WO2021184505A1 - 一种基于4d打印的软关节手爪及其一致性控制方法 - Google Patents

一种基于4d打印的软关节手爪及其一致性控制方法 Download PDF

Info

Publication number
WO2021184505A1
WO2021184505A1 PCT/CN2020/088863 CN2020088863W WO2021184505A1 WO 2021184505 A1 WO2021184505 A1 WO 2021184505A1 CN 2020088863 W CN2020088863 W CN 2020088863W WO 2021184505 A1 WO2021184505 A1 WO 2021184505A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft
joint
finger
soft finger
printing
Prior art date
Application number
PCT/CN2020/088863
Other languages
English (en)
French (fr)
Inventor
张玉燕
寇士营
罗小元
温银堂
梁波
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Priority to US17/288,221 priority Critical patent/US20220305668A1/en
Publication of WO2021184505A1 publication Critical patent/WO2021184505A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/12Gripping heads and other end effectors having finger members with flexible finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to the field of soft robot control, in particular to a 4D printing-based soft joint claw and a consistency control method thereof.
  • the initial stage of soft robotics technology is pneumatic drive technology.
  • smart material drive technology is a new research direction of soft robots, and smart material drive technology belongs to the connotation of the concept of 4D printing technology.
  • 4D printing technology is a subversive manufacturing technology that realizes the deformation, degeneration, and function change of smart material components in the dimensions of time and space through the active design of materials or structures.
  • the smart material using 4D printing technology is used for the robot's soft joint claws to make it have intelligent deformation behaviors such as sensing, driving and control.
  • the actuator can deform as expected.
  • Consistency control has been applied to the robotic arm system, and the consistency problem is mainly to control a group of multi-agents with different initial states through the consistency control protocol, so that the position and speed of the multi-agent system converge to a constant value.
  • the multiple soft-finger units in the 4D printed soft-joint gripper control can be regarded as a multi-agent system, which conforms to the basic characteristics of the multi-agent system.
  • the Chinese patent application number is CN107139207A, and the name is: a pneumatic soft finger, a soft finger control system and control method.
  • the method discloses a pneumatic soft finger, a soft finger control system and control method.
  • the software finger includes an air cavity driving and sensing part to measure the bending angle of the finger to achieve closed-loop control of the finger.
  • the control system of this invention is complicated and does not use precise control algorithms.
  • the pneumatic drive is compared with the 4D printing intelligent drive material weight There is no advantage in terms of size and size.
  • the Chinese patent application number is: CN110340933.
  • the name is: an intelligent bionic grasping and clamping device based on 4D printing and molding.
  • the invention discloses an intelligent bionic grasping and clamping device based on 4D printing and molding, which uses 4D printing technology to obtain intelligence.
  • the bionic grasping and clamping device controls the degree of bending through a temperature adjustment mechanism, but this invention does not have a device for detecting and transmitting information, and can only achieve simple bending behavior, and a single bending and clamping device has infinite degrees of freedom and does not achieve precise control.
  • the purpose of the present invention is to provide a soft joint claw based on 4D printing and its consistency control method, which fills the gap of the intelligent bionic gripping and clamping device for forming 4D printing liquid crystal elastomer material, and is embedded with detection and transmission information Device, the previous 4D printing clamping device can only achieve simple bending behavior, and has infinite degrees of freedom, and does not achieve precise control; for this reason, the present invention establishes a kinematic model and adds a consistency control algorithm to it to enable 4D printing The soft-jointed claws achieve a controlled and consistent bend.
  • the present invention provides the following solutions:
  • a soft joint claw based on 4D printing comprising: a palm body and five soft finger units connected to the palm body;
  • Each soft finger unit has two soft knuckles and two phalanges; the phalanges are made of 3D printing resin; the soft knuckles are two symmetrical double-layer film soft knuckle actuators;
  • the double-layer film soft knuckle actuator is made of 4D printed liquid crystal elastomer and polyimide electric heating film, and the bending angle of each double-layer film soft knuckle actuator is changed by electrification or heating stimulation;
  • the film soft finger joint actuator is used to control the soft finger unit to perform reversible bending movement.
  • a bend sensor is attached to the surface of the double-layer film soft knuckle actuator.
  • the polyimide electric heating film is used to adjust the temperature of the double-layer film soft knuckle actuator; the polyimide electric heating film generates Joule heat, the temperature rises, and the liquid crystal elastomer shrinks , The polyimide electric heating film expands, and the contraction and expansion of different layers cause the soft knuckle to bend; the double-layer film soft knuckle actuator bends to the contracted side, and when the temperature drops, it returns to its original state and controls The reversible bending movement of the soft finger unit.
  • the bending angles of the double-layer film soft knuckle actuators are the same; the bending directions of the two double-layer film soft knuckle actuators with symmetrical soft knuckles are opposite.
  • a method for the consistency control of a soft joint paw based on 4D printing which is applied to the soft joint based on 4D printing according to any one of claims 1 to 4
  • the gripper, the method for controlling the consistency of the soft joint gripper based on 4D printing includes:
  • the soft-finger unit is controlled to perform a reversible bending movement according to the soft-finger unit consistency control protocol.
  • determining the position of the soft finger joint mass center and the soft finger joint mass center velocity of any two soft finger joints according to the soft finger joint dynamic model specifically includes:
  • V hi (s) R i-1 ⁇ i (s)+V h(i-1) (s), determine the positions of the soft knuckle mass centers of any two soft knuckles;
  • V hi (s ) Is the position of the center of mass of the soft finger joint;
  • I l is the length of the phalanx, and
  • I h is the length of the soft knuckle.
  • the circle center angle corresponding to the segment is derived, the bending angle of the soft finger joint is derived, and the mass center velocity of the soft finger joint is determined.
  • determining the position of the phalange center of mass and the phalange center of mass velocity of any two phalanges according to the phalangeal dynamic model specifically includes:
  • V 11 is the position of the phalanx centroid of any phalanx
  • V 12 is the position of the phalanx centroid of any phalanx adjacent to the phalanx
  • T is the thickness of the soft finger joint
  • q 1 is the rotation angle of any one of the phalanges
  • q 2 is the rotation angle of the adjacent phalanges
  • the determining the dynamic model of the bending angle of the five soft finger units with respect to the soft finger joint according to the kinetic energy of the soft finger joint and the potential energy of the soft finger joint specifically includes:
  • the determining the consistency control protocol of the soft finger unit by using the dynamic model of the five soft finger units with respect to the bending angle of the soft finger joint as the control target specifically includes:
  • the present invention provides a soft joint claw based on 4D printing and its consistency control method.
  • Actuator as the base of soft knuckle, integrated 3D printing forms a soft knuckle claw, where the soft knuckle is seen as a degree of freedom, which overcomes the shortcomings of the double-layer film soft knuckle actuator with excessive freedom, and
  • Bend soft fingers for modeling established a dynamic model of 4D printed soft joint claws, and determined the consistency control protocol, so that the soft joint claws coordinated actions according to the rules, and finally the position of each soft finger reached the same level, realizing 4D
  • Figure 1 is a perspective view of the 4D printed soft joint hand provided by the present invention.
  • FIG. 2 is a schematic diagram of the structure of a single finger unit model provided by the present invention.
  • FIG. 3 is a schematic diagram of the structure of a double-layer film bending actuator of 4D printing liquid crystal elastomer and polyimide electric heating film provided by the present invention
  • Figure 5 is a flow chart of the 4D printing-based consistency control method for soft joint claws provided by the present invention.
  • FIG. 6 is a diagram of the position topology structure formed by 5 soft fingers provided by the present invention.
  • Figure 7 is a view of the bending angle of 5 soft fingers provided by the present invention.
  • Fig. 8 is a graph showing changes in the bending angular velocity of 5 soft fingers provided by the present invention.
  • Fig. 9 is a graph of the bending control torque variation of 5 soft fingers provided by the present invention.
  • the purpose of the present invention is to provide a soft joint claw based on 4D printing and its consistency control method, which can realize precise control of the soft joint claw.
  • Fig. 1 is the soft joint paw based on 4D printing provided by the present invention.
  • the soft joint paw based on 4D printing consists of 5 soft finger units, namely the first soft finger unit 1, and the second soft finger unit.
  • the joint 11, the second soft finger joint 12 and the two phalanges are the first phalanx 13 and the second phalanx 14, respectively.
  • ⁇ 1 and ⁇ 2 are the bending angles of the three soft finger joints
  • q 1 and q 2 are the rotation angles of the corresponding phalanges.
  • the soft knuckle is composed of a double-layer film soft knuckle actuator made of a double-layer film structure of 4D printed liquid crystal elastomer and polyimide electric heating film. Each layer of liquid crystal elastomer has 7 surfaces. A polyimide electric heating film 8 is attached, and a bending angle detection sensor 9 is attached. The soft knuckle bends when the electric current or heating is applied.
  • the phalanx is made of 3D printed resin and light-weight hard material. The phalanx and the soft knuckle are connected in parallel without any deformation. The soft knuckle bends with the palm as the base.
  • the soft-joint claw can be flexibly rotated and bent with multiple degrees of freedom, which is convenient for grasping objects and realizes bending similar to the "human hand".
  • the invention uses the double-layer film structure of 4D printing liquid crystal elastomer and polyimide electric heating film to make a double-layer film soft knuckle actuator.
  • the thermally responsive liquid crystal elastomer is a polymer that can shrink and deform under temperature stimulation. , The expansion and contraction of different layers after heating causes a larger bending angle.
  • the double-layer film soft knuckle actuator is equipped with a bending angle detection sensor.
  • the Joule heat generated by the polyimide electric heating film changes the temperature of the double-layer film soft knuckle actuator to control the bending amount, and the double layer is fitted by a nonlinear function. Response characteristics of thin film soft knuckle actuators.
  • the soft finger joint of the soft joint hand of the present invention is composed of two symmetrical double-layer film soft finger joint actuators, which are similar to artificial muscles and can realize reverse bending; in order to verify the movement ability of the soft joint hand, look at each soft finger joint With one degree of freedom, the soft finger joints and phalanges are modeled in different coordinate systems, and a dynamic model is established using the Euler-Lagrange equation; the consistency control protocol is determined according to the dynamic model, so that each soft finger The final positions of the units are the same.
  • Each soft finger unit can be regarded as an independent agent, which is mainly aimed at the static position consistency problem of the soft joint hand system with independent models under the undirected topology, and realizes the control of a group of soft finger units with different initial states. The positions of both converged to a constant value. The simulation proved that the soft hand reached a consistent position. Finally, the consistency evaluation was carried out. The control input signal given by the simulation was used to control the soft joint hand to achieve the same position.
  • the liquid crystal elastomer programs the orientation of the liquid crystal cell during the printing process, and then is cross-linked by ultraviolet light; the expansion and contraction of the different layers after heating cause the actuator to bend, and the surface of the double-layer film soft knuckle actuator is attached to the surface.
  • Curvature detection sensor, electrification or temperature stimulation can change the bending angle of each soft knuckle; the two symmetrical double-layer film soft knuckle actuators of the soft knuckle have opposite bending directions, so as to realize the reversible bending movement of the finger unit.
  • the phalanx is a light-weight and fixed high-hardness material, which bends with the soft knuckle, so that each soft knuckle bends as having 1 degree of freedom, and each finger unit has 2 degrees of freedom;
  • the soft knuckle is energized, the liquid crystal elastomer shrinks due to the increase in temperature, and the polyimide polymer expands.
  • the bending unit will bend toward the contracted side. When the power supply is stopped, the bending unit will slowly recover. Undisturbed.
  • Fig. 5 is a flow chart of the consistency control method of the soft joint claw based on 4D printing provided by the present invention. As shown in Fig. 5, the consistency control method of the soft joint claw based on 4D printing includes:
  • Step 501 Obtain the bending angle of the soft finger joint and the rotation angle of the phalanx.
  • step 501 it also includes: energizing the polyimide electric heating film to change the bending angle of each soft knuckle, and measuring the bending angle corresponding to the temperature at each moment and the value of the bending normal stress according to the bending angle detection device, and applying The nonlinear least squares fitting function can obtain the relationship equation between the normal bending stress and the bending angle corresponding to the temperature, and further control the position and speed of each phalanx.
  • a dynamic model is established for the phalanx and the bent soft finger joint respectively;
  • the relationship between the bending angles of the two is
  • Step 502 Establish a dynamic model of the soft finger joint and a dynamic model of the phalange respectively according to the bending angle of the soft finger joint and the rotation angle of the phalanx.
  • Step 503 In the local coordinate system, determine the soft finger joint mass center positions and the soft finger joint mass center speeds of any two soft finger joints according to the soft finger joint dynamic model.
  • the bending radius r i needs to be obtained by the bending angle, and then the lengths I h , I l of the soft knuckle and the phalanx are used to determine the position coordinates of the two phalanges under the global coordinate xoy. Then determine the position coordinates of the soft finger joint under the local coordinates x hi (s) oy hi (s), where the horizontal axis in the local coordinate is the tangent of a point s ⁇ (0 ⁇ I h ) at the bend of the soft finger joint, Finally, with the help of a coordinate transformation matrix, the position coordinates of the soft finger joints are transformed into global coordinates.
  • centroid positions of the two soft knuckles can be expressed as:
  • V hi (s) R i-1 ⁇ i (s)+V h(i-1) (s)
  • I the bending radius
  • T is the thickness of the soft knuckle
  • I the coordinate transformation matrix, which is obtained according to the position and geometric relationship
  • I l is the length of the phalanx
  • the velocity of the center of mass can be obtained by deriving ⁇ i
  • Step 504 In the global coordinate system, determine the phalangeal centroid positions and phalangeal centroid speeds of any two phalanges according to the phalangeal dynamic model.
  • centroid positions of the two phalanges can be expressed as:
  • Step 505 Determine the kinetic energy of the soft finger joint and the potential energy of the soft finger joint according to the position of the center of mass of the soft finger joint and the speed of the center of mass of the soft finger joint.
  • the kinetic and potential energy k hi and u hi of the soft knuckle are:
  • J is the moment of inertia of each phalanx
  • g is the acceleration constant of gravity
  • m l is the masses of the phalanx and soft knuckles respectively.
  • Step 506 Determine phalanx kinetic energy and phalanx potential energy according to the position of the phalanx center of mass and the phalanx center of mass velocity.
  • the kinetic energy and potential energy k li and u li of the phalanx are:
  • Step 507 Determine a dynamic model of the bending angle of the five soft finger units with respect to the soft finger joint according to the kinetic energy of the soft finger joint and the potential energy of the soft finger joint.
  • s ⁇ (0 ⁇ I h ) is a point on the soft knuckle joint.
  • the kinetic energy and potential energy k hi and u hi of the soft knuckle can be obtained, and the kinetic energy of the soft knuckle And potential energy k li and u li .
  • the Lagrangian function is the difference between the total kinetic energy and the total potential energy of the two phalanges and the two soft knuckles, expressed as:
  • the Euler-Lagrange dynamic equation of each soft finger in the system is expressed as:
  • g( ⁇ i ) represents the generalized powerful torque
  • ⁇ i represents the input or control torque generated by each soft finger unit.
  • Step 508 Taking the dynamic models of the five soft finger units with respect to the bending angles of the soft finger joints as the control target, determine the consistency control protocol of the soft finger units.
  • the position communication topology diagram is used to indicate the communication direction of sensory information that changes over time between soft fingers.
  • the consistency control protocol aims at the position consistency problem of soft joint hand systems with the same model and independent of each other. It controls a group of soft knuckles with different initial states, that is, different initial bends and stimulations; feedback of position information between soft fingers To adjust, that is, when t ⁇ , each soft finger reaches the same position and a static state with a speed of 0, realizing the collaborative self-bending and self-deformation design of the soft-jointed hand.
  • the consistency control protocol is as follows:
  • ⁇ i refers to the bending moment of the i-th soft finger unit
  • a ij is the number of edges connecting nodes i and j in the position communication topology.
  • Step 509 Control the soft-finger unit to perform a reversible bending motion according to the soft-finger unit consistency control protocol.
  • the abscissa of Figure 7-9 is time, and the ordinate is the bending angle (degrees), angular velocity (meters) and moment (Newton ⁇ meter), which are tested by specific simulation experiments.
  • the feasibility of the mentioned 4D printing soft joint hand consistency control is to apply the control algorithm to a flat soft joint hand system, which includes 5 soft fingers with the same physical parameters and different initial state quantities.
  • the first joint of the five soft-jointed hands reached a bending angle of about 32°, and the second joint reached a bending angle of about 12°; as shown in Figure 8, the final angular velocity tends to The expected 0m/s; the input torque is shown in Figure 9, so the soft hand can be controlled to achieve consistent bending according to the relationship equation between the torque and the bending control quantity. Consistent, to achieve the self-assembly and self-deformation expected for 4D printing smart materials. The validity of the consistency control method of the soft joint hand is verified.
  • the structure of the invention is reasonable, and the soft knuckles and phalanges are respectively modeled; the idea of consistency control is added, and a group of soft knuckle hands with different initial states are cooperatively controlled to achieve its expected self-assembly by collecting and transmitting sensor information.
  • the present invention overcomes the problem of difficult modeling and control, and realizes the self-sensing self-driving coordinated action of the 4D printed soft joint hand, and innovatively integrates the consistency control theory Used in the self-driving of 4D printing smart material structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manipulator (AREA)
  • Printing Methods (AREA)

Abstract

一种基于4D打印的软关节手爪,包括:掌体(6)以及连接在掌体(6)的五个软手指单元(1-5);每个软手指单元(1-5)上有两个软指关节(11,12)和两节指骨(13,14);指骨(13,14)采用3D打印树脂而成;软指关节(11,12)为两个对称的双层薄膜软指关节执行器;双层薄膜软指关节执行器采用4D打印液晶弹性体(7)和聚酰亚胺电热膜(8)制作而成,通电或加热刺激改变每个双层薄膜软指关节执行器的弯曲角度;双层薄膜软指关节执行器用于控制软手指单元(1-5)进行可逆的弯曲运动。能够实现对软关节手爪的精确控制。还涉及基于4D打印的软关节手爪的一致性控制方法。

Description

一种基于4D打印的软关节手爪及其一致性控制方法 技术领域
本发明涉及软体机器人控制领域,特别是涉及一种基于4D打印的软关节手爪及其一致性控制方法。
背景技术
传统的机械手和气动手都是由复杂部件结构组成,其重量、体积和能耗较大。软体机器人因具备优于传统刚性机器人的适应性、轻量性、柔性,可在大范围内任意改变自身形状和尺寸,不断扩充着机器人的研究领域。
软体机器人技术初期是气动驱动技术,随着科技进步,智能材料和结构已经开始逐步应用到多个研究领域。当前,智能材料驱动技术是软体机器人的全新研究方向,智能材料驱动技术属于4D打印技术概念的内涵。4D打印技术是通过材料或结构的主动设计,在时间和空间的维度上,实现智能材料构件的变形、变性、变功能主动调控的颠覆性制造技术。将利用4D打印技术的智能材料用于机器人软关节手爪,使其具有传感、驱动和控制等智能变形行为,通过智能材料的精确设计,实现智能材料在外界环境刺激下的主动调控,确保其执行机构能够按预期变形。而由于自组装自变形过程多自由度,控制难度大,因此,4D打印软关节手爪的一致性自主变形驱动,实现形状、功能与性能同时精确控制,是一种全新的设计方式。
一致性控制已经应用于机械臂系统,并且一致性问题主要是通过一致性控制协议来控制一组具有不同初始状态的多智能体,使得多智能体系统的位置和速度都收敛到一个常值,而4D打印软关节手爪控制中的多个软体软手指单元可看做一个多智能体系统,符合多智能体系统的基本特点。
经过对现有专利检索,中国专利申请号为:CN107139207A,名称为:一种气动软体手指、软体手指控制系统及控制方法,该方法公开了一种气动软体手指、软体手指控制系统及控制方法,该软体手指包括设有气腔驱动和感知部分,从而对手指弯曲角度进行测量实现手指闭环控制,但该发明控制系统复杂,并且没有采用精确的控制算法,气动驱动相比4D打印智能驱动材料重量和体积 上都没有优势。中国专利申请号为:CN110340933名称为:一种基于4D打印成型的智能仿生抓取夹持装置,该发明公开了一种基于4D打印成型的智能仿生抓取夹持装置,利用4D打印技术获得智能仿生抓取夹持装置,通过温度调节机构控制弯曲程度,但该发明没有检测和传递信息装置,只能实现简单弯曲行为,并且单一弯曲夹持装置具有无穷自由度,没有实现精确控制。
发明内容
本发明的目的是提供一种基于4D打印的软关节手爪及其一致性控制方法,填补了4D打印液晶弹性体材料的成型智能仿生抓取夹持装置的空白,并嵌入了检测和传递信息装置,以往4D打印夹持装置只能实现简单弯曲行为,并且具有无穷自由度,并没有实现精确控制;为此,本发明对其建立了运动学模型并加入了一致性控制算法,使4D打印的软关节手爪达到可控的一致弯曲。
为实现上述目的,本发明提供了如下方案:
一种基于4D打印的软关节手爪,包括:掌体以及连接在所述掌体的五个软手指单元;
每个所述软手指单元上有两个软指关节和两节指骨;所述指骨采用3D打印树脂而成;所述软指关节为两个对称的双层薄膜软指关节执行器;所述双层薄膜软指关节执行器采用4D打印液晶弹性体和聚酰亚胺电热膜制作而成,通电或加热刺激改变每个所述双层薄膜软指关节执行器的弯曲角度;所述双层薄膜软指关节执行器用于控制所述软手指单元进行可逆的弯曲运动。
可选的,所述双层薄膜软指关节执行器的表面贴有弯曲传感器件。
可选的,所述聚酰亚胺电热膜用于调节所述双层薄膜软指关节执行器的温度;所述聚酰亚胺电热膜产生焦耳热,温度升高,所述液晶弹性体收缩,所述聚酰亚胺电热膜发生膨胀,不同层的收缩和膨胀导致所述软指关节的弯曲;所述双层薄膜软指关节执行器向收缩一侧弯曲,当温度下降恢复原状,控制所述软手指单元的可逆弯曲运动。
可选的,所述双层薄膜软指关节执行器的弯曲角度相同;所述软指关节对称的两个双层薄膜软指关节执行器的弯曲方向相反。
一种基于4D打印的软关节手爪的一致性控制方法,所述基于4D打印的软关节手爪的一致性控制方法应用于权利要求1-4任一项所述的基于4D打印的软关节手爪,所述基于4D打印的软关节手爪的一致性控制方法包括:
获取软指关节的弯曲角度以及指骨的转动角度;
根据软指关节的弯曲角度以及所述指骨的转动角度分别建立软指关节动力模型以及指骨动力模型;
在局部坐标系下,根据所述软指关节动力模型确定任意两个所述软指关节的软指关节质心位置和软指关节质心速度;
在全局坐标系下,根据所述指骨动力模型确定任意两个所述指骨的指骨质心位置和指骨质心速度;
根据所述软指关节质心位置以及所述软指关节质心速度确定软指关节动能以及软指关节势能;
根据所述指骨质心位置和所述指骨质心速度确定指骨动能以及指骨势能;
根据所述软指关节动能以及所述软指关节势能确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型;
以所述5个软手指单元关于所述软指关节的弯曲角度的动力学模型为控制目标,确定软手指单元一致性控制协议;
根据所述软手指单元一致性控制协议控制所述软手指单元进行可逆的弯曲运动。
可选的,所述在局部坐标系下,根据所述软指关节动力模型确定任意两个所述软指关节的软指关节质心位置和软指关节质心速度,具体包括:
根据公式V hi(s)=R i-1γ i(s)+V h(i-1)(s)确定任意两个所述软指关节的软指关节质心位置;其中,V hi(s)为软指关节质心位置;
Figure PCTCN2020088863-appb-000001
为坐标转换矩阵;
Figure PCTCN2020088863-appb-000002
I l为指骨的长度,I h为软指关节的长度。 θ i为所述软指关节的弯曲角度,i=1,2,3,4,5;
Figure PCTCN2020088863-appb-000003
段对应的圆心角度,对所述软指关节的弯曲角度求导,确定软指关节质心速度。
可选的,所述在全局坐标系下,根据所述指骨动力模型确定任意两个所述指骨的指骨质心位置和指骨质心速度,具体包括:
根据公式
Figure PCTCN2020088863-appb-000004
以及
Figure PCTCN2020088863-appb-000005
确定任意两个所述指骨的指骨质心位置;其中,V l1为任一指骨的指骨质心位置;V l2为所述任一指骨相邻指骨的指骨质心位置;
Figure PCTCN2020088863-appb-000006
为弯曲半径;T为软指关节的厚度;q 1为所述任一指骨的转动角度;q 2为所述相邻指骨的转动角度;
对所述指骨的转动角度求导,确定指骨质心速度。
可选的,所述根据所述软指关节动能以及所述软指关节势能确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型,具体包括:
根据公式
Figure PCTCN2020088863-appb-000007
确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型;其中,
Figure PCTCN2020088863-appb-000008
为对称惯性矩阵;
Figure PCTCN2020088863-appb-000009
为科里奥力矩;g(θ i)为广义有势力矩;τ i为5个软手指单元关于所述软指关节的弯曲角度的动力学模型,τ i表示每个所述软手指单元所产生的输入量或控制力矩;
Figure PCTCN2020088863-appb-000010
为所述软指关节的弯曲角度的角速度;
Figure PCTCN2020088863-appb-000011
为所述软指关节的弯曲角度的加速度。
可选的,所述以所述5个软手指单元关于所述软指关节的弯曲角度的动力学模型为控制目标,确定软手指单元一致性控制协议,具体包括:
根据公式
Figure PCTCN2020088863-appb-000012
确定软手指单元一致性控制协议;其中,a ij为 位置通信拓扑图所对应的拉普拉斯矩阵中第i行j列的数;
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供了一种基于4D打印的软关节手爪及其一致性控制方法,将4D打印智能复合材料双层薄膜软指关节执行器作为软指关节基体,一体化3D打印成型了一个软关节手爪,其中软指关节看为一个自由度,克服了双层薄膜软指关节执行器具有自由度过高的缺点,并对弯曲软手指进行建模,建立了4D打印软关节手爪的动力学模型,并确定了一致性控制协议,使软关节手爪依照规则相互协调动作,最终每个软手指位置达到一致,实现4D打印智能材料预期的自组装与自变形;协同一致动作提高了系统的智能化和可操作化程度,并且软体手的精确抓取和协同作业将成为未来发展方向。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的4D打印软关节手的立体图;
图2为本发明所提供的单个手指单元模型结构示意图;
图3为本发明所提供的4D打印液晶弹性体和聚酰亚胺电热膜的双层薄膜弯曲执行器结构示意图;
图4为本发明所提供的3D打印树脂结构示意图;
图5为本发明所提供的基于4D打印的软关节手爪的一致性控制方法流程图;
图6为本发明所提供的5个软手指构成的位置拓扑结构图;
图7为本发明所提供的5个软手指弯曲角度变化图;
图8为本发明所提供的5个软手指弯曲角速度变化图;
图9为本发明所提供的5个软手指弯曲控制力矩变化图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种基于4D打印的软关节手爪及其一致性控制方法,能够实现对软关节手爪的精确控制。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明所提供的基于4D打印的软关节手爪,如图1所示,基于4D打印的软关节手爪由5个软手指单元,分别为第一软手指单元1,第二软手指单元2,第三软手指单元3,第四软手指单元4,第五软手指单元5以及掌体6组成,第一个软手指单元上有两个软指关节,分别为第一软指关节11,第二软指关节12和两个指骨,分别为第一指骨13,第二指骨14。如图2所示,θ 1,θ 2分别为对应三个软指关节的弯曲角度,q 1,q 2则分别为对应个指骨的转动角度。
如图3-图4所示,软指关节由4D打印液晶弹性体和聚酰亚胺电热膜的双层薄膜结构制成的双层薄膜软指关节执行器构成,每层液晶弹性体7表面贴有聚酰亚胺电热膜8,并附有弯曲角度检测传感器9。通入电流或加热,软指关节发生弯曲,指骨是由3D打印树脂轻量硬材料制成,指骨和软指关节平行连接,自身不发生形变,随软指关节弯曲,掌体作为基座,该仿人手软关节手爪即可多自由度灵活转动弯曲,方便抓取物体,实现和“人手”类似的弯曲。
本发明利用4D打印液晶弹性体和聚酰亚胺电热膜的双层薄膜结构制作了双层薄膜软指关节执行器,热响应液晶弹性体是一种能在温度的刺激下收缩形变的聚合物,受热后不同层的膨胀和收缩引起了较大的弯曲角度。双层薄膜软指关节执行器附有弯曲角度检测传感器件,聚酰亚胺电热膜产生的焦耳热改变了双层薄膜软指关节执行器温度进而控制弯曲量,利用非线性函数拟合双层薄膜软指关节执行器的响应特性。
本发明软关节手中的软指关节由两个对称的双层薄膜软指关节执行器构成,类似人工肌肉,可实现反向弯曲;为了验证软关节手的运动能力,把每个 软指关节看作具有一个自由度,在不同坐标系下分别对软指关节和指骨进行建模,并使用Euler-Lagrange方程建立了动力学模型;根据该动力学模型确定一致性控制协议,使得每个软手指单元最终位置一致。
每个软手指单元可以看作一个独立的代理,主要针对在无向拓扑下,模型相互独立的软关节手系统的静态位置一致性问题,实现了控制一组具有不同初始状态的软手指单元最终的位置都收敛到一个常值,仿真证明了软体手达到位置一致的状态,最后进行一致性评估,通过仿真给出的控制输入信号控制软关节手使其达到位置一致。
液晶弹性体在打印过程对液晶基元的取向进行编程,然后经过紫外光照射进行交联;受热后不同层的膨胀和收缩引起了执行器弯曲,双层薄膜软指关节执行器表面贴有弯曲曲率检测传感器,通电或温度刺激可改变每个软指关节的弯曲角度;所述软指关节的两个对称双层薄膜软指关节执行器弯曲方向相反,从而实现手指单元可逆的弯曲运动。指骨为轻量固定的高硬度材料,随着软指关节弯曲,这样每个软指关节的弯曲可看做具有1个自由度,每个手指单元就有2个自由度;当通过外部给所述软指关节通电时,由于温度升高,液晶弹性体收缩,聚酰亚胺聚合物发生膨胀,所述弯曲单元会向收缩一侧弯曲,当停止通电时,所述弯曲单元将慢慢恢复原状。
图5为本发明所提供的基于4D打印的软关节手爪的一致性控制方法流程图,如图5所示,一种基于4D打印的软关节手爪的一致性控制方法包括:
步骤501:获取软指关节的弯曲角度以及指骨的转动角度。
在步骤501之前,还包括:聚酰亚胺电热膜通电改变每个软指关节的弯曲角度,根据弯曲角度检测器件,测取每一时刻其温度对应的弯曲角度以及弯曲正应力的数值,应用非线性最小二乘法拟合函数,可得到温度对应的弯曲正应力和弯曲角度的关系方程,进一步可控制每节指骨的位置、速度。
以第一个软手指单元为例,根据测得软指关节的弯曲角度,分别对指骨和弯曲软指关节建立动力学模型;
Figure PCTCN2020088863-appb-000013
为对应第i个软指关节的弯曲角度和角速度,
Figure PCTCN2020088863-appb-000014
为对应第i个指骨的转动角度和角速度,二者的弯曲角度关系为
Figure PCTCN2020088863-appb-000015
步骤502:根据软指关节的弯曲角度以及所述指骨的转动角度分别建立软指关节动力模型以及指骨动力模型。
步骤503:在局部坐标系下,根据所述软指关节动力模型确定任意两个所述软指关节的软指关节质心位置和软指关节质心速度。
由于软指关节发生弯曲,需要借助弯曲角度求得弯曲半径r i,进而在全局坐标xoy下利用软指关节和指骨的长度I h,I l来确定两个指骨的位置坐标。然后在局部坐标x hi(s)oy hi(s)下确定软指关节的位置坐标,其中,局部坐标中横轴为软指关节上某一点s∈(0~I h)弯曲处的切线,最后借助坐标转换矩阵,将软指关节的位置坐标转换为全局坐标下。
两个软指关节的质心位置可以表示为:
V hi(s)=R i-1γ i(s)+V h(i-1)(s)
式中,
Figure PCTCN2020088863-appb-000016
为弯曲半径,T为软指关节的厚度,
Figure PCTCN2020088863-appb-000017
为坐标转换矩阵,根据位置几何关系求得
Figure PCTCN2020088863-appb-000018
I l为指骨的长度,对θ i求导可得质心的速度
步骤504:在全局坐标系下,根据所述指骨动力模型确定任意两个所述指骨的指骨质心位置和指骨质心速度。
其中两个指骨的质心位置可以表示为:
Figure PCTCN2020088863-appb-000019
Figure PCTCN2020088863-appb-000020
步骤505:根据所述软指关节质心位置以及所述软指关节质心速度确定软 指关节动能以及软指关节势能。
软指关节的动能和势能k hi和u hi为:
Figure PCTCN2020088863-appb-000021
Figure PCTCN2020088863-appb-000022
其中J为各指骨的转动惯量,g为重力加速度常数,m l,m h分别为指骨和软指关节的质量。
步骤506:根据所述指骨质心位置和所述指骨质心速度确定指骨动能以及指骨势能。
指骨的动能和势能k li和u li为:
Figure PCTCN2020088863-appb-000023
u li=-m lgV li
步骤507:根据所述软指关节动能以及所述软指关节势能确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型。
s∈(0~I h)为软指关节上弯曲某一点,根据步骤二中求得的质心位置和质心速度,可得软指关节的动能和势能k hi和u hi,软指关节的动能和势能k li和u li。拉格朗日函数为两个指骨和两个软指关节的全部动能和全部势能的差,表示为:
Figure PCTCN2020088863-appb-000024
接着建立Euler-Lagrange动力学方程,系统中每个软手指的Euler-Lagrange动力学方程表示为:
Figure PCTCN2020088863-appb-000025
进一步根据指骨和软指关节的角度关系和Euler-Lagrange动力学方程,求得5个软手指单元关于软指关节角度θ的动力学模型:
Figure PCTCN2020088863-appb-000026
式中,
Figure PCTCN2020088863-appb-000027
表示对称惯性矩阵,
Figure PCTCN2020088863-appb-000028
表示科里奥力矩,g(θ i)表示广义有势力矩,τ i表示每个软手指单元所产生的输入量或控制力矩。
步骤508:以所述5个软手指单元关于所述软指关节的弯曲角度的动力学模型为控制目标,确定软手指单元一致性控制协议。
如图6所示,以得到的所述软关节手的动力学模型为控制目标,考虑系统的位置一致性问题,利用相邻软手指的位置信息和自身的速度信息来设计位置一致性控制协议,位置通信拓扑图用来表示软手指之间随时间不断变化的传感信息的交流方向。一致性控制协议针对模型相同且相互独立的软关节手系统的位置一致性问题,控制一组具有不同初始状态,即不同初始弯曲和刺激下的软指关节;通过软手指之间的位置信息反馈来调节,即当t→∞时,每个软手指达到相同的位置,并且速度为0的静止状态,实现软关节手的协同自弯曲、自变形设计。一致性控制协议如下:
Figure PCTCN2020088863-appb-000029
式中,τ i是指第i个软手指单元的弯曲力矩,a ij是位置通信拓扑图中连接节点i和j的边的个数。根据控制协议可得最终趋于位置一致的过程中每个软指关节的输入大小;再根据温度对应的弯曲正应力和弯曲角度的拟合函数关系方程进一步控制来实现最终位置一致。
步骤509:根据所述软手指单元一致性控制协议控制所述软手指单元进行可逆的弯曲运动。
如图7-图9所示,其中,图7-图9的横坐标为时间,纵坐标分别为弯曲角度(度)、角速度(米)以及力矩(牛顿·米)通过具体的仿真实验来检验所提到的4D打印软关节手一致性控制的可行性,将控制算法应用到平面软关节手系统,该软关节手系统包含5个物理参数相同和初始状态量均不同的软手指。
如图7所示,在时间8s左右,5个软关节手的第一个关节都达到32°左右弯曲角,第二个关节达到12°左右弯曲角;如图8所示,最终角速度趋向于期望的0m/s;输入的力矩如图9所示,因此可根据力矩和弯曲控制量关系方程 控制软体手达到一致弯曲,结果表明软关节手依照规则相互协调动作,最终每个软手指位置达到一致,实现4D打印智能材料预期的自组装与自变形。验证了软关节手一致性控制方法的有效性。
本发明结构合理,分别对软指关节和指骨进行建模;加入了一致性控制的思想,通过采集和传输传感信息,协同控制一组具有不同初始状态的软关节手达到其预期的自组装与自变形,即相同位置;本发明相比以往软手克服了建模和控制困难的问题,并实现4D打印软关节手的自感知自驱动协同一致性动作,创新性的将一致性控制理论应用于4D打印智能材料结构的自驱动之中。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种基于4D打印的软关节手爪,其特征在于,包括:掌体以及连接在所述掌体的五个软手指单元;
    每个所述软手指单元上有两个软指关节和两节指骨;所述指骨采用3D打印树脂而成;所述软指关节为两个对称的双层薄膜软指关节执行器;所述双层薄膜软指关节执行器采用4D打印液晶弹性体和聚酰亚胺电热膜制作而成,通电或加热刺激改变每个所述双层薄膜软指关节执行器的弯曲角度;所述双层薄膜软指关节执行器用于控制所述软手指单元进行可逆的弯曲运动。
  2. 根据权利要求1所述的基于4D打印的软关节手爪,其特征在于,所述双层薄膜软指关节执行器的表面贴有弯曲传感器件。
  3. 根据权利要求1所述的基于4D打印的软关节手爪,其特征在于,所述聚酰亚胺电热膜用于调节所述双层薄膜软指关节执行器的温度;所述聚酰亚胺电热膜产生焦耳热,温度升高,所述液晶弹性体收缩,所述聚酰亚胺电热膜发生膨胀,不同层的收缩和膨胀导致所述软指关节的弯曲;所述双层薄膜软指关节执行器向收缩一侧弯曲,当温度下降恢复原状,控制所述软手指单元的可逆弯曲运动。
  4. 根据权利要求1所述的基于4D打印的软关节手爪,其特征在于,所述双层薄膜软指关节执行器的弯曲角度相同;所述软指关节对称的两个双层薄膜软指关节执行器的弯曲方向相反。
  5. 一种基于4D打印的软关节手爪的一致性控制方法,其特征在于,所述基于4D打印的软关节手爪的一致性控制方法应用于权利要求1-4任一项所述的基于4D打印的软关节手爪,所述基于4D打印的软关节手爪的一致性控制方法包括:
    获取软指关节的弯曲角度以及指骨的转动角度;
    根据软指关节的弯曲角度以及所述指骨的转动角度分别建立软指关节动力模型以及指骨动力模型;
    在局部坐标系下,根据所述软指关节动力模型确定任意两个所述软指关节的软指关节质心位置和软指关节质心速度;
    在全局坐标系下,根据所述指骨动力模型确定任意两个所述指骨的指骨质心位置和指骨质心速度;
    根据所述软指关节质心位置以及所述软指关节质心速度确定软指关节动能以及软指关节势能;
    根据所述指骨质心位置和所述指骨质心速度确定指骨动能以及指骨势能;
    根据所述软指关节动能以及所述软指关节势能确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型;
    以所述5个软手指单元关于所述软指关节的弯曲角度的动力学模型为控制目标,确定软手指单元一致性控制协议;
    根据所述软手指单元一致性控制协议控制所述软手指单元进行可逆的弯曲运动。
  6. 根据权利要求5所述的基于4D打印的软关节手爪的一致性控制方法,其特征在于,所述在局部坐标系下,根据所述软指关节动力模型确定任意两个所述软指关节的软指关节质心位置和软指关节质心速度,具体包括:
    根据公式V hi(s)=R i-1γ i(s)+V h(i-1)(s)确定任意两个所述软指关节的软指关节质心位置;其中,V hi(s)为软指关节质心位置;
    Figure PCTCN2020088863-appb-100001
    为坐标转换矩阵;
    Figure PCTCN2020088863-appb-100002
    I l为指骨的长度,I h为软指关节的长度。θ i为所述软指关节的弯曲角度,i=1,2,3,4,5;
    Figure PCTCN2020088863-appb-100003
    为(0~s)段对应的圆心角度,对所述软指关节的弯曲角度求导,确定软指关节质心速度。
  7. 根据权利要求6所述的基于4D打印的软关节手爪的一致性控制方法,其特征在于,所述在全局坐标系下,根据所述指骨动力模型确定任意两个所述指骨的指骨质心位置和指骨质心速度,具体包括:
    根据公式
    Figure PCTCN2020088863-appb-100004
    以及
    Figure PCTCN2020088863-appb-100005
    确定任意两个所述指骨的指骨质心位置;其中,V l1为任一指骨的指骨质心位置;V l2为所述任一指骨相邻指骨的指骨质心位置;
    Figure PCTCN2020088863-appb-100006
    为弯曲半径;T为软指关节的厚度;q 1为所述任一指骨的转动角度;q 2为所述相邻指骨的转动角度;
    对所述指骨的转动角度求导,确定指骨质心速度。
  8. 根据权利要求7所述的基于4D打印的软关节手爪的一致性控制方法,其特征在于,所述根据所述软指关节动能以及所述软指关节势能确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型,具体包括:
    根据公式
    Figure PCTCN2020088863-appb-100007
    确定5个软手指单元关于所述软指关节的弯曲角度的动力学模型;其中,
    Figure PCTCN2020088863-appb-100008
    为对称惯性矩阵;
    Figure PCTCN2020088863-appb-100009
    为科里奥力矩;g(θ i)为广义有势力矩;τ i为5个软手指单元关于所述软指关节的弯曲角度的动力学模型,τ i表示每个所述软手指单元所产生的输入量或控制力矩;
    Figure PCTCN2020088863-appb-100010
    为所述软指关节的弯曲角度的角速度;
    Figure PCTCN2020088863-appb-100011
    为所述软指关节的弯曲角度的加速度。
  9. 根据权利要求8所述的基于4D打印的软关节手爪的一致性控制方法,其特征在于,所述以所述5个软手指单元关于所述软指关节的弯曲角度的动力学模型为控制目标,确定软手指单元一致性控制协议,具体包括:
    根据公式
    Figure PCTCN2020088863-appb-100012
    确定软手指单元一致性控制协议;其中,a ij为位置通信拓扑图所对应的拉普拉斯矩阵中第i行j列的数。
PCT/CN2020/088863 2020-03-20 2020-05-07 一种基于4d打印的软关节手爪及其一致性控制方法 WO2021184505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/288,221 US20220305668A1 (en) 2020-03-20 2020-05-07 Soft joint gripper based on 4d printing and consistency control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010201908.4 2020-03-20
CN202010201908.4A CN111230912B (zh) 2020-03-20 2020-03-20 一种基于4d打印的软关节手爪及其一致性控制方法

Publications (1)

Publication Number Publication Date
WO2021184505A1 true WO2021184505A1 (zh) 2021-09-23

Family

ID=70867640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088863 WO2021184505A1 (zh) 2020-03-20 2020-05-07 一种基于4d打印的软关节手爪及其一致性控制方法

Country Status (3)

Country Link
US (1) US20220305668A1 (zh)
CN (1) CN111230912B (zh)
WO (1) WO2021184505A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115609603A (zh) * 2022-10-25 2023-01-17 燕山大学 软体机械手及控制方法
CN115946787A (zh) * 2022-12-15 2023-04-11 燕山大学 一种基于4d打印的仿海星软体机器人及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170155032A1 (en) * 2015-11-30 2017-06-01 Seiki Chiba Dielectric elastomer driving mechanism
CN106956283A (zh) * 2017-05-27 2017-07-18 北方工业大学 一种基于3d打印的五指仿人机械手
CN107081777A (zh) * 2017-05-10 2017-08-22 中国科学技术大学 基于形状记忆合金柔体智能数字复合结构的仿人灵巧手
CN108466276A (zh) * 2018-01-22 2018-08-31 江苏大学 一种基于弹性体软材料的多自由度运动手指及其制备方法
CN109249415A (zh) * 2018-12-03 2019-01-22 吉林大学 一种基于仿生应变传感器阵列感知的柔性机械手
CN109848957A (zh) * 2019-03-20 2019-06-07 清华大学深圳研究生院 一种柔性微型机器人
CN110509301A (zh) * 2019-04-30 2019-11-29 西南交通大学 一种基于形状记忆聚氨酯材料的温度感应机械手

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142034B2 (en) * 2013-03-14 2015-09-22 Microsoft Technology Licensing, Llc Center of mass state vector for analyzing user motion in 3D images
CN109866904B (zh) * 2019-04-09 2020-06-02 哈尔滨工程大学 一种仿生水母类水下机器人的运动及速度控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170155032A1 (en) * 2015-11-30 2017-06-01 Seiki Chiba Dielectric elastomer driving mechanism
CN107081777A (zh) * 2017-05-10 2017-08-22 中国科学技术大学 基于形状记忆合金柔体智能数字复合结构的仿人灵巧手
CN106956283A (zh) * 2017-05-27 2017-07-18 北方工业大学 一种基于3d打印的五指仿人机械手
CN108466276A (zh) * 2018-01-22 2018-08-31 江苏大学 一种基于弹性体软材料的多自由度运动手指及其制备方法
CN109249415A (zh) * 2018-12-03 2019-01-22 吉林大学 一种基于仿生应变传感器阵列感知的柔性机械手
CN109848957A (zh) * 2019-03-20 2019-06-07 清华大学深圳研究生院 一种柔性微型机器人
CN110509301A (zh) * 2019-04-30 2019-11-29 西南交通大学 一种基于形状记忆聚氨酯材料的温度感应机械手

Also Published As

Publication number Publication date
US20220305668A1 (en) 2022-09-29
CN111230912B (zh) 2021-05-04
CN111230912A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111230911B (zh) 一种基于4d打印柔性指关节手爪及其轨迹跟踪控制方法
WO2021184505A1 (zh) 一种基于4d打印的软关节手爪及其一致性控制方法
US20210299860A1 (en) Method and system for robot action imitation learning in three-dimensional space
CN101954638B (zh) 高压输电线路除冰机器人自主抓线控制方法
Liu et al. Distance-directed target searching for a deep visual servo sma driven soft robot using reinforcement learning
Zhang et al. Compliant bistable grippers enable passive perching for micro aerial vehicles
Fang et al. Skill learning for human-robot interaction using wearable device
CN110682286A (zh) 一种协作机器人实时避障方法
CN109746901B (zh) 一种用于外骨骼机器人的动态负载信息计算方法
Lin et al. Development of multi-fingered dexterous hand for grasping manipulation
Zeng et al. Adaptive Neural Network-based Visual Servoing with Integral Sliding Mode Control for Manipulator
He et al. Kinematic design of a serial-parallel hybrid finger mechanism actuated by twisted-and-coiled polymer
Mishra et al. Dynamic modelling of an elephant trunk like flexible bionic manipulator
WO2023020036A1 (zh) 一种基于回声状态网络的冗余机械臂追踪控制方法
CN111546344A (zh) 一种用于对准的机械臂控制方法
Shabana et al. Actuation and motion control of flexible robots: small deformation problem
Wu et al. Research on Modeling and Simulation of Cable-driven Bionic Octopus Arm based on SimMechanics
CN111563346B (zh) 基于高斯过程学习的人臂运动学建模方法
Zhang et al. Design and motion testing of a Multiple SMA fin driven BIUV
Liu et al. Modeling of a Soft Actuator With a Semicircular Cross Section Under Gravity and External Load
Liu et al. An Inchworm-snake Inspired Flexible Robotic Manipulator with Multi-section SMA Actuators for Object Grasping
JP4118242B2 (ja) 羽ばたき飛行ロボットシステム
Li et al. Research on a tubular climbing robot induced by tri-tube soft actuators
Delgado et al. Control of robot fingers with adaptable tactile servoing to manipulate deformable objects
Jin et al. Control of rigid-soft-coupled continuum arm driven by pneumatic muscles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926290

Country of ref document: EP

Kind code of ref document: A1