WO2020215650A1 - 一种带外串联间隙避雷器及防雷系统 - Google Patents

一种带外串联间隙避雷器及防雷系统 Download PDF

Info

Publication number
WO2020215650A1
WO2020215650A1 PCT/CN2019/114945 CN2019114945W WO2020215650A1 WO 2020215650 A1 WO2020215650 A1 WO 2020215650A1 CN 2019114945 W CN2019114945 W CN 2019114945W WO 2020215650 A1 WO2020215650 A1 WO 2020215650A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
arrester
arc extinguishing
arc
series
Prior art date
Application number
PCT/CN2019/114945
Other languages
English (en)
French (fr)
Inventor
沈海滨
时卫东
雷挺
贺子鸣
赵霞
张兆华
卢甜甜
张搏宇
陈秀娟
康鹏
吕雪斌
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2020215650A1 publication Critical patent/WO2020215650A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges
    • H01B17/48Means for obtaining improved distribution of voltage; Protection against arc discharges over chains or other serially-arranged insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/04Means for extinguishing arc using magnetic blow-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/08Means for extinguishing arc using flow of arc-extinguishing fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/16Series resistor structurally associated with spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/08Overvoltage arresters using spark gaps structurally associated with protected apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/16Overvoltage arresters using spark gaps having a plurality of gaps arranged in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps

Definitions

  • This application relates to the technical field of lightning arresters, such as an out-of-band series gap arrester and lightning protection system.
  • the metal oxide surge arrester with external series gap (hereinafter referred to as the external series gap arrester) is used for lightning overvoltage protection of overhead power lines. It is an ideal lightning protection device.
  • the main structure includes a metal oxide resistor and insulation
  • the arrester body composed of the outer jacket and the two parts of the external series gap.
  • the working principle of its protection is to use the non-linear characteristics of metal oxide resistors.
  • the external series gap breaks down, and the arrester body presents low impedance, which releases the lightning energy on the line to the ground; after lightning strikes , The arrester body recovers to high impedance instantly under the power frequency voltage, inhibits the power frequency freewheeling arc starting, restores the insulation strength of the outer series gap, and returns to the normal operation state of the line.
  • the currently used external series gap is divided into two forms, namely: one is a pure air gap 2', see Figure 1.
  • the external series gap is composed of two discharge electrodes 21', and one discharge electrode 21' is fixed on the body of the arrester
  • the series gap 4' is composed of two discharge electrodes 41' respectively fixed on both ends of the composite insulating support 5'.
  • the above two forms of lightning discharge paths with external series gaps are the air gaps between the discharge electrodes.
  • the role of the external series gap is to reduce the long-term power frequency voltage of the arrester body under normal operation of the line, slow down the aging of the resistors, and reduce the workload of operation and maintenance. Only after the lightning overvoltage breaks down the external series gap, the arrester body may be short. Withstand the maximum power frequency overvoltage of the system (the most severe working condition). Therefore, the rated voltage parameters of the arrester body should be selected according to the principle that the power frequency freewheeling arc can be reliably interrupted after the lightning strike under the most severe operating conditions.
  • the condition for selecting an out-of-band series gap arrester is: the rated voltage is greater than or equal to the standard or the system's maximum allowable overvoltage value (this When the corresponding power frequency freewheeling current is in the order of mA), or the rated voltage is less than the maximum allowable power frequency overvoltage value of the system specified in the standard or acceptable for engineering operation, and the difference between the two is within the preset range (appropriate at this time Taking into account the arc extinguishing ability of the external series gap itself, the corresponding power frequency freewheeling is about several amperes).
  • Table 1 for the typical recommended values of the rated voltage standards of the out-of-band series gap arresters for AC lines of different voltage levels.
  • the main reason is that the long-gap power frequency freewheeling interruption test cannot be carried out due to the limitation of the current test conditions, and the lack of sufficient arc extinguishing test data support, naturally, it is impossible to realize the refined design, followed by the pure air gap and For the open external series gap with support gap, the arc extinguishing ability is greatly affected by the operating environment (wind, temperature, humidity, air density, etc.), and the unstable arc extinguishing performance determines the poor reliability of the device.
  • the above-mentioned reasons determine that in the related technology, the technical route of reducing the rated voltage of the arrester body by deeply utilizing the arc extinguishing capability margin of the external series gap cannot be realized under the structure of the arrester with external series gap.
  • Out-of-band series gap arresters currently have high cost and difficulty in installation in engineering applications, which limits their wider application in transmission and distribution overhead lines.
  • the high rated voltage of the arrester body means that more resistors and insulating jacket materials are required during manufacture. It is necessary to avoid the deterioration of potential distribution, mechanical strength, and explosion-proof performance caused by high height.
  • the design of the device is difficult, resulting in the device
  • the cost is high, corresponding to China’s total operating mileage of overhead transmission lines approaching 2 million kilometers, and the total operating mileage of overhead distribution lines exceeding 4 million kilometers (over 100,000 lightning arresters with out-of-band series gaps have been used on transmission lines and used on distribution lines It is conservatively estimated that the huge volume of more than 5 million), the increase in the economic cost of lightning protection is significant;
  • the high rated voltage of the arrester body means the volume and weight of the device, especially for high-voltage transmission lines, lightning failure
  • High-frequency transmission lines are often located under complex terrain such as mountains and hills.
  • the mechanical strength of the poles and towers and sufficient space for tower windows are required, and more manpower and material resources are required to carry out transportation and hoisting.
  • On-site installation and construction are difficult. Double-circuit transmission lines on the same tower and In special locations such as corner towers, the overall length of the arrester is too large to be installed.
  • the lightning arrester with external series gap adopts the structure of the arrester body in series with pure air gap or with support gap. Due to this kind of open external series gap, the power frequency freewheeling stability is inherently insufficient and the current test conditions cannot support the long-term development.
  • the limitation of gap power frequency continuous current interruption test research can not use the arc extinguishing ability of the external series gap in depth and refinement, resulting in the high overall cost of the current external series gap lightning arrester, the large size and heavy weight of the device, and the overall cost of engineering lightning protection Insufficiency such as high height and difficulty in installation and construction, which limit the larger-scale popularization and application of out-of-band series gap arresters.
  • This application proposes an out-of-band series gap lightning arrester and a lightning protection system, which avoids the situation that the use of an open external series gap in the lightning arrester in the related art leads to low interruption capacity and poor stability.
  • this application proposes a lightning arrester with an out-of-band series gap, which includes: a lightning arrester body and an arc extinguishing gap structure connected in series; wherein the arc extinguishing gap structure includes an insulating jacket, an arc extinguishing electrode, and an insulating gas
  • the insulating jacket is provided with a plurality of spaced and side-by-side arc extinguishing electrodes, and an isolation air chamber is provided between any two adjacent arc extinguishing electrodes;
  • the first end of the insulating jacket and The second end is respectively provided with a connecting flange, the connecting flange of the first end is connected to the arrester body, the connecting flange of the second end is connected to the power transmission wire, or the connecting flange of the first end is connected to the In the arrester body, the connecting flange at the second end is spaced apart from the power transmission wire;
  • the insulating jacket is provided with air injection ports that correspond to the isolated air chamber one to one
  • this application also proposes a 10kV overhead line lightning protection system, which includes a power transmission wire, a line cross arm, a mounting bracket, and the above-mentioned out-of-band series gap arrester; wherein, the out-of-band series gap
  • the arc extinguishing gap structure of the arrester is a columnar structure, and the external series gap arrester is connected to the line cross arm through the mounting bracket; the arc extinguishing gap structure is provided with a connection at the end far from the arrester body Flange, the arc extinguishing gap structure is connected to the power transmission wire through the connecting flange; or, the end of the arc extinguishing gap structure away from the arrester body is spaced from the power transmission wire.
  • the lightning protection system includes a transmission wire, a line cross arm, a mounting bracket, and the above-mentioned out-of-band series gap arrester; wherein, the out-of-band lightning arrester
  • the arc extinguishing gap structure of the series gap arrester includes an insulating pillar, the arc extinguishing gap structure is at least two ring-shaped unit segments arranged at intervals, and any two adjacent ring-shaped unit segments pass through the insulation Pillar connection; the external series gap arrester is hung on the line cross arm through the mounting bracket, the arc extinguishing gap structure is provided with a connecting flange at the end away from the arrester body, the arc extinguishing
  • the type gap structure is connected with the power transmission wire through the connecting flange.
  • this application also proposes a lightning protection system for overhead lines from 10kV to 220kV.
  • the lightning protection system includes a transmission wire, a line cross arm, a mounting bracket, and the above-mentioned out-of-band series gap arrester; wherein, the out-of-band lightning arrester
  • the arc extinguishing gap structure of the series gap arrester is a plurality of columnar unit sections connected in series; the external series gap arrester is hung on the line cross arm through the mounting bracket, and the arc extinguishing gap structure is far away from the
  • the end of the arrester body is provided with a connecting flange, and the arc extinguishing gap structure is connected with the power transmission wire through the connecting flange.
  • Figure 1 is a schematic diagram of the structure of an out-of-band series gap arrester in related technologies
  • Figure 2 is a schematic diagram of another structure of an external series gap arrester in the related art
  • FIG. 3 is a partial structural diagram of an arc extinguishing gap structure of an external series gap arrester provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a 10kV overhead line lightning protection system provided by an embodiment of the application.
  • Figure 5 is a schematic structural diagram of a lightning protection system for 10kV ⁇ 1000kV overhead lines provided by an embodiment of the application;
  • Fig. 6 is a schematic structural diagram of a lightning protection system for a 10kV-220kV overhead line provided by an embodiment of the application.
  • the out-of-band series gap arrester includes: an arrester body 1 and an arc extinguishing gap structure 2; wherein, the arrester body 1 and the arc extinguishing gap structure 2 are connected in series.
  • the arrester body 1 includes a metal oxide resistor, an insulating sleeve, a silicone rubber composite umbrella cover, and a metal flange.
  • the resistor chips are in the shape of a round cake or ring, which are squeezed into the epoxy resin glass fiber insulation sleeve through a spring mechanism after stacking, or assembled into a whole through a fastening bracket and then put into the epoxy glass
  • the insulating sleeve is filled with insulating silicone grease or slightly positive pressure air; the silicone rubber sheath and umbrella skirt are molded at one time, covering the insulating sleeve to form an outer insulating layer; the metal flange is used for sealing Insulate the sleeve and assume the role of assembling the connecting parts.
  • the arrester body 1 can also be designed into multiple independent short unit bodies in sections, and then assembled into one body by metal flanges.
  • the metal flange at the end of the arrester body 1 is used to connect the arc-extinguishing gap structure 2 in series to take advantage of the large interrupting power frequency freewheeling capability (kA level) of the arc-extinguishing gap structure 2 and stable and reliable flameout Arc action performance to reduce the rated voltage of the arrester body 1, thereby reducing the cost of the out-of-band series gap arrester, and reducing the volume and weight of the out-of-band series gap arrester.
  • the metal flange at the other end is used to connect brackets and other components.
  • the arc extinguishing gap structure 2 includes an insulating jacket 21, an arc extinguishing electrode 22, and an isolation gas chamber 23; a plurality of spaced and side-by-side arc extinguishing electrodes 22 are arranged in the insulating jacket 21, and one of any two adjacent arc extinguishing electrodes 22 There is an isolation air chamber 23 between.
  • the arc extinguishing gap structure 2 includes an insulating jacket 21 with a hollow inside, an arc extinguishing electrode 22 disposed inside the insulating jacket 21, and an isolated air chamber 23 between the arc extinguishing electrode 22; wherein, the arc extinguishing electrode 22 There are at least two, which are arranged side by side and spaced apart along the length of the insulating jacket 21 in the insulating jacket 21, and an isolation gas chamber 23 is provided between any two adjacent arc extinguishing electrodes 22, so that two adjacent arc extinguishing electrodes 22
  • the electrode 22 and the isolated air chamber 23 therebetween constitute an air gap chamber 20, that is, at least one air gap chamber 20 connected in series is provided in the insulating jacket 21, and the number of the air gap chambers 20 in series is related to the line voltage Level-related, the higher the voltage level, the more the number of series connected, the more the number of arc extinguishing electrodes 22, the air gap chamber 20 adopts a non-open air gap, in order
  • the isolation gas chamber 23 can also be a cavity formed between two adjacent arc extinguishing electrodes 22.
  • the arc extinguishing electrodes 22 are arranged at equal intervals so that the space of the isolation gas chamber 23 between the plurality of arc extinguishing electrodes 22 is the same, and then Ensure that multiple isolation gas chambers 23 can break down simultaneously; for example, the shortest distance between two arc extinguishing electrodes 22 adjacent to each other ranges from 2mm to 20mm to ensure the stable breakdown of the isolation gas chamber 23 Sex.
  • the insulating jacket 21 is a silicone rubber composite jacket.
  • a plurality of umbrella skirts 27 are arranged side by side on the outside of the insulating jacket 21 to increase the creeping distance and reduce the possibility of discharge.
  • the arc extinguishing electrode 22 can be a solid sphere or a solid cylinder. In the case of a round sphere, the diameter of the sphere ranges from 8mm to 18mm, and in the case of a cylinder, the diameter of the circular cross section ranges from 5mm to 15mm. , To meet its requirements for resistance to arc burning, among which the arc extinguishing electrode 22 can be a copper electrode or a steel electrode.
  • the first end and the second end of the insulating jacket 21 are respectively provided with connecting flanges 24, the connecting flange 24 at the first end is connected to the arrester body 1, and the connecting flange 24 at the second end is connected to the power transmission wire 3, or
  • the connecting flange 24 is connected to the arrester body 1, and the connecting flange 24 at the second end is separated from the power transmission wire 3 after being separated by an air gap.
  • the first end and the second end of the insulating jacket 21 are respectively provided with a connecting flange 24.
  • FIG. 3 a part of the arc-extinguishing gap structure 2 is taken as an example for illustration, and the unshown end is also provided There is a connecting flange 24.
  • the connecting flange 24 is made of steel, the surface of which is galvanized, or the connecting flange 24 is made of copper, and the structure of the connecting flange 24 can be determined according to the actual situation, and it can be used as an installation fitting or a discharge electrode. This embodiment There are no restrictions on it.
  • the insulating jacket 21 is provided with a gas injection port 25 corresponding to the isolation gas chamber 23 one-to-one and communicating with the isolation gas chamber 23.
  • the gas injection port 25 exposes the arc extinguishing electrode 22 and the isolation gas chamber 23, so that a plurality of adjacent arc extinguishing A plurality of air gaps formed between the electrodes 22 are connected in series.
  • the arc extinguishing electrode 22 provided at the end of the insulating jacket 21 is connected to its adjacent connecting flange 24 to guide the arc into the insulating jacket 21, and the high temperature generated by the arc 4 quickly heats the air gap chamber
  • the hot air stream brings the arc column out of the air gap chamber 20, causing the arc The whole is stretched and elongated in the axial direction; at the same time, the arc arc column is in the magnetic field generated by the line current, and is also subjected to electromagnetic thrust; the arc arc column is pushed out of the air gap chamber 20 and directly contacts the outside air, strengthening The diffusion of plasma and the dissipation of heat in the arc accelerate the de-ionization process of the arc. In the initial stage of the power frequency freewheeling arc, the arc channel is not sufficiently released due to particles, and the arc path resistance is large.
  • the air jet 25 may have an inverted truncated cone structure to facilitate the extinguishing of the arc in the insulating jacket 21.
  • the radial cross section of the gas injection port 25 (the horizontal cross section as shown in FIG. 3) may be circular, and its diameter ranges from 2 mm to 6 mm, so as to lead the arc from the gas injection port 25 to realize arc extinguishing.
  • an insulating mandrel 26 is inserted through the inside of the insulating jacket 21, and the two ends of the insulating mandrel 26 are respectively crimped on the two connecting flanges 24, and the two connecting methods Lan 24 is used as mounting hardware or discharge electrode.
  • the insulating core rod 26 is an epoxy resin glass fiber drawing rod
  • the cross section of the insulating core rod 26 can be a circular structure or a square structure.
  • the diameter takes a value The range is from 8mm to 30mm.
  • the cross section is square, that is, rectangular or square, the side length ranges from 5mm to 30mm.
  • the amplitude of the lightning overvoltage exceeds the discharge action voltage of the out-of-band series gap arrester (the discharge action voltage is less than the minimum gap discharge voltage of the line insulator or tower window, and the general discharge action voltage is at least lower than the minimum line insulator or tower window In the case of 15% of the gap discharge voltage), the air between the arc extinguishing electrodes 22 inside the arc extinguishing gap structure 2 will break down, and the arrester body 1 will be subjected to lightning overvoltage, and instantaneously exhibit low impedance characteristics, and the lightning energy will increase along the belt The arc-extinguishing external series gap arrester channel is released to the ground, and the power frequency freewheeling arc is formed along the lightning impulse discharge channel.
  • the independent air gap chamber 20 divides the power frequency arc into multiple short arcs.
  • the high temperature generated by the arc quickly heats the air in the air gap chamber 20, and the gas expands to form a pressure difference with the outside world, and is ejected along the jet port 25. Since the arc root is always maintained on the surface of the arc extinguishing electrode 22, the hot air stream will hold the arc column together
  • the air gap chamber 20 is brought out to stretch and lengthen the arc as a whole in the axial direction; at the same time, the arc column is in the magnetic field generated by the line current and is also subjected to electromagnetic thrust.
  • the arc column is pushed out of the air gap chamber 20 and directly contacts the outside air, which strengthens the plasma diffusion and heat dissipation in the arc, and accelerates the arc de-ionization process.
  • the arc channel is not sufficiently released due to particles, and the arc path resistance is large.
  • the arc path resistance gradually decreases.
  • the arc path resistance decreases to the minimum, the arc current rises to the maximum.
  • the de-ionization process of the arc pushed out of the air gap chamber 20 dominates the arc path resistance.
  • the arc current decreases as the arc path resistance increases again.
  • the arrester body 1 After lightning strikes, the most severe working condition of the arrester body 1 is to withstand the maximum power frequency overvoltage of the system. At this time, the arrester body 1 instantly returns to a high impedance state. Under the current technical standard recommended rated voltage value, the arrester body 1 itself That is to say, the power frequency continuous current can be suppressed to the maximum level of several amperes, and the continuous current can be directly interrupted.
  • This application reduces the rated voltage value of the arrester body 1, and uses the arc extinguishing capacity of the arc extinguishing gap structure 2 to interrupt the circuit due to the arrester
  • the power-frequency freewheeling of the main body 1 decreases due to the decrease of the rated voltage; therefore, it is only necessary to select the rated voltage of the arrester body 1 reasonably so that the power-frequency freewheeling peak value in the loop does not exceed the arc extinguishing capacity of the arc extinguishing gap structure 2.
  • Frequency freewheeling can be effectively interrupted; the rated voltage range of the arrester body is analyzed by the volt-ampere characteristic curve of metal oxide resistors under typical processes in related technologies.
  • the diameter of the resistors ranges from 28mm to 100mm, covering 10kV ⁇
  • the operating impulse residual voltage test results are shown in Table 2.
  • the voltage ratio range of the corresponding impulse current of 1kA ⁇ 3kA is about 1.3 ⁇ 1.6.
  • the rated voltage of the arrester body 1 is reduced according to this ratio, compared with the current standard recommended value (see table 1) It can be reduced by about 23% to 33%, and the reduction range is obvious, which supports the realization of good design goals of low cost, miniaturization and lightweight.
  • the out-of-band series gap arrester provided by this embodiment is provided with a series of arc extinguishing gap structures 2 in the arrester body 1.
  • the arc extinguishing gap structure 2 is provided with a plurality of arc extinguishing electrodes 22 spaced side by side in the insulating jacket 21.
  • An isolation air chamber 23 is provided between any two adjacent arc extinguishing electrodes 22, so that two adjacent arc extinguishing electrodes 22 and the isolation air chamber 23 between them form an air gap chamber 20, and the air gap chamber 20
  • Non-open air gap is used to form the high temperature and high pressure conditions required to interrupt the continuous flow, so as to produce the continuous flow interruption capacity of the thousand ampere level, and avoid the stability of the interrupted continuous flow from being affected by the operating environment, even on the surface of the insulating jacket 21
  • the continuous flow can still be interrupted stably, and the effective number of actions of the arc extinguishing gap structure 2 can reach dozens of times, which can fully meet the requirements of using the action of the arrester body 1.
  • Arc-type gap structure 2 utilizes the larger interrupting power frequency freewheeling capability (kA level) of the enhanced arc-extinguishing gap and the stable and reliable arc-extinguishing performance to reduce the rated voltage of the arrester body, thereby reducing the cost of the device , To reduce the volume and weight of the device, so as to achieve the indicators of low cost, miniaturization and light weight, so as to realize the large-scale popularization and application of the arrester.
  • KA level interrupting power frequency freewheeling capability
  • this embodiment also proposes a 10kV overhead line lightning protection system, which includes: a transmission wire 3, a line cross arm 5, a mounting bracket 6 and the above-mentioned out-of-band series gap arrester; wherein, the out-of-band series gap
  • the arc-extinguishing gap structure 2 of the arrester is a columnar structure, and the lightning arrester with an external series gap is connected to the line cross arm 5 through a mounting bracket 6.
  • the arc extinguishing gap structure 2 when used with 10kV overhead line column and pin insulators, is a column structure, and the arc extinguishing gap structure 2 is close to the end of the arrester body 1 (as shown in Figure 4
  • the connecting flange 24 provided on the lower end of the gap structure 2 shown is connected to the arrester body 1 to be assembled as a whole, and the assembly, that is, the lightning arrester with external series gap, is installed on the line cross arm 5 through the mounting bracket 6.
  • the end of the arrester body 1 away from the arc extinguishing gap structure 2 (the lower end of the arrester body 1 as shown in Figure 4) can be connected to the mounting bracket 6 through the metal flange set on the arrester body 1 so as to pass the mounting bracket 6 is installed on the line cross arm 5.
  • the arc extinguishing gap structure 2 is provided with a connecting flange 24 (the upper end of the gap structure 2 as shown in FIG. 4) at the end away from the arrester body 1 and the arc extinguishing gap structure 2 is connected to the power transmission wire 3 through the connecting flange 24 , Or, the arc extinguishing gap structure 2 is located away from the end of the arrester body 1 and the power transmission wire 3 at a distance.
  • the arc extinguishing gap structure 2 is arranged close to the transmission wire 3 but is not directly electrically connected to the wire, or the arc extinguishing gap structure 2 is remote from the end of the arrester body 1 through the arc extinguishing gap structure 2
  • the connecting flange 24 provided at the end is electrically connected to the power transmission wire 3.
  • the implementation process of the out-of-band series gap arrester can refer to the above description, and this embodiment will not be repeated here.
  • FIG. 5 is a schematic structural diagram of a lightning protection system for a 10kV-1000kV overhead line provided by an embodiment of the application.
  • the lightning protection system of the 10kV ⁇ 1000kV overhead line includes: the transmission conductor 3, the line cross arm 5, the mounting bracket 6 and the above-mentioned lightning arrester with external series gap; among them, the arc extinguishing gap structure with external series gap arrester 2
  • the insulating support 251 is included.
  • the arc-extinguishing gap structure 2 is at least two ring-shaped unit segments 250 spaced apart, and any two adjacent ring-shaped unit segments 250 are connected by the insulating support 251.
  • a plurality of ring-shaped unit sections 250 are arranged at one end of the arrester body 1 in the out-of-band series gap arrester, and the plurality of ring-shaped unit sections 250 are connected in series, and the number of series connected is related to the line voltage level. The higher the voltage level, the greater the number of series connections, that is, the number of ring cell sections 250 is positively correlated with the line voltage level.
  • the ring-shaped unit sections 250 are arranged along the length direction of the arrester body 1, and any two adjacent ring-shaped unit sections 250 are connected by insulating pillars 251 to realize the isolation between the ring-shaped unit sections 250.
  • the arc extinguishing gap structure 2 is a ring structure, and the ring unit sections 250 are connected in series and passed
  • the insulating pillars 251 are connected and isolated to prevent the lightning overvoltage from breakdown and discharge along the path other than the series channel of the ring unit section 250.
  • a plurality of insulating supports 252 arranged in a scattering shape are provided on the ring unit section 250 to support the ring unit section 250 so that The ring structure realizes the connection and fixation between the ring unit section 250 and the insulating support 251 at the same time.
  • the ends of the ring unit section 250 are provided with gap electrodes 253, which are electrically connected to the adjacent arc extinguishing electrodes in the ring unit section 250 to conduct the arc; the rings at the two ends of the arc extinguishing gap structure 2
  • the gap electrode 253 is arranged along the axial direction of the ring-shaped unit section 250, and the other gap electrode 253 is arranged along the radial direction of the ring-shaped unit section 250.
  • the gap electrode 253 and the insulating pillar 251 are arranged in the radial direction.
  • the end fittings are electrically connected; the two gap electrodes 253 in the other ring-shaped unit sections 250 are all arranged along the axial direction of the ring-shaped unit section 250 to penetrate the gap between the gap electrodes 253 on two adjacent ring-shaped unit sections 250 Air to realize the series connection between two adjacent ring-shaped unit sections 250 to realize the conduction of arc between adjacent ring-shaped unit sections 250.
  • the arrow in FIG. 5 indicates the arc conduction direction, that is, along the ring-shaped unit section. 250 conducts clockwise.
  • the ring-shaped unit sections 250 are connected as a whole through the insulating support 251, and the ring-shaped unit section 250 provided at the uppermost end is connected with the arrester body 1 to be assembled as a whole.
  • the lightning arrester with external series gap is hung on the line cross arm 5 through the mounting bracket 6, and the end of the arc extinguishing gap structure 2 far away from the arrester body 1 passes through the end of the arc extinguishing gap structure 2 (as shown in Figure 5)
  • the connecting flange 24 provided at the lower end of the arc gap structure 2 is connected to the power transmission wire 3.
  • the arrester body 1 is suspended on the pole tower cross arm 5 via the mounting bracket 6, and the arc extinguishing gap structure 2 is close to the end of the transmission wire 3 (the arc extinguishing gap structure 2 shown in FIG. 5
  • the lower end is electrically connected to the power transmission wire 3 through the connecting flange 24.
  • the implementation process of the out-of-band series gap arrester can refer to the above description, and this embodiment will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a lightning protection system for a 10kV-220kV overhead line provided by an embodiment of the application.
  • the lightning protection system of 10kV ⁇ 220kV overhead lines includes: transmission conductor 3, line cross arm 5, mounting bracket and the above-mentioned series gap arrester with external series gap; among them, the arc extinguishing gap structure with external series gap arrester 2 is A plurality of columnar unit sections 260 connected in series, and the out-of-band series gap arrester is connected to the line cross arm 5 through the mounting bracket 6.
  • the arc extinguishing gap structure 2 is a column structure, which can use multiple column unit sections 260 in series
  • the column unit sections 260 are connected by connecting flanges 24 at their ends, and the column unit sections 260 close to the arrester body 1 pass through the ends close to the arrester body 1 (the arc-extinguishing gap shown in Figure 6).
  • the connecting flange 24 provided on the left end of the structure 2 is connected with the arrester body 1, and the assembly, that is, the arrester with external series gap, is installed on the line cross arm 5 through the mounting bracket 6.
  • the end of the arrester body 1 away from the arc extinguishing gap structure 2 (the upper end of the arrester body 1 as shown in Figure 6) is provided with a metal flange, and the arrester body 1 is connected to the mounting bracket 6 through this metal flange to facilitate The lightning arrester with external series gap is installed on the line cross arm 5 through the mounting bracket 6.
  • the arc extinguishing gap structure 2 is provided with a connecting flange 24 at the end far away from the arrester body 1, and the arc extinguishing gap structure 2 is connected to the line through the connecting flange 24.
  • the power transmission wires 3 are connected.
  • the column unit section 260 far away from the arrester body 1 is electrically connected to the power transmission wire 3 through a connection flange 24 provided on the end away from the arrester body 1.
  • the implementation process of the out-of-band series gap arrester can refer to the above description, and this embodiment will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Insulators (AREA)

Abstract

一种带外串联间隙避雷器及防雷系统。该避雷器包括:串联连接的避雷器本体(1)和熄弧式间隙结构(2);其中,熄弧式间隙结构(2)包括绝缘外套(21),熄弧电极(22),隔离气室(23);绝缘外套(21)内设有多个间隔且并排设置的熄弧电极(22),任意相邻两个熄弧电极(22)之间设有隔离气室(23);绝缘外套(21)的第一端和第二端分别设有连接法兰(24);绝缘外套(21)上设有与隔离气室(23)一一对应且与隔离气室(23)连通的喷气口(25),喷气口(25)暴露出熄弧电极(22)和隔离气室(23),以使多个相邻的熄弧电极(22)之间形成多个串联的空气间隙。

Description

一种带外串联间隙避雷器及防雷系统
本申请要求在2019年4月22日提交中国专利局、申请号为201910323660.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及避雷器技术领域,例如一种带外串联间隙避雷器及防雷系统。
背景技术
带外串联间隙金属氧化物避雷器(以下简称带外串联间隙避雷器)用于架空电力线路的雷电过电压防护,是一种较为理想的防雷保护装置,主体结构包括由金属氧化物电阻片和绝缘外套构成的避雷器本体,以及外串联间隙两个部分。其保护工作原理是利用金属氧化物电阻片的非线性特性,在高幅值雷电过电压下,外串联间隙击穿,避雷器本体呈现低阻抗,对地释放掉线路上的雷电能量;雷电冲击过后,避雷器本体承受工频电压瞬间恢复到高阻抗,抑制工频续流起弧,使外串联间隙绝缘强度得以恢复,线路重新回到正常运行状态。目前使用的外串联间隙分为两种形式,分别为:一种是纯空气间隙2',参见图1,该外串联间隙由两个放电电极21'组成,一个放电电极21'固定在避雷器本体1'的高压端(如图1所示的避雷器本体1'的下端),另一个放电电极21'固定在输电导线3'上或者绝缘子串下端;另一种是带支撑件间隙4',参见图2,复合绝缘支撑件5'的两端(如图2所示的复合绝缘支撑件5'的上下两端)分别与避雷器本体1'的下端和输电导线3'相连接,其中,该外串联间隙4'由两个分别固定在复合绝缘支撑件5'两端的放电电极41'构成。以上两种形式带外串联间隙的雷电放电路径均是放电电极间的空气间隙。
外串联间隙的作用是降低线路正常运行状态下避雷器本体长期承担的工频电压,减缓电阻片的老化,减少运维工作量,只有雷电过电压击穿外串联间隙后,避雷器本体才有可能短时承受系统最大工频过电压(最严苛工况)。因此,对避雷器本体额定电压参数,按照最严苛工况下雷击动作后能够可靠遮断工频续流电弧这一原则选择。现行带外串联间隙避雷器技术标准GB/T 32520—2016《交流1kV以上架空输电和配电线路用带外串联间隙金属氧化物避雷器(EGLA)和DL/T 815—2012《交流输电线路用复合外套金属氧化物避雷器》中,避雷器 本体额定电压选择遵循上述原则,选择带外串联间隙避雷器的条件为:额定电压大于或等于标准规定的或者工程运行可接受的系统最大允许工频过电压值(此时对应的工频续流在mA量级),或者额定电压小于标准规定的或者工程运行可接受的系统最大允许工频过电压值,且二者的差值在预设范围内(此时适当考虑了外串联间隙本身具有的灭弧能力,对应的工频续流约几个安培)。不同电压等级交流线路选用的带外串联间隙避雷器本体额定电压标准典型推荐值见表1。
表1 带外串联间隙避雷器本体额定电压标准典型推荐值
Figure PCTCN2019114945-appb-000001
虽然在避雷器本体额定电压的选择上已经适当考虑了外串联间隙本身的熄弧能力,但从表1可以得出,对于额定电压小于系统最大工频过电压的,最大偏离不超过最大工频过电压的5%,对应的遮断工频续流充其量在几个安培的程度,显然并没有深度利用外串联间隙的熄弧能力。究其原因,主要是受现阶段试验条件的限制,长间隙工频续流遮断试验无法开展,缺乏足够的灭弧试验数据支撑,自然也就无法实现精细化设计,其次是对于纯空气间隙和带支撑件间隙这种敞开式外串联间隙,熄弧能力受运行环境(风、温度、湿度、空气密度等因素)的影响大,熄弧性能不稳定决定装置可靠性差。上述原因决定了在相关技术中带外串联间隙避雷器结构形式下,试图通过深度利用外串联间隙的熄 弧能力裕度来降低避雷器本体的额定电压的技术路线无法实现。
带外串联间隙避雷器目前在工程应用中成本高、安装难度大,这限制了其在输配电架空线路中更大范围推广应用。避雷器本体额定电压高,意味着制造时需要更多的电阻片和绝缘外套材料,需要避免高度大带来的电位分布、机械强度、防爆性能等变差的情况,装置的设计难度大,造成装置造价高,对应我国架空输电线路运营总里程接近200万公里、架空配电线路运营总里程超过400万公里(带外串联间隙避雷器已在输电线路上应用10万只以上,在配电线路上应用保守估计在500万只以上)的庞大体量,增加的防雷经济成本是显著的;避雷器本体额定电压高,意味着装置的体积和重量大,特别是对高电压等级的输电线路,雷击故障高发线路段往往处于山地丘陵等复杂地形下,需要杆塔的机械强度和塔窗空间预留足够,需要消耗更多的人力物力实施搬运和吊装,现场安装施工困难,在同塔双回输电线路及转角塔等特殊位置,由于避雷器整体长度过大甚至无法安装。
因此,相关技术中带外串联间隙避雷器采用避雷器本体串联纯空气间隙或者带支撑件间隙的结构,受这类敞开式外串联间隙遮断工频续流稳定性先天不足和现阶段试验条件无法支撑开展长间隙工频续流遮断试验研究的限制,无法深度、精细化利用外串联间隙的熄弧能力,造成目前带外串联间隙避雷器整体造价高,装置体积大、重量大,带来工程防雷总体成本高、安装施工困难等不足,这限制了带外串联间隙避雷器更大规模的推广应用。
发明内容
本申请提出了一种带外串联间隙避雷器及防雷系统,避免了相关技术中避雷器使用敞开式外串联间隙导致遮断续流能力低和稳定性差的情况。
一方面,本申请提出了一种带外串联间隙避雷器,该避雷器包括:串联连接的避雷器本体和熄弧式间隙结构;其中,所述熄弧式间隙结构包括绝缘外套,熄弧电极,隔离气室;所述绝缘外套内设有多个间隔且并排设置的所述熄弧电极,任意相邻的两个所述熄弧电极之间设有隔离气室;所述绝缘外套的第一端和第二端分别设有连接法兰,所述第一端的连接法兰连接所述避雷器本体,所述第二端的连接法兰连接输电导线,或者,所述第一端的连接法兰连接所述避雷器本体,所述第二端的连接法兰与所述输电导线间隔设置,;所述绝缘外套上设有与所述隔离气室一一对应且与所述隔离气室连通的喷气口,所述喷气口暴 露出所述熄弧电极和所述隔离气室,以使多个相邻的熄弧电极之间形成多个串联的空气间隙。
另一方面,本申请还提出了一种10kV架空线路的防雷系统,该防雷系统包括输电导线、线路横担,安装支架,和上述带外串联间隙避雷器;其中,所述带外串联间隙避雷器的熄弧式间隙结构为柱状结构,所述带外串联间隙避雷器通过所述安装支架与所述线路横担相连接;所述熄弧式间隙结构远离所述避雷器本体的端部设置有连接法兰,所述熄弧式间隙结构通过所述连接法兰与所述输电导线相连接;或,所述熄弧式间隙结构远离所述避雷器本体的端部与所述输电导线间隔设置。
另一方面,本申请还提出了一种10kV~1000kV架空线路的防雷系统,该防雷系统包括输电导线、线路横担,安装支架,和上述带外串联间隙避雷器;其中,所述带外串联间隙避雷器的熄弧式间隙结构包括绝缘支柱,所述熄弧式间隙结构为至少两个间隔设置的环状单元节,任意相邻的两个所述环状单元节之间通过所述绝缘支柱连接;所述带外串联间隙避雷器通过所述安装支架挂设在所述线路横担上,所述熄弧式间隙结构远离所述避雷器本体的端部设置有连接法兰,所述熄弧式间隙结构通过所述连接法兰与所述输电导线相连接。
另一方面,本申请还提出了一种10kV~220kV架空线路的防雷系统,该防雷系统包括输电导线、线路横担,安装支架,和上述带外串联间隙避雷器;其中,所述带外串联间隙避雷器的熄弧式间隙结构为多个串联连接的柱状单元节;所述带外串联间隙避雷器通过所述安装支架挂设在所述线路横担上,所述熄弧式间隙结构远离所述避雷器本体的端部设置有连接法兰,所述熄弧式间隙结构通过所述连接法兰与所述输电导线相连接。
附图说明
图1为相关技术中带外串联间隙避雷器的结构示意图;
图2为相关技术中带外串联间隙避雷器的又一结构示意图;
图3为本申请一实施例提供的带外串联间隙避雷器的熄弧式间隙结构的局部结构示意图;
图4为本申请一实施例提供的10kV架空线路的防雷系统的结构示意图;
图5为本申请一实施例提供的10kV~1000kV架空线路的防雷系统的结构示意图;
图6为本申请一实施例提供的10kV~220kV架空线路的防雷系统的结构示意图。
具体实施方式
避雷器实施例:
参见图3至图6,其示出了本申请一实施例提供的带外串联间隙避雷器的结构。如图所示,该带外串联间隙避雷器包括:避雷器本体1和熄弧式间隙结构2;其中,避雷器本体1和熄弧式间隙结构2串联连接。示例性的,避雷器本体1包含金属氧化物电阻片、绝缘套筒、硅橡胶复合材料伞套以及金属法兰等部件。其中,电阻片采用圆饼状或圆环状电阻片,叠装后通过弹簧机构挤压在环氧树脂玻璃纤维绝缘套筒内,或者通过紧固支架组装成一个整体后放入环氧树脂玻璃纤维绝缘套筒内,绝缘套筒内填充有绝缘硅脂或者微正压空气;硅橡胶护套、伞裙一次性模压成型,包覆住绝缘套筒形成外绝缘层;金属法兰用于密封绝缘套筒,并承担组装连接部件的作用。随着线路电压等级的升高,避雷器本体1也可分节设计成多个独立的短单元体,再经金属法兰组装成一体。避雷器本体1端部的金属法兰用以串联连接熄弧式间隙结构2,以利用熄弧式间隙结构2具有的较大的遮断工频续流能力(kA量级),和稳定可靠的熄弧动作性能,来降低避雷器本体1的额定电压,进而降低该带外串联间隙避雷器的造价,降低带外串联间隙避雷器的体积和重量。另一端金属法兰用以连接支架等零部件。
熄弧式间隙结构2包括绝缘外套21,熄弧电极22,隔离气室23;绝缘外套21内设有多个间隔且并排设置的熄弧电极22,任意相邻的两个熄弧电极22之间设有隔离气室23。在一实施例中,熄弧式间隙结构2包括内部中空的绝缘外套21、设置于绝缘外套21内部的熄弧电极22和熄弧电极22之间的隔离气室23;其中,熄弧电极22为至少两个,其在绝缘外套21内沿绝缘外套21的长度方向并排且间隔设置,并且,任意相邻两个熄弧电极22之间设有隔离气室23,使得两个相邻熄弧电极22和其之间的隔离气室23组成空气间隙腔室20,也就是说,绝缘外套21内设置有至少一个串联连接的空气间隙腔室20,空气间隙腔室20的串联数量与线路电压等级相关,电压等级越高,串联数量越多,熄弧电极22的数量则越多,空气间隙腔室20采用非敞开式的空气间隙,以便产生千安级别的续流遮断能力,并且遮断续流的稳定性几乎不受运行环境的影响,甚至在绝缘外套21表面和隔离气室23结冰情况下,依然可以稳定遮断续流,并 且,熄弧式间隙结构2的有效动作次数可达几十次,完全能够满足配合避雷器本体1动作的使用要求。当然,隔离气室23亦可为两个相邻两个熄弧电极22之间形成的空腔腔室。为提高熄弧电极22之间放电间隙的稳定性,在一实施例中,熄弧电极22之间等间距排布,以使多个熄弧电极22之间的隔离气室23空间相同,进而确保多个隔离气室23可同步击穿;示例性的,彼此相邻的两个熄弧电极22之间的最短距离取值范围为2mm~20mm,以确保其隔离气室23击穿的稳定性。其中,绝缘外套21为硅橡胶复合外套,为提高避雷器沿面放电的距离,在一实施例中,绝缘外套21的外部并排设置有多个伞裙27,以增加爬距从而降低了放电的可能性。熄弧电极22可以为实心圆球体或实心圆柱体,在为圆球体的情况下,球直径取值范围为8mm~18mm,在为圆柱体的情况下,圆截面直径取值范围为5mm~15mm,满足其耐受电弧灼烧等要求,其中,熄弧电极22可以为铜电极或钢电极。
绝缘外套21的第一端和第二端分别设有连接法兰24,第一端的连接法兰24连接避雷器本体1,第二端的连接法兰24连接输电导线3,或者,第一端的连接法兰24连接所述避雷器本体1,第二端的连接法兰24经空气间隙隔离后与所述输电导线3间隔设置。在一实施例中,绝缘外套21的第一端和第二端分别设置有连接法兰24,图3中以熄弧式间隙结构2的局部为例进行说明,其未示出的一端亦设有连接法兰24。其中,连接法兰24为钢材,其表面镀锌处理,或者连接法兰24为铜材,并且,连接法兰24的结构可根据实际情况确定,其可以作为安装金具或放电电极,本实施例中对其不做任何限定。
绝缘外套21上设有与隔离气室23一一对应且与隔离气室23连通的喷气口25,喷气口25暴露出熄弧电极22和隔离气室23,以使多个相邻的熄弧电极22之间形成的多个空气间隙串联在一起。在一实施例中,设置于绝缘外套21端部的熄弧电极22分别与其相邻的连接法兰24连接,以便将电弧引至绝缘外套21内,电弧4产生的高温迅速加热空气间隙腔室20内的空气,气体膨胀与外界形成气压差,沿喷气口25喷出,由于电弧弧根始终维持在熄弧电极22表面,热气流将电弧弧柱一起带出空气间隙腔室20,使电弧整体在轴向上拉伸变长;同时,电弧弧柱处于线路电流产生的磁场中,还受到电磁推力作用;电弧弧柱被推出空气间隙腔室20外,直接与外界的空气接触,加强了电弧中等离子体的扩散和热量的耗散,加速了电弧的去游离过程。在工频续流电弧起始阶段,电弧通道因为粒子游离尚不充分,弧道电阻较大,随着电弧发展,弧道电阻逐渐降 低,当弧道电阻降低到最小值时电弧电流上升到最大值,此后,被推出空气间隙腔室20的电弧的去游离过程对弧道电阻起支配作用,电弧电流随着弧道电阻的重新增大转而下降,此过程不可逆持续发展,直到弧道电阻升高到足够大使得电弧电流降低到零,通常工频续流先于电压过零点。其中,喷气口25可以为倒锥台状结构,以便于绝缘外套21内的电弧的熄灭。喷气口25的径向截面(如图3所示的水平方向的截面)可以为圆形,其直径取值范围为2mm~6mm,以便将电弧自喷气口25内引出,进而实现灭弧。
为增加熄弧式间隙结构2的整体机械强度,在绝缘外套21的内部贯穿设置绝缘芯棒26,绝缘芯棒26的两端分别压接在两个连接法兰24上,将两个连接法兰24作为安装金具或者放电电极使用。在一实施例中,绝缘芯棒26为环氧树脂玻璃纤维引拔棒,绝缘芯棒26的横截面可为圆形结构或方形结构,在横截面截面为圆形的情况下,直径取值范围为8mm~30mm,在横截面为方形即长方形或正方形的情况下,边长取值范围为5mm~30mm。
本实施例提供的带外串联间隙避雷器的动作保护过程:
架空线路遭受雷击,在雷电过电压幅值超过带外串联间隙避雷器的放电动作电压(该放电动作电压小于线路绝缘子或塔窗最小间隙放电电压,一般放电动作电压至少低于线路绝缘子或塔窗最小间隙放电电压的15%)的情况下,熄弧式间隙结构2内部的熄弧电极22之间的空气击穿,避雷器本体1承受雷电过电压,瞬间呈现低阻抗特性,雷电能量沿着带增强熄弧式外串联间隙避雷器通道对地释放,同时工频续流电弧沿雷电冲击放电通道形成,此时彼此独立的空气间隙腔室20将工频电弧分割成多个短电弧。电弧产生的高温迅速加热空气间隙腔室20内的空气,气体膨胀与外界形成气压差,沿喷气口25喷出,由于电弧弧根始终维持在熄弧电极22表面,热气流将电弧弧柱一起带出空气间隙腔室20,使电弧整体在轴向上拉伸变长;同时,电弧弧柱处于线路电流产生的磁场中,还受到电磁推力作用。电弧弧柱被推出空气间隙腔室20外,直接与外界的空气接触,加强了电弧中等离子体的扩散和热量的耗散,加速了电弧的去游离过程。在工频续流电弧起始阶段,电弧通道因为粒子游离尚不充分,弧道电阻较大,随着电弧发展,弧道电阻逐渐降低,当弧道电阻降低到最小值时电弧电流上升到最大值,此后,被推出空气间隙腔室20的电弧的去游离过程对弧道电阻起支配作用,电弧电流随着弧道电阻的重新增大转而下降,此过程不可逆持续发展,直到弧道电阻升高到足够大使得电弧电流降低到零,通常工频续流先 于电压过零点。研究显示,与设计参数相关,熄弧式间隙结构2的最大可遮断工频续流峰值可达到1kA~3kA,并且,由于是非敞开式空气间隙,遮断续流的稳定性几乎不受运行环境的影响,甚至在绝缘外套21表面和隔离气室23结冰情况下,依然可以稳定遮断续流,并且,熄弧式间隙结构2的有效动作次数可达几十次,完全能够满足配合避雷器本体1动作的使用要求。
在雷电冲击过后,避雷器本体1最严苛的工况是承受系统最大工频过电压,此时避雷器本体1瞬间恢复到高阻抗状态,在现行技术标准推荐额定电压取值下,避雷器本体1自身即可将工频续流抑制在最大几个安培的水平,直接遮断续流,本申请降低避雷器本体1的额定电压取值,利用熄弧式间隙结构2的熄弧能力来遮断回路中因避雷器本体1额定电压降低而增大的工频续流;因此,只需合理选择避雷器本体1的额定电压,使回路中的工频续流峰值不超过熄弧式间隙结构2的熄弧能力,工频续流即可被有效遮断;对于避雷器本体额定电压的取值范围,以相关技术中典型工艺下的金属氧化物电阻片伏安特性曲线来分析,电阻片直径从28mm到100mm,涵盖10kV~1000kV线路等级,操作冲击残压试验结果见表2,对应冲击电流为1kA~3kA的压比范围约在1.3~1.6,避雷器本体1额定电压按此比例缩小,相比现行标准推荐值(见表1),可降低约23%~33%,降低幅度明显,支持实现良好的低造价、小型化和轻量化设计目标。
表2 典型金属氧化物电阻片操作冲击残压试验结果
Figure PCTCN2019114945-appb-000002
综上,本实施例提供的带外串联间隙避雷器,通过在避雷器本体1串联熄弧式间隙结构2,熄弧式间隙结构2绝缘外套21内设有多个间隔且并排设置的熄弧电极22,任意相邻两个熄弧电极22之间设有隔离气室23,以便两个相邻熄弧电极22和其之间的隔离气室23组成空气间隙腔室20,且空气间隙腔室20采用非敞开式的空气间隙,以便形成遮断续流所需的高温高压条件,以便产生 千安级别的续流遮断能力,避免遮断续流的稳定性受运行环境的影响,甚至在绝缘外套21表面和隔离气室23结冰情况下,依然可以稳定遮断续流,并且,熄弧式间隙结构2的有效动作次数可达几十次,完全能够满足配合避雷器本体1动作的使用要求,同时,熄弧式间隙结构2利用增强熄弧式间隙具有的较大的遮断工频续流能力(kA量级),和稳定可靠的熄弧动作性能,以降低避雷器本体的额定电压,进而降低装置的造价,降低装置的体积和重量,从而实现低造价、小型化、轻量化的指标,以实现避雷器大规模的推广应用。
10kV架空线路的防雷系统实施例:
参见图4,本实施例中还提出了一种10kV架空线路的防雷系统,其包括:输电导线3、线路横担5、安装支架6和上述带外串联间隙避雷器;其中,带外串联间隙避雷器的熄弧式间隙结构2为柱状结构,带外串联间隙避雷器通过安装支架6与线路横担5相连接。在一实施例中,在搭配10kV架空线路柱式和针式绝缘子使用的情况下,熄弧式间隙结构2为柱式结构,熄弧式间隙结构2靠近避雷器本体1的端部(如图4所示的间隙结构2的下端)上设置的连接法兰24与避雷器本体1相连接,以组装为整体,并通过安装支架6将组合体即带外串联间隙避雷器安装到线路横担5上,即可以通过避雷器本体1远离熄弧式间隙结构2的端部(如图4所示的避雷器本体1的下端)通过避雷器本体1上设置的金属法兰与安装支架6相连接,以便通过安装支架6安装至线路横担5上。
熄弧式间隙结构2远离避雷器本体1的端部设置有连接法兰24(如图4所示的间隙结构2的上端)熄弧式间隙结构2通过该连接法兰24与输电导线3相连接,或,熄弧式间隙结构2远离避雷器本体1的端部与输电导线3间隔设置。在一实施例中,安装时,熄弧式间隙结构2靠近输电导线3设置但与导线不直接电连接,或者通过熄弧式间隙结构2远离避雷器本体1的端部通过熄弧式间隙结构2端部设置的连接法兰24与输电导线3电连接。
其中,带外串联间隙避雷器的实施过程参见上述说明即可,本实施例在此不再赘述。
10kV~1000kV架空线路的防雷系统实施例:
参见图5,其为本申请一实施例提供的10kV~1000kV架空线路的防雷系统的结构示意图。如图所示,10kV~1000kV架空线路的防雷系统包括:输电导线3、线路横担5、安装支架6和上述带外串联间隙避雷器;其中,带外串联间隙避雷器的熄弧式间隙结构2包括绝缘支柱251,熄弧式间隙结构2为至少两个间 隔设置的环状单元节250,任意相邻的两个环状单元节250之间通过绝缘支柱251连接。在一实施例中,带外串联间隙避雷器中在避雷器本体1的一端设有多个间隔设置的环状单元节250,多个环状单元节250串联连接,其串联数量与线路电压等级相关,电压等级越高,串联数量越多,即环状单元节250的数量与线路电压等级正相关。其中,环状单元节250沿避雷器本体1的长度方向设置,且任意相邻两个环状单元节250之间通过绝缘支柱251连接,以实现环状单元节250之间的隔离。也就是说,在搭配10kV~1000kV架空线路悬式瓷绝缘子串或悬式复合绝缘子使用的情况下,熄弧式间隙结构2为环式结构,环状单元节250之间采用串联连接,并通过绝缘支柱251连接并隔离,避免雷电过电压沿环状单元节250串联通道以外的路径击穿放电。为提高环状单元节250的稳定性,在一实施例中,环状单元节250上设有多个呈散射状排布的绝缘支架252,起到支撑作用,以使环状单元节250呈环状结构,同时实现环状单元节250与绝缘支柱251之间的连接和固定。环状单元节250的端部均设有间隙电极253,其与环状单元节250内相邻的熄弧电极电连接,用以传导电弧;位于熄弧式间隙结构2两个端部的环状单元节250,一个间隙电极253沿环状单元节250的轴向设置,另一个间隙电极253沿环状单元节250的径向设置,其中沿径向设置的间隙电极253与绝缘支柱251的端部金具电连接;其他环状单元节250中的两个间隙电极253均沿环状单元节250的轴向设置,以击穿两个相邻环状单元节250上间隙电极253之间的空气,以实现两个相邻环状单元节250之间的串联,以实现电弧在相邻环状单元节250之间的传导,图5中箭头表示其电弧传导方向,即沿环状单元节250顺时针传导。环状单元节250之间通过绝缘支柱251连接为整体,并且,最上端设置的环状单元节250与避雷器本体1相连接,以组装成一个整体。
带外串联间隙避雷器通过安装支架6挂设在线路横担5上,并且,熄弧式间隙结构2远离避雷器本体1的端部通过熄弧式间隙结构2端部(如图5所示的熄弧式间隙结构2的下端)设置的连接法兰24与输电导线3相连接。在一实施例中,安装时避雷器本体1经安装支架6悬挂在杆塔横担5上,熄弧式间隙结构2靠近输电导线3的端部(如图5所示的熄弧式间隙结构2的下端)通过连接法兰24与输电导线3电连接。
其中,带外串联间隙避雷器的实施过程参见上述说明即可,本实施例在此不再赘述。
10kV~220kV架空线路的防雷系统实施例:
参见图6,其为本申请一实施例提供的10kV~220kV架空线路的防雷系统的结构示意图。如图所示,10kV~220kV架空线路的防雷系统包括:输电导线3、线路横担5、安装支架和上述带外串联间隙避雷器;其中,带外串联间隙避雷器的熄弧式间隙结构2为多个串联连接的柱状单元节260,并且,带外串联间隙避雷器通过安装支架6与线路横担5相连接。在一实施例中,在与10kV~220kV架空线路悬式瓷绝缘子串或悬式复合绝缘子配合使用的情况下,熄弧式间隙结构2为柱式结构,其可采用多个柱单元节260串联的形式,柱单元节260之间通过其端部设置的连接法兰24相连接,靠近避雷器本体1的柱单元节260通过靠近避雷器本体1的端部(如图6所示的熄弧式间隙结构2的左端)上设置的连接法兰24与避雷器本体1相连接,并通过安装支架6将组合体即带外串联间隙避雷器安装到线路横担5上。即避雷器本体1远离熄弧式间隙结构2的端部(如图6所示的避雷器本体1的上端)设置有金属法兰,避雷器本体1通过这个金属法兰与安装支架6相连接,以便将带外串联间隙避雷器通过安装支架6安装至线路横担5上,熄弧式间隙结构2远离避雷器本体1的端部设置有连接法兰24,熄弧式间隙结构2通过这个连接法兰24与输电导线3相连接,示例性的,安装时,远离避雷器本体1的柱单元节260通过远离避雷器本体1的端部上设置的连接法兰24与输电导线3电连接。
其中,带外串联间隙避雷器的实施过程参见上述说明即可,本实施例在此不再赘述。

Claims (10)

  1. 一种带外串联间隙避雷器,包括:串联连接的避雷器本体和熄弧式间隙结构;其中,
    所述熄弧式间隙结构包括绝缘外套,熄弧电极,隔离气室;所述绝缘外套内设有多个间隔且并排设置的所述熄弧电极,任意相邻的两个所述熄弧电极之间设有所述隔离气室;
    所述绝缘外套的第一端和第二端分别设有连接法兰,所述第一端的连接法兰连接所述避雷器本体,所述第二端的连接法兰连接输电导线,或者,所述第一端的连接法兰连接所述避雷器本体,所述第二端的连接法兰与所述输电导线间隔设置;
    所述绝缘外套上设有与所述隔离气室一一对应且与所述隔离气室连通的喷气口,所述喷气口暴露出所述熄弧电极和所述隔离气室,以使多个相邻的熄弧电极之间形成多个串联的空气间隙。
  2. 根据权利要求1所述的带外串联间隙避雷器,其中,所述熄弧式间隙结构设置有绝缘芯棒;
    所述绝缘芯棒贯穿设置在所述绝缘外套内,所述绝缘芯棒的两端分别压接在所述连接法兰上。
  3. 根据权利要求2所述的带外串联间隙避雷器,其中,
    所述绝缘芯棒为环氧树脂玻璃纤维引拔棒,所述绝缘芯棒的横截面为圆形结构或方形结构。
  4. 根据权利要求1至3任一项所述的带外串联间隙避雷器,其中,
    所述熄弧电极为铜电极或钢电极,所述熄弧电极为实心球体或实心圆柱体。
  5. 根据权利要求1至3任一项所述的带外串联间隙避雷器,其中,
    所述绝缘外套为硅橡胶复合外套,所述绝缘外套的外部并排设置有多个伞裙。
  6. 一种10kV架空线路的防雷系统,包括:输电导线、线路横担、安装支架和如权利要求1至5任一项所述的带外串联间隙避雷器;其中,
    所述带外串联间隙避雷器的熄弧式间隙结构为柱状结构,所述带外串联间隙避雷器通过所述安装支架与所述线路横担相连接;
    所述熄弧式间隙结构远离所述避雷器本体的端部设置有连接法兰,所述熄弧式间隙结构通过所述连接法兰与所述输电导线相连接;或,所述熄弧式间隙结构远离所述避雷器本体的端部与所述输电导线间隔设置。
  7. 一种10kV~1000kV架空线路的防雷系统,包括:输电导线、线路横担、安装支架和如权利要求1至5任一项所述的带外串联间隙避雷器;其中,
    所述带外串联间隙避雷器的熄弧式间隙结构包括绝缘支柱,所述熄弧式间隙结构为至少两个间隔设置的环状单元节,任意相邻的两个所述环状单元节之间通过所述绝缘支柱连接;
    所述带外串联间隙避雷器通过所述安装支架挂设在所述线路横担上,所述熄弧式间隙结构远离所述避雷器本体的端部设置有连接法兰,所述熄弧式间隙结构通过所述连接法兰与所述输电导线相连接。
  8. 根据权利要求7所述的防雷系统,其中,
    所述环状单元节上设有间隙电极,所述间隙电极用于引导电弧的传导,以击穿两个相邻所述环状单元节上间隙电极之间的空气,实现两个相邻所述环状单元节之间的串联。
  9. 根据权利要求8所述的防雷系统,其中,
    所述环状单元节上设有多个呈散射状排布的绝缘支架,所述绝缘支架设置为支撑所述环状单元节呈环状结构。
  10. 一种10kV~220kV架空线路的防雷系统,包括:输电导线、线路横担、安装支架和如权利要求1至5任一项所述的带外串联间隙避雷器;其中,
    所述带外串联间隙避雷器的熄弧式间隙结构为多个串联连接的柱状单元节;
    所述带外串联间隙避雷器通过所述安装支架挂设在所述线路横担上,所述熄弧式间隙结构远离所述避雷器本体的端部设置有连接法兰,所述熄弧式间隙结构通过所述连接法兰与所述输电导线相连接。
PCT/CN2019/114945 2019-04-22 2019-11-01 一种带外串联间隙避雷器及防雷系统 WO2020215650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910323660.6A CN110098564A (zh) 2019-04-22 2019-04-22 一种带外串联间隙避雷器及避雷系统
CN201910323660.6 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020215650A1 true WO2020215650A1 (zh) 2020-10-29

Family

ID=67445435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114945 WO2020215650A1 (zh) 2019-04-22 2019-11-01 一种带外串联间隙避雷器及防雷系统

Country Status (2)

Country Link
CN (1) CN110098564A (zh)
WO (1) WO2020215650A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098564A (zh) * 2019-04-22 2019-08-06 中国电力科学研究院有限公司 一种带外串联间隙避雷器及避雷系统
CN113054534B (zh) * 2021-02-24 2022-04-15 云南电网有限责任公司德宏供电局 一种利用磁场提升多腔室结构灭弧效率的方法
CN113783172B (zh) * 2021-07-22 2023-08-01 西安交通大学 带外串触发型过电压保护间隙的智能组合防护组件
CN113629683B (zh) * 2021-07-22 2023-08-01 西安交通大学 一种具有防脉冲电弧污染结构的触发型过电压保护间隙的智能组合防护组件
CN113782285B (zh) * 2021-07-22 2022-10-25 西安交通大学 一种基于具有防污结构的触发型过电压控制开关的可控避雷器
CN113782286B (zh) * 2021-07-22 2022-10-28 西安交通大学 一种表面触发型过电压控制开关与氧化锌避雷器组成的表面触发型可控避雷器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108187A (en) * 1995-11-17 2000-08-22 Streamer Electric Company, Inc. Electric power transmission line with protection devices against lightning overvoltages
CN105938978A (zh) * 2016-06-01 2016-09-14 武汉大学 用于交流架空输电线路的多间隙避雷绝缘子
CN107834357A (zh) * 2017-10-18 2018-03-23 南阳金牛电气有限公司 一种串联多腔室灭弧防雷装置
CN109217112A (zh) * 2018-09-30 2019-01-15 武汉微创元电子科技有限责任公司 基于盘形多间隙灭弧防雷装置的组合型避雷器
CN109638650A (zh) * 2018-11-28 2019-04-16 国家电网有限公司 一种基于多腔室线路防雷装置
CN110085378A (zh) * 2019-04-22 2019-08-02 中国电力科学研究院有限公司 一种内置压敏电阻单元的复合绝缘子装置
CN110098564A (zh) * 2019-04-22 2019-08-06 中国电力科学研究院有限公司 一种带外串联间隙避雷器及避雷系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108187A (en) * 1995-11-17 2000-08-22 Streamer Electric Company, Inc. Electric power transmission line with protection devices against lightning overvoltages
CN105938978A (zh) * 2016-06-01 2016-09-14 武汉大学 用于交流架空输电线路的多间隙避雷绝缘子
CN107834357A (zh) * 2017-10-18 2018-03-23 南阳金牛电气有限公司 一种串联多腔室灭弧防雷装置
CN109217112A (zh) * 2018-09-30 2019-01-15 武汉微创元电子科技有限责任公司 基于盘形多间隙灭弧防雷装置的组合型避雷器
CN109638650A (zh) * 2018-11-28 2019-04-16 国家电网有限公司 一种基于多腔室线路防雷装置
CN110085378A (zh) * 2019-04-22 2019-08-02 中国电力科学研究院有限公司 一种内置压敏电阻单元的复合绝缘子装置
CN110098564A (zh) * 2019-04-22 2019-08-06 中国电力科学研究院有限公司 一种带外串联间隙避雷器及避雷系统

Also Published As

Publication number Publication date
CN110098564A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020215650A1 (zh) 一种带外串联间隙避雷器及防雷系统
CN109217112B (zh) 基于盘形多间隙灭弧防雷装置的组合型避雷器
CN107834357A (zh) 一种串联多腔室灭弧防雷装置
CN101697299B (zh) 架空线路绝缘导线用避雷绝缘子
CN107481821B (zh) 一种防雷绝缘子
CN104779522A (zh) 一种具有绝缘子功能的雷电疏导器
CN105977789A (zh) 一种螺旋形多间隙避雷器
CN110829183A (zh) 用于输电线路的避雷装置
CN107369508A (zh) 一种避雷器
CN210349473U (zh) 一种内置压敏电阻单元的复合绝缘子装置
CN109273987A (zh) 基于双半球t型陶瓷放电管的棒形多间隙灭弧防雷装置
CN208240428U (zh) 一种新型串联间隙复合绝缘金属氧化物避雷器
CN106448960A (zh) 一种35kV带多间隙防雷绝缘子
CN108565084A (zh) 一种新型串联间隙复合绝缘金属氧化物避雷器
Podporkin et al. Lightning protection of overhead lines rated at 3–35 kV and above with the help of multi-chamber arresters and insulator-arresters
CN109273988A (zh) 基于双半球t型陶瓷放电管的盘形多间隙灭弧防雷装置
CN210129650U (zh) 一种带外串联间隙避雷器及避雷系统
CN210156189U (zh) 一种间隙型避雷器
CN208970930U (zh) 一种基于盘形多间隙灭弧防雷装置的组合型避雷器
CN108231300B (zh) 一种防雷绝缘子的并联间隙装置
CN208723314U (zh) 一种双半球t型陶瓷放电管的棒形多间隙灭弧防雷装置
CN210575306U (zh) 一种新型梯形双极灭弧绝缘子
CN206976098U (zh) 一种避雷器
CN113782288B (zh) 一种适用于高阻值山区的跌落式间隙避雷器及其生产工艺
CN201514819U (zh) 架空线路绝缘导线用避雷绝缘子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926215

Country of ref document: EP

Kind code of ref document: A1