the present invention captures a housing that covers a part of the surface to be inspected, a lighting device that irradiates the part of the area with light, and the part of the area. The degree of contamination of the surface to be inspected is calculated based on the first color coordinates in the color space of each pixel of the image pickup device and the measurement image captured by the image pickup device, and the reference color coordinates in the color space. It is configured to include an image processing unit (first configuration).
 上記第1の構成の汚れ検査装置は、前記色空間が3次元色空間である構成(第2の構成)であってもよい。 The stain inspection device having the first configuration may have a configuration in which the color space is a three-dimensional color space (second configuration).
 上記第1又は第2の構成の汚れ検査装置は、前記画像処理部は、前記色空間において、前記基準色座標を中心とする所定の大きさの基準色範囲内に第2色座標がある基準画像の画素の数が最大となるように、前記基準色座標を決定する構成(第3の構成)であってもよい。 In the stain inspection device having the first or second configuration, the image processing unit has a reference in which the second color coordinates are within a reference color range of a predetermined size centered on the reference color coordinates in the color space. The configuration may be such that the reference color coordinates are determined (third configuration) so that the number of pixels of the image is maximized.
 或いは、上記第1又は第2の構成の汚れ検査装置は、前記画像処理部は、前記色空間において、基準画像の各々の画素の第2色座標を中心とする所定の大きさの基準色範囲の重なりが最も多い領域を算出し、該領域に基づいて前記基準色座標を決定する構成(第4の構成)であってもよい。 Alternatively, in the stain inspection device having the first or second configuration, the image processing unit has a reference color range having a predetermined size centered on the second color coordinates of each pixel of the reference image in the color space. A configuration (fourth configuration) may be used in which the region having the largest overlap is calculated and the reference color coordinates are determined based on the region.
 上記第1~第4のうちのいずれかの構成の汚れ検査装置は、前記画像処理部は、前記色空間において、前記基準色範囲内に前記第1色座標がある前記測定画像の画素を検出し、前記画素の検出結果に基づいて前記被検査面の汚れ度合いを算出する構成(第5の構成)であってもよい。 In the stain inspection device having any of the first to fourth configurations, the image processing unit detects pixels of the measurement image having the first color coordinates within the reference color range in the color space. Then, the degree of contamination of the surface to be inspected may be calculated based on the detection result of the pixel (fifth configuration).
 上記第1~第5のうちのいずれかの構成の汚れ検査装置は、前記画像処理部は、さらに前記第1色座標に対応する色成分別の補正値に基づいて前記汚れ度合いを算出する構成(第6の構成)であってもよい。 In the stain inspection device having any of the first to fifth configurations, the image processing unit further calculates the degree of stain based on the correction value for each color component corresponding to the first color coordinates. (Sixth configuration) may be used.
 また、上記目的を達成するために本発明の一の態様による汚れ検査方法は、被検査面のうちのハウジングで覆われ且つ照明装置により光が照射された一部領域を撮像装置で撮像するステップと、前記撮像装置により撮像された測定画像の各々の画素の色空間における色座標と、前記色空間における基準色座標とに基づいて、前記被検査面の汚れ度合いを算出するステップと、を備える構成(第7の構成)とされる。 Further, in order to achieve the above object, the stain inspection method according to one aspect of the present invention is a step of imaging a part of the surface to be inspected covered with a housing and illuminated by a lighting device with an imaging device. A step of calculating the degree of contamination of the surface to be inspected based on the color coordinates in the color space of each pixel of the measurement image captured by the image pickup apparatus and the reference color coordinates in the color space. It is said to be a configuration (seventh configuration).
 また、上記目的を達成するために本発明の一の態様による太陽光発電モジュールの管理方法は、太陽光発電モジュールの受光面の一部領域を覆うハウジングと、前記一部領域に光を照射する照明装置と、前記一部領域を撮像する撮像装置と、前記撮像装置により撮像された測定画像の各々の画素の色空間における第1色座標と、前記色空間における基準色座標とに基づいて前記受光面の汚れ度合いを算出する画像処理部と、を備える汚れ検査装置を用いて前記太陽光発電モジュールの前記受光面の前記汚れ度合いを測定するとともに、前記太陽光発電モジュールの発電電力を測定する第1の測定ステップと、前記第1の測定ステップを実施した時点から所定の経過期間の後に、前記汚れ検査装置を用いて前記汚れ度合いを測定するとともに、前記発電電力を測定する第2の測定ステップと、前記第1の測定ステップ及び前記第2の測定ステップでそれぞれ測定した前記汚れ度合い及び前記発電電力と、前記経過期間とに基づいて、前記受光面の洗浄時期を決定するステップと、を備える構成(第8の構成)とされる。 Further, in order to achieve the above object, the method of managing the photovoltaic power generation module according to one aspect of the present invention is to irradiate the housing covering a part of the light receiving surface of the photovoltaic power generation module and the part of the area with light. The illumination device, an image pickup device that images a part of the region, a first color coordinate in the color space of each pixel of the measurement image captured by the image pickup device, and a reference color coordinate in the color space. Using an image processing unit for calculating the degree of contamination of the light receiving surface, the degree of contamination of the light receiving surface of the photovoltaic power generation module is measured, and the generated power of the photovoltaic power generation module is measured. After a predetermined elapsed period from the time when the first measurement step and the first measurement step are performed, the stain degree is measured by using the stain inspection device, and the second measurement for measuring the generated power is performed. A step and a step of determining a cleaning time of the light receiving surface based on the degree of contamination and the generated power measured in the first measurement step and the second measurement step, respectively, and the elapsed period. It is a configuration to be provided (eighth configuration).
 上記第8の構成の太陽光発電モジュールの管理方法は、前記第1の測定ステップ及び前記第2の測定ステップにおいて、前記汚れ度合いの補正測定値が算出され、前記補正測定値は、前記第1色座標と前記基準色座標とに基づく前記汚れ度合いの測定値を、前記第1色座標に対応する色成分別の補正値に基づいて補正した値である構成(第9の構成)であってもよい。 In the method of managing the photovoltaic power generation module having the eighth configuration, the correction measurement value of the degree of contamination is calculated in the first measurement step and the second measurement step, and the correction measurement value is the first measurement value. It is a configuration (ninth configuration) in which the measured value of the degree of stain based on the color coordinates and the reference color coordinates is corrected based on the correction value for each color component corresponding to the first color coordinates. May be good.
 上記第8又は第9の構成の太陽光発電モジュールの管理方法は、少なくとも前記第1の測定ステップ及び前記第2の測定ステップが、一日のうちの早朝及び夕方のうちの少なくとも一方で実施される構成(第10の構成)であってもよい。 In the method of managing the photovoltaic power generation module having the eighth or ninth configuration, at least the first measurement step and the second measurement step are carried out at least one of the early morning and the evening of the day. (10th configuration) may be used.
 本発明の汚れ検査装置及び汚れ検査方法によれば、被検査面の汚れ度合いを測定して精度良く数値化することができる。また、本発明の太陽光発電モジュールの管理方法によれば、受光面の洗浄時期を理論的に決定することができる。 According to the stain inspection device and the stain inspection method of the present invention, the degree of stain on the surface to be inspected can be measured and quantified with high accuracy. Further, according to the management method of the photovoltaic power generation module of the present invention, the cleaning time of the light receiving surface can be theoretically determined.
汚れ検査装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the dirt inspection apparatus. 汚れ検査装置を用いた汚れ検査方法の一例を示す模式図である。It is a schematic diagram which shows an example of the dirt inspection method using the dirt inspection apparatus. 汚れ検査装置を用いた汚れ検査方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the stain inspection method using a stain inspection apparatus. 第1実施形態の実施例における汚れ度合いの数値化の手法を説明するためのフローチャートである。It is a flowchart for demonstrating the method of quantifying the degree of dirt in the Example of 1st Embodiment. 実施例における基準画像の色空間の一例である。This is an example of the color space of the reference image in the embodiment. 測定画像の色空間の一例である。This is an example of the color space of the measured image. 第1実施形態の変形例における汚れ度合いの数値化の手法を説明するためのフローチャートである。It is a flowchart for demonstrating the method of quantifying the degree of dirt in the modification of 1st Embodiment. 変形例における基準画像の色空間の一例である。This is an example of the color space of the reference image in the modified example. 太陽光発電モジュールの管理方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the management method of a photovoltaic power generation module. 日射強度に対する太陽光発電モジュールの発電電力の関係を示すグラフである。It is a graph which shows the relationship of the power generation of a photovoltaic power generation module with respect to the solar radiation intensity. 洗浄前後での発電電力の変化を示す模式図である。It is a schematic diagram which shows the change of the generated power before and after cleaning. 第2実施形態の実施例における汚れ度合いの数値化の手法を説明するためのフローチャートである。It is a flowchart for demonstrating the method of quantifying the degree of dirt in the Example of 2nd Embodiment. 第2実施形態の変形例における汚れ度合いの数値化の手法を説明するためのフローチャートである。It is a flowchart for demonstrating the method of quantifying the degree of dirt in the modification of 2nd Embodiment.
 以下に、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<1.第1実施形態>
 図1は、汚れ検査装置1の構成例を示す模式図である。本実施形態に係る汚れ検査装置1は、太陽光発電モジュール300の受光面301に載置され、受光面301の汚れ度合いを検査する。
<1. First Embodiment>
FIG. 1 is a schematic view showing a configuration example of the dirt inspection device 1. The dirt inspection device 1 according to the present embodiment is mounted on the light receiving surface 301 of the photovoltaic power generation module 300, and inspects the degree of dirt on the light receiving surface 301.
 太陽光発電モジュール300は、受光面301に入射する光を電気エネルギーに変換する発電装置である。太陽光発電モジュール300は、透光性を有する基板310と、封止樹脂層320と、太陽電池セル330と、バックフィルム340と、を備える。図1において、受光面301は、基板310の上面である。基板310の下面には、封止樹脂層320が設けられる。封止樹脂層320の下面には、バックフィルム340が設けられる。封止樹脂層320は、基板310とバックフィルム340との間に充填される透明な充填材である。太陽電池セル330は、基板310とバックフィルム340との間に設けられ、封止樹脂層320により封止される。太陽電池セル330には、本実施形態では多結晶シリコンが用いられる。但し、この例示に限定されず、GaAs系、Cu-In-Se系(CIS)系、Cu-In-Ga-Se系(CIGS)系、CdTe系などの材料を用いた化合物半導体太陽電池セル、色素増感型太陽電池セルなどが用いられてもよい。また、太陽光発電モジュール300は、図示を省略した端子ボックス及びケーブルをさらに備える。端子ボックスは、太陽電池セル330の出力を取り出し、ケーブルを通じて太陽光発電モジュール300の外部に出力する。 The photovoltaic power generation module 300 is a power generation device that converts light incident on the light receiving surface 301 into electrical energy. The photovoltaic power generation module 300 includes a translucent substrate 310, a sealing resin layer 320, a solar cell 330, and a back film 340. In FIG. 1, the light receiving surface 301 is the upper surface of the substrate 310. A sealing resin layer 320 is provided on the lower surface of the substrate 310. A back film 340 is provided on the lower surface of the sealing resin layer 320. The sealing resin layer 320 is a transparent filler that is filled between the substrate 310 and the back film 340. The solar cell 330 is provided between the substrate 310 and the back film 340, and is sealed by the sealing resin layer 320. Polycrystalline silicon is used for the solar cell 330 in this embodiment. However, the present invention is not limited to this example, and compound semiconductor solar cells using materials such as GaAs-based, Cu-In-Se-based (CIS) -based, Cu-In-Ga-Se-based (CIGS) -based, and CdTe-based materials. A dye-sensitized solar cell or the like may be used. Further, the photovoltaic power generation module 300 further includes a terminal box and a cable (not shown). The terminal box takes out the output of the solar cell 330 and outputs it to the outside of the photovoltaic power generation module 300 through a cable.
 <1-1.汚れ検査装置>
 図1に示すように、汚れ検査装置1は、ハウジング11と、照明装置12と、照明駆動装置13と、カメラ14と、メモリ15と、制御装置16と、表示装置17と、入力装置18と、通信装置19と、外部電源端子20と、内蔵電源21と、を備える。
<1-1. Dirt inspection device>
As shown in FIG. 1, the stain inspection device 1 includes a housing 11, a lighting device 12, a lighting driving device 13, a camera 14, a memory 15, a control device 16, a display device 17, and an input device 18. , The communication device 19, the external power supply terminal 20, and the built-in power supply 21.
 ハウジング11は、有蓋筒状の円筒形状である。ハウジング11は、照明駆動装置13、カメラ14、メモリ15、制御装置16、通信装置19、及び内蔵電源21を内部に収容する。ハウジング11の蓋部分には、表示装置17及び入力装置18が設けられる。ハウジング11の筒部分には、外部電源端子20が設けられる。また、ハウジング11は、受光面301側の端部に開口111を有する。該開口111の内縁には、照明装置12が設けられる。 The housing 11 has a cylindrical shape with a covered cylinder. The housing 11 internally houses the lighting drive device 13, the camera 14, the memory 15, the control device 16, the communication device 19, and the built-in power supply 21. A display device 17 and an input device 18 are provided on the lid portion of the housing 11. An external power supply terminal 20 is provided on the tubular portion of the housing 11. Further, the housing 11 has an opening 111 at an end on the light receiving surface 301 side. A lighting device 12 is provided on the inner edge of the opening 111.
 汚れ検査装置1が受光面301に載置される際、ハウジング11は、太陽光発電モジュール300の受光面301の一部領域Apを覆う。これにより、汚れ検査装置1は、外光に対して該一部領域Apを遮光した状態で測定を実施できるので、測定結果のノイズを抑制できる。また、ハウジング11は、本実施形態では樹脂製である。そのため、載置の際、ハウジング11が受光面301に当たっても、受光面301を傷つけ難くなっている。 When the dirt inspection device 1 is placed on the light receiving surface 301, the housing 11 covers a part of the region Ap of the light receiving surface 301 of the photovoltaic power generation module 300. As a result, the dirt inspection device 1 can perform the measurement in a state where the partial region Ap is shielded from external light, so that the noise of the measurement result can be suppressed. Further, the housing 11 is made of resin in this embodiment. Therefore, even if the housing 11 hits the light receiving surface 301 during mounting, the light receiving surface 301 is less likely to be damaged.
 照明装置12は、受光面301の一部領域Apに光を照射する。照明装置12は、リング状の基体121と、LEDアレイ122を有する。LEDアレイ122は、基体121の径方向内端部に設けられ、周方向に並ぶ複数の白色LED(符号省略)を有する。各々の白色LEDは、所定の放射角度を有して径方向内方に白色光を出射し、少なくとも一部の白色光をハウジング11で覆われた受光面301の一部領域Apに照射する。該一部領域Apは、後述するように、汚れ検査装置1が受光面301の汚れ度合いを測定するための領域であり、本実施形態では直径がφ50[mm]~φ200[mm]の領域である。 The lighting device 12 irradiates a part of the region Ap of the light receiving surface 301 with light. The illuminating device 12 has a ring-shaped substrate 121 and an LED array 122. The LED array 122 is provided at the radial inner end of the substrate 121 and has a plurality of white LEDs (reference numerals omitted) arranged in the circumferential direction. Each white LED emits white light inward in the radial direction with a predetermined radiation angle, and irradiates at least a part of the white light on a part region Ap of the light receiving surface 301 covered with the housing 11. As will be described later, the partial region Ap is a region for the stain inspection device 1 to measure the degree of contamination of the light receiving surface 301, and in the present embodiment, it is a region having a diameter of φ50 [mm] to φ200 [mm]. is there.
 照明駆動装置13は、制御装置16から出力される制御信号に基づいて照明装置12を駆動し、特にLEDアレイ122の発光を制御する。 The lighting drive device 13 drives the lighting device 12 based on the control signal output from the control device 16, and particularly controls the light emission of the LED array 122.
 カメラ14は、受光面301の一部領域Apを撮像する撮像装置である。カメラ14が撮像する画像の画素数は、本実施形態では6万~10万程度である。カメラ14は、レンズ141と、撮像素子142と、を有する。受光面301において上述の一部領域Apから入射する光は、レンズ141を通じて撮像素子142に入射する。撮像素子142には、CCD(charge coupled device)イメージセンサ、CMOS(complementary metal-oxide-semiconductor)イメージセンサなどが用いられる。 The camera 14 is an imaging device that images a partial region Ap of the light receiving surface 301. The number of pixels of the image captured by the camera 14 is about 60,000 to 100,000 in this embodiment. The camera 14 includes a lens 141 and an image sensor 142. The light incident on the light receiving surface 301 from the above-mentioned partial region Ap is incident on the image sensor 142 through the lens 141. A CCD (charge coupled device) image sensor, a CMOS (complementary metal-oxide-semiconductor) image sensor, or the like is used for the image sensor 142.
 メモリ15は、電力供給が停止しても記憶を維持する非一過性の記憶媒体である。メモリ15は、たとえば、汚れ検査装置1の各構成要素で用いられるプログラム及び制御情報、データなどを記憶する。また、メモリ15は、たとえば、カメラ14が撮像した画像データなども記憶する。 The memory 15 is a non-transient storage medium that maintains storage even when the power supply is stopped. The memory 15 stores, for example, a program, control information, data, and the like used in each component of the dirt inspection device 1. The memory 15 also stores, for example, image data captured by the camera 14.
 制御装置16は、メモリ15に記憶されたプログラム及び制御情報、データなどを用いて汚れ検査装置1の各構成要素を制御する。制御装置16は、後述する基準画像及び測定画像に基づいて受光面301の一部領域Apの汚れ度合いを数値化する。なお、汚れ度合いを測定する汚れ検査方法、及び、汚れ度合いの数値化の手法は、後に説明する。 The control device 16 controls each component of the dirt inspection device 1 by using the program, control information, data, and the like stored in the memory 15. The control device 16 quantifies the degree of contamination of a partial region Ap of the light receiving surface 301 based on the reference image and the measurement image described later. A stain inspection method for measuring the degree of stain and a method for quantifying the degree of stain will be described later.
 制御装置16は、カメラ14により撮像された画像を処理する画像処理部161を有する。画像処理部161は、たとえば、カメラ14により撮像された測定画像の各々の画素の色座標と、後述する基準色座標とに基づいて、受光面301の汚れ度合いを算出する。これにより、太陽光発電モジュール300の受光面301の汚れ度合いを測定して精度良く数値化することができる。なお、測定画像は、汚れ検査装置1で汚れ度合いを測定する受光面301(の一部の領域)をカメラ14で撮像した画像である。基準色座標は、汚れ度合いを測定する際の基準となる色座標であり、本実施形態では汚れ検査装置1を用いて清浄な受光面301(の一部の領域)を撮像した基準画像に基づいて決定される。測定画像及び基準画像は、受光面301の撮像領域がハウジング11により覆われ且つ照明装置12から光が照射された状態で撮像されている。本実施形態では、基準画像及び測定画像の受光面301の撮像領域は、同じであってもよいし、異なっていてもよい。 The control device 16 has an image processing unit 161 that processes an image captured by the camera 14. The image processing unit 161 calculates the degree of contamination of the light receiving surface 301 based on, for example, the color coordinates of each pixel of the measurement image captured by the camera 14 and the reference color coordinates described later. As a result, the degree of contamination of the light receiving surface 301 of the photovoltaic power generation module 300 can be measured and quantified with high accuracy. The measurement image is an image obtained by the camera 14 of the light receiving surface 301 (a part of the region) for which the degree of stain is measured by the stain inspection device 1. The reference color coordinates are color coordinates that serve as a reference when measuring the degree of stain, and in the present embodiment, the reference color coordinates are based on a reference image obtained by imaging (a part of a region) of a clean light receiving surface 301 using the stain inspection device 1. Will be decided. The measurement image and the reference image are captured in a state where the imaging region of the light receiving surface 301 is covered by the housing 11 and the light is irradiated from the lighting device 12. In the present embodiment, the imaging regions of the light receiving surface 301 of the reference image and the measurement image may be the same or different.
 表示装置17は、ハウジング11の上面に設けられたディスプレイ(図示省略)に汚れ度合いの測定値などを表示する。 The display device 17 displays a measured value of the degree of dirt on a display (not shown) provided on the upper surface of the housing 11.
 入力装置18は、ユーザの操作入力を受け付ける。入力装置18は、汚れ検査装置1の起動/停止を操作するための電源ON/OFFボタン(図示省略)、後述するティーチングの実施を入力するためのティーチング開始ボタン(図示省略)、及び、汚れ検査装置1の測定開始を入力するための測定開始ボタン(図示省略)などを含む。これらのボタンは、ハウジング11の上面に設けられる。 The input device 18 receives the user's operation input. The input device 18 includes a power ON / OFF button (not shown) for operating the start / stop of the dirt inspection device 1, a teaching start button (not shown) for inputting the execution of teaching described later, and a dirt inspection. It includes a measurement start button (not shown) for inputting the measurement start of the device 1. These buttons are provided on the upper surface of the housing 11.
 なお、表示装置17及び入力装置18は、本実施形態では別々に設けられているが、この例示に限定されず、タッチパネルなどの一体の装置であってもよい。 Although the display device 17 and the input device 18 are provided separately in the present embodiment, the present invention is not limited to this example, and an integrated device such as a touch panel may be used.
 通信装置19は、外部端末OTと無線又は有線で通信可能である。本実施形態では、Bluetooth(登録商標)により双方向の無線通信が可能である。外部端末OTは、たとえば、パーソナルコンピュータ、スマートフォンなどの携帯機器である。通信装置19は、たとえば、汚れ検査装置1の測定データ(汚れ度合いの数値など)を外部端末OTに送信できる。また、外部端末OTは、通信装置19との通信により、汚れ検査装置1を操作することもできる。 The communication device 19 can communicate with the external terminal OT wirelessly or by wire. In this embodiment, two-way wireless communication is possible by Bluetooth (registered trademark). The external terminal OT is, for example, a portable device such as a personal computer or a smartphone. The communication device 19 can transmit, for example, the measurement data of the dirt inspection device 1 (numerical value of the degree of dirt, etc.) to the external terminal OT. The external terminal OT can also operate the dirt inspection device 1 by communicating with the communication device 19.
 外部電源端子20は、外部電源ACと電気的に接続可能であり、外部電源ACから出力される電力を汚れ検査装置1の各構成要素に電力を供給できる。 The external power supply terminal 20 can be electrically connected to the external power supply AC, and the power output from the external power supply AC can be supplied to each component of the dirt inspection device 1.
 内蔵電源21は、汚れ検査装置1に内蔵されるバッテリーであり、放電して汚れ検査装置1の各構成要素に電力を供給できる。また、内蔵電源21は、外部電源端子20を介して外部電源ACから供給される電力により充電できる。 The built-in power supply 21 is a battery built in the dirt inspection device 1, and can be discharged to supply electric power to each component of the dirt inspection device 1. Further, the built-in power supply 21 can be charged by the electric power supplied from the external power supply AC via the external power supply terminal 20.
 <1-2.汚れ検査方法>
 次に、汚れ検査装置1を用いた太陽光発電モジュール300の受光面301の汚れ検査方法を説明する。図2は、汚れ検査装置1を用いた汚れ検査方法の一例を示す模式図である。図3は、汚れ検査装置1を用いた汚れ検査方法の一例を説明するためのフローチャートである。なお、図2は、汚れ度合いを測定する際の太陽光発電モジュール300と汚れ検査装置1との位置関係を示す。また、図2の破線は、太陽光発電モジュール300の受光面301の縦幅aの方向における中央と横幅bの方向における中央とを表している。
<1-2. Dirt inspection method>
Next, a dirt inspection method for the light receiving surface 301 of the photovoltaic power generation module 300 using the dirt inspection device 1 will be described. FIG. 2 is a schematic view showing an example of a stain inspection method using the stain inspection device 1. FIG. 3 is a flowchart for explaining an example of a stain inspection method using the stain inspection device 1. Note that FIG. 2 shows the positional relationship between the photovoltaic power generation module 300 and the dirt inspection device 1 when measuring the degree of dirt. Further, the broken line in FIG. 2 represents the center of the light receiving surface 301 of the photovoltaic power generation module 300 in the direction of the vertical width a and the center in the direction of the horizontal width b.
 図2において、太陽光発電モジュール300は、屋外に設置され、水平な地面Hpに対して鉛直上方に傾斜角θv傾けて設置されている。太陽光発電モジュール300の縦幅はたとえばa=1.0[m]であり、横幅はたとえばb=1.7[m]である。傾斜角θvは、たとえば0°~30°である。 In FIG. 2, the photovoltaic power generation module 300 is installed outdoors and is installed at an inclination angle θv vertically upward with respect to the horizontal ground Hp. The vertical width of the photovoltaic power generation module 300 is, for example, a = 1.0 [m], and the horizontal width is, for example, b = 1.7 [m]. The inclination angle θv is, for example, 0 ° to 30 °.
 汚れ検査装置1を用いた汚れ検査方法では、図3に示すように、汚れ検査装置1にティーチングを行った後、受光面301の汚れ度合いを実測する。この汚れ検査方法により、太陽光発電モジュール300の受光面301の汚れ度合いを測定して精度良く数値化することができる。なお、ティーチングは、汚れ検査装置1に汚れ度合いの基準を設定する工程である。また、本実施形態では、受光面301の汚れ度合いを0~100に数値化して示す。汚れ度合いの測定値は、清浄な受光面301では100であり、受光面301が汚れているほど小さくなる。目視で汚れが確認できる場合、測定値はたとえば23~24程度となる。 In the stain inspection method using the stain inspection device 1, as shown in FIG. 3, after teaching the stain inspection device 1, the degree of contamination of the light receiving surface 301 is actually measured. By this dirt inspection method, the degree of dirt on the light receiving surface 301 of the photovoltaic power generation module 300 can be measured and quantified with high accuracy. The teaching is a step of setting a standard for the degree of dirt on the dirt inspection device 1. Further, in the present embodiment, the degree of contamination of the light receiving surface 301 is quantified from 0 to 100. The measured value of the degree of contamination is 100 on the clean light receiving surface 301, and becomes smaller as the light receiving surface 301 becomes dirty. If dirt can be visually confirmed, the measured value is, for example, about 23 to 24.
 まず、受光面301上の基準領域L0及びその近傍が純粋又は精製水で洗浄されて清浄にされる(S101)。そして、基準領域L0上に汚れ検査装置1が載置され、ティーチング開始ボタンが押されることにより清浄な基準領域L0のRGBカラーの基準画像が撮像される(S103)。画像処理部161は、基準画像に基づいてティーチングを行う(S105)。なお、ティーチングの具体的な内容は後に説明する。 First, the reference region L0 on the light receiving surface 301 and its vicinity are washed with pure or purified water to be cleaned (S101). Then, the stain inspection device 1 is placed on the reference region L0, and when the teaching start button is pressed, a clean RGB color reference image of the reference region L0 is imaged (S103). The image processing unit 161 performs teaching based on the reference image (S105). The specific content of teaching will be described later.
 次に、ティーチングした汚れ検査装置1を用いて受光面301の汚れ度合いを実測する。この工程では、まず、受光面301上の測定領域L1上に汚れ検査装置1が載置されて、測定開始ボタンが押されることにより測定領域L1のRGBカラーの測定画像が撮像される(S111)。なお、測定領域L1での撮像は、1回でもよいし、複数回であってもよい。画像処理部161は、測定領域L1での撮影画像に基づいて測定領域L1における汚れ度合いを数値化してその測定値を算出する(S113)。表示装置17は、算出された測定値をディスプレイに表示する(S115)。ユーザは、ディスプレイを見て、測定領域L1での測定値を読み取ることができる。また、汚れ検査装置1は、外部端末OTに測定値を送信することもできる。 Next, the degree of dirt on the light receiving surface 301 is actually measured using the taught dirt inspection device 1. In this step, first, the stain inspection device 1 is placed on the measurement area L1 on the light receiving surface 301, and when the measurement start button is pressed, the RGB color measurement image of the measurement area L1 is imaged (S111). .. The imaging in the measurement area L1 may be performed once or a plurality of times. The image processing unit 161 digitizes the degree of contamination in the measurement area L1 based on the captured image in the measurement area L1 and calculates the measured value (S113). The display device 17 displays the calculated measured value on the display (S115). The user can look at the display and read the measured value in the measurement area L1. The dirt inspection device 1 can also transmit the measured value to the external terminal OT.
 測定領域L2~L5でも、ステップS111~S115と同じ処理が実施される(ステップS117でNO)。なお、測定領域の数は、本実施形態では5箇所であるが、この例示に限定されず、1箇所であってもよいし、5以外の複数箇所であってもよい。 The same processing as in steps S111 to S115 is performed in the measurement areas L2 to L5 (NO in step S117). Although the number of measurement regions is five in the present embodiment, the number of measurement regions is not limited to this example, and may be one or a plurality of measurement regions other than five.
 全ての測定領域での測定が終了すると(ステップS117でYES)、各測定領域L1~L5での測定値に基づいて、太陽光発電モジュール300の受光面301の汚れ度合いが算出される(S119)。たとえば、全ての測定領域L1~L5での測定値の平均値が算出される。この際、たとえば、予め汚れ検査装置1に測定箇所数を入力しておくことにより、制御装置16にて全ての測定値の平均値が算出されて表示装置17に表示されてもよい。或いは、外部端末にて全ての測定値の平均値が算出されて、外部端末のディスプレイ(図示省略)に表示されてもよい。 When the measurement in all the measurement areas is completed (YES in step S117), the degree of contamination of the light receiving surface 301 of the photovoltaic power generation module 300 is calculated based on the measured values in each measurement area L1 to L5 (S119). .. For example, the average value of the measured values in all the measurement areas L1 to L5 is calculated. At this time, for example, by inputting the number of measurement points into the dirt inspection device 1 in advance, the control device 16 may calculate the average value of all the measured values and display it on the display device 17. Alternatively, the average value of all the measured values may be calculated by the external terminal and displayed on the display (not shown) of the external terminal.
 なお、図2の汚れ検査方法では、ティーチングは、汚れ度合いを実測する検査対象の太陽光発電モジュール300を使って実施している。但し、この例示に限定されず、ティーチングは、検査対象とは異なる太陽光発電モジュールを使って実施されてもよい。この場合、ティーチングが実施される太陽光発電モジュールは、好ましくは、汚れ度合いを実測する検査対象の太陽光発電モジュール300と同じ又は類似する構成とされる。さらに、ティーチングは、汚れ度合いの実測前に、検査対象の太陽光発電モジュール300が設置場所とは異なる場所で予め実施されていてもよい。或いは、ティーチングは、実測の度に実施されなくてもよく、以前の実測で使用したティーチングの設定がそのまま使用されてもよい。 In the stain inspection method of FIG. 2, teaching is carried out using the photovoltaic power generation module 300 to be inspected for measuring the degree of stain. However, the teaching is not limited to this example, and the teaching may be performed using a photovoltaic power generation module different from the inspection target. In this case, the photovoltaic power generation module to which the teaching is performed preferably has the same or similar configuration as the photovoltaic power generation module 300 to be inspected for measuring the degree of contamination. Further, the teaching may be performed in advance at a place where the photovoltaic power generation module 300 to be inspected is different from the installation place before the actual measurement of the degree of dirt. Alternatively, the teaching does not have to be performed every time the actual measurement is performed, and the teaching settings used in the previous actual measurement may be used as they are.
 また、図2及び図3では、小規模の太陽光発電所での検査例を説明した。一方、たとえば発電電力が1[MW]以上の大規模の太陽光発電所では、太陽光発電モジュールが複数個所に設置され、各々の太陽光発電モジュールのサイズも大きいため、各太陽光発電モジュールの受光面の汚れ度合いは不均一になり易い。このような場合には、たとえば、周囲の環境に影響されて比較的に汚れ易い場所を特定し、特定した各場所に設置された太陽光発電モジュールで測定を行い、それぞれの測定値の平均値をその太陽光発電所の汚れ度合いとすればよい。 Further, in FIGS. 2 and 3, an example of inspection at a small-scale solar power plant was explained. On the other hand, for example, in a large-scale photovoltaic power plant with a generated power of 1 [MW] or more, the photovoltaic power generation modules are installed in a plurality of places and the size of each photovoltaic power generation module is large. The degree of dirt on the light receiving surface tends to be uneven. In such a case, for example, identify a place that is relatively easily soiled due to the influence of the surrounding environment, perform measurement with the photovoltaic power generation module installed at each specified place, and average the measured values. Should be the degree of dirtiness of the photovoltaic power plant.
 <1-3.汚れ度合いの数値化>
 次に、第1実施形態における汚れ度合いの数値化の手法の実施例とその変形例とを説明する。
<1-3. Quantification of degree of dirt>
Next, an example of the method for quantifying the degree of dirt in the first embodiment and a modified example thereof will be described.
  <1-3-1.実施例>
 図4は、第1実施形態の実施例における汚れ度合いの数値化の手法を説明するためのフローチャートである。図5Aは、実施例における基準画像の色空間の一例である。図5Bは、測定画像の色空間の一例である。なお、図5Aにおいて、黒丸印は基準画像の画素Paである。図5Bにおいて、丸印は測定画像の画素Pbである。また、図5A及び図5Bでは、図を見易くするため、図示する画素Pa、Pbの数を実際よりも大幅に少なくしている。
<1-3-1. Example>
FIG. 4 is a flowchart for explaining a method for quantifying the degree of contamination in the embodiment of the first embodiment. FIG. 5A is an example of the color space of the reference image in the embodiment. FIG. 5B is an example of the color space of the measured image. In FIG. 5A, the black circles are the pixels Pa of the reference image. In FIG. 5B, the circles are pixels Pb of the measurement image. Further, in FIGS. 5A and 5B, the number of pixels Pa and Pb shown is significantly smaller than the actual number in order to make the figure easier to see.
 色空間は、色成分R(Red)の大きさ、色成分G(Green)の大きさ、及び、色成分B(Blue)の大きさで色相を表す3次元の仮想空間である。以下では、色成分R(Red)の大きさをR成分値と呼ぶ。また、色成分G(Green)の大きさをG成分値とよび、色成分B(Blue)の大きさをB成分値と呼ぶ。色空間における色相の色座標(R、G、B)は、R成分値、G成分値、及びB成分値で表される。本実施形態では、演算負荷を考慮して、各色成分値を16階調(つまり0~15)で表している。但し、各色成分値の階調数は、この例示に限定されない。たとえば、階調数は、256であってもよい。 The color space is a three-dimensional virtual space in which the hue is represented by the size of the color component R (Red), the size of the color component G (Green), and the size of the color component B (Blue). Hereinafter, the magnitude of the color component R (Red) is referred to as an R component value. Further, the size of the color component G (Green) is called the G component value, and the size of the color component B (Blue) is called the B component value. The hue coordinates (R, G, B) in the color space are represented by the R component value, the G component value, and the B component value. In the present embodiment, each color component value is represented by 16 gradations (that is, 0 to 15) in consideration of the calculation load. However, the number of gradations of each color component value is not limited to this example. For example, the number of gradations may be 256.
 まず、基準領域L0(図2参照)でのティーチングの際、図5Aに示すように、画像処理部161は、基準画像の各画素PaのR成分値、G成分値、及びB成分値を算出し、各色成分値を色座標(R、G、B)とする画素Paを色空間にそれぞれ描画する(S301)。なお、基準画像の画素Paの色座標は、本発明の「第2色座標」の一例である。画像処理部161は、所定の半径rを有する球状の領域を基準画像の色空間内に描画する(S303)。以下では、この球状の領域を基準球Saと呼ぶ。基準球Saは、本発明の「基準色範囲」の一例である。基準球Saの半径rは、本実施形態では4階調にしている。但し、この例示に限定されず、半径rは4以外であってもよい。 First, during teaching in the reference region L0 (see FIG. 2), as shown in FIG. 5A, the image processing unit 161 calculates the R component value, the G component value, and the B component value of each pixel Pa of the reference image. Then, the pixel Pa having each color component value as the color coordinate (R, G, B) is drawn in the color space (S301). The color coordinates of the pixel Pa of the reference image are an example of the "second color coordinates" of the present invention. The image processing unit 161 draws a spherical region having a predetermined radius r in the color space of the reference image (S303). Hereinafter, this spherical region is referred to as a reference sphere Sa. The reference sphere Sa is an example of the "reference color range" of the present invention. The radius r of the reference sphere Sa is set to 4 gradations in this embodiment. However, the present invention is not limited to this example, and the radius r may be other than 4.
 画像処理部161は、基準画像の色空間において基準球Saを各軸方向に動かす。画像処理部161は、基準球Sa内に色座標(R、G、B)がある基準画像の画素Paの数が最大となるように基準球Saの位置を決定するとともに、該基準球Sa内に色座標(R、G、B)がある基準画像の画素Paを検出する。以下では、基準球Sa内にある画素Paを基準画素Pamと呼び、基準画素Pamの数を基準画素数mと呼ぶ。基準画素数mは、正の整数であり、1より大きく且つ基準画像を構成する画素の総数以下である。より具体的には、画像処理部161は、最も多くの基準画素Pamが基準球Saの内部に含まれる際の該基準球Saの中心となる基準色座標(Ra、Ga、Ba)を検出する。つまり、基準色座標(Ra、Ga、Ba)は、基準画像の色空間において、該基準色座標(Ra、Ga、Ba)を中心とする所定の大きさの基準球Sa内に色座標(R、G、B)がある基準画素数mが最大となるようにされる。さらに、基準画素数mも検出する(S305)。基準色座標(Ra、Ga、Ba)及び基準画素数mは、メモリ15に記憶される。 The image processing unit 161 moves the reference sphere Sa in each axial direction in the color space of the reference image. The image processing unit 161 determines the position of the reference sphere Sa so that the number of pixels Pa of the reference image having the color coordinates (R, G, B) in the reference sphere Sa is maximized, and in the reference sphere Sa. Pixels Pa of a reference image having color coordinates (R, G, B) are detected. Hereinafter, the pixel Pa in the reference sphere Sa is referred to as a reference pixel Pam, and the number of reference pixel Pam is referred to as a reference pixel number m. The reference pixel number m is a positive integer, greater than 1 and less than or equal to the total number of pixels constituting the reference image. More specifically, the image processing unit 161 detects the reference color coordinates (Ra, Ga, Ba) that are the center of the reference sphere Sa when the most reference pixels Pam are included inside the reference sphere Sa. .. That is, the reference color coordinates (Ra, Ga, Ba) are the color coordinates (R) in the reference sphere Sa having a predetermined size centered on the reference color coordinates (Ra, Ga, Ba) in the color space of the reference image. , G, B) are set so that a certain reference pixel number m is maximized. Further, the reference pixel number m is also detected (S305). The reference color coordinates (Ra, Ga, Ba) and the reference pixel number m are stored in the memory 15.
 次に、たとえば測定領域L1~L5(図2参照)にて受光面301の汚れ度合いを実測する際、図5Bに示すように、画像処理部161は、撮像された測定画像の各画素PbのR成分値、G成分値、及びB成分値を算出し、各色成分値を色座標(R、G、B)とする画素Pbを測定画像の色空間にそれぞれ描画する(S311)。なお、測定画像の画素の色座標(R、G、B)は、本発明の「第1色座標」の一例である。画像処理部161は、さらに、基準色座標(Ra、Ga、Ba)に中心が位置する半径rの基準球Saを測定画像の色空間内に描画する(S313)。画像処理部161は、基準球Sa内に色座標(R、G、B)がある測定画像の画素Pbを検出し、基準球Sa内にある画素Pbの数を検出する(S315)。本実施形態では、基準球Sa内にある各々の画素Pbのカウント値は、1個の画素Pbに対して1である。以下では、基準球Sa内にある画素Pbを範囲内画素Pbnと呼び、範囲内画素Pbnの数を範囲内画素数nと呼ぶ。範囲内画素数nは、正の整数であり、1より大きく且つ測定画像を構成する画素の総数以下である。 Next, for example, when actually measuring the degree of contamination of the light receiving surface 301 in the measurement areas L1 to L5 (see FIG. 2), as shown in FIG. 5B, the image processing unit 161 is used for each pixel Pb of the captured measurement image. The R component value, the G component value, and the B component value are calculated, and pixels Pb having each color component value as color coordinates (R, G, B) are drawn in the color space of the measurement image (S311). The color coordinates (R, G, B) of the pixels of the measured image are an example of the "first color coordinates" of the present invention. The image processing unit 161 further draws a reference sphere Sa having a radius r whose center is located at the reference color coordinates (Ra, Ga, Ba) in the color space of the measurement image (S313). The image processing unit 161 detects the pixels Pb of the measurement image having the color coordinates (R, G, B) in the reference sphere Sa, and detects the number of pixels Pb in the reference sphere Sa (S315). In the present embodiment, the count value of each pixel Pb in the reference sphere Sa is 1 for one pixel Pb. Hereinafter, the pixel Pb in the reference sphere Sa is referred to as a range pixel Pbn, and the number of the range pixel Pbn is referred to as a range pixel number n. The number of pixels n in the range is a positive integer, greater than 1 and less than or equal to the total number of pixels constituting the measurement image.
 画像処理部161は、S315での画素の検出結果に基づいて受光面301の汚れ度合いを算出する。たとえば、画像処理部161は、基準画素数m及び範囲内画素数nに基づいて汚れ度合いを算出し、基準画素数mに対する範囲内画素数nの比率により汚れ度合いの測定値を算出する(S317)。本実施形態では、画像処理部161は、範囲内画素数nを基準画素数mで割った値の百分率を算出し、測定画像に基づく汚れ度合いの測定値とする。たとえば、図5Bの場合、測定値は80となる。なお、測定値を0~100の範囲内で数値化するため、範囲内画素数nが基準画素数mよりも大きい場合(つまり百分率が100を越える場合)、測定画像に対する測定値は100とされる。 The image processing unit 161 calculates the degree of contamination of the light receiving surface 301 based on the pixel detection result in S315. For example, the image processing unit 161 calculates the degree of contamination based on the reference pixel number m and the number of pixels in the range n, and calculates the measured value of the degree of contamination by the ratio of the number of pixels in the range n to the reference pixel number m (S317). ). In the present embodiment, the image processing unit 161 calculates the percentage of the value obtained by dividing the number of pixels n in the range by the reference number of pixels m, and uses this as the measured value of the degree of contamination based on the measured image. For example, in the case of FIG. 5B, the measured value is 80. Since the measured value is quantified in the range of 0 to 100, when the number of pixels n in the range is larger than the reference pixel number m (that is, when the percentage exceeds 100), the measured value for the measured image is set to 100. To.
 画像処理部161は、カメラ14で測定画像を撮像する毎に、上述の処理を実施する。なお、測定開始ボタンを1回押したときに複数の測定画像が撮像される際には、該測定画像に対する測定値の平均値が、1回の測定における代表の測定値とされてもよい。 The image processing unit 161 performs the above-mentioned processing every time the camera 14 captures the measured image. When a plurality of measured images are captured when the measurement start button is pressed once, the average value of the measured values with respect to the measured images may be used as a representative measured value in one measurement.
 以上に説明した、汚れ検査方法によれば、基礎画像と測定画像とが受光面301の異なる箇所を撮像した画像であっても、太陽光発電モジュール300の受光面301の汚れ度合いを測定して精度良く数値化することができる。 According to the stain inspection method described above, even if the basic image and the measurement image are images of different parts of the light receiving surface 301, the degree of contamination of the light receiving surface 301 of the photovoltaic module 300 is measured. It can be quantified with high accuracy.
  <1-3-2.変形例>
 上述の実施例ではティーチングの際、画像処理部161はたとえば、基準画像の色空間内において基準球Saを各軸方向に1階調ずつ移動させて、その都度、基準球Sa内にある基準画素数mを検出する。但し、この手法では、たとえば各色成分値の階調数の3乗(本実施形態では163)回の検出処理を行うことになるため、演算負荷が高くなり易い。さらに、各色成分値の階調数が多いほど、演算負荷は大幅に増大する。このような演算負荷を軽減するため、変形例では、以下に説明する手法で汚れ度合いの測定値を算出する。
<1-3-2. Modification example>
In the above-described embodiment, during teaching, the image processing unit 161 moves the reference sphere Sa by one gradation in each axial direction in the color space of the reference image, and each time, the reference pixel in the reference sphere Sa is moved. Detect a few meters. However, in this method, for example, to become possible to perform the detection process of times (16 3 in the present embodiment) cube of the number of gradation of each color component values, easy operation load increases. Further, as the number of gradations of each color component value increases, the calculation load increases significantly. In order to reduce such a calculation load, in the modified example, the measured value of the degree of contamination is calculated by the method described below.
 図6は、第1実施形態の変形例における汚れ度合いの数値化の手法を説明するためのフローチャートである。図7は、変形例における基準画像の色空間の一例である。なお、図7において、黒丸印は基準画像の画素Paである。また、図7では、図を見易くするため、図示する画素Pa及び後述する測定球Sbの数を実際よりも大幅に少なくしている。 FIG. 6 is a flowchart for explaining a method for quantifying the degree of contamination in the modified example of the first embodiment. FIG. 7 is an example of the color space of the reference image in the modified example. In FIG. 7, the black circles are the pixels Pa of the reference image. Further, in FIG. 7, in order to make the figure easier to see, the number of the illustrated pixel Pa and the measurement sphere Sb described later is significantly smaller than the actual number.
 変形例では、基準領域L0(図2参照)でのティーチングの際、図7に示すように、画像処理部161は、基準画像の各画素PaのR成分値、G成分値、及びB成分値を算出し、各色成分値を色座標(R、G、B)とする画素Paを色空間にそれぞれ描画する(S501)。 In the modified example, when teaching in the reference region L0 (see FIG. 2), as shown in FIG. 7, the image processing unit 161 sets the R component value, the G component value, and the B component value of each pixel Pa of the reference image. Is calculated, and pixels Pa having each color component value as color coordinates (R, G, B) are drawn in the color space (S501).
 そして、基準画像の基準球Sa内に色座標(R、G、B)がある基準画素数mが最大となるように該基準球Saを決定するため、ステップS503~S505を実施する。まず、画像処理部161は、基準画像の各々の画素Paの色座標(R、G、B)を中心とする球状の領域(以下、測定球Sbと呼ぶ。)を基準画像の色空間にそれぞれ描画する(S503)。なお、測定球Sbは、本発明の「基準色範囲」の一例である。また、測定球Sbの半径は、上述する実施例の基準球Saの半径rと同じである。画像処理部161は、色空間において、基準画像の各々の画素の色座標(R、G、B)を中心とする所定の大きさの測定球Sbの重なりが最も多い最多重領域Ar(図7の斜線で示す領域)を算出し、最多重領域Arに基づいて基準色座標(Rb、Bb、Gb)を決定する(S505)。なお、基準色座標(Ra、Ga、Ba)は、たとえば、最多重領域Arを含む基準球Saに対応する画素Paの色座標(R、G、B)を平均することで算出できる。また、基準色座標(Ra、Ga、Ba)を算出する際、最多重領域Arが複数ある場合、たとえば、そのうちのいずれかの最多重領域Arの基準色座標を基準球Saの中心として採用してもよい。或いは、複数の最多重領域Arの各基準色座標を平均した色座標を基準球Saの中心として採用してもよい。 Then, steps S503 to S505 are performed in order to determine the reference sphere Sa so that the number of reference pixels m having color coordinates (R, G, B) in the reference sphere Sa of the reference image is maximized. First, the image processing unit 161 sets a spherical region (hereinafter, referred to as a measurement sphere Sb) centered on the color coordinates (R, G, B) of each pixel Pa of the reference image in the color space of the reference image. Draw (S503). The measuring ball Sb is an example of the "reference color range" of the present invention. Further, the radius of the measurement sphere Sb is the same as the radius r of the reference sphere Sa of the above-described embodiment. In the color space, the image processing unit 161 has the most overlapping region Ar (FIG. 7) in which the measurement spheres Sb having a predetermined size centered on the color coordinates (R, G, B) of each pixel of the reference image have the largest overlap. The area indicated by the diagonal line) is calculated, and the reference color coordinates (Rb, Bb, Gb) are determined based on the most multiplex area Ar (S505). The reference color coordinates (Ra, Ga, Ba) can be calculated by averaging the color coordinates (R, G, B) of the pixel Pa corresponding to the reference sphere Sa including the most multiplex region Ar, for example. Further, when calculating the reference color coordinates (Ra, Ga, Ba), when there are a plurality of most multiplex regions Ar, for example, the reference color coordinates of any of the most multiplex regions Ar are adopted as the center of the reference sphere Sa. You may. Alternatively, the color coordinates obtained by averaging the reference color coordinates of the plurality of most multiplex regions Ar may be adopted as the center of the reference sphere Sa.
 次に、画像処理部161は、基準色座標(Rb、Bb、Gb)を中心とする半径rの基準球Saを基準画像の色空間に描画する(S507)。そして、画像処理部161は、基準画像から基準球Sa内にある基準画素Pamをそれぞれ検出し、基準球Saの内部に含まれる基準画素数mを検出する(S509)。 Next, the image processing unit 161 draws a reference sphere Sa having a radius r centered on the reference color coordinates (Rb, Bb, Gb) in the color space of the reference image (S507). Then, the image processing unit 161 detects the reference pixel Pam in the reference sphere Sa from the reference image, and detects the number of reference pixels m included in the reference sphere Sa (S509).
 以降のステップS511~S517はそれぞれ、実施例(図4)のステップS311~S317と同じであるため、その説明を省略する。 Since the subsequent steps S511 to S517 are the same as steps S311 to S317 of the embodiment (FIG. 4), the description thereof will be omitted.
 変形例の手法では、ティーチングの際に基準色座標(Ra、Ga、Ba)を決定する際、基準画像の色空間において基準球Saを各軸方向に動かす必要が無い。そのため、実施例と比べて、演算負荷を大幅に軽減することができる。 In the modified example method, when determining the reference color coordinates (Ra, Ga, Ba) during teaching, it is not necessary to move the reference sphere Sa in each axial direction in the color space of the reference image. Therefore, the calculation load can be significantly reduced as compared with the embodiment.
 <1-4.汚れ検査方法を応用した太陽光発電モジュールの管理方法>
 次に、汚れ検査装置1を用いた汚れ検査方法を応用した太陽光発電モジュール300の管理方法の一例を説明する。通常、屋外に設置された太陽光発電モジュール300は、風雨、温度、汚染ガス、飛散物、積雪、生物体汚染などの厳しい環境下に置かれる。そのため、設置から数年経過すると、”洗浄時期”になった、”そろそろ洗浄時期に近づいた”などの意見が、太陽光発電モジュール300のO&M(operation and maintenance)業者、又は太陽光発電所の管理者から出される。従来では、太陽光発電モジュール300の受光面301の汚れ度合いを測定する方法が確立されていなかったため、実務経験又は慣例などにより受光面301の洗浄時期が決められていた。そして、手動の洗浄、高圧水洗浄、受光面301に載置される自走式の自動洗浄装置による洗浄などが行われ、洗浄前後の発電電力の差に基づいて発電電力の回復量が評価されるのみであった。つまり、受光面301の汚れ度合いと洗浄による発電電力の回復量とを数値化しておらず、両者の相関関係を理論的に管理されていなかった。以下に説明する太陽光発電モジュール300の管理方法は、これらを新規に改善するものである。
<1-4. Management method of photovoltaic power generation module applying dirt inspection method>
Next, an example of a management method of the photovoltaic power generation module 300 to which the stain inspection method using the stain inspection device 1 is applied will be described. Normally, the photovoltaic power generation module 300 installed outdoors is placed in a harsh environment such as wind and rain, temperature, polluted gas, scattered matter, snow cover, and biological pollution. Therefore, several years after the installation, opinions such as "cleaning time" and "it's almost time for cleaning" were given by the O & M (operation and maintenance) contractor of the photovoltaic power generation module 300 or the photovoltaic power plant. Issued by the administrator. Conventionally, since a method for measuring the degree of contamination of the light receiving surface 301 of the photovoltaic power generation module 300 has not been established, the cleaning time of the light receiving surface 301 has been determined by practical experience or custom. Then, manual cleaning, high-pressure water cleaning, cleaning by a self-propelled automatic cleaning device mounted on the light receiving surface 301, etc. are performed, and the amount of recovery of the generated power is evaluated based on the difference in the generated power before and after the cleaning. It was only a wash. That is, the degree of contamination of the light receiving surface 301 and the amount of recovery of the generated power by cleaning were not quantified, and the correlation between the two was not theoretically managed. The management method of the photovoltaic power generation module 300 described below is for newly improving these.
 図8は、太陽光発電モジュール300の管理方法の一例を説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining an example of a management method of the photovoltaic power generation module 300.
 まず、太陽光発電モジュール300の発電電力Wbと受光面301の汚れ度合いSbとを測定し、測定日時とともに記録する(S701)。受光面301の汚れ度合いSbは、たとえば、上述の汚れ検査装置1(図1参照)を用いて、上述の汚れ検査方法(図3参照)により測定する。 First, the generated power Wb of the photovoltaic power generation module 300 and the degree of contamination Sb of the light receiving surface 301 are measured and recorded together with the measurement date and time (S701). The degree of dirt Sb of the light receiving surface 301 is measured by, for example, the above-mentioned dirt inspection device 1 (see FIG. 1) and the above-mentioned dirt inspection method (see FIG. 3).
 さらに、S701が実施された時点から所定の経過期間Tが経過した後(ステップS703でYES)、太陽光発電モジュール300の発電電力Waと受光面301の汚れ度合いSaとを測定し、測定日時とともに記録する(S705)。なお、経過期間Tは、日単位、週単位、月単位、又は年単位であってもよい。また、ステップS705は、好ましくはステップS701と同じ日射条件(日射強度、天候)の時期に実施される。 Further, after a predetermined elapsed period T has elapsed from the time when S701 is executed (YES in step S703), the generated power Wa of the photovoltaic power generation module 300 and the degree of contamination Sa of the light receiving surface 301 are measured, and together with the measurement date and time. Record (S705). The elapsed period T may be daily, weekly, monthly, or yearly. Further, step S705 is preferably carried out at the same time of solar radiation conditions (solar radiation intensity, weather) as in step S701.
 そして、ステップS701で測定した受光面301の汚れ度合いSb及び太陽光発電モジュール300の発電電力Wbと、ステップ705で測定した受光面301の汚れ度合いSa及び太陽光発電モジュール300の発電電力Waと、ステップS701からS705までの経過期間Tと、に基づいて、太陽光発電モジュール300の受光面301の洗浄時期が決定される(S707)。 Then, the degree of contamination Sb of the light receiving surface 301 measured in step S701 and the generated power Wb of the photovoltaic power generation module 300, the degree of contamination Sa of the light receiving surface 301 measured in step 705, and the generated power Wa of the photovoltaic power generation module 300. The cleaning time of the light receiving surface 301 of the photovoltaic power generation module 300 is determined based on the elapsed period T from steps S701 to S705 (S707).
 ステップS707では、たとえば、まず、清浄面での汚れ度合いと洗浄前での汚れ度合いSbとの差(Sa-Sb)を経過期間Tで割り算することにより、受光面301の汚れ速度ΔS={(Sa-Sb)/T}を算出する。 In step S707, for example, first, the difference (Sa-Sb) between the degree of dirt on the clean surface and the degree of dirt Sb before cleaning is divided by the elapsed period T, so that the dirt rate ΔS = {() of the light receiving surface 301. Calculate Sa-Sb) / T}.
 また、汚れ度合いの差(Sa-Sb)を今回の洗浄前後での発電電力の差(Wa-Wb)で割り算することにより、汚れ度合いに対する発電電力の変化率ΔW={(Sa-Sb)/(Wa-Wb)}を算出する。 Further, by dividing the difference in the degree of dirt (Sa-Sb) by the difference in the generated power before and after this cleaning (Wa-Wb), the rate of change of the generated power with respect to the degree of dirt ΔW = {(Sa-Sb) / (Wa-Wb)} is calculated.
 また、受光面301を洗浄する際の発電電力の閾値Wsを設定し、上述の汚れ速度ΔS及び変化率ΔWを用いて、発電電力が閾値Wsになる時期を受光面301の洗浄時期として算出する。閾値Wsは、たとえば、太陽光発電モジュール300に要求される発電電力の下限値に基づいて設定できる。或いは、閾値Wsは、太陽光発電モジュール300の洗浄費用に対する該太陽光発電モジュール300の発電電力の売電価格の費用対効果を考慮して設定できる。たとえば、該太陽光発電モジュール300の発電電力を経過期間Tにおいて売電したときに得られる利益について、今回の洗浄をした場合と今回の洗浄をしなかった場合との比較を行い、両者の差額が洗浄費用以上になるように、閾値Wsを決定できる。また、上述の差額が洗浄費用を十分に上回って所定の利益が得られるように、閾値Wsを決定することもできる。本実施形態では、上述の費用対効果を考慮して、閾値Wsは、太陽光発電モジュール300を設置開始時期での発電電力Woの90[%]程度の値に設定している。 Further, the threshold value Ws of the generated power when cleaning the light receiving surface 301 is set, and the time when the generated power reaches the threshold Ws is calculated as the cleaning time of the light receiving surface 301 by using the above-mentioned fouling speed ΔS and change rate ΔW. .. The threshold value Ws can be set based on, for example, the lower limit of the generated power required for the photovoltaic power generation module 300. Alternatively, the threshold Ws can be set in consideration of the cost-effectiveness of the selling price of the generated power of the photovoltaic power generation module 300 with respect to the cleaning cost of the photovoltaic power generation module 300. For example, the profit obtained when the generated power of the photovoltaic power generation module 300 is sold in the elapsed period T is compared between the case where the current cleaning is performed and the case where the current cleaning is not performed, and the difference between the two. The threshold Ws can be determined so that is greater than or equal to the cleaning cost. Further, the threshold value Ws can be determined so that the above-mentioned difference sufficiently exceeds the cleaning cost and a predetermined profit is obtained. In the present embodiment, in consideration of the above-mentioned cost-effectiveness, the threshold value Ws is set to a value of about 90 [%] of the generated power Wo at the installation start time of the photovoltaic power generation module 300.
 なお、ステップS701又はS705の時点で、発電電力Wb、Waが、閾値Ws未満であった場合には、該時点又はこれに近い日時を太陽光発電モジュール300を洗浄する日に決定してもよい。 If the generated powers Wb and Wa are less than the threshold value Ws at the time of step S701 or S705, the time or a date close to that time may be determined as the day when the photovoltaic power generation module 300 is washed. ..
 また、図8の管理方法では、ステップS701~S705を1回行っている。但し、図8の例示に限定されず、ステップS701~S705は、ステップS707を実施する前に複数回行ってもよい。この場合、ステップS707では、各経過期間Tと、各経過期間Tの開始時及び終了時における受光面301の汚れ度合いSb、Sa及び太陽光発電モジュール300の発電電力Wb、Waとに基づいて、太陽光発電モジュール300の受光面301の洗浄時期を決定する。こうすれば、受光面301の洗浄時期をさらに精度良く算出できる。 Further, in the management method of FIG. 8, steps S701 to S705 are performed once. However, the present invention is not limited to the example of FIG. 8, and steps S701 to S705 may be performed a plurality of times before the step S707 is performed. In this case, in step S707, based on each elapsed period T and the degree of contamination Sb and Sa of the light receiving surface 301 at the start and end of each elapsed period T and the generated power Wb and Wa of the photovoltaic power generation module 300, The cleaning time of the light receiving surface 301 of the photovoltaic power generation module 300 is determined. By doing so, the cleaning time of the light receiving surface 301 can be calculated more accurately.
 さらに、ステップS701~S705を複数回行う際、好ましくは、各回での経過期間Tのうちの一部は、他の一部と異なる時間長とされる。さらに好ましくは、各回での経過期間Tは全て、それぞれ異なる時間長とされる。こうすれば、受光面301の汚れ速度ΔS及び汚れ度合いに対する発電電力の変化率ΔWのより正確な変化を得ることが確認できる。従って、受光面301の汚れ速度ΔS及び/又は汚れ度合いに対する発電電力の変化率ΔWの変化が非線形であっても、受光面301の洗浄時期をより正確に決定できる。 Further, when steps S701 to S705 are performed a plurality of times, it is preferable that a part of the elapsed period T in each time has a different time length from the other part. More preferably, the elapsed period T at each time is set to a different time length. By doing so, it can be confirmed that a more accurate change in the dirt rate ΔS of the light receiving surface 301 and the rate of change ΔW of the generated power with respect to the degree of dirt can be obtained. Therefore, even if the change in the rate of change ΔW of the generated power with respect to the dirt rate ΔS and / or the degree of dirt on the light receiving surface 301 is non-linear, the cleaning time of the light receiving surface 301 can be determined more accurately.
 また、上述の管理方法において、ステップS701及びS705は、好ましくは、一日のうちの早朝及び夕方のうちの少なくとも一方で実施される。 Also, in the management method described above, steps S701 and S705 are preferably performed at least one of the early morning and the evening of the day.
 たとえば、太陽光に含まれる各波長の光の強度比は経時変化しないが、太陽光発電モジュール300に入射する太陽光の日射強度は、主に、太陽の高度及び日射角度で変化する。1日の時間帯では、通常、12:00~14:00が最大となる。1日における日射強度に対する太陽光発電モジュール300の発電電力の関係はたとえば図9のようになる。日射強度は、図9では、日の出を含む夜明け時及び日の入りを含む夕暮れ時では0.20[kW/m2]未満であり、正午を含む真昼では0.60[kW/m2]よりも大きく、これらの間となる早朝及び夕方では、0.20[kW/m2]以上且つ0.60[kW/m2]以下である。このように、日射強度に対する発電電力の変化率は、早朝及び夕方で最も大きくなる。なお、この傾向は、太陽光発電モジュール300の周囲温度が変化しても変わらない。 For example, the intensity ratio of light of each wavelength contained in sunlight does not change with time, but the solar radiation intensity of sunlight incident on the photovoltaic power generation module 300 changes mainly with the altitude and solar radiation angle of the sun. In the time zone of the day, the maximum is usually from 12:00 to 14:00. The relationship between the power generated by the photovoltaic power generation module 300 and the solar radiation intensity in one day is as shown in FIG. 9, for example. In FIG. 9, the solar radiation intensity is less than 0.20 [kW / m 2 ] at dawn including sunrise and dusk including sunset, and is larger than 0.60 [kW / m 2 ] at noon including noon. In the early morning and evening between these, it is 0.20 [kW / m 2 ] or more and 0.60 [kW / m 2 ] or less. In this way, the rate of change of generated power with respect to the intensity of solar radiation is greatest in the early morning and evening. This tendency does not change even if the ambient temperature of the photovoltaic power generation module 300 changes.
 また、太陽光発電モジュール300の発電電力は、通常、発電電力のピーク時に近い時間帯で複数の太陽光発電所から売電される逆潮流電力が急減に増加しないようにするため、PCS(power control system)により上限閾値Wcを越えないように抑制制御される。そのため、図10に示すように、たとえば10時前~15時過ぎを含む真昼に、上述の管理方法、特にステップS701及びS705を実施しても、太陽光発電モジュール300の発電電力の差を評価できないことがある。また、図10のたとえば6時以前の夜明け時及び17時以降の夕暮れ時では、洗浄前後での太陽光発電モジュール300の発電電力の増加量が非常に小さい。そのため、太陽光発電モジュール300の発電電力の差が解りづらい。一方、たとえば6時~10前の早朝及びたとえば15時過ぎ~17時の夕方では、PCSの出力抑制制御が実施されず、太陽光発電モジュール300の発電電力の増加量も比較的大きい。 In addition, the generated power of the photovoltaic power generation module 300 is usually PCS (power) so that the reverse power flow power sold from a plurality of photovoltaic power plants does not suddenly increase in a time zone close to the peak time of the generated power. The control system) controls the suppression so as not to exceed the upper limit threshold Wc. Therefore, as shown in FIG. 10, even if the above-mentioned management methods, particularly steps S701 and S705, are carried out at noon including, for example, before 10:00 to after 15:00, the difference in the generated power of the photovoltaic power generation module 300 is evaluated. There are things you can't do. Further, for example, at dawn before 6 o'clock and dusk after 17:00 in FIG. 10, the amount of increase in the generated power of the photovoltaic power generation module 300 before and after cleaning is very small. Therefore, it is difficult to understand the difference in the generated power of the photovoltaic power generation module 300. On the other hand, for example, in the early morning before 6:00 to 10 and in the evening after 15:00 to 17:00, the output suppression control of the PCS is not implemented, and the amount of increase in the generated power of the photovoltaic power generation module 300 is relatively large.
 従って、上述の管理方法、特にステップS701及びS705を早朝及び/又は夕方に行うことにより、受光面301の汚れ度合いの進行によって発電電力が低下する傾向をより正確に検出できる。よって、太陽光発電モジュール300の受光面301の洗浄時期をさらに正確に算出できる。 Therefore, by performing the above-mentioned management methods, particularly steps S701 and S705 in the early morning and / or evening, it is possible to more accurately detect the tendency that the generated power decreases as the degree of contamination of the light receiving surface 301 progresses. Therefore, the cleaning time of the light receiving surface 301 of the photovoltaic power generation module 300 can be calculated more accurately.
 また、上述の管理方法では、汚れ検査装置1を用いて受光面301の汚れ度合いを検出した。但し、この例示に限定されず、受光面301の汚れ度合いは、汚れ検査装置1以外の装置を用いて検出されてもよい。たとえば、受光面301が汚れていると光の乱反射が起き易いことを利用し、測定対象物の表面の光沢度を測定する光沢計、又は、測定対象物の表面からの反射光の輝度を測定する輝度計などを用いてもよい。受光面301上の複数点の光沢度又は輝度をピンポイントで測定し、汚れた受光面301での各測定値と、清浄な受光面301での基準測定値とを比較することにより、汚れ度合いを評価することもできる。但し、光沢計及び輝度計の測定領域のサイズは、本実施形態の汚れ検査装置1の測定領域と比べて非常に狭い。そのため、本実施携帯の汚れ検査装置1よりも精度が低くなり易い。従って、受光面301の汚れ度合いを十分に正確に評価するためには、汚れ検査装置1を用いる場合と比べてより多くの測定点で測定を行う必要がある。 Further, in the above-mentioned management method, the degree of dirt on the light receiving surface 301 was detected by using the dirt inspection device 1. However, the present invention is not limited to this example, and the degree of contamination of the light receiving surface 301 may be detected by using an apparatus other than the stain inspection apparatus 1. For example, by utilizing the fact that diffused reflection of light is likely to occur when the light receiving surface 301 is dirty, a gloss meter for measuring the glossiness of the surface of the object to be measured or measuring the brightness of the reflected light from the surface of the object to be measured. You may use a brightness meter or the like. By pinpointly measuring the glossiness or brightness of a plurality of points on the light receiving surface 301 and comparing each measured value on the dirty light receiving surface 301 with the reference measured value on the clean light receiving surface 301, the degree of contamination is obtained. Can also be evaluated. However, the size of the measurement area of the gloss meter and the luminance meter is very narrow as compared with the measurement area of the stain inspection device 1 of the present embodiment. Therefore, the accuracy tends to be lower than that of the dirt inspection device 1 of the present mobile phone. Therefore, in order to sufficiently accurately evaluate the degree of contamination of the light receiving surface 301, it is necessary to perform measurement at more measurement points as compared with the case where the contamination inspection device 1 is used.
<2.第2実施形態>
 上述の第1実施形態では、受光面301を覆う汚れの色相は考慮していない。しかしながら、実際には、汚れの色相は、太陽光発電モジュール300の発電電力の変動に大きく影響する。たとえば、色相を考慮しない汚れ度合いが同程度であっても、汚れの色が黒に近いほど、発電電力の低下はより大きくなる。一方、汚れの色が白に近いほど、発電電力の低下は軽減される。そこで、第2実施形態では、第1実施形態(図4参照)又はその変形例(図6参照)で算出した測定値を汚れの色相を考慮して補正した補正測定値を算出する。これ以外は、第1実施形態と同様である。以下では、第1実施形態と異なる構成を説明する。また、第1実施形態と同様の構成要素には同じ符号を付し、さらに、第1実施形態と同様の構成の説明を省略することがある。
<2. Second Embodiment>
In the first embodiment described above, the hue of the stain covering the light receiving surface 301 is not considered. However, in reality, the hue of dirt greatly affects the fluctuation of the generated power of the photovoltaic power generation module 300. For example, even if the degree of stain is the same without considering the hue, the closer the stain color is to black, the greater the decrease in generated power. On the other hand, the closer the stain color is to white, the less the decrease in generated power is reduced. Therefore, in the second embodiment, the corrected measured value obtained by correcting the measured value calculated in the first embodiment (see FIG. 4) or a modified example thereof (see FIG. 6) in consideration of the hue of stains is calculated. Other than this, it is the same as that of the first embodiment. Hereinafter, a configuration different from that of the first embodiment will be described. Further, the same components as those in the first embodiment are designated by the same reference numerals, and the description of the same configurations as in the first embodiment may be omitted.
 <2-1.汚れ検査装置>
 第2実施形態において、汚れ検査装置1の画像処理部161は、測定画像の各々の画素の色座標(R、G、B)と、基準色座標(Ra、Ga、Ba)と、測定画像の各々の画素の色座標(R、G、B)に対応する色成分別の補正値Nr、Ng、Nbとに基づいて、受光面301の汚れ度合いの補正測定値を算出する。色成分別の補正値Nr、Ng、Nbはそれぞれ、測定画像の各々の画素Pbの色座標(R、G、B)に対応して設定されている。色成分別の補正値Nr、Ng、Nbの設定情報は、たとえばメモリ15に記憶されている。
<2-1. Dirt inspection device>
In the second embodiment, the image processing unit 161 of the stain inspection device 1 describes the color coordinates (R, G, B) of each pixel of the measurement image, the reference color coordinates (Ra, Ga, Ba), and the measurement image. The correction measurement value of the degree of contamination of the light receiving surface 301 is calculated based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B) of each pixel. The correction values Nr, Ng, and Nb for each color component are set corresponding to the color coordinates (R, G, B) of each pixel Pb of the measurement image, respectively. The setting information of the correction values Nr, Ng, and Nb for each color component is stored in, for example, the memory 15.
 具体的には、色成分別の補正値Nr、Ng、Nbはそれぞれ、測定画像の色空間において基準球Sa内にある画素(つまり範囲内画素Pbn)の色座標(R、G、B)に対応する色成分別の補正値Nrn、Ngn、Nbnを含む。画像処理部161は、各々の範囲内画素Pbnのカウント値を色成分別の補正値Nrn、Ngn、Nbnによって補正し、補正後のカウント値を用いて汚れ度合いの補正測定値を算出する。なお、以下では、各々の範囲内画素Pbnの補正後のカウント値を補正カウント値naと呼ぶ。 Specifically, the correction values Nr, Ng, and Nb for each color component are set to the color coordinates (R, G, B) of the pixels (that is, the within-range pixels Pbn) in the reference sphere Sa in the color space of the measured image, respectively. The correction values Nrn, Ngn, and Nbn for each corresponding color component are included. The image processing unit 161 corrects the count value of each pixel Pbn in the range by the correction values Nrn, Ngn, and Nbn for each color component, and calculates the correction measurement value of the degree of stain using the corrected count value. In the following, the corrected count value of each pixel Pbn in the range is referred to as a correction count value na.
 たとえば、範囲内画素PbnのR成分値に対応する補正値Nrnは、R成分値が最大の階調値(たとえば15)に近いほどより小さく設定され、R成分値が最大の階調値の場合に最小値(たとえば1より小さい値)に設定される。一方、該補正値Nrnは、R成分値が最小の階調値(たとえば0)に近いほどより大きく設定され、R成分値が最小の階調値の場合に最大値(たとえば1より大きい値)に設定される。 For example, the correction value Nrn corresponding to the R component value of the within-range pixel Pbn is set smaller as the R component value approaches the maximum gradation value (for example, 15), and when the R component value is the maximum gradation value. Is set to the minimum value (for example, a value smaller than 1). On the other hand, the correction value Nrn is set larger as the R component value is closer to the minimum gradation value (for example, 0), and is the maximum value (for example, a value larger than 1) when the R component value is the minimum gradation value. Is set to.
 範囲内画素Pbnの他の色成分別の補正値Ngn、Nbnも同様である。たとえば、範囲内画素PbnのG成分値に対応する補正値Ngnは、G成分値が最大の階調値(たとえば15)に近いほどより小さく設定され、G成分値が最大の階調値の場合に最小値(たとえば1より小さい値)に設定される。一方、該補正値Ngnは、G成分値が最小の階調値(たとえば0)に近いほどより大きく設定され、G成分値が最小の階調値の場合に最大値(たとえば1より大きい値)に設定される。 The same applies to the correction values Ngn and Nbn for each of the other color components of the within-range pixels Pbn. For example, the correction value Ngn corresponding to the G component value of the within-range pixel Pbn is set smaller as the G component value approaches the maximum gradation value (for example, 15), and when the G component value is the maximum gradation value. Is set to the minimum value (for example, a value smaller than 1). On the other hand, the correction value Ngn is set larger as the G component value is closer to the minimum gradation value (for example, 0), and is the maximum value (for example, a value larger than 1) when the G component value is the minimum gradation value. Is set to.
 また、範囲内画素PbnのB成分値に対応する補正値Nbnは、B成分値が最大の階調値(たとえば15)に近いほどより小さく設定され、B成分値が最大の階調値の場合に最小値(たとえば1より小さい値)に設定される。一方、該補正値Nbnは、B成分値が最小の階調値(たとえば0)に近いほどより大きく設定され、B成分値が最小の階調値の場合に最大値(たとえば1より大きい値)に設定される。 Further, the correction value Nbn corresponding to the B component value of the within-range pixel Pbn is set smaller as the B component value is closer to the maximum gradation value (for example, 15), and when the B component value is the maximum gradation value. Is set to the minimum value (for example, a value smaller than 1). On the other hand, the correction value Nbn is set larger as the B component value is closer to the minimum gradation value (for example, 0), and is the maximum value (for example, a value larger than 1) when the B component value is the minimum gradation value. Is set to.
 これらの色成分別の補正値Nrn、Ngn、Nbnは、たとえば、太陽電池セル330の材料のバンドギャップ、受光面301に入射する光の色相に応じた光反射率などに基づいて設定できる。 The correction values Nrn, Ngn, and Nbn for each of these color components can be set based on, for example, the band gap of the material of the solar cell 330, the light reflectance according to the hue of the light incident on the light receiving surface 301, and the like.
 <2-2.汚れ度合いの数値化>
 次に、第2実施形態における汚れ度合いの数値化の手法の実施例とその変形例とを説明する。
<2-2. Quantification of degree of dirt>
Next, an example of the method for quantifying the degree of dirt in the second embodiment and a modified example thereof will be described.
  <2-2-1.実施例>
 図11は、第2実施形態の実施例における汚れ度合いの数値化の手法を説明するためのフローチャートである。なお、図11のステップS901~S915は、第1実施形態の実施例(図4)のステップS301~S315と同様である。
<2-2-1. Example>
FIG. 11 is a flowchart for explaining a method for quantifying the degree of contamination in the embodiment of the second embodiment. Note that steps S901 to S915 in FIG. 11 are the same as steps S301 to S315 in the embodiment (FIG. 4) of the first embodiment.
 ステップS915では、基準球Saに含まれるn個の範囲内画素Pbnが検出される。画像処理部161は、メモリ15に記憶された設定情報を参照して、各々の範囲内画素Pbnの色成分別の補正値Nrn、Ngn、Nbnをそれぞれ決定する(S916)。そして、画像処理部161は、S905で検出した基準画素数m、S915で検出した範囲内画素数n、及び、各々の範囲内画素Pbnの色成分別の補正値Nrn、Ngn、Nbnに基づいて測定画像に基づく汚れ度合いの補正測定値を算出する(S917)。 In step S915, n in-range pixels Pbn included in the reference sphere Sa are detected. The image processing unit 161 determines the correction values Nrn, Ngn, and Nbn for each color component of each within the range pixel Pbn with reference to the setting information stored in the memory 15 (S916). Then, the image processing unit 161 is based on the reference pixel number m detected in S905, the range pixel number n detected in S915, and the correction values Nrn, Ngn, Nbn for each color component of each range pixel Pbn. A correction measurement value of the degree of stain based on the measurement image is calculated (S917).
 つまり、S917において、画像処理部161は、測定画像の各々の画素Pbの色座標(R、G、B)と、基準色座標(Ra、Ga、Ba)と、測定画像の各々の画素Pbの色座標(R、G、B)に対応する色成分別の補正値Nr、Ng、Nbとに基づいて、受光面301の汚れ度合いの補正測定値を算出する。言い換えると、画像処理部161は、測定画像の各々の画素Pbの色座標(R、G、B)と、基準色座標(Ra、Ga、Ba)とに基づく受光面301の汚れ度合いの測定値を、さらに測定画像の各々の画素Pbの色座標(R、G、B)に対応する色成分別の補正値Nr、Ng、Nbに基づいて補正した補正測定値を算出する。 That is, in S917, the image processing unit 161 has the color coordinates (R, G, B) of each pixel Pb of the measurement image, the reference color coordinates (Ra, Ga, Ba), and each pixel Pb of the measurement image. The correction measurement value of the degree of contamination of the light receiving surface 301 is calculated based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B). In other words, the image processing unit 161 measures the degree of contamination of the light receiving surface 301 based on the color coordinates (R, G, B) of each pixel Pb of the measurement image and the reference color coordinates (Ra, Ga, Ba). Further, the correction measurement value corrected based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B) of each pixel Pb of the measurement image is calculated.
 たとえば本実施形態では、まず、画像処理部161は、各々の範囲内画素Pbnの補正カウント値na=(Nrn×Ngn×Nbn)を算出する。補正カウント値naは、前述のごとく、第2実施形態において汚れの色相を考慮して、各々の範囲内画素Pbnのカウント値を補正した値である。なお、第1実施形態のように、汚れの色相を考慮しない場合、各々の範囲内画素Pbnのカウント値は1である。 For example, in the present embodiment, first, the image processing unit 161 calculates the correction count value na = (Nrn × Ngn × Nbn) of the pixels Pbn in each range. As described above, the correction count value na is a value obtained by correcting the count value of the pixels Pbn in each range in consideration of the hue of the stain in the second embodiment. When the hue of stains is not taken into consideration as in the first embodiment, the count value of the pixels Pbn in each range is 1.
 さらに、画像処理部161は、n個の範囲内画素Pbnにおける補正カウント値naの総和Σna={(Nr1×Ng1×Nb1)+(Nr2×Ng2×Nb2)+・・・+(Nrn×Ngn×Nbn)}を算出する。 Further, the image processing unit 161 has the sum of the correction count values na in the n range pixels Pbn Σna = {(Nr1 × Ng1 × Nb1) + (Nr2 × Ng2 × Nb2) + ... + (Nrn × Ngn ×). Nbn)} is calculated.
 そして、画像処理部161は、補正カウント値naの総和Σnaの基準画素数mに対する比率{(Σna)/m}により汚れ度合いを算出する。第2実施形態では、画像処理部161は、百分率{100×(Σna)/m}を測定画像に基づく汚れ度合いの測定値とする。なお、百分率が100を越える場合、測定画像に対する汚れ度合いの測定値は100とされる。 Then, the image processing unit 161 calculates the degree of contamination by the ratio {(Σna) / m} of the total sum Σna of the correction count value na to the reference pixel number m. In the second embodiment, the image processing unit 161 sets the percentage {100 × (Σna) / m} as the measured value of the degree of contamination based on the measured image. When the percentage exceeds 100, the measured value of the degree of contamination of the measured image is 100.
 画像処理部161は、カメラ14で測定画像を撮像する毎に、図11の処理を実施する。なお、測定開始ボタンを1回押したときに複数の測定画像が撮像される際には、測定値の平均値が、1回の測定における代表の測定値とされてもよい。 The image processing unit 161 performs the processing shown in FIG. 11 every time the camera 14 captures the measured image. When a plurality of measurement images are captured when the measurement start button is pressed once, the average value of the measured values may be a representative measured value in one measurement.
 上述のように第2実施形態では、画像処理部161は、測定画像の各々の画素Pbの色座標(R、G、B)と、基準色座標(Ra、Ga、Ba)とに基づく受光面301の汚れ度合いの測定値を、さらに測定画像の各々の画素Pbの色座標(R、G、B)に対応する色成分別の補正値Nr、Ng、Nbに基づいて補正する。言い換えると、画像処理部161は、測定画像の各々の画素Pbの色座標(R、G、B)と、基準色座標(Ra、Ga、Ba)と、測定画像の各々の画素Pbの色座標(R、G、B)に対応する色成分別の補正値Nr、Ng、Nbとに基づいて、受光面301の汚れ度合いの補正測定値を算出する。上述のように、色相を考慮しない汚れ度合いの測定値を色成分別の補正値Nrn、Ngn、Nbnを用いて補正することにより、太陽光発電モジュール300の発電電力の変動に対する受光面301を覆う汚れの色相の影響を考慮できる。従って、汚れ検査装置1を用いて太陽光発電モジュール300の発電電力が低下する傾向をより正確に検出できる。 As described above, in the second embodiment, the image processing unit 161 receives the light receiving surface based on the color coordinates (R, G, B) of each pixel Pb of the measurement image and the reference color coordinates (Ra, Ga, Ba). The measured value of the degree of contamination of 301 is further corrected based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B) of each pixel Pb of the measured image. In other words, the image processing unit 161 has color coordinates (R, G, B) of each pixel Pb of the measurement image, reference color coordinates (Ra, Ga, Ba), and color coordinates of each pixel Pb of the measurement image. Based on the correction values Nr, Ng, and Nb for each color component corresponding to (R, G, B), the correction measurement value of the degree of contamination of the light receiving surface 301 is calculated. As described above, by correcting the measured value of the degree of stain without considering the hue using the correction values Nrn, Ngn, and Nbn for each color component, the light receiving surface 301 for the fluctuation of the generated power of the photovoltaic power generation module 300 is covered. The effect of the hue of stains can be considered. Therefore, the stain inspection device 1 can be used to more accurately detect the tendency of the generated power of the photovoltaic power generation module 300 to decrease.
  <2-2-2.変形例>
 なお、ティーチングの際の演算負荷を軽減するため、図4(つまり第1実施形態の変形例)と同様の手法が採用されてもよい。図12は、第2実施形態の変形例における汚れ度合いの数値化の手法を説明するためのフローチャートである。図12のステップS1101~S1115は、第1実施形態の変形例(図6)のステップS501~S515と同様である。さらに、図12のステップS1116~S1117は、第2実施形態の実施例(図11)のステップS916~S917と同様である。画像処理部161は、カメラ14で測定画像を撮像する毎に、図12の処理を実施する。なお、測定開始ボタンを1回押したときに複数の測定画像が撮像される際には、測定値の平均値が、1回の測定における代表の測定値とされてもよい。
<2-2-2. Modification example>
In addition, in order to reduce the calculation load at the time of teaching, the same method as in FIG. 4 (that is, a modified example of the first embodiment) may be adopted. FIG. 12 is a flowchart for explaining a method for quantifying the degree of contamination in the modified example of the second embodiment. Steps S1101 to S1115 of FIG. 12 are the same as steps S501 to S515 of the modified example (FIG. 6) of the first embodiment. Further, steps S1116 to S1117 of FIG. 12 are the same as steps S916 to S917 of the second embodiment (FIG. 11). The image processing unit 161 performs the processing of FIG. 12 every time the camera 14 captures the measured image. When a plurality of measurement images are captured when the measurement start button is pressed once, the average value of the measured values may be a representative measured value in one measurement.
 <2-3.汚れ検査方法を応用した太陽光発電モジュールの管理方法>
 第2実施形態では、汚れ検査装置1を用いた汚れ検査方法を応用した太陽光発電モジュール300の管理方法(図8参照)において、上述の補正測定値を用いる。たとえば、図8のステップS701及びS705において、受光面301の汚れ度合いSb、Saの補正測定値が、たとえば、上述の汚れ検査装置1(図1参照)を用いて、上述の汚れ検査方法(図11、図12参照)により測定される。つまり、測定画像の各々の画素Pbの色空間における色座標(R、G、B)と、色空間における基準色座標(Ra、Ga、Ba)とに基づく汚れ度合いの測定値Sb、Saを、色座標(R、G、B)に対応する色成分別の補正値Nr、Ng、Nbに基づいて補正した汚れ度合いの補正測定値が算出される。そして、上述の汚れ度合いの各々の補正測定値と、図8のステップS701及びS705にて測定した各々の発電電力Wb、Waと、経過期間Tとに基づいて、受光面301の洗浄時期が決定される。色相を考慮した汚れ度合いの補正測定値を用いることにより、太陽光発電モジュール300の発電電力が低下する傾向をさらに正確に検出できる。従って、受光面301の洗浄時期をさらに精度良く算出できる。
<2-3. Management method of photovoltaic power generation module applying dirt inspection method>
In the second embodiment, the above-mentioned corrected measurement value is used in the management method (see FIG. 8) of the photovoltaic power generation module 300 to which the stain inspection method using the stain inspection device 1 is applied. For example, in steps S701 and S705 of FIG. 8, the corrected measurement values of the degree of dirt Sb and Sa of the light receiving surface 301 are the above-mentioned dirt inspection method (see FIG. 1) using, for example, the above-mentioned dirt inspection device 1 (see FIG. 1). 11. Measured according to FIG. 12). That is, the measured values Sb and Sa of the degree of contamination based on the color coordinates (R, G, B) in the color space of each pixel Pb of the measurement image and the reference color coordinates (Ra, Ga, Ba) in the color space are obtained. The correction measurement value of the degree of stain corrected based on the correction values Nr, Ng, and Nb for each color component corresponding to the color coordinates (R, G, B) is calculated. Then, the cleaning time of the light receiving surface 301 is determined based on the respective correction measurement values of the degree of contamination described above, the respective generated powers Wb and Wa measured in steps S701 and S705 of FIG. 8, and the elapsed period T. Will be done. By using the corrected measurement value of the degree of contamination in consideration of the hue, it is possible to more accurately detect the tendency of the generated power of the photovoltaic power generation module 300 to decrease. Therefore, the cleaning time of the light receiving surface 301 can be calculated more accurately.
<3.備考>
 以上、本発明の実施形態について説明した。なお、上述の実施形態は例示であり、その各構成要素及び各処理の組み合わせに色々な変形が可能であり、本発明の範囲にあることは当業者に理解されるところである。
<3. Remarks>
The embodiment of the present invention has been described above. It should be noted that the above-described embodiment is an example, and various modifications can be made to the combination of each component and each process, and it is understood by those skilled in the art that it is within the scope of the present invention.
 たとえば、上述の実施形態において、制御装置16の機能的な構成要素のうちの少なくとも一部又は全部は、物理的な構成要素(たとえば電気回路、素子、装置など)で実現されていてもよい。 For example, in the above-described embodiment, at least a part or all of the functional components of the control device 16 may be realized by physical components (for example, an electric circuit, an element, a device, etc.).
 また、上述の実施形態では、色座標を表す色空間として、RBG表色系の空間を例示した。但し、本発明は、この例示に限定されない。たとえば、色空間は、RGB表色系以外のCIE表色系の色空間であってもよい。このようなCIE表色系の色空間としては、たとえば、XYZ表色系、xyY表色系、L*u*v*表色系、又は、L*a*b*表色系などを採用できる。或いは、色空間は、CMY空間、HSV空間、又は、HLS空間などであってもよい。なお、CMY空間では、色座標(C,M,K)は、C成分値、M成分値、及びK成分値で表される。C成分値は、画像の画素の色成分C(シアン;cyan)の大きさを表す。M成分値は、画像の画素の色成分マゼンタ(magenta)の大きさを表す。K成分値は、画像の画素の色成分K(黒;black)の大きさを表す。また、HSV空間では、色座標(H,S,V)は、画像の画素の色相値H、彩度値S、及び、明度Vで表される。また、HLS空間では、色座標(H,L,S)は、画像の画素の色相値H、輝度値L、及び、彩度値Sで表される。 Further, in the above-described embodiment, the RBG color system space is exemplified as the color space representing the color coordinates. However, the present invention is not limited to this example. For example, the color space may be a color space of a CIE color system other than the RGB color system. As the color space of such a CIE color system, for example, an XYZ color system, an xyY color system, an L * u * v * color system, an L * a * b * color system, or the like can be adopted. .. Alternatively, the color space may be a CMY space, an HSV space, an HLS space, or the like. In the CMY space, the color coordinates (C, M, K) are represented by the C component value, the M component value, and the K component value. The C component value represents the magnitude of the color component C (cyan) of the pixels of the image. The M component value represents the size of the color component magenta of the pixels of the image. The K component value represents the size of the color component K (black) of the pixels of the image. Further, in the HSV space, the color coordinates (H, S, V) are represented by the hue value H, the saturation value S, and the brightness V of the pixels of the image. Further, in the HLS space, the color coordinates (H, L, S) are represented by the hue value H, the luminance value L, and the saturation value S of the pixels of the image.
 また、上述の実施形態では、太陽光発電モジュールの受光面の汚れ度合いの測定に本発明を適用した。但し、本発明の適用範囲は、上述の例示に限定されない。本発明は、太陽光発電モジュールの受光面以外の被検査面の汚れ度合いを測定する装置にも適用可能である。被検査面は、経時的に汚れが蓄積される表面である。たとえば、被検査面は、液晶表示装置の表示面、テーブル又は机の天板の表面、車両のガラス表面、建築物の外壁の表面又は床面などであってもよい。 Further, in the above-described embodiment, the present invention is applied to the measurement of the degree of contamination of the light receiving surface of the photovoltaic power generation module. However, the scope of application of the present invention is not limited to the above-mentioned examples. The present invention is also applicable to an apparatus for measuring the degree of contamination of the surface to be inspected other than the light receiving surface of the photovoltaic power generation module. The surface to be inspected is a surface on which dirt accumulates over time. For example, the surface to be inspected may be a display surface of a liquid crystal display device, a surface of a table or desk top plate, a glass surface of a vehicle, a surface of an outer wall of a building, or a floor surface.
 100       管理システム
 1         汚れ検査装置
 11         ハウジング
 111         開口
 12         照明装置
 121         基体
 122         LEDアレイ
 13         照明駆動装置
 14         カメラ
 141         レンズ
 142         撮像素子
 15         メモリ
 16         制御装置
 161         画像処理部
 17         表示装置
 18         入力装置
 19         通信装置
 20         外部電源端子
 21         内蔵電源
 300       太陽光発電モジュール
 301        受光面
 310        透光性基板
 320        封止樹脂層
 330        太陽電池セル
 340        バックフィルム
 OT        外部端末
 AC        外部電源
 L0        基準領域
 L1~L5     測定領域
 Pa、Pb     画素
 Pam       基準画素
 Pbn       範囲内画素
 Sa        基準球
 Sb        測定球
 Ar        最多重領域
100 Management system 1 Dirt inspection device 11 Housing 111 Opening 12 Lighting device 121 Base 122 LED array 13 Lighting drive device 14 Camera 141 Lens 142 Image sensor 15 Memory 16 Control device 161 Image processing unit 17 Display device 18 Input device 19 Communication device 20 External Power supply terminal 21 Built-in power supply 300 Solar power generation module 301 Light receiving surface 310 Translucent substrate 320 Encapsulating resin layer 330 Solar cell 340 Back film OT External terminal AC External power supply L0 Reference area L1 to L5 Measurement area Pa, Pb pixel Pam reference Pixel Pbn Range pixel Sa Reference sphere Sb Measurement sphere Ar Most multiplex region

Claims (10)

  1.  被検査面の一部領域を覆うハウジングと、
     前記一部領域に光を照射する照明装置と、
     前記一部領域を撮像する撮像装置と、
     前記撮像装置により撮像された測定画像の各々の画素の色空間における第1色座標と、前記色空間における基準色座標とに基づいて、前記被検査面の汚れ度合いを算出する画像処理部と、
    を備える、汚れ検査装置。
    A housing that covers a part of the surface to be inspected,
    A lighting device that irradiates a part of the area with light,
    An image pickup device that images a part of the area and
    An image processing unit that calculates the degree of contamination of the surface to be inspected based on the first color coordinates in the color space of each pixel of the measurement image captured by the image pickup apparatus and the reference color coordinates in the color space.
    A stain inspection device equipped with.
  2.  前記色空間が3次元色空間である、請求項1に記載の汚れ検査装置。 The stain inspection device according to claim 1, wherein the color space is a three-dimensional color space.
  3.  前記画像処理部は、前記色空間において、前記基準色座標を中心とする所定の大きさの基準色範囲内に第2色座標がある基準画像の画素の数が最大となるように、前記基準色座標を決定する、請求項1又は請求項2に記載の汚れ検査装置。 The image processing unit uses the reference so that the number of pixels of the reference image having the second color coordinates within the reference color range of a predetermined size centered on the reference color coordinates is maximized in the color space. The stain inspection device according to claim 1 or 2, which determines the color coordinates.
  4.  前記画像処理部は、前記色空間において、基準画像の各々の画素の第2色座標を中心とする所定の大きさの基準色範囲の重なりが最も多い領域を算出し、該領域に基づいて前記基準色座標を決定する、請求項1又は請求項2に記載の汚れ検査装置。 The image processing unit calculates, in the color space, a region having the largest overlap of reference color ranges of a predetermined size centered on the second color coordinates of each pixel of the reference image, and the region is based on the region. The stain inspection device according to claim 1 or 2, which determines the reference color coordinates.
  5.  前記画像処理部は、前記色空間において、
      前記基準色範囲内に前記第1色座標がある前記測定画像の画素を検出し、
      前記画素の検出結果に基づいて前記被検査面の汚れ度合いを算出する、請求項1~請求項4のいずれか1項に記載の汚れ検査装置。
    The image processing unit is in the color space.
    A pixel of the measurement image having the first color coordinates within the reference color range is detected.
    The stain inspection apparatus according to any one of claims 1 to 4, wherein the degree of contamination of the surface to be inspected is calculated based on the detection result of the pixel.
  6.  前記画像処理部は、さらに前記第1色座標に対応する色成分別の補正値に基づいて前記汚れ度合いを補正する、請求項1~請求項5のいずれか1項に記載の汚れ検査装置。 The stain inspection device according to any one of claims 1 to 5, wherein the image processing unit further corrects the degree of stain based on a correction value for each color component corresponding to the first color coordinates.
  7.  被検査面のうちのハウジングで覆われ且つ照明装置により光が照射された一部領域を撮像装置で撮像するステップと、
     前記撮像装置により撮像された測定画像の各々の画素の色空間における色座標と、前記色空間における基準色座標とに基づいて、前記被検査面の汚れ度合いを算出するステップと、
    を備える、汚れ検査方法。
    A step of imaging a part of the surface to be inspected covered by the housing and illuminated by the lighting device with the imaging device,
    A step of calculating the degree of contamination of the surface to be inspected based on the color coordinates in the color space of each pixel of the measurement image captured by the imaging device and the reference color coordinates in the color space.
    A stain inspection method.
  8.  太陽光発電モジュールの受光面の一部領域を覆うハウジングと、前記一部領域に光を照射する照明装置と、前記一部領域を撮像する撮像装置と、前記撮像装置により撮像された測定画像の各々の画素の色空間における第1色座標と、前記色空間における基準色座標とに基づいて前記受光面の汚れ度合いを算出する画像処理部と、を備える汚れ検査装置を用いて前記太陽光発電モジュールの前記受光面の前記汚れ度合いを測定するとともに、前記太陽光発電モジュールの発電電力を測定する第1の測定ステップと、
     前記第1の測定ステップを実施した時点から所定の経過期間の後に、前記汚れ検査装置を用いて前記汚れ度合いを測定するとともに、前記発電電力を測定する第2の測定ステップと、
     前記第1の測定ステップ及び前記第2の測定ステップでそれぞれ測定した前記汚れ度合い及び前記発電電力と、前記経過期間とに基づいて、前記受光面の洗浄時期を決定する決定ステップと、
    を備える、太陽光発電モジュールの管理方法。
    A housing that covers a part of the light receiving surface of the photovoltaic power generation module, a lighting device that irradiates the part of the area with light, an image pickup device that images the part of the area, and a measurement image captured by the image pickup device. The photovoltaic power generation using a stain inspection device including a first color coordinate in the color space of each pixel and an image processing unit that calculates the degree of stain on the light receiving surface based on the reference color coordinate in the color space. The first measurement step of measuring the degree of dirt on the light receiving surface of the module and measuring the generated power of the photovoltaic power generation module, and
    After a predetermined elapsed period from the time when the first measurement step is performed, the stain inspection device is used to measure the degree of stain, and the second measurement step for measuring the generated power is
    A determination step for determining the cleaning time of the light receiving surface based on the degree of contamination, the generated power, and the elapsed period measured in the first measurement step and the second measurement step, respectively.
    How to manage a photovoltaic module, including.
  9.  前記第1の測定ステップ及び前記第2の測定ステップにおいて、前記汚れ度合いの補正測定値が算出され、
      前記補正測定値は、前記第1色座標と前記基準色座標とに基づく前記汚れ度合いの測定値を、前記第1色座標に対応する色成分別の補正値に基づいて補正した値である、請求項8に記載の太陽光発電モジュールの管理方法。
    In the first measurement step and the second measurement step, the correction measurement value of the degree of contamination is calculated.
    The correction measurement value is a value obtained by correcting the measurement value of the degree of stain based on the first color coordinates and the reference color coordinates based on the correction value for each color component corresponding to the first color coordinates. The method for managing a photovoltaic power generation module according to claim 8.
  10.  少なくとも前記第1の測定ステップ及び前記第2の測定ステップが、一日のうちの早朝及び夕方のうちの少なくとも一方で実施される、請求項8又は請求項9に記載の太陽光発電モジュールの管理方法。 The management of the photovoltaic module according to claim 8 or 9, wherein at least the first measurement step and the second measurement step are performed at least one of the early morning and the evening of the day. Method.
PCT/JP2020/016568 2019-04-26 2020-04-15 Contamination inspection device, contamination inspection method, and solar power generation module management method WO2020218113A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019086619 2019-04-26
JP2019-086619 2019-04-26
JP2019-171699 2019-09-20
JP2019171699A JP6695581B1 (en) 2019-04-26 2019-09-20 Contamination inspection device, contamination inspection method, and photovoltaic module management method

Publications (1)

Publication Number Publication Date
WO2020218113A1 true WO2020218113A1 (en) 2020-10-29

Family

ID=70682364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016568 WO2020218113A1 (en) 2019-04-26 2020-04-15 Contamination inspection device, contamination inspection method, and solar power generation module management method

Country Status (2)

Country Link
JP (2) JP6695581B1 (en)
WO (1) WO2020218113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025676B1 (en) 2021-02-08 2022-02-25 竹内マネージメント株式会社 Stain measurement system and stain measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481949B2 (en) 2020-08-18 2024-05-13 キヤノンメディカルシステムズ株式会社 Medical imaging diagnostic equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424543A (en) * 1990-05-18 1992-01-28 Toyobo Co Ltd Inspecting method
JPH0427851A (en) * 1990-05-23 1992-01-30 Toyobo Co Ltd Method and apparatus for detecting defect
JPH11237342A (en) * 1998-02-20 1999-08-31 Ishikawajima Inspection & Instrumentation Co Device for automatically detecting stain on inner surface of drum can using xy chromaticity diagram
JP2003069851A (en) * 2001-08-28 2003-03-07 Ricoh Co Ltd Method, device and program for deciding background stain, and method and program for eliminating background stain
US20080143844A1 (en) * 2006-12-15 2008-06-19 Cypress Semiconductor Corporation White balance correction using illuminant estimation
JP2010014491A (en) * 2008-07-02 2010-01-21 National Institute Of Advanced Industrial & Technology Offshore monitoring system method
JP2010045560A (en) * 2008-08-12 2010-02-25 Konica Minolta Ij Technologies Inc Color adjustment method and color adjustment device
JP2012199652A (en) * 2011-03-18 2012-10-18 Fujitsu Ltd Image processing device, method, and program
JP2014082272A (en) * 2012-10-15 2014-05-08 Sharp Corp Inspection device and inspection method for solar cell module
JP2015155892A (en) * 2014-01-14 2015-08-27 有限会社パパラボ Color inspection device and color inspection method
JP2016194449A (en) * 2015-03-31 2016-11-17 有限会社パパラボ Coloring checkup device, and coloring checkup method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023412A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Device and method for detecting foreign matter of terminal box for photoelectric conversion panel
JP2012190953A (en) * 2011-03-10 2012-10-04 Chugoku Electric Power Co Inc:The Solar cell panel cleaning device and solar cell panel cleaning method
JP2014062763A (en) * 2012-09-20 2014-04-10 Sharp Corp Solar cell substrate inspection method and solar cell manufacturing method including the same
US10243514B2 (en) * 2015-06-04 2019-03-26 Ryan Bower Jones Photovoltaic soil monitoring system with automated clean referencing system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424543A (en) * 1990-05-18 1992-01-28 Toyobo Co Ltd Inspecting method
JPH0427851A (en) * 1990-05-23 1992-01-30 Toyobo Co Ltd Method and apparatus for detecting defect
JPH11237342A (en) * 1998-02-20 1999-08-31 Ishikawajima Inspection & Instrumentation Co Device for automatically detecting stain on inner surface of drum can using xy chromaticity diagram
JP2003069851A (en) * 2001-08-28 2003-03-07 Ricoh Co Ltd Method, device and program for deciding background stain, and method and program for eliminating background stain
US20080143844A1 (en) * 2006-12-15 2008-06-19 Cypress Semiconductor Corporation White balance correction using illuminant estimation
JP2010014491A (en) * 2008-07-02 2010-01-21 National Institute Of Advanced Industrial & Technology Offshore monitoring system method
JP2010045560A (en) * 2008-08-12 2010-02-25 Konica Minolta Ij Technologies Inc Color adjustment method and color adjustment device
JP2012199652A (en) * 2011-03-18 2012-10-18 Fujitsu Ltd Image processing device, method, and program
JP2014082272A (en) * 2012-10-15 2014-05-08 Sharp Corp Inspection device and inspection method for solar cell module
JP2015155892A (en) * 2014-01-14 2015-08-27 有限会社パパラボ Color inspection device and color inspection method
JP2016194449A (en) * 2015-03-31 2016-11-17 有限会社パパラボ Coloring checkup device, and coloring checkup method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025676B1 (en) 2021-02-08 2022-02-25 竹内マネージメント株式会社 Stain measurement system and stain measurement method
JP2022121250A (en) * 2021-02-08 2022-08-19 竹内マネージメント株式会社 Stain measurement system and stain measurement method

Also Published As

Publication number Publication date
JP6695581B1 (en) 2020-05-20
JP6796848B2 (en) 2020-12-09
JP2020184871A (en) 2020-11-12
JP2020183942A (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US10726559B2 (en) Visible light image with edge marking for enhancing IR imagery
WO2020218113A1 (en) Contamination inspection device, contamination inspection method, and solar power generation module management method
EP3136339B1 (en) Edge enhancement for thermal-visible combined images and cameras
CN103236433B (en) Broadband imager
CN103512655B (en) Information processor and method and photoelectric conversion device
Chauvin et al. Modelling the clear-sky intensity distribution using a sky imager
CN103674974B (en) Testing fixture
CN105122271B (en) The capture of scene and event in room and time
JP2018511793A (en) Detector for optical detection of at least one object
CN102567953A (en) Light and shadow effect processing device for image
JP6276066B2 (en) Abnormality notification device for solar cell array
CN101937505B (en) Target detection method and equipment and used image acquisition device thereof
CN206271666U (en) The detecting system of battery film outward appearance
CN103364404B (en) Camera detection method and camera
CN102176074B (en) Sunshine duration measuring method and sunshine duration measuring device
Shirazi et al. Cloud detection for pv power forecast based on colour components of sky images
CN103091332B (en) Detection method and detection system of U-shaped powder pipe based on machine vision
CN101915546B (en) Solar chip anti-reflection coating detection method and detection device thereof
CN103262524B (en) Automatic focusedimage system
CN201740515U (en) Detecting device of antireflection layer of solar chip
TWI510749B (en) Solar tracking apparatus
CN116583723A (en) Method, system and apparatus for measuring surface color
CN111052721B (en) Sky monitoring system
Starešinič et al. Using a digital camera to identify colors in urban environments
TW201326798A (en) Optical inspecting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796195

Country of ref document: EP

Kind code of ref document: A1