WO2020215753A1 - 一种用于电力系统的无人机巡检方法及系统 - Google Patents

一种用于电力系统的无人机巡检方法及系统 Download PDF

Info

Publication number
WO2020215753A1
WO2020215753A1 PCT/CN2019/126108 CN2019126108W WO2020215753A1 WO 2020215753 A1 WO2020215753 A1 WO 2020215753A1 CN 2019126108 W CN2019126108 W CN 2019126108W WO 2020215753 A1 WO2020215753 A1 WO 2020215753A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
accident
control center
drone
terminal
Prior art date
Application number
PCT/CN2019/126108
Other languages
English (en)
French (fr)
Inventor
陈晓锰
郑丽娟
Original Assignee
广州煜煊信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州煜煊信息科技有限公司 filed Critical 广州煜煊信息科技有限公司
Priority to DE212019000129.7U priority Critical patent/DE212019000129U1/de
Publication of WO2020215753A1 publication Critical patent/WO2020215753A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables

Definitions

  • the present invention relates to the field of unmanned aerial vehicles, and more specifically, to an unmanned aerial vehicle inspection method and system for power systems.
  • the reference document CN201510598203X proposes an agricultural work method that maintains a fixed position of a UAV in the regionalization of farmland. It specifically proposes a method of accurately positioning a target through a triangular camera. However, the positioning method has greater limitations In addition, the stability of the drone is highly required, the method is not suitable for other scenarios, and the comparison document does not describe other scenarios.
  • the comparative document CN2016102163394 proposes a system and method for autonomous drone inspection of power transmission lines that use control technology to accurately control the angular displacement of the pan/tilt.
  • the method still requires auxiliary positioning based on GPS positioning. It is difficult to locate and analyze complex situations.
  • the present invention aims to solve the above technical problems at least to a certain extent.
  • the embodiment of the present invention provides an unmanned aerial vehicle inspection method and system used in a power system to solve the problem that the unmanned aerial vehicle cannot effectively complete the inspection task.
  • the present invention provides an unmanned aerial vehicle inspection method for a power system.
  • the method includes:
  • the control center classifies the drones controlled by the control center by function, and numbers the drones according to the function classification;
  • the control center assigns inspection tasks according to the number of the drone
  • the control center judges whether there is a possible accident area based on the information fed back by the drone during the inspection process;
  • control center If the control center discovers possible accident areas through UAV A, the control center will make a preliminary classification of the types of possible accidents;
  • the control center dispatches the nearest UAV B to the area where the accident may occur according to the preliminary classification of the type of accident that may occur;
  • the control center requests UAV A and UAV B to cooperate to re-judge and accurately locate the accident, and obtain the final accident type and accurate accident area based on the feedback information of UAV A and UAV B;
  • the control center plans the processing route according to the final accident type and accurate accident area
  • the control center requests the processing terminal to handle the accident through the planned processing route
  • the control center records the processing process of the processing end.
  • the area where an accident may occur is the area where an accident is likely to occur as determined by the control center, the UAV A and UAV B are only used as the identification of the UAV, and the processing end is capable of handling accidents The end of the capability and the number is greater than or equal to one.
  • the present invention also provides an unmanned aerial vehicle inspection system for a power system.
  • the unmanned aerial vehicle inspection system for an electric power system includes a control center and an unmanned aerial vehicle terminal;
  • the control center includes:
  • the processing module is used to number the UAV terminal according to the function of the UAV terminal;
  • Communication module used to send inspection tasks to the corresponding UAV terminal
  • the UAV terminal includes:
  • the control module is used to receive and control the drone terminal to complete inspection tasks
  • Collection module used to collect information and feed it back to the control module
  • the control module also sends the information collected by the collection module to the communication module when performing the inspection task.
  • the communication module is also used to receive information collected when the UAV terminal performs inspection tasks
  • the processing module is also used for judging whether there is an area where an accident may occur according to the information received by the communication module.
  • the processing module is also used to confirm the UAV terminal required for re-judgment and precise positioning of the accident area according to the judgment result of whether there is an accident area, and plan the route of the UAV terminal for re-judgment and precise positioning. ;
  • the communication module is also used to send the planned route to the UAV terminal required for re-judging and precise positioning of the accident area;
  • the control module is also used to process the information collected by the collection module when the drone terminal moves along the planned route and send the processing result to the communication module;
  • the UAV terminal also includes:
  • the mobile module is used to control the drone terminal to move along the planned route
  • the processing module is also used for the accurate area and the final type of the accident that occurred in the processing result sent by the control module received by the communication module.
  • the functions of the drones are classified and numbered in advance to clarify the functions of the drones and drones with similar functions.
  • the control center judges the accident based on the information fed back by the drone instead of completely handing it over to the drone itself. Since the control center is connected to multiple databases and stores more information, the control center's judgment is more accurate.
  • UAVs have substitute UAVs when performing tasks and receiving scheduling, which ensures the completion of tasks and the reasonable scheduling.
  • Fig. 1 is a flowchart of an unmanned aerial vehicle inspection method used in a power system of the present invention.
  • Fig. 2 is an architecture diagram of an unmanned aerial vehicle inspection system used in a power system according to the present invention.
  • a drone inspection method for a power system includes:
  • the control center classifies the drones controlled by the control center by function, and numbers the drones according to the function classification;
  • S120 The control center assigns inspection tasks according to the number of the drone
  • S130 The control center judges whether there is an area where an accident may occur according to the information fed back by the drone during the inspection process;
  • S150 The control center dispatches the nearest UAV B to the area where the accident may occur according to the preliminary classification of the type of accident that may occur;
  • the control center requests UAV A and UAV B to cooperate to re-judge and accurately locate the accident, and obtain the final accident type and accurate accident area based on the feedback information from UAV A and UAV B;
  • S170 The control center plans the processing route according to the final accident type and accurate accident area
  • S180 The control center requests the processing terminal to handle the accident through the planned processing route
  • the area where an accident may occur is an area where an accident may occur, the type of accident is only used as an identification of the accident type, and the UAV A and UAV B are only used as an identification of the UAV, the processing
  • the terminal is the terminal capable of handling accidents and the number is greater than or equal to one.
  • the step of numbering the drones according to the function classification includes: the control center sets the corresponding function number as the prefix number of the drone according to the function of the drone, and the control center according to the prefix
  • the number and the stored drone information confirm the sequence of the drone in the system, and the control center generates the suffix number of the drone according to the sequence of the drone in the system, and the prefix of the drone
  • the combination of the serial number and the suffix serial number is the serial number of the drone.
  • the numbering of drones makes the functions of drones and the number of similar drones more accurate.
  • the step of the control center assigning the inspection task according to the number of the drone includes the control center determining the function and prefix number of the drone performing the inspection task according to the functions required by the inspection task, and the control center The drones controlled by the control center are screened according to the prefix number and the drones performing the inspection task are determined according to the order of the suffix numbers. Furthermore, if the number of drones required for the inspection task is greater than or equal to one, then The control center re-executes the step of assigning inspection tasks according to the numbers of the drones until the drone group performing the inspection tasks meets the requirements of the inspection tasks.
  • the number assignment task is equivalent to indirectly corresponding to the functions of the drone, which improves the adaptability of the drone to the inspection task.
  • the step of the control center judging whether there is a potential accident area based on the information fed back by the drone during the inspection process includes that the information fed back by the drone is monitored by the function of the drone If the control center determines that the information fed back by the drone is greater than the judging accident interval, the control center determines that the area monitored by the drone is an area where an accident may occur.
  • the judging accident interval is specifically the lower limit interval at which the control center can judge the accident according to the information corresponding to the information monitored by the function of the drone, the inspection task, and the external environment, for example: The item corresponding to the information is smoke density, and the inspection task is highway inspection.
  • the control center judges whether there is a normal smoke density corresponding to the external environment, the smoke density fed back by the drone, and the influence function P of the inspection task on judging the accident interval.
  • the influence function P of the inspection task on the judgment of the accident interval is used to adjust the size of the judgment of the accident interval.
  • the judgment process is processed by the drone, and the feedback information received by the control center also includes the judgment result of the drone.
  • UAV A is a group of UAVs containing more than one UAV, and the control center needs to judge all UAVs in the vicinity of the monitoring area included in UAV A during the judgment process.
  • the feedback information is judged. Setting different judgment intervals for different types of feedback information while using the same judgment method is beneficial to control the judgment results of the method and improve the effectiveness of the task.
  • the step of the control center to preliminarily classify the types of accidents that may occur includes the control center determining the possibility based on the monitoring data of UAV A and the monitoring area of UAV A or the geographic location of UAV A. Preliminary classification of the type of accident. Further, the preliminary classification is divided into natural category and daily category. Dispatching drones based on preliminary classification makes the scheduling method more reasonable.
  • the control center dispatches the nearest UAV B to the area where the accident may occur according to the preliminary classification of the type of accident that may occur.
  • the control center confirms the functions required to accurately determine the accident according to the preliminary classification, and selects the corresponding The drone B.
  • the specific method of selecting the corresponding UAV B is that the control center selects the one with the corresponding prefix number and the closest geographic location based on the geographic location, geographic coordinates, or latitude and longitude location of the area where the accident may occur, and based on the functions required to accurately determine the accident.
  • the human-machine is one of the drones B, and the drone B is a drone group including one or more drones.
  • the selection is a cyclic process, and one drone is selected as the drone B.
  • the control center judges whether UAV B has all the functions required for the preliminary classification to confirm the accurate judgment of the accident. If not, the control center will select UAV B in the process of cyclically selecting UAV B until it controls The center judges that UAV B has all the functions required for the preliminary classification confirmation to accurately judge the accident.
  • the selection process loop allows UAV B to have more functions.
  • the steps for the control center to request UAV A and UAV B to cooperate in re-judgment and precise positioning of the accident include the control center planning and monitoring according to the functions of UAV A and UAV B and the areas where accidents may occur.
  • Route the method of planning and monitoring the route is specifically that a drone monitoring function or prefix number corresponds to a flight route.
  • the control center After the control center plans the route, it sends the planned route and re-judgment request to drone A and drone B.
  • the control center will perform re-judgment and precise positioning based on the information monitored by drones A and B moving along the planned route.
  • the control center performs re-judgment and precise positioning based on the information monitored by drones A and B moving along the planned route.
  • the steps include: drone A and drone B move and divide points along the planned route. Monitor and analyze the data and send it to the control center.
  • the control center locates the accident area according to UAV A and UAV B according to the data after monitoring and analysis along the planned route.
  • One step further, let the drones with corresponding monitoring functions or prefix numbers be drones a, b, c, d...n, for drone a, drone a sends to the received control center
  • the drone a marks the segmentation points as observation points p 1 , p 2 , p 3 , ...
  • UAV a when the drone a moves along the planned route a , UAV a collects data at the position marked with observation point p. If there is an abnormal observation point data, correct the geographic location of the abnormal observation point, and adjust the distance between two observation points adjacent to the abnormal observation point. The route of UAV a is re-planned; if there is no abnormal information collected at all observation points, UAV a uses the cross positioning method to analyze the information collected by UAV a at the observation points.
  • the specific process for the UAV a to analyze the information collected by UAV a at the observation point is as follows: Suppose UAV a selects three observation points p 1 , p 2 and p 3 among the observation points for analysis.
  • the human-machine a selects the geographic locations of the three observation points p 1 , p 2 and p 3 and any suitable base point to establish a solid rectangular coordinate system, according to the geographic locations of the three observation points p 1 , p 2 and p 3
  • the monitored data is used to confirm the interactive area through cross positioning.
  • the overlapping parts of all the interactive areas are analyzed to obtain the overlapping three-dimensional area a; b, c, d...n get the overlapping three-dimensional area b, c, d...n through the same processing process.
  • UAV A and UAV B get the overlapping three-dimensional area, they send the information of the overlapping three-dimensional area to the control center.
  • the overlapping three-dimensional areas a, b, c, d...n are processed to obtain a final overlapping area obtained by overlapping the overlapping three-dimensional areas a, b, c, d...n; furthermore, if the volume of the final overlapping area may exist
  • the control center analyzes the final overlap area.
  • the threshold is a preset value.
  • the step of the control center to analyze the final overlap area includes: Obtain the circumscribed ball o in the final overlapping area.
  • the control center adjusts the planned route corresponding to UAV A and B according to the center and radius of the circumscribed sphere.
  • the adjustment includes translation and zooming.
  • the control center controls UAV A, After the planned route corresponding to B is adjusted, the control center will send the planned route and re-judgment request to drones A and B with corresponding monitoring functions or prefix numbers for processing. If the final volume of the overlapping area is Or if there is a line connecting the two ends within the threshold range, the control center marks the final overlap area as the accident area.
  • the cross positioning method is used to locate the accident more accurately.
  • the control center sends a confirmation application to UAV A and UAV B.
  • drone A and drone B receive the confirmation application, drone A and drone B send a record of the last movement of drone A and drone B along the planned route to the control center.
  • the recorded information of the last time the human-machine A and UAV B moved along the planned route confirms the final accident type of the accident.
  • the final accident type is a specific accident type, such as: circuit failure, fire, or human collision. It is more accurate to make judgments based on the information monitored when the drone moves along the planned route.
  • the control center after the control center requests UAV A and UAV B to cooperate in re-judgment and precise positioning of the accident, the control center also includes the step of detecting whether UAV B has unfinished inspection tasks. If B has a patrol task, the control center cancels drone B to cancel the patrol task, and reassigns the patrol task to drone C without patrol task according to the prefix number of drone B.
  • the included drones are those with the same prefix as the drone number contained in drone B, and drone C and drone B contain the same number of drones, and drone C contains The UAV of UAV inherits the inspection task according to the completion degree or the remaining distance of the inspection task of the UAV contained in UAV B. Substituting UAV C for UAV B ensures the timely completion of inspection tasks.
  • the steps of the control center planning a processing route according to the final accident type and the accurate accident area include: the control center confirms the nearest free processing end in the accurate accident area according to the final accident type, and after the control center confirms the geographic location of the free processing end, The control center plans the processing route of the idle processing end. Planning the processing route in advance is convenient for the control center to deal with and record the accident.
  • the step of the control center recording the processing process of the processing end includes the control center recording the processing process of the accident at the processing end through any drone in the accident area.
  • an unmanned aerial vehicle inspection system for a power system includes:
  • S220 control center
  • the control center includes:
  • the processing module is used to number the UAV terminal according to the function of the UAV terminal and allocate inspection tasks according to the number;
  • S221 Communication module, used to send inspection tasks to the corresponding UAV terminal;
  • the UAV terminal includes:
  • Control module used to receive and control the UAV terminal to complete inspection tasks
  • Collection module used to collect information and feed it back to the control module
  • control module also sends the information collected by the collection module to the communication module when performing the inspection task;
  • the communication module is also used to receive the information sent by the control module when the drone terminal performs the inspection task
  • the processing module is also used to determine whether there is an area where an accident may occur according to the information received by the communication module;
  • the processing module is also used to confirm the UAV terminal required for re-judgment and precise positioning of the accident area according to the judgment result of whether there is an accident area, and plan the route of the UAV terminal for re-judgment and precise positioning. ;
  • the communication module is also used to send the planned route to the UAV terminal required for re-judging and precise positioning of the accident area;
  • the control module is also used to process the information collected by the collection module when the drone terminal moves along the planned route and send the processing result to the communication module;
  • the UAV terminal also includes:
  • S211 Mobile module, used to control the drone terminal to move along the planned route
  • the processing module is also used for the accurate area and the final type of the accident that occurred in the processing result sent by the control module received by the communication module.
  • the processing module numbering the drone terminal according to the function of the drone terminal specifically includes the processing module determining the function of the corresponding drone terminal according to the drone terminal information in the storage module and setting the corresponding The function number is used as the prefix number of the corresponding drone terminal, and the order of the drone terminal in the drone terminal information stored in the storage module is confirmed according to the prefix number and the drone terminal information in the storage module, and the processing The module generates the suffix number of the corresponding drone terminal according to the order of the corresponding drone terminal in the storage module. The prefix number and suffix number of the corresponding drone terminal are combined into the number of the corresponding drone terminal. After the number is generated, the processing module Store the number information in the storage module.
  • the processing module numbers the drone terminals according to the functions of the drone terminals and assigns inspection tasks according to the numbers. Specifically, the processing module determines whether to perform the inspection tasks according to the functions required by the inspection tasks. The function of the human-machine terminal and the prefix number, the processing module screens the UAV terminal controlled by the control center according to the prefix number and determines the UAV terminal performing the inspection task according to the sequence of the suffix number.
  • the collection module continuously collects monitoring data and sends the data to the control module, and the control module will receive the monitoring data sent by the collection module and the drone The current geographic location of the terminal is sent to the communication module of the control center together.
  • the processing module judging whether there is a potential accident area according to the information received by the communication module specifically includes the processing module according to the monitoring data sent by the drone terminal A and the geographic location of the drone terminal A received by the communication module Analyze whether an accident occurs in the monitoring area, and if the processing module determines that the information sent by the UAV terminal A is greater than the judging accident interval, the processing module determines that the area monitored by the UAV terminal A is an area where an accident may occur.
  • the judging accident interval is specifically the lower limit interval in which the processing module can judge the accident according to the items corresponding to the information monitored by the function of the drone terminal A, the inspection task, and the external environment.
  • the processing module determines the possible occurrence of the accident based on the judgment result of whether there is an accident area, the monitoring data of UAV terminal A, the monitoring area of UAV terminal A, and the geographic location of UAV terminal A.
  • Preliminary classification of accident types Furthermore, the preliminary classification is divided into natural category and daily category.
  • the processing module determines the preliminary classification of the type of accident that may occur, the processing module confirms the functions required to accurately determine the accident according to the preliminary classification, and selects the corresponding UAV terminal B. Furthermore, after the processing module forms a re-judgment request and sends it to the drone terminal A and the drone terminal B, it includes that the drone terminals A and B receive the re-judgment request containing the planned route sent by the processing module.
  • the mobile modules of human-machine terminals A and B move along the planned route and send collection instructions to the collection module.
  • UAV terminals A and B collection modules collect the accident area information according to the collection instructions and send the collected information to the control module, control module After processing and recording the collected information, it is sent to the communication module of the control center.
  • the processing module locates the accurate accident area through the processed collected information received by the communication module. After the processing module confirms the accurate accident area, the communication module sends a confirmation application to no one
  • the control modules of drone terminals A and B, and the control modules of drone terminals A and B send the record confirmation of the last movement of drone terminal A and drone terminal B along the planned route to the communication module, and the processing module receives it according to the communication module.
  • the recorded information of the UAV terminal A and B that arrived at the last time along the planned route confirms the final accident type of the accident.

Landscapes

  • Traffic Control Systems (AREA)

Abstract

一种用于电力系统的无人机巡检方法及系统,通过控制中心(S220)对控制中心(S220)管控的无人机进行功能分类,根据功能分类对无人机进行编号;控制中心(S220)根据无人机的编号分配巡检任务;所述控制中心(S220)接收无人机执行巡检任务后所反馈的信息;所述控制中心(S220)根据无人机在巡检过程中反馈的信息判断是否存在可能发生事故区域,使无人机能有效地完成巡检任务,以解决无人机无法有效完成巡检任务的问题。

Description

一种用于电力系统的无人机巡检方法及系统 技术领域
本发明涉及无人机领域,更具体地,涉及一种用于电力系统的无人机巡检方法及系统。
背景技术
在无人机越来越普及的今天,无人机的功能和种类已经十分丰富了,同时无人机替代人们去执行某些任务也变得越来越常见。在日常生活里,无人机通常被用于拍摄取景、农业喷洒、运送轻量物品以及数据采集等。对比文件CN201510598203X提出了一种无人机在农田区域化作业中固定位置的保持的农业工作方式,其中具体提出了一种通过三角摄像精确定位目标的方法,然而所述定位方法的局限性较大且对无人机的稳定性要求高,所述方法不适用于其他场景,对比文件也未对其他场景进行描述。对比文件CN2016102163394提出了一种利用控制技术对云台的角度位移进行精准控制,以实现输电线路的自主巡检无人机的系统及巡检方法,所述方法仍需基于GPS定位进行辅助定位,定位难度大且难以对复杂情况进行分析。
针对上述现有技术中无人机无法有效完成巡检任务的问题,目前尚未提出有效的解决方案。
发明内容
本发明旨在至少一定程度上解决上述技术问题。
本发明实施例提供了一种用于电力系统的无人机巡检方法及系统,以解决无人机无法有效完成巡检任务的问题。
本发明一种用于电力系统的无人机巡检方法,所述方法包括:
控制中心对控制中心管控的无人机进行功能分类,根据功能分类对无人机进行编号;
控制中心根据无人机的编号分配巡检任务;
控制中心根据无人机在巡检过程中反馈的信息判断是否存在可能发生事故区域;
若控制中心通过无人机A发现可能发生事故区域,则控制中心对可能发生事故类型 进行初步分类;
控制中心根据可能发生事故类型的初步分类调度最近的无人机B至可能发生事故区域;
控制中心请求无人机A与无人机B配合对事故进行再判断和精准定位,根据无人机A和无人机B反馈的信息得出最终事故类型和准确事故区域;
控制中心根据最终事故类型和准确事故区域规划处理路线;
控制中心请求处理端通过规划的处理路线对事故进行处理;
控制中心对处理端的处理过程进行记录。
所述可能发生事故区域为控制中心判断的有可能有发生事故发生的区域,所述无人机A以及无人机B仅作为无人机的标识使用,所述处理端为具备对事故的处理能力的端且数量大于等于一个。
本发明还提供一种用于电力系统的无人机巡检系统,所述用于电力系统的无人机巡检系统包括控制中心及无人机终端;
所述控制中心包括:
处理模块,用于根据无人机终端的功能对无人机终端进行编号;
通信模块,用于发送巡检任务至对应的无人机终端;
所述无人机终端包括:
控制模块,用于接收并控制无人机终端完成巡检任务;
采集模块,用于采集信息并反馈至控制模块;
所述控制模块在执行巡检任务时还将采集模块采集的信息发送至通信模块。
所述通信模块还用于接收无人机终端执行巡检任务时采集的信息;
所述处理模块还用于根据通信模块接收到的信息判断是否存在可能发生事故区域。
所述处理模块还用于根据是否存在可能发生事故区域的判断结果确认对发生事故区域再判断和精准定位所需的无人机终端并对无人机终端进行再判断和精准定位的路线进行规划;
所述通信模块还用于发送规划路线至对发生事故区域再判断和精准定位所需的无人机终端;
所述控制模块还用于处理无人机终端沿规划路线移动时采集模块采集的信息并将处理结果发送至通信模块;
其中,所述无人机终端还包括:
移动模块,用于控制无人机终端沿规划路线进行移动;
所述处理模块还用于通过通信模块接收到的控制模块发送的处理结果发生事故的准确区域和最终事故类型。
与现有技术相比,本发明技术方案的优点在于:
1.预先将无人机进行了功能分类并进行了编号,明确了无人机的功能以及相似功能的无人机。
2.控制中心跟据无人机反馈的信息进行事故判断而非完全交由无人机自身判断,由于控制中心连接多个数据库且存储更多信息,控制中心的判断也更为准确。
3.通过调度多个无人机对事故进行协同判断使得控制中心获取的信息更为准确和有效。
4.无人机在执行任务和接收调度时都有替补的无人机,保证了任务的完成和调度的合理。
附图说明
图1为本发明一种用于电力系统的无人机巡检方法的流程图。
图2为本发明一种用于电力系统的无人机巡检系统的架构图。
具体实施方式
实施例1
如图1所述,根据本发明实施例的一方面,提供了一种用于电力系统的无人机巡检方法,所述方法包括:
S110:控制中心对控制中心管控的无人机进行功能分类,根据功能分类对无人机进行编号;
S120:控制中心根据无人机的编号分配巡检任务;
S130:控制中心根据无人机在巡检过程中反馈的信息判断是否存在可能发生事故区域;
S140:若控制中心通过无人机A发现可能发生事故区域,则控制中心对可能发生事故类型进行初步分类;
S150:控制中心根据可能发生事故类型的初步分类调度最近的无人机B至可能发生事故区域;
S160:控制中心请求无人机A与无人机B配合对事故进行再判断和精准定位,根据无人机A和无人机B反馈的信息得出最终事故类型和准确事故区域;
S170:控制中心根据最终事故类型和准确事故区域规划处理路线;
S180:控制中心请求处理端通过规划的处理路线对事故进行处理;
S190:控制中心对处理端的处理过程进行记录。
所述可能发生事故区域为可能有事故发生的区域,所述发生事故类型仅作为事故类型的标识使用,所述无人机A以及无人机B仅作为无人机的标识使用,所述处理端为具备对事故的处理能力的端且数量大于等于一个。
在具体实施过程中,所述根据功能分类对无人机进行编号的步骤包括,控制中心根据无人机的功能设置对应的功能编号作为所述无人机的前缀编号,控制中心根据所述前缀编号和存储的无人机信息确认所述无人机在系统中的排序,控制中心根据所述无人机在系统中的排序生成所述无人机的后缀编号,所述无人机的前缀编号和后缀编号组合为所述无人机的编号。对无人机的编号使得无人机的功能和相似无人机的数量更为准确。
具体地,所述控制中心根据无人机的编号分配巡检任务的步骤包括,控制中心根据巡检任务所需要的功能确定执行所述巡检任务的无人机的功能和前缀编号,控制中心根据前缀编号筛选控制中心管控的无人机并根据后缀编号的排序确定执行所述巡检任务的无人机,更进一步的,若所述巡检任务需要的无人机数量大于等于一,则控制中心重新执行所述根据无人机的编号分配巡检任务的步骤直到执行巡检任务的无人机组满足巡检任务需求。编号分配任务等于间接地对应了无人机具备的功能,提高了无人机与巡检任务的适配度。
具体地,所述控制中心根据无人机在巡检过程中反馈的信息判断是否存在可能发生事故区域的步骤包括,所述无人机反馈的信息为通过所述无人机的功能所监测到的外界信息,若控制中心判断所述无人机反馈的信息大于判断事故区间,则控制中心判断所述无人机所监测的区域为可能发生事故区域。所述判断事故区间具体为控制中心根据所述无人机的功能所监测到的信息对应的项目、巡检任务以及外界环境能够判断事故的下限区间,例如:若感烟探测无人机反馈的信息对应的项目为烟雾浓度,巡检任务为公路巡检,则控制中心根据外界环境所对应正常烟雾浓度、无人机反馈的烟雾浓度以及巡检任务对判断事故区间的影响函数P判断是否存在可能发生事故区域,所述巡检任务对判断事故区间的影响函数P用于对判断 事故区间大小的调控。更进一步地,判断过程由无人机进行处理,控制中心接收的反馈信息还包括无人机的判断结果。又更进一步的,无人机A为包含大于等于一个无人机的无人机群组,控制中心在判断过程中需同时根据无人机A中所包含的所有在监测区域附近的无人机反馈的信息进行判断。对不同种类的反馈信息设置不同的判断区间同时使用同样的判断方式有利于对所述方法判断结果的调控以及提高任务的有效性。
具体地,所述控制中心对可能发生事故类型进行初步分类的步骤包括,控制中心根据无人机A的监测数据,以及无人机A的监测区域或无人机A的地理位置确定所述可能发生事故类型的初步分类。更近一步地,所述初步分类分为自然类和日常类。根据初步分类进行无人机调度使调度方式更为合理。
具体地,所述控制中心根据可能发生事故类型的初步分类调度最近的无人机B至可能发生事故区域的步骤包括,控制中心根据所述初步分类确认准确判断事故所需的功能,并选取对应的无人机B。选取对应的无人机B的方式具体为,控制中心根据可能发生事故区域的地理位置、地理坐标或经纬位置,并根据准确判断事故所需的功能选取拥有对应前缀编号且地理位置最接近的无人机作为无人机B中之一,所述无人机B为包括大于等于一个无人机的无人机群组,所述选取为循环过程,选取一个无人机作为无人机B中之一后,控制中心判断无人机B是否具备所述初步分类确认准确判断事故所需的全部功能,若未完全具备,则控制中心循环选取无人机B的过程选取无人机,直至控制中心判断无人机B具备所述初步分类确认准确判断事故所需的全部功能。选取过程循环使无人机B可具备更多的功能。
具体地,控制中心请求无人机A与无人机B配合对事故进行再判断和精准定位的步骤包括,控制中心根据无人机A与无人机B具备的功能以及可能发生事故区域规划监测路线,所述规划监测路线方式具体为,一个无人机监测功能或前缀编号对应一条飞行路线,控制中心规划路线后将规划路线与再判断请求发送至无人机A与无人机B中具备对应监测功能或前缀编号的无人机,控制中心根据无人机A、B沿所述规划路线移动所监测到的信息进行再判断和精准定位。
具体地,控制中心根据无人机A、B沿所述规划路线移动所监测到的信息进行再判断和精准定位的步骤包括,无人机A与无人机B沿规划路线进行移动和分点监测并将数据分析后发送至控制中心,控制中心根据无人机A与无人机B根据沿规划路线监测并分析后的数据定位事故区域。更近一步地,设所述具备对应监测功能或前缀编号的无人机为无人机a、b、c、d…n,对于无人机a,无人机a对接收到的控制中心发送的无人机a对应的规划路线a 进行分段后,无人机a标记分段点为观测点p 1、p 2、p 3、…p n,当无人机a沿规划路线a移动时,无人机a在标记了观测点p的位置进行数据采集,若出现观测点数据异常,则对异常的观测点的地理位置进行修正,且对与异常观测点相邻两个观测点之间的路线进行重新规划;若所有观测点都未出现采集的信息异常时,无人机a用交叉定位法对无人机a在观测点所采集的信息进行分析。所述无人机a对无人机a在观测点所采集的信息进行分析的具体过程为,设无人机a选取观测点中p 1、p 2和p 3三个观测点进行分析,无人机a选取观测点中p 1、p 2和p 3三个观测点的地理位置以及任意合适的基点建立立体直角坐标系后,根据p 1、p 2和p 3三个观测点的地理位置以及监测到的数据通过交叉定位的方式确认交互的区域,通过对规划路线a上所有观测点逐三个进行分析后,对所有交互的区域的重叠部分进行分析得到重叠立体区域a;无人机b、c、d…n通过相同处理过程得到重叠立体区域b、c、d…n,无人机A和无人机B得到重叠立体区域后发送重叠立体区域的信息至控制中心,控制中心对重叠立体区域a、b、c、d…n进行处理后得到一个由重叠立体区域a、b、c、d…n进行重叠得到的最终重叠区域;更进一步地,若最终重叠区域的体积或存在两端点的连线大于或小于阈值时,则控制中心对最终重叠区域进行分析,所述阈值为预设定的值,控制中心对最终重叠区域进行分析的步骤包括,控制中心根据最终重叠区域的得到最终重叠区域的外接球o,控制中心根据外接球的球心和半径,对无人机A、B对应的规划路线进行调整,所述调整包括平移和缩放,控制中心对无人机A、B对应的规划路线进行调整后,控制中心将规划路线与再判断请求发送至无人机A与无人机B中具备对应监测功能或前缀编号的无人机进行处理,若最终重叠区域的体积或存在两端点的连线在阈值范围内,则控制中心标记最终重叠区域为事故区域。使用了交叉定位法对事故进行更精准的定位。
具体地,控制中心根据无人机A与无人机B根据沿规划路线监测并分析后的数据定位事故区域的步骤后,控制中心发送确认申请至无人机A与无人机B,无人机A与无人机B接收到确认申请后,无人机A与无人机B发送包含无人机A与无人机B最后一次沿规划路线移动的记录确认至控制中心,控制中心根据无人机A与无人机B最后一次沿规划路线移动的记录信息确认发生事故的最终事故类型。所述最终事故类型为具体的事故类型,如:电路故障、失火或人为碰撞等。通过无人机沿规划路线移动时监测到的信息进行的判断更为准确。
具体地,控制中心请求无人机A与无人机B配合对事故进行再判断和精准定位的步骤 后还包括,控制中心检测无人机B是否有未完成的巡检任务,若无人机B有巡检任务,则控制中心取消无人机B取消巡检任务,并根据无人机B前缀编号重新分配巡检任务给无巡检任务的无人机C,所述无人机C中包含的无人机是与无人机B中包含的无人机的编号有相同前缀的无人机,且无人机C与无人机B包含无人机数量相等,无人机C中包含的无人机根据无人机B中包含的无人机对无人机B中包含的无人机的巡检任务的完成度或剩余路程继承巡检任务。通过无人机C对无人机B进行替补保证了巡检任务的及时完成。
具体地,控制中心根据最终事故类型和准确事故区域规划处理路线的步骤包括,控制中心根据最终事故类型确认准确事故区域最近的空闲的处理端,控制中心确认所述空闲的处理端的地理位置后,控制中心对空闲的处理端的处理路线进行规划。提前规划好处理路线便于控制中心对发生事故的处理和记录。
具体地,控制中心对处理端的处理过程进行记录的步骤包括,控制中心通过在事故区域的任意无人机对处理端对事故的处理过程进行记录。
实施例2
如图2所述,根据本发明实施例的一方面,还提供了一种用于电力系统的无人机巡检系统,所述用于电力系统的无人机巡检系统包括:
S220:控制中心;
S210:无人机终端;
所述控制中心包括:
S222:处理模块,用于根据无人机终端的功能对无人机终端进行编号并根据编号分配巡检任务;
S221:通信模块,用于发送巡检任务至对应的无人机终端;
所述无人机终端包括:
S212:控制模块,用于接收并控制无人机终端完成巡检任务;
S213:采集模块,用于采集信息并反馈至控制模块;
其中,所述控制模块在执行巡检任务时还将采集模块采集的信息发送至通信模块;
所述通信模块还用于接收无人机终端执行巡检任务时控制模块发送的信息;
所述处理模块还用于根据通信模块接收到的信息判断是否存在可能发生事故区域;
所述处理模块还用于根据是否存在可能发生事故区域的判断结果确认对发生事故区域再判断和精准定位所需的无人机终端并对无人机终端进行再判断和精准定位的路线进行规划;
所述通信模块还用于发送规划路线至对发生事故区域再判断和精准定位所需的无人机终端;
所述控制模块还用于处理无人机终端沿规划路线移动时采集模块采集的信息并将处理结果发送至通信模块;
其中,所述无人机终端还包括:
S211:移动模块,用于控制无人机终端沿规划路线进行移动;
所述处理模块还用于通过通信模块接收到的控制模块发送的处理结果发生事故的准确区域和最终事故类型。
具体实施过程中,所述处理模块根据无人机终端的功能对无人机终端进行编号具体包括,处理模块根据存储模块中的无人机终端信息中确定对应无人机终端的功能并设置对应的功能编号作为对应无人机终端的前缀编号,根据所述前缀编号和存储模块中的无人机终端信息确认所述无人机终端在存储模块保存的无人机终端信息中的排序,处理模块根据对应无人机终端在存储模块中的排序生成对应无人机终端的后缀编号,对应无人机终端的前缀编号和后缀编号组合为对应无人机终端的编号,生成编号后,处理模块将编号信息存入存储模块。
具体地,所述处理模块根据无人机终端的功能对无人机终端进行编号并根据编号分配巡检任务具体包括,处理模块根据巡检任务所需要的功能确定执行所述巡检任务的无人机终端的功能和前缀编号,处理模块根据前缀编号筛选控制中心管控的无人机终端并根据后缀编号的排序确定执行所述巡检任务的无人机终端。
具体地,所述无人机终端在完成控制中心分配的巡检任务的过程中,采集模块持续采集监测数据并将数据发送到控制模块,控制模块将接收采集模块发送的监测数据与无人机终端当前的地理位置一起发送到控制中心的通信模块。
具体地,所述处理模块根据通信模块接收到的信息判断是否存在可能发生事故区域具体包括,处理模块根据通信模块接收到的无人机终端A发送的监测数据和无人机终端A的地理位置分析监测区域是否发生事故,若处理模块判断所述无人机终端A发送的信息大于判断事故区间,则处理模块判断所述无人机终端A所监测的区域为可能发生事故区域。所述判断事故区间具体为处理模块根据所述无人机终端A的功能所监测到的信息对应的项目、巡检任务以及外界环境能够判断事故的下限区间,
具体地,所述处理模块根据是否存在可能发生事故区域的判断结果、无人机终端A的监测数据、无人机终端A的监测区域及无人机终端A的地理位置,确定所述可能发生事故 类型的初步分类。更进一步地,所述初步分类分为自然类和日常类。
具体地,所述处理模块确定所述可能发生事故类型的初步分类后包括,处理模块根据所述初步分类确认准确判断事故所需的功能,并选取对应的无人机终端B。更进一步地,所述处理模块形成再判断请求发送至无人机终端A和无人机终端B后包括,无人机终端A和B接收到处理模块发送的包含规划路线的再判断请求,无人机终端A和B的移动模块沿规划路线进行移动并发送采集指令至采集模块,无人机终端A和B采集模块根据采集指令对事故区域信息进行采集并发送采集信息到控制模块,控制模块对采集信息进行处理和记录后发送至控制中心的通信模块,处理模块通过通信模块接收到的处理后的采集信息定位准确的事故区域,处理模块确认准确事故区域后通信模块发送确认申请至无人机终端A和B,无人机终端A和B的控制模块发送包含无人机终端A与无人机终端B最后一次沿规划路线移动的记录的记录确认至通信模块,处理模块根据通信模块接收到的无人机终端A与B最后一次沿规划路线移动的记录信息确认发生事故的最终事故类型。

Claims (8)

  1. 一种用于电力系统的无人机巡检方法,其特征在于,所述方法包括:
    控制中心对控制中心管控的无人机进行功能分类,根据功能分类对无人机进行编号;
    控制中心根据无人机的编号分配巡检任务;
    所述控制中心接收无人机执行巡检任务后所反馈的信息;
    所述控制中心根据无人机在巡检过程中反馈的信息判断是否存在可能发生事故区域。
  2. 根据权利要求1所述的一种用于电力系统的无人机巡检方法,其特征在于,所述控制中心根据无人机在巡检过程中反馈的信息判断是否存在可能发生事故区域的步骤后还包括:
    若控制中心通过无人机A发现可能发生事故区域,则控制中心对可能发生事故类型进行初步分类;
    控制中心根据可能发生事故类型的初步分类调度最近的无人机B至可能发生事故区域;
    控制中心请求无人机A与无人机B配合对事故进行再判断和精准定位,控制中心根据无人机A和无人机B反馈的信息得出最终事故类型和准确事故区域。
  3. 根据权利要求2所述的一种用于电力系统的无人机巡检方法,其特征在于,所述根据无人机A和无人机B反馈的信息得出最终事故类型和准确事故区域的步骤后还包括:
    控制中心根据最终事故类型和准确事故区域规划处理路线;
    控制中心请求处理端通过规划的处理路线对事故进行处理。
  4. 根据权利要求2所述的一种用于电力系统的无人机巡检方法,其特征在于,所述控制中心根据可能发生事故类型的初步分类调度最近的无人机B至可能发生事故区域的步骤后还包括:
    控制中心检测无人机B是否有未完成的巡检任务;
    若无人机B有巡检任务,则控制中心取消无人机B取消巡检任务,并根据无人机B前缀编号重新分配巡检任务给无巡检任务的无人机C。
  5. 根据权利要求3所述的一种用于电力系统的无人机巡检方法,其特征在于,所述控制中心请求无人机A与无人机B配合对事故进行再判断和精准定位,根据无人机A和无人机B反馈的信息得出最终事故类型和准确事故区域的步骤包括:
    控制中心根据无人机A、B沿规划路线移动所监测到的信息进行再判断和精准定位;
    所述规划路线为控制中心根据无人机A与无人机B具备的功能或编号以及可能发生事故区域规划的路线。
  6. 一种用于电力系统的无人机巡检系统,其特征在于,所述用于电力系统的无人机巡检 系统包括控制中心和无人机终端;
    所述控制中心包括:
    处理模块,用于根据无人机终端的功能对无人机终端进行编号;
    通信模块,用于发送巡检任务至对应的无人机终端;
    所述无人机终端包括:
    控制模块,用于接收并控制无人机终端完成巡检任务;
    采集模块,用于采集信息并反馈至控制模块;
    所述控制模块在执行巡检任务时还将采集模块采集的信息发送至通信模块。
  7. 根据权利要求6所述的一种用于电力系统的无人机巡检系统,其特征在于,所述通信模块还用于接收无人机终端执行巡检任务时控制模块发送的信息;
    所述处理模块还用于根据通信模块接收到的信息判断是否存在可能发生事故区域。
  8. 根据权利要求7所述的一种用于电力系统的无人机巡检系统,其特征在于,所述处理模块还用于根据是否存在可能发生事故区域的判断结果确认对发生事故区域再判断和精准定位所需的无人机终端并对无人机终端进行再判断和精准定位的路线进行规划;
    所述通信模块还用于发送规划路线至对发生事故区域再判断和精准定位所需的无人机终端;
    所述控制模块还用于处理无人机终端沿规划路线移动时采集模块采集的信息并将处理结果发送至通信模块;
    其中,所述无人机终端还包括:
    移动模块,用于控制无人机终端沿规划路线进行移动;
    所述处理模块还用于通过通信模块接收到的控制模块发送的处理结果发生事故的准确区域和最终事故类型。
PCT/CN2019/126108 2019-04-24 2019-12-17 一种用于电力系统的无人机巡检方法及系统 WO2020215753A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212019000129.7U DE212019000129U1 (de) 2019-04-24 2019-12-17 System zur Inspektion eines Elektroenergiesystems mittels eines unbemannten Luftfahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910334301.0A CN111864618B (zh) 2019-04-24 2019-04-24 一种用于电力系统的无人机巡检方法及系统
CN201910334301.0 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020215753A1 true WO2020215753A1 (zh) 2020-10-29

Family

ID=72941321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126108 WO2020215753A1 (zh) 2019-04-24 2019-12-17 一种用于电力系统的无人机巡检方法及系统

Country Status (2)

Country Link
CN (1) CN111864618B (zh)
WO (1) WO2020215753A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112783195A (zh) * 2020-12-18 2021-05-11 深圳供电局有限公司 多无人机的巡检路线规划方法、装置和计算机设备
CN113452956A (zh) * 2021-02-26 2021-09-28 深圳供电局有限公司 一种输电线路巡检任务智能分配方法及系统
CN113867392A (zh) * 2021-10-13 2021-12-31 上海翼枭航空科技有限公司 一种无人机智能巡检方法、系统、设备及存储介质
CN114237917A (zh) * 2022-02-25 2022-03-25 南京信息工程大学 一种用于电网巡检的无人机辅助边缘计算方法
CN114310889A (zh) * 2021-12-28 2022-04-12 东旭蓝天智慧能源科技有限公司 一种变电站智能机器人巡检系统及其接入运行方法
CN115167408A (zh) * 2022-06-29 2022-10-11 国电电力伊金霍洛旗太阳能发电有限公司 一种基于光伏电站的巡检路线规划系统
CN116704387A (zh) * 2023-08-04 2023-09-05 众芯汉创(江苏)科技有限公司 一种基于视频结构化的电力线路通道巡检系统和方法
CN117498551A (zh) * 2023-11-06 2024-02-02 南京允能日新智慧能源有限公司 一种变电站智能巡检管控系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113129469A (zh) * 2021-04-08 2021-07-16 深圳市国汇计量质量检测有限公司 一种巡检监控方法和系统以及计算机可读存储介质
CN114063638A (zh) * 2021-10-15 2022-02-18 中电科翌智航(宁夏)科技有限公司 无人机巡查系统及智慧赋能城市应急设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824233A (zh) * 2014-03-07 2014-05-28 国家电网公司 基于gis的无人机电力线路巡检调度平台及方法
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法
CN106780825A (zh) * 2016-12-09 2017-05-31 广东电网有限责任公司肇庆供电局 电网线路巡检装置
CN107357313A (zh) * 2017-08-15 2017-11-17 成都优艾维智能科技有限责任公司 一种基于无人机巡检图像的输电线路故障维护系统及方法
CN107783012A (zh) * 2017-09-23 2018-03-09 南京律智诚专利技术开发有限公司 一种基于无人机的城市郊区高压电缆排查系统
WO2018046492A1 (de) * 2016-09-07 2018-03-15 Siemens Aktiengesellschaft Verfahren zur steuerung unbemannter flugobjekte

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8255170B2 (en) * 2006-11-02 2012-08-28 The Boeing Company Remote nondestructive inspection systems and methods
US20120250010A1 (en) * 2011-03-31 2012-10-04 Richard Charles Hannay Aerial Inspection System(s) and Method(s)
CN103824340B (zh) * 2014-03-07 2015-12-02 山东鲁能智能技术有限公司 无人机输电线路智能巡检系统及巡检方法
CN105226556B (zh) * 2015-09-23 2018-04-24 深圳奥特迅电力设备股份有限公司 一种电力巡线装置及方法
CN105262989B (zh) * 2015-10-08 2018-08-14 成都时代星光科技有限公司 铁路线空中无人机自动巡查与实时图像采集传输方法
JP2017131019A (ja) * 2016-01-19 2017-07-27 中国電力株式会社 送電設備の点検システム
CN105739512B (zh) * 2016-02-01 2018-11-02 成都通甲优博科技有限责任公司 无人机自动巡检系统及方法
CN105790155B (zh) * 2016-04-08 2018-11-13 四川桑莱特智能电气设备股份有限公司 一种基于差分gps的输电线路无人机自主巡检系统及方法
CN105809995A (zh) * 2016-05-18 2016-07-27 中国计量大学 基于飞行器网络的交通事故应急救援监控系统和方法
CN106379535A (zh) * 2016-09-29 2017-02-08 深圳大学 一种基于无人机的现代有轨电车接触网巡检方法及装置
CN107479571A (zh) * 2017-07-25 2017-12-15 中国电力科学研究院 一种基于四维信息管理空间的无人机电力巡检系统及方法
CN108820247B (zh) * 2018-04-28 2022-12-02 广州亿航智能技术有限公司 适应集群航点任务的无人机集群监控方法及系统
CN109187558A (zh) * 2018-10-10 2019-01-11 中南大学 一种基于无人机的光伏电站自动巡检系统
CN109408611A (zh) * 2018-11-20 2019-03-01 国网河南省电力公司信息通信公司 一种电力应急系统
CN109573030A (zh) * 2018-12-18 2019-04-05 哈瓦国际航空技术(深圳)有限公司 一种无人机巡检方法及巡检系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824233A (zh) * 2014-03-07 2014-05-28 国家电网公司 基于gis的无人机电力线路巡检调度平台及方法
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法
WO2018046492A1 (de) * 2016-09-07 2018-03-15 Siemens Aktiengesellschaft Verfahren zur steuerung unbemannter flugobjekte
CN106780825A (zh) * 2016-12-09 2017-05-31 广东电网有限责任公司肇庆供电局 电网线路巡检装置
CN107357313A (zh) * 2017-08-15 2017-11-17 成都优艾维智能科技有限责任公司 一种基于无人机巡检图像的输电线路故障维护系统及方法
CN107783012A (zh) * 2017-09-23 2018-03-09 南京律智诚专利技术开发有限公司 一种基于无人机的城市郊区高压电缆排查系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112783195B (zh) * 2020-12-18 2023-09-19 深圳供电局有限公司 多无人机的巡检路线规划方法、装置和计算机设备
CN112783195A (zh) * 2020-12-18 2021-05-11 深圳供电局有限公司 多无人机的巡检路线规划方法、装置和计算机设备
CN113452956A (zh) * 2021-02-26 2021-09-28 深圳供电局有限公司 一种输电线路巡检任务智能分配方法及系统
CN113867392A (zh) * 2021-10-13 2021-12-31 上海翼枭航空科技有限公司 一种无人机智能巡检方法、系统、设备及存储介质
CN114310889A (zh) * 2021-12-28 2022-04-12 东旭蓝天智慧能源科技有限公司 一种变电站智能机器人巡检系统及其接入运行方法
CN114310889B (zh) * 2021-12-28 2023-11-14 东旭蓝天智慧能源科技有限公司 一种变电站智能机器人巡检系统及其接入运行方法
CN114237917A (zh) * 2022-02-25 2022-03-25 南京信息工程大学 一种用于电网巡检的无人机辅助边缘计算方法
CN114237917B (zh) * 2022-02-25 2022-06-10 南京信息工程大学 一种用于电网巡检的无人机辅助边缘计算方法
CN115167408A (zh) * 2022-06-29 2022-10-11 国电电力伊金霍洛旗太阳能发电有限公司 一种基于光伏电站的巡检路线规划系统
CN115167408B (zh) * 2022-06-29 2024-01-12 国电电力伊金霍洛旗太阳能发电有限公司 一种基于光伏电站的巡检路线规划系统
CN116704387B (zh) * 2023-08-04 2023-10-13 众芯汉创(江苏)科技有限公司 一种基于视频结构化的电力线路通道巡检系统和方法
CN116704387A (zh) * 2023-08-04 2023-09-05 众芯汉创(江苏)科技有限公司 一种基于视频结构化的电力线路通道巡检系统和方法
CN117498551A (zh) * 2023-11-06 2024-02-02 南京允能日新智慧能源有限公司 一种变电站智能巡检管控系统
CN117498551B (zh) * 2023-11-06 2024-04-16 南京允能日新智慧能源有限公司 一种变电站智能巡检管控系统

Also Published As

Publication number Publication date
CN111864618B (zh) 2021-09-10
CN111864618A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2020215753A1 (zh) 一种用于电力系统的无人机巡检方法及系统
Sabattini et al. The pan-robots project: Advanced automated guided vehicle systems for industrial logistics
Song et al. Persistent UAV service: An improved scheduling formulation and prototypes of system components
JP4926958B2 (ja) 複数の分散エレメントによる自動探索システム
Berrahal et al. Border surveillance monitoring using quadcopter UAV-aided wireless sensor networks
US11475671B2 (en) Multiple robots assisted surveillance system
CN113724520B (zh) 车路协同信息处理方法、装置、电子设备以及存储介质
US10480953B2 (en) Semi-autonomous monitoring system
CN108803667B (zh) 一种无人机协同监测与跟踪方法
EP3680648A1 (en) Port machinery inspection device and inspection method
US11380103B2 (en) Coverage device, moving body, control device, and moving body distributed control program
EP4148385A1 (en) Vehicle navigation positioning method and apparatus, and base station, system and readable storage medium
CN115187005B (zh) 调度方法、装置、设备及存储介质
CN108645769A (zh) 一种基于无人机的环境空气质量监测方法
CN112734811B (zh) 一种障碍物跟踪方法、障碍物跟踪装置和芯片
EP4180895A1 (en) Autonomous mobile robots for coverage path planning
US20210171046A1 (en) Method and vehicle system for passenger recognition by autonomous vehicles
KR102119161B1 (ko) 운송 로봇의 실내 위치 인식 시스템
EP4088493A1 (en) Intersection trajectory determination and messaging
US20190235501A1 (en) System and method for identifying vehicle delivery locations utilizing scout autonomous vehicles
Chandarana et al. Determining effective swarm sizes for multi-job type missions
CN116931599A (zh) 光伏发电场调度机器人的路线控制方法
CN114550107B (zh) 基于无人机集群的桥梁联动智能巡检方法、系统及云平台
US20230125312A1 (en) Supporting an aircraft on a mission in which an intent of the aircraft is conveyed responsive to a lost-link event
US20230042820A1 (en) Systems and methods for providing obstacle information to aircraft operator displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926161

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19926161

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 15/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19926161

Country of ref document: EP

Kind code of ref document: A1