WO2020215717A1 - 一种基于常曲率假设的弹性软体机器人运动学建模方法 - Google Patents

一种基于常曲率假设的弹性软体机器人运动学建模方法 Download PDF

Info

Publication number
WO2020215717A1
WO2020215717A1 PCT/CN2019/120532 CN2019120532W WO2020215717A1 WO 2020215717 A1 WO2020215717 A1 WO 2020215717A1 CN 2019120532 W CN2019120532 W CN 2019120532W WO 2020215717 A1 WO2020215717 A1 WO 2020215717A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft robot
robot
flexible
flexible material
calculate
Prior art date
Application number
PCT/CN2019/120532
Other languages
English (en)
French (fr)
Inventor
徐静
包佳立
陈恳
吴丹
张继文
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020215717A1 publication Critical patent/WO2020215717A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator

Definitions

  • the invention proposes a kinematic modeling method for an elastic soft robot based on the assumption of constant curvature, which belongs to the field of robot kinematics modeling.
  • soft robots made of flexible materials usually have different advantages. For example, soft robots are safer in the process of human-computer interaction, and move more freely in narrow spaces. Movement and operation are more convenient than motor-driven rigid robots.
  • soft robots have the characteristics of continuous deformation and can be divided into two categories: multi-rigid robots with super-redundant degrees of freedom and elastic soft robots made of elastic materials to achieve complex shapes.
  • implanting functional materials into flexible materials to achieve the action of flexible soft robots has a better effect. Therefore, the driver of a soft robot is usually composed of artificial muscles that mimic biological muscles.
  • Artificial muscles are generally defined as driving devices that can be stretched or compressed according to the environment. In nature, stretching and compression are more direct and efficient than rotation, and they play a vital role in biological movement. At the same time, there are also a large number of artificial muscles, such as shape memory alloy (SMA), twisted and coiled polymer (TCP), ionic polymer metal composites (IPMC) and so on.
  • SMA shape memory alloy
  • TCP twisted and coiled polymer
  • IPMC ionic polymer metal composites
  • the constant curvature hypothesis was first applied to a multi-joint robot with 32 degrees of freedom, and a super-redundant degree-of-freedom rigid-body robot modeling method, which was widely used today, was established.
  • D-H parameters are used to calculate the forward kinematics of the hyper-redundant degree-of-freedom rigid robot.
  • the D-H parameter table of each section of the robot is established, and then multiplied together to become the forward kinematics of the hyper-redundant degree of freedom rigid body robot.
  • This method establishes the kinematics of a soft robot for the first time and provides a basis for the proposed piecewise constant curvature model.
  • This type of constant curvature model directly treats the soft robot as a rigid one to calculate the end pose, but does not point out the relationship between the controlled quantity and the controlled quantity of the flexible soft robot, such as the temperature and voltage of artificial muscles and the shape of the soft robot. The relationship between.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and propose a kinematics modeling method for a flexible soft robot based on the assumption of constant curvature.
  • the kinematic modeling of this method is simple and convenient. It uses Kirchhoff's rod theory and the assumption of constant curvature, takes into account the influence of elastic deformation of the flexible soft robot, does not involve the numerical calculation of partial differential equations, and can quickly establish the shape and The relationship between artificial muscle parameters.
  • the present invention proposes a kinematic modeling method for an elastic soft robot based on the assumption of constant curvature, which is characterized in that the method includes the following steps:
  • F actuator is the output force of the flexible material artificial muscle under different working temperatures and different actual lengths.
  • L 0 is the original length of the flexible material artificial muscle without load and at room temperature
  • is the flexible material artificial muscle.
  • T is the working temperature of the elastic software robot
  • L a is the actual length of the artificial muscles flexible material at the operating temperature T
  • k is the equivalent stiffness of the flexible material of the artificial muscle;
  • (2-1) calculates the actual length of the elastic software robot at the operating temperature T; and wherein, at the operating temperature, the actual length L of the robot with the soft elastic artificial muscle is equal to the actual length L a;
  • n is the parallel number of artificial muscles implanted with flexible materials
  • h i is the thickness of the flexible material of the i-th layer
  • E i is the Young's modulus of the flexible material of the i-th layer
  • N is the total number of layers of the flexible material
  • is the undetermined constant
  • d is the distance between the artificial muscle and the reference plane
  • step (3-4) Put the ⁇ value obtained in step (3-4) into the following formula to obtain the radius of curvature r and the angle ⁇ of the flexible soft robot;
  • step (2-1) Using the actual length L obtained in step (2-1), and the radius of curvature r obtained in step (3-5) and the angle ⁇ , the true shape of the flexible soft robot at the working temperature T is obtained, and the kinematics of the flexible soft robot is built The mold is over.
  • the invention utilizes Kirchhoff's rod theory and the assumption of constant curvature, and considers the influence of the elastic deformation of the elastic soft robot, and calculates the overall length change of the artificial muscle inside the elastic soft robot after the length of the artificial muscle changes. Furthermore, the constant curvature assumption is used to calculate the angle change and the change in the radius of curvature of the flexible soft robot, so as to realize the shape prediction of the flexible soft robot and realize the kinematic modeling of the flexible soft robot.
  • the invention has the advantages of convenient and fast modeling, does not involve complex partial differential equation numerical calculations, facilitates the establishment of inverse kinematics and robot control, and can promote the use of flexible soft robots in medical surgery, rescue robots, pipeline flaw detection and other needs in the future Application scenarios with remote operation, limited space, and complex obstacle avoidance tasks; or scenarios where it is used to grab food, fruits and other soft and fragile objects, making full use of the flexibility of flexible soft robots to avoid damage to human bodies and pipelines Or grab the target and cause damage.
  • FIG. 1 is a schematic diagram of an elastic soft robot with two layers of flexible materials in an embodiment of the present invention.
  • the present invention proposes a kinematics modeling method for an elastic soft robot based on the assumption of constant curvature, which is described in further detail below in conjunction with the drawings and specific embodiments.
  • the present invention proposes a kinematic modeling method for a flexible soft robot based on the assumption of constant curvature.
  • the method includes the following steps:
  • F actuator is the output force of the flexible material (twisted and curled polymer) artificial muscle at different working temperatures and different actual lengths.
  • L 0 is the unloaded and room temperature state of the flexible material (twisted and curled polymer) artificial muscle.
  • ⁇ for the flexible material (twist crimped polymer) is equivalent to the thermal expansion coefficient of the artificial muscle
  • T is the working temperature of the elastic software robot
  • L a flexible material (polymer twist crimped) artificial muscles working temperature T
  • T is the equivalent stiffness of the artificial muscle of the flexible material (twisted and curled polymer).
  • (2-1) calculates the actual length of the elastic software robot at the operating temperature T; and wherein, at the operating temperature, the actual length L of the robot with the soft elastic artificial muscle is equal to the actual length L a;
  • n is the parallel number of artificial muscles implanted with flexible materials.
  • the working temperature has no special requirements, and the working temperature range for twisted and curled polymers is 50-140 degrees.
  • h i is the thickness of the flexible material of the i-th layer
  • E i is the Young's modulus of the flexible material of the i-th layer
  • N is the total number of layers of the flexible material.
  • the flexible soft robot has only two layers of flexible materials.
  • the schematic diagram is shown in Figure 1.
  • is the angle of the flexible soft robot calculated in step (3-5)
  • is the bottom surface of the flexible soft robot.
  • d is the distance between the artificial muscle and the bottom surface (the bottom surface is the surface with the smallest radius of curvature in the bending direction of the flexible soft robot, which is also the reference surface).
  • step (3-4) Put the ⁇ value obtained in step (3-4) into the following formula to obtain the radius of curvature r and the angle ⁇ of the flexible soft robot:
  • step (3-5) Using the actual length L obtained in step (2-1), and the radius of curvature r and angle ⁇ obtained in step (3-5), the true shape of the flexible soft robot at the working temperature T can be obtained, and the soft robot moves Scientific modeling is to get specific shapes in different situations, and the kinematics modeling of the flexible soft robot is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Prostheses (AREA)

Abstract

一种基于常曲率假设的弹性软体机器人运动学建模方法,首先建立植入弹性软体机器人柔性材料中的人工肌肉对应的力、位移、控制量的方程;随后计算弹性软体机器人工作温度下的实际长度,并利用柔性材料的力学参数进行计算;最后计算关于中性面的截面惯量矩,计算弹性软体机器人在工作温度下的曲率半径和角度,得到工作温度下的弹性软体机器人的真实形状,完成运动学建模。该建模方法过程简单方便,考虑了弹性软体机器人弹性形变的影响,不涉及偏微分方程的数值计算,能够快速地建立弹性软体机器人的形状以及其中人工肌肉参数的关系。

Description

一种基于常曲率假设的弹性软体机器人运动学建模方法
相关申请的交叉引用
本申请基于申请号为201910343693.7,申请日为2019年04月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明提出一种基于常曲率假设的弹性软体机器人运动学建模方法,属于机器人运动学建模领域。
背景技术
相比于传统的用金属等刚性材料制作的机器人,用柔性材料制作的软体机器人通常具有不同的优势,例如软体机器人在人机交互的过程中更加安全、在狭窄空间中的活动更加自如、作动和操作相比电机驱动的刚体机器人更加方便等。总的来说,软体机器人具有能够连续变形的特点,并且能够被分为两类:具有超冗余自由度的多刚体机器人和用弹性材料制成的用于实现复杂形态的弹性软体机器人。为了能够最大化软体机器人的潜能,在柔性材料中植入功能材料来实现弹性软体机器人的作动具有更好的效果。因此,软体机器人的驱动器,通常由模仿生物肌肉的人工肌肉组成。
人工肌肉通常被定义为可根据环境伸长或是压缩的驱动装置。在自然界中,拉伸和压缩运动相比于转动更加直接和高效,在生物运动中具有至关重要的作用。同时,现在也有大量的人工肌肉,例如形状记忆合金(shape memory alloy,SMA),扭曲卷曲聚合物(twisted and coiled polymer,TCP),离子聚合物金属复合材料(ionic polymer metal composites,IPMC)等。
不难理解,在软体机器人的运用中精确控制是必不可少的,因此作为机器人控制基础的软体机器人运动学建模意义非凡。然而,由于实际问题中,软体机器人的建模复杂程度不同于刚体机器人,常曲率假设在软体机器人的建模过程中被广泛运用。常曲率假设,指的是在工作过程中,软体机器人上各点保持常数。关于软体机器人运动学的建模可以追溯到2000年代,在这段时间中使用常曲率假设进行建模的方法被广泛使用。
最初,杆模型的动力学和能量方程被用于计算早期的超冗余刚体机器人的运动学。然而这些模型都由多个偏微分方程组组成,在实际的应用中难以用于计算超冗余刚体机器人末端的位姿。
2002年,常曲率假设被首次应用在一个包含32个自由度的多关节机器人上,并且建立了后来被广泛沿用至今的超冗余自由度刚体机器人建模方法——常曲率模型。该方法中使用D-H参数进行超冗余自由度刚体机器人计算前向运动学,首先建立各节机器人的D-H参数表,然后连乘起来,成为超冗余自由度刚体机器人的前向运动学。该方法首次建立了软体机器人的运动学,并且为只有提出的分段常曲率模型等提供了基础,但是该类方法仅针对刚体机器人,而对于自身会发生弹性变形的弹性软体机器人却没有作用。该类常曲率模型直接将软体机器人当作刚性的来计算末端位姿,但是没有指出弹性软体机器人的控制量与被控制量之间的关系,例如人工肌肉的温度、电压等参数以及软体机器人形状之间的关系。
另外也有一些使用复杂的杆模型的理论用于建立弹性软体机器人的运动学模型的方法,但是这些方法所带来的计算精度的提升,相比于运算量的增加并不显著。同时,使用数值解法计算偏微分方程组会因初值未知而转变为初值问题,并且使用数值解法会导致逆运动学难以计算。
因此,急需一套能够简单地计算弹性软体机器人的运动学建模方法,并且对弹性软体机器人的弹性特征予以考虑。
发明内容
本发明的目的是为克服已有技术的不足,提出一种基于常曲率假设的弹性软体机器人运动学建模方法。该方法运动学建模简单方便,利用基尔霍夫杆理论以及常曲率假设,考虑了弹性软体机器人弹性形变的影响,不涉及偏微分方程的数值计算,能够快速地建立弹性软体机器人的形状以及其中人工肌肉参数的关系。
本发明提出一种基于常曲率假设的弹性软体机器人运动学建模方法,其特征在于,该方法包括以下步骤:
(1)获取植入弹性软体机器人柔性材料中的人工肌肉的材料参数,建立该人工肌肉对应的力、位移、控制量方程,表达式如下:
Figure PCTCN2019120532-appb-000001
其中,F actuator为柔性材料人工肌肉在不同的工作温度下、不同实际长度下两端的输出力,L 0为柔性材料人工肌肉的空载、室温状态下的原长,α为该柔性材料人工肌肉的等效热膨胀系数,T为弹性软体机器人的工作温度,L a为柔性材料人工肌肉在工作温度T下的实际长度,k为柔性材料人工肌肉的等效刚度;
(2)计算弹性软体机器人在工作温度下的实际长度L,并利用柔性材料的力学参数计算等效杨氏模量E、等效截面积A、机器人弯曲的中性面距离底面高度y 0;具体步骤如下:
(2-1)计算弹性软体机器人在工作温度T下的实际长度;其中,在工作温度下,弹性软体机器人的实际长度L与人工肌肉的实际长度L a相等;
Figure PCTCN2019120532-appb-000002
其中,n为植入柔性材料的人工肌肉的并联数目;
(2-2)自底部为基准面计算柔性材料的力学参数,包括:等效杨氏模量E、等效截面积A、机器人弯曲的中性面距离底面高度y 0
Figure PCTCN2019120532-appb-000003
其中,
Figure PCTCN2019120532-appb-000004
h i为第i层的柔性材料的厚度,E i为第i层的柔性材料的杨氏模量,N为柔性材料的层数总数;
Figure PCTCN2019120532-appb-000005
Figure PCTCN2019120532-appb-000006
其中b为弹性软体机器人的宽度;
(3)计算弹性软体机器人关于中性面的截面惯量矩I,得到弹性软体机器人在工作温度下的曲率半径r和角度θ;具体步骤如下:
(3-1)计算关于中性面的截面惯量矩I:
Figure PCTCN2019120532-appb-000007
I=βI′
其中β为待定常数;
(3-2)使用下式计算弹性软体机器人的力学估算曲率半径r (1)
Figure PCTCN2019120532-appb-000008
其中,d为人工肌肉距离基准面的距离;
(3-3)计算弹性软体机器人的形状估算曲率半径r (2)
Figure PCTCN2019120532-appb-000009
(3-4)计算
Figure PCTCN2019120532-appb-000010
并且外推该值到L=L 0处,纵坐标截距即为待定常数β的值;
(3-5)将步骤(3-4)得到的β值带入下式得到弹性软体机器人的曲率半径r以及角度θ;
Figure PCTCN2019120532-appb-000011
Figure PCTCN2019120532-appb-000012
(4)利用步骤(2-1)得到的实际长度L,以及步骤(3-5)得到的曲率半径r以和角度θ,得到工作温度T弹性软体机器人的真实形状,弹性软体机器人运动学建模完毕。
本发明的特点及有益效果在于:
本发明利用基尔霍夫杆理论以及常曲率假设,考虑弹性软体机器人弹性形变的影响,通过平衡方程计算弹性软体机器人内部人工肌肉发生长度伸缩变化后的整体长度变化。进而利用常曲率假设计算弹性软体机器人的角度变化以及曲率半径的变化,从而实现对于弹性软体机器人的形状预测,实现弹性软体机器人的运动学建模。本发明具有建模方便快捷,不涉及复杂的偏微分方程数值计算的优势,方便逆运动学的建立以及机器人的控制,未来可促进弹性软体机器人被用于医疗手术、救援机器人、管道探伤等需要远程操作、空间受限和需要完成复杂避障任务的应用场景;或被应用于抓取食物、水果等柔软易碎物体的场景,充分利用弹性软体机器人适应性方面的优势,避免对人体、管道或者抓取目标造成损伤。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例中具有两层柔性材料的弹性软体机器人示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明提出一种基于常曲率假设的弹性软体机器人运动学建模方法,下面结合附图和具体实施例进一步详细说明如下。
本发明提出一种基于常曲率假设的弹性软体机器人运动学建模方法,该方法包括以下步骤:
(1)通过查阅文献、实验等方式获得植入弹性软体机器人柔性材料中的人工肌肉的材料参数,包括:人工肌肉的等效刚度、原长尺寸数据、热膨胀系数等,建立该人工肌肉对应的力、位移、控制量方程;
以扭曲卷曲聚合物人工肌肉为例,其力、位移、控制量方程为:
Figure PCTCN2019120532-appb-000013
其中,F actuator为柔性材料(扭曲卷曲聚合物)人工肌肉在不同的工作温度下、不同实际长度下两端的输出力,L 0为柔性材料(扭曲卷曲聚合物)人工肌肉的空载、室温状态下的原长,α为该柔性材料(扭曲卷曲聚合物)人工肌肉的等效热膨胀系数,T为弹性软体机器人的工作温度,L a为柔性材料(扭曲卷曲聚合物)人工肌肉在工作温度T下的实际长度,k为柔性材料(扭曲卷曲聚合物)人工肌肉的等效刚度。
(2)计算弹性软体机器人在工作温度下的实际长度,并利用柔性材料的力学参数计算等效杨氏模量E、等效截面积A、机器人弯曲的中性面距离底面高度y 0具体步骤如下:
(2-1)计算弹性软体机器人在工作温度T下的实际长度;其中,在工作温度下,弹性软体机器人的实际长度L与人工肌肉的实际长度L a相等;
Figure PCTCN2019120532-appb-000014
其中,n为植入柔性材料的人工肌肉的并联数目。
所述工作温度无特殊要求,对于扭曲卷曲聚合物来说工作温度范围为50-140度。
(2-2)自底部为基准面使用下面的公式计算柔性材料的力学参数,包括:等效杨氏模量E、等效截面积A、机器人弯曲的中性面距离底面高度y 0
Figure PCTCN2019120532-appb-000015
其中
Figure PCTCN2019120532-appb-000016
h i为第i层的柔性材料的厚度,E i为第i层的柔性材料的杨氏模量,N为柔性材料的层数总数。
本实施例为弹性软体机器人仅有两层柔性材料的情况,示意图如图1所示;图1中,θ为步骤(3-5)中计算的弹性软体机器人角度,ρ为弹性软体机器人底面的曲率半径,与步骤(3-5)中计算的弹性软体机器人的中性面的曲率半径r和步骤(2-2)中计算的弹性软体机器人的中性面高度y 0之间的关系为:r=ρ+y 0
以N=2为例:
Figure PCTCN2019120532-appb-000017
Figure PCTCN2019120532-appb-000018
Figure PCTCN2019120532-appb-000019
其中b为弹性软体机器人的宽度。
(3)计算弹性软体机器人关于中性面的截面惯量矩I,得到弹性软体机器人在工作温度下的曲率半径r和角度θ;具体步骤如下:
(3-1)计算关于中性面的截面惯量矩I:
Figure PCTCN2019120532-appb-000020
I=βI′
其中β为待定常数。
(3-2)使用下式计算弹性软体机器人的力学估算曲率半径r (1)
Figure PCTCN2019120532-appb-000021
其中,d为人工肌肉距离底面(底面就是弹性软体机器人的弯曲方向曲率半径最小的面,也是基准面)的距离。
(3-3)根据几何关系计算弹性软体机器人的形状估算曲率半径r (2)
Figure PCTCN2019120532-appb-000022
(3-4)计算
Figure PCTCN2019120532-appb-000023
并且外推该值到L=L 0处,纵坐标截距即为待定常数β的值。
(3-5)将步骤(3-4)得到的β值带入下式得到弹性软体机器人的曲率半径r以及角度θ:
Figure PCTCN2019120532-appb-000024
Figure PCTCN2019120532-appb-000025
(4)利用步骤(2-1)得到的实际长度L,以及步骤(3-5)得到的曲率半径r和角度θ,,就能够得到工作温度T下弹性软体机器人的真实形状,软体机器人运动学建模就是得到不同情况下的具体形状,弹性软体机器人运动学建模完毕。
根据本发明实施例的基于常曲率假设的弹性软体机器人运动学建模方法的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (1)

  1. 一种基于常曲率假设的弹性软体机器人运动学建模方法,其特征在于,该方法包括以下步骤:
    (1)获取植入弹性软体机器人柔性材料中的人工肌肉的材料参数,建立该人工肌肉对应的力、位移、控制量方程,表达式如下:
    Figure PCTCN2019120532-appb-100001
    其中,F actuator为柔性材料人工肌肉在不同的工作温度下、不同实际长度下两端的输出力,L 0为柔性材料人工肌肉的空载、室温状态下的原长,α为该柔性材料人工肌肉的等效热膨胀系数,T为弹性软体机器人的工作温度,L a为柔性材料人工肌肉在工作温度T下的实际长度,k为柔性材料人工肌肉的等效刚度;
    (2)计算弹性软体机器人在工作温度下的实际长度L,并利用柔性材料的力学参数计算等效杨氏模量E、等效截面积A、机器人弯曲的中性面距离底面高度y 0;具体步骤如下:
    (2-1)计算弹性软体机器人在工作温度T下的实际长度;其中,在工作温度下,弹性软体机器人的实际长度L与人工肌肉的实际长度L a相等;
    Figure PCTCN2019120532-appb-100002
    其中,n为植入柔性材料的人工肌肉的并联数目;
    (2-2)自底部为基准面计算柔性材料的力学参数,包括:等效杨氏模量E、等效截面积A、机器人弯曲的中性面距离底面高度y 0
    Figure PCTCN2019120532-appb-100003
    其中,
    Figure PCTCN2019120532-appb-100004
    h i为第i层的柔性材料的厚度,E i为第i层的柔性材料的杨氏模量,N为柔性材料的层数总数;
    Figure PCTCN2019120532-appb-100005
    Figure PCTCN2019120532-appb-100006
    其中b为弹性软体机器人的宽度;
    (3)计算弹性软体机器人关于中性面的截面惯量矩I,得到弹性软体机器人在工作温度下的曲率半径r和角度θ;具体步骤如下:
    (3-1)计算关于中性面的截面惯量矩I:
    Figure PCTCN2019120532-appb-100007
    I=βI′
    其中β为待定常数;
    (3-2)使用下式计算弹性软体机器人的力学估算曲率半径r (1)
    Figure PCTCN2019120532-appb-100008
    其中,d为人工肌肉距离基准面的距离;
    (3-3)计算弹性软体机器人的形状估算曲率半径r (2)
    Figure PCTCN2019120532-appb-100009
    (3-4)计算
    Figure PCTCN2019120532-appb-100010
    并且外推该值到L=L 0处,纵坐标截距即为待定常数β的值;
    (3-5)将步骤(3-4)得到的β值带入下式得到弹性软体机器人的曲率半径r以及角度θ;
    Figure PCTCN2019120532-appb-100011
    Figure PCTCN2019120532-appb-100012
    (4)利用步骤(2-1)得到的实际长度L,以及步骤(3-5)得到的曲率半径r以和角度θ,得到工作温度T弹性软体机器人的真实形状,弹性软体机器人运动学建模完毕。
PCT/CN2019/120532 2019-04-26 2019-11-25 一种基于常曲率假设的弹性软体机器人运动学建模方法 WO2020215717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910343693.7 2019-04-26
CN201910343693.7A CN110181506B (zh) 2019-04-26 2019-04-26 一种基于常曲率假设的弹性软体机器人运动学建模方法

Publications (1)

Publication Number Publication Date
WO2020215717A1 true WO2020215717A1 (zh) 2020-10-29

Family

ID=67715128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120532 WO2020215717A1 (zh) 2019-04-26 2019-11-25 一种基于常曲率假设的弹性软体机器人运动学建模方法

Country Status (2)

Country Link
CN (1) CN110181506B (zh)
WO (1) WO2020215717A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110181506B (zh) * 2019-04-26 2020-09-18 清华大学 一种基于常曲率假设的弹性软体机器人运动学建模方法
CN111618824B (zh) * 2020-05-25 2021-05-04 清华大学深圳国际研究生院 一种连续型机器人臂型自估计方法
CN112123366B (zh) * 2020-08-28 2022-02-22 哈尔滨工业大学(深圳) 一种基于人工肌肉驱动的软体抓取装置、方法
CN112818482B (zh) * 2021-01-19 2023-07-21 中国科学院沈阳自动化研究所 弹性光滑曲面约束的细长软体机器人的建模与控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1142118A1 (de) * 1998-12-23 2001-10-10 Rubitec Gesellschaft für Innovation und Technologie der Ruhr-Universität Bochum mbH Tastsensor
CN103978485A (zh) * 2014-05-15 2014-08-13 郑天江 一种仿蛇型软体机器人控制系统和控制方法
US20170136629A1 (en) * 2015-11-18 2017-05-18 Canon Kabushiki Kaisha Sensor, driving mechanism, and robot
CN109664312A (zh) * 2019-01-18 2019-04-23 哈尔滨工业大学 基于热变形的生长型软体机器人预设变形方法
CN110181506A (zh) * 2019-04-26 2019-08-30 清华大学 一种基于常曲率假设的弹性软体机器人运动学建模方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2877619T3 (es) * 2014-06-09 2021-11-17 Soft Robotics Inc Activadores robóticos blandos que utilizan superficies asimétricas
CN108161929B (zh) * 2018-01-02 2020-06-26 北京理工大学 一种负压驱动的气动人工肌肉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1142118A1 (de) * 1998-12-23 2001-10-10 Rubitec Gesellschaft für Innovation und Technologie der Ruhr-Universität Bochum mbH Tastsensor
CN103978485A (zh) * 2014-05-15 2014-08-13 郑天江 一种仿蛇型软体机器人控制系统和控制方法
US20170136629A1 (en) * 2015-11-18 2017-05-18 Canon Kabushiki Kaisha Sensor, driving mechanism, and robot
CN109664312A (zh) * 2019-01-18 2019-04-23 哈尔滨工业大学 基于热变形的生长型软体机器人预设变形方法
CN110181506A (zh) * 2019-04-26 2019-08-30 清华大学 一种基于常曲率假设的弹性软体机器人运动学建模方法

Also Published As

Publication number Publication date
CN110181506A (zh) 2019-08-30
CN110181506B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2020215717A1 (zh) 一种基于常曲率假设的弹性软体机器人运动学建模方法
Wang et al. Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions
She et al. Modeling and validation of a novel bending actuator for soft robotics applications
Faudzi et al. Development of bending soft actuator with different braided angles
Pawlowski et al. Modeling of soft robots actuated by twisted-and-coiled actuators
WO2020207219A1 (zh) 一种利用环境预测优化非模型机器人多轴孔装配控制方法
WO2021184461A1 (zh) 一种基于4d打印柔性指关节手爪及其轨迹跟踪控制方法
Li et al. An untethered soft robotic gripper with high payload-to-weight ratio
Gao et al. A general friction model of discrete interactions for tendon actuated dexterous manipulators
Xie et al. Design and modeling of a hydraulic soft actuator with three degrees of freedom
CN108875162B (zh) 一种柔顺机构空间构型拓扑优化方法
Chang et al. Development of a robotic arm for handicapped people: A task-oriented design approach
Liu et al. Design and analysis of a cable-driven rigid–flexible coupling parallel mechanism with variable stiffness
Cheng et al. Design of cylindrical soft vacuum actuator for soft robots
Luo et al. A rigid morphing mechanism enabled earthworm-like crawling robot
Zhou et al. Design and kinematic of a dexterous bioinspired elephant trunk robot with variable diameter
Guo et al. Design and experiments of pneumatic soft actuators
Yang et al. Model-free 3-d shape control of deformable objects using novel features based on modal analysis
Zhou et al. Optimal design and command filtered backstepping control of exoskeleton with series elastic actuator
Zaidi et al. Interaction modeling in the grasping and manipulation of 3D deformable objects
Pan et al. A novel shape memory alloy actuated soft gripper imitated hand behavior
Haghshenas-Jaryani et al. Torque characterization of a novel pneumatic soft-and-rigid hybrid actuator
Zang et al. Position, Jacobian, decoupling and workspace analysis of a novel parallel manipulator with four pneumatic artificial muscles
Wang et al. Bio-inspired robust control of a robot arm-and-hand system based on human viscoelastic properties
WO2021184505A1 (zh) 一种基于4d打印的软关节手爪及其一致性控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926494

Country of ref document: EP

Kind code of ref document: A1