WO2020217583A1 - Power supply unit, non-combustion type suction device, control program for non-combustion type suction device, and control method for non-combustion type suction device - Google Patents

Power supply unit, non-combustion type suction device, control program for non-combustion type suction device, and control method for non-combustion type suction device Download PDF

Info

Publication number
WO2020217583A1
WO2020217583A1 PCT/JP2019/049216 JP2019049216W WO2020217583A1 WO 2020217583 A1 WO2020217583 A1 WO 2020217583A1 JP 2019049216 W JP2019049216 W JP 2019049216W WO 2020217583 A1 WO2020217583 A1 WO 2020217583A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
pressure
determination
unit
power supply
Prior art date
Application number
PCT/JP2019/049216
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 赤尾
将之 辻
典幸 大石
太一 佐々木
Original Assignee
日本たばこ産業株式会社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社, 株式会社村田製作所 filed Critical 日本たばこ産業株式会社
Publication of WO2020217583A1 publication Critical patent/WO2020217583A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present invention relates to a power supply unit, a non-combustion type suction device, a non-combustion type suction device control program, and a non-combustion type suction device control method.
  • Patent Document 1 discloses an electronic cigarette including a capacitance type pressure sensor, a piezoresistive type pressure sensor, and the like as a barometric pressure sensor.
  • an object of the present invention is to provide a power supply unit, a non-combustion type suction device, a non-combustion type suction device control program, and a non-combustion type suction device control method capable of accurately detecting suction.
  • the power supply unit includes an acquisition unit that sequentially acquires atmospheric pressure data indicating atmospheric pressure at a predetermined time, and atmospheric pressure and reference atmospheric pressure indicated by the atmospheric pressure data.
  • a determination unit that determines whether or not the reference pressure drop state in which the difference exceeds the first reference pressure determination threshold continues beyond the reference pressure determination time, and the reference pressure decrease state is for the reference pressure determination. It is provided with a resetting unit for resetting the reference atmospheric pressure when it is determined that the air pressure has continued for more than a certain period of time.
  • the power supply unit according to the embodiment (1) is further provided with an update unit that updates the reference pressure at a predetermined time, and the determination unit has the updated reference pressure and the reference pressure before the update. It is further determined whether or not the difference exceeds the second reference pressure determination threshold, and the difference between the updated reference pressure and the pre-update reference pressure is the second reference pressure determination threshold. If it is determined that the pressure is exceeded, the reference pressure may be reset.
  • the reference pressure is a moving average of the atmospheric pressures indicated by each of the predetermined number of the atmospheric pressure data
  • the determination unit is the atmospheric pressure acquired by the acquisition unit. It is further determined whether or not the difference between the atmospheric pressure indicated by the data and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold, and the update unit includes the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit and the reference atmospheric pressure.
  • the reference pressure is updated by calculating the moving average including the pressure whose difference from the reference pressure is equal to or less than the reference pressure update threshold. You may.
  • the determination unit in the determination unit, the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold. It is further determined whether or not the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time, and it is determined that the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time. In this case, a control unit for stopping the power supply unit may be further provided.
  • the determination unit in the determination unit, the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the suction detection threshold value. It may be further determined whether or not it is in the suction state, and if it is determined that it is in the suction state, a control unit for operating the heater may be further provided.
  • the non-combustion type suction device includes a power supply unit according to any one of the above (1) to (5).
  • the non-combustion type aspirator control program has an acquisition function for sequentially acquiring atmospheric pressure data indicating atmospheric pressure at a predetermined time, and the atmospheric pressure data. The difference between the atmospheric pressure indicated by and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold.
  • the determination function for determining whether or not the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time, and the reference atmospheric pressure. When it is determined that the lowering state continues beyond the reference pressure determination time, the reset function for resetting the reference pressure is realized.
  • the non-combustion type aspirator control method includes an acquisition step of sequentially acquiring atmospheric pressure data indicating atmospheric pressure at a predetermined time, and an atmospheric pressure indicated by the atmospheric pressure data.
  • suction can be detected accurately.
  • FIG. 1 is a perspective view of a non-combustion type suction device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the non-combustion type suction device according to the embodiment of the present invention.
  • the non-combustion type suction device 1 includes a cartridge case 2, a mouthpiece 3, and a power supply unit 4.
  • the cartridge case 2 houses the reservoir and the heater.
  • a reservoir is a container that stores a liquid for generating an aerosol.
  • the heater heats and atomizes the liquid supplied from the reservoir to produce an aerosol.
  • the heater operates by the electric power supplied from the power supply unit 4.
  • the cartridge case 2 includes the hole 2H shown in FIG.
  • the hole 2H introduces air into the cartridge case 2 from the outside of the cartridge case 2 when the user sucks the aerosol in the cartridge case 2 and the pressure inside the cartridge case 2 is lower than the atmospheric pressure. ..
  • the mouthpiece 3 is a cylindrical member that the user holds in the mouth when sucking the aerosol, and stores a capsule filled with cigarettes.
  • the air introduced into the cartridge case 2 through the hole 2H enters the inside of the mouthpiece 3 together with the aerosol atomized by the heater.
  • the aerosol is then aspirated by the user after being flavored by the tobacco filled in the capsule.
  • the power supply unit 4 supplies electric power to each part of the non-combustion type suction device 1 and appropriately controls each part of the non-combustion type suction device 1.
  • the power supply unit 4 includes a case 401, a holder 402, a battery 403, a tab 404, an insulating paper 405, a USB (Universal Serial Bus) board 406, a stopper 407, and an insulating tape 408.
  • Button 409 translucent member 410, first circuit board 411, FPC (Flexible Printed Circuits) 412, connection member 413, board holder 414, olling 415, second circuit board 416, and so on. It includes a packing 417 and an FPC 418.
  • the side of the non-combustion type suction device 1 where the mouthpiece 3 is located is referred to as the suction side
  • the side where the power supply unit 4 is located is referred to as the tip side.
  • Case 401 is, for example, a cylindrical member made of metal or resin.
  • Case 401 includes holder 402, battery 403, tab 404, insulating paper 405, USB board 406, stopper 407, insulating tape 408, button 409, translucent member 410, first circuit board 411, FPC (Flexible Printed Circuits) 412, It houses the board holder 414, the olling 415, the second circuit board 416, the packing 417, and the FPC 418. Further, the case 401 includes a hole 401H. A part of the translucent member 410 and the button 409 are inserted into the hole 401H.
  • the holder 402 is, for example, a semi-cylindrical member made of resin.
  • the holder 402 holds the battery 403, the tab 404, the insulating paper 405, the USB board 406, the stopper 407, the button 409, the translucent member 410, and the first circuit board 411.
  • the battery 403 is, for example, a cylindrical primary battery or a secondary battery, and supplies electric power to each part of the non-combustion type suction device 1.
  • the battery 403 is housed in the semi-cylindrical space of the holder 402 with the positive electrode terminal facing the tip side and the negative electrode terminal facing the suction side, for example.
  • the tab 404 is made of a conductive material and directs the output from the positive electrode terminal of the battery 403 towards the negative electrode terminal of the battery 403.
  • the insulating paper 405 is inserted in the gap between the negative electrode terminal of the battery 403 and the tab 404, and electrically insulates the two. Further, the insulating paper 405 is inserted in the gap between the positive electrode terminal of the battery 403 and the USB substrate 406, and electrically insulates both of them.
  • the USB board 406 is a circuit board to which terminals for connecting USB cables and other electronic components are attached. This USB cable is used, for example, for charging the battery 403 and communicating with other devices.
  • the other devices referred to here are, for example, smartphones and tablets.
  • the stopper 407 is a member that fixes the USB board 406 to the holder 402.
  • the insulating tape 408 is wound around the side surface of the holder 402 and the battery 403 with the battery 403 housed in the semi-cylindrical space of the holder 402. As a result, the insulating tape 408 fixes the battery 403 to the holder 402.
  • the button 409 is inserted into the hole 401H provided in the case 401.
  • Button 409 is used to operate the non-combustion aspirator 1.
  • the translucent member 410 is a semi-cylindrical member made of a material that transmits at least a part of the light incident on itself, for example, glass or polycarbonate. A part of the light transmitting member 410 is inserted into the hole 401H provided in the case 401 to fill the gap between the button 409 and the hole 401H. Further, the translucent member 410 is housed in the case 401 in a state where the edge substantially parallel to the central axis of the semi-cylinder is in contact with the edge substantially parallel to the central axis of the semi-cylinder of the holder 402.
  • the first circuit board 411 is a circuit board on which a switch 411A, an LED (Light Emitting Diode) chip 411B, electronic components constituting a circuit for controlling a power supply unit 4, and other electronic components are mounted.
  • the switch 411A switches between a conductive state and a non-conducting state when the button 409 is pressed.
  • the LED chip 411B includes, for example, a full-color type LED capable of outputting light having a wide range of wavelengths.
  • the first circuit board 411 is arranged between the holder 402 and the translucent member 410.
  • the FPC 412 electrically connects the electronic component mounted on the USB board 406 and the electronic component mounted on the first circuit board 411.
  • FIG. 3 is a cross-sectional view of the suction side of the power supply unit according to the embodiment of the present invention.
  • the connecting member 413 includes a first connecting member 4131, a second connecting member 412, and a third connecting member 4133.
  • the first connecting member 4131 is a cylindrical member, and an annular step 4131D is formed on the inner side surface.
  • the second connecting member 4132 is an annular member.
  • the third connecting member 4133 is a cylindrical member.
  • the outer side surface of the first connecting member 4131 is covered with the second connecting member 4132 and the third connecting member 4133. That is, the tip end side of the first connecting member 4131 is inserted into the second connecting member 4132 and the third connecting member 4133.
  • the suction side edge is in contact with the first connecting member 4131
  • the tip end side edge is in contact with the third connecting member 4133.
  • the outside of the side surface of the third connecting member 4133 on the distal end side is covered with the case 401. That is, the third connecting member 4133 is inserted into the case 401.
  • the substrate holder 414 is a cylindrical member having a bottom surface on the suction side, and an annular step 414D is formed on the outer side surface.
  • a hole 414H is provided on the bottom surface.
  • the hole 414H is a hole for introducing the air introduced from the hole 2H provided in the cartridge case 2 to the tip side of the substrate holder 414. Further, the substrate holder 414 is housed in the first connecting member 4131.
  • the O-ring 415 is an elastic body, for example, an annular member made of silicon rubber.
  • the O-ring 415 is sandwiched between the step 4131D formed on the first connecting member 4131 and the step 414D formed on the substrate holder 414. As a result, the O-ring 415 prevents the fluid existing in the cartridge case 2 from entering the inside of the case 401 through the gap between the first connecting member 4131 and the substrate holder 414.
  • the second circuit board 416 is a circular circuit board on which the barometric pressure sensor 416P, the terminal 4161 and the terminal 4162 are mounted.
  • the barometric pressure sensor 416P, terminal 4161 and terminal 4162 are all mounted on the suction side. Further, in the second circuit board 416, the edge of the surface on which the barometric pressure sensor 416P, the terminal 4161 and the terminal 4162 are not mounted is in contact with the edge on the suction side of the holder 402 and the edge on the suction side of the translucent member 410.
  • the barometric pressure sensor 416P is, for example, a capacitance type pressure sensor or a piezo resistance type pressure sensor, and generates barometric pressure data showing the result of measuring the barometric pressure at a predetermined time.
  • the predetermined time referred to here is, for example, a timing every 60 msec (milliseconds) from the time when the power of the non-combustion type suction device 1 is turned on to the time when the power is turned off.
  • the predetermined time referred to here may be an aperiodic timing instead of a periodic timing.
  • the predetermined time may be a period having a certain length or an arbitrary time.
  • the barometric pressure sensor 416P may measure the absolute pressure or the gauge pressure.
  • the atmospheric pressure data may be transmitted to the acquisition unit 41 described later, or may be stored in the storage medium provided in the non-combustion suction device 1 or the other device described above.
  • the terminal 4161 is electrically connected to the positive electrode of the battery 403, penetrates the bottom surface of the substrate holder 414, and projects to the suction side. Further, the terminal 4162 is electrically connected to the negative electrode of the battery 403, penetrates the bottom surface of the substrate holder 414, and projects to the suction side.
  • the packing 417 is an elastic body, for example, an annular member made of silicon rubber.
  • the packing 417 is sandwiched between the edge on the tip end side of the substrate holder 414 and the edge of the surface of the second circuit board 416 on which the barometric pressure sensor 416P, the terminal 4161 and the terminal 4162 are mounted.
  • the packing 417 the fluid that has entered from the hole 414H provided in the substrate holder 414 to the tip side of the bottom surface of the substrate holder 4141 is transmitted from the second circuit board 416 through the gap between the substrate holder 414 and the second circuit board 416. Do not invade the tip side.
  • the FPC 418 electrically connects the electronic component mounted on the first circuit board 411 and the electronic component mounted on the second circuit board 416.
  • FIG. 4 is a diagram showing an example of a functional configuration of the power supply unit according to the embodiment of the present invention.
  • the power supply unit 4 includes an acquisition unit 41, a determination unit 42, an update unit 43, a reset unit 44, and a control unit 45.
  • the acquisition unit 41 sequentially acquires atmospheric pressure data indicating the atmospheric pressure at a predetermined time. Specifically, the acquisition unit 41 acquires the atmospheric pressure data measured by the atmospheric pressure sensor 416P described above every 60 msec one by one. The acquisition unit 41 may acquire the atmospheric pressure data directly from the atmospheric pressure sensor 416P, or may acquire the atmospheric pressure data from the non-combustion suction device 1 or the storage medium provided in the other device described above.
  • the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value.
  • the reference atmospheric pressure is the atmospheric pressure used in each determination executed by the determination unit 42, and is a moving average of the atmospheric pressure indicated by each of a predetermined number of atmospheric pressure data.
  • the reference pressure is a moving average of the pressure shown by each of the latest 20 pressure data.
  • the reference pressure is a pressure that follows the pressure around the non-combustion type suction device 1.
  • the reference pressure does not necessarily have to be the moving average of the atmospheric pressure indicated by each of the latest predetermined number of atmospheric pressure data, and does not have to be the moving average of the atmospheric pressure indicated by each of the continuously acquired atmospheric pressure data.
  • the reference pressure update threshold is a threshold used to determine whether or not to update the reference pressure.
  • the reference pressure update threshold value is a pressure smaller than the suction detection threshold value described later, for example, 100 Pa (Pascal). This is because the reference pressure update threshold is such that the pressure when the aerosol in the cartridge case 2 is sucked is incorporated into the above-mentioned moving average to lower the reference pressure, and the reference pressure is around the non-combustible suction device 1. This is because it is a threshold used to avoid deviation from atmospheric pressure.
  • the threshold value for updating the reference atmospheric pressure needs to have a certain magnitude in order to prevent the momentarily generated noise from being incorporated into the above-mentioned moving average.
  • the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is in the suction state exceeding the suction detection threshold value.
  • the suction detection threshold value is a threshold value used for determining whether or not the non-combustion suction device 1 is in the suction state. Further, the suction detection threshold value is an atmospheric pressure larger than the reference pressure update threshold value and the first reference pressure determination threshold value described later, and is, for example, ⁇ 120 Pa.
  • the suction state is a state in which the difference between the atmospheric pressure measured by the atmospheric pressure sensor 416P and the reference atmospheric pressure exceeds the suction detection threshold value due to the suction of the aerosol in the cartridge case 2.
  • the determination unit 42 determines whether or not the reference pressure drop state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference pressure exceeds the first reference pressure determination threshold exceeds the reference pressure determination time. judge.
  • the first reference pressure determination threshold is suction even though the aerosol in the cartridge case 2 is sucked because the difference between the pressure indicated by the atmospheric pressure data and the reference pressure becomes large when weak suction continues. This is the threshold used to avoid false positives that cannot be detected.
  • the threshold value for determining the first reference atmospheric pressure is an atmospheric pressure smaller than the threshold value for suction detection, for example, +100 Pa. This is because the first reference pressure determination threshold is such that the pressure when weak suction is performed is incorporated into the above-mentioned moving average to lower the reference pressure, and the reference pressure is derived from the pressure around the non-combustible suction device 1. This is because the threshold is used to avoid divergence.
  • the weak suction referred to here is, for example, a suction in which the difference between the pressure indicated by the atmospheric pressure data and the reference pressure is equal to or less than the suction detection threshold when the reference pressure is substantially equal to the atmospheric pressure.
  • the reference atmospheric pressure determination time is a time used to avoid the erroneous determination, and is, for example, 0.1 seconds to 0.6 seconds.
  • the determination unit 42 determines whether or not the difference between the updated reference pressure and the reference pressure before the update exceeds the second reference pressure determination threshold value after the reference pressure is updated by the update unit 43. ..
  • the second reference atmospheric pressure determination threshold is for avoiding an erroneous determination in which suction cannot be detected even though the aerosol in the cartridge case 2 is sucked due to a large difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure.
  • the threshold value for determining the second reference atmospheric pressure may be an atmospheric pressure of an arbitrary value. For example, the determination unit 42 determines whether or not the difference between the reference pressure 5 seconds ago and the current reference pressure exceeds 40 Pa.
  • the determination unit 42 determines whether or not the atmospheric pressure sensor failure state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold exceeds the atmospheric pressure sensor failure determination time. judge.
  • the barometric pressure sensor failure determination threshold value is a threshold value used for determining whether or not the barometric pressure sensor 416P described above has failed.
  • the barometric pressure sensor failure determination threshold value is an atmospheric pressure of an arbitrary value, for example, 100 Pa.
  • the barometric pressure sensor failure determination time is the time used for the determination, for example, 10 seconds.
  • the reference pressure update threshold value is 100 Pa
  • the first reference pressure determination threshold value is +100 Pa
  • the pressure sensor failure determination threshold value is 100 Pa
  • the first reference atmospheric pressure determination threshold and the atmospheric pressure sensor failure determination threshold may be atmospheric pressures whose absolute values are smaller than the reference atmospheric pressure update threshold.
  • the determination unit 42 measures the atmospheric pressure by the atmospheric pressure sensor 416P and generates atmospheric pressure data, and every time the acquisition unit 41 acquires the atmospheric pressure data, all the above-mentioned determinations are executed once.
  • the timing and the number of times that the determination unit 42 executes the above-mentioned determination is not particularly limited.
  • the update unit 43 updates the reference atmospheric pressure at a predetermined time.
  • the update unit 43 includes the atmospheric pressure indicated by the latest atmospheric pressure data each time it is determined that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold.
  • the reference pressure is updated by calculating the moving average.
  • the update unit 43 updates the reference atmospheric pressure by calculating the moving average including the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 before the latest atmospheric pressure data, instead of the latest atmospheric pressure data. May be good.
  • the resetting unit 44 has determined that the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold, and the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time. If so, reset the reference pressure. For example, the resetting unit 44 overwrites the current reference pressure with the reference pressure calculated immediately after the power of the non-combustion suction device 1 is turned on each time the determination is made in this way.
  • the resetting unit 44 resets the reference pressure when it is determined that the difference between the reference pressure after the update and the reference pressure before the update exceeds the threshold for determining the second reference pressure. For example, the resetting unit 44 overwrites the current reference pressure with the reference pressure calculated immediately after the power of the non-combustion suction device 1 is turned on each time the determination is made in this way. Alternatively, each time the resetting unit 44 is determined in this way, it waits until a predetermined number or more of atmospheric pressure data indicating the atmospheric pressure measured every 60 msec is generated, and the atmospheric pressure data is generated in a predetermined number or more. Later, the moving average of the atmospheric pressure indicated by each of these atmospheric pressure data will be used as the new reference atmospheric pressure.
  • the control unit 45 operates the above-mentioned heater each time it is determined that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is in the suction state exceeding the suction detection threshold value.
  • control unit 45 determines that the atmospheric pressure sensor failure state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold exceeds the atmospheric pressure sensor failure determination time. If so, the power supply unit 4 is stopped. That is, the control unit 45 turns off the power of the non-combustion type suction device 1 when it is determined in this way.
  • control unit 45 appropriately executes control related to each part of the non-combustion type suction device 1.
  • FIG. 5 is a diagram for explaining the operation of the power supply unit according to the embodiment of the present invention.
  • the dotted line C shown in FIG. 5 represents the atmospheric pressure measured by the atmospheric pressure sensor 416P.
  • the solid line S shown in FIG. 5 represents the reference atmospheric pressure updated by the updating unit 43.
  • FIG. 5 also includes four periods, namely period T1, period T2, period T3 and period T4.
  • the power supply unit 4 is a process executed by each of the acquisition unit 41, the determination unit 42, the update unit 43, the reset unit 44, and the control unit 45 described above every 60 msec in the period T1, the period T2, the period T3, and the period T4. Shall be executed.
  • Period T1 is a period during which normal suction is performed instead of the weak suction described above.
  • the atmospheric pressure indicated by the atmospheric pressure data is substantially equal to the atmospheric pressure AP when suction is not performed, and is lower than the atmospheric pressure AP when suction is performed.
  • the reference atmospheric pressure becomes substantially constant because the atmospheric pressure when suction is performed is not incorporated into the above-mentioned moving average.
  • the normal suction referred to here is suction in which the difference between the pressure indicated by the atmospheric pressure data and the reference pressure exceeds the suction detection threshold when the reference pressure is substantially equal to the atmospheric pressure.
  • Period T2 is the period during which the above-mentioned weak suction is performed.
  • the atmospheric pressure indicated by the atmospheric pressure data is substantially equal to the atmospheric pressure AP when suction is not performed, and is lower than the atmospheric pressure AP when suction is performed.
  • the air pressure when suction is performed is incorporated into the above-mentioned moving average, so that the reference air pressure gradually decreases.
  • Period T3 is the period during which the reference atmospheric pressure is updated by the resetting unit 44. Therefore, the reference pressure is uncertain during period T3.
  • the period T4 is a period in which the reference air pressure is updated by the resetting unit 44 and normal suction is performed instead of the weak suction described above.
  • the atmospheric pressure indicated by the atmospheric pressure data is substantially equal to the atmospheric pressure AP when suction is not performed, and is lower than the atmospheric pressure AP when suction is performed.
  • the air pressure when suction is performed is not incorporated into the above-mentioned moving average, so that the reference air pressure becomes substantially constant.
  • FIG. 6 is a flowchart showing an example of processing executed by the power supply unit according to the embodiment of the present invention.
  • the power supply unit 4 executes the process shown in FIG. 6 every 60 msec, for example, from the time when the power of the non-combustion type suction device 1 is turned on to the time when the power is turned off.
  • step S10 the acquisition unit 41 acquires atmospheric pressure data.
  • step S20 the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value.
  • the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value (step S20: YES)
  • the determination unit 42 proceeds to step S30.
  • the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure exceeds the threshold value for updating the reference atmospheric pressure (step S20: NO)
  • the process proceeds to step S40. Proceed.
  • step S30 the update unit 43 updates the reference atmospheric pressure.
  • step S40 the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the suction detection threshold value.
  • step S40: YES the determination unit 42 performs processing. Proceed to step S50.
  • step S40: NO the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure updated in step S30 is equal to or less than the suction detection threshold
  • step S50 the control unit 45 operates the heater.
  • step S60 the control unit 45 keeps the heater stopped.
  • step S70 the determination unit 42 determines whether or not the reference pressure drop state that exceeds the first reference pressure determination threshold value continues beyond the reference pressure determination time.
  • step S70: YES the determination unit 42 proceeds to step S80.
  • step S70: NO the determination unit 42 determines that the reference pressure drop state has not continued beyond the reference pressure determination time.
  • step S80 the determination unit 42 determines whether or not the difference from the reference atmospheric pressure before and after the update exceeds the threshold value for determining the second reference atmospheric pressure.
  • step S80: YES the determination unit 42 determines that the difference between the reference pressure after being updated in step S30 and the reference pressure before being updated in step S30 exceeds the threshold value for determining the second reference pressure.
  • step S90 the determination unit 42 determines that the difference between the reference pressure after the update in step S30 and the reference pressure before the update in step S30 is equal to or less than the second reference pressure determination threshold value (step S80: NO)
  • the process proceeds to step S100.
  • step S90 the resetting unit 44 sets the reference atmospheric pressure and returns the process to step S10.
  • step S100 the determination unit 42 determines whether or not the barometric pressure sensor failure state exceeding the barometric pressure sensor failure determination threshold value continues beyond the barometric pressure sensor failure determination time.
  • step S100: YES the determination unit 42 proceeds to step S110.
  • step S100: NO the determination unit 42 determines that the barometric pressure sensor failure state has not continued beyond the barometric pressure sensor failure determination time.
  • step S110 the control unit 45 stops the power supply unit 4.
  • the non-combustion type suction device 1 according to the embodiment has been described above, focusing on the power supply unit 4.
  • the power supply unit 4 has a reference pressure drop state in which the difference between the acquisition unit 41 that sequentially acquires the atmospheric pressure data indicating the atmospheric pressure at a predetermined time and the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold.
  • the determination unit 42 which determines whether or not the vehicle continues beyond the reference pressure determination time, and the reference pressure setting when it is determined that the reference pressure decrease state continues beyond the reference pressure determination time. It is provided with a resetting unit 44 for resetting.
  • the power supply unit 4 returns to an appropriate reference pressure even if the pressure in the case of weak suction is incorporated into the moving average and the reference pressure drops. Therefore, the power supply unit 4 can avoid erroneous determination that normal suction cannot be detected when weak suction continues, and can accurately determine suction.
  • the power supply unit 4 further includes an update unit 43 that updates the reference pressure at a predetermined time, and the difference between the reference pressure after the update and the reference pressure before the update exceeds the second reference pressure determination threshold by the determination unit 42. If it is further determined by the resetting unit 44 that the difference between the updated reference pressure and the pre-update reference pressure exceeds the second reference pressure determination threshold, the reference pressure is set. Redo.
  • the power supply unit 4 returns to an appropriate reference pressure even if the pressure in the case of weak suction is incorporated into the moving average and the reference pressure drops. Therefore, the power supply unit 4 can avoid erroneous determination that normal suction cannot be detected when weak suction continues, and can accurately determine suction.
  • the power supply unit 4 further accurately confirms that the reference atmospheric pressure has decreased by using the determination using the first reference atmospheric pressure determination threshold value and the determination using the second reference atmospheric pressure determination threshold value together. It can be detected and returned to the appropriate reference pressure.
  • the reference pressure is set as the moving average of the atmospheric pressure indicated by each of a predetermined number of atmospheric pressure data, and the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 by the determination unit 42 and the reference atmospheric pressure is the reference atmospheric pressure update threshold.
  • the reference atmospheric pressure and The reference pressure is updated by calculating the moving average including the pressure at which the difference between the two is equal to or less than the reference pressure update threshold.
  • the power supply unit 4 makes the reference air pressure used for determining suction follow the air pressure around the non-combustion type suction device 1, so that suction can be performed even if the air pressure around the non-combustion type suction device 1 changes. It can be determined accurately.
  • the control unit 45 for stopping the power supply unit is further provided when it is determined that the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time.
  • the power supply unit 4 can stop its own operation and stop the determination of inaccurate suction.
  • the power supply unit 4 further determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure is in the suction state exceeding the suction detection threshold value by the determination unit 42, and when it is determined that the power supply unit 4 is in the suction state. Further, a control unit 45 for operating the heater is provided.
  • the power supply unit 4 can operate the heater to heat the liquid supplied from the reservoir only when the non-combustion type suction device 1 is in the suction state.
  • non-combustible suction device control program for realizing each function of the power supply unit 4 described above is recorded on a computer-readable recording medium, and the non-combustible suction device control program is read into the computer system and executed. Therefore, at least a part of the above-mentioned processing may be executed.
  • the computer system referred to here includes at least one of hardware such as an operating system (OS: Operating System) and peripheral devices.
  • Computer-readable recording media include, for example, floppy disks, optomagnetic disks, ROMs (Read Only Memory), writable non-volatile memories such as flash memories, and portable media such as DVDs (Digital Versatile Discs).
  • the above-mentioned non-combustible aspirator control program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the transmission medium for transmitting a program means a medium having a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
  • non-combustion type suction device control program described above may be for realizing a part of the functions of the power supply unit 4 described above, and the above-mentioned functions may be combined with a program already recorded in the computer system. It may be a program that can be realized by a combination, a so-called difference program.
  • the above-mentioned non-combustion suction device control program is read and executed by a processor such as a CPU (Central Processing Unit) provided in the computer, for example.
  • a processor such as a CPU (Central Processing Unit) provided in the computer, for example.
  • the case where the functions shown in FIGS. 4 and 6 are provided in the power supply unit 4 has been described as an example, but other configurations such as the cartridge case 2 may be provided.

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A power supply unit according to one aspect of the present invention comprises: an acquisition unit for sequentially acquiring atmospheric pressure data that indicates the atmospheric pressure at a prescribed time; a determination unit for determining whether a reference atmospheric pressure reduction state is continuing beyond a reference atmospheric pressure determination time, the reference atmospheric pressure reduction state being a state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and a reference atmospheric pressure exceeds a first reference atmospheric pressure determination threshold; and a reset unit that resets the reference atmospheric pressure when it is determined that the reference atmospheric pressure reduction state is continuing beyond the reference atmospheric pressure determination time.

Description

電源ユニット、非燃焼式吸引器、非燃焼式吸引器制御プログラム及び非燃焼式吸引器制御方法Power supply unit, non-combustion aspirator, non-combustion aspirator control program and non-combustion aspirator control method
 本発明は、電源ユニット、非燃焼式吸引器、非燃焼式吸引器制御プログラム及び非燃焼式吸引器制御方法に関する。 The present invention relates to a power supply unit, a non-combustion type suction device, a non-combustion type suction device control program, and a non-combustion type suction device control method.
 近年、低温加熱方式等、様々な方式の非燃焼式吸引器、いわゆる電子たばこが普及している。低温加熱方式の電子たばこは、カートリッジに封入されている液体をヒータを使用してエアロゾルとし、当該エアロゾルにたばこ由来の成分を付与し、ユーザが吸引できるようにするものである。このような電子たばこには、ユーザによる吸引を検知するための気圧センサが搭載されているものがある。例えば、特許文献1には、気圧センサとして静電容量型の圧力センサ、ピエゾ抵抗方式の圧力センサ等を備える電子たばこが開示されている。 In recent years, various types of non-combustion type aspirators such as low temperature heating type, so-called electronic cigarettes, have become widespread. In the low-temperature heating type electronic cigarette, the liquid enclosed in the cartridge is converted into an aerosol by using a heater, and a component derived from the cigarette is added to the aerosol so that the user can suck it. Some of these electronic cigarettes are equipped with a barometric pressure sensor for detecting suction by the user. For example, Patent Document 1 discloses an electronic cigarette including a capacitance type pressure sensor, a piezoresistive type pressure sensor, and the like as a barometric pressure sensor.
米国特許第9427022号明細書U.S. Pat. No. 9427022
 しかし、特許文献1に係る電子たばこは、例えば、吸引されたか否かの判定に使用される基準気圧を適切に計算し得ない場合、この基準気圧が変化してしまった場合、気圧センサが故障してしまった場合に吸引を正確に検知し得なくなることがある。 However, in the case of the electronic cigarette according to Patent Document 1, for example, if the reference pressure used for determining whether or not the cigarette is sucked cannot be calculated appropriately, or if the reference pressure changes, the atmospheric pressure sensor fails. If this happens, suction may not be detected accurately.
 そこで、本発明は、吸引を正確に検知することができる電源ユニット、非燃焼式吸引器、非燃焼式吸引器制御プログラム及び非燃焼式吸引器制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a power supply unit, a non-combustion type suction device, a non-combustion type suction device control program, and a non-combustion type suction device control method capable of accurately detecting suction.
 (1)上記目的を達成するために、本発明の一態様に係る電源ユニットは、所定の時間における気圧を示す気圧データを順次取得する取得部と、前記気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定部と、前記基準気圧低下状態が前記基準気圧判定用時間を超えて継続していると判定された場合、前記基準気圧を設定し直す再設定部と、を備える。 (1) In order to achieve the above object, the power supply unit according to one aspect of the present invention includes an acquisition unit that sequentially acquires atmospheric pressure data indicating atmospheric pressure at a predetermined time, and atmospheric pressure and reference atmospheric pressure indicated by the atmospheric pressure data. A determination unit that determines whether or not the reference pressure drop state in which the difference exceeds the first reference pressure determination threshold continues beyond the reference pressure determination time, and the reference pressure decrease state is for the reference pressure determination. It is provided with a resetting unit for resetting the reference atmospheric pressure when it is determined that the air pressure has continued for more than a certain period of time.
 (2)上記(1)の態様に係る電源ユニットは、所定の時間に前記基準気圧を更新する更新部を更に備え、前記判定部が更新後の前記基準気圧と更新前の前記基準気圧との差が第二基準気圧判定用閾値を超えているか否かを更に判定し、前記再設定部が更新後の前記基準気圧と更新前の前記基準気圧との差が第二基準気圧判定用閾値を超えていると判定された場合、前記基準気圧を設定し直してもよい。 (2) The power supply unit according to the embodiment (1) is further provided with an update unit that updates the reference pressure at a predetermined time, and the determination unit has the updated reference pressure and the reference pressure before the update. It is further determined whether or not the difference exceeds the second reference pressure determination threshold, and the difference between the updated reference pressure and the pre-update reference pressure is the second reference pressure determination threshold. If it is determined that the pressure is exceeded, the reference pressure may be reset.
 (3)上記(2)の態様に係る電源ユニットにおいて、前記基準気圧は、所定の数の前記気圧データ各々が示す気圧の移動平均であり、前記判定部は、前記取得部が取得した前記気圧データが示す気圧と前記基準気圧との差が基準気圧更新用閾値以下であるか否かを更に判定し、前記更新部は、前記取得部が取得した前記気圧データが示す気圧と前記基準気圧との差が前記基準気圧更新用閾値以下であると判定した場合、前記基準気圧との差が前記基準気圧更新用閾値以下である気圧を含めた前記移動平均を計算することにより前記基準気圧を更新してもよい。 (3) In the power supply unit according to the aspect (2), the reference pressure is a moving average of the atmospheric pressures indicated by each of the predetermined number of the atmospheric pressure data, and the determination unit is the atmospheric pressure acquired by the acquisition unit. It is further determined whether or not the difference between the atmospheric pressure indicated by the data and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold, and the update unit includes the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit and the reference atmospheric pressure. When it is determined that the difference between the two is equal to or less than the reference pressure update threshold, the reference pressure is updated by calculating the moving average including the pressure whose difference from the reference pressure is equal to or less than the reference pressure update threshold. You may.
 (4)上記(1)から(3)のいずれか一つの態様に係る電源ユニットにおいて、前記判定部は、前記気圧データが示す気圧と前記基準気圧との差が気圧センサ故障判定用閾値を超えている気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続しているか否かを更に判定し、前記気圧センサ故障状態が前記気圧センサ故障判定用時間を超えて継続していると判定された場合、電源ユニットを停止させる制御部を更に備えていてもよい。 (4) In the power supply unit according to any one of the above (1) to (3), in the determination unit, the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold. It is further determined whether or not the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time, and it is determined that the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time. In this case, a control unit for stopping the power supply unit may be further provided.
 (5)上記(1)から(3)のいずれか一つの態様に係る電源ユニットにおいて、前記判定部は、前記気圧データが示す気圧と前記基準気圧との差が吸引検知用閾値を超えている吸引状態にあるか否かを更に判定し、前記吸引状態にあると判定された場合、ヒータを作動させる制御部を更に備えていてもよい。 (5) In the power supply unit according to any one of the above (1) to (3), in the determination unit, the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the suction detection threshold value. It may be further determined whether or not it is in the suction state, and if it is determined that it is in the suction state, a control unit for operating the heater may be further provided.
 (6)上記目的を達成するために、本発明の一態様に係る非燃焼式吸引器は、上記(1)から(5)のいずれか一つの態様に係る電源ユニットを備える。 (6) In order to achieve the above object, the non-combustion type suction device according to one aspect of the present invention includes a power supply unit according to any one of the above (1) to (5).
 (7)上記目的を達成するために、本発明の一態様に係る非燃焼式吸引器制御プログラムは、コンピュータに、所定の時間における気圧を示す気圧データを順次取得する取得機能と、前記気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定機能と、前記基準気圧低下状態が前記基準気圧判定用時間を超えて継続していると判定された場合、前記基準気圧を設定し直す再設定機能と、を実現させる。 (7) In order to achieve the above object, the non-combustion type aspirator control program according to one aspect of the present invention has an acquisition function for sequentially acquiring atmospheric pressure data indicating atmospheric pressure at a predetermined time, and the atmospheric pressure data. The difference between the atmospheric pressure indicated by and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold. The determination function for determining whether or not the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time, and the reference atmospheric pressure. When it is determined that the lowering state continues beyond the reference pressure determination time, the reset function for resetting the reference pressure is realized.
 (8)上記目的を達成するために、本発明の一態様に係る非燃焼式吸引器制御方法は、所定の時間における気圧を示す気圧データを順次取得する取得ステップと、前記気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定ステップと、前記基準気圧低下状態が前記基準気圧判定用時間を超えて継続していると判定された場合、前記基準気圧を設定し直す再設定ステップと、を含む。 (8) In order to achieve the above object, the non-combustion type aspirator control method according to one aspect of the present invention includes an acquisition step of sequentially acquiring atmospheric pressure data indicating atmospheric pressure at a predetermined time, and an atmospheric pressure indicated by the atmospheric pressure data. The determination step of determining whether or not the reference pressure drop state in which the difference between the force and the reference pressure exceeds the first reference pressure determination threshold continues beyond the reference pressure determination time, and the reference pressure drop state are If it is determined that the reference pressure continues beyond the reference pressure determination time, the resetting step of resetting the reference pressure is included.
 本発明によれば、吸引を正確に検知することができる。 According to the present invention, suction can be detected accurately.
本発明の実施形態に係る非燃焼式吸引器の斜視図である。It is a perspective view of the non-combustion type suction device which concerns on embodiment of this invention. 本発明の実施形態に係る非燃焼式吸引器の分解斜視図である。It is an exploded perspective view of the non-combustion type suction device which concerns on embodiment of this invention. 本発明の実施形態に係る電源ユニットの吸引側の断面図である。It is sectional drawing of the suction side of the power supply unit which concerns on embodiment of this invention. 本発明の実施形態に係る電源ユニットの機能的な構成の一例を示す図である。It is a figure which shows an example of the functional structure of the power supply unit which concerns on embodiment of this invention. 本発明の実施形態に係る電源ユニットの動作を説明するための図である。It is a figure for demonstrating operation of the power supply unit which concerns on embodiment of this invention. 本発明の実施形態に係る電源ユニットが実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process executed by the power supply unit which concerns on embodiment of this invention.
 図1から図3を参照しながら、実施形態に係る非燃焼式吸引器の構成について電源ユニットを中心に説明する。図1は、本発明の実施形態に係る非燃焼式吸引器の斜視図である。図2は、本発明の実施形態に係る非燃焼式吸引器の分解斜視図である。図1に示すように、非燃焼式吸引器1は、カートリッジケース2と、マウスピース3と、電源ユニット4とを備える。 The configuration of the non-combustion type suction device according to the embodiment will be described focusing on the power supply unit with reference to FIGS. 1 to 3. FIG. 1 is a perspective view of a non-combustion type suction device according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the non-combustion type suction device according to the embodiment of the present invention. As shown in FIG. 1, the non-combustion type suction device 1 includes a cartridge case 2, a mouthpiece 3, and a power supply unit 4.
 カートリッジケース2は、リザーバ及びヒータを収納している。リザーバは、エアロゾルを発生させるための液体を貯留している容器である。ヒータは、リザーバから供給された液体を加熱して霧化し、エアロゾルを生成する。ヒータは、電源ユニット4から供給させる電力により動作する。 The cartridge case 2 houses the reservoir and the heater. A reservoir is a container that stores a liquid for generating an aerosol. The heater heats and atomizes the liquid supplied from the reservoir to produce an aerosol. The heater operates by the electric power supplied from the power supply unit 4.
 また、カートリッジケース2は、図1に示した孔2Hを備える。孔2Hは、ユーザがカートリッジケース2内のエアロゾルを吸引し、カートリッジケース2の内部の圧力が大気圧よりも低くなっている場合、カートリッジケース2の外部からカートリッジケース2の内部に空気を導入する。 Further, the cartridge case 2 includes the hole 2H shown in FIG. The hole 2H introduces air into the cartridge case 2 from the outside of the cartridge case 2 when the user sucks the aerosol in the cartridge case 2 and the pressure inside the cartridge case 2 is lower than the atmospheric pressure. ..
 マウスピース3は、エアロゾルを吸引する際にユーザが口に挟む円筒状の部材であり、たばこが充填されたカプセルを収納している。ユーザがカートリッジケース2内のエアロゾルを吸引している場合、孔2Hからカートリッジケース2の内部に導入された空気は、ヒータにより霧化されたエアロゾルと共にマウスピース3の内部に進入する。そして、このエアロゾルは、カプセルに充填されたたばこにより香味が付与された後、ユーザに吸引される。 The mouthpiece 3 is a cylindrical member that the user holds in the mouth when sucking the aerosol, and stores a capsule filled with cigarettes. When the user is sucking the aerosol in the cartridge case 2, the air introduced into the cartridge case 2 through the hole 2H enters the inside of the mouthpiece 3 together with the aerosol atomized by the heater. The aerosol is then aspirated by the user after being flavored by the tobacco filled in the capsule.
 電源ユニット4は、非燃焼式吸引器1の各部に電力を供給し、非燃焼式吸引器1の各部を適宜制御する。図2に示すように、電源ユニット4は、ケース401と、ホルダ402と、電池403と、タブ404と、絶縁紙405と、USB(Universal Serial Bus)基板406と、ストッパ407と、絶縁テープ408と、ボタン409と、透光部材410と、第一回路基板411と、FPC(Flexible Printed Circuits)412と、接続部材413と、基板ホルダ414と、オーリング415と、第二回路基板416と、パッキン417と、FPC418とを備える。なお、以下の説明では、非燃焼式吸引器1のうちマウスピース3が位置する方を吸引側と呼び、電源ユニット4が位置する方を先端側と呼ぶものとする。 The power supply unit 4 supplies electric power to each part of the non-combustion type suction device 1 and appropriately controls each part of the non-combustion type suction device 1. As shown in FIG. 2, the power supply unit 4 includes a case 401, a holder 402, a battery 403, a tab 404, an insulating paper 405, a USB (Universal Serial Bus) board 406, a stopper 407, and an insulating tape 408. , Button 409, translucent member 410, first circuit board 411, FPC (Flexible Printed Circuits) 412, connection member 413, board holder 414, olling 415, second circuit board 416, and so on. It includes a packing 417 and an FPC 418. In the following description, the side of the non-combustion type suction device 1 where the mouthpiece 3 is located is referred to as the suction side, and the side where the power supply unit 4 is located is referred to as the tip side.
 ケース401は、例えば、金属、樹脂で作製された円筒状の部材である。ケース401は、ホルダ402、電池403、タブ404、絶縁紙405、USB基板406、ストッパ407、絶縁テープ408、ボタン409、透光部材410、第一回路基板411、FPC(Flexible Printed Circuits)412、基板ホルダ414、オーリング415、第二回路基板416、パッキン417及びFPC418を収納している。また、ケース401は、孔401Hを備える。孔401Hは、透光部材410の一部及びボタン409が挿入される。 Case 401 is, for example, a cylindrical member made of metal or resin. Case 401 includes holder 402, battery 403, tab 404, insulating paper 405, USB board 406, stopper 407, insulating tape 408, button 409, translucent member 410, first circuit board 411, FPC (Flexible Printed Circuits) 412, It houses the board holder 414, the olling 415, the second circuit board 416, the packing 417, and the FPC 418. Further, the case 401 includes a hole 401H. A part of the translucent member 410 and the button 409 are inserted into the hole 401H.
 ホルダ402は、例えば、樹脂で作製された半円筒状の部材である。ホルダ402は、電池403、タブ404、絶縁紙405、USB基板406、ストッパ407、ボタン409、透光部材410及び第一回路基板411を保持する。 The holder 402 is, for example, a semi-cylindrical member made of resin. The holder 402 holds the battery 403, the tab 404, the insulating paper 405, the USB board 406, the stopper 407, the button 409, the translucent member 410, and the first circuit board 411.
 電池403は、例えば、円筒状の一次電池、二次電池であり、非燃焼式吸引器1の各部に電力を供給する。電池403は、例えば、正極端子を先端側に向け、負極端子を吸引側に向けた状態でホルダ402の半円筒状の空間に収納される。タブ404は、導電性を有する材料で作製されており、電池403の正極端子からの出力を電池403の負極端子の方に引き回す。絶縁紙405は、電池403の負極端子とタブ404との隙間に挿入されており、両者を電気的に絶縁する。また、絶縁紙405は、電池403の正極端子とUSB基板406との隙間に挿入されており、両者を電気的に絶縁する。 The battery 403 is, for example, a cylindrical primary battery or a secondary battery, and supplies electric power to each part of the non-combustion type suction device 1. The battery 403 is housed in the semi-cylindrical space of the holder 402 with the positive electrode terminal facing the tip side and the negative electrode terminal facing the suction side, for example. The tab 404 is made of a conductive material and directs the output from the positive electrode terminal of the battery 403 towards the negative electrode terminal of the battery 403. The insulating paper 405 is inserted in the gap between the negative electrode terminal of the battery 403 and the tab 404, and electrically insulates the two. Further, the insulating paper 405 is inserted in the gap between the positive electrode terminal of the battery 403 and the USB substrate 406, and electrically insulates both of them.
 USB基板406は、USBケーブルを接続する端子、その他電子部品が取り付けられている回路基板である。このUSBケーブルは、例えば、電池403への充電、他の機器との通信に使用される。なお、ここで言う他の機器は、例えば、スマートフォン、タブレットである。ストッパ407は、USB基板406をホルダ402に固定する部材である。 The USB board 406 is a circuit board to which terminals for connecting USB cables and other electronic components are attached. This USB cable is used, for example, for charging the battery 403 and communicating with other devices. The other devices referred to here are, for example, smartphones and tablets. The stopper 407 is a member that fixes the USB board 406 to the holder 402.
 絶縁テープ408は、ホルダ402の半円筒状の空間に電池403が収納された状態でホルダ402及び電池403の側面に巻き付けられる。これにより、絶縁テープ408は、電池403をホルダ402に固定する。 The insulating tape 408 is wound around the side surface of the holder 402 and the battery 403 with the battery 403 housed in the semi-cylindrical space of the holder 402. As a result, the insulating tape 408 fixes the battery 403 to the holder 402.
 ボタン409は、ケース401に設けられた孔401Hに挿入される。ボタン409は、非燃焼式吸引器1の操作に使用される。透光部材410は、自身に入射した光の少なくとも一部を透過させる材料、例えば、ガラス、ポリカーボネートで作製された半円筒状の部材である。透光部材410は、一部がケース401に設けられた孔401Hに挿入され、ボタン409と孔401Hとの隙間を埋める。また、透光部材410は、半円筒の中心軸に略平行な縁がホルダ402の半円筒の中心軸に略平行な縁と接触した状態でケース401に収納される。 The button 409 is inserted into the hole 401H provided in the case 401. Button 409 is used to operate the non-combustion aspirator 1. The translucent member 410 is a semi-cylindrical member made of a material that transmits at least a part of the light incident on itself, for example, glass or polycarbonate. A part of the light transmitting member 410 is inserted into the hole 401H provided in the case 401 to fill the gap between the button 409 and the hole 401H. Further, the translucent member 410 is housed in the case 401 in a state where the edge substantially parallel to the central axis of the semi-cylinder is in contact with the edge substantially parallel to the central axis of the semi-cylinder of the holder 402.
 第一回路基板411は、スイッチ411A、LED(Light Emitting Diode)チップ411B、電源ユニット4を制御する回路を構成する電子部品、その他電子部品が実装された回路基板である。スイッチ411Aは、ボタン409が押下されることにより導通状態と非導通状態とを切り替える。LEDチップ411Bは、例えば、広範囲の波長の光を出力することが可能なフルカラータイプのLEDを備えている。第一回路基板411は、ホルダ402と透光部材410との間に配置される。 The first circuit board 411 is a circuit board on which a switch 411A, an LED (Light Emitting Diode) chip 411B, electronic components constituting a circuit for controlling a power supply unit 4, and other electronic components are mounted. The switch 411A switches between a conductive state and a non-conducting state when the button 409 is pressed. The LED chip 411B includes, for example, a full-color type LED capable of outputting light having a wide range of wavelengths. The first circuit board 411 is arranged between the holder 402 and the translucent member 410.
 FPC412は、USB基板406に実装されている電子部品と第一回路基板411に実装されている電子部品とを電気的に接続している。 The FPC 412 electrically connects the electronic component mounted on the USB board 406 and the electronic component mounted on the first circuit board 411.
 図3は、本発明の実施形態に係る電源ユニットの吸引側の断面図である。図2及び図3に示すように、接続部材413は、第一接続部材4131、第二接続部材412及び第三接続部材4133を含む。第一接続部材4131は、円筒状の部材であり、内側の側面に環状の段差4131Dが形成されている。第二接続部材4132は、環状の部材である。第三接続部材4133は、円筒状の部材である。 FIG. 3 is a cross-sectional view of the suction side of the power supply unit according to the embodiment of the present invention. As shown in FIGS. 2 and 3, the connecting member 413 includes a first connecting member 4131, a second connecting member 412, and a third connecting member 4133. The first connecting member 4131 is a cylindrical member, and an annular step 4131D is formed on the inner side surface. The second connecting member 4132 is an annular member. The third connecting member 4133 is a cylindrical member.
 図3に示すように、第一接続部材4131は、先端側の側面の外側が第二接続部材4132及び第三接続部材4133に覆われる。すなわち、第一接続部材4131は、先端側が第二接続部材4132及び第三接続部材4133に挿入される。第二接続部材4132は、吸引側の縁が第一接続部材4131に接触し、先端側の縁が第三接続部材4133に接触している。第三接続部材4133は、先端側の側面の外側がケース401に覆われる。すなわち、第三接続部材4133は、ケース401に挿入される。 As shown in FIG. 3, the outer side surface of the first connecting member 4131 is covered with the second connecting member 4132 and the third connecting member 4133. That is, the tip end side of the first connecting member 4131 is inserted into the second connecting member 4132 and the third connecting member 4133. In the second connecting member 4132, the suction side edge is in contact with the first connecting member 4131, and the tip end side edge is in contact with the third connecting member 4133. The outside of the side surface of the third connecting member 4133 on the distal end side is covered with the case 401. That is, the third connecting member 4133 is inserted into the case 401.
 基板ホルダ414は、吸引側に底面を備える円筒状の部材であり、外側の側面に環状の段差414Dが形成されている。この底面には、孔414Hが設けられている。孔414Hは、カートリッジケース2に設けられている孔2Hから導入された空気を基板ホルダ414よりも先端側に導入するための孔である。また、基板ホルダ414は、第一接続部材4131に収納される。 The substrate holder 414 is a cylindrical member having a bottom surface on the suction side, and an annular step 414D is formed on the outer side surface. A hole 414H is provided on the bottom surface. The hole 414H is a hole for introducing the air introduced from the hole 2H provided in the cartridge case 2 to the tip side of the substrate holder 414. Further, the substrate holder 414 is housed in the first connecting member 4131.
 オーリング415は、弾性体、例えば、シリコンゴムで作製された環状の部材である。オーリング415は、第一接続部材4131に形成されている段差4131Dと基板ホルダ414に形成されている段差414Dとに挟まれる。これにより、オーリング415は、カートリッジケース2内に存在する流体が第一接続部材4131と基板ホルダ414との隙間からケース401の内部に侵入しないようにする。 The O-ring 415 is an elastic body, for example, an annular member made of silicon rubber. The O-ring 415 is sandwiched between the step 4131D formed on the first connecting member 4131 and the step 414D formed on the substrate holder 414. As a result, the O-ring 415 prevents the fluid existing in the cartridge case 2 from entering the inside of the case 401 through the gap between the first connecting member 4131 and the substrate holder 414.
 第二回路基板416は、気圧センサ416P、端子4161及び端子4162が実装されている円形の回路基板である。気圧センサ416P、端子4161及び端子4162は、いずれも吸引側に実装されている。また、第二回路基板416は、気圧センサ416P、端子4161及び端子4162が実装されていない面の縁がホルダ402の吸引側の縁及び透光部材410の吸引側の縁と接触している。 The second circuit board 416 is a circular circuit board on which the barometric pressure sensor 416P, the terminal 4161 and the terminal 4162 are mounted. The barometric pressure sensor 416P, terminal 4161 and terminal 4162 are all mounted on the suction side. Further, in the second circuit board 416, the edge of the surface on which the barometric pressure sensor 416P, the terminal 4161 and the terminal 4162 are not mounted is in contact with the edge on the suction side of the holder 402 and the edge on the suction side of the translucent member 410.
 気圧センサ416Pは、例えば、静電容量型の圧力センサ、ピエゾ抵抗方式の圧力センサであり、所定の時間における気圧を計測した結果を示す気圧データを生成する。ここで言う所定の時間は、例えば、非燃焼式吸引器1の電源がオンとなった時点からオフとなる時点までの60msec(ミリ秒)ごとのタイミングである。ただし、ここで言う所定の時間は、周期的なタイミングではなく、非周期的なタイミングであってもよい。また、所定の時間は、一定の長さを有する期間であってもよいし、任意の時刻であってもよい。なお、気圧センサ416Pは、絶対圧を測定してもよいし、ゲージ圧を測定してもよい。また、気圧データは、後述する取得部41に送信されてもよいし、非燃焼式吸引器1又は上述した他の機器に設けられている記憶媒体に格納されてもよい。 The barometric pressure sensor 416P is, for example, a capacitance type pressure sensor or a piezo resistance type pressure sensor, and generates barometric pressure data showing the result of measuring the barometric pressure at a predetermined time. The predetermined time referred to here is, for example, a timing every 60 msec (milliseconds) from the time when the power of the non-combustion type suction device 1 is turned on to the time when the power is turned off. However, the predetermined time referred to here may be an aperiodic timing instead of a periodic timing. Further, the predetermined time may be a period having a certain length or an arbitrary time. The barometric pressure sensor 416P may measure the absolute pressure or the gauge pressure. Further, the atmospheric pressure data may be transmitted to the acquisition unit 41 described later, or may be stored in the storage medium provided in the non-combustion suction device 1 or the other device described above.
 端子4161は、電池403の正極と電気的に接続されており、基板ホルダ414の底面を貫通して吸引側へ突出している。また、端子4162は、電池403の負極と電気的に接続されており、基板ホルダ414の底面を貫通して吸引側へ突出している。 The terminal 4161 is electrically connected to the positive electrode of the battery 403, penetrates the bottom surface of the substrate holder 414, and projects to the suction side. Further, the terminal 4162 is electrically connected to the negative electrode of the battery 403, penetrates the bottom surface of the substrate holder 414, and projects to the suction side.
 パッキン417は、弾性体、例えば、シリコンゴムで作製された環状の部材である。パッキン417は、基板ホルダ414の先端側の縁と第二回路基板416のうち気圧センサ416P、端子4161及び端子4162が実装されている面の縁とに挟まれる。これにより、パッキン417は、基板ホルダ414に設けられた孔414Hから基板ホルダ4141の底面よりも先端側に進入した流体が基板ホルダ414と第二回路基板416との隙間から第二回路基板416よりも先端側に侵入しないようにする。 The packing 417 is an elastic body, for example, an annular member made of silicon rubber. The packing 417 is sandwiched between the edge on the tip end side of the substrate holder 414 and the edge of the surface of the second circuit board 416 on which the barometric pressure sensor 416P, the terminal 4161 and the terminal 4162 are mounted. As a result, in the packing 417, the fluid that has entered from the hole 414H provided in the substrate holder 414 to the tip side of the bottom surface of the substrate holder 4141 is transmitted from the second circuit board 416 through the gap between the substrate holder 414 and the second circuit board 416. Do not invade the tip side.
 FPC418は、第一回路基板411に実装されている電子部品と第二回路基板416に実装されている電子部品とを電気的に接続している。 The FPC 418 electrically connects the electronic component mounted on the first circuit board 411 and the electronic component mounted on the second circuit board 416.
 次に、図4及び図5を参照しながら、実施形態に係る電源ユニットの機能について説明する。図4は、本発明の実施形態に係る電源ユニットの機能的な構成の一例を示す図である。図4に示すように、電源ユニット4は、取得部41と、判定部42と、更新部43と、再設定部44と、制御部45とを備える。 Next, the function of the power supply unit according to the embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a diagram showing an example of a functional configuration of the power supply unit according to the embodiment of the present invention. As shown in FIG. 4, the power supply unit 4 includes an acquisition unit 41, a determination unit 42, an update unit 43, a reset unit 44, and a control unit 45.
 取得部41は、所定の時間における気圧を示す気圧データを順次取得する。具体的には、取得部41は、上述した気圧センサ416Pが60msecごとに計測した気圧データを逐一取得する。取得部41は、気圧データを気圧センサ416Pから直接取得してもよいし、非燃焼式吸引器1又は上述した他の機器に設けられている記憶媒体から取得してもよい。 The acquisition unit 41 sequentially acquires atmospheric pressure data indicating the atmospheric pressure at a predetermined time. Specifically, the acquisition unit 41 acquires the atmospheric pressure data measured by the atmospheric pressure sensor 416P described above every 60 msec one by one. The acquisition unit 41 may acquire the atmospheric pressure data directly from the atmospheric pressure sensor 416P, or may acquire the atmospheric pressure data from the non-combustion suction device 1 or the storage medium provided in the other device described above.
 判定部42は、取得部41により取得された気圧データが示す気圧と基準気圧との差が基準気圧更新用閾値以下であるか否かを判定する。 The determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value.
 ここで、基準気圧は、判定部42が実行する各判定で使用される気圧であり、所定の数の気圧データ各々が示す気圧の移動平均である。例えば、基準気圧は、直近の20個の気圧データ各々が示す気圧の移動平均である。これにより、基準気圧は、非燃焼式吸引器1の周囲の気圧に追従する気圧となっている。ただし、基準気圧は、必ずしも直近の所定の数の気圧データ各々が示す気圧の移動平均でなくてもよく、連続して取得された気圧データ各々が示す気圧の移動平均でなくてもよい。 Here, the reference atmospheric pressure is the atmospheric pressure used in each determination executed by the determination unit 42, and is a moving average of the atmospheric pressure indicated by each of a predetermined number of atmospheric pressure data. For example, the reference pressure is a moving average of the pressure shown by each of the latest 20 pressure data. As a result, the reference pressure is a pressure that follows the pressure around the non-combustion type suction device 1. However, the reference pressure does not necessarily have to be the moving average of the atmospheric pressure indicated by each of the latest predetermined number of atmospheric pressure data, and does not have to be the moving average of the atmospheric pressure indicated by each of the continuously acquired atmospheric pressure data.
 基準気圧更新用閾値は、基準気圧を更新するか否かの判定に使用される閾値である。基準気圧更新用閾値は、後述する吸引検知用閾値よりも小さい気圧、例えば、100Pa(パスカル)である。なぜなら、基準気圧更新用閾値は、カートリッジケース2内のエアロゾルが吸引されている場合における気圧が上述した移動平均に組み込まれて基準気圧が低下し、基準気圧が非燃焼式吸引器1の周囲の気圧から乖離してしまうことを避けるために使用される閾値だからである。ただし、基準気圧更新用閾値は、瞬間的に発生するノイズが上述した移動平均に組み込まれてしまうことを避けるために、ある程度の大きさを有している必要がある。 The reference pressure update threshold is a threshold used to determine whether or not to update the reference pressure. The reference pressure update threshold value is a pressure smaller than the suction detection threshold value described later, for example, 100 Pa (Pascal). This is because the reference pressure update threshold is such that the pressure when the aerosol in the cartridge case 2 is sucked is incorporated into the above-mentioned moving average to lower the reference pressure, and the reference pressure is around the non-combustible suction device 1. This is because it is a threshold used to avoid deviation from atmospheric pressure. However, the threshold value for updating the reference atmospheric pressure needs to have a certain magnitude in order to prevent the momentarily generated noise from being incorporated into the above-mentioned moving average.
 また、判定部42は、取得部41により取得された気圧データが示す気圧と基準気圧との差が吸引検知用閾値を超えている吸引状態にあるか否かを判定する。 Further, the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is in the suction state exceeding the suction detection threshold value.
 ここで、吸引検知用閾値は、非燃焼式吸引器1が吸引状態にあるか否かの判定に使用される閾値である。また、吸引検知用閾値は、基準気圧更新用閾値及び後述する第一基準気圧判定用閾値よりも大きい気圧であり、例えば、-120Paである。吸引状態は、カートリッジケース2内のエアロゾルが吸引されることにより、気圧センサ416Pにより計測される気圧と基準気圧との差が吸引検知用閾値を超えている状態である。 Here, the suction detection threshold value is a threshold value used for determining whether or not the non-combustion suction device 1 is in the suction state. Further, the suction detection threshold value is an atmospheric pressure larger than the reference pressure update threshold value and the first reference pressure determination threshold value described later, and is, for example, −120 Pa. The suction state is a state in which the difference between the atmospheric pressure measured by the atmospheric pressure sensor 416P and the reference atmospheric pressure exceeds the suction detection threshold value due to the suction of the aerosol in the cartridge case 2.
 また、判定部42は、気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する。 Further, the determination unit 42 determines whether or not the reference pressure drop state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference pressure exceeds the first reference pressure determination threshold exceeds the reference pressure determination time. judge.
 第一基準気圧判定用閾値は、弱い吸引が継続した際に、気圧データが示す気圧と基準気圧との差が大きくなることにより、カートリッジケース2内のエアロゾルが吸引されたにも関わらず、吸引を検知できない誤判定を避けるために使用される閾値である。また、第一基準気圧判定用閾値は、吸引検知用閾値よりも小さい気圧、例えば、+100Paである。なぜなら、第一基準気圧判定用閾値は、弱い吸引が行われている場合における気圧が上述した移動平均に組み込まれて基準気圧が低下し、基準気圧が非燃焼式吸引器1の周囲の気圧から乖離してしまうことを避けるために使用される閾値だからである。また、ここで言う弱い吸引は、例えば、基準気圧が大気圧と略等しい場合に、気圧データが示す気圧と基準気圧との差が吸引検知用閾値以下となるような吸引である。基準気圧判定用時間は、当該誤判定を避けるために使用される時間であり、例えば、0.1秒から0.6秒である。 The first reference pressure determination threshold is suction even though the aerosol in the cartridge case 2 is sucked because the difference between the pressure indicated by the atmospheric pressure data and the reference pressure becomes large when weak suction continues. This is the threshold used to avoid false positives that cannot be detected. Further, the threshold value for determining the first reference atmospheric pressure is an atmospheric pressure smaller than the threshold value for suction detection, for example, +100 Pa. This is because the first reference pressure determination threshold is such that the pressure when weak suction is performed is incorporated into the above-mentioned moving average to lower the reference pressure, and the reference pressure is derived from the pressure around the non-combustible suction device 1. This is because the threshold is used to avoid divergence. Further, the weak suction referred to here is, for example, a suction in which the difference between the pressure indicated by the atmospheric pressure data and the reference pressure is equal to or less than the suction detection threshold when the reference pressure is substantially equal to the atmospheric pressure. The reference atmospheric pressure determination time is a time used to avoid the erroneous determination, and is, for example, 0.1 seconds to 0.6 seconds.
 また、判定部42は、更新部43により基準気圧が更新された後、更新後の基準気圧と更新前の基準気圧との差が第二基準気圧判定用閾値を超えているか否かを判定する。第二基準気圧判定用閾値は、気圧データが示す気圧と基準気圧との差が大きくなることにより、カートリッジケース2内のエアロゾルが吸引されたにも関わらず、吸引を検知できない誤判定を避けるために使用される閾値である。また、第二基準気圧判定用閾値は、任意の値の気圧でよい。例えば、判定部42は、5秒前の基準気圧と現在の基準気圧との差が40Paを超えているか否かを判定する。 Further, the determination unit 42 determines whether or not the difference between the updated reference pressure and the reference pressure before the update exceeds the second reference pressure determination threshold value after the reference pressure is updated by the update unit 43. .. The second reference atmospheric pressure determination threshold is for avoiding an erroneous determination in which suction cannot be detected even though the aerosol in the cartridge case 2 is sucked due to a large difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure. The threshold used for. Further, the threshold value for determining the second reference atmospheric pressure may be an atmospheric pressure of an arbitrary value. For example, the determination unit 42 determines whether or not the difference between the reference pressure 5 seconds ago and the current reference pressure exceeds 40 Pa.
 また、判定部42は、気圧データが示す気圧と基準気圧との差が気圧センサ故障判定用閾値を超えている気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続しているか否かを判定する。 Further, the determination unit 42 determines whether or not the atmospheric pressure sensor failure state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold exceeds the atmospheric pressure sensor failure determination time. judge.
 気圧センサ故障判定用閾値は、上述した気圧センサ416Pが故障しているか否かを判定するために使用される閾値である。気圧センサ故障判定用閾値は、任意の値の気圧であり、例えば、100Paである。気圧センサ故障判定用時間は、当該判定に使用される時間であり、例えば、10秒である。 The barometric pressure sensor failure determination threshold value is a threshold value used for determining whether or not the barometric pressure sensor 416P described above has failed. The barometric pressure sensor failure determination threshold value is an atmospheric pressure of an arbitrary value, for example, 100 Pa. The barometric pressure sensor failure determination time is the time used for the determination, for example, 10 seconds.
 なお、上記の説明では、基準気圧更新用閾値が100Paであり、第一基準気圧判定用閾値が+100Paであり、気圧センサ故障判定用閾値が100Paである場合を例に挙げて説明したが、これに限定されない。例えば、第一基準気圧判定用閾値及び気圧センサ故障判定用閾値は、基準気圧更新用閾値よりも絶対値が小さな気圧であってもよい。 In the above description, the case where the reference pressure update threshold value is 100 Pa, the first reference pressure determination threshold value is +100 Pa, and the pressure sensor failure determination threshold value is 100 Pa has been described as an example. Not limited to. For example, the first reference atmospheric pressure determination threshold and the atmospheric pressure sensor failure determination threshold may be atmospheric pressures whose absolute values are smaller than the reference atmospheric pressure update threshold.
 また、判定部42は、例えば、気圧センサ416Pが気圧を計測して気圧データを生成し、取得部41が当該気圧データを取得する度に上述した全ての判定を一回ずつ実行する。だだし、判定部42が上述した判定を実行するタイミング及び回数は、特に限定されない。 Further, the determination unit 42, for example, measures the atmospheric pressure by the atmospheric pressure sensor 416P and generates atmospheric pressure data, and every time the acquisition unit 41 acquires the atmospheric pressure data, all the above-mentioned determinations are executed once. However, the timing and the number of times that the determination unit 42 executes the above-mentioned determination is not particularly limited.
 更新部43は、所定の時間に基準気圧を更新する。例えば、更新部43は、取得部41により取得された気圧データが示す気圧と前記基準気圧との差が基準気圧更新用閾値以下であると判定される度に最新の気圧データが示す気圧を含めた移動平均を計算することにより基準気圧を更新する。ただし、更新部43は、最新の気圧データではなく、最新の気圧データよりも前に取得部41により取得された気圧データが示す気圧を含めた移動平均を計算することにより基準気圧を更新してもよい。 The update unit 43 updates the reference atmospheric pressure at a predetermined time. For example, the update unit 43 includes the atmospheric pressure indicated by the latest atmospheric pressure data each time it is determined that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold. The reference pressure is updated by calculating the moving average. However, the update unit 43 updates the reference atmospheric pressure by calculating the moving average including the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 before the latest atmospheric pressure data, instead of the latest atmospheric pressure data. May be good.
 再設定部44は、気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続していると判定された場合、基準気圧を設定し直す。例えば、再設定部44は、このように判定される度に、現在の基準気圧を非燃焼式吸引器1の電源がオンになった直後に計算された基準気圧で上書きする。 The resetting unit 44 has determined that the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold, and the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time. If so, reset the reference pressure. For example, the resetting unit 44 overwrites the current reference pressure with the reference pressure calculated immediately after the power of the non-combustion suction device 1 is turned on each time the determination is made in this way.
 また、再設定部44は、更新後の基準気圧と更新前の基準気圧との差が第二基準気圧判定用閾値を超えていると判定された場合、基準気圧を設定し直す。例えば、再設定部44は、このように判定される度に、現在の基準気圧を非燃焼式吸引器1の電源がオンになった直後に計算された基準気圧で上書きする。或いは、再設定部44は、このように判定される度に、60msecごとに計測された気圧を示す気圧データが所定の数以上生成されるまで待機し、気圧データが所定の数以上生成された後、これらの気圧データ各々が示す気圧の移動平均を新しい基準気圧とする。 Further, the resetting unit 44 resets the reference pressure when it is determined that the difference between the reference pressure after the update and the reference pressure before the update exceeds the threshold for determining the second reference pressure. For example, the resetting unit 44 overwrites the current reference pressure with the reference pressure calculated immediately after the power of the non-combustion suction device 1 is turned on each time the determination is made in this way. Alternatively, each time the resetting unit 44 is determined in this way, it waits until a predetermined number or more of atmospheric pressure data indicating the atmospheric pressure measured every 60 msec is generated, and the atmospheric pressure data is generated in a predetermined number or more. Later, the moving average of the atmospheric pressure indicated by each of these atmospheric pressure data will be used as the new reference atmospheric pressure.
 制御部45は、取得部41により取得された気圧データが示す気圧と基準気圧との差が吸引検知用閾値を超えている吸引状態にあると判定される度に、上述したヒータを作動させる。 The control unit 45 operates the above-mentioned heater each time it is determined that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 and the reference atmospheric pressure is in the suction state exceeding the suction detection threshold value.
 また、制御部45は、気圧データが示す気圧と基準気圧との差が気圧センサ故障判定用閾値を超えている気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続していると判定された場合、電源ユニット4を停止させる。すなわち、制御部45は、このように判定された場合、非燃焼式吸引器1の電源をオフにする。 Further, the control unit 45 determines that the atmospheric pressure sensor failure state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold exceeds the atmospheric pressure sensor failure determination time. If so, the power supply unit 4 is stopped. That is, the control unit 45 turns off the power of the non-combustion type suction device 1 when it is determined in this way.
 なお、制御部45は、上述した制御に加え、非燃焼式吸引器1の各部に関する制御を適宜実行する。 In addition to the above-mentioned control, the control unit 45 appropriately executes control related to each part of the non-combustion type suction device 1.
 次に、図5を参照しながら、実施形態に係る電源ユニットの動作の一例を説明する。図5は、本発明の実施形態に係る電源ユニットの動作を説明するための図である。図5に示した点線Cは、気圧センサ416Pにより計測された気圧を表している。図5に示した実線Sは、更新部43により更新された基準気圧を表している。また、図5は、四つの期間、すなわち期間T1、期間T2、期間T3及び期間T4を含んでいる。なお、電源ユニット4は、期間T1、期間T2、期間T3及び期間T4において、60msecごとに上述した取得部41、判定部42、更新部43、再設定部44及び制御部45各々が実行する処理を実行するものとする。 Next, an example of the operation of the power supply unit according to the embodiment will be described with reference to FIG. FIG. 5 is a diagram for explaining the operation of the power supply unit according to the embodiment of the present invention. The dotted line C shown in FIG. 5 represents the atmospheric pressure measured by the atmospheric pressure sensor 416P. The solid line S shown in FIG. 5 represents the reference atmospheric pressure updated by the updating unit 43. FIG. 5 also includes four periods, namely period T1, period T2, period T3 and period T4. The power supply unit 4 is a process executed by each of the acquisition unit 41, the determination unit 42, the update unit 43, the reset unit 44, and the control unit 45 described above every 60 msec in the period T1, the period T2, the period T3, and the period T4. Shall be executed.
 期間T1は、上述した弱い吸引ではなく、通常の吸引が行われる期間である。期間T1では、気圧データが示す気圧は、吸引が行われていない場合、大気圧APと略等しくなり、吸引が行われている場合、大気圧APよりも低くなる。また、期間T1では、吸引が行われている場合における気圧が上述した移動平均に組み込まれないため、基準気圧は、略一定となる。なお、ここで言う通常の吸引とは、基準気圧が大気圧と略等しい場合に、気圧データが示す気圧と基準気圧との差が吸引検知用閾値を超えるような吸引である。 Period T1 is a period during which normal suction is performed instead of the weak suction described above. In the period T1, the atmospheric pressure indicated by the atmospheric pressure data is substantially equal to the atmospheric pressure AP when suction is not performed, and is lower than the atmospheric pressure AP when suction is performed. Further, in the period T1, the reference atmospheric pressure becomes substantially constant because the atmospheric pressure when suction is performed is not incorporated into the above-mentioned moving average. The normal suction referred to here is suction in which the difference between the pressure indicated by the atmospheric pressure data and the reference pressure exceeds the suction detection threshold when the reference pressure is substantially equal to the atmospheric pressure.
 期間T2は、上述した弱い吸引が行われる期間である。期間T2でも、期間T1と同様に、気圧データが示す気圧は、吸引が行われていない場合、大気圧APと略等しくなり、吸引が行われている場合、大気圧APよりも低くなる。ただし、期間T2では、期間T1と異なり、吸引が行われている場合における気圧が上述した移動平均に組み込まれるため、基準気圧は、徐々に低下する。 Period T2 is the period during which the above-mentioned weak suction is performed. In the period T2 as well, as in the period T1, the atmospheric pressure indicated by the atmospheric pressure data is substantially equal to the atmospheric pressure AP when suction is not performed, and is lower than the atmospheric pressure AP when suction is performed. However, in the period T2, unlike the period T1, the air pressure when suction is performed is incorporated into the above-mentioned moving average, so that the reference air pressure gradually decreases.
 期間T3は、再設定部44により基準気圧が更新されている期間である。したがって、基準気圧は、期間T3の間、不確定である。 Period T3 is the period during which the reference atmospheric pressure is updated by the resetting unit 44. Therefore, the reference pressure is uncertain during period T3.
 期間T4は、再設定部44により基準気圧が更新され、上述した弱い吸引ではなく、通常の吸引が行われる期間である。期間T4では、期間T1と同様に、気圧データが示す気圧は、吸引が行われていない場合、大気圧APと略等しくなり、吸引が行われている場合、大気圧APよりも低くなる。また、期間T4では、期間T1と同様に、吸引が行われている場合における気圧が上述した移動平均に組み込まれないため、基準気圧は、略一定となる。 The period T4 is a period in which the reference air pressure is updated by the resetting unit 44 and normal suction is performed instead of the weak suction described above. In the period T4, as in the period T1, the atmospheric pressure indicated by the atmospheric pressure data is substantially equal to the atmospheric pressure AP when suction is not performed, and is lower than the atmospheric pressure AP when suction is performed. Further, in the period T4, as in the period T1, the air pressure when suction is performed is not incorporated into the above-mentioned moving average, so that the reference air pressure becomes substantially constant.
 次に、図6を参照しながら、実施形態に係る電源ユニットが実行する処理の一例を説明する。図6は、本発明の実施形態に係る電源ユニットが実行する処理の一例を示すフローチャートである。なお、電源ユニット4は、図6に示した処理を、例えば、非燃焼式吸引器1の電源がオンとなった時点からオフとなる時点までの間、60msecごとに実行する。 Next, an example of the process executed by the power supply unit according to the embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing an example of processing executed by the power supply unit according to the embodiment of the present invention. The power supply unit 4 executes the process shown in FIG. 6 every 60 msec, for example, from the time when the power of the non-combustion type suction device 1 is turned on to the time when the power is turned off.
 ステップS10において、取得部41は、気圧データを取得する。 In step S10, the acquisition unit 41 acquires atmospheric pressure data.
 ステップS20において、判定部42は、気圧データが示す気圧と基準気圧との差が基準気圧更新用閾値以下であるか否かを判定する。判定部42は、ステップS10で取得された気圧データが示す気圧と基準気圧との差が基準気圧更新用閾値以下であると判定した場合(ステップS20:YES)、処理をステップS30に進める。一方、判定部42は、ステップS10で取得された気圧データが示す気圧と基準気圧との差が基準気圧更新用閾値を超えていると判定した場合(ステップS20:NO)、処理をステップS40に進める。 In step S20, the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value. When the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value (step S20: YES), the determination unit 42 proceeds to step S30. On the other hand, when the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure exceeds the threshold value for updating the reference atmospheric pressure (step S20: NO), the process proceeds to step S40. Proceed.
 ステップS30において、更新部43は、基準気圧を更新する。 In step S30, the update unit 43 updates the reference atmospheric pressure.
 ステップS40において、判定部42は、気圧データが示す気圧と基準気圧との差が吸引検知用閾値を超えているか否かを判定する。判定部42は、ステップS10で取得された気圧データが示す気圧とステップS30で更新された基準気圧との差が吸引検知用閾値を超えていると判定した場合(ステップS40:YES)、処理をステップS50に進める。一方、判定部42は、ステップS10で取得された気圧データが示す気圧とステップS30で更新された基準気圧との差が吸引検知用閾値以下であると判定した場合(ステップS40:NO)、処理をステップS60に進める。 In step S40, the determination unit 42 determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the suction detection threshold value. When the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure updated in step S30 exceeds the suction detection threshold value (step S40: YES), the determination unit 42 performs processing. Proceed to step S50. On the other hand, when the determination unit 42 determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired in step S10 and the reference atmospheric pressure updated in step S30 is equal to or less than the suction detection threshold (step S40: NO), processing is performed. To step S60.
 ステップS50において、制御部45は、ヒータを作動させる。 In step S50, the control unit 45 operates the heater.
 ステップS60において、制御部45は、ヒータを停止させたままにする。 In step S60, the control unit 45 keeps the heater stopped.
 ステップS70において、判定部42は、第一基準気圧判定用閾値を超えた基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する。判定部42は、基準気圧低下状態が基準気圧判定用時間を超えて継続していると判定した場合(ステップS70:YES)、処理をステップS80に進める。一方、判定部42は、基準気圧低下状態が基準気圧判定用時間を超えて継続していないと判定した場合(ステップS70:NO)、処理をステップS100に進める。 In step S70, the determination unit 42 determines whether or not the reference pressure drop state that exceeds the first reference pressure determination threshold value continues beyond the reference pressure determination time. When the determination unit 42 determines that the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time (step S70: YES), the determination unit 42 proceeds to step S80. On the other hand, when the determination unit 42 determines that the reference pressure drop state has not continued beyond the reference pressure determination time (step S70: NO), the process proceeds to step S100.
 ステップS80において、判定部42は、更新前後の基準気圧との差が第二基準気圧判定用閾値を超えているか否かを判定する。判定部42は、ステップS30で更新された後の基準気圧とステップS30で更新される前の基準気圧との差が第二基準気圧判定用閾値を超えていると判定した場合(ステップS80:YES)、処理をステップS90に進める。一方、判定部42は、ステップS30で更新された後の基準気圧とステップS30で更新される前の基準気圧との差が第二基準気圧判定用閾値以下であると判定した場合(ステップS80:NO)、処理をステップS100に進める。 In step S80, the determination unit 42 determines whether or not the difference from the reference atmospheric pressure before and after the update exceeds the threshold value for determining the second reference atmospheric pressure. When the determination unit 42 determines that the difference between the reference pressure after being updated in step S30 and the reference pressure before being updated in step S30 exceeds the threshold value for determining the second reference pressure (step S80: YES). ), The process proceeds to step S90. On the other hand, when the determination unit 42 determines that the difference between the reference pressure after the update in step S30 and the reference pressure before the update in step S30 is equal to or less than the second reference pressure determination threshold value (step S80: NO), the process proceeds to step S100.
 ステップS90において、再設定部44は、基準気圧を設定し、処理をステップS10に戻す。 In step S90, the resetting unit 44 sets the reference atmospheric pressure and returns the process to step S10.
 ステップS100において、判定部42は、気圧センサ故障判定用閾値を超えた気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続しているか否かを判定する。判定部42は、気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続していると判定した場合(ステップS100:YES)、処理をステップS110に進める。一方、判定部42は、気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続していないと判定した場合(ステップS100:NO)、処理をステップS10に戻す。 In step S100, the determination unit 42 determines whether or not the barometric pressure sensor failure state exceeding the barometric pressure sensor failure determination threshold value continues beyond the barometric pressure sensor failure determination time. When the determination unit 42 determines that the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time (step S100: YES), the determination unit 42 proceeds to step S110. On the other hand, when the determination unit 42 determines that the barometric pressure sensor failure state has not continued beyond the barometric pressure sensor failure determination time (step S100: NO), the process returns to step S10.
 ステップS110において、制御部45は、電源ユニット4を停止させる。 In step S110, the control unit 45 stops the power supply unit 4.
 以上、実施形態に係る非燃焼式吸引器1について電源ユニット4を中心に説明した。 The non-combustion type suction device 1 according to the embodiment has been described above, focusing on the power supply unit 4.
 電源ユニット4は、所定の時間における気圧を示す気圧データを順次取得する取得部41と、気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定部42と、基準気圧低下状態が基準気圧判定用時間を超えて継続していると判定された場合、基準気圧を設定し直す再設定部44とを備える。 The power supply unit 4 has a reference pressure drop state in which the difference between the acquisition unit 41 that sequentially acquires the atmospheric pressure data indicating the atmospheric pressure at a predetermined time and the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold. The determination unit 42, which determines whether or not the vehicle continues beyond the reference pressure determination time, and the reference pressure setting when it is determined that the reference pressure decrease state continues beyond the reference pressure determination time. It is provided with a resetting unit 44 for resetting.
 これにより、電源ユニット4は、弱い吸引が行われている場合における気圧が移動平均に組み込まれて基準気圧が低下してしまっても適切な基準気圧に戻す。したがって、電源ユニット4は、弱い吸引が継続した際に通常の吸引を検知できない誤判定を避け、吸引を正確に判定することができる。 As a result, the power supply unit 4 returns to an appropriate reference pressure even if the pressure in the case of weak suction is incorporated into the moving average and the reference pressure drops. Therefore, the power supply unit 4 can avoid erroneous determination that normal suction cannot be detected when weak suction continues, and can accurately determine suction.
 電源ユニット4は、所定の時間に基準気圧を更新する更新部43を更に備え、判定部42により更新後の基準気圧と更新前の基準気圧との差が第二基準気圧判定用閾値を超えているか否かを更に判定し、再設定部44により更新後の基準気圧と更新前の基準気圧との差が第二基準気圧判定用閾値を超えていると更に判定された場合、基準気圧を設定し直す。 The power supply unit 4 further includes an update unit 43 that updates the reference pressure at a predetermined time, and the difference between the reference pressure after the update and the reference pressure before the update exceeds the second reference pressure determination threshold by the determination unit 42. If it is further determined by the resetting unit 44 that the difference between the updated reference pressure and the pre-update reference pressure exceeds the second reference pressure determination threshold, the reference pressure is set. Redo.
 これにより、電源ユニット4は、弱い吸引が行われている場合における気圧が移動平均に組み込まれて基準気圧が低下してしまっても適切な基準気圧に戻す。したがって、電源ユニット4は、弱い吸引が継続した際に通常の吸引を検知できない誤判定を避け、吸引を正確に判定することができる。 As a result, the power supply unit 4 returns to an appropriate reference pressure even if the pressure in the case of weak suction is incorporated into the moving average and the reference pressure drops. Therefore, the power supply unit 4 can avoid erroneous determination that normal suction cannot be detected when weak suction continues, and can accurately determine suction.
 また、電源ユニット4は、第一基準気圧判定用閾値を使用した判定及び第二基準気圧判定用閾値を使用した判定を併用することにより、基準気圧が低下してしまっていることを更に精度良く検知し、適切な基準気圧に戻すことができる。 Further, the power supply unit 4 further accurately confirms that the reference atmospheric pressure has decreased by using the determination using the first reference atmospheric pressure determination threshold value and the determination using the second reference atmospheric pressure determination threshold value together. It can be detected and returned to the appropriate reference pressure.
 電源ユニット4は、基準気圧を所定の数の気圧データ各々が示す気圧の移動平均とし、判定部42により取得部41が取得した気圧データが示す気圧と基準気圧との差が基準気圧更新用閾値以下であるか否かを更に判定し、更新部43により取得部41が取得した気圧データが示す気圧と基準気圧との差が基準気圧更新用閾値以下であると判定した場合、前記基準気圧との差が基準気圧更新用閾値以下である気圧を含めた移動平均を計算することにより基準気圧を更新する。 In the power supply unit 4, the reference pressure is set as the moving average of the atmospheric pressure indicated by each of a predetermined number of atmospheric pressure data, and the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit 41 by the determination unit 42 and the reference atmospheric pressure is the reference atmospheric pressure update threshold. When it is further determined whether or not it is the following, and it is determined by the updating unit 43 that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquiring unit 41 and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure updating threshold, the reference atmospheric pressure and The reference pressure is updated by calculating the moving average including the pressure at which the difference between the two is equal to or less than the reference pressure update threshold.
 したがって、電源ユニット4は、吸引の判定に使用される基準気圧を非燃焼式吸引器1の周囲の気圧に追従させることにより、非燃焼式吸引器1の周囲の気圧が変化しても吸引を正確に判定することができる。 Therefore, the power supply unit 4 makes the reference air pressure used for determining suction follow the air pressure around the non-combustion type suction device 1, so that suction can be performed even if the air pressure around the non-combustion type suction device 1 changes. It can be determined accurately.
 電源ユニット4は、判定部42により気圧データが示す気圧と基準気圧との差が気圧センサ故障判定用閾値を超えている気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続しているか否かを更に判定し、気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続していると判定された場合、電源ユニットを停止させる制御部45を更に備える。 In the power supply unit 4, whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure by the determination unit 42 exceeds the atmospheric pressure sensor failure determination threshold value and the atmospheric pressure sensor failure state continues beyond the atmospheric pressure sensor failure determination time. Further, the control unit 45 for stopping the power supply unit is further provided when it is determined that the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time.
 したがって、電源ユニット4は、気圧センサ416Pが故障し、正確な基準気圧を計算することができなくなっている場合、自身の動作を停止させ、不正確な吸引の判定を停止させることができる。 Therefore, when the atmospheric pressure sensor 416P fails and the accurate reference atmospheric pressure cannot be calculated, the power supply unit 4 can stop its own operation and stop the determination of inaccurate suction.
 電源ユニット4は、判定部42により気圧データが示す気圧と基準気圧との差が吸引検知用閾値を超えている吸引状態にあるか否かを更に判定し、吸引状態にあると判定された場合、ヒータを作動させる制御部45を更に備える。 The power supply unit 4 further determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure is in the suction state exceeding the suction detection threshold value by the determination unit 42, and when it is determined that the power supply unit 4 is in the suction state. Further, a control unit 45 for operating the heater is provided.
 したがって、電源ユニット4は、非燃焼式吸引器1が吸引状態にある時にのみヒータを作動させてリザーバから供給された液体を加熱することができる。 Therefore, the power supply unit 4 can operate the heater to heat the liquid supplied from the reservoir only when the non-combustion type suction device 1 is in the suction state.
 なお、上述した電源ユニット4の各機能を実現するための非燃焼式吸引器制御プログラムをコンピュータ読み取り可能な記録媒体に記録させ、非燃焼式吸引器制御プログラムをコンピュータシステムに読み込ませて実行することにより、上述した処理の少なくとも一部を実行してもよい。 It should be noted that the non-combustible suction device control program for realizing each function of the power supply unit 4 described above is recorded on a computer-readable recording medium, and the non-combustible suction device control program is read into the computer system and executed. Therefore, at least a part of the above-mentioned processing may be executed.
 ここで言うコンピュータシステムとは、オペレーティング・システム(OS:Operating System)及び周辺機器等のハードウエアの少なくとも一つを含む。また、コンピュータ読み取り可能な記録媒体とは、例えば、フロッピーディスク、光磁気ディスク、ROM(Read Only Memory)、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置、ネットワーク又は通信回線を介してプログラムが送信される場合におけるサーバ又はクライアントとなるコンピュータシステム内部の揮発性メモリのように一定時間プログラムを保持しているものも含む。 The computer system referred to here includes at least one of hardware such as an operating system (OS: Operating System) and peripheral devices. Computer-readable recording media include, for example, floppy disks, optomagnetic disks, ROMs (Read Only Memory), writable non-volatile memories such as flash memories, and portable media such as DVDs (Digital Versatile Discs). A computer system that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client when a program is transmitted via a storage device such as a hard disk built into the computer system, a network, or a communication line. Also includes.
 また、上述した非燃焼式吸引器制御プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、又は、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する伝送媒体とは、インターネット等のネットワーク又は電話回線等の通信回線のように情報を伝送する機能を有する媒体のことをいう。 Further, the above-mentioned non-combustible aspirator control program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Good. Here, the transmission medium for transmitting a program means a medium having a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
 また、上述した非燃焼式吸引器制御プログラムは、上述した電源ユニット4の機能の一部を実現するためのものであってもよく、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるプログラム、いわゆる差分プログラムであってもよい。上述した非燃焼式吸引器制御プログラムは、例えば、コンピュータが備えるCPU(Central Processing Unit)等のプロセッサにより読み出されて実行される。なお、本実施形態では、図4及び図6に示した機能が電源ユニット4に設けられる場合を例に説明したが、カートリッジケース2等、他の構成に設けられていてもよい。 Further, the non-combustion type suction device control program described above may be for realizing a part of the functions of the power supply unit 4 described above, and the above-mentioned functions may be combined with a program already recorded in the computer system. It may be a program that can be realized by a combination, a so-called difference program. The above-mentioned non-combustion suction device control program is read and executed by a processor such as a CPU (Central Processing Unit) provided in the computer, for example. In this embodiment, the case where the functions shown in FIGS. 4 and 6 are provided in the power supply unit 4 has been described as an example, but other configurations such as the cartridge case 2 may be provided.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形、置換及び設計変更の少なくとも一つを加えることができる。上述した各実施形態に記載の構成を組み合わせてもよい。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and various modifications, substitutions and designs are made without departing from the gist of the present invention. At least one of the changes can be made. The configurations described in each of the above-described embodiments may be combined.
 4…電源ユニット、41…取得部、42…判定部、43…更新部、44…再設定部、45…制御部 4 ... Power supply unit, 41 ... Acquisition unit, 42 ... Judgment unit, 43 ... Update unit, 44 ... Reset unit, 45 ... Control unit

Claims (8)

  1.  所定の時間における気圧を示す気圧データを順次取得する取得部と、
     前記気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定部と、
     前記基準気圧低下状態が前記基準気圧判定用時間を超えて継続していると判定された場合、前記基準気圧を設定し直す再設定部と、
     を備える電源ユニット。
    An acquisition unit that sequentially acquires atmospheric pressure data indicating atmospheric pressure at a predetermined time,
    A determination unit for determining whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold and the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time.
    When it is determined that the reference pressure drop state continues beyond the reference pressure determination time, the resetting unit for resetting the reference pressure and the reset unit
    Power supply unit with.
  2.  所定の時間に前記基準気圧を更新する更新部を更に備え、
     前記判定部は、更新後の前記基準気圧と更新前の前記基準気圧との差が第二基準気圧判定用閾値を超えているか否かを更に判定し、
     前記再設定部は、更新後の前記基準気圧と更新前の前記基準気圧との差が第二基準気圧判定用閾値を超えていると判定された場合、前記基準気圧を設定し直す、
     請求項1に記載の電源ユニット。
    Further equipped with an update unit that updates the reference atmospheric pressure at a predetermined time,
    The determination unit further determines whether or not the difference between the reference pressure after the update and the reference pressure before the update exceeds the threshold value for determining the second reference pressure.
    When it is determined that the difference between the reference pressure after the update and the reference pressure before the update exceeds the threshold value for determining the second reference pressure, the resetting unit resets the reference pressure.
    The power supply unit according to claim 1.
  3.  前記基準気圧は、所定の数の前記気圧データ各々が示す気圧の移動平均であり、
     前記判定部は、前記取得部が取得した前記気圧データが示す気圧と前記基準気圧との差が基準気圧更新用閾値以下であるか否かを更に判定し、
     前記更新部は、前記取得部が取得した前記気圧データが示す気圧と前記基準気圧との差が前記基準気圧更新用閾値以下であると判定した場合、前記基準気圧との差が前記基準気圧更新用閾値以下である気圧を含めた前記移動平均を計算することにより前記基準気圧を更新する、
     請求項2に記載の電源ユニット。
    The reference pressure is a moving average of the atmospheric pressure indicated by each of the predetermined number of the atmospheric pressure data.
    The determination unit further determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold value.
    When the update unit determines that the difference between the atmospheric pressure indicated by the atmospheric pressure data acquired by the acquisition unit and the reference atmospheric pressure is equal to or less than the reference atmospheric pressure update threshold, the difference from the reference atmospheric pressure is the reference atmospheric pressure update. The reference pressure is updated by calculating the moving average including the pressure below the working threshold.
    The power supply unit according to claim 2.
  4.  前記判定部は、前記気圧データが示す気圧と前記基準気圧との差が気圧センサ故障判定用閾値を超えている気圧センサ故障状態が気圧センサ故障判定用時間を超えて継続しているか否かを更に判定し、
     前記気圧センサ故障状態が前記気圧センサ故障判定用時間を超えて継続していると判定された場合、電源ユニットを停止させる制御部を更に備える、
     請求項1から請求項3のいずれか一つに記載の電源ユニット。
    The determination unit determines whether or not the atmospheric pressure sensor failure state in which the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the atmospheric pressure sensor failure determination threshold exceeds the atmospheric pressure sensor failure determination time. Judging further,
    When it is determined that the barometric pressure sensor failure state continues beyond the barometric pressure sensor failure determination time, a control unit for stopping the power supply unit is further provided.
    The power supply unit according to any one of claims 1 to 3.
  5.  前記判定部は、前記気圧データが示す気圧と前記基準気圧との差が吸引検知用閾値を超えている吸引状態にあるか否かを更に判定し、
     前記吸引状態にあると判定された場合、ヒータを作動させる制御部を更に備える、
     請求項1から請求項3のいずれか一つに記載の電源ユニット。
    The determination unit further determines whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure is in a suction state exceeding the suction detection threshold value.
    When it is determined that the suction state is present, a control unit for operating the heater is further provided.
    The power supply unit according to any one of claims 1 to 3.
  6.  請求項1から請求項5のいずれか一つに記載の電源ユニットを備える非燃焼式吸引器。 A non-combustion type suction device including the power supply unit according to any one of claims 1 to 5.
  7.  コンピュータに、
     所定の時間における気圧を示す気圧データを順次取得する取得機能と、
     前記気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定機能と、
     前記基準気圧低下状態が前記基準気圧判定用時間を超えて継続していると判定された場合、前記基準気圧を設定し直す再設定機能と、
     を実現させるための非燃焼式吸引器制御プログラム。
    On the computer
    An acquisition function that sequentially acquires atmospheric pressure data indicating atmospheric pressure at a predetermined time,
    A determination function for determining whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold and the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time.
    When it is determined that the reference pressure drop state continues beyond the reference pressure determination time, the reset function for resetting the reference pressure and the reset function
    Non-combustion aspirator control program to realize.
  8.  所定の時間における気圧を示す気圧データを順次取得する取得ステップと、
     前記気圧データが示す気圧と基準気圧との差が第一基準気圧判定用閾値を超えている基準気圧低下状態が基準気圧判定用時間を超えて継続しているか否かを判定する判定ステップと、
     前記基準気圧低下状態が前記基準気圧判定用時間を超えて継続していると判定された場合、前記基準気圧を設定し直す再設定ステップと、
     を含む非燃焼式吸引器制御方法。
    An acquisition step of sequentially acquiring atmospheric pressure data indicating atmospheric pressure at a predetermined time, and
    A determination step for determining whether or not the difference between the atmospheric pressure indicated by the atmospheric pressure data and the reference atmospheric pressure exceeds the first reference atmospheric pressure determination threshold and the reference atmospheric pressure lowering state continues beyond the reference atmospheric pressure determination time.
    When it is determined that the reference pressure drop state continues beyond the reference pressure determination time, the resetting step of resetting the reference pressure and the resetting step
    Non-combustion aspirator control method including.
PCT/JP2019/049216 2019-04-24 2019-12-16 Power supply unit, non-combustion type suction device, control program for non-combustion type suction device, and control method for non-combustion type suction device WO2020217583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019083262 2019-04-24
JP2019-083262 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020217583A1 true WO2020217583A1 (en) 2020-10-29

Family

ID=72942371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049216 WO2020217583A1 (en) 2019-04-24 2019-12-16 Power supply unit, non-combustion type suction device, control program for non-combustion type suction device, and control method for non-combustion type suction device

Country Status (1)

Country Link
WO (1) WO2020217583A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049139A (en) * 2006-07-25 2008-03-06 Canon Inc Medicine ejection device and medicine ejection method
US20140246035A1 (en) * 2010-05-15 2014-09-04 Minusa Holdings Llc Vaporizer configuration, control, and reporting
JP2015532158A (en) * 2012-10-19 2015-11-09 ニコベンチャーズ ホールディングス リミテッド Electronic inhaler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049139A (en) * 2006-07-25 2008-03-06 Canon Inc Medicine ejection device and medicine ejection method
US20140246035A1 (en) * 2010-05-15 2014-09-04 Minusa Holdings Llc Vaporizer configuration, control, and reporting
JP2015532158A (en) * 2012-10-19 2015-11-09 ニコベンチャーズ ホールディングス リミテッド Electronic inhaler

Similar Documents

Publication Publication Date Title
US11303990B2 (en) Small earpiece enhanced on-ear detection with multiple cap sense
JP6847251B2 (en) Systems and methods for checking the filling level of liquid storage sections
JP2011502263A (en) Test strip and system for measuring the concentration of an analyte in a liquid sample
TW200416547A (en) Probe based information storage for probes used for opens detection in in-circuit testing
US8636661B2 (en) Embeddable modules for measuring blood glucose levels
TW202025969A (en) Blood glucose test strip and associated measuring method
US20200271525A1 (en) Infrared thermometer capable of switching forehead temperature measurement mode and ear temperature measurement mode and switching method
US20180081450A1 (en) Customize input device and customize button input method
US20190230912A1 (en) Detection device for detecting fishing device entering water and method thereof
WO2020217583A1 (en) Power supply unit, non-combustion type suction device, control program for non-combustion type suction device, and control method for non-combustion type suction device
JP2023063486A (en) Body attachment device for continuous glucose monitoring
CN110507010B (en) Electronic cigarette capable of automatically controlling heating temperature based on cartridge detection
US20190128723A1 (en) Measuring device and measuring system
WO2019225120A1 (en) Electronic pen
EP3465121B1 (en) Resistive force sensor for use in a stylus
US20220357449A1 (en) Intraoral measurement device and intraoral measurement system
JPWO2020095666A1 (en) Capacitive electronic pen
EP3699564B1 (en) Infrared thermometer capable of switching forehead temperature measurement mode and ear temperature measurement mode and switching method
US11340209B2 (en) Measuring humidity or moisture with sensor drift compensation
CN209769013U (en) cigarette bullet, power supply unit and electron cigarette
WO2022104748A1 (en) Implanted-type monitoring apparatus calibration method, sensor assembly, and blood glucose monitoring system
JPS5892340A (en) Zero compensating apparatus of hemomanometer
US20230248068A1 (en) Method of Managing an Aerosol-Generating Device
CN111413382B (en) Medical smart phone system and implementation method
JP7507837B2 (en) Heating elements and electronic atomizers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP