WO2020215797A1 - 一种提高注汽锅炉蒸汽干度的干度提升器及方法 - Google Patents

一种提高注汽锅炉蒸汽干度的干度提升器及方法 Download PDF

Info

Publication number
WO2020215797A1
WO2020215797A1 PCT/CN2019/130531 CN2019130531W WO2020215797A1 WO 2020215797 A1 WO2020215797 A1 WO 2020215797A1 CN 2019130531 W CN2019130531 W CN 2019130531W WO 2020215797 A1 WO2020215797 A1 WO 2020215797A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
cooling medium
combustion
fuel
steam
Prior art date
Application number
PCT/CN2019/130531
Other languages
English (en)
French (fr)
Inventor
薛炳平
Original Assignee
山东华曦石油技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东华曦石油技术服务有限公司 filed Critical 山东华曦石油技术服务有限公司
Priority to US17/594,381 priority Critical patent/US20220178535A1/en
Priority to CA3136860A priority patent/CA3136860A1/en
Publication of WO2020215797A1 publication Critical patent/WO2020215797A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/408Flow influencing devices in the air tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/102Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention relates to a device and method for improving the steam dryness of a steam injection boiler, in particular to a dryness riser and a method for improving the steam dryness of a steam injection boiler.
  • steam huff and puff is the main process method for the thermal recovery of heavy oil.
  • the cyclical production declines more and more, and the contradictions such as formation deficit and rising water cut are becoming more and more serious.
  • auxiliary measures such as carbon dioxide injection to increase production have become less effective.
  • the invention patent number applied for by this unit is CN102818250B, which published "A Method and Device for Improving Steam Dryness of Steam Injection Boilers".
  • This process technology has made a huge breakthrough in the development effect of steam huff and puff, and the thermal recovery cycle output after the measures is average Doubled the water content by an average of about 15%, the production cycle is extended by an average of 2-3 months, and the development cost is greatly reduced. It has become the replacement process technology in the middle and late stages of heavy oil steam stimulation.
  • the dryness riser involved in this patent belongs to a specific high-pressure combustion device under the process conditions. There are still the following problems in the application process:
  • the device uses high temperature and humid saturated steam as the cooling medium, and the conventional sealing structure cannot meet the sealing requirements under high temperature conditions;
  • the purpose of the present invention is to provide a dryness riser and method for improving the steam dryness of a steam injection boiler in view of the above-mentioned defects in the prior art.
  • the technical solution of a dryness riser for improving the steam quality of steam injection boilers mentioned in the present invention is: mainly including a front head (1), a cylinder (2), and a rear head (3), wherein the front head ( 1) The cylinder (2), the cylinder (2) and the rear end (3) are all connected by flanges; the front end (1) is on the outer edge of the flange, inside the compressed air inlet channel (1.3) There are a number of compressed air circulation holes (1.8) perpendicular to the front end (1) in the middle of the flange screw bolt from the front head (1), and the compressed air inlet channel (1.3) is connected to the compressed air through the compressed air circulation hole (1.8).
  • the fuel pipe channel (1.4) is connected; the front end face (1.9) of the front head (1) is provided with a plurality of compressed air radiating holes (1.10), and the compressed air radiating holes (1.10) are vertical and communicate with the compressed air circulation holes ( 1.8)
  • Air cooling nozzles (1.11) are arranged at the end of the compressed air cooling holes (1.10), and a plurality of air cooling nozzles (1.14) parallel to the front end surface (1.9) are evenly distributed on the circumference of the air cooling nozzles (1.11);
  • the middle part of the fuel pipe (1.5) and the fuel pipe passage (1.4) form an annular space, and the annular space is in communication with the compressed air circulation hole (1.8);
  • the front end of the fuel pipe (1.5) is provided with an internal mixing fuel nozzle (1.12), the internal mixing fuel nozzle (1.12) and the fuel pipe (1.5) are an integral structure, and the internal mixing fuel nozzle (1.12) and the end of the fuel passage (1.4) are sealed by graphite extrusion.
  • the front end of the above-mentioned cylinder (2) is provided with a cooling medium inlet (2.1), a cooling medium connecting pipe (2.2), and a cooling medium channel (2.3).
  • the cooling medium channel (2.3) is an annular channel arranged in On the outer edge of the flange at the front end of the cylinder body (2), the cooling medium channel (2.3) is provided with a plurality of cooling medium circulation holes (2.4) perpendicular to the cylinder body (2) from the middle of the flange bolt hole.
  • the cooling medium channel (2.3) It communicates with the inside of the cylinder (2) through the cooling medium circulation hole (2.4); the cooling medium inlet (2.1) is connected with the cooling medium nozzle (2.2), and the cooling medium inlet (2.1) is in the form of flange connection,
  • the cooling medium connecting pipe (2.2) is tangentially connected with the cooling medium channel (2.3) in two ways, and the two tangent connecting points are arranged on the diameter of the annular channel and are 180° opposite to each other.
  • the above-mentioned cylinder (2) is provided with a combustion cylinder (2.5) inside, the combustion cylinder (2.5) is movably connected to the front end of the front end (1); the combustion cylinder (2.5) is divided into a combustion section (2.5.
  • the throat section (2.5.2) and the mixing section (2.5.3), the outer wall of the combustion section (2.5.1) is provided with a multi-stage spiral cooling medium channel (2.5.4), the throat section (2.5.2)
  • the outer wall is provided with a circular cone-shaped cooling medium channel (2.5.5), and a plurality of cooling medium spray holes (2.5.6) are arranged at the end, and the cooling medium spray holes (2.5.6) are connected to the mixing section ( 2.5.3), the tail end of the mixing section (2.5.3) has a tapered structure and is provided with multiple composite gas injection holes (2.5.7), injection holes (2.5.7) and cylinder (2) Internal connectivity.
  • the above-mentioned compressed air inlet (1.1) is connected with a compressed air connecting pipe (1.2), and the compressed air connecting pipe (1.2) is connected with a compressed air intake passage (1.3);
  • the compressed air intake passage (1.3) It is an annular channel, which is set on the outer edge of the flange of the front head (1).
  • the above-mentioned rear head (3) is provided with a safety accessory interface (3.1), a pressure sensor interface (3.2), and a temperature sensor interface (3.3), and the outlet has a reduced diameter structure.
  • a heat dissipation structure (1.13) is provided at the rear section of the aforementioned front head (1).
  • the above-mentioned compressed air intake passage (1.3), fuel pipe passage (1.4), ignition rod passage (1.6), and flame detector passage (1.7) are respectively connected to the combustion cylinder (2.5), and the fuel pipe (1.5),
  • the ignition rod, the flame detector and the corresponding passage are all fastened to the front end (1) by a threaded plunger, and the sealing form is graphite extrusion sealing.
  • wet saturated water vapor enters the device from the cooling medium inlet (2.1), and then controls the compressed air to enter the device from the compressed air inlet (1.1), and then controls the fuel to enter the device from the fuel pipe (1.5), and at the same time start the igniter according to the set parameters Ignition, the fuel is atomized by compressed air in the internal mixing fuel nozzle (1.12) and then sprayed into the combustion section (2.5.1) of the combustion tube (2.5).
  • the fuel-air mixture can ignite and burn after encountering an open flame.
  • compressed air enters the annular space formed by the fuel pipe (1.5) and the fuel pipe passage (1.4) all the way through the compressed air inlet (1.1), the compressed air intake passage (1.3), and the compressed air circulation hole (1.8). Enter the internal mixing fuel nozzle (1.12) through the annular space to fully atomize the fuel.
  • the compressed air in the process of circulation not only provides good heat dissipation to the front end (1), but the increase in its own temperature is also more conducive to fuel atomization.
  • the wet saturated water vapor enters the annular cooling medium channel (2.3) along the opposite tangential direction, forming a strong rotating force. Under the action of the rotating force, the wet saturated water vapor of the two-phase flow enters the annular cooling medium channel (2.3) The inside is fully mixed, and the multi-stage spiral cooling medium channel (2.5.4) on the outer wall of the combustion cylinder (2.5) uniformly enters through the cooling medium circulation hole (2.4).
  • the multi-stage spiral cooling medium channel (2.54) has a large heat dissipation area.
  • Wet saturated water vapor has a long circulation time on the outer wall of the combustion section (2, 5.1), and the flow is uniform, which effectively protects the combustion tube (2.5) from high temperature ablation; wet saturated water vapor passes through the combustion tube throat section (2.5.
  • the composite gas passes through the end of the mixing section (2.5.3) of the combustion tube (2.5).
  • the composite gas spray hole (2.5.7) is sprayed out, and the taper and spray hole structure at the end of the mixing section (2.5.3) can make the wet saturated water vapor and high temperature flue gas be fully and uniformly mixed when sprayed through the spray hole ;
  • the design structure of the combustion tube (2.5) throat section (2.5.2) makes the flow rate of the flue gas after combustion close to the speed of sound after passing through the throat section (2.5.2), which not only eliminates the combustion section (2.5.1)
  • the flame oscillation phenomenon ensures the stability of high-pressure combustion, and at the same time prevents the wet saturated water vapor in the mixing section (2.5.3) from flowing back into the combustion section (2.5.1) of the combustion tube (2.5) and disturbing the flame stability.
  • the present invention has the following advantages:
  • the compressed air intake channel and circulation structure of the present invention not only cool the front end head well, but also the compressed air is fully preheated during the process of cooling the front end head, which is beneficial to the atomized combustion of fuel.
  • the above-designed air radiating nozzle creates an air cooling film on the front surface of the front end, which fully protects the front end of the front end and various inserts from high temperature damage;
  • the internal mixing fuel nozzle of the present invention effectively ensures that the fuel obtains a good atomization effect under high pressure conditions, while avoiding the problem of flame backfire, and the integral structure of the fuel pipe and the internal mixing fuel nozzle even The nozzle is damaged and easy to disassemble and replace, which greatly saves operating costs;
  • the cooling medium channel and circulation structure of the present invention is not only suitable for high-pressure combustion devices that use normal temperature softened water as the cooling medium, but also suitable for high-pressure combustion devices that use high-temperature and humid saturated steam as the cooling medium.
  • the wet saturated steam follows the opposite tangent. Enter the cooling medium channel (annular channel) in the direction, under the action of the rotating force, the wet saturated steam in the two-phase flow state is uniformly mixed, which is more conducive to the cooling of the outer wall of the combustion tube by the wet saturated steam;
  • the multi-stage spiral cooling medium channel on the outer wall of the combustion section of the combustion cylinder of the present invention has a large heat dissipation area, and the cooling medium has a long circulation time on the outer wall of the combustion section, and the flow is uniform, which effectively protects the combustion cylinder from high temperature ablation;
  • the special structure of the throat section can make the flue gas flow rate close to the speed of sound after combustion, eliminate the flame oscillation phenomenon in the combustion section, ensure the stability of high-pressure combustion, and avoid the interference of the flame stability due to the reflux of the cooling medium;
  • connection and sealing structure of the plug-in parts such as fuel pipe, ignition rod, flame detector and the front end is used to ensure the sealing requirements of the equipment under high temperature conditions.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a left side view of the present invention
  • Figure 3 is a D-D cross-sectional view of the front end head in Figure 2 of the present invention.
  • Figure 4 is a K-direction view of the rear end of the present invention
  • Figure 5 is an enlarged view of part A of Figure 1 of the present invention.
  • Figure 6 is an enlarged view of part B of Figure 1 of the present invention.
  • a dryness riser for improving the steam dryness of a steam injection boiler mentioned in the present invention mainly includes a front head 1, a cylinder body 2, a rear head 3, and the front head 1
  • the cylinder body 2, the cylinder body 2 and the rear end head 3 are all connected by flanges.
  • the front head 1 is provided with a compressed air inlet 1.1, a compressed air connecting pipe 1.2, a compressed air intake passage 1.3, a fuel pipe passage 1.4, a fuel pipe 1.5, an ignition rod passage 1.6, and a flame detector passage 1.7.
  • the compressed air intake passage 1.3, the fuel pipe passage 1.4, the ignition rod passage 1.6, and the flame detector passage 1.7 are respectively communicated with the combustion cylinder 2.5.
  • the fuel pipe 1.5, the ignition rod, the flame detector and the corresponding channel are all fastened to the front end 1 by a threaded plunger, and the sealing form is graphite extrusion sealing.
  • the compressed air inlet 1.1 is connected to the compressed air connecting pipe 1.2, and the compressed air connecting pipe 1.2 is connected to the compressed air inlet passage 1.3;
  • the compressed air inlet passage 1.3 is an annular passage and is located at the front end 1 flange On the outer edge of the compressed air inlet passage 1.3, there are a plurality of compressed air circulation holes 1.8 perpendicular to the front end 1 in the middle of the flange screw bolt of the front end head 1.
  • the compressed air inlet passage 1.3 passes through the compressed air circulation holes 1.8 is connected to the fuel pipe channel 1.4, the front end surface 1.9 of the front head 1 is provided with a plurality of compressed air radiating holes 1.10, the compressed air radiating holes 1.10 are vertical and connected to the compressed air circulation hole 1.8, and the compressed air radiating holes 1.10 are provided at the end There is an air radiating nozzle 1.11, which is fastened to the front end surface 1.9 of the front end head 1 in a screw connection form, and a plurality of air radiating nozzle holes 1.14 parallel to the front end surface 1.9 are evenly distributed on the circumference of the air radiating nozzle 1.11.
  • the middle part of the fuel pipe 1.5 and the fuel pipe passage 1.4 form an annular space, and the annular space is in communication with the compressed air circulation hole 1.8.
  • the front end of the fuel pipe 1.5 is provided with an internal mixing fuel nozzle 1.12, the internal mixing fuel nozzle 1.12 and the fuel pipe 1.5 are an integral structure, and the internal mixing fuel nozzle 1.12 and the end of the fuel passage 1.4 are sealed by graphite extrusion.
  • the rear section of the front head 1 is provided with a heat dissipation structure 1.13.
  • the front end of the cylinder 2 is provided with a cooling medium inlet 2.1, a cooling medium connecting pipe 2.2, and a cooling medium channel 2.3.
  • the cooling medium channel 2.3 is an annular channel and is arranged on the outer edge of the flange at the front end of the cylinder body 2.
  • the cooling medium channel 2.3 is provided with a plurality of cooling medium circulation holes perpendicular to the cylinder body 2 from the middle of the flange bolt hole. 2.4, the cooling medium channel 2.3 communicates with the inside of the cylinder 2 through the cooling medium circulation hole 2.4;
  • the cooling medium inlet 2.1 is connected to the cooling medium connecting pipe 2.2, the cooling medium inlet 2.1 is in the form of flange connection, the cooling medium connecting pipe 2.2 is divided into two ways and the cooling medium channel 2.3 is connected by a tangent line, and the two tangent connection points are arranged in the annular channel The diameter of each other is 180° opposite to each other.
  • the cooling medium connector 2.2 is provided with a temperature sensor and a pressure sensor interface.
  • the inside of the barrel 2 is provided with a combustion tube 2.5, which is connected to the front end of the front end head 1 by a thread; the combustion tube 2.5 is divided into a combustion section 2.5.1, a throat section 2.5.2, and a mixing section 2.5. 3.
  • the outer wall of the combustion section 2.5.1 is provided with a multi-stage spiral cooling medium channel 2.5.4, and the outer wall of the throat section 2.5.2 is provided with an annular conical cooling medium channel 2.5.5, and is provided at the end Multiple cooling medium spray holes 2.5.6, cooling medium spray holes 2.5.6 connected to the mixing section 2.5.3, the end of the mixing section 2.5.3 is a tapered structure, and is provided with multiple composite gas spray holes 2.5. 7.
  • the nozzle 2.5.7 is connected to the inside of the cylinder 2;
  • the rear end head 3 is provided with a safety accessory interface 3.1, a pressure sensor interface 3.2, and a temperature sensor interface 3.3, and the outlet has a reduced diameter structure.
  • wet saturated water vapor enters the device from the cooling medium inlet (2.1), and then controls the compressed air to enter the device from the compressed air inlet (1.1), and then controls the fuel to enter the device from the fuel pipe (1.5), and at the same time start the igniter according to the set parameters Ignition, the fuel is atomized by compressed air in the internal mixing fuel nozzle (1.12) and then sprayed into the combustion section (2.5.1) of the combustion tube (2.5).
  • the fuel-air mixture can ignite and burn after encountering an open flame.
  • compressed air enters the annular space formed by the fuel pipe (1.5) and the fuel pipe passage (1.4) all the way through the compressed air inlet (1.1), the compressed air intake passage (1.3), and the compressed air circulation hole (1.8). Enter the internal mixing fuel nozzle (1.12) through the annular space to fully atomize the fuel.
  • the compressed air in the process of circulation not only provides good heat dissipation to the front end (1), but the increase in its own temperature is also more conducive to fuel atomization.
  • the wet saturated water vapor enters the annular cooling medium channel (2.3) along the opposite tangential direction, forming a strong rotating force. Under the action of the rotating force, the wet saturated water vapor of the two-phase flow enters the annular cooling medium channel (2.3) The inside is fully mixed, and the multi-stage spiral cooling medium channel (2.5.4) on the outer wall of the combustion cylinder (2.5) uniformly enters through the cooling medium circulation hole (2.4).
  • the multi-stage spiral cooling medium channel (2.54) has a large heat dissipation area.
  • Wet saturated water vapor has a long circulation time on the outer wall of the combustion section (2, 5.1), and the flow is uniform, which effectively protects the combustion tube (2.5) from high temperature ablation; wet saturated water vapor passes through the combustion tube throat section (2.5.
  • the composite gas passes through the end of the mixing section (2.5.3) of the combustion tube (2.5).
  • the composite gas spray hole (2.5.7) is sprayed out, and the taper and spray hole structure at the end of the mixing section (2.5.3) can make the wet saturated water vapor and high temperature flue gas be fully and uniformly mixed when sprayed through the spray hole ;
  • the design structure of the combustion tube (2.5) throat section (2.5.2) makes the flow rate of the flue gas after combustion close to the speed of sound after passing through the throat section (2.5.2), which not only eliminates the combustion section (2.5.1)
  • the flame oscillation phenomenon ensures the stability of high-pressure combustion, and at the same time prevents the wet saturated water vapor in the mixing section (2.5.3) from flowing back into the combustion section (2.5.1) of the combustion tube (2.5) and disturbing the flame stability.
  • the safety accessory interface 3.1, pressure sensor interface 3.2, and temperature sensor interface 3.3 are installed at the back end of the high-pressure combustion device. After installing the corresponding devices, the state of
  • the connecting flange between the cylinder body and the back end of the device can be removed, and the cylinder body and the back end are designed as an integrated structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

本发明涉及一种提高注汽锅炉蒸汽干度的干度提升器及方法。其技术方案是:压缩空气进气通道内部自前端头的法兰螺栓中间设有多个垂直于前端头的压缩空气流通孔,压缩空气进气通道通过压缩空气流通孔与燃料管通道连通;所述的前端头的前端面上设有多个压缩空气散热孔,压缩空气散热孔垂直并连通压缩空气流通孔,压缩空气散热孔末端设有空气散热喷嘴,空气散热喷嘴的圆周上均布多个空气散热喷孔;有益效果是:不但给前端头进行良好的降温,前端头降温的过程压缩空气也得到充分的预热,有利于燃料的雾化燃烧,前端头前端面上设计的空气散热喷嘴,使前端头前端面表层产生一层空气冷却气膜,充分保护了前端头前端面及各种穿插件不被高温损坏,大大节约了运行成本。

Description

一种提高注汽锅炉蒸汽干度的干度提升器及方法 技术领域
本发明涉及一种提高注汽锅炉蒸汽干度的装置及方法,特别涉及一种提高注汽锅炉蒸汽干度的干度提升器及方法。
背景技术
目前,蒸汽吞吐是稠油热采的主要工艺方法,但随着蒸汽吞吐轮次的增加,周期产量递减越来越大,地层亏空、含水升高等矛盾也越来越严重,向油层注氮气、注二氧化碳等辅助增产措施随着轮次的增加,效果也越来越差。本单位申请的发明专利号为CN102818250B公布了《一种提高注汽锅炉蒸汽干度的方法及装置》,该工艺技术对于蒸汽吞吐的开发效果取得了巨大的突破,措施后的热采周期产量平均提高一倍,含水平均下降15%左右,生产周期平均延长2-3个月,开发成本大幅下降,成为稠油蒸汽吞吐中后期的接替工艺技术。
技术问题
该专利涉及到的干度提升器,属于一种该工艺条件下特定的高压燃烧装置,在应用过程中尚存在以下问题:
1.燃料在高压条件下雾化效果差;
2.燃料喷嘴结构不合理引起火焰回火导致喷头烧蚀,并且燃料喷嘴与喷头为一体结构,出现烧蚀后造成整个喷头损坏,浪费严重;
3.高压燃烧产生超高温对设备的烧蚀;
4.燃烧室结构不合理导致火焰振荡对设备造成损坏;
5.该装置以高温湿饱和水蒸汽作为冷却介质的特点,常规的密封结构达不到高温条件下的密封要求;
6.喷头及燃烧室散热结构不合理带来装置使用寿命的减少。
技术解决方案
       本发明的目的就是针对现有技术存在的上述缺陷,提供一种提高注汽锅炉蒸汽干度的干度提升器及方法。
       本发明提到的一种提高注汽锅炉蒸汽干度的干度提升器,其技术方案是:主要包括前端头(1)、筒体(2)、后端头(3),其中前端头(1)与筒体(2)、筒体(2)与后端头(3)均通过法兰形式连接;前端头(1)法兰盘的外沿上,压缩空气进气通道(1.3)内部自前端头(1)的法兰螺孔栓中间设有多个垂直于前端头(1)的压缩空气流通孔(1.8),压缩空气进气通道(1.3)通过压缩空气流通孔(1.8)与燃料管通道(1.4)连通;所述的前端头(1)的前端面(1.9)上设有多个压缩空气散热孔(1.10),压缩空气散热孔(1.10)垂直并连通压缩空气流通孔(1.8),压缩空气散热孔(1.10)末端设有空气散热喷嘴(1.11),空气散热喷嘴(1.11)的圆周上均布多个平行于前端面(1.9)的空气散热喷孔(1.14);
优选的,上述的燃料管(1.5)中部与燃料管通道(1.4)形成环形空间,环形空间与压缩空气流通孔(1.8)连通;所述的燃料管(1.5)前端设有内混式燃料喷嘴(1.12),内混式燃料喷嘴(1.12)与燃料管(1.5)为一体结构,内混式燃料喷嘴(1.12)与燃料通道(1.4)末端采用石墨挤压密封。
       优选的,上述的筒体(2)前端设有冷却介质入口(2.1),冷却介质连接管(2.2),冷却介质通道(2.3),所述的冷却介质通道(2.3)为环形通道,设在筒体(2)前端法兰盘的外沿上,冷却介质通道(2.3)内部自法兰螺栓孔中间设有多个垂直于筒体(2)的冷却介质流通孔(2.4),冷却介质通道(2.3)通过冷却介质流通孔(2.4)与筒体(2)内部连通;所述的冷却介质入口(2.1)与冷却介质接管(2.2)连接,冷却介质入口(2.1)为法兰连接形式,冷却介质连接管(2.2)分两路与冷却介质通道(2.3)以切线连接,两个切线连接点布在环形通道的直径上,并且互为180°反方向。
       优选的,上述的筒体(2)内部设有燃烧筒(2.5),燃烧筒(2.5)与前端头(1)的前端活动连接;所述的燃烧筒(2.5)分为燃烧段(2.5.1)、喉管段(2.5.2)和混合段(2.5.3),所述的燃烧段(2.5.1)外壁设有多级螺旋式冷却介质通道(2.5.4),所述的喉管段(2.5.2)外壁设有环锥形冷却介质通道(2.5.5),并在末端设有多个冷却介质喷孔(2.5.6),冷却介质喷孔(2.5.6)连通混合段(2.5.3),所述的混合段(2.5.3)尾端为锥形结构,并设有多个复合气喷孔(2.5.7),喷孔(2.5.7)与筒体(2)内部连通。
优选的,上述的压缩空气入口(1.1)与压缩空气连接管(1.2)连接,压缩空气连接管(1.2)与压缩空气进气通道(1.3)连接;所述的压缩空气进气通道(1.3)为环形通道,设在前端头(1)法兰盘的外沿上。
       优选的,上述的后端头(3)上设有安全附件接口(3.1)、压力传感器接口(3.2)、温度传感器接口(3.3),出口为缩径结构。
       优选的,上述的前端头(1)后段设有散热结构(1.13)。
       优选的,上述的压缩空气进气通道(1.3)、燃料管通道(1.4)、点火杆通道(1.6)、火焰检测器通道(1.7)分别与燃烧筒(2.5)连通,燃料管(1.5)、点火杆、火焰检测器与对应的通道均通过螺纹压冒紧固在前端头(1)上,密封形式为石墨挤压密封。
       本发明提到的一种提高注汽锅炉蒸汽干度的干度提升器的使用方法,其技术方案是:包括以下过程:
启动时,湿饱和水蒸汽自冷却介质入口(2.1)进入装置,然后控制压缩空气自压缩空气入口(1.1)进入装置,再控制燃料自燃料管(1.5)进入装置,同时按设置参数启动点火器点火,燃料在内混式燃料喷嘴(1.12)中被压缩空气雾化后喷入燃烧筒(2.5)的燃烧段(2.5.1),燃料空气混合物遇明火后即可着火燃烧。
       工作中,压缩空气经压缩空气入口(1.1)、压缩空气进气通道(1.3)、压缩空气流通孔(1.8),一路进入燃料管(1.5)与燃料管通道(1.4)形成的环形空间,并经环形空间进入内混式燃料喷嘴(1.12),对燃料进行充分雾化,同时压缩空气在流通的过程不但给前端头(1)进行良好的散热,自身温度的提高也更利于燃料的雾化;另一路进入压缩空气散热孔(1.10),通过压缩空气散热喷嘴(1.11)的圆周上均布的平行于前端面(1.9)的空气散热喷孔(1.14)高速喷出,在前端头的前端面表面形成一层空气冷却气膜,充分保护了前端头(1)的前端面(1.9)及点火杆端头、内混式燃料喷嘴(1.2)的端头在高温燃烧状态下不被烧蚀,其中,燃料管(1.5)与内混式燃料喷嘴(1.12)的一体结构,在出现内混式燃料喷嘴(1.12)损坏时,便于拆卸更换。
       工作中,湿饱和水蒸汽沿相反切线方向进入环形冷却介质通道(2.3),形成较强的旋转力,在旋转力的作用下,两相流的湿饱和水蒸汽在环形冷却介质通道(2.3)内得到充分混合,通过冷却介质流通孔(2.4),均匀的进入燃烧筒(2.5)外壁的多级螺旋式冷却介质通道(2.5.4),多级螺旋式冷却介质通道(2.54)散热面积大,湿饱和水蒸汽在燃烧段(2,5.1)外壁的流通时间长,流动均匀,有效地保护了燃烧筒(2.5)不被高温烧蚀;湿饱和水蒸汽在经过燃烧筒喉管段(2.5.2)外壁的环锥形冷却介质通道(2.5.5)时,流速大幅增加,保证了喉管段(2.5.2)内部不被高温烟气烧蚀;湿饱和水蒸汽沿环锥形冷却介质通道(2.5.5)末端的冷却介质喷孔(2.5.6)高速喷入燃烧筒(2.5)的混合段(2.5.3),与燃烧后的高温烟气迅速进行热量交换,混合形成复合气体,湿饱和水蒸汽干度得到大幅提升,根据工艺要求,干度可控制提升至100%,甚至达到一定的过热度,复合气体通过燃烧筒(2.5)的混合段(2.5.3)的尾端上的复合气喷孔(2.5.7)喷出,混合段(2.5.3)尾端的锥形及喷孔结构,可使湿饱和水蒸汽与高温烟气在经喷孔喷出时得到充分均匀混合;燃烧筒(2.5)喉管段(2.5.2)的设计结构,使燃烧后的烟气在经过喉管段(2.5.2)后,流速可接近音速,不但消除了燃烧段(2.5.1)内的火焰振荡现象,保证了高压燃烧的稳定,同时避免了混合段(2.5.3)内的湿饱和水蒸汽回流到燃烧筒(2.5)的燃烧段(2.5.1)内,干扰火焰的稳定。
有益效果
本发明与现有技术相比,具有以下优点:
1.本发明的压缩空气进气通道及流通结构不但给前端头进行良好的降温,压缩空气也在给前端头降温的过程得到充分的预热,有利于燃料的雾化燃烧,前端头前端面上设计的空气散热喷嘴,使前端头前端面表层产生一层空气冷却气膜,充分保护了前端头前端面及各种穿插件不被高温损坏;
2.本发明的内混式燃料喷嘴,有效地保证了燃料在高压条件下得到良好的雾化效果,同时避免了火焰回火问题,并且燃料管与内混式燃料喷嘴的一体结构,即使出现喷嘴损坏,极易拆卸更换,大大节约了运行成本;
3. 本发明的冷却介质通道及流通结构,不但适用采用常温软化水作为冷却介质的高压燃烧装置,特别适用于以高温湿饱和水蒸汽作为冷却介质的高压燃烧装置,湿饱和水蒸汽沿相反切线方向进入冷却介质通道(环形通道),在旋转力的作用下,两相流状态的湿饱和水蒸汽得到均匀混合,更利于湿饱和水蒸汽对燃烧筒外壁的降温;
4. 本发明的燃烧筒燃烧段外壁的多级螺旋式冷却介质通道,散热面积大,冷却介质在燃烧段外壁的流通时间长,流动均匀,有效地保护了燃烧筒不被高温烧蚀;燃烧筒喉管段的特殊结构可使燃烧后的烟气流速接近音速,消除了燃烧段内的火焰振荡现象,保证了高压燃烧的稳定,同时避免了因冷却介质的回流干扰火焰的稳定;
5. 对于以高温湿饱和水蒸汽作为冷却介质的高压燃烧设备,燃料管、点火杆、火焰检测器等插接件与前端头采用的连接密封结构,保障了设备在高温条件下的密封要求。
附图说明
图1为本发明的结构示意图;
图2为本发明的左视图;
图3为本发明的图2中的前端头的D-D剖视图;
图4为本发明的后端头的K向视图
图5为本发明图1的A部放大图;
图6为本发明图1的B部放大图;
上图中:前端头1,筒体2,后端头3,压缩空气入口1.1,压缩空气连接管1.2,压缩空气进气通道1.3,燃料管通道1.4,燃料管1.5,点火杆通道1.6,火焰检测器通道1.7,压缩空气流通孔1.8,前端头1的前端面1.9,压缩空气散热孔1.10,空气散热喷嘴1.11,内混式燃料喷嘴1.12,前端头散热结构1.13,空气散热喷孔1.14,冷却介质入口2.1,冷却介质连接管2.2,冷却介质通道2.3,冷却介质流通孔2.4,燃烧筒2.5,燃烧段2.5.1,喉管段2.5.2,混合段2.5.3,多级螺旋式冷却介质通道2.5.4,环锥形冷却介质通道2.5.5,冷却介质喷孔2.5.6,复合气喷孔2.5.7,安全附件接口3.1、压力传感器接口3.2、温度传感器接口3.3。
本发明的最佳实施方式
       以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
       实施例1,参照附图1-6,本发明提到的一种提高注汽锅炉蒸汽干度的干度提升器,主要包括前端头1、筒体2、后端头3,其中前端头1与筒体2、筒体2与后端头3均通过法兰形式连接。
       所述的前端头1上设有压缩空气入口1.1、压缩空气连接管1.2、压缩空气进气通道1.3、燃料管通道1.4、燃料管1.5、点火杆通道1.6、火焰检测器通道1.7。所述的压缩空气进气通道1.3、燃料管通道1.4、点火杆通道1.6、火焰检测器通道1.7分别与燃烧筒2.5连通。所述的燃料管1.5、点火杆、火焰检测器与对应的通道均通过螺纹压冒紧固在前端头1上,密封形式为石墨挤压密封。
       所述的压缩空气入口1.1与压缩空气连接管1.2连接,压缩空气连接管1.2与压缩空气进气通道1.3连接;所述的压缩空气进气通道1.3为环形通道,设在前端头1法兰盘的外沿上,压缩空气进气通道1.3内部自前端头1的法兰螺孔栓中间设有多个垂直于前端头1的压缩空气流通孔1.8,压缩空气进气通道1.3通过压缩空气流通孔1.8与燃料管通道1.4连通,所述的前端头1的前端面1.9上设有多个压缩空气散热孔1.10,压缩空气散热孔1.10垂直并连通压缩空气流通孔1.8,压缩空气散热孔1.10末端设有空气散热喷嘴1.11,空气散热喷嘴1.11以螺纹连接形式紧固在前端头1的前端面1.9上,空气散热喷嘴1.11的圆周上均布多个平行于前端面1.9的空气散热喷孔1.14。
       所述的燃料管1.5中部与燃料管通道1.4形成环形空间,环形空间与压缩空气流通孔1.8连通。所述的燃料管1.5前端设有内混式燃料喷嘴1.12,内混式燃料喷嘴1.12与燃料管1.5为一体结构,内混式燃料喷嘴1.12与燃料通道1.4末端采用石墨挤压密封。
       所述的前端头1后段设有散热结构1.13。
       所述的筒体2前端设有冷却介质入口2.1,冷却介质连接管2.2,冷却介质通道2.3。
       所述的冷却介质通道2.3为环形通道,设在筒体2前端法兰盘的外沿上,冷却介质通道2.3内部自法兰螺栓孔中间设有多个垂直于筒体2的冷却介质流通孔2.4,冷却介质通道2.3通过冷却介质流通孔2.4与筒体2内部连通;
所述的冷却介质入口2.1与冷却介质接管2.2连接,冷却介质入口2.1为法兰连接形式,冷却介质连接管2.2分两路与冷却介质通道2.3以切线连接,两个切线连接点布在环形通道的直径上,并且互为180°反方向。所述的冷却介质接管2.2上设有温度传感器和压力传感器接口。
       所述的筒体2内部设有燃烧筒2.5,燃烧筒2.5与前端头1的前端通过螺纹连接;所述的燃烧筒2.5分为燃烧段2.5.1、喉管段2.5.2和混合段2.5.3,所述的燃烧段2.5.1外壁设有多级螺旋式冷却介质通道2.5.4,所述的喉管段2.5.2外壁设有环锥形冷却介质通道2.5.5,并在末端设有多个冷却介质喷孔2.5.6,冷却介质喷孔2.5.6连通混合段2.5.3,所述的混合段2.5.3尾端为锥形结构,并设有多个复合气喷孔2.5.7,喷孔2.5.7与筒体2内部连通;
所述的后端头3上设有安全附件接口3.1、压力传感器接口3.2、温度传感器接口3.3,出口为缩径结构。
本发明的实施方式
发明提到的一种提高注汽锅炉蒸汽干度的干度提升器,其使用过程如下:
启动时,湿饱和水蒸汽自冷却介质入口(2.1)进入装置,然后控制压缩空气自压缩空气入口(1.1)进入装置,再控制燃料自燃料管(1.5)进入装置,同时按设置参数启动点火器点火,燃料在内混式燃料喷嘴(1.12)中被压缩空气雾化后喷入燃烧筒(2.5)的燃烧段(2.5.1),燃料空气混合物遇明火后即可着火燃烧。
       工作中,压缩空气经压缩空气入口(1.1)、压缩空气进气通道(1.3)、压缩空气流通孔(1.8),一路进入燃料管(1.5)与燃料管通道(1.4)形成的环形空间,并经环形空间进入内混式燃料喷嘴(1.12),对燃料进行充分雾化,同时压缩空气在流通的过程不但给前端头(1)进行良好的散热,自身温度的提高也更利于燃料的雾化;另一路进入压缩空气散热孔(1.10),通过压缩空气散热喷嘴(1.11)的圆周上均布的平行于前端面(1.9)的空气散热喷孔(1.14)高速喷出,在前端头的前端面表面形成一层空气冷却气膜,充分保护了前端头(1)的前端面(1.9)及点火杆端头、内混式燃料喷嘴(1.2)的端头在高温燃烧状态下不被烧蚀,其中,燃料管(1.5)与内混式燃料喷嘴(1.12)的一体结构,在出现内混式燃料喷嘴(1.12)损坏时,便于拆卸更换。
       工作中,湿饱和水蒸汽沿相反切线方向进入环形冷却介质通道(2.3),形成较强的旋转力,在旋转力的作用下,两相流的湿饱和水蒸汽在环形冷却介质通道(2.3)内得到充分混合,通过冷却介质流通孔(2.4),均匀的进入燃烧筒(2.5)外壁的多级螺旋式冷却介质通道(2.5.4),多级螺旋式冷却介质通道(2.54)散热面积大,湿饱和水蒸汽在燃烧段(2,5.1)外壁的流通时间长,流动均匀,有效地保护了燃烧筒(2.5)不被高温烧蚀;湿饱和水蒸汽在经过燃烧筒喉管段(2.5.2)外壁的环锥形冷却介质通道(2.5.5)时,流速大幅增加,保证了喉管段(2.5.2)内部不被高温烟气烧蚀;湿饱和水蒸汽沿环锥形冷却介质通道(2.5.5)末端的冷却介质喷孔(2.5.6)高速喷入燃烧筒(2.5)的混合段(2.5.3),与燃烧后的高温烟气迅速进行热量交换,混合形成复合气体,湿饱和水蒸汽干度得到大幅提升,根据工艺要求,干度可控制提升至100%,甚至达到一定的过热度,复合气体通过燃烧筒(2.5)的混合段(2.5.3)的尾端上的复合气喷孔(2.5.7)喷出,混合段(2.5.3)尾端的锥形及喷孔结构,可使湿饱和水蒸汽与高温烟气在经喷孔喷出时得到充分均匀混合;燃烧筒(2.5)喉管段(2.5.2)的设计结构,使燃烧后的烟气在经过喉管段(2.5.2)后,流速可接近音速,不但消除了燃烧段(2.5.1)内的火焰振荡现象,保证了高压燃烧的稳定,同时避免了混合段(2.5.3)内的湿饱和水蒸汽回流到燃烧筒(2.5)的燃烧段(2.5.1)内,干扰火焰的稳定。本高压燃烧装置后端设置的安全附件接口3.1、压力传感器接口3.2、温度传感器接口3.3,在安装相应的装置后,可对混合后复合气体的状态进行监控,保证了高压燃烧装置的安全运行。
工业实用性
需要说明的是:根据装置制造工艺要求,本装置筒体与后端头之间的连接法兰可以去掉,筒体与后端头设计为一体结构。
序列表自由内容
以上所述,仅是本发明的部分较佳实施例,任何熟悉本领域的技术人员均可能利用上述阐述的技术方案加以修改或将其修改为等同的技术方案。因此,依据本发明的技术方案所进行的任何简单修改或等同置换,尽属于本发明要求保护的范围。

Claims (9)

  1. 一种提高注汽锅炉蒸汽干度的干度提升器,主要包括前端头(1)、筒体(2)、后端头(3),其中前端头(1)与筒体(2)、筒体(2)与后端头(3)均通过法兰形式连接;其特征是:前端头(1)法兰盘的外沿上,压缩空气进气通道(1.3)内部自前端头(1)的法兰螺栓孔中间设有多个垂直于前端头(1)的压缩空气流通孔(1.8),压缩空气进气通道(1.3)通过压缩空气流通孔(1.8)与燃料管通道(1.4)连通;所述的前端头(1)的前端面(1.9)上设有多个压缩空气散热孔(1.10),压缩空气散热孔(1.10)垂直并连通压缩空气流通孔(1.8),压缩空气散热孔(1.10)末端设有空气散热喷嘴(1.11),空气散热喷嘴(1.11)的圆周上均布多个平行于前端面(1.9)的空气散热喷孔(1.14)。
  2. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:所述的燃料管(1.5)中部与燃料管通道(1.4)形成环形空间,环形空间与压缩空气流通孔(1.8)连通;所述的燃料管(1.5)前端设有内混式燃料喷嘴(1.12),内混式燃料喷嘴(1.12)与燃料管(1.5)为一体结构,内混式燃料喷嘴(1.12)与燃料通道(1.4)末端采用石墨挤压密封。
  3. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:所述的筒体(2)前端设有冷却介质入口(2.1),冷却介质连接管(2.2),冷却介质通道(2.3),所述的冷却介质通道(2.3)为环形通道,设在筒体(2)前端法兰盘的外沿上,冷却介质通道(2.3)内部自法兰螺栓孔中间设有多个垂直于筒体(2)的冷却介质流通孔(2.4),冷却介质通道(2.3)通过冷却介质流通孔(2.4)与筒体(2)内部连通;所述的冷却介质入口(2.1)与冷却介质接管(2.2)连接,冷却介质入口(2.1)为法兰连接形式,冷却介质连接管(2.2)分两路与冷却介质通道(2.3)以切线连接,两个切线连接点布在环形通道的直径上,并且互为180°反方向。
  4. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:所述的筒体(2)内部设有燃烧筒(2.5),燃烧筒(2.5)与前端头(1)的前端活动连接;所述的燃烧筒(2.5)分为燃烧段(2.5.1)、喉管段(2.5.2)和混合段(2.5.3),所述的燃烧段(2.5.1)外壁设有多级螺旋式冷却介质通道(2.5.4),所述的喉管段(2.5.2)外壁设有环锥形冷却介质通道(2.5.5),并在末端设有多个冷却介质喷孔(2.5.6),冷却介质喷孔(2.5.6)连通混合段(2.5.3),所述的混合段(2.5.3)尾端为锥形结构,并设有多个复合气喷孔(2.5.7),喷孔(2.5.7)与筒体(2)内部连通。
  5. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:所述的压缩空气入口(1.1)与压缩空气连接管(1.2)连接,压缩空气连接管(1.2)与压缩空气进气通道(1.3)连接;所述的压缩空气进气通道(1.3)为环形通道,设在前端头(1)法兰盘的外沿上。
  6. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:所述的后端头(3)上设有安全附件接口(3.1)、压力传感器接口(3.2)、温度传感器接口(3.3),出口为缩径结构。
  7. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:所述的前端头(1)后段设有散热结构(1.13)。
  8. 根据权利要求1所述的提高注汽锅炉蒸汽干度的干度提升器,其特征是:压缩空气进气通道(1.3)、燃料管通道(1.4)、点火杆通道(1.6)、火焰检测器通道(1.7)分别与燃烧筒(2.5)连通,燃料管(1.5)、点火杆、火焰检测器与对应的通道均通过螺纹压冒紧固在前端头(1)上,密封形式为石墨挤压密封。
  9. 根据权利要求1-7中任一项所述的提高注汽锅炉蒸汽干度的干度提升器的使用方法,其特征是包括以下过程:
    启动时,湿饱和水蒸汽自冷却介质入口(2.1)进入装置,然后控制压缩空气自压缩空气入口(1.1)进入装置,再控制燃料自燃料管(1.5)进入装置,同时按设置参数启动点火器点火,燃料在内混式燃料喷嘴(1.12)中被压缩空气雾化后喷入燃烧筒(2.5)的燃烧段(2.5.1),燃料空气混合物遇明火后即可着火燃烧;
    工作中,压缩空气经压缩空气入口(1.1)、压缩空气进气通道(1.3)、压缩空气流通孔(1.8),一路进入燃料管(1.5)与燃料管通道(1.4)形成的环形空间,并经环形空间进入内混式燃料喷嘴(1.12),对燃料进行充分雾化,同时压缩空气在流通的过程不但给前端头(1)进行良好的散热,自身温度的提高也更利于燃料的雾化;另一路进入压缩空气散热孔(1.10),通过压缩空气散热喷嘴(1.11)的圆周上均布的平行于前端面(1.9)的空气散热喷孔(1.14)高速喷出,在前端头的前端面表面形成一层空气冷却气膜,充分保护了前端头(1)的前端面(1.9)及点火杆端头、内混式燃料喷嘴(1.2)的端头在高温燃烧状态下不被烧蚀,其中,燃料管(1.5)与内混式燃料喷嘴(1.12)的一体结构,在出现内混式燃料喷嘴(1.12)损坏时,便于拆卸更换;
    工作中,湿饱和水蒸汽沿相反切线方向进入环形冷却介质通道(2.3),形成较强的旋转力,在旋转力的作用下,两相流的湿饱和水蒸汽在环形冷却介质通道(2.3)内得到充分混合,通过冷却介质流通孔(2.4),均匀的进入燃烧筒(2.5)外壁的多级螺旋式冷却介质通道(2.5.4),多级螺旋式冷却介质通道(2.54)散热面积大,湿饱和水蒸汽在燃烧段(2,5.1)外壁的流通时间长,流动均匀,有效地保护了燃烧筒(2.5)不被高温烧蚀;湿饱和水蒸汽在经过燃烧筒喉管段(2.5.2)外壁的环锥形冷却介质通道(2.5.5)时,流速大幅增加,保证了喉管段(2.5.2)内部不被高温烟气烧蚀;湿饱和水蒸汽沿环锥形冷却介质通道(2.5.5)末端的冷却介质喷孔(2.5.6)高速喷入燃烧筒(2.5)的混合段(2.5.3),与燃烧后的高温烟气迅速进行热量交换,混合形成复合气体,湿饱和水蒸汽干度得到大幅提升,根据工艺要求,干度可控制提升至100%,甚至达到一定的过热度,复合气体通过燃烧筒(2.5)的混合段(2.5.3)的尾端上的复合气喷孔(2.5.7)喷出,混合段(2.5.3)尾端的锥形及喷孔结构,可使湿饱和水蒸汽与高温烟气在经喷孔喷出时得到充分均匀混合;燃烧筒(2.5)喉管段(2.5.2)的设计结构,使燃烧后的烟气在经过喉管段(2.5.2)后,流速可接近音速,不但消除了燃烧段(2.5.1)内的火焰振荡现象,保证了高压燃烧的稳定,同时避免了混合段(2.5.3)内的湿饱和水蒸汽回流到燃烧筒(2.5)的燃烧段(2.5.1)内,干扰火焰的稳定。
     
PCT/CN2019/130531 2019-04-26 2019-12-31 一种提高注汽锅炉蒸汽干度的干度提升器及方法 WO2020215797A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/594,381 US20220178535A1 (en) 2019-04-26 2019-12-31 Dryness improving device and method for improving dryness of steam of steam injection boiler
CA3136860A CA3136860A1 (en) 2019-04-26 2019-12-31 Dryness raiser and method for improving steam dryness of steam injection boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910344365.9 2019-04-26
CN201910344365 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020215797A1 true WO2020215797A1 (zh) 2020-10-29

Family

ID=68550198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130531 WO2020215797A1 (zh) 2019-04-26 2019-12-31 一种提高注汽锅炉蒸汽干度的干度提升器及方法

Country Status (4)

Country Link
US (1) US20220178535A1 (zh)
CN (1) CN110486708B (zh)
CA (1) CA3136860A1 (zh)
WO (1) WO2020215797A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486708B (zh) * 2019-04-26 2023-10-20 北京华曦油服石油技术有限公司 一种提高注汽锅炉蒸汽干度的干度提升器及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB175785A (en) * 1920-12-01 1922-03-01 George Urquhart Morgan Improvements in connexion with appliances for burning liquid fuel alone or in conjunction with solid fuel and colloidal mixtures
CN2769700Y (zh) * 2004-12-29 2006-04-05 杨文俊 多功能高压高效燃烧器
CN201053311Y (zh) * 2007-06-08 2008-04-30 杨文俊 高压高温蒸汽氮气二氧化碳发生器
CN101825279A (zh) * 2010-04-06 2010-09-08 东南大学 油喷嘴管路注水式高压燃烧方法
CN102174338A (zh) * 2010-12-31 2011-09-07 中国航天科技集团公司第六研究院第十一研究所 小流量、高混合比、无级调节气液混合燃气发生器
CN104704194A (zh) * 2012-06-25 2015-06-10 阿利安特技术系统公司 压裂设备
CN110486708A (zh) * 2019-04-26 2019-11-22 山东华曦石油技术服务有限公司 一种提高注汽锅炉蒸汽干度的干度提升器及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442898A (en) * 1982-02-17 1984-04-17 Trans-Texas Energy, Inc. Downhole vapor generator
CN2377349Y (zh) * 1999-03-25 2000-05-10 沈阳新光动力机械公司 稠油热采用气汽发生器
CN2573673Y (zh) * 2002-09-13 2003-09-17 吴锦标 一种开采石油稠油的汽化器装置
CN2654854Y (zh) * 2003-08-25 2004-11-10 太仓市新阳光机械制造有限公司 石油热采混合气注气装置
CN201013341Y (zh) * 2007-06-07 2008-01-30 苏州新阳光机械制造有限公司 带喷水调温器的高压混合气发生装置
CN102305404B (zh) * 2011-07-19 2013-02-20 关兵 补燃式超临界压力气液两相燃料发生器燃烧室补燃喷注器
CN102353033B (zh) * 2011-08-09 2013-03-27 江苏大江石油科技有限公司 超临界复合热载体发生器的高温高压燃烧系统
CN102818250B (zh) * 2012-08-13 2014-09-03 山东华曦石油技术服务有限公司 提高注汽锅炉蒸汽干度的方法及装置
CN108079907A (zh) * 2017-12-18 2018-05-29 合肥海川石化设备有限公司 一种新型高干度复合气发生器
CN210688172U (zh) * 2019-04-26 2020-06-05 山东华曦石油技术服务有限公司 一种提高注汽锅炉蒸汽干度的干度提升器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB175785A (en) * 1920-12-01 1922-03-01 George Urquhart Morgan Improvements in connexion with appliances for burning liquid fuel alone or in conjunction with solid fuel and colloidal mixtures
CN2769700Y (zh) * 2004-12-29 2006-04-05 杨文俊 多功能高压高效燃烧器
CN201053311Y (zh) * 2007-06-08 2008-04-30 杨文俊 高压高温蒸汽氮气二氧化碳发生器
CN101825279A (zh) * 2010-04-06 2010-09-08 东南大学 油喷嘴管路注水式高压燃烧方法
CN102174338A (zh) * 2010-12-31 2011-09-07 中国航天科技集团公司第六研究院第十一研究所 小流量、高混合比、无级调节气液混合燃气发生器
CN104704194A (zh) * 2012-06-25 2015-06-10 阿利安特技术系统公司 压裂设备
CN110486708A (zh) * 2019-04-26 2019-11-22 山东华曦石油技术服务有限公司 一种提高注汽锅炉蒸汽干度的干度提升器及方法

Also Published As

Publication number Publication date
US20220178535A1 (en) 2022-06-09
CN110486708B (zh) 2023-10-20
CN110486708A (zh) 2019-11-22
CA3136860A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
CN101067372B (zh) 用于石油热采注气机的高压混合气发生装置
CN103822207B (zh) 一种变压、变工况油烧嘴
CN112460636B (zh) 一种双油路单喷口双燃料喷嘴
CN101975398B (zh) 防回火燃气燃烧器
CN106152585A (zh) 空气制冷器
CN103900070B (zh) 一种可移动式混燃蒸汽发生装置
WO2020215797A1 (zh) 一种提高注汽锅炉蒸汽干度的干度提升器及方法
CN204933779U (zh) 新型炭黑燃料油枪头
CN102353033A (zh) 超临界复合热载体发生器的高温高压燃烧系统
CN2557811Y (zh) 低压燃油雾化喷嘴
CN210688172U (zh) 一种提高注汽锅炉蒸汽干度的干度提升器
CN110822482B (zh) 一种中低热值气体和液体双燃料喷嘴及燃料切换方法
CN106870117A (zh) 水冷式预燃装置
CN201013341Y (zh) 带喷水调温器的高压混合气发生装置
RU2776226C1 (ru) Устройство повышения сухости и способ увеличения степени сухости пара котла для нагнетания пара
CN109575997A (zh) 一种带粉煤预混的高效煤气化烧嘴及其使用方法
CN205782939U (zh) 燃烧喷嘴
CN209147077U (zh) 一种加强雾化型燃油喷枪
CN214581048U (zh) 一种具有多级雾化喷嘴的高干度复合气发生器
CN111998343A (zh) 一种单喷头多束火焰喷嘴
CN219693237U (zh) 一种煤粉燃烧器喷火装置
CN2438931Y (zh) 工业加热炉强化燃烧器
CN102353052B (zh) 复合热载体发生器高压燃烧配风结构
WO2017206283A1 (zh) 燃烧喷嘴及其喷射方法、发生器头部结构、纯氧复合热载体发生器及复合热载体产生方法
CN215647526U (zh) 一种等离子体火炬阳极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3136860

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926048

Country of ref document: EP

Kind code of ref document: A1