WO2020217852A1 - Endoscope light source device and endoscope system - Google Patents

Endoscope light source device and endoscope system Download PDF

Info

Publication number
WO2020217852A1
WO2020217852A1 PCT/JP2020/014067 JP2020014067W WO2020217852A1 WO 2020217852 A1 WO2020217852 A1 WO 2020217852A1 JP 2020014067 W JP2020014067 W JP 2020014067W WO 2020217852 A1 WO2020217852 A1 WO 2020217852A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
endoscope
source device
illumination
Prior art date
Application number
PCT/JP2020/014067
Other languages
French (fr)
Japanese (ja)
Inventor
美範 森本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021515904A priority Critical patent/JP7163487B2/en
Publication of WO2020217852A1 publication Critical patent/WO2020217852A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope light source device that supplies illumination light to an endoscope light guide, and an endoscope system.
  • the endoscope system includes an endoscope, a light source device for an endoscope for supplying illumination light to the endoscope, and a processor device for processing an image signal output by the endoscope.
  • the endoscope includes, for example, a light guide made of an optical fiber, and the illumination light from the light source device for the endoscope is supplied to the light guide and irradiates the observation site (subject) via the light guide.
  • a lamp light source such as a xenon lamp or a halogen lamp that emits white light has been used as an illumination light source for an endoscope light source device, but recently, instead of a lamp light source, light of a specific color is emitted.
  • Semiconductor light sources such as a laser diode (LD: LaserDiode) and a light emitting diode (LED: LightEmittingDiode) are being used.
  • LD LaserDiode
  • LED LightEmittingDiode
  • Patent Document 1 a part of the illumination light is branched and irradiated to the light receiving portion, and the light emission amount of the light source is controlled (adjusted) by using the light amount of the illumination light received by the light receiving portion.
  • the return light from the light guide is light that is supplied (irradiated) from the light source to the light guide, but is reflected by the surface of the light guide and returned to the light source, and further reflected by the surface of the light source toward the light receiving portion. Is shown.
  • the return light from the light guide fluctuates due to individual differences in the endoscope and / or assembly errors when the endoscope and the light source device for the endoscope are connected. Therefore, the amount of light is affected by this fluctuation. Becomes unstable.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light source device for an endoscope capable of supplying a stable amount of illumination light, and an endoscope system.
  • the light source device for an endoscope of the present invention merges the optical paths of the illumination light in the light source device for an endoscope that supplies illumination light from a plurality of light sources to the light guide of the endoscope. It has an irradiated surface that is arranged between the merging member to be combined and a specific light source and the merging member among a plurality of light sources and is irradiated with the illumination light from the specific light source, and the illumination light transmitted through the irradiated surface is merged.
  • An optical member that emits light toward the member, a light receiving unit that receives the illumination light reflected on the irradiated surface, and a light source control unit that controls the amount of light emitted from a specific light source using the amount of illumination light received by the light receiving unit. It is provided with an attenuation filter provided on the optical member and attenuates the amount of transmitted illumination light.
  • a reflective attenuation filter that is arranged between the merging member and the light guide, attenuates the amount of transmitted illumination light, and reflects a certain percentage of the illumination light may be provided.
  • a plurality of specific light sources may be provided, and an optical member, a light receiving unit, and an attenuation filter may be provided for each specific light source.
  • the attenuation ratio of the illumination light may be different for each attenuation filter.
  • the endoscope light source device of the present invention is an endoscope light source device that supplies illumination light from a plurality of light sources to the light guide of the endoscope, and includes a plurality of confluent members that merge the optical paths of the illumination light. It has an illuminated surface that is arranged between the specific light source and the merging member in the light source of the above and is irradiated with the illumination light from the specific light source, and emits the illumination light transmitted through the illuminated surface toward the merging member.
  • An optical member a light receiving unit that receives the illumination light reflected by the illuminated surface, a light source control unit that controls the amount of light emitted from a specific light source by using the amount of illumination light received by the light receiving unit, a merging member, and a light guide. It is provided with a reflective attenuation filter, which is arranged between the two, attenuates the amount of transmitted illumination light, and reflects a certain percentage of the illumination light.
  • a plurality of specific light sources may be provided, and an optical member, a light receiving unit, and an attenuation filter may be provided for each specific light source.
  • the attenuation ratio of the illumination light may be different for each attenuation filter.
  • It may be provided with a partial reflection filter provided on a part of the irradiated surface, which reflects a part of the incident illumination light toward the light receiving portion and transmits the rest.
  • An antireflection filter may be provided on the irradiated surface.
  • the endoscope system of the present invention includes the above-mentioned light source device for an endoscope and an endoscope having a light guide for guiding light.
  • the present invention it is possible to reduce the influence of the return light from the light guide and supply a stable amount of illumination light.
  • the endoscope system 10 includes an endoscope 11 that images an observation site in a living body, a processor device 12 that generates a display image of the observation site based on an image signal obtained by imaging, and an observation site. It is provided with a light source device for an endoscope (hereinafter, simply referred to as a light source device) 13 that supplies illumination light to the endoscope 11 and a monitor 14 that displays a display image.
  • a light source device for an endoscope hereinafter, simply referred to as a light source device 13 that supplies illumination light to the endoscope 11 and a monitor 14 that displays a display image.
  • An operation input unit 15 such as a keyboard or a mouse is connected to the processor device 12.
  • the endoscope system 10 can execute a normal observation mode for observing the observation site and a blood vessel emphasis observation mode for emphasizing and observing the blood vessels existing inside the mucous membrane of the observation site.
  • the blood vessel-enhanced observation mode is a mode for visualizing a blood vessel pattern as blood vessel information and making a diagnosis such as distinguishing between good and bad tumors.
  • the observation site is irradiated with illumination light containing a large amount of light components in a specific wavelength band having high absorbance for hemoglobin in blood.
  • a normal observation image suitable for observing the entire observation site is generated as a display image.
  • a blood vessel-enhanced observation image suitable for observing a blood vessel pattern is generated as a display image.
  • the endoscope 11 includes, for example, an insertion unit 16 that is inserted into a living body such as in the digestive tract, an operation unit 17 provided at the base end portion of the insertion unit 16, and an endoscope 11 as a processor device 12 and a light source device. It is provided with a universal cord 18 for connecting to 13.
  • the insertion portion 16 is composed of a tip portion 19, a curved portion 20, and a flexible tube portion 21, and is connected in this order from the tip side.
  • an illumination window 22 for irradiating the observation portion with illumination light, an observation window 23 for capturing an image of the observation portion, and air supply / water supply for cleaning the observation window 23 are provided on the tip surface of the tip portion 19.
  • An air supply / water supply nozzle 24 to be performed, and a forceps outlet 25 for projecting a treatment tool such as a forceps or an electric knife to perform various treatments are provided on the tip surface of the tip portion 19.
  • An image sensor 36 and an objective optical system 45 are built in the back of the observation window 23.
  • the curved portion 20 is composed of a plurality of connected curved pieces, and bends in the vertical and horizontal directions in response to the operation of the angle knob 26 of the operating portion 17. By bending the curved portion 20, the tip portion 19 is directed in a desired direction.
  • the flexible tube portion 21 has flexibility and can be inserted into a winding tube such as the esophagus or the intestine.
  • the insertion unit 16 includes a communication cable for communicating a drive signal for driving the image sensor 36 and an image signal output by the image sensor 36, and a light guide 35 for guiding the illumination light supplied from the light source device 13 to the illumination window 22. (See FIG. 3) is inserted.
  • the operation unit 17 includes a forceps port 27 for inserting a treatment tool, an air supply / water supply button 28 operated when air supply / water supply is performed from the air supply / water supply nozzle 24, and a still image.
  • a freeze button (not shown) for taking a picture of the image is provided.
  • a communication cable and a light guide 35 extending from the insertion portion 16 are inserted into the universal cord 18, and a connector 29 is attached to one end on the processor device 12 and the light source device 13 side.
  • the connector 29 is a composite type connector including a communication connector 29a and a light source connector 29b.
  • the communication connector 29a and the light source connector 29b are detachably connected to the processor device 12 and the light source device 13, respectively.
  • One end of a communication cable is provided on the communication connector 29a.
  • the light source connector 29b is provided with an incident end 35a (see FIG. 3) of the light guide 35.
  • the light source device 13 is provided with a light source 30, an optical path integration unit 31, and a light source control unit 33.
  • the light source 30 includes a first LED 30a that emits red light LR, a second LED 30b that emits green light LG, a third LED 30c that emits blue light LB, and a fourth LED 30d that emits purple light LV.
  • one of the first to fourth LEDs 30a to 30d, or a plurality of combinations of the first to fourth LEDs 30a to 30d may be simply referred to as a light source 30.
  • the optical path integration unit 31 integrates (merges) the optical paths of the respective lights emitted from the first to fourth LEDs 30a to 30d.
  • the light source control unit 33 controls the light emission of the first to fourth LEDs 30a to 30d.
  • the red light LR has, for example, a wavelength band of 615 nm to 635 nm and a center wavelength of 620 ⁇ 10 nm.
  • the green light LG has, for example, a wavelength band of 500 nm to 600 nm and a center wavelength of 520 ⁇ 10 nm.
  • the blue light LB has, for example, a wavelength band of 440 nm to 470 nm and a center wavelength of 455 ⁇ 10 nm.
  • the purple light LV has, for example, a wavelength band of 395 nm to 415 nm and a central wavelength of 405 ⁇ 10 nm.
  • the light source control unit 33 turns on the first to third LEDs 30a to 30c, and turns off the fourth LED 30d.
  • the light source control unit 33 turns on all the first to fourth LEDs 30a to 30d.
  • the optical path integration unit 31 combines the red light LR, the green light LG, and the blue light LB to generate a wide band white light LW as shown in FIG.
  • mixed light is generated by mixing white light LW with purple light LV having high absorbance for hemoglobin in blood.
  • the light source control unit 33 reduces the ratio of the amount of light of the blue light LB so that the purple light LV is more dominant than the blue light LB.
  • the light emitting part of the optical path integrating part 31 is arranged in the vicinity of the receptacle connector 34 to which the light source connector 29b is connected.
  • the optical path integrating unit 31 emits the light incident from the light source 30 to the incident end 35a of the light guide 35 of the endoscope 11.
  • the endoscope 11 includes a light guide 35, an image sensor 36, an analog processing circuit (AFE: Analog Front End) 37, and an image control unit 38.
  • the light guide 35 is, for example, a fiber bundle in which a plurality of optical fibers are bundled.
  • the incident end 35a of the light guide 35 arranged in the light source connector 29b faces the exit end of the optical path integrating portion 31.
  • the exit end of the light guide 35 located at the tip portion 19 is branched into two at the front stage of the illumination window 22 so that light is guided to each of the two illumination windows 22.
  • An irradiation lens 39 is arranged behind the illumination window 22.
  • the illumination light supplied from the light source device 13 is guided to the irradiation lens 39 by the light guide 35 and is emitted from the illumination window 22 toward the observation portion.
  • the irradiation lens 39 is a concave lens, and irradiates a wide range of the observation portion with the illumination light emitted from the light guide 35.
  • the objective optical system 45 and the image sensor 36 are arranged behind the observation window 23.
  • the image of the observation portion is incident on the objective optical system 45 through the observation window 23, and is imaged on the image pickup surface 36a of the image pickup element 36 by the objective optical system 45.
  • the image sensor 36 is a CCD image sensor, a CMOS image sensor, or the like, and a plurality of photoelectric conversion elements (photodiodes) constituting the pixels are arranged in a matrix on the image pickup surface 36a. Further, the image pickup element 36 is a color image pickup element, and microcolor filters of three colors B, G, and R are arranged on the image pickup surface 36a on the incident side of the photoelectric conversion element for each pixel. The arrangement of this microcolor filter is, for example, the Bayer arrangement.
  • the image sensor 36 photoelectrically converts the light received on the image pickup surface 36a and accumulates a signal charge according to the amount of light received for each pixel.
  • the signal charge is converted into a voltage signal and read out from the image sensor 36.
  • the voltage signal read from the image sensor 36 is input to the AFE 37 as an image signal.
  • the image sensor 36 performs a storage operation of accumulating signal charges in pixels and a reading operation of reading out the accumulated signal charges within the acquisition period of one frame.
  • the light source device 13 generates illumination light in accordance with the timing of the accumulation operation of the image sensor 36, and causes the illumination light to be incident on the light guide 35.
  • the AFE37 is composed of a correlated double sampling (CDS) circuit, an automatic gain control (AGC) circuit, an analog / digital (A / D) converter, and the like.
  • the CDS circuit performs a correlated double sampling process on the image signal input from the image sensor 36 to remove noise.
  • the AGC circuit amplifies the image signal from which noise has been removed by the CDS circuit.
  • the A / D converter converts the image signal amplified by the AGC circuit into a digital signal having a predetermined number of bits and inputs it to the processor device 12.
  • the image pickup control unit 38 is connected to the controller 40 in the processor device 12, and inputs a drive signal to the image pickup element 36 in synchronization with the reference clock signal input from the controller 40.
  • the image sensor 36 inputs an image signal to the AFE 37 at a predetermined frame rate based on the drive signal from the image pickup control unit 38.
  • This image signal is a signal in which the pixel values of the R, G, and B pixels are mixed (hereinafter referred to as RGB signals).
  • the processor device 12 includes a DSP (Digital Signal Processor) 41, an image processing unit 42, a frame memory 43, and a display control circuit 44, in addition to the controller 40.
  • the controller 40 has a CPU, a ROM for storing a control program and setting data necessary for control, a RAM for loading the program and functioning as a work memory, and the like. When the CPU executes the control program, the processor device 12 Control each part.
  • the DSP 41 performs signal processing such as pixel interpolation processing, gamma correction, and white balance correction on a frame unit for the image signal (RGB signal) input from the AFE 37.
  • the image signal is separated into R, G, and B image signals, and the pixel interpolation processing is performed on the image signals of each color.
  • the DSP 41 stores an image signal that has undergone signal processing for each frame as image data in the frame memory 43.
  • the DSP 41 has a brightness calculation unit that calculates the brightness (average brightness value) of the observation portion based on the image signal input from the AFE 37, and inputs the calculated average brightness value to the controller 40.
  • the controller 40 generates a dimming signal which is the difference between the average brightness value input from the brightness calculation unit and the reference brightness (target value of dimming), and controls the light source of the light source device 13 with this dimming signal. Input to unit 33.
  • the light source control unit 33 adjusts the amount of illumination light (the amount of light emitted from the light sources 30 (first to fourth LEDs 30a to 30d)) based on the dimming signal. Specifically, when the brightness of the observation portion is insufficient (underexposure), the amount of illumination light is increased, and when the observation portion is too bright (overexposure), the amount of illumination light is decreased.
  • the image processing unit 42 performs predetermined image processing on the image data stored in the frame memory 43. Specifically, in the normal observation mode, a normal observation image is generated based on the image data. On the other hand, in the blood vessel-enhanced observation mode, a blood vessel-enhanced observation image is generated based on the image data, but in order to emphasize the surface blood vessel, for example, a region of the surface blood vessel in the image is extracted based on the B signal in the image data. Then, contour enhancement processing or the like is performed on the extracted surface blood vessel region. Then, the B signal subjected to the contour enhancement processing is combined with the full-color image generated based on the RGB signal. The same treatment may be performed on the mesopelagic blood vessels in addition to the superficial blood vessels.
  • the region of the mesopelagic blood vessels is extracted from the G signal containing a large amount of information on the mesopelagic vessels, and the extracted mesopelagic blood vessel region is subjected to contour enhancement processing.
  • the display control circuit 44 reads the image processed image data from the frame memory 43, converts it into a video signal such as a composite signal or a component signal, and outputs it to the monitor 14.
  • the blood vessel enhancement observation image is generated only by the BG signal without using the R signal, the B signal is assigned to the B channel and the G channel of the monitor 14, and the G signal is assigned to the R channel of the monitor 14. Is also good.
  • the optical path integrating unit 31 includes the first to fourth collimator lenses (CL) 50a to 50d, the first to third dichroic mirrors (DM) 51 to 53 (merging members), and the condenser lens 54. It is configured.
  • the first to fourth CL50a to 50d are provided corresponding to the first to fourth LEDs 30a to 30d, respectively, and collimate each light emitted from the first to fourth LEDs 30a to 30d.
  • the first to third DMs 51 to 53 are configured by forming a dichroic filter having a predetermined transmission characteristic on a transparent glass plate, transmit light in a specific wavelength range, and reflect light in a specific wavelength range.
  • the condensing lens 54 collects the light emitted from the optical path integrating unit 31 at the incident end 35a of the light guide 35.
  • the optical axis of the second LED 30b is arranged at a position where the optical axis of the second LED 30b coincides with the optical axis of the light guide 35.
  • the first LED 30a is arranged so that its optical axis is orthogonal to the optical axis of the second LED 30b.
  • the first DM51 is arranged at a position where the optical axes of the first LED 30a and the second LED 30b are orthogonal to each other so as to form an angle of 45 ° with each optical axis.
  • the third LED 30c and the fourth LED 30d are arranged so that their optical axes are orthogonal to each other.
  • the second DM52 is arranged at a position where the optical axes of the third LED 30c and the fourth LED 30d are orthogonal to each other so as to form an angle of 45 ° with each optical axis.
  • the optical axis of the third LED30c is orthogonal to the optical axis of the second LED30b.
  • the third DM53 is arranged at a position where the optical axes of the third LED 30c and the second LED 30b are orthogonal to each other so as to form an angle of 45 ° with each optical axis.
  • the condensing lens 54 is arranged at a position where its optical axis coincides with the optical axis of the second LED 30b and faces the incident end 35a of the light guide 35.
  • the first DM51 has a spectral reflection characteristic that reflects light in a wavelength band equal to or higher than the first threshold value ⁇ 1 (about 610 nm) and transmits light in a wavelength band lower than the first threshold value ⁇ 1. .. Most of the red light LR emitted from the first LED 30a has a wavelength band of the first threshold value ⁇ 1 or more. Most of the green light LG emitted from the second LED 30b is in the wavelength band below the first threshold value ⁇ 1. Therefore, the first DM51 reflects the red light LR and transmits the green light LG. As a result, the red light LR reflected by the first DM51 and the green light LG transmitted through the first DM51 are combined. As described above, the first DM51 functions as a merging member for merging the optical paths of the illumination light (in the present embodiment, the red light LR and the green light LG).
  • the second DM52 has a spectral reflection characteristic that reflects light in a wavelength band lower than the second threshold value ⁇ 2 (about 430 nm) and transmits light in a wavelength band equal to or higher than the second threshold value ⁇ 2. .. Most of the blue light LB emitted from the third LED 30c has a wavelength band of the second threshold value ⁇ 2 or more. Most of the purple light LV emitted from the fourth LED 30d is in the wavelength band below the second threshold value ⁇ 2. Therefore, the second DM52 reflects the purple light LV and transmits the blue light LB. As a result, the purple light LV reflected by the second DM52 and the blue light LB transmitted through the second DM52 are combined. In this way, the second DM52 functions as a merging member that merges the optical paths of the illumination light (in this embodiment, the violet light LV and the blue light LB).
  • the third DM53 has a spectral reflection characteristic that reflects light in a wavelength band lower than the third threshold value ⁇ 3 (about 490 nm) and transmits light in a wavelength band equal to or higher than the second threshold value ⁇ 2. ..
  • Most of the combined wave of the red light LR and the green light LG (hereinafter referred to as the first combined wave) by the first DM51 is in the wavelength band of the third threshold value ⁇ 3 or more.
  • Most of the combined wave of the purple light LV and the blue light LB by the second DM52 (hereinafter referred to as the second combined wave) is a wavelength band less than the third threshold value ⁇ 3. Therefore, the third DM53 reflects the second combined wave and transmits the first combined wave.
  • the third DM53 functions as a merging member that merges the optical paths of the illumination light (in the present embodiment, the first merging wave and the second merging wave).
  • all of the first to third DM51 to 53 function as the merging member of the present invention, but only one or two of the first to third DM51 to 53 function as the merging member of the present invention. It may be configured to be used.
  • the red light LR, the green light LG, the blue light LB, and the purple light LV emitted from the first to fourth LEDs 30a to 30d are all combined and incident on the condenser lens 54. Since the fourth LED 30d is not lit in the normal observation mode, the red light LR, the green light LG, and the blue light LB, excluding the purple light LV, are combined and incident on the condenser lens 54.
  • the first to fourth glass plates 55a to 55d are arranged in the optical path integrating portion 31. Further, as shown in FIGS. 3 and 6, the light source device 13 is provided with the first to fourth light receiving units 56a to 56d.
  • the first glass plate 55a is arranged between the first CL50a and the first DM51, and reflects a part of the light incident on the irradiated surface to which the illumination light is irradiated toward the first light receiving portion 56a, and the rest is the first. It functions as an optical member that emits light toward 1DM51 (merging member).
  • the light reflected by the first glass plate 55a is incident on the first light receiving portion 56a through the first slit 57a.
  • the first light receiving unit 56a is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the first LED 30a. Will be done.
  • the light source control unit 33 controls the light emission of the first LED 30a based on the input light emission information.
  • the second glass plate 55b is arranged between the second CL50b and the first DM51, and a part of the light incident on the irradiated surface to be irradiated with the illumination light is reflected toward the second light receiving portion 56b, and the rest. Functions as an optical member that emits light toward the first DM51 (merging member).
  • the light reflected by the second glass plate 55b is incident on the second light receiving portion 56b through the second slit 57b.
  • the second light receiving unit 56b is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the second LED 30b. Will be done.
  • the light source control unit 33 controls the light emission of the second LED 30b based on the input light emission information.
  • the third glass plate 55c is arranged between the third CL50c and the second DM52, and a part of the light incident on the irradiated surface to be irradiated with the illumination light is reflected toward the third light receiving portion 56c. It functions as an optical member that emits the rest toward the second DM52 (merging member). The light reflected by the third glass plate 55c is incident on the third light receiving portion 56c through the third slit 57c.
  • the third light receiving unit 56c is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the third LED 30c. Will be done. In FIG. 3, the light source control unit 33 controls the light emission of the third LED 30c based on the input light emission information.
  • the fourth glass plate 55d is arranged between the fourth CL50d and the second DM52, and a part of the light incident on the irradiated surface irradiated with the illumination light is reflected toward the fourth light receiving portion 56d, and the rest. Functions as an optical member that emits light toward the second DM52 (merging member). The light reflected by the fourth glass plate 55d is incident on the fourth light receiving portion 56d through the fourth slit 57d.
  • the fourth light receiving unit 56d is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the fourth LED 30d. Will be done. In FIG.
  • the light source control unit 33 controls the light emission of the fourth LED 30d based on the input light emission information.
  • all of the first to fourth glass plates 55a to 55d function as the optical members of the present invention, but only one or two of the first to fourth glass plates 55a to 55d are present. It may be configured to function as the optical member of the present invention.
  • the light emission amount of the light source 30 is measured and fed back, and the light emission control of the light source 30 is performed based on this, that is, so-called automatic power control (APC: Auto Power Control) is performed to stabilize the illumination light.
  • APC Auto Power Control
  • some of the fed-back light (light incident on the first to fourth light receiving units 56a to 56d) is return light from the light guide 35 (supplied (irradiated) from the light source 30 to the light guide).
  • it is reflected by the incident end 35a (surface) of the light guide 35 and returned to the light source 30, and is further reflected by the surface of the light source 30 (first to fourth LEDs 30a to 30d) to be reflected by the first to fourth light receiving portions 56a to.
  • Light heading towards 56d is included. Then, there is a problem that the amount of illumination light becomes unstable due to this return light.
  • the first to fourth glass plates 55a to 55d are provided with the first to fourth attenuation filters 58a to 58d for reducing the amount of transmitted illumination light. ..
  • the first attenuation filter 58a is provided on the irradiated surface of the first glass plate 55a
  • the second attenuation filter 58b is provided on the irradiated surface of the second glass plate 55b
  • the irradiated surface of the third glass plate 55c is provided.
  • a third attenuation filter 58c is provided in the above
  • a fourth attenuation filter 58d is provided on the irradiated surface of the fourth glass plate 55d.
  • the return light can be reduced and the amount of illumination light can be stabilized. That is, the return light is first to fourth attenuated twice, going (when going from the light source 30 to the light guide) and returning (when being reflected by the surface of the light guide 35 and returning to the light source 30). It passes through any of the filters 58a to 58d. Therefore, when the first to fourth attenuation filters 58a to 58d attenuate the transmitted light amount to 70% with respect to the incident light amount of 100%, the first to fourth attenuation filters 58a to 58d exist. The return light can be reduced to 49% as compared to the state of no return light of 100%.
  • the first to fourth attenuation filters 58a to 58d are configured by applying an ND (Neutral Density) coating to the irradiated surfaces of the glass plates (first to fourth glass plates 55a to 55d). ing.
  • ND Neutral Density
  • the four light receiving portions (first to fourth light receiving portions 56a to 56d) and the glass plate (first to fourth glass plates) correspond to the four light sources (first to fourth LEDs 30a to 30d).
  • the example of providing 55a to 55d that is, the example in which all four light sources are specific light sources
  • the present invention is not limited thereto.
  • those to be a specific light source can be set as appropriate. Specifically, some light sources do not require or have little need for the above-mentioned feedback-based emission control (APC). For such a light source, the glass plate and the light receiving portion may be abolished so that APC is not performed.
  • APC feedback-based emission control
  • Attenuation filters first to fourth attenuation filters 58a to 58d
  • the invention is not limited to this.
  • the influence of the return light may be small or negligible.
  • the attenuation filter may be abolished for the glass plate corresponding to such a light source.
  • the configuration of the attenuation filter (the rate at which the amount of transmitted light is attenuated) may be different for each light source depending on the magnitude of the influence of the return light.
  • an attenuation filter is provided on the irradiated surface (light source (first to fourth LEDs 30a to 30d) side) of the glass plates (first to fourth glass plates 55a to 55d) has been described.
  • an attenuation filter may be provided on the surface of the glass plate opposite to the irradiated surface (light guide 35 side).
  • a reflection type attenuation filter 60 is provided in addition to the attenuation filters (first to fourth attenuation filters 58a to 58d) described in the first embodiment.
  • the reflection type attenuation filter 60 has a property of attenuating the amount of transmitted illumination light and reflecting a certain ratio of illumination light, and is arranged between the third DM53 (merging member) and the light guide 35. .. With such a configuration, the illumination light that becomes the return light passes through the reflective attenuation filter 60 twice, that is, the light that goes toward the light guide 35 and the return light that is reflected by the light guide 35. Can be reduced.
  • the illumination light from the light source 30 is reflected by the reflective attenuation filter 60 and heads toward the light source 30, but the illumination light (hereinafter referred to as the filter reflected light) is referred to by the endoscope 11.
  • the endoscope 11 is a fixed light whose amount of light can be calculated in advance regardless of the assembly accuracy with the microscope 11. Therefore, the light source control unit 33 can control the light emission of the light source 30 in consideration of the filtered light in advance. By performing such light emission control, the amount of illumination light does not become unstable.
  • a partial reflection filter 65 may be provided instead of the attenuation filter (any or all of the first to fourth attenuation filters 58a to 58d).
  • the partial reflection filter 65 is provided on a part of the irradiated surface of the first to fourth glass plates 55a to 55d (in the example of FIG. 11, about 5% to 10% of the total area of the irradiated surface). It reflects some of the incident illumination light (eg, 4%) and transmits the rest (eg, 96%).
  • an antireflection filter 67 formed by, for example, applying an AR (Anti Reflection) coating is provided on the entire irradiated surface, and is superposed on the antireflection filter 67 (antireflection filter 67).
  • a partial reflection filter 65 is provided (on the light source 30 side).
  • the fourth LED30d that emits purple light LV is provided as a semiconductor light source for acquiring blood vessel information for acquiring blood vessel information of living tissue, but instead of the fourth LED30d or in addition to the fourth LED30d.
  • Other semiconductor light sources for acquiring blood vessel information may be provided.
  • a semiconductor light source that emits blue light in a narrow band with a central wavelength of 473 ⁇ 10 nm may be provided.
  • only the blue, green, and red semiconductor light sources may be used without providing the semiconductor light source for acquiring the blood vessel information.
  • the LED is used as the light source, but a semiconductor light source such as LD (Laser Diode) may be used instead of the LED.
  • LD Laser Diode
  • the observation site in the blood vessel emphasis observation mode, is irradiated with mixed light of white light LW and purple light LV, but purple light and green light, or blue light and green light are applied to the observation site. Irradiation may be performed to obtain a blood vessel-enhanced observation image.
  • the observation sites are simultaneously irradiated with light of a plurality of colors, but these may be sequentially irradiated to image the light of each color individually.
  • a monochrome image sensor as the image sensor 36.
  • the light source device and the processor device are separately configured, but the light source device and the processor device may be configured as one device.
  • the present invention is an endoscope system using a fiber scope that guides the reflected light of an observation portion of illumination light with an image guide, and an ultrasonic endoscope having an imaging element and an ultrasonic transducer built in at the tip. , And the light source device for endoscopes used for it.
  • Endoscope system 11 Endoscope 12 Processor device 13 Light source device (Light source device for endoscope) 14 Monitor 15 Operation input unit 16 Insertion unit 17 Operation unit 18 Universal cord 19 Tip part 20 Curved part 21 Flexible tube part 22 Lighting window 23 Observation window 24 Air supply / water supply nozzle 25 Forceps outlet 26 Angle knob 27 Forceps port 28 Air supply ⁇ Water supply button 29 connector 29a Communication connector 29b Light source connector 30 Light source 30a to 30d 1st to 4th LEDs 31 Optical path integration unit 33 Light source control unit 34 Receptacle connector 35 Light guide 35a Incident end 36 Image sensor 37 AFE 38 Imaging control unit 39 Illumination lens 40 Controller 41 DSP 42 Image processing unit 43 Frame memory 44 Display control circuit 45 Objective optical system 50a to 50d 1st to 4th collimator lenses 51 to 53 1st to 3rd dichroic mirrors (merging members) 54 Condensing lens 55a to 55d 1st to 4th glass plates (optical members) 56a to 56d 1st to 4th light

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)

Abstract

Provided are an endoscope light source device and an endoscope system capable of stabilizing an illumination light amount. A light source device (13) merges illumination light from a plurality of light sources (30) by first to third DMs (51)-(53) and supplies the illumination light to a light guide (35). A first glass plate (55a) is arranged between a first LED (30a) and the first DM (51) and reflects a part of the light entering a surface to be irradiated to a first light-receiving unit (56a). The reflected light enters the first light-receiving unit (56a) through a first slit (57a). The light emission of the first LED (30a) is controlled on the basis of the incident light amount. A first attenuation filter (58a) is provided to the surface to be irradiated of the first glass plate (55a).

Description

内視鏡用光源装置、及び、内視鏡システムLight source device for endoscopes and endoscope system
 本発明は、内視鏡のライトガイドに照明光を供給する内視鏡用光源装置、及び、内視鏡システムに関する。 The present invention relates to an endoscope light source device that supplies illumination light to an endoscope light guide, and an endoscope system.
 医療分野において、内視鏡システムを用いた内視鏡診断が普及している。内視鏡システムは、内視鏡と、内視鏡に照明光を供給するための内視鏡用光源装置と、内視鏡が出力する画像信号を処理するプロセッサ装置とを備えている。内視鏡は、例えば、光ファイバからなるライトガイドを備え、内視鏡用光源装置からの照明光は、ライトガイドに供給され、ライトガイドを介して観察部位(被写体)に照射される。 In the medical field, endoscopic diagnosis using an endoscopic system is widespread. The endoscope system includes an endoscope, a light source device for an endoscope for supplying illumination light to the endoscope, and a processor device for processing an image signal output by the endoscope. The endoscope includes, for example, a light guide made of an optical fiber, and the illumination light from the light source device for the endoscope is supplied to the light guide and irradiates the observation site (subject) via the light guide.
 従来、内視鏡用光源装置には、照明光として白色光を発するキセノンランプやハロゲンランプ等のランプ光源が使用されていたが、最近では、ランプ光源に代えて、特定の色の光を発するレーザダイオード(LD: Laser Diode)や発光ダイオード(LED: Light Emitting Diode)等の半導体光源が用いられつつある。しかし、内視鏡用光源装置で用いられる半導体光源は、高出力であり自己発熱が大きいので、半導体光源に温度変化等が生じて射出光量が変動してしまう。このため、下記特許文献1では、照明光の一部を分岐させて受光部に照射し、受光部が受光した照明光の光量を用いて光源の発光量を制御(調節)している。 Conventionally, a lamp light source such as a xenon lamp or a halogen lamp that emits white light has been used as an illumination light source for an endoscope light source device, but recently, instead of a lamp light source, light of a specific color is emitted. Semiconductor light sources such as a laser diode (LD: LaserDiode) and a light emitting diode (LED: LightEmittingDiode) are being used. However, since the semiconductor light source used in the light source device for an endoscope has a high output and a large amount of self-heating, a temperature change or the like occurs in the semiconductor light source and the amount of emitted light fluctuates. Therefore, in Patent Document 1 below, a part of the illumination light is branched and irradiated to the light receiving portion, and the light emission amount of the light source is controlled (adjusted) by using the light amount of the illumination light received by the light receiving portion.
特開2017-099944号公報JP-A-2017-0999944
 しかしながら、上記特許文献1の装置では、ライトガイドからの戻り光による影響で光量の安定化に限界があった。ここで、ライトガイドからの戻り光とは、光源からライトガイドに供給(照射)されたものの、ライトガイドの表面で反射されて光源まで戻り、さらに光源の表面で反射されて受光部に向かう光を示している。そして、ライトガイドからの戻り光は、内視鏡の個体差及び/または内視鏡と内視鏡用光源装置を接続した場合の組み付け誤差等より変動するため、この変動の影響を受けて光量が不安定となってしまう。 However, in the device of Patent Document 1 above, there is a limit to the stabilization of the amount of light due to the influence of the return light from the light guide. Here, the return light from the light guide is light that is supplied (irradiated) from the light source to the light guide, but is reflected by the surface of the light guide and returned to the light source, and further reflected by the surface of the light source toward the light receiving portion. Is shown. The return light from the light guide fluctuates due to individual differences in the endoscope and / or assembly errors when the endoscope and the light source device for the endoscope are connected. Therefore, the amount of light is affected by this fluctuation. Becomes unstable.
 本発明は、上記課題に鑑みてなされたものであり、安定した光量の照明光を供給できる内視鏡用光源装置、及び、内視鏡システムを提供することを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a light source device for an endoscope capable of supplying a stable amount of illumination light, and an endoscope system.
 上記目的を達成するために、本発明の内視鏡用光源装置は、複数の光源からの照明光を内視鏡のライトガイドに供給する内視鏡用光源装置において、照明光の光路を合流させる合流部材と、複数の光源の中の特定光源と合流部材との間に配置され、特定光源からの照明光が照射される被照射面を有し、被照射面を透過した照明光を合流部材へ向けて出射させる光学部材と、被照射面で反射された照明光を受光する受光部と、受光部が受光した照明光の光量を用いて特定光源の発光量を制御する光源制御部と、光学部材に設けられ、透過する照明光の光量を減衰させる減衰フィルタと、を備えている。 In order to achieve the above object, the light source device for an endoscope of the present invention merges the optical paths of the illumination light in the light source device for an endoscope that supplies illumination light from a plurality of light sources to the light guide of the endoscope. It has an irradiated surface that is arranged between the merging member to be combined and a specific light source and the merging member among a plurality of light sources and is irradiated with the illumination light from the specific light source, and the illumination light transmitted through the irradiated surface is merged. An optical member that emits light toward the member, a light receiving unit that receives the illumination light reflected on the irradiated surface, and a light source control unit that controls the amount of light emitted from a specific light source using the amount of illumination light received by the light receiving unit. It is provided with an attenuation filter provided on the optical member and attenuates the amount of transmitted illumination light.
 合流部材とライトガイドとの間に配置され、透過する照明光の光量を減衰させ、かつ、一定割合の照明光を反射させる反射型減衰フィルタを備えていてもよい。 A reflective attenuation filter that is arranged between the merging member and the light guide, attenuates the amount of transmitted illumination light, and reflects a certain percentage of the illumination light may be provided.
 特定光源が複数設けられ、特定光源毎に、光学部材と受光部と減衰フィルタとが設けられているものでもよい。 A plurality of specific light sources may be provided, and an optical member, a light receiving unit, and an attenuation filter may be provided for each specific light source.
 減衰フィルタ毎に照明光の減衰割合が異なるものでもよい。 The attenuation ratio of the illumination light may be different for each attenuation filter.
 また、本発明の内視鏡用光源装置は、複数の光源からの照明光を内視鏡のライトガイドに供給する内視鏡用光源装置において、照明光の光路を合流させる合流部材と、複数の光源の中の特定光源と合流部材との間に配置され、特定光源からの照明光が照射される被照射面を有し、被照射面を透過した照明光を合流部材へ向けて出射させる光学部材と、被照射面で反射された照明光を受光する受光部と、受光部が受光した照明光の光量を用いて特定光源の発光量を制御する光源制御部と、合流部材とライトガイドとの間に配置され、透過する照明光の光量を減衰させ、かつ、一定割合の照明光を反射させる反射型減衰フィルタと、を備える。 Further, the endoscope light source device of the present invention is an endoscope light source device that supplies illumination light from a plurality of light sources to the light guide of the endoscope, and includes a plurality of confluent members that merge the optical paths of the illumination light. It has an illuminated surface that is arranged between the specific light source and the merging member in the light source of the above and is irradiated with the illumination light from the specific light source, and emits the illumination light transmitted through the illuminated surface toward the merging member. An optical member, a light receiving unit that receives the illumination light reflected by the illuminated surface, a light source control unit that controls the amount of light emitted from a specific light source by using the amount of illumination light received by the light receiving unit, a merging member, and a light guide. It is provided with a reflective attenuation filter, which is arranged between the two, attenuates the amount of transmitted illumination light, and reflects a certain percentage of the illumination light.
 光学部材に設けられ、透過する照明光の光量を減衰させる減衰フィルタを備えているものでもよい。 It may be provided in the optical member and provided with an attenuation filter that attenuates the amount of transmitted illumination light.
 特定光源が複数設けられ、特定光源毎に、光学部材と受光部と減衰フィルタとが設けられているものでもよい。 A plurality of specific light sources may be provided, and an optical member, a light receiving unit, and an attenuation filter may be provided for each specific light source.
 減衰フィルタ毎に照明光の減衰割合が異なるものでもよい。 The attenuation ratio of the illumination light may be different for each attenuation filter.
 被照射面の一部に設けられ、入射した照明光の一部を受光部へ向けて反射し、残りを透過させる部分反射フィルタを備えているものでもよい。 It may be provided with a partial reflection filter provided on a part of the irradiated surface, which reflects a part of the incident illumination light toward the light receiving portion and transmits the rest.
 被照射面に、反射防止フィルタが設けられているものでもよい。 An antireflection filter may be provided on the irradiated surface.
 さらに、本発明の内視鏡システムは、上述した内視鏡用光源装置と、光を導光するライトガイドを有する内視鏡と、を備える。 Further, the endoscope system of the present invention includes the above-mentioned light source device for an endoscope and an endoscope having a light guide for guiding light.
 本発明によれば、ライトガイドからの戻り光の影響を低減させて、安定した光量の照明光を供給できる。 According to the present invention, it is possible to reduce the influence of the return light from the light guide and supply a stable amount of illumination light.
内視鏡システムの外観図である。It is an external view of an endoscope system. 内視鏡の先端部の正面図である。It is a front view of the tip part of an endoscope. 内視鏡システムの電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of an endoscope system. 赤色光、緑色光、青色光、紫色光の強度スペクトルを示すグラフである。It is a graph which shows the intensity spectrum of red light, green light, blue light, and purple light. 白色光の強度スペクトルを示すグラフである。It is a graph which shows the intensity spectrum of white light. 光路統合部の構成を示す図である。It is a figure which shows the structure of the optical path integration part. 第1ダイクロイックミラーの分光反射特性を示すグラフである。It is a graph which shows the spectral reflection characteristic of the 1st dichroic mirror. 第2ダイクロイックミラーの分光反射特性を示すグラフである。It is a graph which shows the spectral reflection characteristic of the 2nd dichroic mirror. 第3ダイクロイックミラーの分光反射特性を示すグラフである。It is a graph which shows the spectral reflection characteristic of the 3rd dichroic mirror. 光路統合部の構成を示す図である。It is a figure which shows the structure of the optical path integration part. 被照射面を光源側から観察した平面図である。It is a top view which observed the irradiated surface from the light source side.
[第1実施形態]
 図1において、内視鏡システム10は、生体内の観察部位を撮像する内視鏡11と、撮像により得られた画像信号に基づいて観察部位の表示画像を生成するプロセッサ装置12と、観察部位を照射する照明光を内視鏡11に供給する内視鏡用光源装置(以下、単に光源装置という)13と、表示画像を表示するモニタ14とを備えている。プロセッサ装置12には、キーボードやマウス等の操作入力部15が接続されている。
[First Embodiment]
In FIG. 1, the endoscope system 10 includes an endoscope 11 that images an observation site in a living body, a processor device 12 that generates a display image of the observation site based on an image signal obtained by imaging, and an observation site. It is provided with a light source device for an endoscope (hereinafter, simply referred to as a light source device) 13 that supplies illumination light to the endoscope 11 and a monitor 14 that displays a display image. An operation input unit 15 such as a keyboard or a mouse is connected to the processor device 12.
 内視鏡システム10は、観察部位を観察するための通常観察モードと、観察部位の粘膜内部に存在する血管を強調して観察するための血管強調観察モードとが実行可能である。血管強調観察モードは、血管情報として血管のパターンを可視化して、腫瘍の良悪鑑別等の診断を行うためのモードである。この血管強調観察モードでは、血中ヘモグロビンに対する吸光度が高い特定の波長帯域の光の成分を多く含む照明光を観察部位に照射する。 The endoscope system 10 can execute a normal observation mode for observing the observation site and a blood vessel emphasis observation mode for emphasizing and observing the blood vessels existing inside the mucous membrane of the observation site. The blood vessel-enhanced observation mode is a mode for visualizing a blood vessel pattern as blood vessel information and making a diagnosis such as distinguishing between good and bad tumors. In this blood vessel-enhanced observation mode, the observation site is irradiated with illumination light containing a large amount of light components in a specific wavelength band having high absorbance for hemoglobin in blood.
 通常観察モードでは、観察部位の全体の観察に適した通常観察画像が表示画像として生成される。血管強調観察モードでは、血管のパターンの観察に適した血管強調観察画像が表示画像として生成される。 In the normal observation mode, a normal observation image suitable for observing the entire observation site is generated as a display image. In the blood vessel-enhanced observation mode, a blood vessel-enhanced observation image suitable for observing a blood vessel pattern is generated as a display image.
 内視鏡11は、例えば、消化管内等の生体内に挿入される挿入部16と、挿入部16の基端部分に設けられた操作部17と、内視鏡11をプロセッサ装置12及び光源装置13に接続するためのユニバーサルコード18とを備えている。挿入部16は、先端部19、湾曲部20、可撓管部21で構成されており、先端側からこの順番に連結されている。 The endoscope 11 includes, for example, an insertion unit 16 that is inserted into a living body such as in the digestive tract, an operation unit 17 provided at the base end portion of the insertion unit 16, and an endoscope 11 as a processor device 12 and a light source device. It is provided with a universal cord 18 for connecting to 13. The insertion portion 16 is composed of a tip portion 19, a curved portion 20, and a flexible tube portion 21, and is connected in this order from the tip side.
 図2において、先端部19の先端面には、観察部位に照明光を照射する照明窓22、観察部位の像を取り込むための観察窓23、観察窓23を洗浄するために送気・送水を行う送気・送水ノズル24、鉗子や電気メスといった処置具を突出させて各種処置を行うための鉗子出口25が設けられている。観察窓23の奥には、撮像素子36や対物光学系45(図3参照)が内蔵されている。 In FIG. 2, on the tip surface of the tip portion 19, an illumination window 22 for irradiating the observation portion with illumination light, an observation window 23 for capturing an image of the observation portion, and air supply / water supply for cleaning the observation window 23 are provided. An air supply / water supply nozzle 24 to be performed, and a forceps outlet 25 for projecting a treatment tool such as a forceps or an electric knife to perform various treatments are provided. An image sensor 36 and an objective optical system 45 (see FIG. 3) are built in the back of the observation window 23.
 図1に戻り、湾曲部20は、連結された複数の湾曲駒で構成されており、操作部17のアングルノブ26の操作に応じて、上下左右方向に湾曲動作する。湾曲部20を湾曲させることにより、先端部19が所望の方向に向けられる。可撓管部21は、可撓性を有しており、食道や腸等曲がりくねった管道に挿入可能である。挿入部16には、撮像素子36を駆動する駆動信号や撮像素子36が出力する画像信号を通信する通信ケーブルや、光源装置13から供給される照明光を照明窓22に導光するライトガイド35(図3参照)が挿通されている。 Returning to FIG. 1, the curved portion 20 is composed of a plurality of connected curved pieces, and bends in the vertical and horizontal directions in response to the operation of the angle knob 26 of the operating portion 17. By bending the curved portion 20, the tip portion 19 is directed in a desired direction. The flexible tube portion 21 has flexibility and can be inserted into a winding tube such as the esophagus or the intestine. The insertion unit 16 includes a communication cable for communicating a drive signal for driving the image sensor 36 and an image signal output by the image sensor 36, and a light guide 35 for guiding the illumination light supplied from the light source device 13 to the illumination window 22. (See FIG. 3) is inserted.
 操作部17には、アングルノブ26の他、処置具を挿入するための鉗子口27、送気・送水ノズル24から送気・送水を行う際に操作される送気・送水ボタン28、静止画像を撮影するためのフリーズボタン(図示せず)等が設けられている。 In addition to the angle knob 26, the operation unit 17 includes a forceps port 27 for inserting a treatment tool, an air supply / water supply button 28 operated when air supply / water supply is performed from the air supply / water supply nozzle 24, and a still image. A freeze button (not shown) for taking a picture of the image is provided.
 ユニバーサルコード18には、挿入部16から延設される通信ケーブルやライトガイド35が挿通されており、プロセッサ装置12及び光源装置13側の一端には、コネクタ29が取り付けられている。コネクタ29は、通信用コネクタ29aと光源用コネクタ29bからなる複合タイプのコネクタである。通信用コネクタ29aと光源用コネクタ29bはそれぞれ、プロセッサ装置12及び光源装置13に着脱自在に接続される。通信用コネクタ29aには通信ケーブルの一端が配設されている。光源用コネクタ29bにはライトガイド35の入射端35a(図3参照)が配設されている。 A communication cable and a light guide 35 extending from the insertion portion 16 are inserted into the universal cord 18, and a connector 29 is attached to one end on the processor device 12 and the light source device 13 side. The connector 29 is a composite type connector including a communication connector 29a and a light source connector 29b. The communication connector 29a and the light source connector 29b are detachably connected to the processor device 12 and the light source device 13, respectively. One end of a communication cable is provided on the communication connector 29a. The light source connector 29b is provided with an incident end 35a (see FIG. 3) of the light guide 35.
 図3において、光源装置13は、光源30と、光路統合部31と、光源制御部33とが設けられている。光源30は、赤色光LRを発する第1LED30aと、緑色光LGを発する第2LED30bと、青色光LBを発する第3LED30cと、紫色光LVを発する第4LED30dとからなる。なお、以下の説明では、第1~第4LED30a~30dのうちの1つについて、または、第1~第4LED30a~30dのうちの複数の組み合わせを代表して、単に光源30と称する場合がある。光路統合部31は、第1~第4LED30a~30dから発せられる各光の光路を統合する(合流させる)。光源制御部33は、第1~第4LED30a~30dの発光制御を行う。 In FIG. 3, the light source device 13 is provided with a light source 30, an optical path integration unit 31, and a light source control unit 33. The light source 30 includes a first LED 30a that emits red light LR, a second LED 30b that emits green light LG, a third LED 30c that emits blue light LB, and a fourth LED 30d that emits purple light LV. In the following description, one of the first to fourth LEDs 30a to 30d, or a plurality of combinations of the first to fourth LEDs 30a to 30d may be simply referred to as a light source 30. The optical path integration unit 31 integrates (merges) the optical paths of the respective lights emitted from the first to fourth LEDs 30a to 30d. The light source control unit 33 controls the light emission of the first to fourth LEDs 30a to 30d.
 図4に示すように、赤色光LRは、例えば、波長帯域が615nm~635nmであり、中心波長が620±10nmである。緑色光LGは、例えば、波長帯域が500nm~600nmであり、中心波長が520±10nmである。青色光LBは、例えば、波長帯域が440nm~470nmであり、中心波長が455±10nmである。そして、紫色光LVは、例えば、波長帯域が395nm~415nmであり、中心波長が405±10nmである。 As shown in FIG. 4, the red light LR has, for example, a wavelength band of 615 nm to 635 nm and a center wavelength of 620 ± 10 nm. The green light LG has, for example, a wavelength band of 500 nm to 600 nm and a center wavelength of 520 ± 10 nm. The blue light LB has, for example, a wavelength band of 440 nm to 470 nm and a center wavelength of 455 ± 10 nm. The purple light LV has, for example, a wavelength band of 395 nm to 415 nm and a central wavelength of 405 ± 10 nm.
 通常観察モード時には、光源制御部33は、第1~第3LED30a~30cを点灯させ、第4LED30dは非点灯とする。一方、血管強調観察モード時には、光源制御部33は、第1~第4LED30a~30dを全て点灯させる。 In the normal observation mode, the light source control unit 33 turns on the first to third LEDs 30a to 30c, and turns off the fourth LED 30d. On the other hand, in the blood vessel emphasis observation mode, the light source control unit 33 turns on all the first to fourth LEDs 30a to 30d.
 また、通常観察モード時には、光路統合部31は、赤色光LR、緑色光LG、青色光LBを合波して、図5に示すように広帯域の白色光LWを生成する。一方、血管強調観察モード時には、白色光LWに、血中ヘモグロビンに対する吸光度が高い紫色光LVを混合した混合光を生成する。なお、光源制御部33は、血管強調観察モード時には、光源制御部33は、青色光LBより紫色光LVのほうが支配的となるように、青色光LBの光量の割合を下げる。 Further, in the normal observation mode, the optical path integration unit 31 combines the red light LR, the green light LG, and the blue light LB to generate a wide band white light LW as shown in FIG. On the other hand, in the blood vessel-enhanced observation mode, mixed light is generated by mixing white light LW with purple light LV having high absorbance for hemoglobin in blood. When the light source control unit 33 is in the blood vessel emphasis observation mode, the light source control unit 33 reduces the ratio of the amount of light of the blue light LB so that the purple light LV is more dominant than the blue light LB.
 光路統合部31の光出射部は、光源用コネクタ29bが接続されるレセプタクルコネクタ34の近傍に配置されている。光路統合部31は、光源30から入射された光を、内視鏡11のライトガイド35の入射端35aに出射する。 The light emitting part of the optical path integrating part 31 is arranged in the vicinity of the receptacle connector 34 to which the light source connector 29b is connected. The optical path integrating unit 31 emits the light incident from the light source 30 to the incident end 35a of the light guide 35 of the endoscope 11.
 内視鏡11は、ライトガイド35と、撮像素子36と、アナログ処理回路(AFE:Analog Front End)37と、撮像制御部38とを備えている。ライトガイド35は、例えば、複数本の光ファイバをバンドル化したファイババンドルである。光源用コネクタ29bが光源装置13に接続されたときに、光源用コネクタ29bに配置されたライトガイド35の入射端35aが光路統合部31の出射端に対向する。先端部19に位置するライトガイド35の出射端は、2つの照明窓22にそれぞれ光が導光されるように、照明窓22の前段で2本に分岐している。 The endoscope 11 includes a light guide 35, an image sensor 36, an analog processing circuit (AFE: Analog Front End) 37, and an image control unit 38. The light guide 35 is, for example, a fiber bundle in which a plurality of optical fibers are bundled. When the light source connector 29b is connected to the light source device 13, the incident end 35a of the light guide 35 arranged in the light source connector 29b faces the exit end of the optical path integrating portion 31. The exit end of the light guide 35 located at the tip portion 19 is branched into two at the front stage of the illumination window 22 so that light is guided to each of the two illumination windows 22.
 照明窓22の奥には、照射レンズ39が配置されている。光源装置13から供給された照明光は、ライトガイド35により照射レンズ39に導光されて照明窓22から観察部位に向けて照射される。照射レンズ39は、凹レンズであり、ライトガイド35から出射する照明光を、観察部位の広い範囲に照射する。 An irradiation lens 39 is arranged behind the illumination window 22. The illumination light supplied from the light source device 13 is guided to the irradiation lens 39 by the light guide 35 and is emitted from the illumination window 22 toward the observation portion. The irradiation lens 39 is a concave lens, and irradiates a wide range of the observation portion with the illumination light emitted from the light guide 35.
 観察窓23の奥には、対物光学系45と撮像素子36が配置されている。観察部位の像は、観察窓23を通して対物光学系45に入射し、対物光学系45によって撮像素子36の撮像面36aに結像される。 The objective optical system 45 and the image sensor 36 are arranged behind the observation window 23. The image of the observation portion is incident on the objective optical system 45 through the observation window 23, and is imaged on the image pickup surface 36a of the image pickup element 36 by the objective optical system 45.
 撮像素子36は、CCDイメージセンサやCMOSイメージセンサ等であり、撮像面36aには、画素を構成する複数の光電変換素子(フォトダイオード)がマトリックス状に配列されている。また、撮像素子36は、カラー撮像素子であり、撮像面36aには、B,G,Rの3色のマイクロカラーフイルタが画素ごとに、光電変換素子の入射側に配置されている。このマイクロカラーフイルタの配列は、例えばベイヤー配列である。 The image sensor 36 is a CCD image sensor, a CMOS image sensor, or the like, and a plurality of photoelectric conversion elements (photodiodes) constituting the pixels are arranged in a matrix on the image pickup surface 36a. Further, the image pickup element 36 is a color image pickup element, and microcolor filters of three colors B, G, and R are arranged on the image pickup surface 36a on the incident side of the photoelectric conversion element for each pixel. The arrangement of this microcolor filter is, for example, the Bayer arrangement.
 撮像素子36は、撮像面36aで受光した光を光電変換して、画素ごとに受光量に応じた信号電荷を蓄積する。信号電荷は、電圧信号に変換されて撮像素子36から読み出される。撮像素子36から読み出された、電圧信号は、画像信号としてAFE37に入力される。 The image sensor 36 photoelectrically converts the light received on the image pickup surface 36a and accumulates a signal charge according to the amount of light received for each pixel. The signal charge is converted into a voltage signal and read out from the image sensor 36. The voltage signal read from the image sensor 36 is input to the AFE 37 as an image signal.
 撮像素子36は、1フレームの取得期間内で、画素に信号電荷を蓄積する蓄積動作と、蓄積した信号電荷を読み出す読み出し動作を行う。光源装置13は、撮像素子36の蓄積動作のタイミングに合わせて照明光を生成し、ライトガイド35に入射させる。 The image sensor 36 performs a storage operation of accumulating signal charges in pixels and a reading operation of reading out the accumulated signal charges within the acquisition period of one frame. The light source device 13 generates illumination light in accordance with the timing of the accumulation operation of the image sensor 36, and causes the illumination light to be incident on the light guide 35.
 AFE37は、相関二重サンプリング(CDS)回路、自動ゲイン制御(AGC)回路、アナログ/デジタル(A/D)変換器等で構成されている。CDS回路は、撮像素子36から入力された画像信号に対して相関二重サンプリング処理を施してノイズを除去する。AGC回路は、CDS回路によりノイズが除去された画像信号を増幅する。A/D変換器は、AGC回路により増幅された画像信号を、所定ビット数のデジタル信号に変換してプロセッサ装置12に入力する。 The AFE37 is composed of a correlated double sampling (CDS) circuit, an automatic gain control (AGC) circuit, an analog / digital (A / D) converter, and the like. The CDS circuit performs a correlated double sampling process on the image signal input from the image sensor 36 to remove noise. The AGC circuit amplifies the image signal from which noise has been removed by the CDS circuit. The A / D converter converts the image signal amplified by the AGC circuit into a digital signal having a predetermined number of bits and inputs it to the processor device 12.
 撮像制御部38は、プロセッサ装置12内のコントローラ40に接続され、コントローラ40から入力される基準クロック信号に同期して、撮像素子36に対して駆動信号を入力する。撮像素子36は、撮像制御部38からの駆動信号に基づいて、所定のフレームレートで画像信号をAFE37に入力する。この画像信号は、R,G,Bの各画素の画素値が混在した信号(以下、RGB信号という)である。 The image pickup control unit 38 is connected to the controller 40 in the processor device 12, and inputs a drive signal to the image pickup element 36 in synchronization with the reference clock signal input from the controller 40. The image sensor 36 inputs an image signal to the AFE 37 at a predetermined frame rate based on the drive signal from the image pickup control unit 38. This image signal is a signal in which the pixel values of the R, G, and B pixels are mixed (hereinafter referred to as RGB signals).
 プロセッサ装置12は、コントローラ40の他、DSP(Digital Signal Processor)41と、画像処理部42と、フレームメモリ43と、表示制御回路44とを備えている。コントローラ40は、CPU、制御プログラムや制御に必要な設定データを記憶するROM、プログラムをロードして作業メモリとして機能するRAM等を有し、CPUが制御プログラムを実行することにより、プロセッサ装置12の各部を制御する。 The processor device 12 includes a DSP (Digital Signal Processor) 41, an image processing unit 42, a frame memory 43, and a display control circuit 44, in addition to the controller 40. The controller 40 has a CPU, a ROM for storing a control program and setting data necessary for control, a RAM for loading the program and functioning as a work memory, and the like. When the CPU executes the control program, the processor device 12 Control each part.
 DSP41は、AFE37から入力される画像信号(RGB信号)に対して、フレーム単位で、画素補間処理、ガンマ補正、ホワイトバランス補正等の信号処理を施す。画素補間処理は、画像信号を、R,G,Bの各画像信号に分離し、各色の画像信号に対して画素補間処理を行う。DSP41は、1フレームごとに信号処理を施した画像信号を、画像データとして、フレームメモリ43に記憶させる。 The DSP 41 performs signal processing such as pixel interpolation processing, gamma correction, and white balance correction on a frame unit for the image signal (RGB signal) input from the AFE 37. In the pixel interpolation processing, the image signal is separated into R, G, and B image signals, and the pixel interpolation processing is performed on the image signals of each color. The DSP 41 stores an image signal that has undergone signal processing for each frame as image data in the frame memory 43.
 また、DSP41は、AFE37から入力される画像信号に基づいて、観察部位の明るさ(平均輝度値)を算出する輝度算出部を有しており、算出した平均輝度値をコントローラ40に入力する。コントローラ40は、輝度算出部から入力された平均輝度値と、基準の明るさ(調光の目標値)との差分である調光信号を生成し、この調光信号を光源装置13の光源制御部33に入力する。 Further, the DSP 41 has a brightness calculation unit that calculates the brightness (average brightness value) of the observation portion based on the image signal input from the AFE 37, and inputs the calculated average brightness value to the controller 40. The controller 40 generates a dimming signal which is the difference between the average brightness value input from the brightness calculation unit and the reference brightness (target value of dimming), and controls the light source of the light source device 13 with this dimming signal. Input to unit 33.
 光源制御部33は、調光信号に基づいて、照明光の光量(光源30(第1~第4LED30a~30d)の発光量)を調整する。具体的には、観察部位の明るさが不足している場合(露出アンダー)には照明光の光量を上げ、観察部位が明るすぎる場合(露出オーバー)には照明光の光量を小さくする。 The light source control unit 33 adjusts the amount of illumination light (the amount of light emitted from the light sources 30 (first to fourth LEDs 30a to 30d)) based on the dimming signal. Specifically, when the brightness of the observation portion is insufficient (underexposure), the amount of illumination light is increased, and when the observation portion is too bright (overexposure), the amount of illumination light is decreased.
 画像処理部42は、フレームメモリ43に記憶された画像データに対して所定の画像処理を施す。具体的には、通常観察モード時には、画像データに基づいて通常観察画像を生成する。一方、血管強調観察モード時には、画像データに基づいて血管強調観察画像を生成するが、表層血管を強調するために、例えば、画像データ中のB信号に基づいて画像内の表層血管の領域を抽出して、抽出した表層血管の領域に対して輪郭強調処理等を施す。そして、輪郭強調処理が施されたB信号を、RGB信号を元に生成したフルカラー画像に合成する。表層血管に加えて中深層血管に対しても同様の処理を行ってもよい。中深層血管を強調する場合には、中深層血管の情報が多く含まれるG信号から中深層血管の領域を抽出して、抽出した中深層血管の領域に対して輪郭強調処理を施す。 The image processing unit 42 performs predetermined image processing on the image data stored in the frame memory 43. Specifically, in the normal observation mode, a normal observation image is generated based on the image data. On the other hand, in the blood vessel-enhanced observation mode, a blood vessel-enhanced observation image is generated based on the image data, but in order to emphasize the surface blood vessel, for example, a region of the surface blood vessel in the image is extracted based on the B signal in the image data. Then, contour enhancement processing or the like is performed on the extracted surface blood vessel region. Then, the B signal subjected to the contour enhancement processing is combined with the full-color image generated based on the RGB signal. The same treatment may be performed on the mesopelagic blood vessels in addition to the superficial blood vessels. When emphasizing the mesopelagic blood vessels, the region of the mesopelagic blood vessels is extracted from the G signal containing a large amount of information on the mesopelagic vessels, and the extracted mesopelagic blood vessel region is subjected to contour enhancement processing.
 表示制御回路44は、フレームメモリ43から画像処理済みの画像データを読み出して、コンポジット信号やコンポーネント信号等のビデオ信号に変換してモニタ14に出力する。 The display control circuit 44 reads the image processed image data from the frame memory 43, converts it into a video signal such as a composite signal or a component signal, and outputs it to the monitor 14.
 血管強調観察モード時には、R信号を使わずに、BG信号のみで血管強調観察画像を生成し、B信号をモニタ14のBチャンネル及びGチャンネルに割り当て、G信号をモニタ14のRチャンネルに割り当てても良い。 In the blood vessel enhancement observation mode, the blood vessel enhancement observation image is generated only by the BG signal without using the R signal, the B signal is assigned to the B channel and the G channel of the monitor 14, and the G signal is assigned to the R channel of the monitor 14. Is also good.
 図6において、光路統合部31は、第1~第4コリメータレンズ(CL)50a~50dと、第1~第3ダイクロイックミラー(DM)51~53(合流部材)と、集光レンズ54とで構成されている。第1~第4CL50a~50dは、それぞれ第1~第4LED30a~30dに対応して設けられており、第1~第4LED30a~30dから発せられた各光をコリメートする。第1~第3DM51~53は、透明なガラス板に所定の透過特性を有するダイクロイックフィルタを形成することにより構成され、特定の波長域の光を透過させ、特定の波長域の光を反射させる。集光レンズ54は、光路統合部31から出射する光をライトガイド35の入射端35aに集光する。 In FIG. 6, the optical path integrating unit 31 includes the first to fourth collimator lenses (CL) 50a to 50d, the first to third dichroic mirrors (DM) 51 to 53 (merging members), and the condenser lens 54. It is configured. The first to fourth CL50a to 50d are provided corresponding to the first to fourth LEDs 30a to 30d, respectively, and collimate each light emitted from the first to fourth LEDs 30a to 30d. The first to third DMs 51 to 53 are configured by forming a dichroic filter having a predetermined transmission characteristic on a transparent glass plate, transmit light in a specific wavelength range, and reflect light in a specific wavelength range. The condensing lens 54 collects the light emitted from the optical path integrating unit 31 at the incident end 35a of the light guide 35.
 第2LED30bは、その光軸がライトガイド35の光軸と一致する位置に配置されている。第1LED30aは、その光軸が第2LED30bの光軸と直交するように配置されている。第1DM51は、第1LED30aと第2LED30bとの光軸が直交する位置に、各光軸と45°の角度をなすように配置されている。同様に、第3LED30cと第4LED30dとは、光軸が直交するように配置されている。第2DM52は、第3LED30cと第4LED30dとの光軸が直交する位置に、各光軸と45°の角度をなすように配置されている。 The optical axis of the second LED 30b is arranged at a position where the optical axis of the second LED 30b coincides with the optical axis of the light guide 35. The first LED 30a is arranged so that its optical axis is orthogonal to the optical axis of the second LED 30b. The first DM51 is arranged at a position where the optical axes of the first LED 30a and the second LED 30b are orthogonal to each other so as to form an angle of 45 ° with each optical axis. Similarly, the third LED 30c and the fourth LED 30d are arranged so that their optical axes are orthogonal to each other. The second DM52 is arranged at a position where the optical axes of the third LED 30c and the fourth LED 30d are orthogonal to each other so as to form an angle of 45 ° with each optical axis.
 第3LED30cの光軸は、第2LED30bの光軸と直交している。第3DM53は、第3LED30cと第2LED30bとの光軸が直交する位置に、各光軸と45°の角度をなすように配置されている。集光レンズ54は、その光軸が第2LED30bの光軸と一致し、かつライトガイド35の入射端35aと対向する位置に配置されている。 The optical axis of the third LED30c is orthogonal to the optical axis of the second LED30b. The third DM53 is arranged at a position where the optical axes of the third LED 30c and the second LED 30b are orthogonal to each other so as to form an angle of 45 ° with each optical axis. The condensing lens 54 is arranged at a position where its optical axis coincides with the optical axis of the second LED 30b and faces the incident end 35a of the light guide 35.
 第1DM51は、図7に示すように、第1閾値λ1(約610nm)以上の波長帯域の光を反射し、第1閾値λ1未満の波長帯域の光を透過させる分光反射特性を有している。第1LED30aから射出される赤色光LRは、その大部分が第1閾値λ1以上の波長帯域である。第2LED30bから射出される緑色光LGは、その大部分が第1閾値λ1未満の波長帯域である。したがって、第1DM51は、赤色光LRを反射し、緑色光LGを透過させる。これにより、第1DM51により反射された赤色光LRと、第1DM51を透過した緑色光LGとが合波される。このように、第1DM51は、照明光(本実施形態では、赤色光LRと緑色光LG)の光路を合流させる合流部材として機能する。 As shown in FIG. 7, the first DM51 has a spectral reflection characteristic that reflects light in a wavelength band equal to or higher than the first threshold value λ1 (about 610 nm) and transmits light in a wavelength band lower than the first threshold value λ1. .. Most of the red light LR emitted from the first LED 30a has a wavelength band of the first threshold value λ1 or more. Most of the green light LG emitted from the second LED 30b is in the wavelength band below the first threshold value λ1. Therefore, the first DM51 reflects the red light LR and transmits the green light LG. As a result, the red light LR reflected by the first DM51 and the green light LG transmitted through the first DM51 are combined. As described above, the first DM51 functions as a merging member for merging the optical paths of the illumination light (in the present embodiment, the red light LR and the green light LG).
 第2DM52は、図8に示すように、第2閾値λ2(約430nm)未満の波長帯域の光を反射し、第2閾値λ2以上の波長帯域の光を透過させる分光反射特性を有している。第3LED30cから射出される青色光LBは、その大部分が第2閾値λ2以上の波長帯域である。第4LED30dから射出される紫色光LVは、その大部分が第2閾値λ2未満の波長帯域である。したがって、第2DM52は、紫色光LVを反射し、青色光LBを透過させる。これにより、第2DM52により反射された紫色光LVと、第2DM52を透過した青色光LBとが合波される。このように、第2DM52は、照明光(本実施形態では、紫色光LVと青色光LB)の光路を合流させる合流部材として機能する。 As shown in FIG. 8, the second DM52 has a spectral reflection characteristic that reflects light in a wavelength band lower than the second threshold value λ2 (about 430 nm) and transmits light in a wavelength band equal to or higher than the second threshold value λ2. .. Most of the blue light LB emitted from the third LED 30c has a wavelength band of the second threshold value λ2 or more. Most of the purple light LV emitted from the fourth LED 30d is in the wavelength band below the second threshold value λ2. Therefore, the second DM52 reflects the purple light LV and transmits the blue light LB. As a result, the purple light LV reflected by the second DM52 and the blue light LB transmitted through the second DM52 are combined. In this way, the second DM52 functions as a merging member that merges the optical paths of the illumination light (in this embodiment, the violet light LV and the blue light LB).
 第3DM53は、図9に示すように、第3閾値λ3(約490nm)未満の波長帯域の光を反射し、第2閾値λ2以上の波長帯域の光を透過させる分光反射特性を有している。第1DM51による赤色光LRと緑色光LGとの合波(以下、第1合波という)は、その大部分が第3閾値λ3以上の波長帯域である。第2DM52による紫色光LVと青色光LBとの合波(以下、第2合波という)は、その大部分が第3閾値λ3未満の波長帯域である。したがって、第3DM53は、第2合波を反射し、第1合波を透過させる。これにより、第3DM53により反射された第2合波と、第3DM53を透過した第1合波とが合波されて、集光レンズ54に入射する。このように、第3DM53は、照明光(本実施形態では、第1合波と第2合波)の光路を合流させる合流部材として機能する。なお、本実施形態では、第1~第3DM51~53の全てが本発明の合流部材として機能するが、第1~第3DM51~53の中の1または2つのみが本発明の合流部材として機能する構成としてもよい。 As shown in FIG. 9, the third DM53 has a spectral reflection characteristic that reflects light in a wavelength band lower than the third threshold value λ3 (about 490 nm) and transmits light in a wavelength band equal to or higher than the second threshold value λ2. .. Most of the combined wave of the red light LR and the green light LG (hereinafter referred to as the first combined wave) by the first DM51 is in the wavelength band of the third threshold value λ3 or more. Most of the combined wave of the purple light LV and the blue light LB by the second DM52 (hereinafter referred to as the second combined wave) is a wavelength band less than the third threshold value λ3. Therefore, the third DM53 reflects the second combined wave and transmits the first combined wave. As a result, the second combined wave reflected by the third DM53 and the first combined wave transmitted through the third DM53 are combined and incident on the condenser lens 54. In this way, the third DM53 functions as a merging member that merges the optical paths of the illumination light (in the present embodiment, the first merging wave and the second merging wave). In the present embodiment, all of the first to third DM51 to 53 function as the merging member of the present invention, but only one or two of the first to third DM51 to 53 function as the merging member of the present invention. It may be configured to be used.
 これにより、血管強調観察モード時には、第1~第4LED30a~30dから射出された赤色光LR、緑色光LG、青色光LB、紫色光LVが全て合波されて集光レンズ54に入射する。通常観察モード時には、第4LED30dは非点灯であるので、紫色光LVを除く、赤色光LR、緑色光LG、青色光LBが合波されて集光レンズ54に入射する。 As a result, in the blood vessel emphasis observation mode, the red light LR, the green light LG, the blue light LB, and the purple light LV emitted from the first to fourth LEDs 30a to 30d are all combined and incident on the condenser lens 54. Since the fourth LED 30d is not lit in the normal observation mode, the red light LR, the green light LG, and the blue light LB, excluding the purple light LV, are combined and incident on the condenser lens 54.
 また、図6に示すように、光路統合部31内には、第1~第4ガラス板55a~55d(光学部材)が配置されている。さらに、図3、図6に示すように、光源装置13には、第1~第4受光部56a~56dが設けられている。 Further, as shown in FIG. 6, the first to fourth glass plates 55a to 55d (optical members) are arranged in the optical path integrating portion 31. Further, as shown in FIGS. 3 and 6, the light source device 13 is provided with the first to fourth light receiving units 56a to 56d.
 第1ガラス板55aは、第1CL50aと第1DM51との間に配置され、照明光が照射される被照射面に入射した光の一部を第1受光部56aへ向けて反射し、残りを第1DM51(合流部材)へ向けて出射させる光学部材として機能する。第1ガラス板55aで反射された光は、第1スリット57aを介して第1受光部56aに入射する。第1受光部56aは、受光量に応じた電流(受光電流)を出力するセンサであり、受光電流は、第1LED30aの発光量を示す発光情報として、光源制御部33(図3参照)に入力される。図3において、光源制御部33は、入力された発光情報に基づいて、第1LED30aの発光制御を行う。 The first glass plate 55a is arranged between the first CL50a and the first DM51, and reflects a part of the light incident on the irradiated surface to which the illumination light is irradiated toward the first light receiving portion 56a, and the rest is the first. It functions as an optical member that emits light toward 1DM51 (merging member). The light reflected by the first glass plate 55a is incident on the first light receiving portion 56a through the first slit 57a. The first light receiving unit 56a is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the first LED 30a. Will be done. In FIG. 3, the light source control unit 33 controls the light emission of the first LED 30a based on the input light emission information.
 また、第2ガラス板55bは、第2CL50bと第1DM51との間に配置され、照明光が照射される被照射面に入射した光の一部を第2受光部56bへ向けて反射し、残りを第1DM51(合流部材)へ向けて出射させる光学部材として機能する。第2ガラス板55bで反射された光は、第2スリット57bを介して第2受光部56bに入射する。第2受光部56bは、受光量に応じた電流(受光電流)を出力するセンサであり、受光電流は、第2LED30bの発光量を示す発光情報として、光源制御部33(図3参照)に入力される。図3において、光源制御部33は、入力された発光情報に基づいて、第2LED30bの発光制御を行う。 Further, the second glass plate 55b is arranged between the second CL50b and the first DM51, and a part of the light incident on the irradiated surface to be irradiated with the illumination light is reflected toward the second light receiving portion 56b, and the rest. Functions as an optical member that emits light toward the first DM51 (merging member). The light reflected by the second glass plate 55b is incident on the second light receiving portion 56b through the second slit 57b. The second light receiving unit 56b is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the second LED 30b. Will be done. In FIG. 3, the light source control unit 33 controls the light emission of the second LED 30b based on the input light emission information.
 同様に、第3ガラス板55cは、第3CL50cと第2DM52との間に配置され、照明光が照射される被照射面に入射した光の一部を第3受光部56cへ向けて反射し、残りを第2DM52(合流部材)へ向けて出射させる光学部材として機能する。第3ガラス板55cで反射された光は、第3スリット57cを介して第3受光部56cに入射する。第3受光部56cは、受光量に応じた電流(受光電流)を出力するセンサであり、受光電流は、第3LED30cの発光量を示す発光情報として、光源制御部33(図3参照)に入力される。図3において、光源制御部33は、入力された発光情報に基づいて、第3LED30cの発光制御を行う。 Similarly, the third glass plate 55c is arranged between the third CL50c and the second DM52, and a part of the light incident on the irradiated surface to be irradiated with the illumination light is reflected toward the third light receiving portion 56c. It functions as an optical member that emits the rest toward the second DM52 (merging member). The light reflected by the third glass plate 55c is incident on the third light receiving portion 56c through the third slit 57c. The third light receiving unit 56c is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the third LED 30c. Will be done. In FIG. 3, the light source control unit 33 controls the light emission of the third LED 30c based on the input light emission information.
 また、第4ガラス板55dは、第4CL50dと第2DM52との間に配置され、照明光が照射される被照射面に入射した光の一部を第4受光部56dへ向けて反射し、残りを第2DM52(合流部材)へ向けて出射させる光学部材として機能する。第4ガラス板55dで反射された光は、第4スリット57dを介して第4受光部56dに入射する。第4受光部56dは、受光量に応じた電流(受光電流)を出力するセンサであり、受光電流は、第4LED30dの発光量を示す発光情報として、光源制御部33(図3参照)に入力される。図3において、光源制御部33は、入力された発光情報に基づいて、第4LED30dの発光制御を行う。なお、本実施形態では、第1~第4ガラス板55a~55dの全てが本発明の光学部材として機能するが、第1~第4ガラス板55a~55dの中の1または2つのみが本発明の光学部材として機能する構成としてもよい。 Further, the fourth glass plate 55d is arranged between the fourth CL50d and the second DM52, and a part of the light incident on the irradiated surface irradiated with the illumination light is reflected toward the fourth light receiving portion 56d, and the rest. Functions as an optical member that emits light toward the second DM52 (merging member). The light reflected by the fourth glass plate 55d is incident on the fourth light receiving portion 56d through the fourth slit 57d. The fourth light receiving unit 56d is a sensor that outputs a current (light receiving current) according to the light receiving amount, and the light receiving current is input to the light source control unit 33 (see FIG. 3) as light emission information indicating the light emitting amount of the fourth LED 30d. Will be done. In FIG. 3, the light source control unit 33 controls the light emission of the fourth LED 30d based on the input light emission information. In the present embodiment, all of the first to fourth glass plates 55a to 55d function as the optical members of the present invention, but only one or two of the first to fourth glass plates 55a to 55d are present. It may be configured to function as the optical member of the present invention.
 このように、光源30の発光量を測定してフィードバックし、これに基づいて光源30の発光制御を行うこと、いわゆる、自動パワー制御(APC:Auto Power Control)を行うことで、照明光の安定供給が可能となる。しかしながら、前述のように、フィードバックされた光(第1~第4受光部56a~56dに入射する光)の中には、ライトガイド35からの戻り光(光源30からライトガイドに供給(照射)されたものの、ライトガイド35の入射端35a(表面)で反射されて光源30まで戻り、さらに光源30(第1~第4LED30a~30d)の表面で反射されて第1~第4受光部56a~56dに向かう光)が含まれる。そして、この戻り光により、照明光の光量が不安定となってしまうといった問題があった。 In this way, the light emission amount of the light source 30 is measured and fed back, and the light emission control of the light source 30 is performed based on this, that is, so-called automatic power control (APC: Auto Power Control) is performed to stabilize the illumination light. Supply becomes possible. However, as described above, some of the fed-back light (light incident on the first to fourth light receiving units 56a to 56d) is return light from the light guide 35 (supplied (irradiated) from the light source 30 to the light guide). However, it is reflected by the incident end 35a (surface) of the light guide 35 and returned to the light source 30, and is further reflected by the surface of the light source 30 (first to fourth LEDs 30a to 30d) to be reflected by the first to fourth light receiving portions 56a to. Light heading towards 56d) is included. Then, there is a problem that the amount of illumination light becomes unstable due to this return light.
 このため、図6に示すように、本実施形態では、第1~第4ガラス板55a~55dに、透過する照明光の光量を減少させる第1~第4減衰フィルタ58a~58dを設けている。具体的には、第1ガラス板55aの被照射面に第1減衰フィルタ58aを設け、第2ガラス板55bの被照射面に第2減衰フィルタ58bを設け、第3ガラス板55cの被照射面に第3減衰フィルタ58cを設け、第4ガラス板55dの被照射面に第4減衰フィルタ58dを設けている。 Therefore, as shown in FIG. 6, in the present embodiment, the first to fourth glass plates 55a to 55d are provided with the first to fourth attenuation filters 58a to 58d for reducing the amount of transmitted illumination light. .. Specifically, the first attenuation filter 58a is provided on the irradiated surface of the first glass plate 55a, the second attenuation filter 58b is provided on the irradiated surface of the second glass plate 55b, and the irradiated surface of the third glass plate 55c is provided. A third attenuation filter 58c is provided in the above, and a fourth attenuation filter 58d is provided on the irradiated surface of the fourth glass plate 55d.
 このように第1~第4減衰フィルタ58a~58dを設けることで、戻り光を減少させ、照明光の光量を安定させることができる。つまり、戻り光は、行き(光源30からライトガイドへ向かう場合)と、戻り(ライトガイド35の表面で反射されて光源30へ戻る場合)との2回に渡って、第1~第4減衰フィルタ58a~58dのいずれかを通る。このため、第1~第4減衰フィルタ58a~58dが、例えば、入射光量100%に対して透過光量を70%に減衰させるものであった場合、第1~第4減衰フィルタ58a~58dが存在しない戻り光100%の状態と比較して、戻り光を49%に減少させることができる。なお、本実施形態では、ガラス板(第1~第4ガラス板55a~55d)の被照射面にND(Neutral Density)コートを施すことによって、第1~第4減衰フィルタ58a~58dを構成している。 By providing the first to fourth attenuation filters 58a to 58d in this way, the return light can be reduced and the amount of illumination light can be stabilized. That is, the return light is first to fourth attenuated twice, going (when going from the light source 30 to the light guide) and returning (when being reflected by the surface of the light guide 35 and returning to the light source 30). It passes through any of the filters 58a to 58d. Therefore, when the first to fourth attenuation filters 58a to 58d attenuate the transmitted light amount to 70% with respect to the incident light amount of 100%, the first to fourth attenuation filters 58a to 58d exist. The return light can be reduced to 49% as compared to the state of no return light of 100%. In the present embodiment, the first to fourth attenuation filters 58a to 58d are configured by applying an ND (Neutral Density) coating to the irradiated surfaces of the glass plates (first to fourth glass plates 55a to 55d). ing.
 上記第1実施形態では、4つの光源(第1~第4LED30a~30d)に対応して4つの受光部(第1~第4受光部56a~56d)及びガラス板(第1~第4ガラス板55a~55d)を設ける例、すなわち、4つの光源の全てが特定光源である例で説明をしたが、本発明はこれに限定されない。光源のうち特定光源とするものについては、適宜設定できる。具体的には、光源の中には、上述したフィードバックによる発光制御(APC)を行う必要がないまたは必要性が低いものもある。このような光源については、ガラス板や受光部を廃止して、APCを行わない構成としてもよい。 In the first embodiment, the four light receiving portions (first to fourth light receiving portions 56a to 56d) and the glass plate (first to fourth glass plates) correspond to the four light sources (first to fourth LEDs 30a to 30d). Although the example of providing 55a to 55d), that is, the example in which all four light sources are specific light sources, the present invention is not limited thereto. Of the light sources, those to be a specific light source can be set as appropriate. Specifically, some light sources do not require or have little need for the above-mentioned feedback-based emission control (APC). For such a light source, the glass plate and the light receiving portion may be abolished so that APC is not performed.
 また、上記第1実施形態では、全てのガラス板(第1~第4ガラス板55a~55d)に減衰フィルタ(第1~第4減衰フィルタ58a~58d)を設ける例で説明をしたが、本発明はこれに限定されない。光源の種類、構成、及び/または発光態様によっては、戻り光の影響が小さいまたは無視できる場合がある。このような光源に対応するガラス板については、減衰フィルタを廃止してもよい。もちろん、戻り光の影響の大きさなどによって光源毎に減衰フィルタの構成(透過光量を減衰させる割合)を異ならせてもよい。 Further, in the first embodiment described above, an example in which attenuation filters (first to fourth attenuation filters 58a to 58d) are provided on all the glass plates (first to fourth glass plates 55a to 55d) has been described. The invention is not limited to this. Depending on the type, configuration, and / or light emission mode of the light source, the influence of the return light may be small or negligible. The attenuation filter may be abolished for the glass plate corresponding to such a light source. Of course, the configuration of the attenuation filter (the rate at which the amount of transmitted light is attenuated) may be different for each light source depending on the magnitude of the influence of the return light.
 また、上記第1実施形態では、ガラス板(第1~第4ガラス板55a~55d)の被照射面(光源(第1~第4LED30a~30d)側)に減衰フィルタを設ける例で説明をしたが、ガラス板の被照射面とは反対側の面(ライトガイド35側)に減衰フィルタを設けてもよい。 Further, in the first embodiment, an example in which an attenuation filter is provided on the irradiated surface (light source (first to fourth LEDs 30a to 30d) side) of the glass plates (first to fourth glass plates 55a to 55d) has been described. However, an attenuation filter may be provided on the surface of the glass plate opposite to the irradiated surface (light guide 35 side).
[第2実施形態]
 図10に示すように、第2実施形態では、第1実施形態で説明した減衰フィルタ(第1~第4減衰フィルタ58a~58d)に加えて、反射型減衰フィルタ60を設けている。反射型減衰フィルタ60は、透過する照明光の光量を減衰させ、かつ、一定割合の照明光を反射させる特性を有し、第3DM53(合流部材)とライトガイド35との間に配置されている。このような構成とすることで、戻り光となる照明光がライトガイド35に向かう行きとライトガイド35で反射された戻りとの2回に渡って反射型減衰フィルタ60を通ることので、戻り光を減少できる。なお、光源30からの照明光のうち一定割合については、反射型減衰フィルタ60で反射されて光源30側へと向かうが、この照明光(以下、フィルタ反射光)については、内視鏡11の個体差、及び/または、光源装置13と内視鏡11との組み付け精度などにより変動する変動光である戻り光とは異なり、内視鏡11の個体差、及び/または、光源装置13と内視鏡11との組み付け精度などによらず予め光量が計算できる固定光である。よって、光源制御部33が、予めフィルタ反射光を考慮に入れて光源30の発光制御を行うことが可能である。そして、このような発光制御を行うことで、照明光の光量が不安定になるといったことがない。
[Second Embodiment]
As shown in FIG. 10, in the second embodiment, in addition to the attenuation filters (first to fourth attenuation filters 58a to 58d) described in the first embodiment, a reflection type attenuation filter 60 is provided. The reflection type attenuation filter 60 has a property of attenuating the amount of transmitted illumination light and reflecting a certain ratio of illumination light, and is arranged between the third DM53 (merging member) and the light guide 35. .. With such a configuration, the illumination light that becomes the return light passes through the reflective attenuation filter 60 twice, that is, the light that goes toward the light guide 35 and the return light that is reflected by the light guide 35. Can be reduced. A certain percentage of the illumination light from the light source 30 is reflected by the reflective attenuation filter 60 and heads toward the light source 30, but the illumination light (hereinafter referred to as the filter reflected light) is referred to by the endoscope 11. Unlike the return light, which is fluctuating light that varies depending on individual differences and / or the assembly accuracy of the light source device 13 and the endoscope 11, the individual differences of the endoscope 11 and / or the light source device 13 and the inside. It is a fixed light whose amount of light can be calculated in advance regardless of the assembly accuracy with the microscope 11. Therefore, the light source control unit 33 can control the light emission of the light source 30 in consideration of the filtered light in advance. By performing such light emission control, the amount of illumination light does not become unstable.
 なお、第2実施形態では、反射型減衰フィルタ60により、戻り光を減少できるので、第1~第4減衰フィルタ58a~58dの一部または全部を廃止してもよい。また、減衰フィルタ(第1~第4減衰フィルタ58a~58dのいずれかまたは全部)に変えて、図11に示すように、部分反射フィルタ65を設けてもよい。図11において、部分反射フィルタ65は、第1~第4ガラス板55a~55dの被照射面の一部(図11の例では、被照射面の総面積の5%~10%程度)に設けられており、入射した照明光の一部(例えば、4%)を反射し、残り(例えば、96%)を透過させる。また、図11の例では、被照射面全体に、例えば、AR(Anti Reflection)コートを施すなどして形成された反射防止フィルタ67を設け、この反射防止フィルタ67に重ねて(反射防止フィルタ67よりも光源30側に)部分反射フィルタ65を設けている。 In the second embodiment, since the return light can be reduced by the reflective attenuation filter 60, a part or all of the first to fourth attenuation filters 58a to 58d may be abolished. Further, as shown in FIG. 11, a partial reflection filter 65 may be provided instead of the attenuation filter (any or all of the first to fourth attenuation filters 58a to 58d). In FIG. 11, the partial reflection filter 65 is provided on a part of the irradiated surface of the first to fourth glass plates 55a to 55d (in the example of FIG. 11, about 5% to 10% of the total area of the irradiated surface). It reflects some of the incident illumination light (eg, 4%) and transmits the rest (eg, 96%). Further, in the example of FIG. 11, an antireflection filter 67 formed by, for example, applying an AR (Anti Reflection) coating is provided on the entire irradiated surface, and is superposed on the antireflection filter 67 (antireflection filter 67). A partial reflection filter 65 is provided (on the light source 30 side).
 また、上記実施形態では、生体組織の血管情報を取得するための血管情報取得用半導体光源として、紫色光LVを発する第4LED30dを設けているが、第4LED30dに代えて、または第4LED30dに加えて、他の血管情報取得用半導体光源を設けてもよい。例えば、血管情報として血中ヘモグロビンの酸素飽和度を取得するために、中心波長473±10nmの狭帯域の青色光を発する半導体光源を設けても良い。もちろん、血管情報観察を行わない場合には、血管情報取得用半導体光源を設けず、青色、緑色、赤色半導体光源のみとしても良い。 Further, in the above embodiment, the fourth LED30d that emits purple light LV is provided as a semiconductor light source for acquiring blood vessel information for acquiring blood vessel information of living tissue, but instead of the fourth LED30d or in addition to the fourth LED30d. , Other semiconductor light sources for acquiring blood vessel information may be provided. For example, in order to acquire the oxygen saturation of hemoglobin in blood as blood vessel information, a semiconductor light source that emits blue light in a narrow band with a central wavelength of 473 ± 10 nm may be provided. Of course, when the blood vessel information is not observed, only the blue, green, and red semiconductor light sources may be used without providing the semiconductor light source for acquiring the blood vessel information.
 また、上記実施形態では、光源としてLEDを用いているが、LEDに代えてLD(Laser Diode)等の半導体光源を用いても良い。 Further, in the above embodiment, the LED is used as the light source, but a semiconductor light source such as LD (Laser Diode) may be used instead of the LED.
 また、上記実施形態では、血管強調観察モードでは、白色光LWと紫色光LVとの混合光を観察部位に照射しているが、紫色光及び緑色光、あるいは青色光及び緑色光を観察部位に照射して血管強調観察画像を取得してもよい。 Further, in the above embodiment, in the blood vessel emphasis observation mode, the observation site is irradiated with mixed light of white light LW and purple light LV, but purple light and green light, or blue light and green light are applied to the observation site. Irradiation may be performed to obtain a blood vessel-enhanced observation image.
 また、上記実施形態では、複数色の光を観察部位に同時照射しているが、これらを順次に照射して、各色の光を個別に撮像しても良い。この場合には、撮像素子36としてモノクロ撮像素子を用いることが好ましい。 Further, in the above embodiment, the observation sites are simultaneously irradiated with light of a plurality of colors, but these may be sequentially irradiated to image the light of each color individually. In this case, it is preferable to use a monochrome image sensor as the image sensor 36.
 また、上記実施形態では、光源装置とプロセッサ装置とを別体構成としているが、光源装置とプロセッサ装置と1つの装置で構成してもよい。また、本発明は、照明光の観察部位の反射光をイメージガイドで導光するファイバスコープや、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡を用いた内視鏡システム、及びそれに用いられる内視鏡用光源装置にも適用可能である。 Further, in the above embodiment, the light source device and the processor device are separately configured, but the light source device and the processor device may be configured as one device. Further, the present invention is an endoscope system using a fiber scope that guides the reflected light of an observation portion of illumination light with an image guide, and an ultrasonic endoscope having an imaging element and an ultrasonic transducer built in at the tip. , And the light source device for endoscopes used for it.
 10 内視鏡システム
 11 内視鏡
 12 プロセッサ装置
 13 光源装置(内視鏡用光源装置)
 14 モニタ
 15 操作入力部
 16 挿入部
 17 操作部
 18 ユニバーサルコード
 19 先端部
 20 湾曲部
 21 可撓管部
 22 照明窓
 23 観察窓
 24 送気・送水ノズル
 25 鉗子出口
 26 アングルノブ
 27 鉗子口
 28 送気・送水ボタン
 29 コネクタ
 29a 通信用コネクタ
 29b 光源用コネクタ
 30 光源
 30a~30d 第1~第4LED
 31 光路統合部
 33 光源制御部
 34 レセプタクルコネクタ
 35 ライトガイド
 35a 入射端
 36 撮像素子
 37 AFE
 38 撮像制御部
 39 照明レンズ
 40 コントローラ
 41 DSP
 42 画像処理部
 43 フレームメモリ
 44 表示制御回路
 45 対物光学系
 50a~50d 第1~第4コリメータレンズ
 51~53 第1~第3ダイクロイックミラー(合流部材)
 54 集光レンズ
 55a~55d 第1~第4ガラス板(光学部材)
 56a~56d 第1~第4受光部
 57a~57d 第1~第4スリット
 58a~58d 第1~第4減衰フィルタ
 60 反射型減衰フィルタ
 65 部分反射フィルタ
 67 反射防止フィルタ
 LR 赤色光
 LG 緑色光
 LB 青色光
 LV 紫色光
 λ1 第1閾値
 λ2 第2閾値
 λ3 第3閾値
10 Endoscope system 11 Endoscope 12 Processor device 13 Light source device (Light source device for endoscope)
14 Monitor 15 Operation input unit 16 Insertion unit 17 Operation unit 18 Universal cord 19 Tip part 20 Curved part 21 Flexible tube part 22 Lighting window 23 Observation window 24 Air supply / water supply nozzle 25 Forceps outlet 26 Angle knob 27 Forceps port 28 Air supply・ Water supply button 29 connector 29a Communication connector 29b Light source connector 30 Light source 30a to 30d 1st to 4th LEDs
31 Optical path integration unit 33 Light source control unit 34 Receptacle connector 35 Light guide 35a Incident end 36 Image sensor 37 AFE
38 Imaging control unit 39 Illumination lens 40 Controller 41 DSP
42 Image processing unit 43 Frame memory 44 Display control circuit 45 Objective optical system 50a to 50d 1st to 4th collimator lenses 51 to 53 1st to 3rd dichroic mirrors (merging members)
54 Condensing lens 55a to 55d 1st to 4th glass plates (optical members)
56a to 56d 1st to 4th light receiving parts 57a to 57d 1st to 4th slits 58a to 58d 1st to 4th attenuation filter 60 Reflection type attenuation filter 65 Partial reflection filter 67 Antireflection filter LR Red light LG Green light LB Blue Light LV Purple light λ1 First threshold λ2 Second threshold λ3 Third threshold

Claims (11)

  1.  複数の光源からの照明光を内視鏡のライトガイドに供給する内視鏡用光源装置において、
     前記照明光の光路を合流させる合流部材と、
     前記複数の光源の中の特定光源と前記合流部材との間に配置され、前記特定光源からの照明光が照射される被照射面を有し、前記被照射面を透過した照明光を前記合流部材へ向けて出射させる光学部材と、
     前記被照射面で反射された照明光を受光する受光部と、
     前記受光部が受光した照明光の光量を用いて前記特定光源の発光量を制御する光源制御部と、
     前記光学部材に設けられ、透過する照明光の光量を減衰させる減衰フィルタと、を備えた内視鏡用光源装置。
    In an endoscope light source device that supplies illumination light from a plurality of light sources to the light guide of the endoscope.
    With the merging member that merges the optical paths of the illumination light,
    It has an irradiated surface that is arranged between the specific light source in the plurality of light sources and the merging member and is irradiated with the illumination light from the specific light source, and the illumination light transmitted through the irradiated surface is merged. An optical member that emits light toward the member,
    A light receiving unit that receives the illumination light reflected by the irradiated surface and
    A light source control unit that controls the amount of light emitted from the specific light source by using the amount of illumination light received by the light receiving unit.
    A light source device for an endoscope provided on the optical member and provided with an attenuation filter for attenuating the amount of transmitted illumination light.
  2.  前記合流部材と前記ライトガイドとの間に配置され、透過する照明光の光量を減衰させ、かつ、一定割合の照明光を反射させる反射型減衰フィルタを備えた請求項1記載の内視鏡用光源装置。 The endoscope according to claim 1, further comprising a reflective attenuation filter that is arranged between the merging member and the light guide, attenuates the amount of transmitted illumination light, and reflects a certain proportion of the illumination light. Light source device.
  3.  前記特定光源が複数設けられ、
     前記特定光源毎に、前記光学部材と前記受光部と前記減衰フィルタとが設けられている、請求項1または2記載の内視鏡用光源装置。
    A plurality of the specific light sources are provided,
    The light source device for an endoscope according to claim 1 or 2, wherein the optical member, the light receiving portion, and the attenuation filter are provided for each specific light source.
  4.  前記減衰フィルタ毎に前記照明光の減衰割合が異なる請求項3記載の内視鏡用光源装置。 The light source device for an endoscope according to claim 3, wherein the attenuation ratio of the illumination light is different for each attenuation filter.
  5.  複数の光源からの照明光を内視鏡のライトガイドに供給する内視鏡用光源装置において、
     前記照明光の光路を合流させる合流部材と、
     前記複数の光源の中の特定光源と前記合流部材との間に配置され、前記特定光源からの照明光が照射される被照射面を有し、前記被照射面を透過した照明光を前記合流部材へ向けて出射させる光学部材と、
     前記被照射面で反射された照明光を受光する受光部と、
     前記受光部が受光した照明光の光量を用いて前記特定光源の発光量を制御する光源制御部と、
     前記合流部材と前記ライトガイドとの間に配置され、透過する照明光の光量を減衰させ、かつ、一定割合の照明光を反射させる反射型減衰フィルタと、を備えた内視鏡用光源装置。
    In an endoscope light source device that supplies illumination light from a plurality of light sources to the light guide of the endoscope.
    With the merging member that merges the optical paths of the illumination light,
    It has an irradiated surface that is arranged between the specific light source in the plurality of light sources and the merging member and is irradiated with the illumination light from the specific light source, and the illumination light transmitted through the irradiated surface is merged. An optical member that emits light toward the member,
    A light receiving unit that receives the illumination light reflected by the irradiated surface and
    A light source control unit that controls the amount of light emitted from the specific light source by using the amount of illumination light received by the light receiving unit.
    A light source device for an endoscope, which is arranged between the merging member and the light guide, and includes a reflective attenuation filter that attenuates the amount of transmitted illumination light and reflects a certain proportion of the illumination light.
  6.  前記光学部材に設けられ、透過する照明光の光量を減衰させる減衰フィルタを備えた請求項5記載の内視鏡用光源装置。 The light source device for an endoscope according to claim 5, which is provided on the optical member and includes an attenuation filter for attenuating the amount of transmitted illumination light.
  7.  前記特定光源が複数設けられ、
     前記特定光源毎に、前記光学部材と前記受光部と前記減衰フィルタとが設けられた請求項6記載の内視鏡用光源装置。
    A plurality of the specific light sources are provided,
    The light source device for an endoscope according to claim 6, wherein the optical member, the light receiving portion, and the attenuation filter are provided for each specific light source.
  8.  前記減衰フィルタ毎に前記照明光の減衰割合が異なる請求項7記載の内視鏡用光源装置。 The light source device for an endoscope according to claim 7, wherein the attenuation ratio of the illumination light is different for each attenuation filter.
  9.  前記被照射面の一部に設けられ、入射した照明光の一部を前記受光部へ向けて反射し、残りを透過させる部分反射フィルタを備えた請求項1~8のいずれか1項に記載の内視鏡用光源装置。 The invention according to any one of claims 1 to 8, further comprising a partial reflection filter provided on a part of the irradiated surface, which reflects a part of the incident illumination light toward the light receiving portion and transmits the rest. Light source device for endoscopes.
  10.  前記被照射面に、反射防止フィルタが設けられた請求項1~9のいずれか1項に記載の内視鏡用光源装置。 The light source device for an endoscope according to any one of claims 1 to 9, wherein an antireflection filter is provided on the irradiated surface.
  11.  請求項1~10いずれか1項に記載の内視鏡用光源装置と、
     光を導光するライトガイドを有する内視鏡と、を備えた内視鏡システム。
    The light source device for an endoscope according to any one of claims 1 to 10.
    An endoscope system including an endoscope having a light guide that guides light.
PCT/JP2020/014067 2019-04-22 2020-03-27 Endoscope light source device and endoscope system WO2020217852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021515904A JP7163487B2 (en) 2019-04-22 2020-03-27 Endoscope light source device and endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081156 2019-04-22
JP2019081156 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020217852A1 true WO2020217852A1 (en) 2020-10-29

Family

ID=72942029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014067 WO2020217852A1 (en) 2019-04-22 2020-03-27 Endoscope light source device and endoscope system

Country Status (2)

Country Link
JP (1) JP7163487B2 (en)
WO (1) WO2020217852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114305300A (en) * 2022-02-25 2022-04-12 杭州莱恩瑟特医疗技术有限公司 Oscillating filter, illuminating device for endoscope, and medical endoscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306411A (en) * 2001-04-10 2002-10-22 Asahi Optical Co Ltd Processor for electroscope
JP2012213441A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Electronic endoscope, and electronic endoscope system
WO2015159676A1 (en) * 2014-04-17 2015-10-22 オリンパス株式会社 Light source device
JP2017225806A (en) * 2016-06-17 2017-12-28 富士フイルム株式会社 Light source device and endoscope system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100674B2 (en) 2013-11-01 2017-03-22 富士フイルム株式会社 Endoscope light source device and endoscope system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306411A (en) * 2001-04-10 2002-10-22 Asahi Optical Co Ltd Processor for electroscope
JP2012213441A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Electronic endoscope, and electronic endoscope system
WO2015159676A1 (en) * 2014-04-17 2015-10-22 オリンパス株式会社 Light source device
JP2017225806A (en) * 2016-06-17 2017-12-28 富士フイルム株式会社 Light source device and endoscope system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114305300A (en) * 2022-02-25 2022-04-12 杭州莱恩瑟特医疗技术有限公司 Oscillating filter, illuminating device for endoscope, and medical endoscope
CN114305300B (en) * 2022-02-25 2022-06-07 杭州莱恩瑟特医疗技术有限公司 Oscillating filter, illuminating device for endoscope, and medical endoscope

Also Published As

Publication number Publication date
JPWO2020217852A1 (en) 2020-10-29
JP7163487B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
JP7011000B2 (en) Light source device for endoscopes
JP5997676B2 (en) Endoscope light source device and endoscope system using the same
JP5303012B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP5457247B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP5623469B2 (en) ENDOSCOPE SYSTEM, ENDOSCOPE SYSTEM PROCESSOR DEVICE, AND ENDOSCOPE CONTROL PROGRAM
JP6100674B2 (en) Endoscope light source device and endoscope system
JP5762344B2 (en) Image processing apparatus and endoscope system
JP5623470B2 (en) ENDOSCOPE SYSTEM, ENDOSCOPE SYSTEM PROCESSOR DEVICE, AND ENDOSCOPE CONTROL PROGRAM
US11039739B2 (en) Endoscope system
EP2666403B1 (en) Endoscope system and processor device thereof
JP5780653B2 (en) Light source device and endoscope system
JP2016174976A (en) Endoscope system
JP6017670B2 (en) Endoscope system, operation method thereof, and processor device
WO2020217852A1 (en) Endoscope light source device and endoscope system
JP6325707B2 (en) Endoscope light source device and endoscope system
JP6438830B2 (en) Position adjustment method
JP6454755B2 (en) Endoscope system
JP7235832B2 (en) endoscope system
JP5965028B2 (en) Endoscope system
JP2019030743A (en) Light source device for endoscope, endoscope system, and position adjusting method
JP6970777B2 (en) Endoscope system
JP7054401B2 (en) Light source device for endoscopes
JP2022079732A (en) Position adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794646

Country of ref document: EP

Kind code of ref document: A1