WO2020216306A1 - 一种具有力传感器的触控装置 - Google Patents

一种具有力传感器的触控装置 Download PDF

Info

Publication number
WO2020216306A1
WO2020216306A1 PCT/CN2020/086482 CN2020086482W WO2020216306A1 WO 2020216306 A1 WO2020216306 A1 WO 2020216306A1 CN 2020086482 W CN2020086482 W CN 2020086482W WO 2020216306 A1 WO2020216306 A1 WO 2020216306A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
spacer
force
upper substrate
pressure
Prior art date
Application number
PCT/CN2020/086482
Other languages
English (en)
French (fr)
Inventor
刘汉峰
Original Assignee
精电(河源)显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精电(河源)显示技术有限公司 filed Critical 精电(河源)显示技术有限公司
Publication of WO2020216306A1 publication Critical patent/WO2020216306A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Definitions

  • the present disclosure relates to a touch device, and in particular, the present disclosure relates to a touch device with a force sensing function.
  • the proximity object is sensed through the sensing array and drive array in the traditional touch device, such as sensing the position of the user's finger or stylus on a plane, and sensing the direction perpendicular to the panel through a force sensor Pressure to achieve 3D touch sensing.
  • This can not only sense the position of the user's input, but also sense the intensity, providing an additional dimension for the diversity of input.
  • General force sensors include different types, such as capacitive, inductive, resistive, magnetic, optical, and acoustic force sensors.
  • Most of the existing designs with force sensors take up a lot of space, and need to rely on the deformation of solid components in the process of measuring force, which may cause permanent deformation or even damage to related components during frequent or forced use.
  • the front part of the device needs to be deformed to transmit the force to the force sensor, and the front part of these devices is often not suitable for bending and squeezing, so Long-term use of touch controls will cause adverse effects and even loss of components. Therefore, there is a need to invent a 3D sensing structure that can quickly recover deformation after input, while being smaller in size and having high light transmittance.
  • the sensing layer includes a transparent upper substrate and a transparent lower substrate. There is a gap between the transparent upper substrate and the transparent lower substrate. A plurality of sensing lines and a plurality of driving lines are provided in the gap, one or more force sensors are also provided in the gap, the gap is sealed and contains a transparent fluid, the force sensor is a pressure sensor, and the sensing layer It is set to increase the pressure of the transparent fluid when receiving an external force, and the force sensor generates a signal under pressure.
  • a sealing member is provided between the transparent upper substrate and the transparent lower substrate, and a closed space formed by the transparent upper substrate, the transparent lower substrate and the sealing member contains the transparent fluid.
  • the sensing layer is arranged such that when the transparent upper substrate is pressed, the pressed area of the transparent upper substrate is recessed downward, and the pressed area of the transparent upper substrate is opposite to the transparent upper substrate.
  • the distance of the lower substrate decreases accordingly; when the pressure is withdrawn/eliminated, the distance between the pressed area of the transparent upper substrate and the transparent lower substrate returns to the original value.
  • the sensing layer further includes a plurality of spacers, the upper part of the spacer is connected to the lower surface of the transparent upper substrate, and the lower part of the spacer is connected to the transparent lower substrate.
  • the upper surface of the substrate is connected, and under external pressure, the spacer is compressed in the vertical direction at the same time, until the distance between the compressed area of the transparent upper substrate and the transparent lower substrate decreases due to the external pressure.
  • the resisting force of the transparent fluid and the spacer is greater than the external force, and the spacer will return to its original position and state, so that the compressed area of the transparent upper substrate The distance from the transparent lower substrate is restored to the original value.
  • the spacer is arranged above the force sensor, the lower part is connected with the force sensor, and the upper part is connected with the inner surface of the transparent upper substrate.
  • the spacer includes a first spacer and a second spacer, the first spacer is in the longitudinal direction and does not overlap with the force sensor, the driving line and the sensing line, and the second spacer is disposed at Above the force sensor.
  • the sensing layer is configured to: if the signal generated by the force sensor due to pressure exceeds a preset threshold, it is regarded as an effective force input, and the strength of the effective force input is the same as the signal of the force sensor. Associated.
  • a plurality of spacers define a pressure transmission area, and the external pressure falling in the pressure transmission area makes the signal generated by the force sensor located in the pressure transmission area stronger than that located in the pressure transmission area Force sensors other than those.
  • the sensing line and the driving line are respectively provided on the opposite surface of the transparent upper substrate and the transparent lower substrate, or the sensing line array and the driving line array are provided at the same time.
  • the sensing line array and the driving line array are orthogonal to each other and insulated.
  • Another aspect according to the embodiments of the present disclosure relates to a touch device having the sensing layer, the touch device having a sensing layer, a display panel, a backlight, and a frame.
  • FIG. 1a is a schematic structural diagram of a sensing layer according to an embodiment of the disclosure.
  • FIG. 1b is a schematic diagram of a force applied to a sensing layer according to an embodiment of the disclosure
  • FIG. 2a is a schematic structural diagram of a sensing layer with a force sensor according to another embodiment of the disclosure.
  • Fig. 2b is a schematic diagram of force applied to a sensing layer with a force sensor according to another embodiment of the present disclosure
  • FIG. 3a is a schematic structural diagram of a sensing layer with spacers according to another embodiment of the present disclosure.
  • FIG. 3b is a schematic diagram of force applied to a sensing layer with spacers according to another embodiment of the present disclosure
  • FIGS. 1a and 1b are a top view of the internal structure of the sensing layer in FIGS. 1a and 1b;
  • FIGS. 4b is a top view of the internal structure of the sensing layer in FIGS. 2a and 2b;
  • FIG. 4c is a schematic diagram of the embodiment of the disclosure not being sensed by other areas under force
  • FIG. 4d is a schematic diagram of the embodiment of the disclosure being sensed by other areas but not exceeding the threshold under force
  • FIG. 4e is a schematic diagram of the force point being sensed when the force point of the embodiment of the disclosure is located on a spacer;
  • FIG. 5a is a schematic structural diagram of a sensing layer according to still another embodiment of the present disclosure.
  • Figure 5b is a top view of the internal structure of the sensing layer in Figure 5a;
  • FIG. 6 shows a touch device with the sensing layer according to a disclosed embodiment.
  • the sensing structure can be installed in an electronic device in the form of a sensing layer 20.
  • these electronic devices may also have a cover plate and an outer frame, and some may also include a display screen or other components, depending on the purpose of the electronic device.
  • the sensing layer 20 can realize the touch sensing function of a known touch device, and can be a capacitive sensing layer with a data line array and a scan line array for sensing the position of the user's input command relative to the sensing layer 20.
  • the sensing layer 20 is also provided with a force sensor 80, which can sense the force of the user during touch input, especially the force in the longitudinal direction, and cooperate with the function of position sensing to realize 3D sensing.
  • the sensing layer 20 has a transparent substrate, including a transparent upper substrate 21 and a transparent lower substrate 22, and there is a gap 23 between the transparent upper substrate 21 and the transparent lower substrate 22.
  • the transparent substrate can be made of glass or other suitable transparent materials and has a flat structure.
  • the gap 23 is sealed and contains transparent fluid.
  • the structure of the sensing layer 20 is set to have a high light transmittance, which will not have much influence on the passage of the backlight.
  • the transparent fluid fills the gap 23, and there is a predetermined distance between the transparent upper substrate 21 and the transparent lower substrate 22 when it is not pressed.
  • the materials constituting the transparent upper substrate 21 and the transparent lower substrate 22 are rigid.
  • a suitable sealing member 60 is used to seal the gap 23 between the transparent upper substrate 21 and the transparent lower substrate 22.
  • the sealing member 60 is arranged at the edge position between the transparent upper substrate 21 and the transparent lower substrate 22 to prevent transparency. Fluid flows out.
  • the sealing member 60 is composed of one or more parts.
  • the sealing member 60 is preferably rigid and has a good sealing function.
  • the transparent fluid can be a fluid or a liquid crystal, and is transparent and non-conductive.
  • other available transparent fluids can also be oil or liquid glue.
  • the sensing layer 20 defines a gap 23 through the transparent upper substrate 21, the transparent lower substrate 22 and the sealing member 60, and the transparent fluid fills the gap 23.
  • the sensing layer 20 is also provided with a plurality of sensing lines 71 for a touch area, a plurality of driving lines 72, and a plurality of force sensors 80, and the plurality of force sensors 80 are used to sense external forces applied to the sensing layer 20.
  • the pressure especially the vertical pressure falling on the transparent upper substrate 21 from above.
  • the plurality of force sensors 80 are arranged so as not to overlap the sensing line 71 and the driving line 72 in the vertical direction, which can facilitate wiring and reduce the thickness of the sensing layer 20 in the vertical direction.
  • the presence of the transparent fluid in the gap 23 is beneficial to control the degree of deformation of the transparent upper substrate 21 when pressed, and helps the transparent upper substrate 21 to quickly return to its original shape after the pressure is removed.
  • FIG. 1a shows the structure of the sensing layer 20 according to an embodiment of the present disclosure.
  • the sensing layer 20 includes a transparent upper substrate 21 and a transparent lower substrate 22. There is a gap 23 between the transparent upper substrate 21 and the transparent lower substrate 22.
  • the connecting member is the sealing member 60.
  • Figure 1a shows that the sealing member 60 is arranged on the edge portion between the transparent upper substrate 21 and the transparent lower substrate 22, that is, around the edges of the transparent upper substrate 21 and the transparent lower substrate 22, and is opposed to the two substrates 21, 22. The edges of the inner surface are set.
  • the sealing member 60 is tightly connected to the transparent upper substrate 21 and the transparent lower substrate 22, so that the gap 23 is basically isolated from the outside.
  • the seal 60 in Fig. 1a is an entire part, but a seal having a plurality of tightly connected parts can also be used.
  • the sensing layer 20 is also provided with a transparent fluid, and the transparent fluid exists between the transparent upper substrate 21 and the transparent lower substrate 22, that is, in the gap 23.
  • the transparent upper substrate 21 and the transparent lower substrate 22 plus the sealing member 60 contain the transparent fluid so that it will not be lost to the outside.
  • a plurality of sensing lines 71 and a plurality of driving lines 72 are also provided in the gap.
  • the sensing line 71 in the figure is provided on the surface of the transparent upper substrate 21 opposite to the transparent lower substrate 22 (that is, on the inner surface of the transparent upper substrate 21), and the driving line 72 is provided on the transparent lower substrate 22 opposite to the transparent upper substrate 21.
  • the sensing lines 71 are parallel to each other, the driving lines 72 are parallel to each other, and the sensing lines 71 and the driving lines 72 are orthogonal to each other.
  • the present disclosure is not limited to only this wiring method.
  • the sensing layer 20 is also provided with a plurality of force sensors 80 arranged on the inner surface of the transparent lower substrate 22. Only two force sensors 80 are shown in the figure, but it should be understood that this does not limit the number of force sensors 80, but it is convenient to show the arrangement of force sensors 80. It can be seen that a plurality of force sensors 80 are arranged between the driving lines 72 and are arranged on the same inner surface as the driving lines 72. The plurality of force sensors 80 are provided to be able to detect pressure, particularly pressure from the outside, such as external pressure from a direction above the transparent upper substrate 21.
  • the force sensor 80 may be a pressure sensor, for example, a resistive sensor, a piezoelectric sensor, or other suitable pressure sensors.
  • the pressure sensor includes a sensing element, when the sensing element is deformed or stressed, its resistance, charge and/or other parameters will change, thereby generating a corresponding voltage or current signal. Through the intensity change of the signal, the intensity of the pressure on the sensing element can be calculated.
  • the force sensor 80 may be connected to a processor, and the processor stores pressure data corresponding to changes in signal strength. The corresponding pressure intensity can be derived from the detected signal.
  • the external pressure is transmitted to the transparent upper substrate 21, and the pressure is transmitted from the transparent upper substrate 21 to the force sensor 80 through the transparent fluid. As shown in FIG.
  • the external force transmits the pressure to the transparent upper substrate 21, for example, the external force comes from the user's finger or other touch input tools.
  • the pressed area of the transparent upper substrate 21 is recessed downwards, and the distance between the pressed area of the transparent upper substrate 21 and the transparent lower substrate 22 decreases accordingly.
  • the force sensor 80 and the transparent The distance between the upper substrate 21 is D1, and the distance between the pressure area of the transparent upper substrate 21 and the force sensor 80 is reduced to D2 after being pressed.
  • the pressure rises and applies pressure to the force sensor 80.
  • the force sensor 80 generates a signal under the pressure.
  • the force sensor 90 is connected to the processor.
  • the processor calculates the strength of the pressure received by the signal generated by the force sensor 80.
  • the force sensor 80 needs to be calibrated or the signal generated by it needs to be converted and processed, because the transparent fluid can be fluid, liquid crystal or other applicable materials, and the interaction between the transparent fluid and other components is dynamic under the deformation caused by pressure.
  • the external pressure and the signal of the force sensor 80 are not necessarily linear. Therefore, it is necessary to determine the relationship between the pressure and the signal of the force sensor 80 before use, so that the signal of the force sensor 80 is converted into a corresponding pressure value by the processor.
  • the pressure value may refer to the pressure value applied on the transparent upper substrate 21.
  • the transparent fluid fills the gap 23 under normal conditions (ie, when it is not under pressure), which means that there is substantially no space in the gap 23.
  • the pressed area of the transparent upper substrate 21 is recessed downward, the distance between the pressed area of the transparent upper substrate 21 and the transparent lower substrate 22 is reduced, and the external force passes through the transparent upper substrate 21
  • the pressure is transferred to the force sensor through the transparent fluid, especially the transparent fluid under the pressure area transmits part of the pressure to the force sensor below/nearby.
  • the sensing layer 20 further includes a plurality of spacers 90.
  • the spacer 90 may be made of a material that can be deformed under pressure.
  • a plurality of spacers 90 are arranged between the sensing lines 71 and between the driving lines 72, and can be distributed in different patterns or evenly distributed.
  • the upper part of the spacer 90 is connected with the lower surface of the transparent upper substrate 21, and the lower part of the spacer 90 is connected with the upper surface of the transparent lower substrate 22.
  • the plurality of spacers 90 do not overlap the force sensor, the sensing line 71 and the driving line 72 in the vertical direction.
  • the spacer 90 has a cylindrical shape, and its cross-section in the vertical direction is a figure, a square, or other shapes.
  • Fig. 2a mainly shows the cross sections of the transparent upper substrate 21, the transparent lower substrate 22, the driving line 72, the force sensor 80 and the sealing member 60, and the cross sections are located on the same plane.
  • the figure also shows the sensing line 71 and the spacer 90, but they are not located on the same plane in the above-mentioned section, that is, according to the figure shown in the figure, the sensing line 71 is located behind the section, and the spacer 90 is located in the sensing line. Behind the line 71, the relative positions of the components can be clearly shown in the top view of FIG. 4a.
  • the transparent upper substrate 21 moves downward, and the plurality of spacers 90 are compressed under pressure.
  • the spacer 90 may define the distance between the transparent upper substrate 21 and the transparent lower substrate 22 together with the sealing member 60 in a normal state (when no pressure is applied). Under pressure, the spacer 90 is compressed in the vertical direction, and the seal 60 is not substantially deformed. Under a certain pressure, the spacer 90 is compressed and deformed until the distance between the transparent upper substrate 21 and the transparent lower substrate 22 is minimized. At this time, the force of the transparent fluid and the spacer 90 against the external force is balanced with the external force.
  • the transparent fluid and the spacer 90 will return to its original position and state, so that the distance between the transparent upper substrate 21 and the transparent lower substrate 22 is restored to the original value.
  • the transparent fluid and the spacer 90 will respectively apply force to the transparent upper substrate 21 and the transparent lower substrate 22 in the deformed state, and since the sensing layer 20 is basically fixed (especially the transparent lower substrate 22 is fixed relative to the transparent upper substrate 21). ), the transparent fluid and the spacer 90 will oppose the pressure source, and only return the transparent upper substrate 21 to the original position without moving the transparent lower substrate 22.
  • the response of the sensing layer 20 to external pressure can be adjusted by setting the density and material of the spacer 90. For example, when the density of the spacers 90 arranged on the substrate is higher, the stronger external pressure is required to make the sensing layer 20 deform by the same magnitude.
  • Figure 4a is viewed from the top of the sensing layer 20, showing the internal structure of the sensing layer 20 in the embodiment of Figures 1a and 1b.
  • the figure shows the arrangement of the force sensor 80 as an example.
  • a plurality of force sensors are arranged between the driving lines and between the sensing lines, and each force sensor is separated by two sensing lines or two driving lines, so that every four force sensors form a square arrangement.
  • the force sensor 80 at the edge of the sensing layer is arranged at a position separated from the edge by two driving lines or two sensing lines.
  • the spacer 90 may also be arranged in other suitable ways. In fact, it is only convenient to correspond to the schematic diagram of FIG. 1a to provide one force sensor 80 every two sensing lines or driving lines.
  • the number of corresponding sensing lines or driving lines between the force sensors 80 may be other numbers, and in practice there is a tendency to have a larger number, for example, every 6 or more than 6 lines.
  • the sensing line and the driving line separated by the force sensor 80 may also be different.
  • one force sensor 80 is provided for every 6 sensing lines and one force sensor 80 is provided for every two driving lines.
  • Figure 4b is viewed from the top of the sensing layer 20, showing the internal structure of the sensing layer 20 in the embodiment of Figures 2a and 2b.
  • Fig. 4a is the same as Fig. 4b in the arrangement of the force sensor 80, in addition, the arrangement of the spacer 90 is also shown as an example in the figure. It can be seen that a spacer 90 is arranged between every two driving lines and every two sensing lines, and the position of the spacer 90 and the position of the force sensor 80 alternate with each other, so that every four spacers surround a sensor 80 .
  • Fig. 3a shows another embodiment of the present disclosure.
  • Both the force sensor 80 and the spacer 90 are provided with the embodiment of Figs. 2a and 2b, but the arrangement of the spacer 90 is different.
  • the spacer 90 is arranged above the force sensor 80, the lower part of which is connected to the force sensor 80, and the upper part is connected to the inner surface of the transparent upper substrate 21.
  • the force sensor 80 and the spacer 90 overlap in the vertical direction, and are arranged between the driving lines and the sensing lines together and do not overlap with the driving lines and the sensing lines. Under pressure, as shown in FIG.
  • the transparent upper substrate 21 is pushed downward, and the plurality of spacers 90 are simultaneously compressed in the vertical direction until the distance between the transparent upper substrate 21 and the transparent lower substrate 22 is reduced to The smallest.
  • the spacer 90 When the spacer 90 is compressed, it transmits pressure to the force sensor 80, so that the force sensor 80 transmits a corresponding voltage/current signal due to the sensed pressure.
  • the transparent fluid also applies pressure to the force sensor 80 at the same time. At this time, the force of the transparent fluid and the spacer 90 against the external force is balanced with the external force.
  • the resisting force of the transparent fluid and the spacer 90 is greater than the external force, and the sealing member 60 and the spacer 90 will return to their original positions and states, so that the transparent upper substrate 21 returns to its original position.
  • the distance between 21 and the transparent lower substrate 22 is restored to its original value.
  • the pressure applied by the spacer 90 to the force sensor 80 is greater than the pressure applied by the transparent fluid to the force sensor 80. It is even possible to arrange the sensing element of the force sensor 80 directly below the spacer 90 to directly sense the transmission from the spacer 90. Coming pressure.
  • the response of the sensing layer 20 to external pressure can be adjusted by setting the density and material of the spacer 90. For example, when the density of the spacers 90 arranged on the substrate is higher, a higher external pressure is required to make the sensing layer 20 deform by the same magnitude.
  • the force sensor when the force sensor is set to reach a pressure that exceeds a preset threshold, it will be regarded as a valid force input, and the pressure of the force input will be recorded.
  • the pressure is calculated by the voltage signal generated by the force sensor due to the pressure come out.
  • the pressure-receiving area refers to the area that receives force when viewed from above, and the pressure-receiving area may refer to the area recessed downward on the transparent upper substrate.
  • multiple spacers 90 can be arranged to limit the pressure transmission area, so that the force sensor located in the pressure transmission area can sense the pressure during force touch input, so as to obtain more reliability. ⁇ sensing results. Restricting the pressure area does not mean that the force sensor in the area outside the pressure transmission area will not sense pressure, but the sensed intensity is lower than that of the force sensor in the pressure area. In addition, the pressure area is limited. Conducive to the realization of multi-point force sensing. Referring to FIG.
  • every four spacers 90 surround a force sensor 80.
  • the transparent fluid and the plurality of spacers 90 are compressed.
  • the pressure falls on the area A.
  • the area A is defined by the four spacers 90 and becomes a pressure transmission area, and the position X is the point of force.
  • the spacer 90 may be made of a deformable material with relatively high rigidity.
  • the sensing layer 20 When pressure is applied to the area A, the sensing layer 20 is not deformed as a whole, and the pressed area in the area A of the transparent upper substrate 21 is recessed under the pressure, and the pressure is applied to the part of the transparent fluid located in the area A, and then transmitted Into the force sensor 80 below.
  • two pressures are respectively applied to the position X of the area A and the position Y of the area B at the same time.
  • the force sensor 80a in area A and the force sensor 80b in area B respectively sense the force applied to position X and position Y.
  • the spacer 90 in this design is made of a relatively rigid deformable material, it is applied to the area
  • the pressures of A and B are mainly borne by the first spacer 90a and the second 90b which define the regions, so that the pressure will not be sensed by other force sensors located outside of the A and B areas, which can be passed as the force sensor 80
  • the signal is realized by pre-setting the threshold value, that is, the voltage/current signal generated by the force sensor 80 due to the force exceeds a certain value before it will be regarded as a valid pressure input by the processor.
  • the nearby force sensor 80 will still generate a signal due to pressure input from the nearby area.
  • a pressure is applied to the position X in the area A, and the force sensor 80c in the area C is due to This pressure generates a signal, but since the force sensor 80c in these areas C is not pressured from the front, the signal will not exceed the threshold, while the force sensor 80a located in the area A is pressured from the front, so the signal generated exceeds the threshold. It constitutes effective sensing.
  • the pressure applied in the area A is large, the force of the force sensor 80a in the area A or the force sensor 80c in the area C constitutes an effective sensing because the force exceeds the threshold.
  • the force sensor 80a in A has a higher pressure value, and the processor can be set to distinguish the correct pressure position and pressure value.
  • the force sensor 80a signal in area A is regarded as the main value, and it has a higher value when included in the calculation.
  • High weight, and the force sensor 80c in area C is listed as a reference value, and it has a lower weight when included in the calculation.
  • the distance between the position of the force sensor and the pressure position can also be used as a parameter for calculating the weight.
  • the advantage of considering the force sensor 80c data in the area C is that the pressure position can be known more accurately through these data, and the error of the signal sensed by the force sensor 80a in the area A can be compensated.
  • the processor can also provide a reference for the pressure position based on the touch function of the sensing layer itself.
  • the pressure falls in the area D, and the position Y is the stress point, which is located directly above the second spacer 90d.
  • the force sensor 80b in the nearby area B receives a greater pressure than the force sensor 80c in the other area C.
  • the force received by the force sensor 80b in the area B exceeds the threshold, an effective force input signal is generated, and the intensity of the pressure is calculated according to the magnitude of the signal generated by the force sensor 80b in the area B. Since the pressure position Y is farther from the nearest force sensor than the pressure position X in Fig. 4d and the second spacer 90d is deformed but has certain rigidity, the pressure of the force sensor 80b falling in the area B is at the same strength from the outside The force is smaller than the force sensor 80a in the area A of FIG. 4d. In order to enable the preset effective force input to be effectively sensed, one method is to reduce the effective force input intensity threshold to the force input intensity in the case of FIG. 4c and FIG. 4d.
  • Another method is to not only refer to the signal strength of the independent force sensor when sensing the force input, but also consider the signal strength of multiple sensors, preferably the signal strength of multiple force sensors near the force position.
  • the signal intensity of the force sensor 80b in the four regions B near the pressure receiving position Y For example, if the signal strength of the force sensor 80b in a single area B has exceeded the threshold, the processor will regard the input as a valid pressure input. If the signal strength of each of the force sensors 80b in the area B does not exceed the threshold, the signal strength of the force sensors 80b in all the area B and other relevant parameters are calculated to obtain the overall signal value, and then consider the overall Whether the signal value of exceeds the threshold to determine whether the pressure input is a valid input.
  • the higher the weight of, the relative position distance information can be obtained through the position sensing function of the sensing line 71 and the driving line 72.
  • the spacer 90a blocks a part of the pressure from extending to the vicinity of the area b, so that the distance between the transparent upper substrate 21 and the transparent lower substrate 22 at these nearby positions varies less than when there is no spacer 90a.
  • the force sensor 80c in the surrounding area C senses a valid signal.
  • FIG. 5a shows another embodiment of the present disclosure.
  • the sensing layer 20 includes a plurality of force sensors 80 and a plurality of spacers 90.
  • the spacer 90 includes a spacer 90a and a spacer 90d.
  • the spacers 90 are arranged between the driving lines 72 and the sensing lines 71, and can be distributed in different patterns or evenly distributed.
  • the spacer 90a does not overlap with the force sensor 80, the driving line 72 and the sensing line 71 in the vertical direction.
  • the upper part of the spacer 90a is connected with the lower surface of the transparent upper substrate 21, and the lower part of the spacer 90a is connected with the upper surface of the transparent lower substrate 22.
  • the second spacer 90 d is arranged above the force sensor 80, the lower part is connected with the force sensor 80, and the upper part is connected with the inner surface of the transparent upper substrate 21.
  • the force sensor 80 and the second spacer 90d overlap in the vertical direction, and are arranged between the driving lines 72 and the sensing lines 71 together, and do not overlap with the driving lines 72 and the sensing lines 71.
  • the pressure falling at position X also exerts pressure on spacer one 90a surrounding area A, so that the pressure is basically not directly transmitted to spacer one 90a, and other spacers 90 other than spacer two 90d, therefore fall at position X Basically, the pressure of is not affected by force sensors other than the force sensor 80a in the area A. Even if it is influential, the pressure value and pressure position obtained can be adjusted by the above threshold or weight.
  • the transparent fluid not only enables the sensing layer to have better optical performance, reduces reflection and enhances transmission, but also provides users with a unique texture experience during touch input, which helps the sensing layer to quickly restore its original shape during touch input. Realize fast repeated input, reduce the loss of related parts in use.
  • This design cleverly integrates position touch and force sensing in the sensing layer, effectively reducing the space occupied by the device, and using the wiring method of this design to realize the related concepts.
  • the sensing layer of the present disclosure can also provide a component with a force sensing function directly above the electronic device, instead of placing the force sensing device on the bottom or periphery of the electronic device as in many prior art.
  • the sensing layer can be applied to a touch device (touch screen).
  • FIG. 6 shows a touch device 100 having the sensing layer.
  • the touch device 100 includes a sensing layer 20, a display panel 30, and a backlight 40.
  • the sensing layer 20 is arranged in front of the display panel 30, and the backlight source 40 is arranged behind the display panel 30.
  • the sensing layer can also be provided in other positions, for example, between the display panel 30 and the backlight source 40 or behind the backlight source 40.
  • the touch device 100 may further include a frame 50, which is provided on the periphery of the touch device 100 and surrounds the touch device 100 in the rear, top, bottom, left, and right directions without extending to the The front of the touch device 100, so that the user can operate the touch screen from the front and let the light of the light display screen pass through.
  • a frame 50 which is provided on the periphery of the touch device 100 and surrounds the touch device 100 in the rear, top, bottom, left, and right directions without extending to the The front of the touch device 100, so that the user can operate the touch screen from the front and let the light of the light display screen pass through.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)

Abstract

一种具有力传感器的触控装置,包括透明上基板和透明下基板,所述透明上基板与所述透明下基板之间存在空隙,在所述空隙中设有感应线和驱动线,还设有一个或多个压力传感器并容纳有透明流体,本公开通过新的触控结构设计和布线方法,实现位置触控和力传感功能。透明流体可减小反射,增强透射,为用户提供独有的质感体验,有利于感应层迅速恢复原状,实现快速重复输入,减小有关部件在使用中的损耗。本公开有效减小装置所占空间,感应层还可以将带有力传感功能部件设置在电子装置的正上方,避免了力传感装置设于电子装置底部时在力输入进程中需要位于力传感装置上方的其他部件形变来将压力传递到力传感装置的缺点。

Description

一种具有力传感器的触控装置
相关申请的交叉引用
本申请要求申请日为2019年4月23日,申请号为201910326592.9的中国专利申请的优先权,其全部内容在此通过引用被并入到本申请。
技术领域
本公开涉及一种触控装置,具体来说,本公开涉及一种具有力传感功能的触控装置。
背景技术
为了实现3D触控,透过传统触控装置中的感应阵列和驱动阵列感测接近物件,例如感测用户手指或触控笔在平面上的位置,并通过力传感器感测垂直于面板的方向的压力,从而实现3D触控感测。这不仅能感应用户输入的位置,还能感应力度,为输入的多样性提供多一个维度。
现有许多具有力感应功能的触控屏或笔记本电脑上的触控板,都设有力传感器来感测触控的输入命令的力度。这些力传感器通常设于装置的底部或外围。用户通过用手指按压进行输入,传感器会感测装置的变形或应力的改变,从而测量出力度大小。这些力度信息可用于不同方面,例如提升用户的输入体验,在同一介面位置如果以不同的力度输入可得出不同的反馈等。
一般力传感器包括不同类型,比如电容式、电感式、电阻式、磁性、光学、声波等形式的力传感器。现有具有力传感器的设计大多占用较多空间,而且在测量力的过程中需要靠固态部件的形变来实现,这可能会使有关部件在频密或用力的使用中永久变形,甚至损坏。一些现有技术中,比如当力传感器安装于接近装置的底部或中间部分,要使力传递到力传感器需要装置前部分产生形变,而这些装置前部分的部件往往不适合受弯曲挤压,所以长期的触控使用会给部件带来不良影响甚至损耗。因此,需要发明一种在输入后使变形快速恢复,同时体积更小,且具高透光度的3D感应结构。
发明概述
技术问题
问题的解决方案
技术解决方案
本公开实施例的一方面涉及一种触控用的感应层,所述感应层包括透明上基板和透明下基板,所述透明上基板与所述透明下基板之间存在空隙,在所述空隙中设有多条感应线和多条驱动线,在所述空隙中还设有一个或多个力传感器,所述空隙密封,容纳有透明流体,所述力传感器为压力传感器,所述感应层设置为受外力时透明流体压力上升,所述力传感器受压产生信号。
根据本公开的一些实施例,所述透明上基板与透明下基板之间设有密封件,所述透明上基板、所述透明下基板及所述密封件形成的密闭空间容纳所述透明流体。
根据本公开的一些实施例,所述感应层设置成在所述透明上基板受压下,所述透明上基板的受压区域向下凹陷,所述透明上基板的受压区域与所述透明下基板的距离随而减小;当压力抽回/消除时,所述透明上基板的受压区域与所述透明下基板之间的距离恢复原值。
根据本公开的一些实施例,所述感应层还包括多个间隔件,所述间隔件的上部分与所述透明上基板的下表面连接,而所述间隔件的下部分与所述透明下基板的上表面连接,并在受外来压力的情况下,所述间隔件同时沿垂直方向压缩,直到所述透明上基板的受压区域与所述透明下基板之间的距离因外来压力下减至最小;随后当外来压力抽回/消除时,所述透明流体和所述间隔件的反抗力大于外来力,所述间隔件会恢复原来位置和状态,使得所述透明上基板的受压区域与所述透明下基板之间的距离恢复原值。
根据本公开的一些实施例,所述间隔件设置于力传感器的上方,其下部与力传感器连接,上部与透明上基板的内表面连接。
根据本公开的一些实施例,所述间隔件包括第一间隔件和第二间隔件,第一间隔件在纵向方向上,不与力传感器、驱动线和感应线重叠,第二间隔件设置于力传感器的上方。
根据本公开的一些实施例,所述感应层设置为:若所述力传感器因受压产生的 信号超过预设阈值,则视为有效力输入,有效力输入的强度与所述力传感器的信号相关联。
根据本公开的一些实施例,多个间隔件限定传压区域,落在所述传压区域中的外来压力使位于所述传压区域中的力传感器产生的信号强于位于所述传压区域以外的其他力传感器。
根据本公开的一些实施例,所述感应线和所述驱动线分别设于所述透明上基板与所述透明下基板相对的表面上,或者所述感应线阵列和所述驱动线阵列同时设于所述上基板或透明下基板相对的表面中的一个,并且所述感应线阵列和所述驱动线阵列互相正交并绝缘。
根据本公开实施例的另一方面涉及一种具有所述感应层的触控装置,所述触控装置具有感应层、显示面板、背光源和框架。
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1a为本公开的一种实施例的感应层的结构示意图;
图1b为本公开的一种实施例的感应层的受力示意图;
图2a为本公开的另一种实施例的具有力传感器的感应层的结构示意图;
图2b为本公开的另一种实施例的具有力传感器的感应层的受力示意图;
图3a为本公开的又一种实施例的具有间隔件的感应层的结构示意图;
图3b为本公开的又一种实施例的具有间隔件的感应层的受力示意图;
图4a为图1a和图1b中的感应层的内部结构俯视图;
图4b为图2a和图2b中的感应层的内部结构俯视图;
图4c为本公开实施例的受力下不被其他区域感应的示意图;
图4d为本公开实施例的受力下被其他区域感应但不超过阈值的示意图;
图4e为本公开实施例的受力点位于一个间隔件上时被感应的示意图;
图5a为本公开的再一种实施例的感应层的结构示意图;
图5b为图5a中感应层的内部结构俯视图;
图6示出了公开实施例的一种具有所述感应层的触控装置。
其中,在附图中,相同的标号表示相同/相似的元件:
20、感应层;21、透明上基板;22、透明下基板;23、空隙;30、显示面板;40、背光源;50、框架;60、密封件;71、感应线;72、驱动线;80、力传感器;80a、区域A中力传感器;80b、区域B中的力传感器;80c、区域C中的力传感器;90、间隔件;90a、间隔件一;90d、间隔件二;100、触控装置。
发明实施例
本发明的实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例的一方面所涉及的是一种具有力传感器80的感应结构,所述感应结构可安装在电子装置中,呈感应层20的形式。这些电子装置除了感应层20,还可有盖板和外框,有的还可包括显示屏或其他部件,取决于电子装置的用途。感应层20可实现已知触控装置的触控感应功能,可以是电容式感应层,设有数据线阵列和扫描线阵列,用于感测用户相对于感应层20作出的输入指令的位置。所述感应层20还设有力传感器80,可以感测到用户在触控输入时的力度,特别是纵向上的力度,配合位置感测的功能,可以实现3D感测。
在本公开的一些实施例中,感应层20具有透明基板,包括透明上基板21和透明下基板22,透明上基板21与透明下基板22之间存在空隙23。透明基板可由玻璃或其他适合的透明物料制成,为扁平的结构。所述空隙23为密封设置,容纳透明流体。感应层20的结构设置成具有高透光率,不会对背光的通过有太大影响。本设计中,透明流体填满空隙23,在未受压时透明上基板21与透明下基板22之间存在一定预设距离。在本公开实施例的一些情况下,构成透明上基板21和 透明下基板22的材料是刚性的,在另一些情况下,例如当基板的厚度较薄,在按压下会有一定程度的弯曲变形,所用物料例如玻璃在按压情况下有一定的复原能力,在这情况下所述基板也展示了一定的柔性特质,这柔性可基于基板材料本身,也可是基于基板的厚度。另外,使用合适的密封件60对透明上基板21与透明下基板22之间的空隙23进行密封,例如将密封件60设置在透明上基板21与透明下基板22之间的边缘位置,防止透明流体流出。在本公开的多个实施例中,密封件60由一件或多件部件构成,这些部件可以是刚性的或具有弹性的,或者一部分部件是刚性的,另一部分部件是弹性的(即至少一部分由弹性材料制成),在受压情况下变形,并能在压力移除后还回原状。在透明上基板21与透明下基板22之间的距离固定的情况下,密封件60优选为刚性的,且具有良好的密封功能。透明流体可以是流体或液晶体,并且是透光且非导电的,除此之外其他可用的透明流体也可以是油或液态胶水。
在一种实施例中,所述感应层20通过透明上基板21、透明下基板22和密封件60限定一个空隙23,透明流体填满所述空隙23。所述感应层20还设有用于触控区域的多条感应线71、多条驱动线72,以及多个力传感器80,所述多个力传感器80用于感测施加到感应层20的外来压力,特别是从上方落于透明上基板21的垂直压力。所述多个力传感器80设置成在垂直方向上不与感应线71和驱动线72重叠,可使布线方便并且减小感应层20在垂直方向上的厚度。所述空隙23存在透明流体,有利于控制按压时透明上基板21的变形程度,并且有助透明上基板21在压力消除后快速恢复原状。
图1a示出了本公开的一种实施例的感应层20的结构,感应层20包括透明上基板21、透明下基板22。透明上基板21与透明下基板22之间存在空隙23。透明上基板21与透明下基板22之间存在连接部件,连接部件分别连接透明上基板21和透明下基板22,可由一个或多个部件组成。在本实施例中,连接部件为封密件60。图1a中示出了封密件60设置在透明上基板21与透明下基板22之间的边缘部分,即围绕着透明上基板21和透明下基板22的边缘,靠着两块基板21、22相对的内表面的边缘设置。封密件60紧密连接于透明上基板21和透明下基板22,使空隙23基本实现与外部隔绝。图1a中的密封件60是一整个部件,但也可以采用具有多 个紧密连接部件的密封件。感应层20还设有透明流体,所述透明流体存在于透明上基板21与透明下基板22之间,即存在于空隙23中。透明上基板21和透明下基板22加上密封件60容纳透明流体,使其不会对外流失。
在空隙中还设有多条感应线71和多条驱动线72(即感应线阵列和驱动线阵列)。图中的感应线71设于透明上基板21相对于透明下基板22的表面上(即透明上基板21的内表面上),并且驱动线72设于透明下基板22相对于透明上基板21的表面上(即透明下基板22的内表面上)。多条感应线71之间彼此平行,多条驱动线72之间彼此平行,感应线71与驱动线72相互正交。但本公开不限于只有这种布线方法。感应层20还设有多个力传感器80,设于透明下基板22的内表面上。图中只示出了两个力传感器80,但应该理解的是这并不是限定力传感器80的数量,而是方便展示力传感器80的排列布置。可见多个力传感器80布置在驱动线72之间,与驱动线72安置在同一内表面上。多个力传感器80被设置成能够检测压力,特别是检测来自外部的压力,例如从透明上基板21上面的方向而来的外部压力。
力传感器80可以是压力传感器,例如可以是电阻式传感器、压电式传感器,或其他适合的压力传感器。压力传感器包括传感元件,当所述传感元件受压时会变形或受应力,其电阻、电荷和/或其他参数会发生变化,从而产生相应的电压或电流信号。通过信号的强度变化,可计算出传感元件所受压力的强度。力传感器80可连接于处理器,处理器存储了与信号强度变化相应的压力数据。通过所检测的信号可得出相应的压力强度。详细地说,外部压力传递到透明上基板21上,而压力从透明上基板21透过透明流体传递到力传感器80。如图1b所示,外力将压力传递到透明上基板21,比如外力来自用户的手指或其他触控输入工具。在压力P作用下,透明上基板21的受压区域向下凹陷,透明上基板21的受压区域与透明下基板22的距离随之减小,例如:在未受压时力传感器80与透明上基板21之间的距离为D1,在受压后透明上基板21的受压区域的与力传感器80之间的距离减小为D2。透明流体受压后压力上升,向力传感器80施压,力传感器80在压力下产生信号,力传感器90连接于处理器,处理器通过力传感器80产生的信号计算出得出所受压力强度。这种情况下,力传感器80需要校准或者其产生的信号需要经转换处理,因为透明流体可以是流体、液晶体或其他适用物质, 在压力导致的变形作用透明流体与其他部件的互动是动态的,加上所使用力传感器80本身的特性,外来压力与力传感器80的信号不必然是线性关系。因此需要在使用前确定压力与力传感器80信号的关系,使得通过处理器使力传感器80的信号转换为相应的压力值。该压力值可以是指施加在透明上基板21上的压力值。优选地,在常态下(即未受压的情况下),透明流体填满空隙23,这表示在空隙23基本上没有空间。在当外力施加到透明上基板上,透明上基板21的受压区域向下凹陷,透明上基板21的受压区域与透明下基板22之间的距离减小,而外来力通过透明上基板21施压于透明流体,其压力转而经透明流体传递到力传感器,特别是受压区域下方的透明流体将部分压力传递到下方/附近的力传感器。
此外,本公开的另一种实施例中,如图2a所示,感应层20还包括多个间隔件90。间隔件90可由能在压力下变形的材料制成。多个间隔件90设置在感应线71之间及驱动线72之间,可以以不同图案分布,也可以平均分布。间隔件90的上部分与透明上基板21的下表面连接,而间隔件90的下部分与透明下基板22的上表面连接。多个间隔件90在垂直方向上,不与力传感器、感应线71和驱动线72重叠。间隔件90呈柱形,其在垂直方向上的横截面呈图形、正方形或其他形状。图2a中主要示出了透明上基板21、透明下基板22、驱动线72、力传感器80和密封件60的截面,所述截面位于同一平面。而图中也示出了感应线71和间隔件90,但两者于上述截面不是位于同一平面,即根据图中所示的感应线71位于所述截面后方,而间隔件90位于所述感应线71后方,各部件的相对位置在图4a的俯视图可清楚示出。
如图2b所示,在压力下,透明上基板21向下移,多个间隔件90在压力下被压缩。间隔件90可在常态下(未施加压力时)与密封件60一同限定透明上基板21与透明下基板22之间的距离。在受压的情况下,间隔件90沿垂直方向压缩,而密封件60基本上不变形。在一定压力下,间隔件90压缩变形直到透明上基板21与透明下基板22之间的距离减至最小,此时,透明流体和间隔件90的对抗外来力的力与外来力达到平衡。随后,当外来压力抽回/消除时,透明流体和间隔件90的反抗力大于外来力,间隔件90会恢复原来位置和状态,使得透明上基板21与透明下基板22之间的距离恢复原值。透明流体和间隔件90在变形状态下会分别向透明 上基板21和透明下基板22施力,而由于感应层20基本上是固定的(特别是透明下基板22相对于透明上基板21是固定的),透明流体和间隔件90会对抗压力源,只让透明上基板21返回原本位置,而不会移动透明下基板22。因此在外来压力消失时,间隔件90以及透明流体会将透明上基板21推回原本位置。可通过设置间隔件90的密度和材料等来调节感应层20对外来压力的反应。例如当间隔件90在基板上布置的密度越高,则需要越强的外来压力才能使感应层20得到相同幅度的变形。
图4a从感应层20顶部观察,示出了图1a和图1b的实施例中的感应层20的内部结构。图中作为例子示出了力传感器80的布置。在驱动线之间与感应线之间设置有多个力传感器,其中各个力传感器之间相隔两条感应线或相隔两条驱动线,使每四个力传感器形成呈正方形的布置。位于感应层边缘的力传感器80设在与边缘相隔两条驱动线或两条感应线的位置。还可以以其他合适方式布置间隔件90。事实上,以每隔两条感应线或驱动线设置一个力传感器80只是方便对应图1a的示意图。应理解的是,在实际操作中,力传感器80之间相应的感应线或驱动线可以是其他数目,在实际中倾向于更多数量,例如是每隔6条或6条以上。力传感器80相隔的感应线和驱动线也可以是不一样的,例如每相隔6条感应线设置一个力传感器80以及每相隔两条驱动线设置一个力传感器80。图4b从感应层20顶部观察,示出了图2a和图2b的实施例中的感应层20的内部结构。图4a与图4b相同的是力传感器80的布置方式,此外图中作为例子还示出了间隔件90的布置。可见图中在每隔两条驱动线和每隔两条感应线之间设置一个间隔件90,且间隔件90的位置与力传感器80的位置相互交替,使得每四个间隔件包围一个传感器80。
图3a示出了本公开的另一个实施例,与图2a和图2b的实施例都设有力传感器80和间隔件90,但间隔件90的设置方式不一样。从图中可见,间隔件90设置于力传感器80的上方,其下部与力传感器80连接,上部与透明上基板21的内表面连接。这样,力传感器80和间隔件90在垂直方向上是重叠的,并一同设置于驱动线之间和感应线之间并不与驱动线和感应线重叠。在压力下,如图3b所示,透明上基板21向下推送,多个间隔件90同时沿垂直方向被压缩,直到在该压力下 透明上基板21与透明下基板22之间的距离减至最小。间隔件90在被压缩时,将压力传递给力传感器80,使力传感器80因感测的压力传递相应电压/电流信号。透明流体也同时对力传感器80施加压力。在这时候,透明流体和间隔件90的对抗外来力的力与外来力达到平衡。随后当外来压力抽回/消除时,透明流体和间隔件90的反抗力大于外来力,密封件60与间隔件90会恢复原来位置和状态,使透明上基板21回到原本位置,透明上基板21与透明下基板22之间的距离恢复原值。间隔件90向力传感器80施加的压力比透明流体向力传感器80的压力大,甚至可以将力传感器80的传感元件直接设置在与间隔件90的下方,以直接感测从间隔件90传来的压力。可通过设置间隔件90的密度和材料等来调节感应层20对外来压力的反应。例如当间隔件90在基板上布置的密度越高,则需要更高的外来压力才能使感应层20得到相同幅度的变形。
一般来说,力传感器设置为达到所受压力超过预设的阈值时,将视为有效的力输入,同时会纪录力输入的压力大小,压力由力传感器因受压所产生的电压信号而计算出来。
受压区域是指从上方看,触接受力的区域,受压区域可以指透明上基板向下凹陷的区域。另外,在设有多个间隔的实施例中,多个间隔件90可设置成限定传压区域,使力触控输入时让位于传压区域中的力传感器感测压力,以获得更可靠的感测结果。限定受压区域并不意味着传压区域以外的区域的力传感器不会感测到压力,只是所感测到的强度比受压区域中的力传感器所感测到的低,另外限定受压区域有利于实现多点的力感测。参考图4b中,每四个间隔件90包围一个力传感器80。在压力下,透明流体及多个间隔件90受压。假设压力是落在透明上基板21上的某个区域,如图4c所示,压力落在区域A中。区域A是由四个间隔件90所限定,成为一个传压区域,位置X为受力点处。在这情况下,压力刚施加时,虽然多个间隔件90都受压,但包围区域A的四个间隔件一90a所受的力较其他间隔件90及密封件60受力大。根据本公开的另一个实施例,间隔件90可由具较高刚性的可变形材料制成。当压力施加在区域A中,感应层20整体没有变形,透明上基板21位置区域A中的受压区域在压力下向下凹陷,压力转而施加到透明流体位于区域A中的部分,再传递到下方的力传感器80中。此种情况下,当 有多个压力在同一时间施加到透明上基板21上,如图4c中所示,两个压力分别在同一时间施加到区域A的位置X和区域B的位置Y。区域A中的力传感器80a和区域B中的力传感器80b分别感测施加到位置X和位置Y的力,由于此种设计中间隔件90为较高刚性的可变形材料制成,施加在区域A和区域B的压力分别主要由限定所述区域的间隔件一90a和间隔件二90b承受,使得压力不会被位于区域A和区域B以外其他力传感器感测到,可以通过为力传感器80的信号预先设定阈值而实现,即为力传感器80因受力而产生的电压/电流信号要超过某个值,才会被处理器视为是有效的压力输入。另一情况下,附近的力传感器80仍会因受到附近区域的压力输入而产生讯号,例如,图4d中,一个压力施加在区域A中的位置X,位与区域C的力传感器80c都因该压力而产生信号,但由于这些区域C中的力传感器80c不是正面受压,所以信号不会超过阈值,而位于区域A中的力传感器80a则正面受压,因此其产生的信号超过阈值,构成有效感测。又在另一个实施例中,当施加在区域A中的压力较大,使得无论区域A中的力传感器80a或区域C中的力传感器80c的力因超过阈值而构成有效感测,由于在区域A中的力传感器80a的压力值较高,处理器可设定成能够分辨正确的压力位置和压力值,将区域A中的力传感器80a信号视为主要值,在列入计算中时占有较高的权重,并将区域C中的力传感器80c列为参考值,在列入计中时占有较低的权重。也可以将力传感器的位置与受压位置的距离作为计算权重的一个参数。考虑区域C中的力传感器80c数据的好处是,可以通过这些数据更准确知道压力的位置,并且能补偿区域A中的力传感器80a感测到的信号的误差。处理器还可以根据感应层本身的触控功能对施压位置提供参考。
在另一种情况下,如图4e所示,压力落在区域D中,位置Y为受力点处,位于间隔件二90d的正上方。在这情况下,压力施加到透明上基板21时,大部分压力由间隔件二90d承担,也有部分压力随着透明上基板21的受压区域向下凹陷施加在间隔件二90d附近的透明流体,转而施加到附近的区域B中的力传感器80b,区域B中的力传感器80b所受压力比其他区域C中的力传感器80c大。在区域B中的力传感器80b所受的力若超过阈值,则产生有效力输入信号,并根据区域B中的力传感器80b产生的信号大小计算压力的强度。由于受压位置Y比图4d中的受压位 置X距离最近的力传感器较远并且间隔件二90d虽然会变形但具有一定刚性,落在区域B中的力传感器80b的压力在同样强度的外来力的情况下会比图4d的区域A中的力传感器80a小。为了让预设的有效力输入能有效被感测,一个方法是将有效力输入强度阈值降低至可以感测到图4c和图4d情况下的力输入强度。另一个方法是,在感测力输入时不单参考独立力传感器的信号强度,同时考虑多个传感器的信号强度,优选地考虑受力位置附近的多个力传感器的信号强度。在图中,考虑受压位置Y附近的4个区域B中的力传感器80b的信号强度。例如,单一区域B中的力传感器80b信号强度已超过阈值的话,处理器会视该输入为有效的压力输入。如果区域B中的力传感器80b中的每一个的信号强度不超过阈值的话,则考虑全部区域B中的力传感器80b的信号强度及其他相关参数计算,得出整体的信号值,然后考虑该整体的信号值是否超过阈值,以决定该压力输入是否为有效输入。有关参数比如受力位置、与区域B中的力传感器80b的距离的说明:距离越近的区域B中的力传感器80b在计算整体的信号变化值时对该区域B中的力传感器80b所给的权重则越高,有关位置距离信息可透过感应线71和驱动线72的位置感测功能而获得。此外,间隔件一90a阻隔了一部分的压力延伸到区域b的附近位置,使这些附近位置的透明上基板21与透明下基板22之间的距离变化较没有间隔件一90a的情况时小,避免周围的区域C中的力传感器80c感测到有效信号。可以在使用前对这些感测进行校准,使得同样强度和向量的压力落在透明上基板的不同位置也能够被感测产生可接受范围的信号。
图5a示出了本公开的另一个实施例,图中可见感应层20包括多个力传感器80及多个间隔件90。间隔件90包括间隔件一90a和间隔件二90d,间隔件90设置在驱动线72之间及感应线71之间,可以分不同图案分布,也可以平均分布。间隔件一90a在垂直方向上,不与力传感器80、驱动线72和感应线71重叠。如图5b所示,间隔件一90a的上部分与透明上基板21的下表面连接,而间隔件一90a的下部分与透明下基板22的上表面连接。间隔件二90d设置于力传感器80的上方,其下部分与力传感器80连接,上部分与透明上基板21的内表面连接。这样,力传感器80和间隔件二90d在垂直方向上是重叠的,并一同设置于驱动线72之间及感应线71之间,不与驱动线72和感应线71重叠。在一个压力落在透明上基板21上的区域A中 的位置X时,透明上基板21的区域A中的受压区域变形,向下凹陷,并对间隔件二90d施加压力,压力经间隔件二90d传递到下方的力传感器80。而落在位置X的压力也对包围区域A的间隔件一90a施加压力,使得压力基本上不会直接传递到间隔件一90a,间隔件二90d以外的其他间隔件90,因此落在位置X的压力基本上不会对区域A中的力传感器80a以外的其他力传感器有影响。即使是有影响,也可以通过如上述的阈值或权重调整所得到的压力值和受压位置。
通过新的触控结构设计和布线方法,实现位置触控和力传感功能。透明流体不仅使感应层具有更佳的光学表现,减小反射,增强透射,另外在触控输入时为用户提供独有的质感体验,在触控输入的过程中有利于感应层迅速恢复原状,实现快速重复输入,减小有关部件在使用中的损耗。本设计巧妙将位置触控和力传感集于感应层中,有效减小装置所占空间,使用此种设计的布线方法,使有关概念得以实现。本公开的感应层还可以将带有力传感功能部件设置在电子装置的正上方,而不像许多现有技术一般将力传感装置设于电子装置的底部或外围。一方面,避免了力传感装置设于电子装置底部时在力输入进程中需要位于力传感装置上方的其他部件形变来将压力传递到力传感装置的缺点,另一方面,避免在力传感装置设于电子装置的外围时占用额外空间。
根据本公开的一些实施例,可将所述感应层应用在触控装置(触控屏)上。图6中示出了一种具有所述感应层的触控装置100,所述触控装置100包括感应层20、显示面板30和背光源40。在此实施例中,所述感应层20设在所述显示面板30前方,所述背光源40设在所述显示面板30后方。也可在其他实施例中将所述感应层设于其他位置,例如设于所述显示面板30与所述背光源40之间或设于所述背光源40后方。所述触控装置100还可包括框架50,所述框架设在所述触控装置100的外围,在后、上、下、左、右方包围所述触控装置100而没有延伸到所述触控装置100的前方,以便用户从前方操作所述触控屏并使显光屏的光透出。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由所附权利要求及其等同物限定。

Claims (20)

  1. 一种触控用的感应层,包括:
    透明上基板;和
    透明下基板,所述透明上基板与所述透明下基板之间存在空隙,在所述空隙中设有多条感应线和多条驱动线;
    其中,所述空隙中还设有一个或多个力传感器,所述空隙密封,容纳有透明流体,所述力传感器为压力传感器,所述感应层设置为受外力时所述透明流体压力上升,所述力传感器受压产生信号。
  2. 根据权利要求1所述的感应层,其中,所述透明上基板与透明下基板之间设有密封件,所述透明上基板、所述透明下基板及所述密封件形成的密闭空间容纳所述透明流体。
  3. 根据权利要求1所述的感应层,其中,所述感应层设置成在所述透明上基板受压下,所述透明上基板的受压区域向下凹陷,所述透明上基板的受压区域与所述透明下基板的距离随而减小;当压力抽回/消除时,所述透明上基板的受压区域与所述透明下基板之间的距离恢复原值。
  4. 根据权利要求3所述的感应层,其中,所述感应层还包括多个间隔件,所述间隔件的上部分与所述透明上基板的下表面连接,而所述间隔件的下部分与所述透明下基板的上表面连接,并在受外来压力的情况下,所述间隔件同时沿垂直方向压缩,直到所述透明上基板的受压区域与所述透明下基板之间的距离因外来压力下减至最小;随后当外来压力抽回/消除时,所述透明流体和所述间隔件的反抗力大于外来力,所述间隔件会恢复原来位置和状态,使得所述透明上基板的受压区域与所述透明下基板之间的距离恢复原值。
  5. 根据权利要求3所述的感应层,其中,所述间隔件设置于力传感器的上方,其下部与力传感器连接,上部与透明上基板的内表面连 接。
  6. 根据权利要求3所述的感应层,其中,所述间隔件包括第一间隔件和第二间隔件,第一间隔件在纵向方向上,不与力传感器、驱动线和感应线重叠,第二间隔件设置于力传感器的上方。
  7. 根据权利要求1-6中任一项所述的感应层,其中,所述感应层设置为:若所述力传感器因受压产生的信号超过预设阈值,则视为有效力输入,有效力输入的强度与所述力传感器的信号相关联。
  8. 根据权利要求1-6中任一项所述的感应层,其中,多个间隔件限定传压区域,落在所述传压区域中的外来压力使位于所述传压区域中的力传感器产生的信号强于位于所述传压区域以外的其他力传感器。
  9. 根据权利要求3所述的感应层,其中,所述感应线和所述驱动线分别设于所述透明上基板与所述透明下基板相对的表面上,或者所述感应线阵列和所述驱动线阵列同时设于所述上基板或透明下基板相对的表面中的一个,并且所述感应线阵列和所述驱动线阵列互相正交并绝缘。
  10. 根据权利要求1所述的感应层,其中,所述一个或多个力传感器设置成在垂直方向上不与所述多条感应线和所述多条驱动线重叠。
  11. 一种触控装置,包括:感应层,所述感应层包括:
    透明上基板;和
    透明下基板,所述透明上基板与所述透明下基板之间存在空隙,在所述空隙中设有多条感应线和多条驱动线;
    其中,所述空隙中还设有一个或多个力传感器,所述空隙密封,容纳有透明流体,所述力传感器为压力传感器,所述感应层设置为受外力时所述透明流体压力上升,所述力传感器受压产生信号;
    其中,所述触控装置具有感应层、显示面板、背光源和框架。
  12. 如权利要求11所述的触控装置,其中,所述透明上基板与透明下 基板之间设有密封件,所述透明上基板、所述透明下基板及所述密封件形成的密闭空间容纳所述透明流体。
  13. 如权利要求11所述的触控装置,其中,所述感应层设置成在所述透明上基板受压下,所述透明上基板的受压区域向下凹陷,所述透明上基板的受压区域与所述透明下基板的距离随而减小;当压力抽回/消除时,所述透明上基板的受压区域与所述透明下基板之间的距离恢复原值。
  14. 如权利要求13所述的触控装置,其中,所述感应层还包括多个间隔件,所述间隔件的上部分与所述透明上基板的下表面连接,而所述间隔件的下部分与所述透明下基板的上表面连接,并在受外来压力的情况下,所述间隔件同时沿垂直方向压缩,直到所述透明上基板的受压区域与所述透明下基板之间的距离因外来压力下减至最小;随后当外来压力抽回/消除时,所述透明流体和所述间隔件的反抗力大于外来力,所述间隔件会恢复原来位置和状态,使得所述透明上基板的受压区域与所述透明下基板之间的距离恢复原值。
  15. 如权利要求13所述的触控装置,其中,所述间隔件设置于力传感器的上方,其下部与力传感器连接,上部与透明上基板的内表面连接。
  16. 根据权利要求13所述的触控装置,其中,所述间隔件包括第一间隔件和第二间隔件,第一间隔件在纵向方向上,不与力传感器、驱动线和感应线重叠,第二间隔件设置于力传感器的上方。
  17. 如权利要求11-16任一项所述的触控装置,其中,所述感应层设置为:若所述力传感器因受压产生的信号超过预设阈值,则视为有效力输入,有效力输入的强度与所述力传感器的信号相关联。
  18. 如权利要求11-16任一项所述的触控装置,其中,多个间隔件限定传压区域,落在所述传压区域中的外来压力使位于所述传压区域中的力传感器产生的信号强于位于所述传压区域以外的其他力传 感器。
  19. 如权利要求13所述的触控装置,其中,所述感应线和所述驱动线分别设于所述透明上基板与所述透明下基板相对的表面上,或者所述感应线阵列和所述驱动线阵列同时设于所述上基板或透明下基板相对的表面中的一个,并且所述感应线阵列和所述驱动线阵列互相正交并绝缘。
  20. 如权利要求11所述的触控装置,其中,所述一个或多个力传感器设置成在垂直方向上不与所述多条感应线和所述多条驱动线重叠。
PCT/CN2020/086482 2019-04-23 2020-04-23 一种具有力传感器的触控装置 WO2020216306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910326592.9 2019-04-23
CN201910326592.9A CN110109566B (zh) 2019-04-23 2019-04-23 一种具有力传感器的触控装置

Publications (1)

Publication Number Publication Date
WO2020216306A1 true WO2020216306A1 (zh) 2020-10-29

Family

ID=67486156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086482 WO2020216306A1 (zh) 2019-04-23 2020-04-23 一种具有力传感器的触控装置

Country Status (2)

Country Link
CN (1) CN110109566B (zh)
WO (1) WO2020216306A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109566B (zh) * 2019-04-23 2021-07-06 精电(河源)显示技术有限公司 一种具有力传感器的触控装置
WO2020216305A1 (zh) * 2019-04-23 2020-10-29 精电(河源)显示技术有限公司 一种具有力传感器的感应层及其触控装置
CN114280833B (zh) * 2021-12-27 2023-04-11 合肥联宝信息技术有限公司 显示面板、定位方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556515A (zh) * 2008-04-08 2009-10-14 瑞鼎科技股份有限公司 触控感应组件以及触控感应装置
CN101713878A (zh) * 2008-10-01 2010-05-26 索尼株式会社 显示面板、显示装置
CN105511683A (zh) * 2015-12-31 2016-04-20 厦门天马微电子有限公司 一种触控显示装置
US20190095026A1 (en) * 2017-09-22 2019-03-28 Apple Inc. Pressure Resistant Force Sensing Enclosure
CN110109566A (zh) * 2019-04-23 2019-08-09 精电(河源)显示技术有限公司 一种具有力传感器的触控装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078597A1 (en) * 2009-01-05 2010-07-08 Tactus Technology, Inc. User interface system
KR101658991B1 (ko) * 2009-06-19 2016-09-22 삼성전자주식회사 터치 패널 및 이를 구비한 전자 기기
US20110007023A1 (en) * 2009-07-09 2011-01-13 Sony Ericsson Mobile Communications Ab Display device, touch screen device comprising the display device, mobile device and method for sensing a force on a display device
JP2011017626A (ja) * 2009-07-09 2011-01-27 Sony Corp 力学量検知部材及び力学量検知装置
KR101631892B1 (ko) * 2010-01-28 2016-06-21 삼성전자주식회사 터치 패널 및 이를 구비한 전자기기
CN101770312B (zh) * 2010-03-02 2012-07-04 友达光电股份有限公司 触控显示面板
CN201741127U (zh) * 2010-08-19 2011-02-09 苏州敏芯微电子技术有限公司 识别指向与力度的操纵系统
CN105900046B (zh) * 2013-09-27 2018-10-16 森赛尔股份有限公司 电容式触摸传感器系统和方法
KR102581141B1 (ko) * 2016-06-22 2023-09-22 삼성디스플레이 주식회사 터치 센서 및 이를 이용한 터치 감지 방법
CN108205216A (zh) * 2018-01-19 2018-06-26 精电(河源)显示技术有限公司 一种高透光液晶显示屏
CN108534921B (zh) * 2018-03-26 2021-01-26 京东方科技集团股份有限公司 压力传感器、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556515A (zh) * 2008-04-08 2009-10-14 瑞鼎科技股份有限公司 触控感应组件以及触控感应装置
CN101713878A (zh) * 2008-10-01 2010-05-26 索尼株式会社 显示面板、显示装置
CN105511683A (zh) * 2015-12-31 2016-04-20 厦门天马微电子有限公司 一种触控显示装置
US20190095026A1 (en) * 2017-09-22 2019-03-28 Apple Inc. Pressure Resistant Force Sensing Enclosure
CN110109566A (zh) * 2019-04-23 2019-08-09 精电(河源)显示技术有限公司 一种具有力传感器的触控装置

Also Published As

Publication number Publication date
CN110109566B (zh) 2021-07-06
CN110109566A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020216306A1 (zh) 一种具有力传感器的触控装置
US10073559B2 (en) Touch type distinguishing method and touch input device performing the same
CN106557207B (zh) 触控显示面板及其感测驱动方法
CN103210363B (zh) 压力传感装置及操作方法
TWI592853B (zh) Touch device with integrated pressure sensing
EP1840714B1 (en) Force and location sensitive display
TWI605369B (zh) 互容式壓力感測器以及具有壓力感測功能之觸控顯示裝置與其壓力感測方法
TWI544458B (zh) 顯示面板
CN105929577B (zh) 显示面板、显示装置及显示面板的制造方法
TWI635430B (zh) Pressure sensing touch device
KR20120000565A (ko) 정전용량형 터치 장치와 결합된 액정 표시 장치
US8493343B2 (en) Touch panel and noise reducing method therefor
TWI714425B (zh) 發光觸控板裝置
TWI410702B (zh) 觸控顯示面板
US10379686B2 (en) Touch display panel and method for driving the same
KR101584423B1 (ko) 모아레 감소를 위한 오버코트층을 구비한 터치 패널, 터치 패널을 구비한 액정표시장치 및 터치 패널 형성 방법
CN106855764B (zh) 触摸显示装置
US11550422B2 (en) Flexible touch screen, touch sensitive processing apparatus and method, and electronic system
WO2023202044A1 (zh) 压力触控板、压力触控板组件及电子设备
JP2017021462A (ja) センサ付き表示装置
TW201926005A (zh) 顯示面板
CN110134272A (zh) 一种具有力传感器的感应层及其触控装置
WO2020216305A1 (zh) 一种具有力传感器的感应层及其触控装置
CN106502478A (zh) 触摸显示装置
US20170160864A1 (en) Display method and terminal including touch screen performing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794223

Country of ref document: EP

Kind code of ref document: A1