WO2020217476A1 - Compound, molded article, hardened product of compound, and method for manufacturing compound - Google Patents

Compound, molded article, hardened product of compound, and method for manufacturing compound Download PDF

Info

Publication number
WO2020217476A1
WO2020217476A1 PCT/JP2019/018020 JP2019018020W WO2020217476A1 WO 2020217476 A1 WO2020217476 A1 WO 2020217476A1 JP 2019018020 W JP2019018020 W JP 2019018020W WO 2020217476 A1 WO2020217476 A1 WO 2020217476A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
compound
metal powder
resin
powder
Prior art date
Application number
PCT/JP2019/018020
Other languages
French (fr)
Japanese (ja)
Inventor
須田 聡一郎
稲垣 孝
石原 千生
竹内 一雅
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/018020 priority Critical patent/WO2020217476A1/en
Priority to CN201980095572.3A priority patent/CN113728403A/en
Priority to KR1020247000548A priority patent/KR20240008976A/en
Priority to JP2021515707A priority patent/JP7231017B2/en
Priority to KR1020217029396A priority patent/KR102623788B1/en
Publication of WO2020217476A1 publication Critical patent/WO2020217476A1/en
Priority to JP2023020143A priority patent/JP2023054087A/en
Priority to JP2024015956A priority patent/JP2024040258A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron

Definitions

  • the present invention relates to a compound, a molded product, a cured product of the compound, and a method for producing the compound.
  • the compound containing the metal powder and the resin composition is used as a raw material for various industrial products according to various physical properties of the metal powder.
  • the compound is used as a raw material for inductors, encapsulants, electromagnetic wave shields (EMI shields), bond magnets, and the like. (See Patent Document 1 below.)
  • the compound When manufacturing an industrial product from a compound, the compound is supplied and filled in the mold, and parts such as coils are embedded in the compound.
  • the fluidity of the compound is required in these steps.
  • conventional compounds do not have sufficient liquidity. As the particle size of the metal powder decreases, the fluidity of the compound tends to decrease.
  • An object of the present invention is to provide a compound having excellent fluidity, a molded product containing the compound, a cured product of the compound, and a method for producing the compound.
  • the compound according to one aspect of the present invention comprises a metal filler containing a first metal powder and a resin composition, wherein the first metal powder contains a plurality of first metal particles and is on the surface of the first metal particles. At least a part thereof is covered with glass containing Si, and the median diameter of the first metal powder is 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the first metal powder may be an alloy containing Fe.
  • the first metal particles may be spherical.
  • the resin composition may contain a thermosetting resin.
  • the compound according to one aspect of the present invention may be a powder or a paste.
  • the content of the metal filler in the compound may be 90% by mass or more and less than 100% by mass.
  • the metal filler may further contain the second metal powder, and the median diameter of the second metal powder may be larger than the median diameter of the first metal powder.
  • the median diameter of the second metal powder may be 20.0 ⁇ m or more and 30.0 ⁇ m or less, the mass of the first metal powder may be M1, and the mass of the second metal powder may be M2.
  • 100 ⁇ M1 / (M1 + M2) may be 5 or more and 30 or less, and 100 ⁇ M2 / (M1 + M2) may be 70 or more and 95 or less.
  • the second metal powder may be an alloy containing Fe.
  • the secondary metal particles contained in the secondary metal powder may be spherical.
  • the D90 of the second metal powder may be 40 ⁇ m or more and 65 ⁇ m or less.
  • the molded product according to one aspect of the present invention includes the above compound.
  • the cured product of the compound according to one aspect of the present invention is the cured product of the above-mentioned compound.
  • the method for producing a compound according to one aspect of the present invention is the method for producing the above-mentioned compound, which comprises a step of obtaining a first mixture by mixing a metal filler and a clotting agent, and a resin composition excluding the clotting agent.
  • a step of obtaining a second mixture by kneading the first mixture while heating, a step of obtaining a solid substance by cooling the second mixture, and a step of crushing the solid substance are provided. ..
  • the method for producing a compound according to another aspect of the present invention is a method for producing the above-mentioned compound, which comprises a step of obtaining a metal filler by mixing a first metal powder and a second metal powder, and a metal filler.
  • a compound having excellent fluidity a molded product containing the compound, a cured product of the compound, and a method for producing the compound are provided.
  • the compound according to the present embodiment includes a metal filler containing the first metal powder and a resin composition.
  • the metal filler may be paraphrased as the whole metal powder contained in the compound.
  • the first metal powder contains a plurality of first metal particles. That is, the first metal powder means the whole of a plurality of first metal particles. At least a part of the surface of the first metal particles is covered with glass containing Si (silicon). For example, at least a part of the surface of the first metal particles may be covered with a glass film or a glass layer. The glass film or glass layer may be composed of a large number of glass particles containing Si.
  • the compound may further comprise at least one other metal powder in addition to the primary metal powder.
  • the resin composition may cover the surface of each metal particle constituting the metal filler. The resin composition may be present between the metal fillers, and the metal fillers may be attached to each other via the resin composition.
  • the compound may further comprise a non-metallic filler (eg, silica or metal oxide).
  • the gap between the metal particles decreases.
  • the filling rate (content) of the metal filler in the compound increases.
  • the relative magnetic permeability of the compound increases.
  • the specific surface area of each metal particle increases.
  • the metal filler tends to aggregate and the fluidity of the compound is impaired. If the first metal particles are not covered with glass, the first metal powder having a relatively small median diameter is particularly liable to agglomerate, and the agglomeration of the first metal powder tends to impair the fluidity of the compound.
  • the aggregation of the first metal powder is suppressed and the frictional force acting between the first metal particles is reduced.
  • the decrease in the fluidity of the compound due to the small median diameter of the first metal powder is suppressed.
  • the entire surface of the first metal particles may be covered with glass containing Si. However, only a part of the surface of the first metal particles may be covered with glass containing Si. Since the first metal powder is less likely to aggregate and the fluidity of the compound is likely to be improved, the surface of all the first metal particles contained in the first metal powder may be covered with glass containing Si. However, only the surface of some of the first metal particles contained in the first metal powder may be covered with glass containing Si.
  • the metal filler may contain at least one other metal powder having a median diameter different from that of the first metal powder, in addition to the first metal powder.
  • the metal filler may further contain a second metal powder in addition to the first metal powder.
  • the secondary metal powder contains a plurality of secondary metal particles. That is, the secondary metal powder means the whole of the plurality of secondary metal particles.
  • the median diameter of the second metal powder is larger than the median diameter of the first metal powder. If the compound contains only the second metal powder as the metal filler, gaps are likely to be formed between the second metal particles, and the filling rate of the metal filler in the compound is likely to decrease.
  • the compound contains the first metal powder and the second metal powder as the metal filler
  • the first metal particles smaller than the second metal particles are likely to be filled in the gaps formed between the second metal particles.
  • the filling rate of the metal filler in the compound tends to increase.
  • the relative magnetic permeability of the compound is likely to be controlled based on the mass ratio of the first metal powder and the second metal powder, and the relative magnetic permeability of the compound is likely to increase.
  • the surface of the second metal particles does not have to be covered with glass containing Si. At least a part of the surface of the second metal particles may be covered with glass containing Si.
  • glass containing Si By covering the surface of the secondary metal particles with glass, the aggregation of the secondary metal powder is suppressed, and the decrease in the fluidity of the compound is suppressed.
  • the entire surface of the second metal particles may be covered with glass containing Si. However, only a part of the surface of the second metal particles may be covered with glass containing Si.
  • the surface of all the secondary metal particles contained in the secondary metal powder may be covered with glass containing Si. Only the surface of some of the secondary metal particles contained in the secondary metal powder may be covered with glass containing Si. All metal powders contained in the compound may be covered with glass containing Si.
  • the median diameter (D50) of the first metal powder is 1.0 ⁇ m or more and 5.0 ⁇ m or less, preferably 1.5 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 2.17 ⁇ m or more and 2.31 ⁇ m or less. Since the fine first metal powder having D50 is contained in the compound, the filling rate of the metal filler in the compound tends to increase. If the D50 of the first metal powder is within the above range and the surface of the first metal particles is not covered with the crow film, the first metal powder tends to aggregate and the fluidity of the compound tends to decrease. ..
  • the D10 of the first metal powder may be, for example, 1.08 ⁇ m or more and 1.2 ⁇ m or less.
  • the D90 of the first metal powder may be, for example, 3.88 ⁇ m or more and 4.43 ⁇ m or less.
  • D10, D50 and D90 of the first metal powder may be calculated from the particle size distribution of the first metal powder based on the volume of the first metal powder.
  • the particle size distribution of the first metal powder may be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device.
  • the particle size distribution of the primary metal powder may be measured before the primary metal powder is mixed with the other components of the compound.
  • Each of D10, D50 and D90 of the first metal powder is a value including the thickness of the glass.
  • the thickness of the glass may be significantly smaller than the particle size of the individual primary metal particles.
  • the scale of the thickness of the glass covering the first metal particles may be nanometers (nm).
  • the median diameter (D50) of the second metal powder may be 20.0 ⁇ m or more and 30.0 ⁇ m or less, preferably 22 ⁇ m or more and 28 ⁇ m or less, and more preferably 24.0 ⁇ m or more and 26.0 ⁇ m or less.
  • the D10 of the second metal powder may be, for example, 6.0 ⁇ m or more and 12.0 ⁇ m or less.
  • the D90 of the second metal powder may be, for example, 40 ⁇ m or more and 65 ⁇ m or less, preferably 45 ⁇ m or more and 65 ⁇ m or less.
  • the secondary metal powders D10, D50 and D90 may be calculated from the particle size distribution of the secondary metal powder based on the volume of the secondary metal powder.
  • the particle size distribution of the second metal powder may be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device.
  • the particle size distribution of the secondary metal powder may be measured before the secondary metal powder is mixed with the other components of the compound.
  • D10, D50 and D90 of the second metal powder are values including the thickness of the glass.
  • the thickness of the glass may be significantly smaller than the particle size of the individual secondary metal particles.
  • the scale of the thickness of the glass covering the second metal powder may be nanometers (nm).
  • the mass of the first metal powder may be expressed as M1.
  • the mass of the second metal powder may be expressed as M2.
  • the D50 of the first metal powder is 1.0 ⁇ m or more and 5.0 ⁇ m or less (preferably 2.17 ⁇ m or more and 2.31 ⁇ m or less), and the D50 of the second metal powder is 20.0 ⁇ m or more and 30.0 ⁇ m or less (preferably 24).
  • 100 ⁇ M1 / (M1 + M2) may be 5 or more and 30 or less
  • 100 ⁇ M2 / (M1 + M2) may be 70 or more and 95 or less.
  • 100 ⁇ M1 / (M1 + M2) and 100 ⁇ M2 / (M1 + M2) are within the above ranges, the first metal particles are likely to be filled in the gaps formed between the second metal particles, and the metal filler in the compound.
  • the filling rate tends to increase.
  • the relative magnetic permeability of the compound tends to increase.
  • 100 ⁇ M1 / (M1 + M2) may be preferably 13 or more and 23 or less
  • 100 ⁇ M2 / (M1 + M2) may be preferably 77 or more and 87 or less.
  • the glass covering the surface of the first metal particles contains at least Si.
  • the glass containing Si may further contain at least one element selected from the group consisting of, for example, O (oxygen), B (boron), Na (sodium) and Al (aluminum).
  • the glass may include, for example, SiO 2 (silicic acid glass) or borosilicate glass.
  • a large number of particles made of Si-containing glass may cover the surface of the first metal particles.
  • the means for covering the surface of the first metal particles with the above glass may be, for example, a spray dryer. That is, the surface treatment liquid containing Si may be sprayed onto the first metal powder.
  • the surface treatment liquid containing Si may be a liquid containing the glass itself or a liquid containing a raw material for the glass.
  • the means for covering the surface of the first metal particles with the above glass may be an impregnation method.
  • the first metal powder may be immersed in a surface treatment liquid containing Si.
  • the first metal powder to which the surface treatment liquid is attached may be heated if necessary.
  • the surface of the metal particles constituting the metal filler may be covered with a coupling agent.
  • the surface of the first metal particles may be further covered with a coupling agent.
  • the coupling agent that covers the metal filler does not correspond to glass containing Si.
  • the first metal particles may further have a surface covered with a coupling agent as well as a surface covered with glass.
  • a silane coupling agent is preferable.
  • the compound may further include a metal powder having a surface covered with a coupling agent as a metal powder separate from the first metal powder.
  • the compound may further comprise a metal powder having a surface treated with phosphoric acid (eg, organic phosphoric acid).
  • the compound may further comprise a metal powder having a phosphate-covered surface.
  • the first metal particles may further have a surface treated with phosphoric acid as well as a surface covered with glass.
  • the first metal powder may contain, for example, at least one selected from the group consisting of elemental metals and alloys.
  • the alloy may include at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds.
  • the first metal powder may contain one kind of metal element or a plurality of kinds of metal elements.
  • the metal element contained in the first metal powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
  • the metal elements contained in the first metal powder are, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum ( Al), tin (Sn), chromium (Cr), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), placeodymium (Pr), neodymium (Nd), samarium (Sm) and dysprosium ( It may be at least one selected from the group consisting of Dy).
  • the first metal powder may contain an element other than the metal element.
  • the first metal powder may contain, for example, oxygen ( ⁇ ), beryllium (Be), phosphorus (P), boron (B), or silicon (Si).
  • the first metal powder may be a soft magnetic material or a ferromagnetic material.
  • the first metal powder may be an alloy containing Fe.
  • the second metal powder may also be an alloy containing Fe. All metal fillers contained in the compound may be Fe-containing alloys. Since the compound has an alloy containing Fe as a metal filler, the compound can have a high relative magnetic permeability. Compounds with high relative permeability may be applied, for example, to inductors or EMI filters.
  • the first metal powder may be an alloy containing Fe, Cr and Si. When the first metal powder is an alloy containing Fe, Cr and Si, rusting of the first metal powder is likely to be suppressed.
  • the first metal powder is an alloy containing Fe, Cr and Si
  • core loss in a cured product of the compound is likely to be suppressed.
  • the second metal powder may also be an alloy containing Fe, Cr and Si.
  • all metal fillers contained in the compound may be alloys containing Fe, Cr and Si.
  • the composition of the alloy containing Fe is not limited to the above composition.
  • the first metal powder contains Fe (iron), Co (cobalt), Ni (nickel), Si (silicon), B (boron), P (phosphorus), C (carbon), element ⁇ and element ⁇ .
  • the element ⁇ may be at least one element selected from the group consisting of Nb (niobium) and Mo (molybdenum), and the element ⁇ is composed of Cr (chromium) and Zr (zyroxide). It may be at least one element selected from the group.
  • the first metal powders are Fe—Si alloys, Fe—Si—Al alloys (Sendust), Fe—Ni alloys (Permalloy), Fe—Cu—Ni alloys (Permalloy), and Fe—Co alloys (Permalloy). It may contain at least one selected from the group consisting of permalloys).
  • the first metal powder may be Fe alone.
  • the first metal powder may contain, for example, at least one of amorphous iron powder and carbonyl iron powder.
  • the first metal powder is Nd-Fe-B alloy (rare earth magnet), Sm-Co alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), and Al-Ni-Co alloy (alnico).
  • a metal magnet consisting of at least one selected from the group consisting of magnets) may be included.
  • the second metal powder may contain at least one selected from the group consisting of the above-mentioned simple substances and compounds.
  • the composition of the second metal powder may be the same as the composition of the first metal powder.
  • the composition of the second metal powder may differ from the composition of the first metal powder.
  • the metal filler may contain at least one other metal powder that differs in composition from the first metal powder and the second metal powder.
  • Another metal powder may contain at least one selected from the group consisting of elemental metals and compounds described above.
  • the first metal powder may contain at least one of nanocrystals and amorphous metals. That is, the first metal particles constituting the first metal powder may contain at least one of nanocrystals and amorphous metals.
  • the amorphous metal may be metallic glass. At least some of the first metal particles may be single crystals. At least some of the first metal particles may be polycrystalline. At least some of the first metal particles may be amorphous metals.
  • iron loss c GmbHre l GmbHss
  • a device for example, an inductor
  • the second metal powder may contain at least one of nanocrystals and amorphous metals. That is, the second metal particles constituting the second metal powder may contain at least one of nanocrystals and amorphous metal.
  • the amorphous metal may be metallic glass. At least some of the second metal particles may be single crystals. At least some of the secondary metal particles may be polycrystalline. At least some of the secondary metal particles may be amorphous metals.
  • At least some of the first metal particles may be substantially spherical. All primary metal particles may be substantially spherical. When the first metal particles are substantially spherical, the surface of the first metal particles is smooth. As a result, the frictional force acting between the metal fillers is likely to be reduced, and the fluidity of the compound is likely to be improved.
  • at least some of the second metal particles may be substantially spherical. All secondary metal particles may be substantially spherical. For the same reason, all metal fillers contained in the compound may be substantially spherical. Whether or not the first metal particles are spherical can be determined based on the sphericality of the metal filler.
  • the sphericity of the metal filler can be measured by a particle shape image analyzer.
  • a particle shape image analysis apparatus for example, PITA-04 manufactured by Seishin Enterprise Co., Ltd. may be used.
  • the sphericity of the metal filler is measured in a state where the metal filler is dispersed in purified water. By generating ultrasonic waves in water for a predetermined time (for example, 60 seconds), the metal filler is dispersed in the purified water.
  • the influence of aggregates (secondary particles) of the metal filler may be eliminated by using a certain index.
  • the shapes of the first metal particles and the second metal particles are not limited to spheres.
  • the content of the metal filler in the compound may be 90% by mass or more and less than 100% by mass, 93% by mass or more and 99.5% by mass or less, or 94% by mass or more and 99.5% by mass or less.
  • the content of the metal filler in the compound can be rephrased as the filling rate of the metal filler in the compound.
  • the filling rate of the metal filler in the compound can be rephrased as the space factor of the metal filler in the compound.
  • the content of the resin composition in the compound is greater than 0% by mass and 10% by mass or less, 0.5% by mass or more and 7% by mass or less, and 0.5% by mass or more and 6% by mass or less with respect to the total mass of the compound. It may be there.
  • the resin composition may be a component that can include a resin, a curing agent, a curing accelerator, and an additive.
  • the resin composition may be the remaining components (nonvolatile components) excluding the organic solvent and the metal filler.
  • the additive may be a component of the rest of the resin composition excluding the resin, the curing agent and the curing accelerator.
  • the additive is, for example, a coupling agent or a flame retardant.
  • the resin composition may contain wax as an additive.
  • the mixture of the above metal filler and the uncured resin composition corresponds to the compound.
  • the compound may be a powder.
  • the compound may be a tablet.
  • the compound may be a paste. By molding the compound, a molded product containing the compound is formed. By curing the resin composition in the molded product, a cured product of the compound can be obtained.
  • the resin compositions described below may be considered as uncured resin compositions contained in the compound.
  • the resin composition has a function as a binder for the metal filler, and imparts mechanical strength to the molded product and the cured product formed from the compound. For example, when the compound is molded at high pressure using a mold, the resin composition is filled between the metal fillers and binds the metal fillers together. By curing the resin composition in the molded product formed from the compound, the cured product of the resin composition firmly binds the metal fillers to each other.
  • the resin composition may contain a thermosetting resin.
  • the thermosetting resin may be at least one selected from the group consisting of, for example, an epoxy resin, a phenol resin and a polyamide-imide resin. When the resin composition contains both an epoxy resin and a phenol resin, the phenol resin may function as a curing agent for the epoxy resin.
  • the resin composition may include a thermoplastic resin.
  • the thermoplastic resin may be at least one selected from the group consisting of, for example, acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate.
  • the resin composition may contain both a thermosetting resin and a thermoplastic resin.
  • the resin composition may contain a silicone resin.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • Epoxy resins include, for example, biphenyl type epoxy resin, stillben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol.
  • Copolymerization type epoxy resin aralkyl type phenol resin epoxie, bisphenol type epoxy resin, alcohols glycidyl ether type epoxy resin, paraxylylene and / or metaxylylene modified phenol resin glycidyl ether type epoxy resin, terpen modified phenol resin Glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring modified phenol resin, glycidyl ether type epoxy resin of naphthalene ring containing phenol resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl Type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpropane type epoxy resin, and olefin bonds are oxidized with a peracid such as peracetic
  • crystalline epoxy resins are preferable. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity.
  • the crystalline epoxy resin (highly crystalline epoxy resin) may be at least one selected from the group consisting of, for example, a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin.
  • Commercially available crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N.
  • the resin composition may contain one of the above epoxy resins.
  • the resin composition may contain a plurality of types of epoxy resins among the above.
  • the curing agent is classified into a curing agent that cures the resin in the range of low temperature to room temperature and a heat curing type curing agent that cures the resin with heating.
  • Hardeners that cure the resin in the low temperature to room temperature range are, for example, aliphatic polyamines, polyaminoamides, and polymercaptans.
  • the heat-curable curing agent is, for example, aromatic polyamine, acid anhydride, phenol resin, phenol novolac resin, dicyandiamide (DICY) and the like.
  • the phenolic resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolac type phenol resin, a copolymerized phenol resin of benzaldehyde type phenol and an aralkyl type phenol, paraxylylene and / or metaxylylene modification.
  • phenol resin From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may be at least one of the choices.
  • the phenol resin may be a copolymer composed of two or more of the above.
  • Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
  • the phenol novolac resin may be, for example, a resin obtained by condensing or cocondensing phenols and / or naphthols and aldehydes under an acidic catalyst.
  • the phenols constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol.
  • the naphthols constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • the aldehydes constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of, for example, resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one of the above phenolic resins.
  • the resin composition may include a plurality of types of phenol resins among the above.
  • the resin composition may contain one of the above curing agents.
  • the resin composition may contain a plurality of types of curing agents among the above.
  • a commercially available phenol resin for example, Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
  • the ratio of active groups (phenolic OH groups) in the curing agent that reacts with the epoxy groups in the epoxy resin is preferably 0.5 to 1.5 equivalents, more preferably 0.5 equivalents, relative to 1 equivalent of the epoxy groups in the epoxy resin. May be 0.9 to 1.4 equivalents, more preferably 1.0 to 1.2 equivalents.
  • the ratio of active groups in the curing agent is less than 0.5 equivalent, the amount of OH per unit weight of the cured epoxy resin is reduced, and the curing rate of the resin composition (epoxy resin) is reduced. If the ratio of active groups in the curing agent is less than 0.5 equivalent, the glass transition temperature of the obtained cured product may be low, or a sufficient elastic modulus of the cured product may not be obtained.
  • the curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin.
  • the curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole.
  • the resin composition may include a kind of curing accelerator.
  • the resin composition may include a plurality of types of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the compound are likely to be improved. When the resin composition contains a curing accelerator, the mechanical strength of the encapsulant produced by using the compound is improved, and the storage stability of the compound in a high temperature and high humidity environment is improved. ..
  • imidazole-based curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ.
  • -At least one selected from the group consisting of CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ above, trade name manufactured by Shikoku Chemicals Corporation
  • an imidazole-based curing accelerator having a long-chain alkyl group is preferable, and C11Z-CN (1-cyanoethyl-2-undecylimidazole) is preferable.
  • the amount of the curing accelerator to be blended is not particularly limited as long as it can obtain the curing promoting effect.
  • the amount of the curing accelerator is preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the epoxy resin. It may be preferably 1 to 15 parts by mass.
  • the content of the curing accelerator is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to the total mass of the epoxy resin and the curing agent (for example, phenol resin).
  • the blending amount of the curing accelerator is less than 0.1 parts by mass, it is difficult to obtain a sufficient curing promoting effect.
  • the blending amount of the curing accelerator exceeds 30 parts by mass, the storage stability of the compound tends to decrease. However, even when the blending amount and content of the curing accelerator are out of the above range, the effect according to the present invention can be obtained.
  • the coupling agent improves the adhesion between the resin composition and the metal filler, and improves the flexibility and mechanical strength of the encapsulant formed from the compound.
  • the coupling agent may be, for example, at least one selected from the group consisting of a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound.
  • the silane coupling agent may be at least one selected from the group consisting of, for example, epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, acid anhydride-based silane, and vinylsilane. In particular, an aminophenyl-based silane coupling agent is preferable.
  • the compound may include one of the above coupling agents, and may include a plurality of the above coupling agents.
  • the compound may contain a flame retardant.
  • the flame retardant is at least one selected from the group consisting of, for example, a brominated flame retardant, a scale flame retardant, a hydrated metal compound flame retardant, a silicone flame retardant, a nitrogen-containing compound, a hindered amine compound, an organic metal compound and an aromatic empra. It may be.
  • the compound may be provided with one of the above flame retardants, and may be provided with a plurality of the above flame retardants.
  • the resin composition may contain wax.
  • the wax enhances the fluidity of the compound in the molding of the compound (for example, transfer molding) and functions as a mold release agent.
  • the wax may be at least one of fatty acids such as higher fatty acids and fatty acid esters.
  • the wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, laurate or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, Fatty acid salts such as zinc linoleate, calcium ricinolate, zinc 2-ethylhexoneate; stearic acid amide, oleic acid amide, erucic acid amide, bechenic acid amide, palmitate amide, laurate amide, hydroxystearic acid amide, methylene bisstearate.
  • fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, laurate or esters thereof
  • zinc stearate calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate
  • Fatty acid salts such as zinc linoleate
  • Acid amide ethylene bisstearic acid amide, ethylene bislauric acid amide, distearyl adipate amide, ethylene bisoleic acid amide, diorail adipic acid amide, N-stearyl stearic acid amide, N-oleyl stearic acid amide, N-stearyl Fatty acid amides such as erucate amide, methylol stearic acid amide, methylol bechenic acid amide; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol; polyethylene glycol, polypropylene glycol, polytetramethylene glycol and modifications thereof.
  • Polyethers made of materials; Polysiloxanes such as silicone oil and silicon grease; Fluorine compounds such as fluorine oil, fluorine grease, and fluorine-containing resin powder; and paraffin wax, polyethylene wax, amide wax, polypropylene wax, and esters It may be at least one selected from the group consisting of waxes such as wax, carnauba, and microwax;
  • the compound according to this embodiment has excellent fluidity. Therefore, the compound according to the present embodiment can be easily processed into a desired shape by extrusion molding or transfer molding (transfer molding). Based on the composition of the metal filler or the resin composition, various physical properties of the molded product containing the compound or the cured product of the compound can be freely controlled. The physical properties are, for example, electromagnetic properties or thermal conductivity. For these reasons, the compound can be used in various industrial products or their raw materials. Industrial products manufactured using the compound may be, for example, automobiles, medical devices, electronic devices, electrical devices, information and communication devices, home appliances, audio devices, and general industrial devices.
  • the compound when the compound contains a soft magnetic material as a metal filler, the compound may be used as a sealing material for an inductor, a magnetic core for an inductor, an EMI shield, or a magnetic core for a transformer. If the compound contains a metal magnet as a metal filler, the compound may be used as a raw material for the bonded magnet.
  • the compound manufacturing method according to the present embodiment includes a first mixing step, a second mixing step, a cooling step, and a crushing step.
  • the first mixture is obtained by mixing the metal filler and the clotting agent.
  • the coupling agent is bonded to the surface of each metal particle constituting the metal filler. That is, a part or the whole of the surface of each metal particle is covered with the coupling agent.
  • the surface of the metal filler is easily covered with the resin composition via the coupling agent, the metal filler is easily dispersed in the compound, and the filling rate of the metal filler in the compound is likely to increase.
  • the metal filler mixed with the culling agent contains at least the first metal powder.
  • the surface of each primary metal particle contained in the primary metal powder is pre-covered with Si-containing glass. Since the filling rate of the metal filler in the compound tends to increase, the metal filler mixed with the culling agent preferably contains both the first metal powder and the second metal powder.
  • the surface of each secondary metal particle contained in the secondary metal powder does not have to be covered with glass containing Si.
  • the surface of each secondary metal particle contained in the secondary metal powder may be pre-covered with glass containing Si.
  • the metal filler may be obtained by mixing the first metal powder and the second metal powder before the first mixing step.
  • the second mixture is obtained by kneading the resin composition excluding the curling agent and the first mixture while heating. That is, in the second mixing step, the first mixture is kneaded with the components of the resin composition other than the coupling agent.
  • the components of the resin composition other than the coupling agent may be, for example, a thermosetting resin, a curing agent, a curing accelerator, and an additive.
  • the additive may be, for example, at least one of a wax and a flame retardant.
  • a resin mixture may be obtained by premixing the thermosetting tree resin, the curing agent, the curing accelerator and the additive before the second mixing step. Then, in the second mixing step, the second mixture may be obtained by kneading the resin mixture and the first mixture while heating.
  • the second mixture may be a paste.
  • the temperature of the second mixture in the second mixing step may be adjusted according to the composition of the resin composition.
  • the temperature of the second mixture in the second mixing step may be, for example, 50 ° C. or higher and 150 ° C. or lower, preferably 60 ° C. or higher and 120 ° C. or lower, more preferably 80 ° C. or higher and 110 ° C. or lower.
  • the resin composition in the second mixture is likely to soften, the resin composition is likely to cover the surface of the metal particles, and the resin composition in the second mixing step is likely to be softened. Hardening is easily suppressed.
  • the temperature of the second mixture is too low, the second mixture will not be sufficiently kneaded, the moldability of the compound will be impaired, and the degree of curing of the compound will vary. If the temperature of the second mixture is too high, the resin composition will be cured during the second mixing step, and the fluidity and moldability of the compound will be easily impaired.
  • the time for kneading the second mixture in the second mixing step may be adjusted according to the performance of the kneading means (for example, a biaxial pressure kneader) used in the second mixing step and the volume of the second mixture.
  • a solid substance can be obtained by cooling the second mixture.
  • the second mixture may be cooled at room temperature.
  • the powder itself obtained by pulverizing the solid material may be used as a compound.
  • Coarse particles may be removed from the powder by classification of the powder obtained by the grinding step.
  • a tablet made of a compound may be produced by molding the powder obtained by the pulverization step.
  • the compound is completed by the above manufacturing method.
  • Example 1 [Making compound powder] ⁇ Preparation of metal filler> The first metal powder and the second metal powder were put in a bag, and the bag was closed. A metal filler was obtained by shaking the bag with both hands for 3 minutes to mix the first metal powder and the second metal powder.
  • the bag was made of PE (polyethylene). The size of the bag was 470 mm x 670 mm.
  • the first metal powder was composed of a large number of first metal particles.
  • the median diameter of the first metal powder was 2.17 ⁇ m or more and 2.31 ⁇ m or less.
  • Each first metal particle was composed of an alloy particle and a large number of glass particles covering the surface of the alloy particle.
  • Each alloy particle contained Fe, Cr and Si.
  • Each glass particle covering the surface of the alloy particles contained Si.
  • the particle size of each glass particle was significantly smaller than the median diameter of the first metal powder.
  • Each first metal particle was substantially spherical.
  • the mass M1 of the first metal powder was 770.8 g.
  • an amorphous alloy powder containing iron was used as the second metal powder.
  • the powder of the amorphous alloy containing iron was KUAMET 9A4-II manufactured by Epson Atmix Co., Ltd.
  • the median diameter of the second metal powder was 25.0 ⁇ m.
  • the amorphous alloy particles (second metal particles) constituting the second metal powder were substantially spherical.
  • the mass M2 of the second metal powder was 351.1.2 g.
  • Methacrylic silane silane coupling agent
  • the mass of methacrylic silane was 5.43 g.
  • the methacrylic silane was KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the first mixture was obtained by shaking the bag with both hands for 3 minutes to mix the metal filler and methacrylic silane.
  • the surface of each metal particle constituting the metal filler was covered with methacrylic silane.
  • thermosetting resin a curing agent, a curing accelerator and a wax powder were put in a bag, and the bag was closed.
  • the resin mixture was obtained by shaking the bag with both hands for 3 minutes to mix the contents of the bag.
  • NC3000-H and NC3000 below are epoxy resins.
  • thermosetting resin NC3000-H manufactured by Nippon Kayaku Co., Ltd.
  • thermosetting resin NC3000 manufactured by Nippon Kayaku Co., Ltd.
  • curing agent phenol novolac resin, HP-850N manufactured by Hitachi Chemical Co., Ltd.
  • curing accelerator imidazole epoxy resin curing agent, C17Z manufactured by Shikoku Chemicals Corporation
  • wax powder Liowax E manufactured by Clariant Chemicals Co., Ltd.
  • the above first mixture and resin mixture were placed in a tank of a biaxial pressure kneader.
  • the first mixture and the resin mixture in the tank were kneaded while being pressurized with a kneader to obtain a second mixture.
  • the second mixture was a paste.
  • the temperature in the tank during kneading was 82 ° C.
  • the rotation speed of the kneader was 40 rpm.
  • the kneading time was 1 minute.
  • a pressure kneader PS1-5MHB-H type kneader manufactured by Nihon Spindle Manufacturing Co., Ltd. (formerly Moriyama Seisakusho Co., Ltd.) was used.
  • the compound of Example 1 was prepared by the above method.
  • the content (space factor) of the metal filler in the compound was 95.5% by mass.
  • the compound of Example 1 was charged into a transfer tester.
  • the amount of spiral flow of the compound was measured at a mold temperature of 175 ° C., an injection pressure of 4.1 MPa, and a molding time of 420 seconds.
  • the amount of spiral flow is the length at which the compound flows in the groove formed in the mold. That is, the spiral flow amount is the flow distance of the softened or liquefied compound.
  • the shape of the groove through which the compound flows is a spiral curve (Archimedes spiral). The easier the compound flows, the greater the amount of spiral flow. That is, the amount of spiral flow of the compound having excellent fluidity is large.
  • As the transfer tester a 100KN transfer molding machine (PZ-10 type) manufactured by Kodaira Seisakusho Co., Ltd. was used.
  • As the mold a mold for measuring spiral flow according to ASTM D3123 was used. The amount of spiral flow of Example 1 is shown in Table 1 below.
  • a toroidal molded body was produced from the compound of Example 1.
  • the mold temperature was 175 ° C.
  • the injection pressure was 4.1 MPa
  • the molding time was 420 seconds.
  • the dimensions of the molded body were an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 2 mm.
  • As the transfer tester a 100KN transfer molding machine (PZ-10 type) manufactured by Kodaira Seisakusho Co., Ltd. was used.
  • the mold a mold capable of obtaining a toroidal shape was used. The primary winding was wound around the molded body for 5 turns, and the secondary winding was wound around the molded body for 5 turns.
  • the relative magnetic permeability ⁇ S of the sample prepared by the above method was measured.
  • the relative magnetic permeability ⁇ S of Example 1 is shown in Table 1 below.
  • a BH analyzer (SY-8258) manufactured by Iwatsu Electric Co., Ltd. was used for the measurement of the relative magnetic permeability ⁇ S.
  • the frequency at the time of measuring the relative permeability was 1 MHz.
  • Example 2 By changing the mass ratio of the first mixture and the resin mixture, the content of the metal filler in the compound of Example 2 was adjusted to 95.0% by mass.
  • the compound of Example 2 was prepared in the same manner as in Example 1 except for the content of the metal filler.
  • the amount of spiral flow of the compound of Example 2 was measured by the same method as in Example 1.
  • the amount of spiral flow of Example 2 is shown in Table 1 below.
  • the relative magnetic permeability of the compound of Example 2 was measured by the same method as in Example 1.
  • the relative magnetic permeability of Example 2 is shown in Table 1 below.
  • Comparative Example 1 Only the second metal powder was used as the metal filler of Comparative Example 1. Similar to Example 1, the content of the metal filler in the compound of Comparative Example 1 was adjusted to 95.5% by mass. The compound of Comparative Example 1 was prepared in the same manner as in Example 1 except that the metal filler was removed. The spiral flow amount of the compound of Comparative Example 1 was measured by the same method as in Example 1. The amount of spiral flow of Comparative Example 1 is shown in Table 1 below. The relative magnetic permeability of the compound of Comparative Example 1 was measured by the same method as in Example 1. The relative magnetic permeability of Comparative Example 1 is shown in Table 1 below.
  • the compound according to the present invention has excellent fluidity, it is easy to be molded according to the shape of various industrial products.

Abstract

This compound comprises a metal filler containing a first metal powder, and a resin composition. The first metal powder contains a plurality of first metal particles, at least some of the surface of the first metal particles being covered by glass that contains Si, and the median diameter in the first metal powder being 1.0 to 5.0 µm [inclusive].

Description

コンパウンド、成形体、コンパウンドの硬化物、及びコンパウンドの製造方法Compounds, molded articles, cured products of compounds, and methods for manufacturing compounds
 本発明は、コンパウンド、成形体、コンパウンドの硬化物、及びコンパウンドの製造方法に関する。 The present invention relates to a compound, a molded product, a cured product of the compound, and a method for producing the compound.
 金属粉末及び樹脂組成物を含むコンパウンドは、金属粉末の諸物性に応じて、多様な工業製品の原材料として利用される。例えば、コンパウンドは、インダクタ、封止材、電磁波シールド(EMIシールド)、又はボンド磁石等の原材料として利用される。(下記特許文献1参照。) The compound containing the metal powder and the resin composition is used as a raw material for various industrial products according to various physical properties of the metal powder. For example, the compound is used as a raw material for inductors, encapsulants, electromagnetic wave shields (EMI shields), bond magnets, and the like. (See Patent Document 1 below.)
特開2014‐13803号公報Japanese Unexamined Patent Publication No. 2014-13803
 コンパウンドから工業製品を製造する場合、コンパウンドを型内へ供給及び充填したり、コイル等の部品をコンパウンド中に埋め込んだりする。これらの工程ではコンパウンドの流動性が要求される。しかし、従来のコンパウンドは十分な流動性を有していない。金属粉末の粒径の減少に伴って、コンパウンドの流動性は低下し易い。 When manufacturing an industrial product from a compound, the compound is supplied and filled in the mold, and parts such as coils are embedded in the compound. The fluidity of the compound is required in these steps. However, conventional compounds do not have sufficient liquidity. As the particle size of the metal powder decreases, the fluidity of the compound tends to decrease.
 本発明は、流動性に優れたコンパウンド、コンパウンドを含む成形体、コンパウンドの硬化物、及びコンパウンドの製造方法を提供することを目的とする。 An object of the present invention is to provide a compound having excellent fluidity, a molded product containing the compound, a cured product of the compound, and a method for producing the compound.
 本発明の一側面に係るコンパウンドは、第一金属粉末を含む金属フィラーと、樹脂組成物と、を備え、第一金属粉末が、複数の第一金属粒子を含み、第一金属粒子の表面の少なくとも一部が、Siを含有するガラスで覆われており、第一金属粉末のメジアン径が、1.0μm以上5.0μm以下である。 The compound according to one aspect of the present invention comprises a metal filler containing a first metal powder and a resin composition, wherein the first metal powder contains a plurality of first metal particles and is on the surface of the first metal particles. At least a part thereof is covered with glass containing Si, and the median diameter of the first metal powder is 1.0 μm or more and 5.0 μm or less.
 第一金属粉末が、Feを含む合金であってよい。 The first metal powder may be an alloy containing Fe.
 第一金属粒子が、球状であってよい。 The first metal particles may be spherical.
 樹脂組成物が、熱硬化性樹脂を含んでよい。 The resin composition may contain a thermosetting resin.
 本発明の一側面に係るコンパウンドは、粉末又はペーストであってよい。 The compound according to one aspect of the present invention may be a powder or a paste.
 コンパウンドにおける金属フィラーの含有量が、90質量%以上100質量%未満であってよい。 The content of the metal filler in the compound may be 90% by mass or more and less than 100% by mass.
 金属フィラーが、第二金属粉末を更に含んでよく、第二金属粉末のメジアン径が、第一金属粉末のメジアン径よりも大きくてよい。 The metal filler may further contain the second metal powder, and the median diameter of the second metal powder may be larger than the median diameter of the first metal powder.
 第二金属粉末のメジアン径が、20.0μm以上30.0μm以下であってよく、第一金属粉末の質量が、M1であってよく、第二金属粉末の質量が、M2であってよく、100×M1/(M1+M2)が、5以上30以下であってよく、100×M2/(M1+M2)が、70以上95以下であってよい。 The median diameter of the second metal powder may be 20.0 μm or more and 30.0 μm or less, the mass of the first metal powder may be M1, and the mass of the second metal powder may be M2. 100 × M1 / (M1 + M2) may be 5 or more and 30 or less, and 100 × M2 / (M1 + M2) may be 70 or more and 95 or less.
 第二金属粉末が、Feを含む合金であってよい。 The second metal powder may be an alloy containing Fe.
 第二金属粉末に含まれる第二金属粒子が、球状であってよい。 The secondary metal particles contained in the secondary metal powder may be spherical.
 第二金属粉末のD90が、40μm以上65μm以下であってよい。 The D90 of the second metal powder may be 40 μm or more and 65 μm or less.
 本発明の一側面に係る成形体は、上記のコンパウンドを含む。 The molded product according to one aspect of the present invention includes the above compound.
 本発明の一側面に係るコンパウンドの硬化物は、上記のコンパウンドの硬化物である。 The cured product of the compound according to one aspect of the present invention is the cured product of the above-mentioned compound.
 本発明の一側面に係るコンパウンドの製造方法は、上記のコンパウンドを製造する方法であって、金属フィラー及びカッリング剤を混合することにより、第一混合物を得る工程と、カッリング剤を除く樹脂組成物と、第一混合物とを加熱しながら混錬することにより、第二混合物を得る工程と、第二混合物を冷却することより、固形物を得る工程と、固形物を粉砕する工程と、を備える。 The method for producing a compound according to one aspect of the present invention is the method for producing the above-mentioned compound, which comprises a step of obtaining a first mixture by mixing a metal filler and a clotting agent, and a resin composition excluding the clotting agent. A step of obtaining a second mixture by kneading the first mixture while heating, a step of obtaining a solid substance by cooling the second mixture, and a step of crushing the solid substance are provided. ..
 本発明の他の一側面に係るコンパウンドの製造方法は、上記のコンパウンドを製造する方法であって、第一金属粉末及び第二金属粉末を混合することより、金属フィラーを得る工程と、金属フィラー及びカッリング剤を混合することにより、第一混合物を得る工程と、カッリング剤を除く樹脂組成物と、第一混合物とを加熱しながら混錬することにより、第二混合物を得る工程と、第二混合物を冷却することより、固形物を得る工程と、固形物を粉砕する工程と、を備える。 The method for producing a compound according to another aspect of the present invention is a method for producing the above-mentioned compound, which comprises a step of obtaining a metal filler by mixing a first metal powder and a second metal powder, and a metal filler. The step of obtaining the first mixture by mixing the clotting agent, the step of obtaining the second mixture by kneading the resin composition excluding the clotting agent and the first mixture while heating, and the second. It includes a step of obtaining a solid substance by cooling the mixture and a step of crushing the solid substance.
 本発明よれば、流動性に優れたコンパウンド、コンパウンドを含む成形体、コンパウンドの硬化物、及びコンパウンドの製造方法が提供される。 According to the present invention, a compound having excellent fluidity, a molded product containing the compound, a cured product of the compound, and a method for producing the compound are provided.
 以下では、本発明の好適な実施形態が説明される。本発明は下記実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
 本実施形態に係るコンパウンドは、第一金属粉末を含む金属フィラー(metal filler)と、樹脂組成物と、を備える。金属フィラーとは、コンパウンドに含まれる金属粉末の全体と言い換えられてよい。第一金属粉末は、複数の第一金属粒子を含む。つまり、第一金属粉末は、複数の第一金属粒子の全体を意味する。第一金属粒子の表面の少なくとも一部は、Si(ケイ素)を含有するガラスで覆われている。例えば、第一金属粒子の表面の少なくとも一部が、ガラス膜又はガラス層で覆われていてよい。ガラス膜又はガラス層は、Siを含有する多数のガラス粒子から構成されていてよい。コンパウンドは、第一金属粉末に加えて、少なくとも一種の別の金属粉末を更に含んでよい。樹脂組成物は、金属フィラーを構成する各金属粒子の表面を覆っていてよい。樹脂組成物は、金属フィラーの間に存在してよく、金属フィラーは樹脂組成物を介して互いに結着されていてよい。コンパウンドは、金属ではないフィラー(例えば、シリカ又は金属酸化物)を更に含んでよい。 The compound according to the present embodiment includes a metal filler containing the first metal powder and a resin composition. The metal filler may be paraphrased as the whole metal powder contained in the compound. The first metal powder contains a plurality of first metal particles. That is, the first metal powder means the whole of a plurality of first metal particles. At least a part of the surface of the first metal particles is covered with glass containing Si (silicon). For example, at least a part of the surface of the first metal particles may be covered with a glass film or a glass layer. The glass film or glass layer may be composed of a large number of glass particles containing Si. The compound may further comprise at least one other metal powder in addition to the primary metal powder. The resin composition may cover the surface of each metal particle constituting the metal filler. The resin composition may be present between the metal fillers, and the metal fillers may be attached to each other via the resin composition. The compound may further comprise a non-metallic filler (eg, silica or metal oxide).
 金属フィラーを構成する各金属粒子の粒径の減少に伴い、金属粒子間の隙間が減少する。金属粒子間の隙間の減少に伴い、コンパウンドにおける金属フィラーの充填率(含有量)が増加する。金属フィラーの充填率の増加に伴い、コンパウンドの比透磁率が増加する。一方、金属粒子の粒径の減少に伴い、各金属粒子の比表面積が増加する。金属粒子の比表面積の増加に伴い、金属フィラーが凝集し易く、コンパウンドの流動性が損なわれる。仮に第一金属粒子がガラスで覆われていない場合、メジアン径が比較的小さい第一金属粉末は特に凝集し易く、第一金属粉末の凝集によりコンパウンドの流動性が損なわれ易い。しかし、第一金属粒子の表面をガラスで覆うことにより、第一金属粉末の凝集が抑制され、また第一金属粒子間に作用する摩擦力が低減される。その結果、第一金属粉末の小さいメジアン径に起因するコンパウンドの流動性の低下が抑制される。換言すれば、第一金属粒子の表面をガラスで覆うことにより、金属フィラーの充填率の増加に伴うコンパウンドの流動性の低下を抑制することができる。 As the particle size of each metal particle constituting the metal filler decreases, the gap between the metal particles decreases. As the gap between the metal particles decreases, the filling rate (content) of the metal filler in the compound increases. As the filling rate of the metal filler increases, the relative magnetic permeability of the compound increases. On the other hand, as the particle size of the metal particles decreases, the specific surface area of each metal particle increases. As the specific surface area of the metal particles increases, the metal filler tends to aggregate and the fluidity of the compound is impaired. If the first metal particles are not covered with glass, the first metal powder having a relatively small median diameter is particularly liable to agglomerate, and the agglomeration of the first metal powder tends to impair the fluidity of the compound. However, by covering the surface of the first metal particles with glass, the aggregation of the first metal powder is suppressed and the frictional force acting between the first metal particles is reduced. As a result, the decrease in the fluidity of the compound due to the small median diameter of the first metal powder is suppressed. In other words, by covering the surface of the first metal particles with glass, it is possible to suppress a decrease in the fluidity of the compound due to an increase in the filling rate of the metal filler.
 第一金属粒子の表面におけるガラスの被覆率が高いほど、第一金属粉末が凝集し難く、第一金属粒子間に作用する摩擦力が低減され易く、コンパウンドの流動性が向上し易い。したがって、第一金属粒子の表面全体が、Siを含有するガラスで覆われていてよい。ただし、第一金属粒子の表面の一部のみが、Siを含有するガラスで覆われていてもよい。第一金属粉末が凝集し難く、コンパウンドの流動性が向上し易いことから、第一金属粉末に含まれる全ての第一金属粒子の表面が、Siを含有するガラスで覆われていてよい。ただし、第一金属粉末に含まれる一部の第一金属粒子の表面のみが、Siを含有するガラスで覆われていてもよい。 The higher the coverage of the glass on the surface of the first metal particles, the more difficult it is for the first metal powder to aggregate, the easier it is for the frictional force acting between the first metal particles to be reduced, and the easier it is for the fluidity of the compound to improve. Therefore, the entire surface of the first metal particles may be covered with glass containing Si. However, only a part of the surface of the first metal particles may be covered with glass containing Si. Since the first metal powder is less likely to aggregate and the fluidity of the compound is likely to be improved, the surface of all the first metal particles contained in the first metal powder may be covered with glass containing Si. However, only the surface of some of the first metal particles contained in the first metal powder may be covered with glass containing Si.
 金属フィラーは、第一金属粉末に加えて、メジアン径において第一金属粉末と異なる少なくとも一種の別の金属粉末を含んでよい。例えば、金属フィラーは、第一金属粉末に加えて、第二金属粉末を更に含んでよい。第二金属粉末は、複数の第二金属粒子を含む。つまり、第二金属粉末は、複数の第二金属粒子の全体を意味する。第二金属粉末のメジアン径は、第一金属粉末のメジアン径よりも大きい。仮にコンパウンドが金属フィラーとして第二金属粉末のみを含む場合、第二金属粒子間に隙間が形成され易く、コンパウンドにおける金属フィラーの充填率が低下し易い。一方、コンパウンドが金属フィラーとして第一金属粉末及び第二金属粉末を含む場合、第二金属粒子よりも小さい第一金属粒子が、第二金属粒子間に形成される隙間に充填され易い。その結果、コンパウンドにおける金属フィラーの充填率が高まり易い。第一金属粉末及び第二金属粉末の質量比に基づいてコンパウンドの比透磁率が制御され易く、コンパウンドの比透磁率が高まり易い。 The metal filler may contain at least one other metal powder having a median diameter different from that of the first metal powder, in addition to the first metal powder. For example, the metal filler may further contain a second metal powder in addition to the first metal powder. The secondary metal powder contains a plurality of secondary metal particles. That is, the secondary metal powder means the whole of the plurality of secondary metal particles. The median diameter of the second metal powder is larger than the median diameter of the first metal powder. If the compound contains only the second metal powder as the metal filler, gaps are likely to be formed between the second metal particles, and the filling rate of the metal filler in the compound is likely to decrease. On the other hand, when the compound contains the first metal powder and the second metal powder as the metal filler, the first metal particles smaller than the second metal particles are likely to be filled in the gaps formed between the second metal particles. As a result, the filling rate of the metal filler in the compound tends to increase. The relative magnetic permeability of the compound is likely to be controlled based on the mass ratio of the first metal powder and the second metal powder, and the relative magnetic permeability of the compound is likely to increase.
 第二金属粒子の表面は、Siを含有するガラスで覆われていなくてよい。第二金属粒子の表面の少なくとも一部が、Siを含有するガラスで覆われていてもよい。第二金属粒子の表面をガラスで覆うことにより、第二金属粉末の凝集が抑制され、コンパウンドの流動性の低下が抑制される。第二金属粒子の表面全体が、Siを含有するガラスで覆われていてよい。ただし、第二金属粒子の表面の一部のみが、Siを含有するガラスで覆われていてもよい。第二金属粉末に含まれる全ての第二金属粒子の表面が、Siを含有するガラスで覆われていてよい。第二金属粉末に含まれる一部の第二金属粒子の表面のみが、Siを含有するガラスで覆われていてもよい。コンパウンドに含まれる全ての金属粉末が、Siを含有するガラスで覆われていてよい。 The surface of the second metal particles does not have to be covered with glass containing Si. At least a part of the surface of the second metal particles may be covered with glass containing Si. By covering the surface of the secondary metal particles with glass, the aggregation of the secondary metal powder is suppressed, and the decrease in the fluidity of the compound is suppressed. The entire surface of the second metal particles may be covered with glass containing Si. However, only a part of the surface of the second metal particles may be covered with glass containing Si. The surface of all the secondary metal particles contained in the secondary metal powder may be covered with glass containing Si. Only the surface of some of the secondary metal particles contained in the secondary metal powder may be covered with glass containing Si. All metal powders contained in the compound may be covered with glass containing Si.
 第一金属粉末のメジアン径(D50)は、1.0μm以上5.0μm以下、好ましくは1.5μm以上3.0μm以下、より好ましくは2.17μm以上2.31μm以下である。上記のD50を有する微細な第一金属粉末がコンパウンドに含まれるので、コンパウンドにおける金属フィラーの充填率が高まり易い。仮に、第一金属粉末のD50が上記の範囲内であり、且つ第一金属粒子の表面がカラス膜で覆われていない場合、第一金属粉末は凝集し易く、コンパウンドの流動性が低下し易い。しかし、第一金属粒子の表面をガラスで覆うことにより、第一金属粉末のD50が上記の範囲内である場合であっても、第一金属粉末の凝集が抑制され、コンパウンドの流動性の低下が抑制される。第一金属粉末のD10は、例えば1.08μm以上1.2μm以下であってよい。第一金属粉末のD90は、例えば、3.88μm以上4.43μm以下であってよい。第一金属粉末のD10又はD90が上記の範囲内である場合、コンパウンドにおける金属フィラーの充填率が高まり易い。第一金属粉末のD10、D50及びD90は、第一金属粉末の体積に基づく第一金属粉末の粒度分布から計算されてよい。第一金属粉末の粒度分布は、例えば、レーザ回折散乱式の粒度分布測定装置を用いて測定されてよい。第一金属粉末の粒度分布は、第一金属粉末がコンパウンドの他の成分と混合される前に測定されてよい。第一金属粉末のD10、D50及びD90其々は、ガラスの厚みを含む値である。ガラスの厚みは、個々の第一金属粒子の粒径に比べて著しく小さくてよい。例えば、第一金属粒子を覆うガラスの厚みのスケールは、ナノメートル(nm)であってよい。 The median diameter (D50) of the first metal powder is 1.0 μm or more and 5.0 μm or less, preferably 1.5 μm or more and 3.0 μm or less, and more preferably 2.17 μm or more and 2.31 μm or less. Since the fine first metal powder having D50 is contained in the compound, the filling rate of the metal filler in the compound tends to increase. If the D50 of the first metal powder is within the above range and the surface of the first metal particles is not covered with the crow film, the first metal powder tends to aggregate and the fluidity of the compound tends to decrease. .. However, by covering the surface of the first metal particles with glass, even when the D50 of the first metal powder is within the above range, the aggregation of the first metal powder is suppressed and the fluidity of the compound is lowered. Is suppressed. The D10 of the first metal powder may be, for example, 1.08 μm or more and 1.2 μm or less. The D90 of the first metal powder may be, for example, 3.88 μm or more and 4.43 μm or less. When D10 or D90 of the first metal powder is within the above range, the filling rate of the metal filler in the compound tends to increase. D10, D50 and D90 of the first metal powder may be calculated from the particle size distribution of the first metal powder based on the volume of the first metal powder. The particle size distribution of the first metal powder may be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device. The particle size distribution of the primary metal powder may be measured before the primary metal powder is mixed with the other components of the compound. Each of D10, D50 and D90 of the first metal powder is a value including the thickness of the glass. The thickness of the glass may be significantly smaller than the particle size of the individual primary metal particles. For example, the scale of the thickness of the glass covering the first metal particles may be nanometers (nm).
 第二金属粉末のメジアン径(D50)は、20.0μm以上30.0μm以下、好ましくは22μm以上28μm以下、より好ましくは24.0μm以上26.0μm以下であってよい。上記のD50を有する微細な第二金属粉末がコンパウンドに含まれる場合、コンパウンドにおける金属フィラーの充填率が高まり易い。第二金属粉末のD10は、例えば6.0μm以上12.0μm以下であってよい。第二金属粉末のD90は、例えば、40μm以上65μm以下、好ましくは45μm以上65μm以下であってよい。第二金属粉末のD10又はD90が上記の範囲内である場合、コンパウンドにおける金属フィラーの充填率が高まり易い。第二金属粉末のD10、D50及びD90は、第二金属粉末の体積に基づく第二金属粉末の粒度分布から計算されてよい。第二金属粉末の粒度分布は、例えば、レーザ回折散乱式の粒度分布測定装置を用いて測定されてよい。第二金属粉末の粒度分布は、第二金属粉末がコンパウンドの他の成分と混合される前に測定されてよい。第二金属粉末がガラスで覆われている場合、第二金属粉末のD10、D50及びD90其々は、ガラスの厚みを含む値である。ガラスの厚みは、個々の第二金属粒子の粒径に比べて著しく小さくてよい。例えば、第二金属粉末を覆うガラスの厚みのスケールは、ナノメートル(nm)であってよい。 The median diameter (D50) of the second metal powder may be 20.0 μm or more and 30.0 μm or less, preferably 22 μm or more and 28 μm or less, and more preferably 24.0 μm or more and 26.0 μm or less. When the fine second metal powder having D50 is contained in the compound, the filling rate of the metal filler in the compound tends to increase. The D10 of the second metal powder may be, for example, 6.0 μm or more and 12.0 μm or less. The D90 of the second metal powder may be, for example, 40 μm or more and 65 μm or less, preferably 45 μm or more and 65 μm or less. When D10 or D90 of the second metal powder is within the above range, the filling rate of the metal filler in the compound tends to increase. The secondary metal powders D10, D50 and D90 may be calculated from the particle size distribution of the secondary metal powder based on the volume of the secondary metal powder. The particle size distribution of the second metal powder may be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device. The particle size distribution of the secondary metal powder may be measured before the secondary metal powder is mixed with the other components of the compound. When the second metal powder is covered with glass, D10, D50 and D90 of the second metal powder are values including the thickness of the glass. The thickness of the glass may be significantly smaller than the particle size of the individual secondary metal particles. For example, the scale of the thickness of the glass covering the second metal powder may be nanometers (nm).
 第一金属粉末の質量は、M1と表されてよい。第二金属粉末の質量が、M2と表されてよい。第一金属粉末のD50が1.0μm以上5.0μm以下(好ましくは2.17μm以上2.31μm以下)であり、且つ第二金属粉末のD50が20.0μm以上30.0μm以下(好ましくは24.0μm以上26.0μm以下)である場合、100×M1/(M1+M2)は、5以上30以下であってよく、100×M2/(M1+M2)が、70以上95以下であってよい。100×M1/(M1+M2)及び100×M2/(M1+M2)が上記の範囲内である場合、第一金属粒子が、第二金属粒子間に形成される隙間に充填され易く、コンパウンドにおける金属フィラーの充填率が高まり易い。その結果、コンパウンドの比透磁率が増加し易い。上記の同様の理由から、100×M1/(M1+M2)は、好ましくは13以上23以下であってよく、100×M2/(M1+M2)は、好ましくは77以上87以下であってよい。 The mass of the first metal powder may be expressed as M1. The mass of the second metal powder may be expressed as M2. The D50 of the first metal powder is 1.0 μm or more and 5.0 μm or less (preferably 2.17 μm or more and 2.31 μm or less), and the D50 of the second metal powder is 20.0 μm or more and 30.0 μm or less (preferably 24). In the case of (0.0 μm or more and 26.0 μm or less), 100 × M1 / (M1 + M2) may be 5 or more and 30 or less, and 100 × M2 / (M1 + M2) may be 70 or more and 95 or less. When 100 × M1 / (M1 + M2) and 100 × M2 / (M1 + M2) are within the above ranges, the first metal particles are likely to be filled in the gaps formed between the second metal particles, and the metal filler in the compound. The filling rate tends to increase. As a result, the relative magnetic permeability of the compound tends to increase. For the same reason as described above, 100 × M1 / (M1 + M2) may be preferably 13 or more and 23 or less, and 100 × M2 / (M1 + M2) may be preferably 77 or more and 87 or less.
 第一金属粒子の表面を覆うガラスは、少なくともSiを含有する。Siを含有するガラスは、例えば、O(酸素)、B(ホウ素)、Na(ナトリウム)及びAl(アルミニウム)からなる群より選ばれる少なくとも一種類の元素を更に含有してよい。ガラスは、例えば、SiO(ケイ酸ガラス)又はホウケイ酸ガラスを含んでよい。Siを含有するガラスからなる多数の粒子が、第一金属粒子の表面を覆っていてよい。第一金属粒子の表面を上記のガラスで覆う手段は、例えば、スプレードライヤーであってよい。つまり、Siを含有する表面処理液が第一金属粉末へ噴霧されてよい。Siを含有する表面処理液は、ガラス自体を含む液、又はガラスの原料を含む液体であってよい。第一金属粒子の表面を上記のガラスで覆う手段は、含浸法であってもよい。例えば、第一金属粉末が、Siを含有する表面処理液中に浸漬されてもよい。表面処理液が付着した第一金属粉末は必要に応じて加熱されてもよい。 The glass covering the surface of the first metal particles contains at least Si. The glass containing Si may further contain at least one element selected from the group consisting of, for example, O (oxygen), B (boron), Na (sodium) and Al (aluminum). The glass may include, for example, SiO 2 (silicic acid glass) or borosilicate glass. A large number of particles made of Si-containing glass may cover the surface of the first metal particles. The means for covering the surface of the first metal particles with the above glass may be, for example, a spray dryer. That is, the surface treatment liquid containing Si may be sprayed onto the first metal powder. The surface treatment liquid containing Si may be a liquid containing the glass itself or a liquid containing a raw material for the glass. The means for covering the surface of the first metal particles with the above glass may be an impregnation method. For example, the first metal powder may be immersed in a surface treatment liquid containing Si. The first metal powder to which the surface treatment liquid is attached may be heated if necessary.
 金属フィラーを構成する金属粒子の表面は、カップリング剤で覆われてよい。第一金属粒子の表面が、カップリング剤で更に覆われてよい。ただし、金属フィラーを覆うカップリング剤は、Siを含有するガラスに相当しない。第一金属粒子が、ガラスで覆われた表面だけでなく、カップリング剤で覆われた表面を更に有してよい。カップリング剤としては、シランカップリング剤が好ましい。コンパウンドは、第一金属粉末とは別の金属粉末として、カップリング剤で覆われた表面を有する金属粉末を更に含んでよい。コンパウンドは、リン酸(例えば有機リン酸)によって処理された表面を有する金属粉末を更に含んでもよい。例えば、コンパウンドは、リン酸塩で覆われた表面を有する金属粉末を更に含んでもよい。第一金属粒子が、ガラスで覆われた表面だけでなく、リン酸によって処理された表面を更に有してよい。 The surface of the metal particles constituting the metal filler may be covered with a coupling agent. The surface of the first metal particles may be further covered with a coupling agent. However, the coupling agent that covers the metal filler does not correspond to glass containing Si. The first metal particles may further have a surface covered with a coupling agent as well as a surface covered with glass. As the coupling agent, a silane coupling agent is preferable. The compound may further include a metal powder having a surface covered with a coupling agent as a metal powder separate from the first metal powder. The compound may further comprise a metal powder having a surface treated with phosphoric acid (eg, organic phosphoric acid). For example, the compound may further comprise a metal powder having a phosphate-covered surface. The first metal particles may further have a surface treated with phosphoric acid as well as a surface covered with glass.
 第一金属粉末は、例えば、金属単体及び合金からなる群より選ばれる少なくとも一種を含有してよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。第一金属粉末は、一種の金属元素又は複数種の金属元素を含んでよい。第一金属粉末に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。 The first metal powder may contain, for example, at least one selected from the group consisting of elemental metals and alloys. The alloy may include at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds. The first metal powder may contain one kind of metal element or a plurality of kinds of metal elements. The metal element contained in the first metal powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
 第一金属粉末に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。第一金属粉末は、金属元素以外の元素を含んでもよい。第一金属粉末は、例えば、酸素(О)、ベリリウム(Be)、リン(P)、ホウ素(B)、又はケイ素(Si)を含んでもよい。第一金属粉末は、軟磁性体、又は強磁性体であってよい。 The metal elements contained in the first metal powder are, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum ( Al), tin (Sn), chromium (Cr), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), placeodymium (Pr), neodymium (Nd), samarium (Sm) and dysprosium ( It may be at least one selected from the group consisting of Dy). The first metal powder may contain an element other than the metal element. The first metal powder may contain, for example, oxygen (О), beryllium (Be), phosphorus (P), boron (B), or silicon (Si). The first metal powder may be a soft magnetic material or a ferromagnetic material.
 第一金属粉末は、Feを含む合金であってよい。第二金属粉末も、Feを含む合金であってよい。コンパウンドに含まれる全ての金属フィラーが、Feを含む合金であってよい。コンパウンドが金属フィラーとして、Feを含む合金を有することにより、コンパウンドは高い比透磁率を有することができる。高い比透磁率を有するコンパウンドは、例えば、インダクタ又はEMIフィルターに適用されてよい。第一金属粉末は、Fe、Cr及びSiを含む合金であってよい。第一金属粉末が、Fe、Cr及びSiを含む合金である場合、第一金属粉末の錆が抑制され易い。また、第一金属粉末が、Fe、Cr及びSiを含む合金である場合、コンパウンドの硬化物(例えばインダクタのうちコイル以外の部分)におけるコアロスが抑制され易い。同様の理由から、第二金属粉末も、Fe、Cr及びSiを含む合金であってよい。同様の理由から、コンパウンドに含まれる全ての金属フィラーが、Fe、Cr及びSiを含む合金であってよい。 The first metal powder may be an alloy containing Fe. The second metal powder may also be an alloy containing Fe. All metal fillers contained in the compound may be Fe-containing alloys. Since the compound has an alloy containing Fe as a metal filler, the compound can have a high relative magnetic permeability. Compounds with high relative permeability may be applied, for example, to inductors or EMI filters. The first metal powder may be an alloy containing Fe, Cr and Si. When the first metal powder is an alloy containing Fe, Cr and Si, rusting of the first metal powder is likely to be suppressed. Further, when the first metal powder is an alloy containing Fe, Cr and Si, core loss in a cured product of the compound (for example, a portion of the inductor other than the coil) is likely to be suppressed. For the same reason, the second metal powder may also be an alloy containing Fe, Cr and Si. For the same reason, all metal fillers contained in the compound may be alloys containing Fe, Cr and Si.
 Feを含む合金の組成は、上記の組成に限定されない。例えば、第一金属粉末は、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Si(ケイ素)、B(ホウ素)、P(リン)、C(炭素)、元素α及び元素βを含む金属ガラスを含んでよく、元素αが、Nb(ニオブ)及びMo(モリブデン)からなる群より選ばれる少なくとも一種の元素であってよく、元素βが、Cr(クロム)及びZr(ジルコニウム)からなる群より選ばれる少なくとも一種の元素であってよい。第一金属粉末は、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、及びFe‐Co系合金(パーメンジュール)からなる群より選ばれる少なくとも一種を含んでもよい。 The composition of the alloy containing Fe is not limited to the above composition. For example, the first metal powder contains Fe (iron), Co (cobalt), Ni (nickel), Si (silicon), B (boron), P (phosphorus), C (carbon), element α and element β. It may include metal glass, and the element α may be at least one element selected from the group consisting of Nb (niobium) and Mo (molybdenum), and the element β is composed of Cr (chromium) and Zr (zyroxide). It may be at least one element selected from the group. The first metal powders are Fe—Si alloys, Fe—Si—Al alloys (Sendust), Fe—Ni alloys (Permalloy), Fe—Cu—Ni alloys (Permalloy), and Fe—Co alloys (Permalloy). It may contain at least one selected from the group consisting of permalloys).
 第一金属粉末は、Fe単体であってもよい。第一金属粉末は、例えば、アモルファス系鉄粉及びカルボニル鉄粉のうち少なくともいずれかを含んでもよい。 The first metal powder may be Fe alone. The first metal powder may contain, for example, at least one of amorphous iron powder and carbonyl iron powder.
 第一金属粉末は、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Co系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、及びAl‐Ni‐Co系合金(アルニコ磁石)からなる群より選ばれる少なくとも一種からなる金属磁石を含んでよい。 The first metal powder is Nd-Fe-B alloy (rare earth magnet), Sm-Co alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), and Al-Ni-Co alloy (alnico). A metal magnet consisting of at least one selected from the group consisting of magnets) may be included.
 第二金属粉末は、上記の金属単体及び化合物からなる群より選ばれる少なくとも一種を含んでよい。第二金属粉末の組成は、第一金属粉末の組成と同じであってよい。第二金属粉末の組成は、第一金属粉末の組成と異なってもよい。金属フィラーは、組成において第一金属粉末及び第二金属粉末と異なる少なくとも一種の別の金属粉末を含んでよい。別の金属粉末は、上記の金属単体及び化合物からなる群より選ばれる少なくとも一種を含んでよい。 The second metal powder may contain at least one selected from the group consisting of the above-mentioned simple substances and compounds. The composition of the second metal powder may be the same as the composition of the first metal powder. The composition of the second metal powder may differ from the composition of the first metal powder. The metal filler may contain at least one other metal powder that differs in composition from the first metal powder and the second metal powder. Another metal powder may contain at least one selected from the group consisting of elemental metals and compounds described above.
 第一金属粉末は、ナノ結晶及び非晶質金属のうち少なくとも一方を含んでよい。つまり、第一金属粉末を構成する第一金属粒子が、ナノ結晶及び非晶質金属のうち少なくとも一方を含んでよい。非晶質金属は、金属ガラスであってよい。少なくとも一部の第一金属粒子は、単結晶であってよい。少なくとも一部の第一金属粒子は、多結晶であってよい。少なくとも一部の第一金属粒子は、非晶質金属であってよい。第一金属粒子が非晶質金属である場合、コンパウンドから作製されたデバイス(例えばインダクタ)における鉄損(cоre lоss)が低減され易い。 The first metal powder may contain at least one of nanocrystals and amorphous metals. That is, the first metal particles constituting the first metal powder may contain at least one of nanocrystals and amorphous metals. The amorphous metal may be metallic glass. At least some of the first metal particles may be single crystals. At least some of the first metal particles may be polycrystalline. At least some of the first metal particles may be amorphous metals. When the first metal particles are amorphous metals, iron loss (cоre lоss) in a device (for example, an inductor) made from a compound is likely to be reduced.
 第二金属粉末は、ナノ結晶及び非晶質金属のうち少なくとも一方を含んでよい。つまり、第二金属粉末を構成する第二金属粒子が、ナノ結晶及び非晶質金属のうち少なくとも一方を含んでよい。非晶質金属は、金属ガラスであってよい。少なくとも一部の第二金属粒子は、単結晶であってよい。少なくとも一部の第二金属粒子は、多結晶であってよい。少なくとも一部の第二金属粒子は、非晶質金属であってよい。第二金属粒子が非晶質金属である場合、コンパウンドから作製されたデバイス(例えばインダクタ)における鉄損(cоre lоss)が低減され易い。 The second metal powder may contain at least one of nanocrystals and amorphous metals. That is, the second metal particles constituting the second metal powder may contain at least one of nanocrystals and amorphous metal. The amorphous metal may be metallic glass. At least some of the second metal particles may be single crystals. At least some of the secondary metal particles may be polycrystalline. At least some of the secondary metal particles may be amorphous metals. When the second metal particles are amorphous metals, iron loss (cоre lоss) in a device (for example, an inductor) made from a compound is likely to be reduced.
 少なくとも一部の第一金属粒子が、略球状であってよい。全ての第一金属粒子が、略球状であってよい。第一金属粒子が略球状である場合、第一金属粒子の表面は平滑である。その結果、金属フィラー間に作用する摩擦力が低減され易く、コンパウンドの流動性が向上し易い。同様の理由から、少なくとも一部の第二金属粒子が、略球状であってよい。全ての第二金属粒子が、略球状であってよい。同様の理由から、コンパウンドに含まれる全ての金属フィラーが、略球状であってよい。金属フィラーの球形度に基づいて第一金属粒子が球状であるか否かを判定することができる。金属フィラーの球形度は、粒子形状画像解析装置によって測定することができる。粒子形状画像解析装置としては、例えば、株式会社セイシン企業製のPITA‐04が用いられてよい。金属フィラーの球形度は、金属フィラーが精製水中に分散した状態において測定される。水中で超音波を所定時間例えば60秒)発生させることにより、金属フィラーが精製水中に分散する。金属フィラーの球形度の計算では、ある指数を用いることにより、金属フィラーの凝集物(二次粒子)の影響が排除されてよい。なお、第一金属粒子及び第二金属粒子其々の形状は、球に限定されない。 At least some of the first metal particles may be substantially spherical. All primary metal particles may be substantially spherical. When the first metal particles are substantially spherical, the surface of the first metal particles is smooth. As a result, the frictional force acting between the metal fillers is likely to be reduced, and the fluidity of the compound is likely to be improved. For the same reason, at least some of the second metal particles may be substantially spherical. All secondary metal particles may be substantially spherical. For the same reason, all metal fillers contained in the compound may be substantially spherical. Whether or not the first metal particles are spherical can be determined based on the sphericality of the metal filler. The sphericity of the metal filler can be measured by a particle shape image analyzer. As the particle shape image analysis apparatus, for example, PITA-04 manufactured by Seishin Enterprise Co., Ltd. may be used. The sphericity of the metal filler is measured in a state where the metal filler is dispersed in purified water. By generating ultrasonic waves in water for a predetermined time (for example, 60 seconds), the metal filler is dispersed in the purified water. In the calculation of the sphericity of the metal filler, the influence of aggregates (secondary particles) of the metal filler may be eliminated by using a certain index. The shapes of the first metal particles and the second metal particles are not limited to spheres.
 コンパウンドにおける金属フィラーの含有量は、90質量%以上100質量%未満、93質量%以上99.5質量%以下、又は94質量%以上99.5質量%以下であってよい。金属フィラーの含有量の増加に伴い、コンパウンドの比透磁率が増加する傾向がある。一方、金属フィラーの含有量の増加に伴い、コンパウンドの流動性が低下する傾向がある。しかし金属フィラーの含有量が高い場合であっても、コンパウンドが第一金属粉末を含むことにより、高い比透磁率と高い流動性を両立させることができる。コンパウンドにおける金属フィラーの含有量は、コンパウンドにおける金属フィラーの充填率と言い換えられてよい。コンパウンドにおける金属フィラーの充填率は、コンパウンドにおける金属フィラーの占積率と言い換えられてよい。コンパウンドにおける樹脂組成物の含有量は、コンパウンド全体の質量に対して、0質量%より大きく10質量%以下、0.5質量%以上7質量%以下、0.5質量%以上6質量%以下であってよい。 The content of the metal filler in the compound may be 90% by mass or more and less than 100% by mass, 93% by mass or more and 99.5% by mass or less, or 94% by mass or more and 99.5% by mass or less. As the content of the metal filler increases, the relative permeability of the compound tends to increase. On the other hand, as the content of the metal filler increases, the fluidity of the compound tends to decrease. However, even when the content of the metal filler is high, it is possible to achieve both high relative permeability and high fluidity by containing the first metal powder in the compound. The content of the metal filler in the compound can be rephrased as the filling rate of the metal filler in the compound. The filling rate of the metal filler in the compound can be rephrased as the space factor of the metal filler in the compound. The content of the resin composition in the compound is greater than 0% by mass and 10% by mass or less, 0.5% by mass or more and 7% by mass or less, and 0.5% by mass or more and 6% by mass or less with respect to the total mass of the compound. It may be there.
 樹脂組成物は、樹脂、硬化剤、硬化促進剤及び添加剤を包含し得る成分であってよい。樹脂組成物は、有機溶媒と金属フィラーとを除く残りの成分(不揮発性成分)であってよい。添加剤とは、樹脂組成物のうち、樹脂、硬化剤及び硬化促進剤を除く残部の成分であってよい。添加剤とは、例えば、カップリング剤又は難燃剤等である。樹脂組成物が添加剤としてワックスを含んでいてもよい。上記の金属フィラーと、未硬化の樹脂組成物との混合物が、コンパウンドに相当する。コンパウンドは粉末であってよい。コンパウンドはタブレットであってもよい。コンパウンドはペーストであってもよい。コンパウンドの成型により、コンパウンドを含む成形体が形成される。成形体中の樹脂組成物を硬化させることにより、コンパウンドの硬化物が得られる。以下に記載の樹脂組成物は、コンパウンドに含まれる未硬化の樹脂組成物とみなされてよい。 The resin composition may be a component that can include a resin, a curing agent, a curing accelerator, and an additive. The resin composition may be the remaining components (nonvolatile components) excluding the organic solvent and the metal filler. The additive may be a component of the rest of the resin composition excluding the resin, the curing agent and the curing accelerator. The additive is, for example, a coupling agent or a flame retardant. The resin composition may contain wax as an additive. The mixture of the above metal filler and the uncured resin composition corresponds to the compound. The compound may be a powder. The compound may be a tablet. The compound may be a paste. By molding the compound, a molded product containing the compound is formed. By curing the resin composition in the molded product, a cured product of the compound can be obtained. The resin compositions described below may be considered as uncured resin compositions contained in the compound.
 樹脂組成物は、金属フィラーの結合剤(バインダー)としての機能を有し、コンパウンドから形成される成形体及び硬化物に機械的強度を付与する。例えば、金型を用いてコンパウンドが高圧で成形される際に、樹脂組成物は金属フィラーの間に充填され、金属フィラーを互いに結着する。コンパウンドから形成された成形体中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が金属フィラー同士を強固に結着する。 The resin composition has a function as a binder for the metal filler, and imparts mechanical strength to the molded product and the cured product formed from the compound. For example, when the compound is molded at high pressure using a mold, the resin composition is filled between the metal fillers and binds the metal fillers together. By curing the resin composition in the molded product formed from the compound, the cured product of the resin composition firmly binds the metal fillers to each other.
 樹脂組成物は、熱硬化性樹脂を含有してよい。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種であってよい。樹脂組成物がエポキシ樹脂及びフェノール樹脂の両方を含む場合、フェノール樹脂はエポキシ樹脂の硬化剤として機能してもよい。樹脂組成物は、熱可塑性樹脂を含んでもよい。熱可塑性樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、及びポリエチレンテレフタレートからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、熱硬化性樹脂及び熱可塑性樹脂の両方を含んでよい。樹脂組成物は、シリコーン樹脂を含んでもよい。 The resin composition may contain a thermosetting resin. The thermosetting resin may be at least one selected from the group consisting of, for example, an epoxy resin, a phenol resin and a polyamide-imide resin. When the resin composition contains both an epoxy resin and a phenol resin, the phenol resin may function as a curing agent for the epoxy resin. The resin composition may include a thermoplastic resin. The thermoplastic resin may be at least one selected from the group consisting of, for example, acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate. The resin composition may contain both a thermosetting resin and a thermoplastic resin. The resin composition may contain a silicone resin.
 エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂は、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、及びオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。 The epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule. Epoxy resins include, for example, biphenyl type epoxy resin, stillben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol. Copolymerization type epoxy resin, aralkyl type phenol resin epoxie, bisphenol type epoxy resin, alcohols glycidyl ether type epoxy resin, paraxylylene and / or metaxylylene modified phenol resin glycidyl ether type epoxy resin, terpen modified phenol resin Glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring modified phenol resin, glycidyl ether type epoxy resin of naphthalene ring containing phenol resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl Type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpropane type epoxy resin, and olefin bonds are oxidized with a peracid such as peracetic acid. It may be at least one selected from the group consisting of the linear aliphatic epoxy resin thus obtained.
 エポキシ樹脂の中でも、結晶性のエポキシ樹脂が好ましい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。結晶性のエポキシ樹脂の市販品は、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM‐091、エピクロンHM‐101、エピクロンN‐730A、エピクロンN‐740、エピクロンN‐770、エピクロンN‐775、エピクロンN‐865、エピクロンHP‐4032D、エピクロンHP‐7200L、エピクロンHP‐7200、エピクロンHP‐7200H、エピクロンHP‐7200HH、エピクロンHP‐7200HHH、エピクロンHP‐4700、エピクロンHP‐4710、エピクロンHP‐4770、エピクロンHP‐5000、エピクロンHP‐6000、及びN500P‐2(以上、DIC株式会社製の商品名)、NC‐3000、NC‐3000‐L、NC‐3000‐H、NC‐3100、CER‐3000‐L、NC‐2000‐L、XD‐1000、NC‐7000‐L、NC‐7300‐L、EPPN‐501H、EPPN‐501HY、EPPN‐502H、EOCN‐1020、EOCN‐102S、EOCN‐103S、EOCN‐104S、CER‐1020、EPPN‐201、BREN‐S、BREN‐10S(以上、日本化薬株式会社製の商品名)、YX‐4000、YX‐4000H、YL4121H、及びYX‐8800(以上、三菱ケミカル株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。 Among the epoxy resins, crystalline epoxy resins are preferable. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity. The crystalline epoxy resin (highly crystalline epoxy resin) may be at least one selected from the group consisting of, for example, a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin. Commercially available crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N. -740, Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HH, Epicron HP -4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, and N500P-2 (above, trade name manufactured by DIC Co., Ltd.), NC-3000, NC-3000-L, NC -3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-502H, EOCN -1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, BREN-10S (above, trade name manufactured by Nippon Kayaku Co., Ltd.), YX-4000, YX- It may be at least one selected from the group consisting of 4000H, YL4121H, and YX-8800 (above, trade name manufactured by Mitsubishi Chemical Co., Ltd.).
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。 The resin composition may contain one of the above epoxy resins. The resin composition may contain a plurality of types of epoxy resins among the above.
 硬化剤は、低温から室温の範囲で樹脂を硬化させる硬化剤と、加熱に伴って樹脂を硬化させる加熱硬化型硬化剤と、に分類される。低温から室温の範囲で樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノール樹脂、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。 The curing agent is classified into a curing agent that cures the resin in the range of low temperature to room temperature and a heat curing type curing agent that cures the resin with heating. Hardeners that cure the resin in the low temperature to room temperature range are, for example, aliphatic polyamines, polyaminoamides, and polymercaptans. The heat-curable curing agent is, for example, aromatic polyamine, acid anhydride, phenol resin, phenol novolac resin, dicyandiamide (DICY) and the like.
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種であってよい。フェノール樹脂は、上記のうちの2種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP‐850N等を用いてもよい。 The phenolic resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolac type phenol resin, a copolymerized phenol resin of benzaldehyde type phenol and an aralkyl type phenol, paraxylylene and / or metaxylylene modification. From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may be at least one of the choices. The phenol resin may be a copolymer composed of two or more of the above. As a commercially available phenol resin, for example, Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール及びアミノフェノールからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α‐ナフトール、β‐ナフトール及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒドからなる群より選ばれる少なくとも一種であってよい。 The phenol novolac resin may be, for example, a resin obtained by condensing or cocondensing phenols and / or naphthols and aldehydes under an acidic catalyst. The phenols constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol. The naphthols constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, α-naphthol, β-naphthol and dihydroxynaphthalene. The aldehydes constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde.
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種であってよい。 The curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule. The compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of, for example, resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。 The resin composition may contain one of the above phenolic resins. The resin composition may include a plurality of types of phenol resins among the above. The resin composition may contain one of the above curing agents. The resin composition may contain a plurality of types of curing agents among the above. As a commercially available phenol resin, for example, Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.9~1.4当量、さらに好ましくは1.0~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、硬化後のエポキシ樹脂の単位重量当たりのOH量が少なくなり、樹脂組成物(エポキシ樹脂)の硬化速度が低下する。また硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物のガラス転移温度が低くなったり、硬化物の充分な弾性率が得られなかったりする。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された封止材の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。 The ratio of active groups (phenolic OH groups) in the curing agent that reacts with the epoxy groups in the epoxy resin is preferably 0.5 to 1.5 equivalents, more preferably 0.5 equivalents, relative to 1 equivalent of the epoxy groups in the epoxy resin. May be 0.9 to 1.4 equivalents, more preferably 1.0 to 1.2 equivalents. When the ratio of active groups in the curing agent is less than 0.5 equivalent, the amount of OH per unit weight of the cured epoxy resin is reduced, and the curing rate of the resin composition (epoxy resin) is reduced. If the ratio of active groups in the curing agent is less than 0.5 equivalent, the glass transition temperature of the obtained cured product may be low, or a sufficient elastic modulus of the cured product may not be obtained. On the other hand, when the ratio of active groups in the curing agent exceeds 1.5 equivalents, the mechanical strength of the encapsulant formed from the compound tends to decrease. However, even when the ratio of active groups in the curing agent is out of the above range, the effect according to the present invention can be obtained.
 硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、アルキル基置換イミダゾール、又はベンゾイミダゾール等のイミダゾール類であってよい。樹脂組成物は、一種の硬化促進剤を備えてよい。樹脂組成物は、複数種の硬化促進剤を備えてもよい。樹脂組成物が硬化促進剤を含有することにより、コンパウンドの成形性及び離型性が向上し易い。樹脂組成物が硬化促進剤を含有することにより、コンパウンドを用いて製造された封止材の機械的強度が向上したり、高温及び高湿な環境下におけるコンパウンドの保存安定性が向上したりする。イミダゾール系硬化促進剤の市販品としては、例えば、2MZ‐H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ-PW、2P4MZ、1B2MZ、1B2PZ、2MZ‐CN、C11Z‐CN、2E4MZ‐CN、2PZ‐CN、C11Z‐CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてよい。これらの中でも、長鎖アルキル基を有するイミダゾール系硬化促進剤が好ましく、C11Z‐CN(1‐シアノエチル‐2‐ウンデシルイミダゾール)が好ましい。 The curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin. The curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole. The resin composition may include a kind of curing accelerator. The resin composition may include a plurality of types of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the compound are likely to be improved. When the resin composition contains a curing accelerator, the mechanical strength of the encapsulant produced by using the compound is improved, and the storage stability of the compound in a high temperature and high humidity environment is improved. .. Commercially available imidazole-based curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ. -At least one selected from the group consisting of CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (above, trade name manufactured by Shikoku Chemicals Corporation) may be used. Among these, an imidazole-based curing accelerator having a long-chain alkyl group is preferable, and C11Z-CN (1-cyanoethyl-2-undecylimidazole) is preferable.
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。ただし、樹脂組成物の吸湿時の硬化性及び流動性を改善する観点からは、硬化促進剤の配合量は、100質量部のエポキシ樹脂に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部であってよい。硬化促進剤の含有量は、エポキシ樹脂及び硬化剤(例えばフェノール樹脂)の質量の合計に対して0.001質量部以上5質量部以下であることが好ましい。硬化促進剤の配合量が0.1質量部未満である場合、十分な硬化促進効果が得られ難い。硬化促進剤の配合量が30質量部を超える場合、コンパウンドの保存安定性が低下し易い。ただし、硬化促進剤の配合量及び含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。 The amount of the curing accelerator to be blended is not particularly limited as long as it can obtain the curing promoting effect. However, from the viewpoint of improving the curability and fluidity of the resin composition during moisture absorption, the amount of the curing accelerator is preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the epoxy resin. It may be preferably 1 to 15 parts by mass. The content of the curing accelerator is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to the total mass of the epoxy resin and the curing agent (for example, phenol resin). When the blending amount of the curing accelerator is less than 0.1 parts by mass, it is difficult to obtain a sufficient curing promoting effect. When the blending amount of the curing accelerator exceeds 30 parts by mass, the storage stability of the compound tends to decrease. However, even when the blending amount and content of the curing accelerator are out of the above range, the effect according to the present invention can be obtained.
 カップリング剤は、樹脂組成物と金属フィラーとの密着性を向上させ、コンパウンドから形成される封止材の可撓性及び機械的強度を向上させる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも一種であってよい。シランカップリング剤は、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、酸無水物系シラン及びビニルシランからなる群より選ばれる少なくとも一種であってよい。特に、アミノフェニル系のシランカップリング剤が好ましい。コンパウンドは、上記のうち一種のカップリング剤を備えてよく、上記のうち複数種のカップリング剤を備えてもよい。 The coupling agent improves the adhesion between the resin composition and the metal filler, and improves the flexibility and mechanical strength of the encapsulant formed from the compound. The coupling agent may be, for example, at least one selected from the group consisting of a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound. The silane coupling agent may be at least one selected from the group consisting of, for example, epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, acid anhydride-based silane, and vinylsilane. In particular, an aminophenyl-based silane coupling agent is preferable. The compound may include one of the above coupling agents, and may include a plurality of the above coupling agents.
 コンパウンドの環境安全性、リサイクル性、成形加工性及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、鱗茎難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。コンパウンドは、上記のうち一種の難燃剤を備えてよく、上記のうち複数種の難燃剤を備えてもよい。 Due to the environmental safety, recyclability, molding processability and low cost of the compound, the compound may contain a flame retardant. The flame retardant is at least one selected from the group consisting of, for example, a brominated flame retardant, a scale flame retardant, a hydrated metal compound flame retardant, a silicone flame retardant, a nitrogen-containing compound, a hindered amine compound, an organic metal compound and an aromatic empra. It may be. The compound may be provided with one of the above flame retardants, and may be provided with a plurality of the above flame retardants.
 樹脂組成物は、ワックスを含有してよい。ワックスは、コンパウンドの成形(例えばトランスファー成形)におけるコンパウンドの流動性を高めると共に、離型剤として機能する。ワックスは、高級脂肪酸等の脂肪酸、及び脂肪酸エステルのうち少なくともいずれか一つであってよい。 The resin composition may contain wax. The wax enhances the fluidity of the compound in the molding of the compound (for example, transfer molding) and functions as a mold release agent. The wax may be at least one of fatty acids such as higher fatty acids and fatty acid esters.
 ワックスは、例えば、モンタン酸、ステアリン酸、12‐オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアエン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2‐エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N‐ステアリルステアリン酸アミド、N‐オレイルステアリン酸アミド、N‐ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、ポリエチレンワックス、アマイドワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。 The wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, laurate or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, Fatty acid salts such as zinc linoleate, calcium ricinolate, zinc 2-ethylhexoneate; stearic acid amide, oleic acid amide, erucic acid amide, bechenic acid amide, palmitate amide, laurate amide, hydroxystearic acid amide, methylene bisstearate. Acid amide, ethylene bisstearic acid amide, ethylene bislauric acid amide, distearyl adipate amide, ethylene bisoleic acid amide, diorail adipic acid amide, N-stearyl stearic acid amide, N-oleyl stearic acid amide, N-stearyl Fatty acid amides such as erucate amide, methylol stearic acid amide, methylol bechenic acid amide; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol; polyethylene glycol, polypropylene glycol, polytetramethylene glycol and modifications thereof. Polyethers made of materials; Polysiloxanes such as silicone oil and silicon grease; Fluorine compounds such as fluorine oil, fluorine grease, and fluorine-containing resin powder; and paraffin wax, polyethylene wax, amide wax, polypropylene wax, and esters It may be at least one selected from the group consisting of waxes such as wax, carnauba, and microwax;
 本実施形態に係るコンパウンドは、優れた流動性を有している。したがって、本実施形態に係るコンパウンドは、押出成形又はトランスファー成形(移送成形)により、所望の形状へ加工され易い。金属フィラー又は樹脂組成物の組成に基づき、コンパウンドを含む成形体又はコンパウンドの硬化物の諸物性を自在に制御することができる。諸物性とは、例えば、電磁気的特性又は熱伝導性である。これらの理由から、コンパウンドを様々な工業製品又はそれらの原材料に利用することができる。コンパウンドを用いて製造される工業製品は、例えば、自動車、医療機器、電子機器、電気機器、情報通信機器、家電製品、音響機器、及び一般産業機器であってよい。コンパウンドが金属フィラーとして軟磁性体を含む場合、コンパウンドは、インダクタ用の封止材、インダクタ用の磁心、EMIシールド、又はトランスの磁心として利用されてよい。コンパウンドが金属フィラーとして金属磁石を含む場合、コンパウンドはボンド磁石の原材料として利用されてよい。 The compound according to this embodiment has excellent fluidity. Therefore, the compound according to the present embodiment can be easily processed into a desired shape by extrusion molding or transfer molding (transfer molding). Based on the composition of the metal filler or the resin composition, various physical properties of the molded product containing the compound or the cured product of the compound can be freely controlled. The physical properties are, for example, electromagnetic properties or thermal conductivity. For these reasons, the compound can be used in various industrial products or their raw materials. Industrial products manufactured using the compound may be, for example, automobiles, medical devices, electronic devices, electrical devices, information and communication devices, home appliances, audio devices, and general industrial devices. When the compound contains a soft magnetic material as a metal filler, the compound may be used as a sealing material for an inductor, a magnetic core for an inductor, an EMI shield, or a magnetic core for a transformer. If the compound contains a metal magnet as a metal filler, the compound may be used as a raw material for the bonded magnet.
(コンパウンドの製造方法)
 以下では、本発明に係るコンパウンドの製造方法の一例が説明される。ただし、本発明に係るコンパウンドの製造方法は、下記の製造方法に限定されない。
(Manufacturing method of compound)
In the following, an example of a method for producing a compound according to the present invention will be described. However, the method for producing a compound according to the present invention is not limited to the following production method.
 本実施形態に係るコンパウンドの製造方法は、第一混合工程、第二混合工程、冷却工程及び粉砕工程を備える。 The compound manufacturing method according to the present embodiment includes a first mixing step, a second mixing step, a cooling step, and a crushing step.
 第一混合工程では、金属フィラー及びカッリング剤を混合することにより、第一混合物が得られる。第一混合工程により、金属フィラーを構成する各金属粒子の表面にカップリング剤が結合する。つまり、各金属粒子の表面の一部又は全体がカップリング剤で覆われる。その結果、金属フィラーの表面がカップリング剤を介して樹脂組成物で覆われ易く、金属フィラーがコンパウンド中に分散し易く、コンパウンドにおける金属フィラーの充填率が高まり易い。 In the first mixing step, the first mixture is obtained by mixing the metal filler and the clotting agent. By the first mixing step, the coupling agent is bonded to the surface of each metal particle constituting the metal filler. That is, a part or the whole of the surface of each metal particle is covered with the coupling agent. As a result, the surface of the metal filler is easily covered with the resin composition via the coupling agent, the metal filler is easily dispersed in the compound, and the filling rate of the metal filler in the compound is likely to increase.
 カッリング剤と混合される金属フィラーは、少なくとも第一金属粉末を含む。第一金属粉末に含まれる個々の第一金属粒子の表面は、Siを含有するガラスで予め覆われている。コンパウンドにおける金属フィラーの充填率が増加し易いことから、カッリング剤と混合される金属フィラーは、第一金属粉末及び第二金属粉末の両方を含むことが好ましい。第二金属粉末に含まれる個々の第二金属粒子の表面は、Siを含有するガラスで覆われていなくてよい。第二金属粉末に含まれる個々の第二金属粒子の表面は、Siを含有するガラスで予め覆われていてもよい。金属フィラーが第一金属粉末及び第二金属粉末の両方を含む場合、第一混合工程前に第一金属粉末及び第二金属粉末を混合することにより、金属フィラーが得られてよい。 The metal filler mixed with the culling agent contains at least the first metal powder. The surface of each primary metal particle contained in the primary metal powder is pre-covered with Si-containing glass. Since the filling rate of the metal filler in the compound tends to increase, the metal filler mixed with the culling agent preferably contains both the first metal powder and the second metal powder. The surface of each secondary metal particle contained in the secondary metal powder does not have to be covered with glass containing Si. The surface of each secondary metal particle contained in the secondary metal powder may be pre-covered with glass containing Si. When the metal filler contains both the first metal powder and the second metal powder, the metal filler may be obtained by mixing the first metal powder and the second metal powder before the first mixing step.
 第一混合工程に続く第二混合工程では、カッリング剤を除く樹脂組成物と第一混合物を加熱しながら混錬することにより、第二混合物が得られる。つまり、第二混合工程では、樹脂組成物のうちカップリング剤以外の成分と、第一混合物が混錬される。樹脂組成物のうちカップリング剤以外の成分とは、例えば、熱硬化性樹脂、硬化剤、硬化促進剤及び添加剤であってよい。添加剤は、例えば、ワックス及び難燃剤のうち少なくとも一方であってよい。第二混合工程前に、熱硬化性樹樹脂、硬化剤、硬化促進剤及び添加剤を予め混合することにより、樹脂混合物が得られてよい。そして、第二混合工程では、樹脂混合物及び第一混合物を加熱しながら混錬することにより、第二混合物が得られてよい。第二混合物は、ペーストであってよい。 In the second mixing step following the first mixing step, the second mixture is obtained by kneading the resin composition excluding the curling agent and the first mixture while heating. That is, in the second mixing step, the first mixture is kneaded with the components of the resin composition other than the coupling agent. The components of the resin composition other than the coupling agent may be, for example, a thermosetting resin, a curing agent, a curing accelerator, and an additive. The additive may be, for example, at least one of a wax and a flame retardant. A resin mixture may be obtained by premixing the thermosetting tree resin, the curing agent, the curing accelerator and the additive before the second mixing step. Then, in the second mixing step, the second mixture may be obtained by kneading the resin mixture and the first mixture while heating. The second mixture may be a paste.
 第二混合工程における第二混合物の温度は、樹脂組成物の組成に応じて調整されてよい。第二混合工程における第二混合物の温度は、例えば、例えば、50℃以上150℃以下、好ましくは60℃以上120℃以下、より好ましくは80℃以上、110℃以下であってよい。第二混合物の温度が上記の範囲内である場合、第二混合物中の樹脂組成物が軟化し易く、樹脂組成物が金属粒子の表面を被覆し易く、第二混合工程中の樹脂組成物の硬化が抑制され易い。第二混合物の温度が低過ぎる場合、第二混合物が十分に混錬されず、コンパウンドの成形性が損なわれ、コンパウンドの硬化度にばらつきが生じる。第二混合物の温度が高過ぎる場合、第二混合工程中に樹脂組成物の硬化が進み、コンパウンドの流動性及び成形性が損なわれ易い。第二混合工程において第二混合物を混錬する時間は、第二混合工程に用いる混錬手段(例えば、二軸加圧ニーダー)の性能、及び第二混合物の体積に応じて調整されてよい。 The temperature of the second mixture in the second mixing step may be adjusted according to the composition of the resin composition. The temperature of the second mixture in the second mixing step may be, for example, 50 ° C. or higher and 150 ° C. or lower, preferably 60 ° C. or higher and 120 ° C. or lower, more preferably 80 ° C. or higher and 110 ° C. or lower. When the temperature of the second mixture is within the above range, the resin composition in the second mixture is likely to soften, the resin composition is likely to cover the surface of the metal particles, and the resin composition in the second mixing step is likely to be softened. Hardening is easily suppressed. If the temperature of the second mixture is too low, the second mixture will not be sufficiently kneaded, the moldability of the compound will be impaired, and the degree of curing of the compound will vary. If the temperature of the second mixture is too high, the resin composition will be cured during the second mixing step, and the fluidity and moldability of the compound will be easily impaired. The time for kneading the second mixture in the second mixing step may be adjusted according to the performance of the kneading means (for example, a biaxial pressure kneader) used in the second mixing step and the volume of the second mixture.
 第二混合工程に続く冷却工程では、第二混合物を冷却することより、固形物が得られる。第二混合物は室温で冷却されてよい。 In the cooling step following the second mixing step, a solid substance can be obtained by cooling the second mixture. The second mixture may be cooled at room temperature.
 冷却工程に続く粉砕工程では、固形物が粉砕される。固形物に粉砕によって得られた粉末そのものが、コンパウンドとして用いられてよい。粉砕工程によって得られた粉末の分級により、粗大な粒子が粉末から除去されてもよい。粉砕工程によって得られた粉末を成型することにより、コンパウンドからなるタブレットが作製されてもよい。 In the crushing process following the cooling process, the solid matter is crushed. The powder itself obtained by pulverizing the solid material may be used as a compound. Coarse particles may be removed from the powder by classification of the powder obtained by the grinding step. A tablet made of a compound may be produced by molding the powder obtained by the pulverization step.
 以上の製造方法により、コンパウンドが完成される。 The compound is completed by the above manufacturing method.
 下記の実施例及び比較例により、本発明がさらに詳細に説明される。ただし、本発明は下記の実施例によって何ら限定されるものではない。 The present invention will be described in more detail by the following examples and comparative examples. However, the present invention is not limited to the following examples.
(実施例1)
[コンパウンド粉の作製]
<金属フィラーの調製>
 第一金属粉末及び第二金属粉末を袋に入れて、袋を閉じた。袋を両手で3分間振って第一金属粉末及び第二金属粉末を混合することにより、金属フィラーを得た。袋はPE(ポリエチレン)から作製されていた。袋の寸法は、470mm×670mmであった。
(Example 1)
[Making compound powder]
<Preparation of metal filler>
The first metal powder and the second metal powder were put in a bag, and the bag was closed. A metal filler was obtained by shaking the bag with both hands for 3 minutes to mix the first metal powder and the second metal powder. The bag was made of PE (polyethylene). The size of the bag was 470 mm x 670 mm.
 第一金属粉末は、多数の第一金属粒子から構成されていた。第一金属粉末のメジアン径は、2.17μm以上2.31μm以下であった。各第一金属粒子は、合金粒子と、合金粒子の表面を覆う多数のガラス粒子と、から構成されていた。各合金粒子は、Fe、Cr及びSiを含んでいた。合金粒子の表面を覆う各ガラス粒子は、Siを含有していた。各ガラス粒子の粒径は、第一金属粉末のメジアン径よりも著しく小さかった。各第一金属粒子は、略球状であった。第一金属粉末の質量M1は、770.8gであった。 The first metal powder was composed of a large number of first metal particles. The median diameter of the first metal powder was 2.17 μm or more and 2.31 μm or less. Each first metal particle was composed of an alloy particle and a large number of glass particles covering the surface of the alloy particle. Each alloy particle contained Fe, Cr and Si. Each glass particle covering the surface of the alloy particles contained Si. The particle size of each glass particle was significantly smaller than the median diameter of the first metal powder. Each first metal particle was substantially spherical. The mass M1 of the first metal powder was 770.8 g.
 第二金属粉末としては、鉄を含むアモルファス合金の粉末が用いられた。鉄を含むアモルファス合金の粉末は、エプソンアトミックス株式会社製のKUAMET 9A4‐IIであった。第二金属粉末のメジアン径は、25.0μmであった。第二金属粉末を構成するアモルファス合金の粒子(第二金属粒子)は、略球状であった。第二金属粉末の質量M2は、3511.2gであった。 As the second metal powder, an amorphous alloy powder containing iron was used. The powder of the amorphous alloy containing iron was KUAMET 9A4-II manufactured by Epson Atmix Co., Ltd. The median diameter of the second metal powder was 25.0 μm. The amorphous alloy particles (second metal particles) constituting the second metal powder were substantially spherical. The mass M2 of the second metal powder was 351.1.2 g.
 100×M1/(M1+M2)は、18であった。100×M2/(M1+M2)は、82であった。 100 × M1 / (M1 + M2) was 18. 100 × M2 / (M1 + M2) was 82.
<第一混合工程>
 メタクリルシラン(シランカップリング剤)が、袋内の金属フィラーへ添加された。メタクリルシランの質量は、5.43gであった。メタクリルシランは、信越化学工業株式会社製のKBM‐503であった。袋を両手で3分間振って金属フィラー及びメタクリルシランを混合することにより、第一混合物を得た。第一混合工程により、金属フィラーを構成する各金属粒子の表面が、メタクリルシランで覆われた。
<First mixing process>
Methacrylic silane (silane coupling agent) was added to the metal filler in the bag. The mass of methacrylic silane was 5.43 g. The methacrylic silane was KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd. The first mixture was obtained by shaking the bag with both hands for 3 minutes to mix the metal filler and methacrylic silane. By the first mixing step, the surface of each metal particle constituting the metal filler was covered with methacrylic silane.
<第二混合工程>
 第二混合工程では、上記の袋とは別の袋が用いられた。第二混合工程で用いられた袋の寸法は、205×300mmであった。この袋はPE(ポリエチレン)から作製されていた。熱硬化性樹脂、硬化剤、硬化促進剤及びワックス粉を袋に入れて、袋を閉じた。袋を両手で3分間振って袋の内容物を混合することにより、樹脂混合物を得た。熱硬化性樹脂、硬化剤、硬化促進剤及びワックス粉其々の質量及び組成は、以下に示される。下記のNC3000‐H及びNC3000のいずれも、エポキシ樹脂である。
90.9gの熱硬化性樹脂(日本化薬株式会社製のNC3000‐H)
39.0gの熱硬化性樹脂(日本化薬株式会社製のNC3000)
48.2gの硬化剤(フェノールノボラック樹脂、日立化成株式会社製のHP-850N)
2.6gの硬化促進剤(イミダゾール系エポキシ樹脂硬化剤、四国化成株式会社製のC17Z)
15.7gのワックス粉(クラリアントケミカルズ株式会社製のLicowax E)
<Second mixing process>
In the second mixing step, a bag different from the above bag was used. The size of the bag used in the second mixing step was 205 × 300 mm. This bag was made of PE (polyethylene). A thermosetting resin, a curing agent, a curing accelerator and a wax powder were put in a bag, and the bag was closed. The resin mixture was obtained by shaking the bag with both hands for 3 minutes to mix the contents of the bag. The masses and compositions of the thermosetting resin, the curing agent, the curing accelerator, and the wax powder are shown below. Both NC3000-H and NC3000 below are epoxy resins.
90.9 g of thermosetting resin (NC3000-H manufactured by Nippon Kayaku Co., Ltd.)
39.0 g of thermosetting resin (NC3000 manufactured by Nippon Kayaku Co., Ltd.)
48.2 g of curing agent (phenol novolac resin, HP-850N manufactured by Hitachi Chemical Co., Ltd.)
2.6 g of curing accelerator (imidazole epoxy resin curing agent, C17Z manufactured by Shikoku Chemicals Corporation)
15.7g of wax powder (Licowax E manufactured by Clariant Chemicals Co., Ltd.)
 上記の第一混合物及び樹脂混合物を、二軸加圧ニーダーの槽に入れた。槽内の第一混合物及び樹脂混合物をニーダーで加圧しながら混練することにより、第二混合物を得た。第二混合物はペーストであった。混錬中の槽内の温度は82℃であった。ニーダーの回転速度は40rpmであった。混練時間は1分であった。二軸加圧ニーダーとしては、日本スピンドル製造株式会社(旧株式会社森山製作所)製の加圧混練機(PS1‐5MHB‐H型ニーダー)を用いた。 The above first mixture and resin mixture were placed in a tank of a biaxial pressure kneader. The first mixture and the resin mixture in the tank were kneaded while being pressurized with a kneader to obtain a second mixture. The second mixture was a paste. The temperature in the tank during kneading was 82 ° C. The rotation speed of the kneader was 40 rpm. The kneading time was 1 minute. As the biaxial pressure kneader, a pressure kneader (PS1-5MHB-H type kneader) manufactured by Nihon Spindle Manufacturing Co., Ltd. (formerly Moriyama Seisakusho Co., Ltd.) was used.
<冷却工程>
 第二混合物を室温で冷却することより、固形物を得た。
<Cooling process>
The second mixture was cooled at room temperature to give a solid.
<粉砕工程>
 固形物を粉砕することにより、粉末状のコンパウンドを得た。篩を用いた分級に因り、粗大な粒子をコンパウンドから除去した。篩の目開きは2mmであった。
<Crushing process>
The solid material was pulverized to obtain a powdery compound. Coarse particles were removed from the compound due to sieving. The mesh size of the sieve was 2 mm.
 以上の方法により、実施例1のコンパウンドが作製された。コンパウンドにおける金属フィラーの含有量(占積率)は、95.5質量%であった。 The compound of Example 1 was prepared by the above method. The content (space factor) of the metal filler in the compound was 95.5% by mass.
[流動性の評価]
 実施例1のコンパウンドをトランスファー試験機に仕込んだ。金型温度175℃、注入圧力4.1MPa、成形時間420秒で、コンパウンドのスパイラルフロー量を測定した。スパイラルフロー量とは、金型に形成された溝内においてコンパウンドが流れる長さである。つまりスパイラルフロー量とは、軟化又は液化したコンパウンドの流動距離である。コンパウンドが流れる溝の形状は、渦巻き曲線(アルキメデスのスパイラル)である。コンパウンドが流動し易いほど、スパイラルフロー量は大きい。つまり、流動性に優れたコンパウンドのスパイラルフロー量は大きい。トランスファー試験機としては、株式会社小平製作所製の100KNトランスファー成型機(PZ‐10型)を用いた。金型としては、ASTM D3123に準じたスパイラルフロー測定用の金型を用いた。実施例1のスパイラルフロー量は、下記表1に示される。
[Evaluation of liquidity]
The compound of Example 1 was charged into a transfer tester. The amount of spiral flow of the compound was measured at a mold temperature of 175 ° C., an injection pressure of 4.1 MPa, and a molding time of 420 seconds. The amount of spiral flow is the length at which the compound flows in the groove formed in the mold. That is, the spiral flow amount is the flow distance of the softened or liquefied compound. The shape of the groove through which the compound flows is a spiral curve (Archimedes spiral). The easier the compound flows, the greater the amount of spiral flow. That is, the amount of spiral flow of the compound having excellent fluidity is large. As the transfer tester, a 100KN transfer molding machine (PZ-10 type) manufactured by Kodaira Seisakusho Co., Ltd. was used. As the mold, a mold for measuring spiral flow according to ASTM D3123 was used. The amount of spiral flow of Example 1 is shown in Table 1 below.
[比透磁率の測定]
 トランスファー試験機及び金型を用いて、実施例1のコンパウンドからトロイダル状の成型体が作製された。金型温度は175℃であり、注入圧力は4.1MPaであり、成形時間は420秒であった。成型体の寸法は、外径20mm、内径12mm、厚み2mmであった。トランスファー試験機としては、株式会社小平製作所製の100KNトランスファー成型機(PZ‐10型)を用いた。金型としては、トロイダル形状を得られる金型を用いた。一次側巻線を上記成型体に5ターン巻回し、二次側巻線を上記成型体に5ターン巻回した。以上の方法によって作製されたサンプルの比透磁率μを測定した。実施例1の比透磁率μは、下記表1に示される。比透磁率μの測定には、岩崎通信機株式会社製のB‐Hアナライザ(SY-8258)を用いた。比透磁率の測定時の周波数は1MHzであった。
[Measurement of relative magnetic permeability]
Using a transfer tester and a mold, a toroidal molded body was produced from the compound of Example 1. The mold temperature was 175 ° C., the injection pressure was 4.1 MPa, and the molding time was 420 seconds. The dimensions of the molded body were an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 2 mm. As the transfer tester, a 100KN transfer molding machine (PZ-10 type) manufactured by Kodaira Seisakusho Co., Ltd. was used. As the mold, a mold capable of obtaining a toroidal shape was used. The primary winding was wound around the molded body for 5 turns, and the secondary winding was wound around the molded body for 5 turns. The relative magnetic permeability μ S of the sample prepared by the above method was measured. The relative magnetic permeability μ S of Example 1 is shown in Table 1 below. A BH analyzer (SY-8258) manufactured by Iwatsu Electric Co., Ltd. was used for the measurement of the relative magnetic permeability μ S. The frequency at the time of measuring the relative permeability was 1 MHz.
(実施例2)
 第一混合物及び樹脂混合物の質量比の変更により、実施例2のコンパウンドにおける金属フィラーの含有量は、95.0質量%に調整された。金属フィラーの含有量を除いて実施例1と同様の方法で、実施例2のコンパウンドが作製された。実施例1と同様の方法により、実施例2のコンパウンドのスパイラルフロー量が測定された。実施例2のスパイラルフロー量は、下記表1に示される。実施例1と同様の方法により、実施例2のコンパウンドの比透磁率が測定された。実施例2の比透磁率は、下記表1に示される。
(Example 2)
By changing the mass ratio of the first mixture and the resin mixture, the content of the metal filler in the compound of Example 2 was adjusted to 95.0% by mass. The compound of Example 2 was prepared in the same manner as in Example 1 except for the content of the metal filler. The amount of spiral flow of the compound of Example 2 was measured by the same method as in Example 1. The amount of spiral flow of Example 2 is shown in Table 1 below. The relative magnetic permeability of the compound of Example 2 was measured by the same method as in Example 1. The relative magnetic permeability of Example 2 is shown in Table 1 below.
(比較例1)
 比較例1の金属フィラーとして、第二金属粉末のみが用いられた。実施例1と同様に、比較例1のコンパウンドにおける金属フィラーの含有量は、95.5質量%に調整された。金属フィラーを除いて実施例1と同様の方法で、比較例1のコンパウンドが作製された。実施例1と同様の方法により、比較例1のコンパウンドのスパイラルフロー量が測定された。比較例1のスパイラルフロー量は、下記表1に示される。実施例1と同様の方法により、比較例1のコンパウンドの比透磁率が測定された。比較例1の比透磁率は、下記表1に示される。
(Comparative Example 1)
Only the second metal powder was used as the metal filler of Comparative Example 1. Similar to Example 1, the content of the metal filler in the compound of Comparative Example 1 was adjusted to 95.5% by mass. The compound of Comparative Example 1 was prepared in the same manner as in Example 1 except that the metal filler was removed. The spiral flow amount of the compound of Comparative Example 1 was measured by the same method as in Example 1. The amount of spiral flow of Comparative Example 1 is shown in Table 1 below. The relative magnetic permeability of the compound of Comparative Example 1 was measured by the same method as in Example 1. The relative magnetic permeability of Comparative Example 1 is shown in Table 1 below.
(比較例2)
 比較例2の金属フィラーとして、第二金属粉末のみが用いられた。実施例2と同様に、比較例2のコンパウンドにおける金属フィラーの含有量は、95.0質量%に調整された。金属フィラー及びその含有量を除いて実施例1と同様の方法で、比較例2のコンパウンドが作製された。実施例1と同様の方法により、比較例2のコンパウンドのスパイラルフロー量が測定された。比較例2のスパイラルフロー量は、下記表1に示される。実施例1と同様の方法により、比較例2のコンパウンドの比透磁率が測定された。比較例2の比透磁率は、下記表1に示される。
(Comparative Example 2)
Only the second metal powder was used as the metal filler of Comparative Example 2. Similar to Example 2, the content of the metal filler in the compound of Comparative Example 2 was adjusted to 95.0% by mass. The compound of Comparative Example 2 was prepared in the same manner as in Example 1 except for the metal filler and its content. The spiral flow amount of the compound of Comparative Example 2 was measured by the same method as in Example 1. The amount of spiral flow in Comparative Example 2 is shown in Table 1 below. The relative magnetic permeability of the compound of Comparative Example 2 was measured by the same method as in Example 1. The relative magnetic permeability of Comparative Example 2 is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に係るコンパウンドは流動性に優れているため、様々な工業製品の形状に応じて成型され易い。 Since the compound according to the present invention has excellent fluidity, it is easy to be molded according to the shape of various industrial products.

Claims (15)

  1.  第一金属粉末を含む金属フィラーと、樹脂組成物と、を備え、
     前記第一金属粉末が、複数の第一金属粒子を含み、
     前記第一金属粒子の表面の少なくとも一部が、Siを含有するガラスで覆われており、
     前記第一金属粉末のメジアン径が、1.0μm以上5.0μm以下である、
    コンパウンド。
    The metal filler containing the first metal powder and the resin composition are provided.
    The first metal powder contains a plurality of first metal particles and contains a plurality of first metal particles.
    At least a part of the surface of the first metal particles is covered with glass containing Si.
    The median diameter of the first metal powder is 1.0 μm or more and 5.0 μm or less.
    compound.
  2.  前記第一金属粉末が、Feを含む合金である、
    請求項1に記載のコンパウンド。
    The first metal powder is an alloy containing Fe.
    The compound according to claim 1.
  3.  前記第一金属粒子が、球状である、
    請求項1又は2に記載のコンパウンド。
    The first metal particles are spherical,
    The compound according to claim 1 or 2.
  4.  前記樹脂組成物が、熱硬化性樹脂を含む、
    請求項1~3のいずれか一項に記載のコンパウンド。
    The resin composition contains a thermosetting resin.
    The compound according to any one of claims 1 to 3.
  5.  粉末又はペーストである、
    請求項1~4のいずれか一項に記載のコンパウンド。
    Powder or paste,
    The compound according to any one of claims 1 to 4.
  6.  前記金属フィラーの含有量が、90質量%以上100質量%未満である、
    請求項1~5のいずれか一項に記載のコンパウンド。
    The content of the metal filler is 90% by mass or more and less than 100% by mass.
    The compound according to any one of claims 1 to 5.
  7.  前記金属フィラーが第二金属粉末を更に含み、
     前記第二金属粉末のメジアン径が、前記第一金属粉末のメジアン径よりも大きい、
    請求項1~6のいずれか一項に記載のコンパウンド。
    The metal filler further comprises a second metal powder
    The median diameter of the second metal powder is larger than the median diameter of the first metal powder.
    The compound according to any one of claims 1 to 6.
  8.  前記第二金属粉末のメジアン径が、20.0μm以上30.0μm以下であり、
     前記第一金属粉末の質量が、M1であり、
     前記第二金属粉末の質量が、M2であり、
     100×M1/(M1+M2)が、5以上30以下であり、
     100×M2/(M1+M2)が、70以上95以下である、
    請求項7に記載のコンパウンド。
    The median diameter of the second metal powder is 20.0 μm or more and 30.0 μm or less.
    The mass of the first metal powder is M1.
    The mass of the second metal powder is M2,
    100 × M1 / (M1 + M2) is 5 or more and 30 or less.
    100 × M2 / (M1 + M2) is 70 or more and 95 or less.
    The compound according to claim 7.
  9.  前記第二金属粉末が、Feを含む合金である、
    請求項7又は8に記載のコンパウンド。
    The second metal powder is an alloy containing Fe.
    The compound according to claim 7 or 8.
  10.  前記第二金属粉末に含まれる第二金属粒子が、球状である、
    請求項7~9のいずれか一項に記載のコンパウンド。
    The second metal particles contained in the second metal powder are spherical.
    The compound according to any one of claims 7 to 9.
  11.  前記第二金属粉末のD90が、40μm以上65μm以下である、
    請求項7~10のいずれか一項に記載のコンパウンド。
    The D90 of the second metal powder is 40 μm or more and 65 μm or less.
    The compound according to any one of claims 7 to 10.
  12.  請求項1~11のいずれか一項に記載のコンパウンドを含む、
    成形体。
    Including the compound according to any one of claims 1 to 11.
    Molded body.
  13.  請求項1~11のいずれか一項に記載のコンパウンドの硬化物。 The cured product of the compound according to any one of claims 1 to 11.
  14.  請求項1~6のいずれか一項に記載のコンパウンドを製造する方法であって、
     前記金属フィラー及びカッリング剤を混合することにより、第一混合物を得る工程と、
     前記カッリング剤を除く前記樹脂組成物と、前記第一混合物とを加熱しながら混錬することにより、第二混合物を得る工程と、
     前記第二混合物を冷却することより、固形物を得る工程と、
     前記固形物を粉砕する工程と、
    を備える、
    コンパウンドの製造方法。
    The method for producing the compound according to any one of claims 1 to 6.
    The step of obtaining the first mixture by mixing the metal filler and the clotting agent, and
    A step of obtaining a second mixture by kneading the resin composition excluding the clotting agent and the first mixture while heating.
    A step of obtaining a solid substance by cooling the second mixture, and
    The step of crushing the solid matter and
    To prepare
    How to make the compound.
  15.  請求項7~11のいずれか一項に記載のコンパウンドを製造する方法であって、
     前記第一金属粉末及び前記第二金属粉末を混合することより、前記金属フィラーを得る工程と、
     前記金属フィラー及びカッリング剤を混合することにより、第一混合物を得る工程と、
     前記カッリング剤を除く前記樹脂組成物と、前記第一混合物とを加熱しながら混錬することにより、第二混合物を得る工程と、
     前記第二混合物を冷却することより、固形物を得る工程と、
     前記固形物を粉砕する工程と、
    を備える、
    コンパウンドの製造方法。
    The method for producing the compound according to any one of claims 7 to 11.
    The step of obtaining the metal filler by mixing the first metal powder and the second metal powder, and
    The step of obtaining the first mixture by mixing the metal filler and the clotting agent, and
    A step of obtaining a second mixture by kneading the resin composition excluding the clotting agent and the first mixture while heating.
    A step of obtaining a solid substance by cooling the second mixture, and
    The step of crushing the solid matter and
    To prepare
    How to make the compound.
PCT/JP2019/018020 2019-04-26 2019-04-26 Compound, molded article, hardened product of compound, and method for manufacturing compound WO2020217476A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2019/018020 WO2020217476A1 (en) 2019-04-26 2019-04-26 Compound, molded article, hardened product of compound, and method for manufacturing compound
CN201980095572.3A CN113728403A (en) 2019-04-26 2019-04-26 Composite, molded article, cured product of composite, and method for producing composite
KR1020247000548A KR20240008976A (en) 2019-04-26 2019-04-26 Compound, molded article, hardened product of compound, and method for manufacturing compound
JP2021515707A JP7231017B2 (en) 2019-04-26 2019-04-26 Compound manufacturing method
KR1020217029396A KR102623788B1 (en) 2019-04-26 2019-04-26 Compound, molded body, cured product of compound, and method of manufacturing compound
JP2023020143A JP2023054087A (en) 2019-04-26 2023-02-13 Compound, molding, and cured product of compound
JP2024015956A JP2024040258A (en) 2019-04-26 2024-02-05 Compounds, molded bodies, and cured products of compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018020 WO2020217476A1 (en) 2019-04-26 2019-04-26 Compound, molded article, hardened product of compound, and method for manufacturing compound

Publications (1)

Publication Number Publication Date
WO2020217476A1 true WO2020217476A1 (en) 2020-10-29

Family

ID=72940875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018020 WO2020217476A1 (en) 2019-04-26 2019-04-26 Compound, molded article, hardened product of compound, and method for manufacturing compound

Country Status (4)

Country Link
JP (3) JP7231017B2 (en)
KR (2) KR102623788B1 (en)
CN (1) CN113728403A (en)
WO (1) WO2020217476A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040473A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method of manufacturing the same
JP2012049203A (en) * 2010-08-24 2012-03-08 Toyota Central R&D Labs Inc Powder magnetic core, powder for magnetic core and manufacturing method for the same
JP2017188588A (en) * 2016-04-06 2017-10-12 株式会社村田製作所 Coil part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166004A (en) * 2001-11-30 2003-06-13 Kawasaki Steel Corp Iron-base powder and powder magnetic core using the same
JP6159512B2 (en) 2012-07-04 2017-07-05 太陽誘電株式会社 Inductor
JP6848521B2 (en) * 2017-02-24 2021-03-24 セイコーエプソン株式会社 Compound for metal powder injection molding, manufacturing method of sintered body and sintered body
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040473A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method of manufacturing the same
JP2012049203A (en) * 2010-08-24 2012-03-08 Toyota Central R&D Labs Inc Powder magnetic core, powder for magnetic core and manufacturing method for the same
JP2017188588A (en) * 2016-04-06 2017-10-12 株式会社村田製作所 Coil part

Also Published As

Publication number Publication date
JP7231017B2 (en) 2023-03-01
KR102623788B1 (en) 2024-01-11
KR20220003504A (en) 2022-01-10
JP2023054087A (en) 2023-04-13
JPWO2020217476A1 (en) 2020-10-29
KR20240008976A (en) 2024-01-19
CN113728403A (en) 2021-11-30
JP2024040258A (en) 2024-03-25

Similar Documents

Publication Publication Date Title
JP7416124B2 (en) Compounds and tablets
WO2019229960A1 (en) Composition and molded object
JP2022109291A (en) compound powder
JP7136121B2 (en) compound powder
KR102422919B1 (en) compound and molded body
WO2021241515A1 (en) Compound, molded body and cured product
JP7231017B2 (en) Compound manufacturing method
WO2021112135A1 (en) Compound and molded object
JP2021172685A (en) Compound, molding, and cured product of compound
WO2020246246A1 (en) Compound, molded article, and cured product
WO2021241513A1 (en) Compound, molded object, and cured object
WO2023157139A1 (en) Compound powder,compact, bonded magnet, and dust core
WO2023157138A1 (en) Compound powder,compact, bonded magnet, and dust core
WO2021241521A1 (en) Compound, molded body, and cured product
WO2021153688A1 (en) Compound, molded article, and cured product of compound
WO2022264919A1 (en) Compound, molded object, and cured compound
WO2021153691A1 (en) Compound material, molded body, and cured product of compound material
JP2021120432A (en) Compound, molded body and cured product of compound
JP2021165334A (en) Compound, molding, and cured product of compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925960

Country of ref document: EP

Kind code of ref document: A1